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ABSTRACT. In an Euclideani-space, the container problem asks to pack
n equally sized spheres into a minimal dilate of a fixed comtairif the
container is a smooth convex body ahd 2 we show that solutions to the
container problem can not have a “simple structure” fordargBy this we

in particular find that there exist arbitrary smalp> 0, such that packings in

a smooth3-dimensional convex body, with a maximum number of spheres
of radiusr, are necessarily not hexagonal close packings. This atiotsa
Kepler's famous statement that the cubic or hexagonal gas&ing “will

be the tightest possible, so that in no other arrangemerd spireres could

be packed into the same container”.
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1 INTRODUCTION

How many equally sized spheres can be packed into a giveraicen? In 1611,
KEPLER discussed this question in his booklet [Kep11] and came ecfdHowing
conclusion:

“Coaptatio fiet arctissima, ut nullo praeterea ordine pgugdobuli
in idem vascompingi queant.”

“The (cubic or hexagonal close) packing will be the tightpsissi-
ble, so that in no other arrangement more sphemsdd be packed
into the same containér
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394 ACHILL SCHURMANN

In this note we want to show that Kepler’'s assertion is fatgariany containers (see
Section 5, Corollary2). Even more general we show, rough@aking, that the set of
solutions to the finite container problem (see below) in adliflaan space of dimen-
siond > 2 has no “simple structure” (see Definition 1).

To make this precise, we consider the EuclidéapaceR? endowed with inner prod-
uct(-,-) and norm| - |. Let B¢ = {z € R : |z| < 1} denote the (solid) unit sphere
andS?! = {x € R? : |z| = 1} its boundary. Then a discrete s&t C R? is a
packing setind defines aphere packingt + $B? = {x + iy : ¢ € X,y € B},

if distinct elementse andz’ of X have distancér — «’| > 1. The sphere packing is
calledfinite if X is of finite cardinality| X'|. Here we consider finite sphere packings
contained in a convex bodggntaine) C, that is, a compact, convex subsetRsf
with nonempty interior. Théinite container problenmay be stated as follows.

PRrROBLEM. Givend > 2, n € N and a convex bodg' ¢ R¢, determine
A(C,n) = min{\ > 0: \C D X + 1B%apacking,X ¢ R?with|X|=n}
and packing setX attaining the minimum.

Many specific instances of this container problem have beesidered (see for exam-
ple [Bez87], [BWO4], [Fod99], [Mel97], [D97],[Spe04], [SMC+06]). Independent
of the particular choice of the contain€f, solutions tend to densest infinite packing
arrangements for growing (see Section'5, cf. [CS95]). In dimensi@rthese pack-
ings are known to be arranged hexagonally. Nevertheletmyuglh close, solutions
to the container problem are not hexagonally arranged fau#ficiently largen and
various convex disk€’, as shown by the author in [Sch02], Theorem 9 (cf. [LG97]
for corresponding computer experiments). Here we showalsahilar phenomenon
is true in arbitrary Euclidean spaces of dimension 2.

We restrict ourselves temooth convex bodigs as containers. That is, we assume
the support functionhc(u) = sup{(xz,u) : * € C} of C is differentiable at all

u € R%\ {0}, or equivalently, we require that has a uniqusupporting hyperplane
through each boundary point (see [Sch93], Chapter 1.7).

Our main result shows that families of packing sets with anfde structure” can
not be solutions to the container problemdifis smooth and. sufficiently large.
This applies for example to the family of solutions to th#ice restricted container
problem In it, we only consider packing sets which are isometric snlaset of some
lattice (a discrete subgroup &).

THEOREM 1. Letd > 2 andC c R? a smooth convex body. Then there exists an
ng € N, depending or”, such that\(C, n) is not attained by any lattice packing set
forn > ny.

2 PACKING FAMILIES OF LIMITED COMPLEXITY

The result of Theorem/ 1 can be extended to a more generalaflpssking sets.

