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Abstract. We show how to use elementary methods to compute the
volume of Slk R/Slk Z. We compute the volumes of certain unbounded
regions in Euclidean space by counting lattice points and then appeal
to the machinery of Dirichlet series to get estimates of the growth rate
of the number of lattice points appearing in the region as the lattice
spacing decreases. We also present a proof of the closely related result
that the Tamagawa number is 1.
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Introduction

In this paper we show how to use elementary methods to prove that the vol-
ume of Slk R/Slk Z is ζ(2)ζ(3) · · · ζ(k)/k; see Corollary 3.16. Using a version of
reduction theory presented in this paper, we can compute the volumes of cer-
tain unbounded regions in Euclidean space by counting lattice points and then
appeal to the machinery of Dirichlet series to get estimates of the growth rate
of the number of lattice points appearing in the region as the lattice spacing
decreases.

In section 4 we present a proof of the closely related result that the Tama-
gawa number of Slk,Q is 1 that is somewhat simpler and more arithmetic than
Weil’s in [37]. His proof proceeds by induction on k and appeals to the Pois-
son summation formula, whereas the proof here brings to the forefront local
versions (5) of the formula, one for each prime p, which help to illuminate the
appearance of values of zeta functions in formulas for volumes.

The volume computation above is known; see, for example, [26] (with impor-
tant corrections in [30]), formula (24) in [29], and Theorem 10.4 in [22]. The
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methods used in the computation of the volume of Slk R/Slk Z in the book
[31, Lecture XV] have a different flavor from ours and do not involve counting
lattice points. One positive point about the proof there is that it proceeds
by induction on k, making clear how the factor ζ(k) enters in at k-th stage.
See also [36, §14.12, formula (2)]. The proof offered there seems to have a
gap which consists of assuming that a certain region (denoted by T there) is
bounded, thereby allowing the application of [36, §14.4, Theorem 3]1. The re-
gion in Example 2.7 below shows that filling the gap is not easy, hence if we
want to compute the volume by counting lattice points, something like our use
of reduction theory in Section 3 is needed.

An almost equivalent result was proved by Minkowski in formula (85.) of
[16], where he computed the volume of SO(k)\ Slk R/Slk Z. The relationship
between the two volume computations is made clear in the proof of [36, §14.12,
Theorem 2].

Some of the techniques we use were known to Siegel, who used similar meth-
ods in his investigation of representability of integers by quadratic forms in
[24, 25, 27]. See especially [25, Hilfssatz 6, p. 242], which is analogous to our
Lemma 2.5 and the reduction theory of Section 3, where we show how to com-
pute the volume of certain unbounded domains in Euclidean space by counting
lattice points; see also the computations in [24, §9], which have the same gen-
eral flavor as ours. See also [28, p. 581] where Siegel omits the laborious study,
using reduction theory, of points at infinity; it is those details that concern us
here.

We thank Harold Diamond for useful information about Dirichlet series and
Ulf Rehmann for useful suggestions, advice related to Tamagawa numbers, and
clarifications of Siegel’s work. We also thank the National Science Foundation
for support provided by NSF grants DMS 01-00587 and 05-00762 (Gillet), and
99-70085 and 03-11378 (Grayson).

1 Counting with zeta functions

As in [8] we define the zeta function of a group G by summing over the sub-
groups H in G of finite index.

ζ(G, s) =
∑

H⊆G

[G : H]−s (1)

Evidently, ζ(Z, s) = ζ(s) and the series converges for s > 1. For good groups G
the number of subgroups of index at most T grows slowly enough as a function
of T that ζ(G, s) will converge for s sufficiently large.

Let’s pick k ≥ 0 and compute ζ(Zk, s). Any subgroup H of Zk of finite
index is isomorphic to Zk; choosing such an isomorphism amounts to finding
a matrix A : Zk → Zk whose determinant is nonzero and whose image is H.

1called Dirichlet’s Principle in [3, §5.1, Theorem 3]
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Any two matrices A, A′ with the same image H are related by an equation
A′ = AS where S ∈ Glk Z.

Thus the terms in the sum defining ζ(Zk, s) correspond to the orbits for the
action of Glk Z via column operations on the set of k× k-matrices with integer
entries and nonzero determinant. A unique representative from each orbit is
provided by the matrices A that are in Hermite normal form (see [4, p. 66] or
[19, II.6]), i.e., those matrices A with Aij = 0 for i > j, Aii > 0 for all i, and
0 ≤ Aij < Aii for i < j.

Let HNF be the set of integer k×k matrices in Hermite normal form. Given
positive integers n1, . . . , nk, consider the set of matrices A in HNF with Aii = ni

for all i. The number of matrices in it is nk−1
1 nk−2

2 · · ·n1
k−1n

0
k. Using that, we

compute formally as follows.

ζ(Zk, s) =
∑

H⊆Zk

[Zk : H]−s

=
∑

A∈HNF

(detA)−s

=
∑

n1>0,...,nk>0

(nk−1
1 nk−2

2 · · ·n1
k−1n

0
k)(n1 · · ·nk)−s

=
∑

n1>0,...,nk>0

nk−1−s
1 nk−2−s

2 · · ·n1−s
k−1n

−s
k

=
∑

n1>0

nk−1−s
1

∑

n2>0

nk−2−s
2 · · ·

∑

nk−1>0

n1−s
k−1

∑

nk>0

n−s
k

= ζ(s − k + 1)ζ(s − k + 2) · · · ζ(s − 1)ζ(s)

(2)

The result ζ(s − k + 1)ζ(s − k + 2) · · · ζ(s − 1)ζ(s) is a product of Dirichlet
series with positive coefficients that converge for s > k, and thus ζ(Zk, s) also
converges for s > k. This computation is old, and appears in various guises.
See, for example: proof 2 of Proposition 1.1 in [8]; Lemma 10 in [15]; formula
(1.1) in [32]; page 64 in [23]; formula (5) and the lines following it in [26],
where the counting argument is attributed to Eisenstein, and its generalization
to number rings is attributed to Hurwitz; and pages 37–38 in [37].

