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0. Introduction

(0.0) Let F,L be number fields contained in a fixed algebraic closure Q of Q; let
M be a motive over F with coefficients in L. The L-function of M (assuming it
is well-defined) is a Dirichlet series

∑
n≥1 ann

−s with coefficients in L. For each

embedding ι : Q →֒ C, the complex-valued L-function

L(ιM, s) =
∑

n≥1

ι(an)n
−s

is absolutely convergent for Re(s) >> 0. It is expected to admit a meromorphic
continuation to C and a functional equation of the form

(CFE) (L · L∞)(ιM, s)
?
= ε(ιM, s) (L · L∞)(ιM∗(1),−s),

where

L∞(ιM, s) =
∏

v|∞

Lv(ιM, s)

is a product of appropriate Γ-factors (independent of ι) and

ε(ιM, s) = ι(ε(M)) cond(M)−s, ε(M) ∈ Q
∗
.
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244 Jan Nekovář

(0.1) Let p be a prime number and p | p a prime of L above p. The p-adic realiza-
tion Mp of M is a finite-dimensional Lp-vector space equipped with a continuous
action of the Galois group GF,S = Gal(FS/F ), where FS ⊂ Q is the maximal
extension of F unramified outside a suitable finite set S ⊃ Sp∪S∞ of primes of F .
According to the conjectures of Bloch and Kato [Bl-Ka] (generalized by Fontaine
and Perrin-Riou [Fo-PR]),

(CBK)
ords=0L(ιM, s)

?
=dimLp

H1
f (F,M

∗
p (1)) − dimLp

H0(F,M∗
p (1)) =

= h1
f (F,M

∗
p (1)) − h0(F,M∗

p (1)),

where H1
f (F, V ) ⊆ H1(GF,S , V ) is the generalized Selmer group defined in [Bl-

Ka].

(0.2) Consider the special case when the motive M is self-dual (i.e., when
there exists a skew-symmetric isomorphism M

∼
−→M∗(1)) and pure (necessarily

of weight −1). In this case H0(F,Mp) = 0 and ords=0L∞(ιM, s) = 0, which means
that the global ε-factor ε(M) determines the parity of ords=0L(ιM, s) (assuming
the validity of (CFE)):

(−1)ords=0L(ιM,s) = ε(M). (0.2.1)

In this article we concentrate on the parity conjecture for Selmer groups,
namely on the conjecture

(CBK (mod 2)) ords=0L(ιM, s)
?
≡ h1

f (F,Mp) (mod 2).

In view of (0.2.1), this conjecture can be reformulated (assuming (CFE)) as follows:

(−1)h
1
f (F,Mp) ?

= ε(M) (0.2.2)

(0.3) The advantage of the formulation (0.2.2) is that the global ε-factor

ε(M) =
∏

v

εv(M), εv(M) = εv(Mp)

is a product of local ε-factors, which can be expressed in terms of the Galois repre-
sentation Mp alone: for v ∤ p∞ (resp., v | p), εv(M) is the local ε-factor of the rep-
resentation of the Weil-Deligne group of Fv attached to the action of Gal(F v/Fv)
on Mp (resp., attached to the corresponding Fontaine module Dpst(Mp) over Fv).
For v | ∞, εv(M) depends on the Hodge numbers of the de Rham realization MdR

of M , which can be read off from DdR(Mp) over Fv, for any v | p.

It makes sense, therefore, to rewrite the conjecture (0.2.2) as

(−1)h
1
f (F,V ) ?

= ε(V ) =
∏

v

εv(V ), (0.3.1)
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for any symplectically self-dual (V
∼
−→ V ∗(1)) representation of GF,S which is

geometric (= potentially semistable at all primes above p) and pure (of weight
−1).

In the present article we consider the following question: is the conjecture (0.3.1)
invariant under deformation in p-adic families of representations of GF,S? In other
words, if V, V ′ are two representations of GF,S (self-dual, geometric and pure)
belonging to the same p-adic family (say, in one parameter) of representations of
GF,S , is it true that

(−1)h
1
f (F,V )/ ε(V )

?
= (−1)h

1
f (F,V ′)/ ε(V ′) ? (0.3.2)

The main result of this article (Thm. 5.3.1) implies that (0.3.2) holds for families
satisfying the Pančǐskin condition at all primes v | p. The proof follows the strategy
employed in [Ne 2, ch. 12] in the context of Hilbert modular forms (1) : multiplying
both sides of (0.3.1) by a common sign (the contribution of the “trivial zeros”),
we rewrite (0.3.1) as

(−1)̃h
1
f (F,V ) ?

= ε̃(V ) =
∏

v

ε̃v(V ), (0.3.3)

where h̃1
f (F, V ) = dimLp

H̃1
f (F, V ) is the dimension of the extended Selmer group

(defined in 4.2 below) and ε̃v(V ) = εv(V ), unless v | p and the local Euler factor
at v admits a “trivial zero”. The goal is to show that both sides of (0.3.3) remain
constant in the family (2).

The variation of H̃1
f (F, V ) in the family is controlled by the torsion submodule of

a suitable H̃2
f . The generalized Cassels-Tate pairing constructed in [Ne 2, ch. 10]

defines a skew-symmetric form on this torsion submodule, which implies that the
parity of h̃1

f (F, V ) is constant in family:

(−1)̃h
1
f (F,V ) = (−1)̃h

1
f (F,V ′).

The Pančǐskin condition allows us to compute explicitly the local terms ε̃v(V ) for
all v | p, which yields

∏

v|p∞

ε̃v(V ) =
∏

v|p∞

ε̃v(V
′).

Finally, it follows from general principles (and the purity assumption) that

∀v ∤ p∞ εv(V ) = εv(V
′),

hence ε̃(V ) = ε̃(V ′).

(1) In [loc. cit.] we worked with automorphic ε-factors, but they coincide with the
Galois-theoretical ε-factors ([Ne 2], 12.4.3, 12.5.4(iii)).
(2) Morally, ε̃(V ) should be the sign in the functional equation of a p-adic L-
function attached to the family.
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1. Representations of the Weil-Deligne group

(1.1) The general setup ([De 1, §8], [De 2, 3.1], [Fo-PR, I.1.1-2])

(1.1.1) We use the notation of [Fo-PR, ch.I]. For a field L, denote by Lsep a
separable closure of L and by GL = Gal(Lsep/L) the absolute Galois group of L.
Throughout this article, K will be a complete discrete valuation field of character-
istic zero with finite residue field k of cardinality q = qk; denote by f = fk ∈ Gk
the geometric Frobenius element (f(x) = x1/q). We identify Gk

∼
−→ Ẑ via

f 7→ 1 and denote by ν : GK
can

−−→Gk
∼
−→ Ẑ the canonical surjection whose

kernel Ker(ν) = IK = I is the inertia group of K. The Weil group (of K)

WK = ν−1(Z) =
∐
n∈Z f̃

nI (f̃ ∈ ν−1(1)) is equipped with the topology of a
disjoint union of countably many pro-finite sets. The homomorphism

| · | : WK −→ qZ, |w| = q−ν(w)

corresponds to the normalized valuation |·| : K∗ −→ qZ via the reciprocity isomor-
phism recK : K∗ ∼

−→W ab
K (normalized using the geometric Frobenius element).

(1.1.2) Let E be a field of characteristic zero.

An object of RepE(WK) (= a representation of the Weil group of K over E) is a
finite-dimensional E-vector space ∆ equipped with a continuous homomorphism
ρ = ρ∆ : WK −→ AutE(∆) (with respect to the discrete topology on the target).
As Ker(ρ) is open, ρ(I) is finite and ρ|I is semi-simple.

An object of RepE(′WK) (= a representation of the Weil-Deligne group of K over
E) is a pair (ρ,N), where ρ = ρ∆ ∈ RepE(WK) and N ∈ EndE(∆) is a nilpotent
endomorphism satisfying

∀w ∈WK ρ(w)Nρ(w)−1 = |w|N.

Morphisms in RepE(WK) (resp., in RepE(′WK)) are E-linear maps commut-
ing with the action of WK (resp., with the action of WK and N). We con-
sider RepE(WK) as a full subcategory of RepE(′WK) via the full embedding
ρ 7→ (ρ, 0). Tensor products and duals in RepE(′WK) are defined in the usual way:
N∆⊗∆′ = N∆ ⊗ 1 + 1⊗N∆′ , N∆∗ = −(N∆)∗. The Tate twist of ∆ ∈ RepE(′WK)
by an integer m ∈ Z is defined as ∆| · |m = ∆ ⊗ E| · |m, where w ∈ WK acts on
the one-dimensional representation E| · |m ∈ RepE(WK) by |w|m.

The Frobenius semi-simplification

∆ = (ρ,N) 7→ ∆f−ss = (ρss, N)

is an exact tensor functor RepE(′WK) −→ RepE(′WK). The “forget the mon-
odromy” functor

∆ = (ρ,N) 7→ ∆N−ss = (ρ, 0)

is an exact tensor functor RepE(′WK) −→ RepE(WK).

Following [Fo-PR, I.1.2.1], we put, for each ∆ ∈ RepE(′WK),
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On the Parity of Ranks of Selmer Groups III 247

∆g = ∆ρ(I), ∆f = Ker(N)ρ(I) ⊂ ∆g, PK(∆, u) = det(1−fu | ∆f ) ∈ E[u].

We also set

H0(∆) = Ker (∆f
f−1
−−→∆f ) .