DEerFINITION 1. A family F of packing sets iiR? is of limited complexity(an Ic-
family), if
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ON PACKING SPHERES INTO CONTAINERS 395

(i) there exist isometrie%y, for eachX € F, such that
{x—y:z,yeIx(X)andX € F} 1)
has only finitely many accumulation points in any boundedbreg

(i) there exists a > 0, such that for alle € X with X € F, every affine subspace
spanned by some elements of

{yeX:|o—yl=1}
either containge or its distance toe is larger thanp.

Condition (i) shows that point configurations within an &uiily large radius around
a point are (up to isometries &f and up to finitely many exceptions) arbitrarily close
to one out of finitely many possibilities. Condition (ii) lita the possibilities for points
at minimum distance further. Note that the existence @fa0 in (ii) follows if (1) in

(i) is finite within S9—1.

An example of an Ic-family in which isometries can be choserthat [(1) is finite
in any bounded region, is the family bExagonal packing setShese are isometric
copies of subsets of @exagonal latticein which every point in the plane is at mini-
mum distancé to six others. For the hexagonal packing sets, conditiprs(gatisfied
forall o < % More general, isometric copies of subsets of a fixed lagice finite
sets[(1) in any bounded region and satisfy (ii) for suitalhalé o > 0. Similar is
true for more general families of packing sets, as for exarfyri thehexagonal close
configurationsn dimension3 (see Section 5).

An example of an Ic-family, in which the sets (1) are not neaey finite in any
bounded region, are the solutions to the lattice restrictedainer problem. As shown
at the end of Sectidn 3, condition (ii) in Definition 1 is netedess satisfied. Thus we
are able to derive Theorem 1 from the following, more geneslilt.

THEOREM 2. Letd > 2, C C R? a smooth convex body anél an Ic-family of
packing sets ilR%. Then there exists am, € N, depending o and C, such that
A(C, n) is not attained by any packing setffor n > ng.

Proofs are given in the next section. In Section 4 we brieflptinoa some possible ex-
tensions of Theorem 2. In Section 5 we discuss consequeniciefquoted assertion
of Kepler, if interpreted as a container problem (see CarglR).

3 PROOFS

IDEA. The proof of Theorem|2 is subdivided into four preparatogpstand corre-
sponding propositions. These technical ingredients aredit together at the end of
this section. Given an Ic-famil§ of packing sets, the idea is the following: We show
that packing setX € F, with | X | sufficiently large, allow the construction of packing
setsX’ with | X’| = | X | and withX’+ 1 B? fitting into a smaller dilate of. Roughly
speaking, this is accomplished in two steps. First we shaw‘tiearrangements” of
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396 ACHILL SCHURMANN

spheres near the boundary@fare possible for sufficiently large. This allows us to
obtain arbitrarily large regions in which spheres have ndact, respectively in which
points of X’ have distance greater tharno all other points (Proposition 2, depending
on property (i) of Definitior 1). Such an initial modificatidchen allows rearrange-
ments of all spheres (Propositioh 3 and 4, depending on pxo(# of Definition 1),

so that the resulting packing fits into a smaller dilate”of For example, consider a
hexagonal packing in the plane: It is sufficient to initialgarrange (or remove) two
disks in order to subsequently rearrange all other diskshaono disk is in contact
with others afterwards (see Figlre 1, cf. [Sch02)).

Figure 1: Local rearrangements in a hexagonal circle packin

How do we know that the new sphere packiogs+ %Bd fit into a smaller dilate of
C? Consider

MC, X) =min{A > 0: \C Dt + X + 1B for somet € R?}

for a fixed finite packing seX. Here and in the sequel we use- X to abbreviate
{t} + X. Clearly

A(C,n) = min{\(C, X) : X is a packing set withX| = n },
and A\(C, X') < A(C, X) whenever theonvex hullconv X’ of X’ (and henceX’
itself) is contained in the interidnt conv X of the convex hull ofX. Thus in order

to prove thatX does not attair\(C, | X|) for any convex containe, it is sufficient
to describe a way of attaining a packing $&twith | X’| = | X| and

X' Cint conv X. (2)