Lemma 1.1. #{H ⊆ Zk | [Zk : H] ≤ T} ∼ ζ(2)ζ(3) · · · ζ(k)T k/k for k ≥ 1.

The right hand side is interpreted as T when k = 1. The notation f(T ) ∼
g(T ) means that limT→∞ f(T )/g(T ) = 1.

Proof. We give two proofs.
The first one is more elementary, and was told to us by Harold Diamond.

Writing ζ(s−k+1) =
∑

nk−1n−s and letting B(T ) =
∑

n≤T nk−1 be the corre-

sponding coefficient summatory function we see that B(T ) = T k/k +O(T k−1).
If k ≥ 3 we may apply Theorem A.2 to show that the coefficient summatory
function for the Dirichlet series ζ(s)ζ(s−k+1) behaves as ζ(k)T k/k+O(T k−1).
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Applying it several more times shows that the coefficient summatory function
for the Dirichlet series ζ(s)ζ(s − 1) · · · ζ(s − k + 3)ζ(s − k + 1) behaves as
ζ(k)ζ(k − 1) · · · ζ(3)T k/k + O(T k−1). Applying it one more time we see that
the coefficient summatory function for ζ(Zk, s) = ζ(s) · · · ζ(s − k + 1) behaves
as ζ(k)ζ(k − 1) · · · ζ(2)T k/k + O(T k−1 log T ), which in turn implies the result.

The second proof is less elementary, since it uses a Tauberian theorem. From
(2) we know that the rightmost (simple) pole of ζ(Zk, s) occurs at s = k, that
the residue there is the product ζ(2)ζ(3) · · · ζ(k), and that Theorem A.4 can
be applied to get the result.

Now we point out a weaker version of lemma 1.1 whose proof is even more
elementary.

Lemma 1.2. If T > 0 then #{H ⊆ Zk | [Zk : H] ≤ T} ≤ T k.

Proof. As above, we obtain the following formula.

#{H ⊆ Zk | [Zk : H] ≤ T} = #{A ∈ HNF | detA ≤ T}
=

∑

n1>0,...,nk>0

n1·····nk≤T

nk−1
1 nk−2

2 · · ·n1
k−1n

0
k

We use it to prove the desired inequality by induction on k, the case k = 0
being clear.

#{H ⊆ Zk | [Zk : H] ≤ T} =

⌊T⌋
∑

n1=1

nk−1
1

∑

n2>0,...,nk>0

n2···nk≤T/n1

nk−2
2 · · ·n1

k−1n
0
k

=

⌊T⌋
∑

n1=1

nk−1
1 · #{H ⊆ Zk−1 | [Zk−1 : H] ≤ T/n1}

≤
⌊T⌋
∑

n1=1

nk−1
1 (T/n1)

k−1 [by induction on k]

=

⌊T⌋
∑

n1=1

T k−1 = ⌊T ⌋ · T k−1 ≤ T k

2 Volumes

Recall that a bounded subset U of Euclidean space Rk is said to have Jordan

content if its volume can be approximated arbitrarily well by unions of boxes
contained in it or by unions of boxes containing it, or in other words, that the
the characteristic function χU is Riemann integrable. Equivalently, the bound-
ary ∂U of U has (Lebesgue) measure zero (see [21, Theorem 105.2, Lemma
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105.2, and the discussion above it]). If U is a possibly unbounded subset of
Rk whose boundary has measure zero, its intersection with any ball will have
Jordan content.

Now let’s consider the Lie group G = Slk R as a subspace of the Euclidean
space MkR of k × k matrices. Siegel defines a Haar measure on G as follows
(see page 341 of [29]). Let E be a subset of G. Letting I = [0, 1] be the unit
interval and considering a number T > 0, we may consider the following cones.

I · E = {t · B | B ∈ E, 0 ≤ t ≤ 1}
T · I · E = {t · B | B ∈ E, 0 ≤ t ≤ T}
R+ · E = {t · B | B ∈ E, 0 ≤ t}

Observe that if B ∈ T · I · E, then 0 ≤ det B ≤ T k.

Definition 2.1. We say that E is measurable if I · E is, and in that case we
define µ∞(E) = vol(I · E) ∈ [0,∞].

The Jacobian of left or right multiplication by a matrix γ on MkR is (det B)k,
so for γ ∈ Slk R volume is preserved. Thus the measure is invariant under G,
by multiplication on either side. According to Siegel, the introduction of such
invariant measures on Lie groups goes back to Hurwitz (see [10, p. 546] or [9]).

Let F ⊆ G be the fundamental domain for the action of Γ = Slk Z on
the right of G presented in [15, section 7]; it’s an elementary construction of
a fundamental domain which is a Borel set without resorting to Minkowski’s
reduction theory. In each orbit they choose the element which is closest to the
identity matrix in the standard Euclidean norm on MkR ∼= Rk2

, and ties are
broken by ordering MkR lexicographically. This set F is the union of an open
subset of G (consisting of those matrices with no ties) and a countable number
of sets of measure zero.

The intersection of T · I · F with a ball has Jordan content. To establish
that, it is enough to show that the measure of the boundary ∂F in G is zero.
Suppose g ∈ ∂F . Then it is a limit of points gi 6∈ F , each of which has another
point gihi in its orbit which is at least as close to 1. Here hi is in Slk(Z) and is
not 1. The sequence i 7→ gihi is bounded, and thus so is the sequence hi; since
Slk(Z) is discrete, that implies that hi takes only a finite number of values. So
we may assume hi = h is independent of i, and is not 1. By continuity, gh is
at least as close to 1 as g is. Now g is also a limit of points fi in F , each of
which has fih not closer to 1 than fi is. Hence gh is not closer to 1 than g is,
by continuity. Combining, we see that gh and g are equidistant from 1. The
locus of points g in Slk(R) such that gh and g are equidistant from 1 is given by
the vanishing of a nonzero quadratic polynomial, hence has measure zero. The
boundary ∂F is contained in a countable number of such sets, because Slk(Z)
is countable, hence has measure zero, too.