(1.1.3) In the special case when E is a finite extension of Qp (p 6= char(k))
and when V ∈ RepE(GK) is a representation of GK over E (finite-dimensional
and continuous with respect to the topology on E defined by the p-adic valuation),
then V gives rise to a representation WD(V ) = ∆ = (ρ∆, N) ∈ RepE(′WK) acting
on V , which is defined as follows ([De 1, 8.4]): there exists an open subgroup J
of I which acts on V unipotently, and through the map J →֒ I ։ I(p), where
I(p) is the maximal pro-p-quotient of I (isomorphic to Zp). Fixing a topological
generator t of I(p) and an integer a ≥ 1 such that ta lies in the image of J , the
nilpotent endomorphism

N =
1

a
log ρV (ta) ∈ EndE(V )

(where ρV : GK −→ AutE(V ) denotes the action of GK on V ) is independent of

a. Fix a lift f̃ ∈ ν−1(1) ⊂WK of f and define

ρ∆ : WK −→ AutE(V )

by

ρ∆(f̃nu) := ρV (f̃nu) exp(−bN) (n ∈ Z, u ∈ I),

where b ∈ Zp is such that the image of u in I(p) is equal to tb. The pair (ρ∆, N)
defines an object ∆ = WD(V ) of RepE(′WK), the isomorphism class of which is

independent of the choices of f̃ and t ([De 1], Lemma 8.4.3), and which satisfies

∆f = V ρV (I), H0(∆) = V ρV (GK).

(1.2) Self-dual representations

(1.2.1) Definition. Let ω : WK −→ E∗ be a one-dimensional object of
RepE(WK). We say that ∆ ∈ RepE(′WK) is ω-orthogonal (resp., ω-
symplectic) if there exists a morphism in RepE(′WK) ∆ ⊗ ∆ −→ ω which is
non-degenerate (i.e., which induces an isomorphism ∆

∼
−→ ∆∗ ⊗ω) and symmet-

ric (resp., skew-symmetric). If ω = 1, we say that ∆ is orthogonal (resp.,
symplectic).

(1.2.2) (1) If ∆ is ω-orthogonal, then det(∆)2 = ωdim(∆).
(2) If ∆ is ω-symplectic, then 2 | dim(∆) and det(∆) = ωdim(∆)/2.

(1.2.3) Example: For m ≥ 1, define sp(m) ∈ RepE(′WK) by
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sp(m) =

m−1⊕

i=0

Eei, N(ei) = ei+1, ∀w ∈WK w(ei) = |w|iei.

Up to a scalar multiple, there is a unique non-degenerate morphism sp(m) ⊗
sp(m) −→ E| · |m−1 in RepE(′WK), namely

sp(m) ⊗ sp(m) −→ E| · |m−1, ei ⊗ ej 7→

{
(−1)i, i+ j = m− 1
0, i+ j 6= m− 1.

This morphism is | · |m−1-symplectic (resp., | · |m−1-orthogonal) if 2 | m (resp., if
2 ∤ m).

(1.2.4) According to [De 2, 3.1.3(ii)], indecomposable f -semi-simple objects of
RepE(′WK) are of the form ρ ⊗ sp(m), where ρ ∈ RepE(WK) is irreducible and
m ≥ 1. This implies that, for each | · |-symplectic representation ∆

∼
−→ ∆∗| · | ∈

RepE(′WK), the f -semi-simplification ∆f−ss is a direct sum of | · |-symplectic
representations of the following type:

(1) X ⊕X∗| · | (X ∈ RepE(′WK)) with the standard symplectic form (x, x∗)⊗
(y, y∗) 7→ x∗(y) − y∗(x);

(2) ρ⊗sp(m), where m ≥ 1, ρ ∈ RepE(WK) is irreducible and | · |2−m-symplectic
(resp., | · |2−m-orthogonal) if 2 ∤ m (resp., if 2 | m).

(1.3) The monodromy filtration

(1.3.1) For each ∆ = (ρ,N) ∈ RepE(′WK), the monodromy filtration

Mn∆ :=
∑

i−j=n+1

ker(N i) ∩ Im(N j) (n ∈ Z)

is the unique increasing filtration of ∆ by E-vector subspaces satisfying

⋂

n

Mn∆ = 0,
⋃

n

Mn∆ = ∆, N(Mn∆) ⊆Mn−2∆,

∀r ≥ 0 Nr : grMr ∆
∼
−→ grM−r∆.

(1.3.2) Examples: (1) N = 0 ⇐⇒ M−1∆ = 0, M0∆ = ∆.
(2) If Nr 6= 0 = Nr+1 (r ≥ 0), then M−r−1∆ = 0, M−r∆ = Im(Nr) 6= 0,
Mr−1∆ = Ker(Nr) 6= ∆, Mr∆ = ∆.

(1.3.3) More precisely, the endomorphism N ∈ EndE(∆) defines a morphism in
RepE(WK)

N : ∆ −→ ∆| · |−1,

which implies that each Mn∆ is a sub-object of ∆N−ss in RepE(WK),
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N : Mn∆ −→ (Mn−2∆)| · |−1

and, for each r ≥ 0, the endomorphism Nr induces an isomorphism in RepE(WK)

Nr : grMr ∆
∼
−→ (grM−r∆)| · |−r.

(1.3.4) The monodromy filtration on the dual representation ∆∗ = (ρ∗,−N∗)
satisfies Mn∆

∗ = (M−1−n∆)⊥ (n ∈ Z), which yields canonical isomorphisms in
RepE(WK)

∀m ≤ n Mn∆
∗/Mm∆∗ ∼

−→ (M−1−m∆/M−1−n∆)∗.

(1.3.5) If 〈 , 〉 : ∆ ⊗ ∆ −→ E ⊗ ω is an ω-symplectic form on ∆, then, for
each r ≥ 0, the formula 〈x, y〉r = 〈Nrx, y〉 defines an ω| · |−r-symplectic (resp.,
ω| · |−r-orthogonal) form on grMr ∆ ∈ RepE(WK) if 2 | r (resp., if 2 ∤ r).

(1.3.6) Dimensions. The dimensions

dr = dr(∆) = dim grMr ∆ = d−r (r ∈ Z)

can be interpreted as follows. By the Jacobson-Morozov theorem, there exists a
(non-unique) representation

ρ : sl(2) = sl(2, E) −→ EndE(∆)

such that ρ(

(
0 0
1 0

)
) = N . Putting H = ρ(

(
1 0
0 −1

)
) and ∆m = {x ∈ ∆ |

Hx = mx} (m ∈ Z), then

Mn∆ =
∑

m≤n

∆m.

Decomposing ∆ as a representation of sl(2)

∆
∼
−→

⊕

j≥0

(
SjE2

)⊕mj(∆)
,

then the multiplicities mj = mj(∆) are related to other numerical invariants of ∆
as follows:

dim(∆) =
∑

j≥0

(j + 1)mj , (∀r ≥ 0) d−r =
∑

i≥0

mr+2i, mr = d−r − d−r−2,

dim Im(Nr) = dr + 2
∑

j>r

dj , dim Ker(Nr+1) = d0 + 2

r∑

j=1

dj + dr+1.

(1.3.6.1)
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(1.4) Purity

(1.4.1) Definition. Let E′ be a field containing E and a ∈ Z. We say that α ∈ E′

is a qa-Weil number of weight n ∈ Z if α is algebraic over Q, there exists
N ∈ Z such that qNα is integral over Z, and for each embedding σ : Q(α) →֒ C,
the usual archimedean absolute value of σ(α) is equal to |σ(α)|∞ = qan/2.

(1.4.2) Definition. We say that ∆ ∈ RepE(′WK) is strictly pure of weight
n ∈ Z if ∆ = ρ ∈ RepE(WK) and if for each w ∈ WK all eigenvalues of ρ(w) are
qν(w)-Weil numbers of weight n ∈ Z.

(1.4.3) Definition. We say that ∆ ∈ RepE(′WK) is pure of weight n ∈ Z if,
for each r ∈ Z, grMr ∆ ∈ RepE(WK) is strictly pure of weight n+ r.

(1.4.4) (1) Each representation ρ ∈ RepE(WK) with finite image is strictly pure
of weight 0.
(2) If ∆,∆′ ∈ RepE(′WK) are (strictly) pure of weights n and n′, respectively,
then ∆⊗∆′ is (strictly) pure of weight n+ n′, and ∆∗ is (strictly) pure of weight
−n.
(3) For each m ∈ Z, E| · |m is strictly pure of weight −2m.
(4) For each ρ ∈ RepE(WK) and m ≥ 1,

∆ = ρ⊗ sp(m) is pure of weight n ⇐⇒ ρ is strictly pure of weight n+m− 1

=⇒ ∆f = ρI | · |m−1 is strictly pure of weight n+ 1 −m.

(5) If ∆ ∈ RepE(′WK) is pure of weight n < 0, then all eigenvalues of ρ(f̃) (for

any f̃ ∈ ν−1(1)) on Ker(N) ⊆M0∆ are q-Weil numbers of weights ≤ n < 0, hence
H0(∆) = 0.
(6) If ∆ ∈ RepE(′WK) is pure of weight n (but not necessarily f -semi-simple),
then ∆

∼
−→

⊕
ρj ⊗ sp(mj), where each ρj ∈ RepE(WK) is strictly pure of weight

n+mj − 1.

(1.4.5) Definition. In the situation of 1.1.3, we say that V ∈ RepE(GK) is pure
of weight n ∈ Z if WD(V ) ∈ RepE(′WK) is pure of weight n ∈ Z in the sense
of 1.4.3.

(1.5) Specialization of representations of the Weil-Deligne group

(1.5.1) Let O be a discrete valuation ring containing Q; denote by E (resp., kO)
the field of fractions (resp., the residue field) of O.

(1.5.2) An object of RepO(′WK) (= a representation of the Weil-Deligne group of
K over O) consists of a free O-module of finite type T , a continuous homomorphism
ρ = ρT : WK −→ AutO(T ) (with respect to the discrete topology on the target)
and a nilpotent endomorphism N = NT ∈ EndO(T ) satisfying

∀w ∈WK ρ(w)Nρ(w)−1 = |w|N.
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The generic fibre (resp., the special fibre) of T is the representation Tη =
T ⊗O E ∈ RepE(′WK) (resp., the representation Ts = T ⊗O kO ∈ RepkO (′WK)).
We denote by Nη (resp., Ns) the monodromy operator NT ⊗ 1 on Tη (resp., on
Ts).