I. Let us first consider the “shapes” of packing s&tsattaining\(C,n). Here and
in what follows, X,, denotes a packing set witl(,,| = n.
In order to define the “shape”, let

R(M) =min{R > 0: M C t + RB? for somet € R}

denote the circumradius of a compact &tc R? and letc(M) denote the center of
its circumsphere. Henc® C ¢(M) + R(M)B?. Then theshapeof M is defined by

S(M) = (conv(M) — ¢(M)) /R(M) c B“.
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ON PACKING SPHERES INTO CONTAINERS 397

The family of nonempty compact subsetgkifi can be turned into a metric space, for
example with théHausdorff metriqcf. [Sch93]). Shapes of packing sefs attaining
A(C,n) converge to the shape 6f, that is,

lim S (X,) = S(C). )
This is seen by “reorganizing elements” in a hypotheticaveogent subsequence of
{ X, }nen not satisfying((3).
The convergence of shapes leads for growinm shrinking sets obuter (unit) nor-
mals
{ve 8?1 (v,x) > (v,y) forally € conv X,,} (4)

at boundary pointg of the center polytopeonv X,,. For general terminology and
results on convex polytopes used here and in the sequel eretogiZie97].

SinceC is smooth, the sets of outer normadls (4) at boundary pointewf X,, be-
come uniformly small for large. Also, within a fixed radius around a boundary point,
the boundary ofonv X,, becomes “nearly flat” for growing.

PrROPOSITION 1. Letd > 2 andC C R? a smooth convex body. LéX,,} be a
sequence of packing sets{ attaining \(C, n). Then

(i) for e > 0 there exists am; € N, depending orC and ¢, such that for all
n > nq, outer normalsy, v’ € S41 of conv X,, atxz € X,, satisfy

lv—2'| <¢

(i) for e > 0 andr > 0 there exists am; € N, depending ort”, € andr, such that
for all n > ny, and forz, ¢’ € bd conv X, with | — =’| < r, outer normals
v € S9! of conv X, at x satisfy

(v,x —a') > —e.

IT. In what follows we use some additional terminology. Giveraaking setX, we
sayx € X isin afree positionif the set

Nx(@)={ye X :|lz—y|=1}

is empty. If somer € X is not contained ifint conv N'x (x), then it is possible to
obtain a packing seX’ = X \ {x} U {2’} in whichz' is in a free position. We say

is moved to a free positioim this case (allowing:’ = x). We sayz is moved into or
within a setM (to a free position), ift’ € M. Note, in the resulting packing sat’
less elements may have minimum distamde others, and therefore possibly further
elements can be moved to free positions.

AssumingX € F attainsA(C, | X|) with | X| sufficiently large, the following propo-
sition shows that it is possible to move elementsXofnto free positions within an
arbitrarily large region, without changing the center popheconv X.
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398 ACHILL SCHURMANN

PROPOSITION 2. Letd > 2andR > 0. LetC c R¢ a smooth convex body and
F a family of packing sets iiR¢ satisfying (i) of Definition 1. Then there exists an
ng € N, depending orR, F andC, such that for allX € F attainingA\(C, | X|) with

| X| > no, there exists &x € RY with

(i) (tx + RBY) C conv X, and

(ii) all elements ofX N int(tx + RB) can be moved to free positions by subse-
quently moving elements &fNint conv X to free positions withifint conv X.

Proof. Preparations. By applying suitable isometries to the packing setsFinve
may assume that

{y: ye X —zwith |y| < rforx € X andX € F} (5)

has only finitely many accumulation points for every 1. For eachX, the container
C'is transformed to possibly different isometric copies.sTikinot a problem though,
since the container is not used aside of Proposition 1, wisithdependent of the
chosen isometries. Note that the smoothnegs ixfimplicitly used here.

