DOCUMENTA MATH. 1

SECOND ORDER FREENESS AND
FrucTuATIONS OF RANDOM MATRICES III.

HIGHER ORDER FREENESS AND FREE CUMULANTS

BeNoiT CoLLINs!, JAMES A. MINGO?,
PIOTR SNIADY?, ROLAND SPEICHER?*

Received: January 15, 2007

Communicated by Joachim Cuntz

ABSTRACT. We extend the relation between random matrices and
free probability theory from the level of expectations to the level of
all correlation functions (which are classical cumulants of traces of
products of the matrices). We introduce the notion of “higher order
freeness” and develop a theory of corresponding free cumulants. We
show that two independent random matrix ensembles are free of arbi-
trary order if one of them is unitarily invariant. We prove R-transform
formulas for second order freeness. Much of the presented theory relies
on a detailed study of the properties of “partitioned permutations”.

2000 Mathematics Subject Classification: 46L54 (Primary), 15A52,
60F05
Keywords and Phrases: free cumulants, random matrices, planar di-
agrams

1Research supported by JSPS and COE postdoctoral fellowships

2Research supported by Discovery Grants and a Leadership Support Initiative Award
from the Natural Sciences and Engineering Research Council of Canada

3Research supported by MNiSW (project 1 PO3A 013 30), EU Research Training Network
“QP-Applications”, (HPRN-CT-2002-00279) and by European Commission Marie Curie Host
Fellowship for the Transfer of Knowledge “Harmonic Analysis, Nonlinear Analysis and Prob-
ability” (MTKD-CT-2004-013389)

4Research supported by a Premier’s Research Excellence Award from the Province of
Ontario and a Killam Fellowship from the Canada Council for the Arts

DOCUMENTA MATHEMATICA 12 (2007) 1-70



2 COLLINS, MINGO, SNIADY, SPEICHER

1. INTRODUCTION

Random matrix models and their large dimension behavior have been an im-
portant subject of study in Mathematical Physics and Statistics since Wishart
and Wigner. Global fluctuations of the eigenvalues (that is, linear functionals
of the eigenvalues) of random matrices have been widely investigated in the
last decade; see, e.g., [Joh98, Dia03, Rad06, AZ06, MN04, MSSO?]. Roughly
speaking, the trend of these investigations is that for a wide class of converging
random matrix models, the non-normalized trace asymptotically behaves like
a Gaussian variable whose variance only depends on macroscopic parameters
such as moments. The philosophy of these results, together with the freeness
results of Voiculescu served as a motivation for our series of papers on second
order freeness.

One of the main achievements of the free probability theory of Voiculescu
[Voi91, VDN92] was an abstract description via the notion of “freeness” of
the expectation of these Gaussian variables for a large class of non-commuting
tuples of random matrices.

In the previous articles of this series [MS06, MSS07] we showed that for many in-
teresting ensembles of random matrices an analogue of the results of Voiculescu
for expectations holds also true on the level of variances as well; thus pointing
in the direction that the structure of random matrices and the fine structure of
their eigenvalues can be studied in much more detail by using the new concept
of “second order freeness”. One of the main obstacles for such a detailed study
was the absence of an effective machinery for doing concrete calculations in this
framework. Within free probability theory of first order, such a machinery was
provided by Voiculescu with the concept of the R-transform, and by Speicher
with the concept of free cumulants; see, e.g., [VDN92, NSp06].

One of the main achievements of the present article is to develop a theory
of second order cumulants (and show that the original definition of second
order freeness from Part I of this series [MS06] is equivalent to the vanishing
of mixed second order cumulants) and provide the corresponding R-transform
machinery.

In Section 2 we will give a more detailed (but still quite condensed) survey of
the connection between Voiculescu’s free probability theory and random matrix
theory. We will there also provide the main motivation, notions and concepts
for our extension of this theory to the level of fluctuations (second order), as
well as the statement of our main results concerning second order cumulants
and R-transforms.