(1.5.3) For T ∈ RepO(′WK), we denote by T ∗ the representation T ∗ =
HomO(T,O) (equipped with the dual action of WK and the monodromy op-
erator NT∗ = −(NT )∗). Given a representation ω : WK −→ O∗, we say
that T is ω-orthogonal (resp., ω-symplectic) if there exists an isomorphism
j : T

∼
−→ T ∗ ⊗ ω in RepO(′WK) satisfying j∗ ⊗ ω = j (resp., j∗ ⊗ ω = −j).

(1.5.4) Proposition. Assume that T ∈ RepO(′WK) is | · |-symplectic (hence so
are Tη and Ts) and that Ts ∈ RepkO (′WK) is pure (necessarily of weight −1).
Then:
(1) ∀j ≥ 0 mj(Tη) = mj(Ts).
(2) ∀j ≥ 0 dimE Ker(N j

η ) = dimkO Ker(N j
s ).

(3) For each j ≥ 0, the natural injective map
(
Ker(N j

η ) ∩ T
)
⊗O kO −→ Ker(N j

s )
is an isomorphism.

Proof. It is enough to prove (1), since (2) is a consequence of (1) and the formulas
(1.3.6.1), and (2) is equivalent to (3) for trivial reasons. We prove (1) by induction
on r = min{j ≥ 0 | N j+1

T = 0}. If r = 0, then there is nothing to prove. Assume
that r ≥ 1 and that (1) holds whenever Nr

T = 0. Recall from 1.3.2(2) and 1.3.5
that

M−r−1(Tη) = 0 6= M−r(Tη) = Im(Nr
η ), Mr−1(Tη) = Ker(Nr

η ) 6= Tη = Mr(Tη),

M−r−1(Ts) = 0, M−r(Ts) = Im(Nr
s ), Mr−1(Ts) = Ker(Nr

s ), Mr(Ts) = Ts

and that M−r(Tη) is | · |r+1-symplectic (resp., | · |r+1-orthogonal) if 2 | r (resp.,
if 2 ∤ r). The latter property implies that, for any eigenvalue α ∈ kO of any lift

f̃ ∈ ν−1(1) of f acting on (M−r(Tη)∩T )⊗O kO there exists another eigenvalue α′

such that αα′ = q−r−1. On the other hand, (M−r(Tη) ∩ T ) ⊗O kO ∈ RepkO (WK)

is a sub-object of Ts in RepkO (′WK), and all eigenvalues of f̃ on Ts are q-Weil
numbers of weights contained in {−r − 1,−r, . . . , r − 1}; thus both α and α′

are q-Weil numbers of weight −r − 1. In other words, (Im(Nr
η ) ∩ T ) ⊗O kO =

(M−r(Tη) ∩ T ) ⊗O kO is strictly pure of weight −r − 1, hence is contained in
M−r(Ts) = Im(Nr

s ) = (Im(Nr
T )) ⊗O kO. The opposite inclusion being trivial, we

deduce that Im(Nr
T ) is equal to Im(Nr

η ) ∩ T , hence is a direct summand of T (as
an O-module); it follows that

mr(Ts) = dimkO Im(Nr
s ) = dimE Im(Nr

η ) = mr(Tη).

The representation T ′ = (Mr−1(Tη) ∩ T )/(M−r(Tη) ∩ T ) ∈ RepO(′WK) is also
| · |-symplectic, satisfies Nr

T ′ = 0, and T ′
s is pure of weight −1. By induction

hypothesis, we have

∀j ≥ 0 mj(T
′
s) = mj(T

′
η).
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The relations

mj(T
′
?) =




mj(T?), j 6= r, r − 2
mr−2(T?) +mr(T?), j = r − 2 ≥ 0
0, otherwise

(? = η, s)

then imply

∀j ≥ 0 mj(Ts) = mj(Tη).

2. Local ε-factors

(2.1) General facts

(2.1.1) Fix an algebraically closed field E′ ⊃ E. Let ψ : K −→ E′∗ be a
non-trivial continuous homomorphism (with respect to the discrete topology on
the target); it always exists. If ψ′ : K −→ E′∗ is another non-trivial continuous
homomorphism, then there exists unique a ∈ K∗ such that ψ′ = ψa, where ψa(y) =
ψ(ay). Denote by µψ the unique E′-valued Haar measure on K which is self-dual
with respect to ψ; then

∀a ∈ K∗ µψa
= |a|1/2 µψ, (2.1.1.1)

and every non-zero E′-valued Haar measure µ on K is a scalar multiple of µψ:
µ = b µψ, for some b ∈ E′∗.

(2.1.2) Deligne [De 1] associated to each triple (∆, ψ, µ), where ∆ ∈ RepE(′WK)
and ψ, µ are as in 2.1.1, the local ε-factor ε(∆, ψ, µ) ∈ E′∗ satisfying the following
properties.

(2.1.2.1) ε(∆, ψ, µ) = ε(∆f−ss, ψ, µ).
(2.1.2.2) If 0 −→ ρ′ −→ ρ −→ ρ′′ −→ 0 is an exact sequence in RepE(WK), then

ε(ρ, ψ, µ) = ε(ρ′, ψ, µ)ε(ρ′′, ψ, µ).
(2.1.2.3) ε0(∆, ψ, µ) = ε(∆, ψ, µ) det(−f | ∆f ) depends only on ∆N−ss ∈

RepE(WK). As (∆N−ss)f = ∆g, it follows that

ε(∆, ψ, µ) = ε(∆N−ss, ψ, µ) det(−f | ∆g/∆f ).

(2.1.2.4) ∀a ∈ K∗ ε(∆, ψa, µ) = (det ∆)(a) |a|− dim(∆) ε(∆, ψ, µ).
(2.1.2.5) ∀b ∈ E′∗ ε(∆, ψ, b µ) = bdim(∆) ε(∆, ψ, µ).
(2.1.2.6) If ∆ = ρ ∈ RepE(WK), then ε(ρ, ψ, µ) ε(ρ∗| · |, ψ−1, µ

∗) = 1 (where µ∗

is the measure dual to µ with respect to ψ).
(2.1.2.7) If ∆ = ρ ∈ RepE(WK), and if χ : WK/I −→ E∗ is an unramified

one-dimensional representation, then

ε(ρ⊗ χ, ψ, µ) = ε(ρ, ψ, µ)χ(π)a(ρ)+dim(ρ)n(ψ),
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where π is a prime element of OK and a(ρ) (resp., n(ψ)) is the conductor
exponent of ρ (resp., of ψ).

(2.1.2.8) ([Fo-PR, I.1.2.3]) For an exact sequence in RepE(′WK)

(β) 0 −→ ∆′ −→ ∆ −→ ∆′′ −→ 0,

set PK(β) = PK(∆, u)/PK(∆′, u)PK(∆′′, u), a(β) = dim ∆′
f + dim ∆′′

f−
dim ∆f , ε(β) = ε(∆, ψ, µ)/ε(∆′, ψ, µ) ε(∆′′, ψ, µ), and similarly for the
dual exact sequence

(β∗| · |) 0 −→ ∆′′∗| · | −→ ∆∗| · | −→ ∆′∗| · | −→ 0;

then
PK(β∗| · |, u−1) = ε(β)ua(β) PK(β, u).

(2.1.3) Lemma. If ∆ ∈ RepE(′WK), then ε(∆, ψ, µ) ε(∆∗|·|, ψ−1, µ
∗) = 1 (where

µ∗ is the measure dual to µ with respect to ψ).

Proof. Thanks to (2.1.2.1-2), we can assume that ∆ is f -semi-simple and inde-
composable: ∆ = ρ⊗ sp(m), ρ ∈ RepE(WK), m ≥ 1. In this case

∆g =
m−1⊕

j=0

ρI | · |j , ∆g/∆f =
m−2⊕

j=0

ρI | · |j , ∆∗| · | = ρ∗ ⊗ sp(m)| · |2−m

(∆∗| · |)g/(∆
∗| · |)f =

m−2⊕

j=0

(ρ∗)I | · |2−m+j = (∆g/∆f )
∗

(as ρ(I) is finite, we have (ρ∗)I = (ρI)∗), hence

det(−f | ∆g/∆f ) det(−f | (∆∗| · |)g/(∆
∗| · |)f ) = 1;

we deduce that

ε(∆, ψ, µ) ε(∆∗| · |, ψ−1, µ
∗) = ε(∆N−ss, ψ, µ) ε((∆∗| · |)N−ss, ψ−1, µ

∗),

which is equal to 1, by (2.1.2.6).

(2.2) | · |-symplectic representations

(2.2.1) Proposition. Let ∆
∼
−→ ∆∗| · | ∈ RepE(′WK) be | · |-symplectic. Then:

(1) ε(∆) := ε(∆, ψ, µψ) does not depend on ψ.
(2) ε(∆) = ±1; more precisely:
(3) If ρ

∼
−→ ρ∗| · | ∈ RepE(WK) is | · |-symplectic, then ε(ρ) = ±1.

(4) If ∆ = X ⊕X∗| · | is as in 1.2.4(1), then ε(∆) = ε(∆N−ss) = (detX)(−1).
(5) If ∆ = ρ ⊗ sp(2n + 1) (ρ ∈ RepE(WK), n ≥ 0), then ρ| · |n ∈ RepE(WK) is
| · |-symplectic and ε(∆) = ε(∆N−ss) = ε(ρ| · |n).
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(6) If ∆ = ρ ⊗ sp(2n) (ρ ∈ RepE(WK), n ≥ 1), then ρ| · |n−1 ∈ RepE(WK) is
orthogonal, there is an exact sequence in RepE(′WK)

0 −→ ∆+ −→ ∆ −→ ∆− −→ 0

∆+ = ρ⊗ sp(n)| · |n, ∆− = ρ⊗ sp(n),

H0(∆−) = H0(ρ| · |n−1) and

ε(∆) = (−1)dimE H0(∆−)(det ∆+)(−1), ε(∆N−ss) = (det ∆+)(−1).