We remark that HNF contains a unique representative for each orbit of the
action of Slk Z on {A ∈ MkZ | det A > 0}. The same is true for R+ · F .
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Restricting our attention to matrices B with detB ≤ T k we see that #(T · I ·
F ∩ MkZ) = #{A ∈ HNF | det A ≤ T k}.

Warning: HNF is not contained in R+ · F . To convince yourself of this,

consider the matrix A =

(

5 −8
3 5

)

of determinant 49. Column operations

with integer coefficients reduce it to B =

(

49 18
0 1

)

, but (1/7)A is closer to

the identity matrix than (1/7)B is, so B ∈ HNF , but B 6∈ R+ · F .
We want to approximate the volume of T ·I ·F by counting the lattice points

it contains, i.e., by using the number #(T · I · F ∩ MkZ), at least when T is
large. Alternatively, we may use #(I · F ∩ r · MkZ), when r is small.

Definition 2.2. Suppose U is a subset of Rn. Let

Nr(U) = rn · #{U ∩ r · Zn}

and let
µZ(U) = lim

r→0
Nr(U),

if the limit exists, possibly equal to +∞. An equation involving µZ(U) is to be
regarded as true only if the limit exists.

Lemma 2.3. µZ(I · F ) = ζ(2)ζ(3) · · · ζ(k)/k

Proof. We replace r above with 1/T :

µZ(I · F ) = lim
T→∞

T−k2 · #(T · I · F ∩ MkZ)

= lim
T→∞

T−k2 · #{A ∈ HNF | det A ≤ T k}

= lim
T→∞

T−k2 · #{H ⊆ Zk | [Zk : H] ≤ T k}

= ζ(2)ζ(3) · · · ζ(k)/k [using lemma 1.1]

Lemma 2.4. If U is a bounded subset of Rn with Jordan content, then µZ(U) =
vol U .

Proof. Subdivide Rn into cubes of width r (and of volume rn) centered at the
points of rZn. The number #{U ∩ r · Zn} lies between the number of cubes
contained in U and the number of cubes meeting U , so rn · #{U ∩ r · Zn} is
captured between the total volume of the cubes contained in U and the total
volume of the cubes meeting U , hence approaches the same limit those two
quantities do, namely volU .

Lemma 2.5. Let BR be the ball of radius R > 0 centered at the origin, and let
U be a subset of Rn whose boundary has measure zero.
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1. For all R, the quantity µZ(U) exists if and only if µZ(U −BR) exists, and
in that case, µZ(U) = vol(U ∩ BR) + µZ(U − BR).

2. If µZ(U) exists then µZ(U) = vol(U) + limR→∞ µZ(U − BR).

3. If vol(U) = +∞, then µZ(U) = +∞.

4. If limR→∞ lim supr→0 Nr(U − BR) = 0, then µZ(U) = vol(U).

Proof. Writing U = (U ∩ BR) ∪ (U − BR) we have

Nr(U) = Nr(U ∩ BR) + Nr(U − BR).

For each R > 0, the set U ∩BR is a bounded set with Jordan content, and thus
lemma 2.4 applies to it. We deduce that

lim inf
r→0

Nr(U) = vol(U ∩ BR) + lim inf
r→0

Nr(U − BR)

and
lim sup

r→0
Nr(U) = vol(U ∩ BR) + lim sup

r→0
Nr(U − BR),

from which we can deduce (1), because vol(U ∩BR) < ∞. We deduce (2) from
(1) by taking limits. Letting R → ∞ in the equalities above we see that

lim inf
r→0

Nr(U) = vol(U) + lim
R→∞

lim inf
r→0

Nr(U − BR)

and
lim sup

r→0
Nr(U) = vol(U) + lim

R→∞
lim sup

r→0
Nr(U − BR),

in which some of the terms might be +∞. Now (3) follows from
lim infr→0 Nr(U) ≥ vol(U), and (4) follows because if

lim
R→∞

lim sup
r→0

Nr(U − BR) = 0,

then
lim

R→∞
lim inf

r→0
Nr(U − BR) = 0

also.

Lemma 2.6. If U is a subset of Rn whose boundary has measure zero, and
µZ(U) = vol(U), then vol(T · U) ∼ #(T · U ∩ Zn) as T → ∞.

Proof. The statement follows immediately from the definitions.

Care is required in trying to compute the volume of I ·F by counting lattice

points in it, for it is not a bounded set (even for k = 2, because

(

a 0
0 1/a

)

∈ F ).
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Example 2.7. It’s easy to construct an unbounded region where counting lat-
tice points does not determine the volume, by concentrating infinitely many
very thin spikes along rays of rational slope with small numerator and denom-
inator. Consider, for example, a bounded region B in R2 with Jordan content
and nonzero area v = vol B, for which (by Lemma 2.4) µZB = vol B. Start by
replacing B by its intersection B′ with the lines through the origin of rational
(or infinite) slope – this doesn’t change the value of µZ, because every lattice
point is contained in a line of rational slope, but now the boundary ∂B′ does
not have measure zero. To repair that, we enumerate the lines M1,M2, . . .
through the origin of rational slope, and for each i = 1, 2, 3, . . . we replace
Ri = B ∩Mi by a suitably scaled and rotated version Li of it contained in the
line Ni of slope i through the origin, with scaling factor chosen precisely so Li

intersects each r ·Z2 in the same number of points as does Ri, for every r > 0.
The scaling factor is the ratio of the lengths of the shortest lattice points in
the lines Mi and Ni. The union L =

⋃

Li has µZL = µZB = v 6= 0, but it and
its boundary have measure zero.