Having first and second order freeness it is, of course, a natural question
whether this theory can be generalized to higher orders. It turns out that
this is the case, most of the general theory is the same for all orders. So we
will in this paper consider freeness of all orders from the very beginning and
develop a general theory of higher order freeness and higher order cumulants.
Let us, however, emphasize that first and second order freeness seem to be
more important than the higher order ones. Actually, we can prove some of
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FLUCTUATIONS OF RANDOM MATRICES 3

the most important results (e.g. the R-transform machinery) only for first and
second order, mainly because of the complexity of the underlying combinatorial
objects.

The basic combinatorial notion behind the (usual) free cumulants are non-
crossing partitions. Basically, passage to higher order free cumulants corre-
sponds to a change to multi-annular non-crossing permutations [MNO04], or
more general objects which we call “partitioned permutations”. For much of
the conceptual framework there is no difference between different levels of free-
ness, however for many concrete questions it seems that increasing the order
makes some calculations much harder. This relates to the fact that n-th order
freeness is described in terms of planar permutations which connect points on n
different circles. Whereas enumeration of all non-crossing permutations in the
case of one circle is quite easy, the case of two circles gets more complicated,
but is still feasible; for the case of three or more circles, however, the answer
does not seem to be of a nice compact form.

In the present paper we develop the notion and combinatorial machinery for
freeness of all orders by a careful analysis of the main example: unitarily in-
variant random matrices. We start with the calculation of mixed correlation
functions for random matrices and use the structure which we observe there as
a motivation for our combinatorial setup. In this way the concept of partitioned
permutations and the moment—cumulant relations appear quite canonically.
We want to point out that even though our notion of second and higher order
freeness is modeled on the situation found for correlation functions of random
matrices, this notion and theory also have some far-reaching applications. Let
us mention in this respect two points.

Firstly, recently one of us [SniO6] developed a quite general theory for fluctua-
tions of characters and shapes of random Young diagrams contributing to many
natural representations of symmetric groups. The results presented there are
closely (though, not explicitly) related to combinatorics of higher order cumu-
lants. This connection will be studied in detail in the part IV of this series
where we prove that under some mild technical conditions Jucys-Murphy ele-
ments, which arise naturally in the study of symmetric groups, are examples
of free random variables of higher order.

In another direction, the description of subfactors in von Neumann algebras via
planar algebras [Jon99] relies very much on the notions of annular non-crossing
partitions and thus resembles the combinatorial objects lying at the basis of
our theory of second order freeness. This indicates that our results could have
some relevance for subfactors.

OVERVIEW OF THE ARTICLE. In Section 2 we will give a compact survey of
the connection between Voiculescu’s free probability theory and random matrix
theory, provide the main motivation, notions and concepts for our extension of
this theory to the level of fluctuations (second order), as well as the statement
of our main results concerning second order cumulants and R-transforms. We
will also make a few general remarks about higher order freeness.
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4 COLLINS, MINGO, SNIADY, SPEICHER

In Section 3 we will introduce the basic notions and relevant results on per-
mutations, partitions, classical cumulants, Haar unitary random matrices, and
the Weingarten function.

In Section 4 we study the correlation functions (classical cumulants of traces)
of random matrix models. We will see how those are related to cumulants of
entries of the matrices for unitarily invariant random matrices and we will in
particular look on the correlation functions for products of two independent
ensembles of random matrices, one of which is unitarily invariant. The limit
of those formulas if the size N of the matrices goes to infinity will be the
essence of what we are going to call “higher order freeness”. Also our main
combinatorial objects, “partitioned permutations”, will arise very naturally in
these calculations.

In Section 5 we will forget for a while random variables and just look on the
combinatorial essence of our formulas, thus dealing with multiplicative func-
tions on partitioned permutations and their convolution. The Zeta and Mdbius
functions on partitioned permutations will play an important role in these con-
siderations.

In Section 6 we will derive, for the case of second order, the analogue of the
R-transform formulas.

In Section 7 we will finally come back to a (non-commutative) probabilistic
context, give the definition and work out the basic properties of “higher order
freeness”.