Proof. (1) For each a ∈ K∗,

ε(∆, ψa, µψa
) = ε(∆, ψa, |a|

1/2µψ) (by (2.1.1.1))

= |a|dim(∆)/2 ε(∆, ψa, µψ) (by (2.1.2.5))

= (det ∆)(a) |a|− dim(∆)/2 ε(∆, ψ, µψ) (by (2.1.2.4))

= ε(∆, ψ, µψ). (by 1.2.2(2))

(2) Writing ∆f−ss as a direct sum of | · |-symplectic representations of the form
1.2.4(1) or 1.2.4(2), the statement follows from the explicit formulas (4)-(6) and
(3), proved below.
(3) Combining (2.1.2.6), (2.1.2.4) and 1.2.2(2), we obtain

ε(ρ, ψ, µψ)2 = ε(ρ, ψ, µψ) (det ρ)(−1)ε(ρ, ψ, µψ) = ε(ρ, ψ, µψ) ε(ρ, ψ−1, µψ) =

= ε(ρ, ψ, µψ) ε(ρ∗| · |, ψ−1, µψ) = 1.

(4) As in the proof of (3), Lemma 2.1.3 together with (2.1.2.4) yield

ε(∆) = ε(X,ψ, µψ) ε(X∗| · |, ψ, µψ) = (detX)(−1) ε(X,ψ−1, µψ) ε(X∗| · |, ψ, µψ) =

= (detX)(−1).

Replacing X by XN−ss, we obtain ε(∆N−ss) = (detXN−ss)(−1) =
(detX)(−1) = ε(∆).
(5) As ∆ = ρ ⊗ sp(2n + 1) is | · |-symplectic, the representation ρ| · |n is also
| · |-symplectic, by 1.2.3-4 (in particular, det(ρ) = | · |(1−2n) dim(ρ)/2). The same
calculation as in the proof of Lemma 2.1.3 yields

∆g/∆f =

2n−1⊕

j=0

ρI | · |j , (ρI | · |j)∗ = (ρ∗| · |−j)I = ρI | · |2n−1−j ,

∆g/∆f =

n−1⊕

j=0

ρI | · |j ⊕
(
ρI | · |j

)∗
,
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which implies that det (−f | ∆g/∆f ) = 1, hence

ε(∆) = ε(∆N−ss) =

2n∏

j=0

ε(ρ|·|j , ψ, µψ) = ε(ρ|·|n)
n−1∏

j=0

ε(ρ|·|j⊕(ρ|·|j)∗|·|)
(4)
= ε(ρ|·|n).

(6) As ∆ = ρ⊗ sp(2n) is | · |-symplectic, the representation ρ| · |n−1 is orthogonal,
by 1.2.3. The same calculation as in the proof of (5) shows that

ε(∆N−ss) =

n−1∏

j=0

ε(ρ| · |j ⊕ (ρ| · |j)∗| · |)
(4)
=

n−1∏

j=0

det(ρ| · |j)(−1) = (det ∆+)(−1)

and

∆g/∆f = ρI |·|n−1⊕
n−2⊕

j=0

ρI |·|j⊕
(
ρI | · |j

)∗
, det (−f | ∆g/∆f ) =

(
−f | ρI | · |n−1

)
.

As ρ(I) acts semi-simply, the (unramified) representation V = ρI | · |n−1 ∈
RepE(WK) is also orthogonal; applying Lemma 2.2.2 below to u = f acting on V ,
we obtain

ε(∆)/ε(∆N−ss) = det (−f | ∆g/∆f ) = (−1)dimE Ker(f−1:V−→V ).

Finally,

Ker(V
f−1
−−→V ) = H0(ρ| · |n−1) = H0(ρ⊗ sp(n)) = H0(∆−).

(2.2.2) Lemma. Let (V, q) be a non-degenerate quadratic space over a field L of
characteristic not equal to 2. If u ∈ O(V, q), then

det(−u) = (−1)dimL Ker(u−1), det(u) = (−1)dimL Im(u−1).

Proof. The following short argument is due to J. Oesterlé. The two formulas being
equivalent, it is enough to prove the second one. Let a ∈ V , q(a) 6= 0; denote by
s ∈ O−(V, q) the reflection with respect to the hyperplane Ker(s − 1) = a⊥. A
short calculation shows that

Ker(su− 1) =

{
Ker(u− 1) ⊕ Lb, a = (u− 1)b, b ∈ V
Ker(u− 1) ∩ a⊥ ( Ker(u− 1), a 6∈ Im(u− 1),

hence

dimL Im(su− 1) = dimL Im(u− 1) ∓ 1. (2.2.2.1)

Writing u as a product of r ≥ 1 reflections, we deduce from (2.2.2.1), by induction,
that dimL Im(u− 1) ≡ r (mod 2), as claimed.
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(2.2.3) Proposition. Let ∆
∼
−→ ∆∗| · | ∈ RepE(′WK) be | · |-symplectic and pure

(of weight −1). Assume that there exists an exact sequence in RepE(′WK)

(β) 0 −→ ∆+ −→ ∆ −→ ∆− −→ 0

such that the isomorphism ∆
∼
−→ ∆∗| · | induces isomorphisms ∆± ∼

−→ (∆∓)∗| · |.
Assume, in addition, that there exists a direct sum decomposition ∆ = ∆1⊕∆2 in
RepE(′WK) compatible with the isomorphism ∆

∼
−→ ∆∗|·| and the exact sequence

(β), and such that H0(∆−
2 ) = 0, while

(β1) 0 −→ ∆+
1 −→ ∆1 −→ ∆−

1 −→ 0

is a direct sum of exact sequences of the type considered in Proposition 2.2.1(6).
Then

ε(∆) = (−1)dimE H0(∆−)(det ∆+)(−1), ε(∆N−ss) = (det ∆+)(−1).

Proof. It is enough to treat separately ∆1 and ∆2. For ∆ = ∆1, the statement
follows from Proposition 2.2.1(6). For ∆ = ∆2, the assumption H0(∆−) = 0
implies that PK(∆−, 1) 6= 0. As ∆ is pure of weight −1 < 0, we also have
H0(∆+) ⊆ H0(∆) = 0, by 1.4.4(5), hence PK(∆+, 1)PK(∆, 1) 6= 0. Letting
u −→ 1 in (2.1.2.8), we obtain ε(β) = 1, hence

ε(∆) = ε(∆+, ψ, µψ) ε(∆−, ψ, µψ) = ε(∆+ ⊕ (∆+)∗| · |) = (det ∆+)(−1).

Finally,

ε(∆N−ss) = ε((∆+)N−ss, ψ, µψ) ε((∆−)N−ss, ψ, µψ) =

= ε((∆+)N−ss ⊕ ((∆+)N−ss)∗| · |) = (det(∆+)N−ss)(−1) = (det ∆+)(−1).

(2.2.4) Proposition. In the situation of 1.5.4, ε(Ts) = ε(Tη) ∈ {±1}.

Proof. For any O-module X, denote by red : X −→ X ⊗O kO the canonical
surjection. Proposition 1.5.4 implies that

red

(
T ∩ (Tη)g
T ∩ (Tη)f

)
= (Ts)g/(Ts)f ,

hence

red
(
ε(Tη)/ε(T

N−ss
η )

)
= red (det (−f | (Tη)g/(Tη)f )) =

= (det (−f | (Ts)g/(Ts)f ) = ε(Ts)/ε(T
N−ss
s ).

As ε(Tη), ε(T
N−ss
η ), ε(Ts), ε(T

N−ss
s ) ∈ {±1}, we are reduced to showing that
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red
(
ε(TN−ss

η )
) ?

= ε(TN−ss
s ).

The following argument is based on a suggestion of T. Saito. We can replace
(ρT , NT ) by (ρT , 0) and assume that NT = 0. Furthermore, after replacing E by
a finite extension, we can assume (see [De 1, 4.10]) that

T f−ssη =
⊕

α

ρα ⊗ ωα,

where ρα ∈ RepL(WK) for a subfield L ⊂ O of finite degree over Q, and ωα :
WK/I −→ O∗ is an unramified representation of rank 1. We have

∀w ∈WK Tr(w | Ts) = red (Tr(w | Tη)) ,

hence

T f−sss =
⊕

α

ρα ⊗ red(ωα).

Applying (2.1.2.7) to each direct summand, we obtain

red (ε(Tη)) =
∏

α

red (ε(ρα ⊗ ωα, ψ, µψ)) =
∏

α

ε(ρα⊗ red(ωα), red ◦ψ, red ◦µψ) =

= ε(Ts).

(2.3) The archimedean case

Let L = R or C. If H is a pure R-Hodge structure over L ([Fo-PR, III.1]) of
weight −1, then

H =
⊕

r>0

Hr(r)
⊕mr ,

where Hr is a two-dimensional pure R-Hodge structure over L of Hodge type
(2r − 1, 0), (0, 2r − 1). The standard formulas ([De 3, 5.3], [Fo-PR, III.1.1.10,
III.1.2.7]) yield

ε(Hr(r)) = (−1)[L:R] r ×

{
1, L = R
−1, L = C.

As

∀p < 0 hp,−1−p(H) = m−p,

we obtain

ε(H) = (−1)[L:R] d−(H) ×

{
1, L = R
(−1)(dimRH)/2, L = C,

d−(H) =
∑

p<0

p hp,q(H).

(2.3.1)
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3. Local p-adic Galois representations

(3.1) General facts

(3.1.1) Notation. Let p be the characteristic of the residue field k of K; then
q = ph and K is a finite extension of Qp. Denote by σ ∈ Gal(Qur

p /Qp)
∼
−→ GFp

the lift of the arithmetic Frobenius element x 7→ xp. Let L be another finite
extension of Qp.