3 Reduction Theory

In this section we apply reduction theory to show that the volume of I · F can
be computed by counting lattice points.

We introduce a few basic notions about lattices. For a more leisurely intro-
duction see [7].

Definition 3.1. A lattice is a free abelian group L of finite rank equipped with
an inner product on the vector space L ⊗ R.

We will regard Zk or one of its subgroups as a lattice by endowing it with
the standard inner product on Rk.

Definition 3.2. If L is a lattice, then a sublattice L′ ⊆ L is a subgroup with
the induced inner product. The quotient L/L′, if it’s torsion free, is made into
a lattice by equipping it with the inner product on the orthogonal complement
of L′.

There’s a way to handle lattices with torsion, but we won’t need them.

Definition 3.3. If L is a lattice, then covol L denotes the volume of a funda-
mental domain for L acting on L ⊗ R.

The covolume can be computed as |det(θv1, · · · , θvk)|, where θ : L⊗R → Rk

is an isometry, {v1, . . . , vk} is a basis of L, and (θv1, . . . , θvk) denotes the
matrix whose i-th column is θvi. We have the identity covol(L) = covol(L′) ·
covol(L/L′) when L/L′ is torsion free.

If L is a subgroup of Zk of finite index, then covolL = [Zk : L].

Definition 3.4. If L is a nonzero lattice, then min L denotes the smallest
length of a nonzero vector in L.
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If L is a lattice of rank 1, then minL = covol L.

Proposition 3.5. For any natural number k > 0, there is a constant c such
that for any S ≥ 1 and for any T > 0 the following inequality holds.

cS−kT k2 ≥ #{L ⊆ Zk | [Zk : L] ≤ T k and minL ≤ T/S}.

Proof. For k = 1 we may take c = 2, so assume k ≥ 2. Letting N be the
number of these lattices L, we bound N by picking within each L a nonzero
vector v of minimal length, and counting the pairs (v, L) instead. For each v
occurring in such pair we write v in the form v = n1v1 where n1 ∈ N and v1 is
a primitive vector of Zk, and then we extend {v1} to a basis B = {v1, . . . , vk}
of Zk. We count the lattices L occurring in such pairs with v by putting a
basis C for L into Hermite normal form with respect to B, i.e., it will have
the form C = {n1v1, A12v1 + n2v2, . . . , A1kv1 + · · ·+ Ak−1,kvk−1 + nkvk}, with
ni > 0 and 0 ≤ Aij < ni. Notice that n1 has been determined in the previous
step by the choice of v. The number of vectors v ∈ Zk satisfying ‖v‖ ≤ T/S is
bounded by a number of the form c(T/S)k; for c we may take a large enough
multiple of the volume of the unit ball. With notation as above, and counting
the bases for C in Hermite normal form as before, we see that

N ≤
∑

‖v‖≤T/S

∑

n2>0,...,nk>0

n1···nk≤T k

nk−1
1 nk−2

2 · · ·n1
k−1n

0
k

=
∑

‖v‖≤T/S

nk−1
1

∑

n2>0,...,nk>0

n2···nk≤T k/n1

nk−2
2 · · ·n1

k−1n
0
k

=
∑

‖v‖≤T/S

nk−1
1 · #{H ⊆ Zk−1 | [Zk−1 : H] ≤ T k/n1}

≤
∑

‖v‖≤T/S

nk−1
1 (T k/n1)

k−1 [by Lemma 1.2]

=
∑

‖v‖≤T/S

T k(k−1)

≤ c(T/S)kT k(k−1)

= cS−kT k2

.

Corollary 3.6. The following equality holds.

0 = lim
S→∞

lim sup
T→∞

T−k2 · #{L ⊆ Zk | [Zk : L] ≤ T k and minL ≤ T/S}

The following two lemmas are standard facts. Compare them, for example,
with [2, 1.4 and 1.5].
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Lemma 3.7. Let L be a lattice and let v ∈ L be a primitive vector. Let L̄ =
L/Zv, let w̄ ∈ L̄ be any vector, and let w ∈ L be a vector of minimal length
among all those that project to w̄. Then ‖w‖2 ≤ ‖w̄‖2 + (1/4)‖v‖2.

Proof. The vectors w and w ± v project to w̄, so ‖w‖2 ≤ ‖w ± v‖2 = ‖w‖2 +
‖v‖2 ± 2〈w, v〉, and thus |〈w, v〉| ≤ (1/2)‖v‖2. We see then that

‖w̄‖2 = ‖w − 〈w, v〉
‖v‖2

v‖2

= ‖w‖2 − 〈w, v〉2
‖v‖2

≥ ‖w‖2 − 1

4
‖v‖2.

Lemma 3.8. Let L be a lattice of rank 2 with a nonzero vector v ∈ L of minimal
length. Let L′ = Zv and L′′ = L/L′. Then covol L′′ ≥ (

√
3/2) covol L′.

Proof. Let w̄ ∈ L′′ be a nonzero vector of minimal length, and lift it to a
vector w ∈ L of minimal length among possible liftings. By lemma 3.7 ‖w‖2 ≤
‖w̄‖2+(1/4)‖v‖2. Combining that with ‖v‖2 ≤ ‖w‖2 we deduce that covol L′′ =
‖w̄‖ ≥ (

√
3/2)‖v‖ = (

√
3/2) covol L′.

Definition 3.9. If L is a lattice, then minbasis L denotes the smallest value
possible for (‖v1‖2 + · · · + ‖vk‖2)1/2, where {v1, . . . , vk} is a basis of L.

Proposition 3.10. Given k ∈ N and S ≥ 1, for all R ≫ 0, for all T > 0,
and for all lattices L of rank k with covol L ≤ T k, if minbasis L ≥ RT then
min L ≤ T/S.