In Section 8 we introduce the notion of “asymptotic higher order freeness” and
show the relevance of our work for Itzykson-Zuber integrals.

In an appendix, Section 9, we provide a graphical interpretation of partitioned
permutations as a special case of “surfaced permutations”.

2. MOTIVATION AND STATEMENT OF OUR MAIN RESULTS CONCERNING
SECOND ORDER FREENESS AND CUMULANTS

In this section we will first recall in a quite compact form the main connec-
tion between Voiculescu’s free probability theory and questions about random
matrices. Then we want to motivate our notion of second order freeness by
extending these questions from the level of expectations to the level of fluc-
tuations. We will recall the relevant results from the papers [MS06, MSSO?]
and state the main new results of the present paper. Even though in the later
parts of the paper our treatment will include freeness of arbitrarily high order,
we restrict ourselves in this section mainly to the second order. The reason
for this is that (apart from first order) second order freeness seems to be the
most important order for applications, so that it seems worthwhile to spell out
our general results for this case more explicitly. Furthermore, it is only there
that we have an analogue of R-transform formulas. We will make a few general
remarks about higher order freeness at the end of this section.

2.1. MOMENTS OF RANDOM MATRICES AND ASYMPTOTIC FREENESS. Assume
we know the eigenvalue distribution of two matrices A and B. What can we say
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FLUCTUATIONS OF RANDOM MATRICES 5

about the eigenvalue distribution of the sum A+ B of the matrices? Of course,
the latter is not just determined by the eigenvalues of A and the eigenvalues of
B, but also by the relation between the eigenspaces of A and of B. Actually, it
is quite a hard problem (Horn’s conjecture) — which was only solved recently
— to characterize all possible eigenvalue distributions of A + B. However, if
one is asking this question in the context of N x N-random matrices, then in
many situations the answer becomes deterministic in the limit N — oo.

DEFINITION 2.1. Let A = (An)nen be a sequence of N x N-random matrices.
We say that A has a first order limit distribution if the limit of all moments

ap = lim Eftr(AY)] (n € N)

N—o0

exists and for all » > 1 and all ny,...,n,. € N

Nlim Er(tr(AR), tr(AR?), ..., tr(Ay)) =0,

where E denotes the expectation, tr the normalized trace, and k, the r** clas-
sical cumulant.

In this language, our question becomes: Given two random matrix ensembles
of N x N-random matrices, A = (Ax)nyen and B = (By)yen, with first order
limit distribution, does also their sum C' = (Cn)nen, with Cy = Ay + By,
have a first order limit distribution, and furthermore, can we calculate the
limit moments o of C out of the limit moments (af')x>1 of A and the limit
moments (af);>1 of B in a deterministic way. It turns out that this is the case
if the two ensembles are in generic position, and then the rule for calculating
the limit moments of C' are given by Voiculescu’s concept of “freeness”. Let us
recall this fundamental result of Voiculescu.

THEOREM 2.2 (Voiculescu [Voi9l]). Let A and B be two random matric en-
sembles of N x N-random matrices, A = (An)nven and B = (By)nen, each
of them with a first order limit distribution. Assume that A and B are in-
dependent (i.e., for each N € N, all entries of Ay are independent from all
entries of By ), and that at least one of them is unitarily invariant (i.e., for
each N, the joint distribution of the entries does not change if we conjugate
the random matriz with an arbitrary unitary N x N matriz). Then A and B
are asymptotically free in the sense of the following definition.

DEFINITION 2.3 (Voiculescu [Voi85]). Two random matrix ensembles A =
(An)neny and B = (Bn)nen with limit eigenvalue distributions are asymp-
totically free if we have for all p > 1 and all n(1),m(1),...,n(p), m(p) > 1
that
. 1 1
A}EHOOE{H{(AX/( ) - af(l)l) : (B;vn( ) - afm(l)l) e

n A m B
(AT — oy 1) - (BT — O‘m(p)l)}} =0
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6 COLLINS, MINGO, SNIADY, SPEICHER

One should realize that asymptotic freeness is actually a rule which allows to
calculate all mixed moments in A and B, i.e. all expressions