We use the standard notation

Repcris,L(GK) ⊂ Repst,L(GK) ⊂ Reppst,L(GK) = RepdR,L(GK) ⊂ RepL(GK)

for Fontaine’s hiearchy of (finite-dimensional, L-linear) representations of GK
([Fo]), and

Dcris(V ) = (V ⊗Qp
Bcris)

GK , Dst(V ) = (V ⊗Qp
Bst)

GK ,

Dpst(V ) = lim−→K′

(V ⊗Qp
Bst)

GK′ ,

Di
dR(V ) = (V ⊗Qp

tiB+
dR)GK ⊂ DdR(V ) = (V ⊗Qp

BdR)GK

for various Fontaine’s functors (above, V ∈ RepL(GK), and K ′ runs through all fi-
nite extensions ofK contained inK). As in [Bl-Ka], putHi(K,−) = Hi

cont(GK ,−)
and, for ∗ = e, f, st, g,

H1
∗ (K,V ) = Ker

(
H1(K,V ) −→ H1(K,V ⊗Qp

B∗)
)
,

Be = Bϕ=1
cris , Bf = Bcris, Bg = BdR.

If K ′/K is a finite Galois extension, then

H1
∗ (K,V ) = H1

∗ (K ′, V )Gal(K′/K), (∗ = ∅, e, f, st, g) (3.1.1.1)

(as both H1(−, V ) and H1(−, V ⊗Qp
B∗) satisfy Galois descent w.r.t. the exten-

sion K ′/K, and the functor of Gal(K ′/K)-invariants is exact on the category of
Q[Gal(K ′/K)]-modules).

(3.1.2) For V ∈ RepdR,L(GK) and i ∈ Z, define

diL(V ) := dimL

(
Di
dR(V )/Di+1

dR (V )
)
, d−L (V ) :=

∑

i<0

i diL(V ),

dL(V ) :=
∑

i∈Z

i diL(V ).
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(3.1.3) If V ∈ Reppst,L(GK), then D = Dpst(V ) is a free (Qur
p ⊗Qp

L)-module
of rank equal to dimL(V ), which is equipped (among others) with the following
structure ([Fo], [Fo-PR, I.2.2]):

(1) An L-linear action ρsl : WK −→ AutL(D), which is Qur
p -semi-linear in the

following sense:

∀w ∈WK ∀λ ∈ Qur
p ∀x ∈ D ρsl(w)(λx) = f

ν(w)
k (λ) ρsl(w)(x).

(2) An L-linear, σ-semi-linear map ϕ : D −→ D commuting with ρsl(w) (for all
w ∈WK):

∀w ∈WK ∀λ ∈ Qur
p ∀x ∈ D ϕ(λx) = σ(λ)ϕ(x).

(3) A (Qur
p ⊗Qp

L)-linear nilpotent endomorphism N : D −→ D commuting with
ρsl(w) (for all w ∈WK) and satisfying Nϕ = pϕN .

(4) An isomorphism of (K ⊗Qp
L)-modules

(D ⊗Qur
p
K)GK

∼
−→ DdR(V ).

(3.2) Potentially semistable representations and representations of
the Weil-Deligne group

We recall how, for each V ∈ Reppst,L(GK), the structure 3.1.3(1)-(3) can be used
to define a representation of the Weil-Deligne group of K ([Fo], [Fo-PR, I.1.3.2]).

(3.2.1) Fix a field E ⊃ Qur
p for which there exists an embedding τ : L →֒ E, and

define

WDτ (V ) := Dpst(V ) ⊗Qur
p ⊗QpL,id⊗τ

E,

which is an E-vector space of dimension dimE(WDτ (V )) = dimL(V ). We define
an E-linear action of WK on WDτ (V ) by

ρ(w) := ρsl(w) ◦ ϕhν(w) ⊗ id (w ∈WK)

and a monodromy operator N = N ⊗ id ∈ EndE(WDτ (V )). This defines a
representation

WDτ (V ) = (ρ,N) ∈ RepE(′WK),

whose isomorphism class does not depend on τ . Furthermore,

WDτ : Reppst,L(GK) −→ RepE(′WK)

is an exact tensor functor.

(3.2.2) Examples: (1) If V is potentially unramified, then WDτ (V ) = V ⊗L,τ
E ∈ RepE(WK).
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(2) If V is semistable, then WD(V ) = Dst(V ) ⊗K0⊗QpL,id⊗τ
E (K0 = K ∩Qur

p ),

with ρ(I) acting trivially, N = N ⊗ id and ρ(fk) = ϕh ⊗ id. Conversely, if ρ(I)
acts trivially, then V is semistable.
(3) If V = L(n) = L⊗Qp

Qp(n) (n ∈ Z), then WDτ (V ) = E| · |n = E ⊗ | · |n.
(4) (Lubin-Tate theory) Fix a prime element π ∈ OK . The reciprocity map
recK : K∗ −→ GabK (normalized using the geometric Frobenius element) defines a
one-dimensional representation Vπ ∈ Repcris,K(GK)

χπ : GK −→ GabK
∼
−→ K̂∗ = πẐ ×O∗

K ։ O∗
K →֒ K∗,

which arises in the π-adic Tate module of any Lubin-Tate group over K associated
to π. In this case

Dpst(Vπ) = (Qur
p ⊗Qp

K)u, ϕh(u) = (1 ⊗ π)−1u, Nu = 0,

∀w ∈WK ρsl(w)(u) = u.

If E ⊃ Qur
p is a field and τ : K →֒ E an embedding of fields, then WDτ (Vπ) ∈

RepE(WK) is an unramified one-dimensional representation of WK , on which f =
fk acts by τ(π)−1. For K = Qp and π = p we recover Example (3) for n = 1.

(3.2.3) Definition. We say that V ∈ Reppst,L(GK) is pure of weight n ∈ Z
if WDτ (V ) ∈ RepE(′WK) is pure of weight n, in the sense of 1.4.3.

(3.2.4) Lemma. For each V ∈ Reppst,L(GK) and each τ : L →֒ E ⊃ Qur
p ,

WDτ (V )fk=1
g = Dst(V )ϕ=1 ⊗L,τ E, H0(WDτ (V )) = Dcris(V )ϕ=1 ⊗L,τ E.

Proof. As Dcris(V ) = Dst(V )N=0, it is enough to prove the first equality. As both
sides satisfy Galois descent with respect to finite Galois extensions K ′/K, we can
assume that V is semistable. In this case, 3.2.2(2) implies that

WDτ (V )fk=1
g = WDτ (V )fk=1 = Dst(V )ϕ

h=1⊗K0⊗QpL,id⊗τ
E (K0 = K∩Qur

p ).

As

Dst(V )ϕ
h=1 = Dst(V )ϕ=1 ⊗Qp

K0

(thanks to Hilbert’s Theorem 90 for H1(K0/Qp, GLn(K0))), it follows that

WDτ (V )fk=1
g = Dst(V )ϕ=1 ⊗L,τ E.

(3.2.5) Corollary. If V ∈ Reppst,L(GK) is pure of weight n < 0, then
Dcris(V )ϕ=1 = 0.

(3.2.6) Proposition. For each V ∈ Reppst,L(GK),

(detE(WDτ (V )))(−1) = (−1)dL(V ) (detLV )(−1).
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Proof. As WDτ is a tensor functor and dL(V ) = dL(detL(V )), we can replace
V by detL(V ), hence assume that dim(V ) = 1; denote by χV : GK −→ K∗ the
character by which GK acts on V . After replacing L by a finite extension, we
can assume that L contains the Galois closure of K over Qp. As V is potentially
semistable, there exists a one-dimensional representation

χ : GK −→ L∗

with finite image and integers nσ (σ : K →֒ L) such that

χV = χ
∏

σ:K →֒L

(σ ◦ χπ)
−nσ ,

where χπ : GK −→ K∗ is as in 3.2.2(4). It follows from 3.2.2 that WDτ (V ) =
(τ ◦χ)α, where α : WK/I −→ E∗ is the one-dimensional unramified representation
satisfying

α(f) =
∏

σ:K →֒L

τ(σ(π))nσ .

This implies that

(detE(WDτ (V )))(−1) = χ(−1), (detLV )(−1) = (−1)n χ(−1), n =
∑

σ:K →֒L

nσ.

On the other hand,

diL(V ) = |{σ : K →֒ L | nσ = i}|,

hence n = dL(V ).

(3.3) Representations satisfying Pančǐskin’s condition

We recall a few basic facts from [Ne 1].

(3.3.1) Definition. We say that V ∈ RepL(GK) satisfies Pančǐskin’s condi-
tion if there exists an exact sequence in RepL(GK)

0 −→ V + −→ V −→ V − −→ 0

such that V ± ∈ Reppst,L(GK) and D0
dR(V +) = 0 = DdR(V −)/D0

dR(V −). If this is
the case, then V ± are uniquely determined ([Ne 1], 6.7), V ∈ Reppst,L(GK) ([Ne 1],
1.28) and V ∗(1) also satisfies Pančǐskin’s condition (with (V ∗(1))± = (V ∓)∗(1)).

(3.3.2) Proposition. If V satisfies Pančǐskin’s condition, then:
(1) H0(K,V −) = Dcris(V

−)ϕ=1 = Dst(V
−)ϕ=1.

(2) Assume that there exists a finite Galois extension K ′/K over which V becomes
semistable and such that Dcris(V |GK′

)ϕ=1 = Dcris(V
∗(1)|GK′

)ϕ=1 = 0 (the latter
condition holds, e.g., if V is pure of weight −1, by 3.2.5). Then

H1
e (K,V ) = H1

f (K,V ) = H1
st(K,V ) = H1

g (K,V )
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and there is an exact sequence

0 −→ H0(K,V −) −→ H1(K,V +) −→ H1
f (K,V ) −→ 0,

in which H1(K,V +) = H1
st(K,V

+).

Proof. (1) This is proved in [Ne 1, 1.28(3)] under the tacit assumption that V −

is semistable. The general case follows by passing to a finite Galois extension over
which V − becomes semistable and taking Galois invariants.
(2) Over K ′, the statement is proved in [Ne 1, 1.32]; the general case follows by
applying (3.1.1.1).