We sayxz € X is moved in directiorv € S9-1, if it is replaced by ane’ on the ray
{z 4+ Av : A € Rg}. Note that it is possible to mowe in directionv € S4~! to a
free position, if

Nx(z,v) = {w € Nx(x) —x : (v,w) > 0} (6)

is empty. If we want a fixede € X to be moved to a free position, in direction
v € S9! say, we have to move the elemegts x + N'x(z,v) first. In order to do
so, we move the elements 9f+ Nx (y, v) to free positions, and so on. By this we
are lead to the definition of theccess cone

accr ,(v) = pos{Nx(x,v) : € X for X € F with | X| > n} @

of F andn in directionv € S%1. Here,

pog M) = {ZAimi:meN,Ai >0andx; € Mfori=1,...,m}
i=1

denotes thepositive hullof a setM ¢ R?, which is by definition a convex cone.
Note that acg ,,(v) is contained in the halfspader € R? : (v,x) > 0} and that
accr , (v) C accr v (v) whenevem > n'.

By the assumption that|(5) has only finitely many accumutggioints forr > 1, there
exist only finitely many limitslim,, .. (accr ,(v) N B?). Here, limits are defined
using the Hausdorff metric on the set of nonempty compactestoiR? again.

Strategy. We choose a € S9! such that there exists an> 0 with

lim (accr,(v)NB?) = lim (accr,(v') N BY),

n—oo

for all v’ in thee-neighborhoodS. (v) = S471 N (v + eB?) of v € 4~ 1.
In order to prove the proposition, we show the following feesy X € F, attaining
A(C, | X|) with | X | sufficiently large: There existstar € R? such that

DOCUMENTA MATHEMATICA 11 (2006) 393-406



ON PACKING SPHERES INTO CONTAINERS 399

(i) (tx + RBY) + accr ,,(v) does not intersecX N bd conv X, while
(i) (tx + RB%) C conv X.
It follows thatbd conv X has to intersect the unbounded set
(tx + RBY) + acer ,(v) (8)

and by the definition of the access cone it is possible to miogeetements inX N
int(tx + RBY) to free positions as asserted. For example, after choodiirgetion
v’ € S.(v), we may subsequently pick non-free elementi (8) with maximal
(z,v"). These elements can be moved to a free position withionv X, since
Nx (x,v') is empty by the definition of the access cone.

Bounding the boundary intersectioniVe first estimate the size of the intersection of
(8) with bd conv X . Forv’ € S-(v) andn € N, we consider the sets

M(v',n) = {x € RB*+ accr ,(v) : (z,v') = R}.

By the definition of the access conées (F),(v',n) C M(v',n’) forn > n’. We
choose
r>sup{|lz —y|:x,y € M(v',n)withv' € Sc(v)},

as a common upper bound on the diameter of the &&ts’, n) with n sufficiently
large, sayn > n’. Note thatR as well asF, v ande have an influence on the size of
randn’.

By Proposition 1 (ii) we can choos€ possibly larger to ensure the following for all
X e F attaining\(C, | X|) with | X| > n’: The intersection of8) with bd conv X
has a diameter less than no matter whicht x € conv X at distanceR to bd conv X
we choose. Moreove(ty + RBY) C conv X.

Ensuring an empty intersection. It remains to show that foX € F, attaining
A(C,|X|) with | X| sufficiently large¢ x can be chosen such that (8) does not intersect
X Nbd conv X. For this we prove the following clainthere exists an”’, depending
onr, v ande, such that for allX € F with | X| > n”, there exists a vertex of
conv X with outer normah’ € S, (v) and

{x} = X N (bdconv X) N (z + rBY). 9)

Thus these verticeg have a distance larger thanto any other element oK N
bd conv X. Therefore, by choosing, > max{n’,n”}, we can ensure that there
exists atx € R? at distanceR to bd conv X such that (i) and (ii’) are satisfied for all
X € F attaining\(C, | X|) with | X| > ny. Note thatn’, n”, and hencew,, depend
on the choice ob ande. But we may choose ande, depending o, so thatn, can
be chosen as small as possible. In this way we get;anhich solely depends oR,
FandC.