Jim Bftr(A (1) gm(1) gn(2) pm(2) ... gn(P) pm(P))]

out of the limit moments of A and the limit moments of B. In particular, this
means that all limit moments of A + B (which are sums of mixed moments)
exist and are actually determined in terms of the limit moments of A and the
limit moments of B. The actual calculation rule is not directly clear from
the above definition but a basic result of Voiculescu shows how this can be
achieved by going over from the moments a,, to new quantities k,. In [Spe94],
the combinatorial structure behind these k,, was revealed and the name “free
cumulants” was coined for them. Whereas in the later parts of this paper we
will have to rely crucially on the combinatorial description and their extensions
to higher orders, as well as on the definition of more general “mixed” cumulants,
we will here state the results in the simplest possible form in terms of generating
power series, which avoids the use of combinatorial objects.

DEFINITION 2.4 (Voiculescu [Voi86], Speicher [Spe94]). Given the moments
(an)n>1 of some distribution (or limit moments of some random matrix en-
semble), we define the corresponding free cumulants (k,)n>1 by the following
relation between their generating power series: If we put

x):=1+ Z apz” and Cz) =1+ Z Knx™,
n>1 n>1
then we require as a relation between these formal power series that

Voiculescu actually formulated the relation above in a slightly different way
using the so-called R-transform R(z), which is related to C(z) by the relation

C(z) =1+ 2R(z)

and in terms of the Cauchy transform G(z) corresponding to a measure with
moments «,, which is related to M(x) by
M(3)

x

G(z) =

In these terms the equation C(xM (z)) = M(x) says that
(1)

i.e., that G(z) and K(z) := <
sition.

One should also note that the relation C(xM (z)) = M (x) determines the mo-
ments uniquely in terms of the cumulants and the other way around. The
relevance of the k, and the R-transform for our problem comes from the fol-
lowing result of Voiculescu, which provides, together with (1), a very efficient

1
+R(G(z)) = =,

G(z)

+ R(z) are inverses of each other under compo-
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FLUCTUATIONS OF RANDOM MATRICES 7

way for calculating eigenvalue distributions of the sum of asymptotically free
random matrices.

THEOREM 2.5 (Voiculescu [Voi86]). Let A and B be two random matrixz ensem-
bles which are asymptotically free. Denote by k2, kB, kA+E the free cumulants

n’

of A, B, A+ B, respectively. Then one has for alln > 1 that
,%ZHB = nf + K,E.

Alternatively,
RATB(2) = R (x) + RB(x).

This theorem is one reason for calling the x, cumulants, but there is also
another justification for this, namely they are also the limit of classical cu-
mulants of the entries of our random matrix, in the case that this is unitarily
invariant. This description will follow from our formulas (28) and (30). We
denote the classical cumulants by k,,, considered as multi-linear functionals in
n arguments.

THEOREM 2.6. Let A = (An)nen be a unitarily invariant random matrixz en-

semble of N x N random matrices Ay whose first order limit distribution exists.

Then the free cumulants of this matriz ensemble can also be expressed as the

limit of special classical cumulants of the entries of the random matrices: If
N

An = (agj ))%:1, then

A_ fm N (g™ ) ()
Fo = Jm N kn(@i)i2) Gicyis) 0 i) i)

for any choice of distinct i(1),...,i(n).

2.2. FLUCTUATIONS OF RANDOM MATRICES AND ASYMPTOTIC SECOND OR-
DER FREENESS. There are many more refined questions about the limiting
eigenvalue distribution of random matrices. In particular, questions around
fluctuations have received a lot of interest in the last decade or so. The main
motivation for introducing the concept of “second order freeness” was to un-
derstand the global fluctuations of the eigenvalues, which means that we look
at the probabilistic behavior of traces of powers of our matrices. The limiting
eigenvalue distribution, as considered in the last section, gives us the limit of
the average of this traces. However, one can make more refined statements
about their distributions. Consider a random matrix A = (An)nen and look
on the normalized traces tr(A%;). Our assumption of a limit eigenvalue dis-
tribution means that the limits aj := limy_ oo E[tr(AX)] exist. It turned out
that in many cases the fluctuation around this limit,

tr(A?V) — Qg
is asymptotically Gaussian of order 1/N; i.e., the random variable
N - (tr(Aé“V) —ag) = Tr(A?V) — Nayg, = Tr(Afv —agl)