(3.3.3) Proposition. Assume that V satisfies Pančǐskin’s condition, is pure (of
weight −1) and that there exists an isomorphism j : V

∼
−→ V ∗(1) in RepL(GK)

satisfying j∗(1) = −j. Then:
(1) j induces isomorphisms V ± ∼

−→ (V ∓)∗(1).
(2) Fix an embedding of fields τ : L →֒ E ⊃ Qur

p and put ∆ = WDτ (V ),
∆± = WDτ (V

±). Then ∆ ∈ RepE(′WK) is | · |-symplectic and the exact sequence
in RepE(′WK)

0 −→ ∆+ −→ ∆ −→ ∆− −→ 0

satisfies the assumptions of Proposition 2.2.3.

(3) (detE∆+)(−1)/(detLV
+)(−1) = (−1)dL(V +) = (−1)d

−

L
(V ).

(4) The ε-factors of ∆ and ∆N−ss are equal to

ε(∆) = (−1)dimL H0(K,V −) (−1)d
−

L
(V ) (detLV

+)(−1),

ε(∆N−ss) = (−1)d
−

L
(V ) (detLV

+)(−1).

Proof. (1) This follows from the remarks made in 3.3.1.
(2) ∆ is | · |-symplectic, since WDτ is a tensor functor. In order to verify the
assumptions of Proposition 2.2.3, we are going to decompose ∆ into several com-
ponents. Firstly, the functor

RepE(′WK) −→ RepE(′WK), X 7→ Xρ(I)

is exact and commutes with duals. In addition, Xρ(I) is a direct summand of
X, with a functorial complement X ′. Secondly, for each λ ∈ E, the minimal
polynomial p[λ](T ) of λ over E depends only on the GE-orbit [λ] of λ. We define

∆1 =
⊕

λ∈qZ

⋃

n≥1

Ker
(
(f − λ)n : ∆ρ(I) −→ ∆ρ(I)

)
,

∆2 = ∆′ ⊕
⊕

λ6∈qZ

⋃

n≥1

Ker
(
p[λ](f)n : ∆ρ(I) −→ ∆ρ(I)

)
.

The direct sum decomposition ∆ = ∆1 ⊕ ∆2 in RepE(′WK) is compatible with
the isomorphism ∆

∼
−→ ∆∗| · | and the exact sequence
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0 −→ ∆+ −→ ∆ −→ ∆− −→ 0.

By construction, every subquotient of ∆2 in RepE(′WK) has trivial H0, hence
H0(∆−

2 ) = 0. As ∆ is pure of weight −1, it follows that

∆1 =
⊕

m≥1

σm ⊗ sp(2m),

where each σm ∈ RepE(′WK) is an unramified representation of WK on which
q1−mf acts unipotently.
As V satisfies the Pančǐskin condition, weak admissibility of V ± implies that all
eigenvalues of f on ∆+

1 = ∆+ ∩ ∆1 (resp., on ∆−
1 = ∆1/∆

+
1 ) are of the form qn

with n < 0 (resp., with n ≥ 0). It follows that

∆+
1 =

⊕

m≥1

σm ⊗ sp(m)| · |m, ∆−
1 =

⊕

m≥1

σm ⊗ sp(m),

which proves (2).
(3) This follows from Proposition 3.2.6 applied to V +.
(4) We combine Proposition 2.2.3 (which applies to ∆, thanks to (2)) with the
formula (3) and the fact that

H0(∆−) = Dcris(V
−)ϕ=1 ⊗L,τ E = (Dcris(V

−)ϕ=1 ∩D0
dR(V −)) ⊗L,τ E =

= H0(K,V −) ⊗L,τ E.

4. Global p-adic Galois representations

(4.1) Generalities

(4.1.1) Notation. Let F be a number field. For each prime l of Q, let Sl be the
set of primes of F above l. Fix a prime number p, a finite extension Lp of Qp and
a finite set S ⊃ S∞ ∪ Sp of primes of F . Let FS be the maximal extension of F
(contained in F ) unramified outside S; putGF,S = Gal(FS/F ). For each prime v of
F fix an embedding F →֒ F v; this defines a morphism GFv

−→ GF −→ GF,S . For
each Galois representation V ∈ RepLp

(GF,S) (continuous and finite-dimensional
over Lp), denote by Vv ∈ RepLp

(GFv
) the local Galois representation induced by

the map GFv
−→ GF,S . For each v 6∈ S∞∪Sp, denote by WD(Vv) ∈ RepLp

(′WFv
)

the associated representation of the Weil-Deligne group of Fv (see 1.1.3). As in
[Bl-Ka], we put

∀v 6∈ S∞ ∪ Sp H1
f (Fv, V ) = H1

ur(Fv, V ) = Ker
(
H1(Fv, V ) −→ H1(Furv , V )

)

H1
f (F, V ) = Ker

(
H1(GF,S , V ) −→

⊕

v∈S−S∞

H1(Fv, V )/H1
f (Fv, V )

)
.
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The Lp-vector space H1
f (F, V ) does not change if we enlarge S.

(4.1.2) Throughout §4, assume that V satisfies the following conditions.

(1) There exists an isomorphism j : V
∼
−→ V ∗(1) in RepLp

(GF,S) satisfying
j∗(1) = −j.

(2) For each v ∈ Sp, Vv ∈ RepLp
(GFv

) satisfies the Pančǐskin condition 3.3.1:

0 −→ V +
v −→ Vv −→ V −

v −→ 0

(in particular, Vv ∈ Reppst,Lp
(GFv

)).
(3) For each v 6∈ S∞ ∪ Sp (resp., v ∈ Sp), Vv is pure (necessarily of weight −1) in

the sense of 1.4.5 (resp., in the sense of 3.2.3).
(4) For each i ∈ Z, the integer

di(V ) := dimLp

(
Di
dR(Vv)/D

i+1
dR (Vv)

)
/[Fv : Qp]

does not depend on v ∈ Sp. This condition is satisfied if V = Mp is the p-adic
realization of a motive (pure of weight −1) M over F with coefficients in a
number field L (of which Lp is a completion), as

di(V ) = dimL

(
F iMdR/F

i+1MdR

)

in this case.

Example: F = Q and V = (S2m−1V (f))(mk −m + 1 − k/2), where m ≥ 1 and
V (f) is the Galois representation (pure of weight k−1) associated to a potentially
p-ordinary Hecke eigenform f ∈ Sk(Γ0(N)) of (even) weight k and trivial character.

(4.1.3) ε-factors. We define

d−(V ) =
∑

i<0

i di(V ), (4.1.3.1)

∀v ∈ S∞ ε(Vv) = (−1)[Fv :R] d−(V ) ×

{
1, Fv = R
(−1)dimLp

(V )/2, Fv = C
(4.1.3.2)

(in view of (2.3.1), this is the correct archimedean local ε-factor if V = Mp is as
in 4.1.2(4)) and

∀v 6∈ S∞ ε(Vv) = ε(WD(Vv)). (4.1.3.3)

For any prime v of F , let

ε̃(Vv) = ε(Vv) ×

{
(−1)h

0(Fv,V
−

v ), v ∈ Sp
1, v 6∈ Sp,

(4.1.3.4)

where

hi(Fv,X) = dimLp
Hi(Fv,X) (X ∈ RepLp

(GFv
)).
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Finally, define

ε(V ) =
∏

v

ε(Vv), ε̃(V ) =
∏

v

ε̃(Vv) (4.1.3.5)

(this makes sense, as ε(Vv) = 1 for all but finitely many v). It follows from
Proposition 3.3.3 that

∀v ∈ Sp ε̃(Vv) = (−1)[Fv :Qp] d−(V ) (detV +
v )(−1) = ε(WD(Vv)

N−ss),
(4.1.3.6)

hence

∏

v∈Sp

ε̃(Vv) = (−1)[F :Q] d−(V )
∏

v∈Sp

(detV +
v )(−1).

As

∏

v∈S∞

ε(Vv) = (−1)[F :Q] d−(V ),

it follows that

∏

v∈Sp∪S∞

ε̃(Vv) =
∏

v∈Sp

(detV +
v )(−1). (4.1.3.7)

(4.2) Selmer complexes and extended Selmer groups

(4.2.1) For a pro-finite group G and a representation X ∈ RepLp
(G) (con-

tinuous, finite-dimensional), denote by C•(G,X) the standard complex of (non-
homogeneous) continuous cochains of G with values in X. Fix a set Sp ⊂ Σ ⊂ S
and define, for each v ∈ S − S∞, the complex

U+
v (V ) =




C•(GFv

, V +
v ), v ∈ Sp

0, v ∈ Σ − Sp
C•

ur(GFv
, Vv) = C•(GFv

/Iv, V
Iv
v ), v ∈ S − Σ,

where Iv ⊂ GFv
is the inertia group. As in ([Ne 2], 12.5.9.1), define the Selmer

complex of V associated to the local conditions ∆Σ(V ) = (U+
v (V ))v∈S−S∞

as

C̃•

f (GF,S , V ;∆Σ(V )) =

= Cone

(
C•(GF,S , V ) ⊕

⊕

v∈S−S∞

U+
v (V ) −→

⊕

v∈S−S∞

C•(GFv
, V )

)
[−1].

(4.2.2) Proposition. (1) For each v 6∈ S∞ ∪Sp, the complexes C•(GFv
, V ) and

C•

ur(GFv
, V ) are acyclic.

(2) Up to a canonical isomorphism, the image of C̃•

f (GF,S , V ;∆Σ(V )) in the
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derived category Db
ft(Lp − Mod) does not depend on Σ and S; denote it by

R̃Γf (F, V ) and its cohomology by H̃i
f (F, V ) (as Lp is a field, R̃Γf (F, V ) =⊕

i∈Z H̃
i
f (F, V )[−i]).

(3) There is an exact sequence

0 −→
⊕

v∈Sp

H0(Fv, V
−
v ) −→ H̃1

f (F, V ) −→ H1
f (F, V ) −→ 0.