It remains to prove the claim. Sinc€ (5) has only finitely maogumulation points, the
set of normalg’ € S9=1 with hyperplane{y € R? : (v/,y) = 0} running through
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0 and an accumulation point of (5) all lie in the unioni4,. of finitely many linear
subspaces of dimensieh— 1. Thus for anys > 0 the normals of these hyperplanes
all lie in U, s = U, + 6B* if we choose| X | sufficiently large, depending oh By
choosing’ small enough, we finda’' € S, (v) with v’ & U, 5. Moreover, there exists
ang’ > 0 such thatS., (v') NU,. s = . Since every center polytopenv X has a
vertexx with outer normab’, we may chooséX | sufficiently large by Propositidn/ 1
(i) (applied to2e"), such thatonv X has no outer normal itt,. 5 at .

Moreover, for sufficiently largeéX|, faces ofconv X intersectinge + B¢ can not
contain any vertex inX N (x + rB%) aside ofz. Thus by construction, there exists
ann’ such that[(9) holds for alk € F with | X| > n”. This proves the claim and
therefore the proposition. O

Note that the proof offers the possibility to loosen the ieguent onF a bit, for
the price of introducing another parameter: For suitabigela, depending o1, the
proposition holds, if instead of (i) in Definition 1 we recgiir

(") there exist isometrieg y for eachX € F, such that
{x—y:x,yeIx(X)andX € F}

has only finitely many accumulation points withifs<.

ITI. For all X € F attaining\(C,|X]|), with | X| sufficiently large, we are able to
obtaincontact free regionétx + RB?) C conv X, with R as large as we want, by
Proposition 2. That is, we can modify these packing Sétsy moving elements to
free positions withinnt(tx + RB%). By choosingR large enough, such an initial
contact free region allows to move further elements to frestpns. The following
proposition takes care of interior points.

ProposITION 3. Letd > 2 and.F a family of packing sets iiR? satisfying (ii) in
Definition/ 1 withp > 0. LetR > % X € Fandz € X Nintconv X. Lett € R¢

with [t — x| < R+ £ and with all elements ok N (¢ + RB?) in a free position. Then
x can be moved to a free position withift conv X .

Proof. Assumez € int conv Ny (x). By the assumption off,
x + 0B C int conv N (z).

Thus there exists 8 € Nx(x), such that the orthogonal projectign of y onto the
line throughax: andt satisfiesy’ — x| > pand|y’ —t| < R — 2. Then

ly—tP =y —tP+ly—yP < (R—%)"+(1—-0®) <R

Thusy is in a free position by the assumptions of the propositiomictv contradicts
Y e Nx (:E) O
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ON PACKING SPHERES INTO CONTAINERS 401

IV. After Propositions P and 3 it remains to take care of point&im bd conv X,
for X e F attaining\(C, | X|), and with| X | sufficiently large. It turns out that these
points can all be moved to free positions withirt conv X. As a consequence we
obtain the following.

PROPOSITION 4. Letd > 2, C' c R? a smooth convex body adféa family of pack-
ing sets inR? satisfying (ii) of Definition 1. Then there existsian< N, depending on
C andF, such thatX € F with | X| > n, does not attaim\(C, | X|), if all elements
of X Nint conv X are in a free position.

Proof. Let o > 0 as in (ii) of Definition(1. We choose, by Proposition 1 (i),
applied toe = g andr = 1. AssumeX € F with | X| > ny attainsA(C, |X|) and

all elements ofX N int conv X are in a free position. We show that every element
x € X Nbdconv X can be moved to a free position int@ conv X . This gives the
desired contradiction, because after moving (in an aryiweder) all.X N bd conv X

to free positions intdnt conv X, we obtain a packing set’ with | X’| = |X| and

X' C int conv X.

It is possible to move a given € X Nbd conv X to a free position’ = x + dv for a
(sufficiently small)y > 0, if v € S?~! is contained in the non-empty polyhedral cone

Co={veR: (v,y—z)<0forally e Nx(z)}.