Proof. We show instead the contrapositive: provided covolL ≤ T k, if minL >
T/S then minbasis L < RT . There is an obvious procedure for producing an
economical basis of a lattice L, namely: we let v1 be a nonzero vector in L
of minimal length; we let v2 be a vector in L of minimal length among those
projecting onto a nonzero vector in L/(Zv1) of minimal length; we let v3 be a
vector in L of minimal length among those projecting onto a vector in L/(Zv1)
of minimal length among those projecting onto a nonzero vector in L/(Zv1 +
Zv2) of minimal length; and so on. A vector of minimal length is primitive,
so one can show by induction that the quotient group L/(Zv1 + · · · + Zvi) is
torsion free; the case where i = k tells us that L = Zv1 + · · · + Zvk. Let Li =
Zv1+· · ·+Zvi, and let αi = covol(Li/Li−1), so that α1 = ‖v1‖ = min L > T/S.

Applying Lemma 3.8 to the rank 2 lattice Li/Li−2 shows that αi ≥ Aαi−1,
where A =

√
3/2, and repeated application of Lemma 3.7 shows that ‖vi‖2 ≤
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α2
i + (1/4)(α2

i−1 + · · ·+ α2
1), so of course ‖vi‖2 ≤ (1/4)(α2

k + · · ·+ α2
i+1) + α2

i +
(1/4)(α2

i−1 + · · · + α2
1). We deduce that

minbasis L ≤ (

k
∑

i=1

‖vi‖2)1/2 ≤
(

k + 3

4

∑

α2
i

)1/2

. (3)

Going a bit further, we see that

T k ≥ covol L

= α1 · · ·αk

≥ A0+1+2+···+(i−2)αi−1
1 · A0+1+2+···+(k−i)αk−i+1

i

> c1(T/S)i−1αk−i+1
i

where c1 is some constant depending on S which we may take to be independent
of i. Dividing through by T i−1 we get T k−i+1 > c2α

k−i+1
i , from which we

deduce that T > c3αi, where c2 and c3 are new constants (depending only
on S). Combining these latter inequalities for each i, we find that (((k +
3)/4)

∑

α2
i )

1/2 < RT , where R is a new constant (depending only on S);
combining that with (3) yields the result.

Corollary 3.11. The following equality holds.

0 = lim
R→∞

lim sup
T→∞

T−k2 · #{L ⊆ Zk | [Zk : L] ≤ T k and minbasis L ≥ RT}

Proof. Combine (3.6) and (3.10).

If in the definition of our fundamental domain F we had taken the smallest
element of each orbit, rather than the one nearest to 1, we would have been
almost done now. The next lemma takes care of that discrepancy.

Definition 3.12. If L is a (discrete) lattice of rank k in Rk, then size L denotes
the value of (‖w1‖2 + · · ·+ ‖wk‖2)1/2, where {w1, . . . , wk} is the (unique) basis
of L satisfying (w1, . . . , wk) ∈ R+ · F .

Lemma 3.13. For any (discrete) lattice L ⊆ Rk of rank k the inequalities

minbasis L ≤ size L ≤ minbasis L + 2
√

k(covol L)1/k

hold.

Proof. Let {v1, . . . , vk} be the basis envisaged in the definition of minbasisL,
let {w1, . . . , wk} be the basis of L envisaged the definition of sizeL, and let
U = (covol L)1/k = (det(v1, . . . , vk))1/k = (det(w1, . . . , wk))1/k. The following
chain of inequalities gives the result.

minbasis L = ‖(v1, . . . , vk)‖ ≤ size L

= ‖(w1, . . . , wk)‖ ≤ ‖(w1, . . . , wk) − U · 1k‖ + U
√

k

≤ ‖(v1, . . . , vk) − U · 1k‖ + U
√

k

≤ ‖(v1, . . . , vk)‖ + 2U
√

k = minbasis L + 2U
√

k
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Corollary 3.14. The following equality holds.

0 = lim
Q→∞

lim sup
T→∞

T−k2 · #{L ⊆ Zk | [Zk : L] ≤ T k and size L ≥ QT}

Proof. It follows from (3.13) that given R > 0, for all Q ≫ 0 (namely Q ≥
R + 2

√
k) if covol L ≤ T k and sizeL ≥ QT then minbasis L ≥ RT . Now apply

(3.11).

Theorem 3.15. vol(I · F ) = µZ(I · F ).

Proof. Observe that #{L ⊆ Zk | covol L ≤ T k and size L ≥ QT} = #((T · I ·
F−BQT )∩MkZ) = #((I ·F−BQ)∩T−1MkZ), so replacing 1/T by r, Corollary
3.14 implies that limQ→∞ lim supr→0 Nr(I · F − BQ) = 0, which allows us to
apply Lemma 2.5 (4).

The theorem allows us to compute the volume of F arithmetically, simulta-
neously showing it’s finite.

Corollary 3.16. µ∞(G/Γ) = ζ(2)ζ(3) · · · ζ(k)/k

Proof. Combine the theorem with lemma 2.3 as follows.

µ∞(G/Γ) = µ∞(F ) = vol(I · F ) = µZ(I · F ) = ζ(2)ζ(3) · · · ζ(k)/k

Remark 3.17. Theorem 10.4 in [22] states that the volume of G/Γ is
ζ(2)ζ(3) · · · ζ(k)

√
k. The difference arises from a different choice of Haar mea-

sure on G. Theirs assigns volume
√

k to slk(R)/ slk(Z), whereas ours assigns
volume 1/k to it, as we see in formula (14) below. The ambiguity is unavoid-
able, because there is no canonical choice of Haar measure. (The Tamagawa
number resolves that ambiguity.)