(4) If we put h1
f (F, V ) = dimLp

H1
f (F, V ), h̃1

f (F, V ) = dimLp
H̃1
f (F, V ), then

(−1)h
1
f (F,V )/ ε(V ) = (−1)̃h

1
f (F,V )/ ε̃(V ).

Proof. (cf. [Ne 2, 12.5.9.2]) (1) The cohomology group H0(Fv, V ) = 0 van-
ishes by purity (1.4.4(5)), H2(Fv, V )

∼
−→ H0(Fv, V

∗(1))∗
∼
−→ H0(Fv, V )∗ =

0 by duality and H1(Fv, V ) = 0 by the local Euler characteristic formula∑2
i=0(−1)i hi(Fv, V ) = 0. Finally, dimLp

H1
ur(Fv, V ) = h0(Fv, V ) = 0.

(2) Independence of Σ follows from (1), independence of S is a general fact ([Ne
2], Prop. 7.8.8).
(3) It follows from (1) and [Ne 2, Lemma 9.6.3] that there is an exact sequence

0−→ H̃0
f (F, V ) −→ H0(GF,S , V )−→

⊕

v∈Sp

H0(Fv, V
−
v ) −→ H̃1

f (F, V ) −→ H−→ 0,

where

H = Ker

(
H1(GF,S , V ) −→

⊕

v∈S−S∞

H1(Fv, V )/Im(H1(U+
v (V )))

)
.

As

Im(H1(U+
v (V ))) =

{
0 = H1

f (Fv, V ), v 6∈ Sp
H1
f (Fv, V ), v ∈ Sp

by (1) and Proposition 3.3.2(2), respectively, we deduce that H = H1
f (F, V ).

Finally, H0(GF,S , V ) = 0 by purity.
(4) This is a consequence of (3) and (4.1.3.4).

5. p-Adic families of global p-adic Galois representations

(5.1) The general setup

(5.1.1) Fix a number field F , a prime number p and a finite set S ⊃ Sp ∪ S∞ of
primes of F .
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(5.1.2) Assume that we are given the following data.

(1) A complete local noetherian domainR of dimension dim(R) = 2, whose residue
field is a finite extension of Fp and whose fraction field L is of characteristic
zero.

(2) An R-module of finite type T equipped with an R-linear continuous action of
GF,S (with respect to the pro-finite topology of T ). Set V = T ⊗R L .

(3) A skew-symmetric morphism of R[GF,S ]-modules

( , ) : T ⊗R T −→ R(1) = R⊗Zp
Zp(1)

inducing an isomorphism of L [GF,S ]-modules

V
∼
−→ V∗(1) = HomL (V,L )(1).

(4) For each v ∈ Sp an R[GFv
]-submodule T +

v ⊂ Tv such that the isomorphism

V
∼
−→ V∗(1) induces isomorphisms of L [GFv

]-modules

V±
v

∼
−→ (V∓

v )∗(1) = HomL (V∓
v ,L )(1),

where V+
v = T +

v ⊗R L , V−
v = Vv/V

+
v .

(5) A prime ideal P ∈ Spec(R) of height ht(P ) = 1, which does not contain p
and such that RP is a discrete valuation ring. Fix a prime element ̟P of RP .
The residue field κ(P ) = RP /̟PRP is a finite extension of Qp. Define

TP = T ⊗R RP ⊂ V, V = TP /̟PTP ∈ Repκ(P )(GF,S)

and, for each v ∈ Sp,

(TP )+v = TP ∩ V+
v , (TP )−v = TP /(TP )+v , V +

v = (TP )+v /̟P (TP )+v ⊂ Vv,

V −
v = Vv/V

+
v (V ±

v ∈ Repκ(P )(GFv
)).

(6) We assume that there exists u ∈ L ∗ such that u·( , ) induces an isomorphism
of RP [GF,S ]-modules

TP
∼
−→ T ∗

P (1) = HomRP
(TP , RP )(1).

This implies that, for each v ∈ Sp, u ·( , ) induces an isomorphism of RP [GFv
]-

modules (TP )±v
∼
−→ ((TP )∓v )∗(1). Reducing u·( , ) modulo P , we obtain a non-

degenerate skew-symmetric morphism of κ(P )[GF,S ]-modules V ⊗κ(P ) V −→

κ(P )(1) which induces, for each v ∈ Sp, isomorphisms V ±
v

∼
−→ (V ∓

v )∗(1) in
Repκ(P )(GFv

).
(7) We assume that, for each v ∈ Sp, the exact sequence

0 −→ V +
v −→ Vv −→ V −

v −→ 0

satisfies the Pančǐskin condition: V ±
v ∈ Reppst,κ(P )(GFv

) and D0
dR(V +

v ) = 0 =

DdR(V −
v )/D0

dR(V −
v ).
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(8) We assume that, for each v 6∈ S∞, Vv is pure of weight −1 (in the sense of
1.4.5 and 3.2.3, respectively).

(9) We assume that, for each i ∈ Z, the integer

di(V ) := dimκ(P )

(
Di
dR(Vv)/D

i+1
dR (Vv)

)
/[Fv : Qp]

does not depend on v ∈ Sp; put

d−(V ) =
∑

i<0

i di(V ).

(5.1.3) This implies, in particular, that V satisfies the assumptions 4.1.2(1)-(4).

(5.1.4) Fix v 6∈ Sp ∪ S∞. As AutR(T ) is a pro-finite group containing a pro-p
open subgroup, there exists an open subgroup J of the inertia group I = Iv =
Gal(F v/F

ur
v ) such that J acts on T through the map J →֒ I ։ I(p), where I(p) is

the maximal pro-p-quotient of I (isomorphic to Zp). Fixing a topological generator
t of I(p) and an integer a ≥ 1 such that ta lies in the image of J , then the set
of eigenvalues of ta acting on V is stable under the map λ 7→ λNv, which implies
that there exists an integer c ≥ 1 divisible by a such that tc acts unipotently on
V. Defining

N =
1

c
log ρT (tc) ∈ EndR(T ) ⊗ Q

(where ρT : GK −→ AutR(T ) denotes the action of GFv
on T ) and (fixing a lift

f̃ ∈ ν−1(1) ⊂WK of f)

ρT (f̃nu) := ρT (f̃nu) exp(−bN) ∈ AutR⊗Q(T ⊗ Q) ⊂ AutRP
(TP ) (n ∈ Z, u ∈ I)

(where b ∈ Zp is such that the image of u in I(p) is equal to tb), the pair (ρT , N) de-
fines an object T = (ρT , N) of RepRP

(′WFv
) in the sense of 1.5.2, the isomorphism

class of which is independent of the choice of f̃ ([De 1], 8.4.3). By construction,
the special fibre of T is isomorphic to

Ts
∼
−→WD(Vv) ∈ Repκ(P )(

′WFv
).

We define

WD(Vv) := Tη = T ⊗RP
L ∈ RepL (′WFv

)

ε(Vv) := ε(WD(Vv)).
(5.1.4.1)

If we choose another generator of I(p), then N is multiplied by a scalar λ ∈ Z∗
p,

which does not change the isomorphism class of WD(Vv) ([De 1], 8.4.3).

(5.2) Selmer complexes and extended Selmer groups

(5.2.1) We equip each R-module Y = T , T +
v , T

Iv
v with the pro-finite topology

and we denote by C•(G,Y ) the corresponding complex of continuous cochains (for
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G = GF,S , GFv
, GFv

/Iv, respectively). For R′ = RP ,L , define C•(G,Y ⊗R R
′) =

C•(G,Y ) ⊗R R
′. As in 4.2.1, fix a set Sp ⊂ Σ ⊂ S and define, for X = TP ,V,

RX = RP ,L and each v ∈ S − S∞, complexes of RX -modules

U+
v (X) =




C•(GFv

,X+
v ), v ∈ Sp

0, v ∈ Σ − Sp
C•

ur(GFv
,X) = C•(GFv

/Iv,X
Iv ), v ∈ S − Σ,

and

C̃•

f (GF,S ,X;∆Σ(X)) =

= Cone

(
C•(GF,S ,X) ⊕

⊕

v∈S−S∞

U+
v (X) −→

⊕

v∈S−S∞

C•(GFv
,X)

)
[−1].

(5.2.2) Proposition. (1) For each X = TP ,V and each v 6∈ S∞ ∪ Sp, the com-
plexes C•(GFv

,X) and C•

ur(GFv
,X) are acyclic.

(2) Up to a canonical isomorphism, the image of C̃•

f (GF,S ,X;∆Σ(X)) in

Db
ft(RX − Mod) does not depend on Σ and S; denote it by R̃Γf (F,X) and its

cohomology by H̃i
f (F,X) (as L is a field, R̃Γf (F,V) =

⊕
i∈Z H̃

i
f (F,V)[−i]).

(3) There is an exact triangle in Db
ft(RP − Mod)

R̃Γf (F, TP )
̟P−−→R̃Γf (F, TP ) −→ R̃Γf (F, V ) −→ R̃Γf (F, TP )[1]

giving rise to exact sequences

0 −→ H̃i
f (F, TP )/̟P H̃

i
f (F, TP ) −→ H̃i

f (F, V ) −→ H̃i+1
f (F, TP )[̟P ] −→ 0,

and an isomorphism R̃Γf (F, TP )
L

⊗RP
L

∼
−→ R̃Γf (F,V) in Db

ft(L − Mod).

(4) There exists a skew-symmetric isomorphism in Db
ft(RP − Mod)

R̃Γf (F, TP )
∼
−→ RHomRP

(R̃Γf (F, TP ), RP )[−3]

inducing a skew-symmetric non-degenerate pairing

H̃2
f (F, TP )RP −tors × H̃2

f (F, TP )RP −tors −→ L /RP .

(5) There exists an RP -module Z of finite length such that H̃2
f (F, TP )RP −tors

∼
−→

Z ⊕ Z.
(6) H̃1

f (F, TP ) is a free RP -module of rank h̃1
f (F,V) := dimL H̃1

f (F,V).