(where Tr denotes the unnormalized trace) converges for N — oo to a normal
variable. Actually, the whole family of centered unnormalized traces (Tr(AX;)—
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8 COLLINS, MINGO, SNIADY, SPEICHER

Nay)p>1 converges to a centered Gaussian family. (One should note that we
restrict all our considerations to complex random matrices; in the case of real
random matrices there are additional complications, which will be addressed in
some future investigations.) Thus the main information about fluctuations of
our considered ensemble is contained in the covariance matrix of the limiting
Gaussian family, i.e., in the quantities

Q= lim cov(Tr(A%), Tr(AY)).

— 00

Let us emphasize that the «, and the a,,, are actually limits of classical
cumulants of traces; for the first and second order, with expectation as first
and variance as second cumulant, this might not be so visible, but it will become
evident when we go over to higher orders. Nevertheless, the a’s will behave and
will also be treated like moments; accordingly we will call the ay,, ,, ‘fluctuation
moments’. We will later define some other quantities &, , which take the role
of cumulants in this context.
This kind of convergence to a Gaussian family was formalized in [MS06] as
follows. Note that convergence to Gaussian means that all higher order classical
cumulants converge to zero. As before, we denote the classical cumulants by
kn; so ki is just the expectation, and ks the covariance.

DEFINITION 2.7. Let A = (An)nen be an ensemble of N x N random matrices
Apn. We say that it has a second order limit distribution if for all m,n > 1 the
limits

Q= A}Enoo ky (tr(A%))

and

exist and if
Jim ke (Tr(ARY, L Te(AR7)) = 0

for all » > 3 and all n(1),...,n(r) > 1.

We can now ask the same kind of question for the limit fluctuations as for the
limit moments; namely, if we have two random matrix ensembles A and B and
we know the second order limit distribution of A and the second order limit
distribution of B, does this imply that we have a second order limit distribution
for A+ B, and, if so, is there an effective way for calculating it. Again, we can
only hope for a positive solution to this if A and B are in a kind of generic
position. As it turned out, the same requirements as before are sufficient for
this. The rule for calculating mixed fluctuations constitutes the essence of the
definition of the concept of second order freeness.

THEOREM 2.8 (Mingo, Sniady, Speicher [MSS07]). Let A and B be two
random matriz ensembles of N x N-random matrices, A = (An)nen and
B = (Bn)nen, each of them having a second order limit distribution. As-
sume that A and B are independent and that at least one of them is unitarily
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FLUCTUATIONS OF RANDOM MATRICES 9

imwvariant. Then A and B are asymptotically free of second order in the sense
of the following definition.

DEFINITION 2.9 (Mingo, Speicher [MS06]). Consider two random matrix en-
sembles A = (An)neny and B = (By)nen, each of them with a second order
limit distribution. Denote by

Yy (n(1),m(1),...,n(p),m(p))

the random variable
n(1l m(1 n m

The random matrices A = (Ay)ven and B = (By) yen are asymptotically free
of second order if for all n,m > 1

A}gnook‘g( (A —anl), Te(BRY —ab1)) =0

and for all p,g > 1 and n(1),...,n(p),m(1),...,m(p),n(1),...,7(q),
m(1l),...,m(qg) > 1 we have

lim iy (YN (n(1),m(1),...,n(p), m(p)), Yn (#(1), m(2), ... ,ﬁ(q),m(q))) —0

if p # ¢, and otherwise (where we count modulo p for the arguments of the
indices, i.e., n(i + p) = n(i))

lim kQ(YN(n(l),m(l),.‘.,n(p),m(p)),YN(fL(p),Th(p),...,ﬁ(l),m(l)))