4 p-adic volumes

In this section we reformulate the computation of the volume of G/Γ to yield
a natural and informative computation of the Tamagawa number of Slk. We
are interested in the form of the proof, not its length, so we incorporate the
proofs of (3.16) and (2) rather than their statements. The standard source for
information about p-adic measures and Tamagawa measures is Chapter II of
[37], and the proof we simplify occurs there in sections 3.1 through 3.4. See
also [11] and [20].

We let µp denote the standard translation invariant measure on Qp normal-
ized so that µp(Zp) = 1. Let µp also denote the product measure on the ring
of k by k matrices, Mk(Qp). Observe that µp(Mk(Zp)) = 1.
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For x ∈ Qp, let |x|p denote the standard valuation normalized so that |p|p =
1/p

If A ∈ Mk(Qp) and U ⊆ Qk
p, then µp(A · U) = |det A|p · µp(U). (To prove

this, first diagonalize A using row and column operations, and then assume that
U is a cube.) It follows that if V ⊆ Mk(Qp), then µp(A ·V ) = |det A|kp ·µp(V ).

Consider Glk(Zp) as an open subset of Mk(Zp). The following computation
occurs on page 31 of [37].

µp(Glk(Zp)) = #(Glk(Fp))/pk2

= (pk − 1)(pk − p) · · · (pk − pk−1)/pk2

= (1 − p−k)(1 − p−k+1) · · · (1 − p−1)

(4)

Weil considers the open set Mk(Zp)
∗ = {A ∈ Mk(Zp) | det A 6= 0}.

Lemma 4.1. µp(Mk(Zp)
∗) = 1

Proof. Let Z = Mk(Zp) \ Mk(Zp)
∗ be the set of singular matrices. If A ∈ Z,

then one of the columns of A is a linear combination of the others. (This
depends on Zp being a discrete valuation ring – take any linear dependency with
coefficients in Qp and multiply the coefficients by a suitable power of p to put
all of them in Zp, with at least one of them being invertible.) For each n ≥ 0 we
can get an upper bound for the number of equivalence classes of elements of Z
modulo pn by enumerating the possibly dependent columns, the possible vectors
in the other columns, and the possible coefficients in the linear combination:
µp(Z) ≤ limn→∞ k · (pnk)k−1 · (pn)k−1/(pn)k2

= limn→∞ k · p−n = 0.

We call rank k submodules J of Zk
p lattices. To each A ∈ Mk(Zp)

∗ we

associate the lattice J = AZk
p ⊆ Zk

p. This sets up a bijection between the
lattices J and the orbits of Glk(Zp) acting on Mk(Zp)

∗. The measure of the
orbit corresponding to J is µp(A · Glk(Zp)) = |det A|kp · µp(Glk(Zp)) = [Zk

p :

J ]−k · µp(Glk(Zp)). Now we sum over the orbits.

1 = µp(Mk(Zp)
∗)

=
∑

J

(

[Zk
p : J ]−k · µp(Glk(Zp))

)

=
(

∑

J

[Zk
p : J ]−k

)

· µp(Glk(Zp))

(5)

An alternative way to prove (5) would be to use the local analogue of (2), which
holds and asserts that

∑

J [Zk
p : J ]−s = (1 − pk−1−s)−1(1 − pk−2−s)−1 · · · (1 −

p−s)−1; we could substitute k for s and compare with the number in (4). The
approach via lemma 4.1 and (5) is preferable because Mk(Zp)

∗ provides natural
glue that makes the computation seem more natural.
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The product
∏

p µp(Glk(Zp)) doesn’t converge because
∏

p(1− p−1) doesn’t
converge, so consider the following formula instead.

1 =
(

(1 − p−1)
∑

J

[Zk
p : J ]−k

)

·
(

(1 − p−1)−1µp(Glk(Zp))
)

Now we can multiply these formulas together.

1 =
(

∏

p

(1 − p−1)
∑

J

[Zk
p : J ]−k

)

·
∏

p

(

(1 − p−1)−1µp(Glk(Zp))
)

(6)

We’ve parenthesized the formula above so it has one factor for each place of Q,
and now we connect each of them with a volume involving Slk at that place.

We use the Haar measure on Slk(Zp) normalized to have total volume

#Slk(Fp)/pdim Slk .

The normalization anticipates (13), which shows how a gauge form could be
used to construct the measure, or alternatively, it ensures that the exact se-
quence 1 → Slk(Zp) → Glk(Zp) → Z×

p → 1 of groups leads to the desired
assertion µp(Glk(Zp)) = µp(Z

×
p ) · µp(Slk(Zp)) about multiplicativity of mea-

sures. We rewrite the factor of the right hand side of (6) corresponding to the
prime p as follows.

(1 − p−1)−1µp(Glk(Zp)) = µp(Z
×
p )−1 · µp(Glk(Zp))

= µp(Slk(Zp)).
(7)

To evaluate the left hand factor of the right hand side of (6), we insert the
complex variable s. Because the ring Z is a principal ideal domain, any finitely
generated sub-Z-module H ⊆ Zk is free. Hence a lattice H ⊆ Zk is determined
freely by its localizations Hp = H ⊗Z Zp ⊆ Zk

p (where Hp = Zk
p for all but

finitely many p), and its index is given by the formula

[Zk : H] =
∏

p

[Zk
p : Hp], (8)
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in which only a finite number of terms are not equal to 1.

ress=kζ(Zk, s)

= ress=k

∑

H

[Zk : H]−s [by (1)]

= lim
s→k+

ζ(s − k + 1)−1 ·
∑

H

[Zk : H]−s

= lim
s→k+

(

ζ(s − k + 1)−1
(

∑

H⊆Zk

∏

p

[Zk
p : Hp]

−s
)

)

[by (8)]

= lim
s→k+

(

ζ(s − k + 1)−1
(

∏

p

∑

J⊆Zk
p

[Zk
p : J ]−s

)

)

[positive terms]

= lim
s→k+

∏

p

(

(1 − p−s+k−1)
∑

J

[Zk
p : J ]−s

)

=
∏

p

(1 − p−1)
∑

J

[Zk
p : J ]−k

(9)

Starting again we get the following chain of equalities.

ress=k ζ(Zk, s) = ress=k ζ(s − k + 1)ζ(s − k + 2) · · · ζ(s − 1)ζ(s)

= ζ(2) · · · ζ(k − 1)ζ(k)

= k · lim
T→∞

T−k#{H ⊆ Zk | [Zk : H] ≤ T} [by 1.1]

= k · lim
T→∞

T−k2

#{H ⊆ Zk | [Zk : H] ≤ T k}

= k · lim
T→∞

T−k2

#{A ∈ HNF | det A ≤ T k}

= k · µZ(I · F ) [by definition 2.2]

= k · µ∞(Slk(R)/Slk(Z)) [by 3.15 and 2.1]

(10)

Combining (9) and (10) we get the following equation.