If v € C, can be chosen, so that € int conv X, the assertion follows. Otherwise,
because’,, andconv X are convex, there exists a hyperplane thromgtvith normal
w € S%1, which separatesonv X andx + C. That is, we may assume that

wEpos{y—xz:y e Nx(z)}

and—w is an outer normal ofonv X atx.
Then for somé > 0, there exists a point = x + dw € bd conv Nx (x), which is a
convex combination of somg,, ...y, € Nx(z). Thatis, there exist; > 0 with

Zle a; =1landz = Zi;l a;y; . Therefore

k
0= (z—x,w) :Zai<yi—m,w) <o,

i=1

becauséy, — x, w) < ¢ due to|X| > ny andy, € bd conv X. This contradicts the
assumption otf with respect t though. O

FinisH.  The proof of Theorem 2 reduces to the application of Projumsitl, 2,
3 and 4. LetF be an Ic-family of packing sets iR, with ao > 0 as in (ii) of
Definition/1. We choosd? > 1/ andny andn4 according to Propositions 2 and
[4. By Proposition 1 (ii), we choose; such that packing set¥ attaining\(C, | X)
with | X| > n; satisfy the following: For eackt € X, there exists @ € R? with
|z —t| = R+ £ andt + RB? C conv X.

We chooseyy > max{n;,nq,ns} and assume that € F with | X| > ng attains
A(C,|X|). By Proposition 2 we can modify the packing $éto obtain a new packing
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set X’ with a contact free regiofity + RBY) C intconv X, and with the same
points X’ N bdconv X’ = X N bdconv X on the boundary of the center polytope
conv X' = conv X.

The following gives a possible order, in which we may subsedjy move non-free
elementse € X Nint conv X to free positions: By the choice af, we can guarantee
that for eachz € X N int conv X, there exists & with |z — t| < R 4 § andt +
RB? C conv X. Lett, be thet at minimal distance téx. Then among the non-free
x € intconv X, the one with minimal distanck, — tx| satisfies the assumptions
of Proposition 3, because a non-free elemgnt X N (¢, + B¢) would satisfy
[ty —tx| < |tz — tx|due toconv{ts,tx} + B¢ C conv X.

Thus by Proposition|3 we can subsequently move the non-feseeaits withinX N
int conv X to free positions. By this we obtain a contradiction to Pifion4, which
proves the theorem.

THE LATTICE PACKING CASE. We end this section with the proof of Theorem
[1. We may apply Theorem 2 after showing that the family of sohs to the lattice
restricted container problem is of limited complexity. Témace of lattices can be
turned into a topological space (see [GL87]). The convezgasf a sequencéA,, }

of lattices to a latticé\ in particular involves that sets of lattice points withimlnas»
around a lattice point tend to translates\afir B¢ for growingn. As a consequence, a
convergent sequence of packing lattices, as well as sutiitbism, form an Ic-family.
Solutions to the lattice restricted container problem fendrowingn towards subsets
of translates oflensest packing latticésee|[Zon99]). These lattices are the solutions
of the lattice (sphere) packing problemUp to isometries, there exist only finitely
many of these lattices in each dimension (see [Zon99]). Theisssertion follows,
since a finite union of Ic-families is an lc-family.

4  EXTENSIONS

Let us briefly mention some possible extensions of TheorenTl2ese have been
treated in|[Sch02] for theé-dimensional case and could be directions for further re-
search.

Packings of other convex bodietnstead of sphere packings, we may consider pack-
ings X + K for other convex bodied(. If the difference bodyDK = K — K

is strictly convex, then the proofs can be applied after sonuglifications: In-
stead of measuring distances with the norm| given by B?, we use the norm
|¢|pxk = min{\ > 0 : Az € DK} given by DK. The strict convexity ofDK

is then used for the key fact, that elementsf a packing sefX can be moved to a
free position, whenever they are not containedninconv AVx (x) (seell in Section

[3). Note though that the sets inl (6) and depending definit@ave to be adapted for
general convex bodies.