(7) h̃1
f (F, V ) ≡ h̃1

f (F,V) (mod 2).

Proof. (cf. [Ne 2, 12.7.13.4]) (1) It is enough to prove the statement for X = TP .
By ([Ne 2], Prop. 3.4.2 and 3.4.4), there is an exact sequence of complexes
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0 −→ C•(GFv
, TP )

̟P−−→C•(GFv
, TP ) −→ C•(GFv

, V ) −→ 0,

which induces injections

Hi(GFv
, TP )/̟PH

i(GFv
, TP ) →֒ Hi(Fv, V ).

As Hi(Fv, V ) = 0 by Proposition 4.2.2(1), and Hi(GFv
, TP ) = Hi(GFv

, T )⊗RRP
is an RP -module of finite type (by [Ne 2], Prop. 4.2.3), it follows that
Hi(GFv

, TP ) = 0. Finally, the unramified cohomology H1
ur = H1

ur(GFv
, TP ) =

T Iv

P /(fv − 1)T Iv

P is an RP -module of finite type and H1
ur/̟PH

1
ur is a subquotient

of V Iv/̟PV
Iv = H1

ur(GFv
, V ) = 0; thus H1

ur = 0.
(2) This follows from (1), as in the proof of 4.2.2(2).
(3) According to (2), we can take Σ = S, in which case the exact triangle in
question follows from the exact sequences

0 −→ C•(G, TP )
̟P−−→C•(G, TP ) −→ C•(G,V ) −→ 0 (G = GF,S , GFv

).

The isomorphism R̃Γf (F, TP )
L

⊗RP
L

∼
−→ R̃Γf (F,V) is a direct consequence of

the definitions.
(4) Take again Σ = S. According to a localized version of ([Ne 2], 7.8.4.4), there
exists an exact triangle in Db

ft(RP − Mod)

R̃Γf (F, TP )
γ

−−→RHomRP
(R̃Γf (F, TP ), RP )[−3] −→

⊕

v∈S−S∞

Errv,

in which the error terms Errv vanish for v ∈ Sp (as (TP )±
∼
−→ ((TP )∓)∗(1)), as

well as for v 6∈ Sp (by (1) and [Ne 2], Prop. 6.7.6(iv)). The map γ (which is
an isomorphism, by the previous discussion) is skew-symmetric, by ([Ne 2], Prop.
6.6.2 and 7.7.3). The skew-symmetric non-degenerate pairing

H̃2
f (F, TP )RP −tors × H̃2

f (F, TP )RP −tors −→ L /RP .

is constructed from γ in ([Ne 2], Prop. 10.2.5).
(5) This follows from (4) and the structure theory of symplectic modules of finite
length over discrete valuation rings (note that 2 is invertible in RP ).

(6) It is enough to show that H̃1
f (F, TP ) has noRP -torsion, which si a consequence

of the exact sequence from (3) (for i = 0).
(7) In the exact sequence from (3) for i = 1, the term on the left (resp., on

the right), is a κ(P )-vector space of dimension h̃1
f (F,V), by (6) (resp., of even

dimension, by (5)); thus the dimension of the middle term (= h̃1
f (F, V )) has the

same parity as h̃1
f (F,V).

(5.3) The parity conjecture in p-adic families
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(5.3.1) Theorem. Under the assumptions 5.1.2(1)-(9), the quantity

(−1)h
1
f (F,V )/ ε(V ) = (−1)̃h

1
f (F,V )/ ε̃(V ) =

= (−1)̃h
1
f (F,V)

∏

v∈Sp

(detV+
v )(−1)

∏

v 6∈Sp∪S∞

ε(Vv)

depends only on V and V+
v (v ∈ Sp).

Proof. We combine the equalities

(−1)h
1
f (F,V )/ ε(V ) = (−1)̃h

1
f (F,V )/ ε̃(V ) (Prop. 4.2.2(4))

(−1)̃h
1
f (F,V ) = (−1)̃h

1
f (F,V) (Prop. 5.2.2(7))

ε̃(V ) =
∏

v∈Sp∪S∞

ε̃(Vv)
∏

v 6∈Sp∪S∞

ε(Vv) =
∏

v∈Sp

(detV +
v )(−1)

∏

v 6∈S∞∪Sp

ε(Vv)

(by 4.1.3.7)

∀v 6∈ S∞ ∪ Sp ε(Vv) = ε(Vv) (Prop. 2.2.4)

∀v ∈ Sp (detV +
v )(−1) = (detV+

v )(−1)

(both sides are equal to ±1, and the L.H.S. is the reduction of the R.H.S. modulo
P ).

(5.3.2) Corollary. Under the assumptions 5.1.2(1)-(4), if P, P ′ ∈ Spec(R) are
prime ideals satisfying 5.1.2(5)-(9), then the Galois representations V = TP /PTP
and V ′ = TP ′/P ′TP ′ satisfy

(−1)h
1
f (F,V )/ ε(V ) = (−1)h

1
f (F,V ′)/ ε(V ′).

(5.3.3) Open questions. It would be of interest to generalize Corollary 5.3.2
to self-dual families of Galois representations that do not satisfy the Pančǐskin
condition. Is it true, in general, that

(−1)[Fv :Qp] d−(V ) ε(WD(Vv)
N−ss) (v ∈ Sp)

depends only on Vv, and that

(−1)h
1
f (F,V )

∏

v∈Sp

ε(WD(Vv))

ε(WD(Vv)N−ss)

depends only on V?
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(5.3.4) Example (dihedral Iwasawa theory). Assume that F0 ⊂ F∞ are
Galois extension of F such that [F0 : F ] = 2, Γ = Gal(F∞/F0)

∼
−→ Zp and

Γ+ = Gal(F∞/F ) = Γ ⋊ {1, τ} is dihedral:

τ ∈ Γ+ − Γ, τ2 = 1, ∀g ∈ Γ τgτ−1 = g−1.

Let V ∈ RepLp
(GF,S) be a Galois representation satisfying 4.1.2(1)-(4); fix a GF,S-

stable Op-lattice T ⊂ V (Op = OLp
) such that the pairing ( , )V : V ×V −→ Lp(1)

induced by j maps T×T into Op(1). After enlarging S if necessary, we can assume
that S contains all primes that ramify in F0/F ; then F∞ ⊂ FS . We define the
following data of the type considered in 5.1.2:

(1) Let R = Op[[Γ]] be the Iwasawa algebra of Γ (isomorphic to the power series
ring Op[[X]]). The Iwasawa algebra of Γ+ is a free (both left and right) R-
module of rank 2:

Op[[Γ
+]] = R⊕Rτ = R⊕ τR.

Denote by ι the standard Op-linear involution on Op[[Γ
+]] (ι(σ) = σ−1 for all

σ ∈ Γ+).
(2) Let T = T ⊗Op

Op[[Γ
+]], considered as a left R[GF,S ]-module with the action

given by

r(x⊗a) = x⊗ra, g(x⊗a) = g(x)⊗a(g)−1 (r ∈ R, x ∈ T, a ∈ Op[[Γ
+]]),

where we have denoted by g the image of g ∈ GF,S in Γ+ (cf., [Ne 2], 10.3.5.3).
(3) As in ([Ne 2], 10.3.5.10), the formula

(x⊗ (a1 + τa2), y ⊗ (b1 + τb2)) = (x, y)V (a1ι(b2) + ι(a2)b1)

defines a skew-symmetric R-bilinear pairing ( , ) : T × T −→ R(1), which
induces an isomorphism

T ⊗ Q
∼
−→ HomR(T , R(1)) ⊗ Q

(hence satisfies 5.1.2(3)).
(4) For each v ∈ Sp, define T +

v = T+
v ⊗Op

Op[[Γ
+]] (where T+

v = T ∩ V +
v ).

(5) Let β : Γ −→ Lp(β)∗ be a homomorphism with finite image (where Lp(β) is a
field generated over Lp by the values of β); then P = Ker(β : R −→ Lp(β)) ∈
Spec(R) is as in 5.1.2(5), with κ(P ) = Lp(β). It follows from ([Ne 2], Lemma
10.3.5.4) that

TP /̟PTP = Ind
GF,S

GF0,S
(V ⊗ β),

where we have denoted by V ⊗β ∈ RepLp(β)(GF0,S) the GF0,S-module V ⊗Lp

Lp(β) on which g ∈ GF0,S acts by g⊗β(g), where g is the image of g in Γ. The
discussion in ([Ne 2], 10.3.5.10) implies that 5.1.2(6) holds with u = 1. The
conditions 5.1.2(7)-(9) for TP /̟PTP follow from the corresponding conditions
4.1.2(2)-(4) for V .
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(5.3.5) In the situation of 5.3.4, putting Fβ = F
Ker(β)
∞ and, for each

Lp[Γ]-module M ,

M (β) = {x ∈M ⊗Lp
Lp(β) | ∀σ ∈ Γ σ(x) = β(σ)x},

then we have

H1
f (F, TP /̟PTP ) = H1

f (F0, V ⊗ β) =
(
H1
f (Fβ , V ) ⊗ β

)Gal(Fβ/F0)
=

= H1
f (Fβ , V )(β

−1),

and the action of τ induces an isomorphism of Lp(β)-vector spaces

τ : H1
f (Fβ , V )(β

−1) ∼
−→ H1

f (Fβ , V )(β).

Applying Corollary 5.3.2, we obtain, for any pair of characters of finite order
β, β′ : Γ −→ L

∗

p, that

(−1)h
1
f (F0,V⊗β)/ ε(F0, V ⊗ β) = (−1)h

1
f (F0,V⊗β′)/ ε(F0, V ⊗ β′). (5.3.5.1)

In this special case one can prove Proposition 2.2.4 directly (at least if p 6= 2) by
using (2.1.2.7).

It would be of interest to generalize (5.3.5.1) to more general dihedral characters,
as in [Ma-Ru].
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