∏

p

(1 − p−1)
∑

J

[Zk
p : J ]−k = k · µ∞(Slk(R)/Slk(Z)) (11)

We combine (6), (7) and (11) to obtain the following equation.

1 = k · µ∞(Slk(R)/Slk(Z)) ·
∏

p

µp(Slk(Zp)) (12)

To relate this to the Tamagawa number we have to introduce a gauge form ω
on the algebraic group Slk over Q, invariant by left translations, as in sections
2.2.2 and 2.4 of [37]. We can even get gauge forms over Z. Let X be a generic
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element of Glk. The entries of the matrix X−1dX provide a basis for the 1-
forms invariant by left translation on Glk. On Slk we see that tr(X−1dX) =
d(detX) = 0, so omitting the element in the (n, n) spot will provide a basis of
the invariant forms on Slk. We let ω be the exterior product of these forms.
Just as in the proof of Theorem 2.2.5 in [37] we obtain the following equality.

∫

Slk(Zp)

ωp = µp(Slk(Zp)) (13)

The measure ωp is defined in [37, 2.2.1] in a neighborhood of a point P by
writing ω = f dx1 ∧ · · · ∧ dxn and setting ωp = |f(P )|p(dx1)p . . . (dxn)p, where
(dxi)p is the Haar measure on Qp normalized so that

∫

Zp
(dxi)p = 1, and |c|p is

the p-adic valuation normalized so that d(cx)p = |c|p(dx)p.
Now we want to determine the constant that relates our original Haar mea-

sure µ∞ on Slk(R) to the one determined by ω∞. For this purpose, it will suffice
to evaluate both measures on the infinitesimal parallelepiped B in Slk(R) cen-
tered at the identity matrix and spanned by the tangent vectors εeij for i 6= j
and ε(eii − ekk) for i < k. Here ε is an infinitesimal number, and eij is the
matrix with a 1 in position (i, j) and zeroes elsewhere. For the purpose of this
computation, we may even take ε = 1. We remark that B is a fundamental
domain for slk(Z) acting on the Lie algebra slk(R). We compute easily that
∫

B
ω∞ = 1 and

µ∞(B) = vol(I · B)

= (1/k2) · |det(e11 − ekk, · · · , ek−1,k−1 − ekk,
∑

eii)|
= (1/k2) · |det(e11 − ekk, · · · , ek−1,k−1 − ekk, kekk)|
= (1/k2) · |det(e11, · · · , ek−1,k−1, kekk)|
= 1/k

(14)

We obtain the following equation.

µ∞(Slk(R)/Slk(Z)) =
1

k

∫

Slk(R)/ Slk(Z)

ω∞ (15)

See [36, §14.12, (3)] for an essentially equivalent proof of this equation. We
may now rewrite (12) as follows.

1 =

∫

Slk(R)/ Slk(Z)

ω∞ ·
∏

p

∫

Slk(Zp)

ωp (16)

(If done earlier, this computation would have justified normalizing µ∞ differ-
ently.)

The Tamagawa number τ(Slk,Q) =
∫

Slk(AQ)/ Slk(Q)
ω is the same as the right

hand side of (16) because F × ∏

p Slk(Zp) is a fundamental domain for the
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action of Slk(Q) on Slk(AQ). Thus τ(Slk,Q) = 1. This was originally proved by
Weil in Theorem 3.3.1 of [37]. See also [14], [12], and [36, §14.11, Corollary to
Langlands’ Theorem].

See also [33, §8] for an explanation that Siegel’s measure formula amounts
to the first determination that τ(SO) = 2.

A Dirichlet series

Theorem A.1. Suppose we are given a Dirichlet series f(s) :=
∑∞

n=1 ann−s

with nonnegative coefficients. Let A(T ) :=
∑

n≤T an. If A(T ) = O(T k) as

T → ∞, then
∑∞

n=T ann−s = O(T k−s) as T → ∞, and thus f(s) converges
for all complex numbers s with Re s > k.

Proof. Write σ = Re s and assume σ > k. We estimate the tail of the series as
follows.

∞
∑

n=T

ann−s =

∫ ∞

T

x−s dA(x)

= x−sA(x)
]∞

T
−

∫ ∞

T

A(x) d(x−s)

= x−sA(x)
]∞

T
+ s

∫ ∞

T

x−s−1A(x) dx

= O(xk−σ)
]∞

T
+ s

∫ ∞

T

x−s−1O(xk) dx

= O(T k−σ) + s

∫ ∞

T

O(xk−σ−1) dx

= O(T k−σ)

Theorem A.2. Suppose we are given two Dirichlet series

f(s) :=

∞
∑

n=1

ann−s g(s) :=

∞
∑

n=1

bnn−s

with nonnegative coefficients and corresponding coefficient summatory func-
tions

A(T ) :=
∑

n≤T

an B(T ) :=
∑

n≤T

bn

Assume that A(T ) = O(T i) and B(T ) = cT k + O(T j), where i ≤ j < k. Let
h(s) := f(s)g(s) =

∑∞
n=1 cnn−s, and let C(T ) :=

∑

n≤T cn. Then C(T ) =

cf(k)T k + O(T j log T ) if i = j, and C(T ) = cf(k)T k + O(T j) if i < j.
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Proof. The basic idea for this proof was told to us by Harold Diamond.
Observe that Theorem A.1 ensures that f(k) converges. Let’s fix the nota-

tion β(T ) = O(γ(T )) to mean that there is a constant C so that |β(T )| ≤ Cγ(T )
for all T ∈ [1,∞), and simultaneously replace O(T j log T ) in the statement by
O(T j(1 + log T )) in order to avoid the zero of log T at T = 1. We will use the
notation in an infinite sum only with a uniform value of the implicit constant
C.