N —o0

p P
A A B B B
= Z H Qo (i+k)+7(i) an(¢+k)0<ﬁ(¢)) (am(i+k)+7h(i+l) - am(i+k)a7h(i+1))'
k=1i=1
Again, it is crucial to realize that this definition allows one (albeit in a com-
plicated way) to express every second order mixed moment, i.e., a limit of the
form

th ko (Tr(AnN(l)B?\?(l) . AK{(Z’)B}GL(:D))7 TI“(A?,(DB?(I) L ATX[(L])B?(Q)))

in terms of the second order limits of A and the second order limits of B.
In particular, asymptotic freeness of second order also implies that the sum
A + B of our random matrix ensembles has a second order limit distribution
and allows one to express them in principle in terms of the second order limit
distribution of A and the second order limit distribution of B. As in the case of
first order freeness, it is not clear at all how this calculation of the fluctuations
of A+ B out of the fluctuations of A and the fluctuations of B can be performed
effectively. It is one of the main results of the present paper to achieve such
an effective description. We are able to solve this problem by providing a
second order cumulant machinery, similar to the first order case. Again, the
idea is to go over to quantities which behave like cumulants in this setting. The
actual description of those relies on combinatorial objects (annular non-crossing
permutations), but as before this can be reformulated in terms of formal power
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10 COLLINS, MINGO, SNIADY, SPEICHER

series. Let us spell out the definition here in this form. (That this is equivalent
to our actual definition of the cumulants will follow from Theorem 6.3.)

DEFINITION 2.10. Let (ap)n>1 and (m,n)m,n>1 describe the first and second
order limit moments of a random matrix ensemble. We define the corresponding
first and second order free cumulants (kp)n>1 and (Km.n)mn>1 by the following
requirement in terms of the corresponding generating power series. Put

Cz):=1+ Z Knx™, C(z,y) := Z Emnx™y"

n>1 m,n>1
and
M(z):=1+ Z ", M(z,y) = Z Q™ Y".
n>1 m,n>1
Then we require as relations between these formal power series that
(2) ClzM(x)) = M(x)

and for the second order

3) M(w,y) = H(eM(x),yM(y)) - £

2 - _ .
(4) H(x,y) := C(x,y)—xyaiay 10g( Cly) —yC( ))’

or equivalently,

A (xM(x)) 45 WM (y))

(5) M(x,y) = C(zM(x),yM(y)) -

M(z)  M(y)
(Ci‘i(fEM(w)) M) 1 )
(zM(z) —yM(y)) (z —y)?

From equation (5) one can calculate the second order version of moment-
cumulant relations.
Q11 = K11+ k2
Qo1 = K12+ 2K1K1,1 + 2K3 + 2K1K2
o2 = Koo +4K1K2 1 + 4/{%/—@171 + 4ky4 + 8Kk1K3 + 2/—@% + 4/@%/{2
1,3 = K1,3 + 3K1K2,1 + 3Kak1,1 + 3/{%/&1,1 + 3k4 + 6K1Kk3 + ?m% + 35%52
Qo3 = Ko 3 + 2K1K13 + 3K1K2,2 + 3Kak1 o + OKTK1 2 + BK1K2K1 1 + 6K K11
+ 6K5 + 18k1Kk4 + 12K9K3 + 18/@%&3 + 12/4:1/-13 + 6/@?/4:2
33 = k33 + 6Kk 3 + BkoKy 3 + 6&%/{1,3 + 9&%/{272 + 18Kk1Kok1,2 + 18/4:?/@172
+ 9&%51’1 + 18&?@/{171 + 9/{%/{171 + 9kg + 36Kk1K5 + 2TkRoky + 54/&%/{4
+ K2 4 T2k1 Kak3 + 36K5 K3 + 12k5 4 36K7K3 + 9K ko

2
Ki1=a] —Q2+ Q11

Kig2 = —40(? + 6o — 2ai3 — 20[1041,1 + a2
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FLUCTUATIONS OF RANDOM MATRICES 11