Packings in other containersThe restriction to smooth convex containers simplifies
the proof, but we strongly believe that Theorem 2 is valid dthier containers as
well, e.g. certain polytopes. On the other hand there migist eontainers for which
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ON PACKING SPHERES INTO CONTAINERS 403

Theoren 2 is not true. In particular in dimensidit seems very likely that Theorem
[2 is not true for polytopal containe€s with all their facets lying in planes containing
hexagonal sublattices of tHec lattice (see Sectioh|5). That is, for these polytopal
containersC we conjecture the existence of infinitely manyfor which subsets of
the fcc lattice attain \(C,n). An example for at least “local optimality” of sphere
packings (with respect to differential perturbations) iitable sized, but arbitrarily
large tetrahedra was given by Dauenhauer and Zassenha@3][D¥proof of “global
optimality” seems extremely difficult though, as it woulcbpide a new proof of the
sphere packing problem (“Kepler conjecture”, see Se€tjon 5

Other finite packing problems.Similar “phenomena” occur for other packing prob-
lems. For example, if we consider finite packing s&tsith minimum diameter or
surface area ofonv X, or maximum parametric density with large parameter (cf.
[FCGI1], [BHW94], [Bor04], [BPO5]). This is due to the fact that the shapes of-solu
tions tend to certain convex bodies, e.g. a sphere.

5 KEPLER'S ASSERTION

Kepler's statement, quoted in the introduction, was latémred to as the origin of the
famous sphere packing problem known asKleeler conjecturdcf. e.g. [Hal02] p.5,
[Hsi01] p.4). In contrast to the original statement, thislgem asks for the maximum
sphere packing density (see (10) below) of an infinite ararent of spheres, where
the “container” is the whole Euclidean space. As a part dbéfifs famous problems
[Hil01], it attracted many researchers in the past. Its pbgdales with contributions
of Ferguson (see [Hal02], [Hal05], [Hal06]), although widaccepted, had been a
matter of discussion (cf. [Lag02], [Szp03], [FLO6]).
Following Kepler [Kep11], theubic or hexagonal
close packing R? can be described via two dimen-
sional layers of spheres, in which every sphere center
belongs to a planar square grid, say with minimum
distancel. These layers are stacked (in a unique way)
such that each sphere in a layer touches exactly four
spheres of the layer above and four of the layer below.
The packing attained in this way is the well knofate centered cubic (fcc) lattice
packing We can build up the fcc lattice by planar hexagonal layensels but then
there are two choices for each new layer to be placed, andooyf them yields an
fcc lattice packing. All of them, including the uncountaliany non-lattice packings,
are referred to asexagonal close packings (hc-packingdpte that the family of hc-
packings is of limited complexity, because up to isomettiey can be built from a
fixed hexagonal layer.
Let

n(C) = max{|X|: C D X + 1 B%is a packing}.

Then in our terminology Kepler asserts thatJih, n(C) is attained by hc-packings.
His assertion, if true, would imply an “answer” to the sphgaeking problem (Kepler
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conjecture), namely that the density of the densest infapteere packing

i n(AC) - vol(% BY)

0q =1 2 10
d lﬁsolip vol(AC) (10)

is attained by hc-packings far= 3; henced; = 7/4/18. Note that this definition of
density is independent of the chosen convex contaihéree[Hla49] or [GL87]).
As a consequence of Theorem 2, Kepler's assertion turng detfalse though, even if
we think of arbitrarily large containers. Consider for exdeathe containera(C, n)C
forn > ny.

COROLLARY 1. Letd > 2, C' c R? a smooth convex body arsl an Ic-family of
packing sets ifR?. Then there exist arbitrarily larga such that(\C) is not attained
by packing sets itF.

We may as well think of arbitrarily small spheres packed mfixed containe€'. For
r > 0, we call X + rB? a sphere packing if distinct elementsandz’ of X have
distancelz — =’| > 2r. Specializing toR?, the following corollary of Theorem|2
refers directly to Kepler's assertion.

COROLLARY 2. LetC C R? a smooth convex body. Then there exist arbitrarily small
r > 0, such that
max{|X|: C' D> X +rB%is a packing}

is not attained by fcc or hexagonal close packing sets.
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