We examine C(T ) as follows.

C(T ) =
∑

n≤T

cn =
∑

n≤T

∑

pq=n

apbq =
∑

pq≤n

apbq

=
∑

p≤T

ap

∑

q≤T/p

bq =
∑

p≤T

apB(T/p)

=
∑

p≤T

ap{c(T/p)k + O((T/p)j)}

= cT k
∑

p≤T

app
−k + O(T j)

∑

p≤T

app
−j

= cT k{f(k) + O(T i−k)} + O(T j)
∑

p≤T

app
−j

= cf(k)T k + O(T i) + O(T j)
∑

p≤T

app
−j

If i < j then
∑

p≤T app
−j ≤ f(j) = O(1). Alternatively, if i = j, then

∑

p≤T

app
−j =

∑

p≤T

app
−i =

∫ T

1−

p−i d(A(p))

= p−iA(p)
]T

1−
−

∫ T

1−

A(p) d(p−i)

= T−iA(T ) + i

∫ T

1−

A(p)p−i−1 dp

= O(1) + O(

∫ T

1−

p−1 dp) = O(1 + log T )

In both cases the result follows.

The proof of the following “Abelian” theorem for generalized Dirichlet series
is elementary.

Theorem A.3. Suppose we are given numbers R, k ≥ 1, and 1 ≤ λ1 ≤ λ2 ≤
· · · → ∞. Suppose that

N(T ) :=
∑

λn≤T

1 = (R + o(1))
T k

k
(T → ∞)
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for some number R. Then the generalized Dirichlet series ψ(s) :=
∑

λ−s
n

converges for all real numbers s > k, and lims→k+(s − k)ψ(s) = R.

Proof. In the case R 6= 0, the proof can be obtained by adapting the argument
in the last part of the proof of [3, Chapter 5, Section 1, Theorem 3]: roughly,
one reduces to the case where k = 1 by a simple change of variables, shows
λn ∼ n/R, uses that to compare a tail of

∑

λ−s
n to a tail of ζ(s) =

∑

n−s, and
then uses lims→1+(s − 1)ζ(s) = 1.

Alternatively, one can refer to [34, Theorem 10, p. 114] for the statement
about convergence, and then to [34, Theorem 2, p. 219] for the statement about
the limit. Actually, those two theorems are concerned with Dirichlet series of
the form F (s) =

∑

ann−s, but the first step there is to consider the growth
rate of

∑

n≤x an as x → ∞. Essentially the same proof works for F (s) = ψ(s)
by considering the growth rate of N(x) instead.

The result also follows from the following estimate, provided to us by Harold
Diamond. Assume s > k.

ψ(s) :=
∑

λ−s
n

=

∫ ∞

1−

x−s dN(x)

= x−sN(x)
]∞

1−
+ s

∫ ∞

1

x−s−1N(x) dx

= O(xk−s)
]∞

+ s

∫ ∞

1

x−s−1(R + o(1))
xk

k
dx (x → ∞)

=
s(R + o(1))

k

∫ ∞

1

x−s−1+k dx (s → k+)

=
s(R + o(1))

k(s − k)
(s → k+)

Notice the shift in the meaning of o(1) from one line to the next, verified by

writing
∫ ∞

1
=

∫ b

1
+

∫ ∞

b
and letting b go to ∞; it turns out that for sufficiently

small ǫ the major contribution to
∫ ∞

1
x−1−ǫ dx comes from

∫ ∞

b
x−1−ǫ dx.

The following Wiener-Ikehara “Tauberian” theorem is a converse to the
previous theorem, but the proof is much harder.

Theorem A.4. Suppose we are given numbers R > 0, k > 0, 1 ≤ λ1 ≤ λ2 ≤
· · · → ∞, and nonnegative numbers a1, a2, . . . . Suppose that the Dirichlet series
ψ(s) =

∑

anλ−s
n converges for all complex numbers with Re s > k, and that the

function ψ(s)−R/(s−k) can be extended to a function defined and continuous
for Re s ≥ k. Then

∑

λn≤T

an ∼ RT k/k.
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Proof. Replacing s by ks allows us to reduce to the case where k = 1, which can
be deduced directly from the Landau-Ikehara Theorem in [1], from Theorem
2.2 on p. 93 of [35], from Theorem 1 on p. 464 of [17], or from Theorem 1 on
p. 534 of [18]. See also Theorem 17 on p. 130 of [40] for the case where λn = n,
which suffices for our purposes. A weaker prototype of this theorem was first
proved by Landau in 1909 [13, §241]. Other relevant papers include [39], [6],
and [5]. See also Bateman’s discussion in [13, Appendix, page 931] and the
good exposition of Abelian and Tauberian theorems in chapter 5 of [38].
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[34] Gérald Tenenbaum. Introduction to analytic and probabilistic number the-
ory. Cambridge University Press, Cambridge, 1995. Translated from the
second French edition (1995) by C. B. Thomas.

[35] J. van de Lune. An introduction to Tauberian theory: from Tauber to
Wiener. Stichting Mathematisch Centrum, Centrum voor Wiskunde en
Informatica, Amsterdam, 1986.
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