Koz = 180/1l — 3604?042 + 604% + 1613 — 4oy + 404%&1’1 —4dojar g+ a2
K1,3 = 150/11 — 300(%042 + 6a§ + 12013 — 3y +6a%a1,1 3o, — 3oy 2+t 3
K23 = —7204? + 180 a% g — 7204104% — 84 Oé%Oég + 24asa3 + 30y — Gars
— 120[%041,1 + 6o + 12@%(1172 — 32 — 2001aq,3 — 3o g + Qa3
k3,3 = 30008 — 9000y + 5760203 — 4803 + 43208 a3 — 2881 aaz + 1802
— 18004%0[4 + 4basay + Sdaias — 9ag + 36a‘11041,1 — 36a%a2a171 + 9a§a1,1

3 2 2
— 36&10[172 + 180[10[2@1’2 + 12a1a1,3 - 60&2&1’3 + 9a1a2,2 — 60[1@2’3 +as3

As in the first order case, instead of the moment power series M (x,y) one can
consider a kind of second order Cauchy transform, defined by

11
xy
If we also define a kind of second order R transform R(z,y) by

Glz,y) =

1
R =—C
(z,y) w (z,9),
then the formula (5) takes on a particularly nice form:

, y 1 1
6) Gy =G @CW{RECE. 60D+ Grr—aur) T
G(x) is here, as before, the first order Cauchy transform, G(z) = 1M (1/x).
The K, , defined above deserve the name “cumulants” as they linearize the
problem of adding random matrices which are asymptotically free of second
order. Namely, as will follow from our Theorem 7.15, we have the following
theorem, which provides, together with (6), an effective machinery for calcu-
lating the fluctuations of the sum of asymptotically free random matrices.

THEOREM 2.11. Let A and B be two random matriz ensembles which are
asymptotically free. Then one has for all m,n > 1 that

A+B _ A B A+B _ A B
Ky, =K, + K, and B = K T K-

Alternatively,
RATB(z) = R4 (2) + RE(2)
and
R4 (2,y) = RA(z,y) + RP (2, y).

Again, one can express the second order cumulants as limits of classical cumu-
lants of entries of a unitarily invariant matrix. In contrast to the first order
case, we have now to run over two disjoint cycles in the indices of the matrix
entries. This theorem will follow from our formulas (28) and (30).
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12 COLLINS, MINGO, SNIADY, SPEICHER

THEOREM 2.12. Let A = (An)nen be a unitarily invariant random matriz
ensemble which has a second order limit distribution. Then the second order
free cumulants of this matrix ensemble can also be expressed as the limit of

classical cumulants of the entries of the random matrices: If Axy = (agév))ﬁjzl,
then

g min ~N) ) ()
Fimn = WK o0 N7 K n (050);0)2 Ga2yiay -+ Gim),ia)
™) ()
)iy G@iE) 0 %m).im)

for any choice of distinct i(1),...,i(m),j(1),...,j(n).

This latter theorem makes it quite obvious that the second order cumulants for
Gaussian as well as for Wishart matrices vanish identically, i.e., R(z,y) = 0
and thus we obtain in these cases that the second order Cauchy transform is
totally determined in terms of the first order Cauchy transform (i.e., in terms
of the limiting eigenvalue distribution) via

GGy 1
(G(x) -Gy)*  (z—y)*

This formula for fluctuations of Wishart matrices was also derived by Bai and
Silverstein in [BS04].

(7) G(x,y) =

2.3. HIGHER ORDER FREENESS. The idea for higher order freeness is the same
as for second order one. For a random matrix ensemble A = (Ayx)nyen We
define 7-th order limit moments as the scaled limit of classical cumulants of r
traces of powers of our matrices,
Qpy .., = lim Nrfzkr(Tr(AnN(l)), . ,Tr(ATIi[(T))).
N—o0

(The choice of N"~2 is motivated by the fact that this is the leading order for
many interesting random matrix ensembles, e.g. Gaussian or Wishart. Thus
our theory of higher order freeness captures the features of random matrix en-
sembles whose cumulants of traces decay in the same way as Gaussian random
matrices.) Then we look at two random matrix ensembles A and B which are
independent, and one of them unitarily invariant. The mixed moments in A
and B of order r are, in leading order in the limit N — oo, determined by the
limit moments of A up to order r and the limit moments of B up to order r.
The structure of these formulas motivates directly the definition of cumulants of
the considered order. The definition of those is in terms of a moment-cumulant
formula, which gives a moment in terms of cumulants by summing over spe-
cial combinatorial objects, which we call “partitioned permutations”. Most
of the theory we develop relies on an in depth analysis of properties of these
partitioned permutations and the corresponding convolution of multiplicative
functions on partitioned permutations. Our definition of “higher order free-
ness” is then in terms of the vanishing of mixed cumulants. It follows quite
easily that in the first and second order case this gives the same as the relations
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FLUCTUATIONS OF RANDOM MATRICES 13

in Definitions 2.3 and 2.9, respectively. For higher orders, however, we are not
able to find an explicit relation of that type.

This reflects somehow the observation that our general formulas in terms of
sums over partitioned permutations are the same for all orders, but that eval-
uating or simplifying these sums (by doing partial summations) is beyond our
abilities for orders greater than 2. Reformulating the combinatorial relation
between moments and cumulants in terms of generating power series is one
prominent example for this. Whereas this is quite easy for first order, the com-
plexity of the arguments and the solution (given in Definition 2.10) is much
higher for second order, and out of reach for higher order.

One should note that an effective (analytic or symbolic) calculation of higher
order moments of a sum A+ B for A and B free of higher order relies usually on
the presence of such generating power series formulas. In this sense, we have
succeeded in providing an effective machinery for dealing with fluctuations
(second order), but we were not able to do so for higher order.

Our results for higher orders are more of a theoretical nature. One of the main
problems we have to address there is the associativity of the notion of higher
order freeness. Namely, in order to be an interesting concept, our definition
that A and B are free of higher order should of course imply that any function
of A is also free of higher order from any function of B. Whereas for first
and second order this follows quite easily from the equivalent characterization
of freeness in terms of moments as in Definitions 2.3 and 2.9, the absence
of such a characterization for higher orders makes this a more complicated
matter. Namely, what we have to see is that the vanishing of mixed cumulants
in random variables implies also the vanishing of mixed cumulants in elements
from the generated algebras. This is quite a non-trivial fact and requires a
careful analysis, see section 7.

3. PRELIMINARIES

3.1. SOME GENERAL NOTATION. For natural numbers m,n € N with m < n,
we denote by [m,n] the interval of natural numbers between m and n, i.e.,

[m,n]:={m,m+1,m+2,...,n—1n}

For a matrix A = (a;;)
normalized trace,

ﬁ\fj:l, we denote by Tr the unnormalized and by tr the

N
Tr(A) := Zaii, tr(A4) := NTr(A).

3.2. PERMUTATIONS. We will denote the set of permutations on n elements
by S,. We will quite often use the cycle notation for such permutations, i.e.,
7w = (i1,%2,...,%-) is a cycle which sends iy to ix11 (kK = 1,...,r), where
Trg1 = 11.

DOCUMENTA MATHEMATICA 12 (2007) 1-70



14 COLLINS, MINGO, SNIADY, SPEICHER

3.2.1. Length function. For a permutation w € S,, we denote by #m the number
of cycles of m and by |7| the minimal number of transpositions needed to write
7 as a product of transpositions. Note that one has

||+ #7=n for all m € S,,.

3.2.2. Non-crossing permutations. Let us denote by 7, € S, the cycle
o =(1,2,...,n).
For all 7 € S,, one has that
7| + |yt < — 1.
If we have equality then we call m non-crossing. Note that this is equivalent to

#m+ #('Vnﬂ'_l) =n+1

If 7 is non-crossing, then so are v,7~ ! and 7 '~,; the latter is called the
(Kreweras) complement of .

We will denote the set of non-crossing permutations in S,, by NC(n). Note
that such a non-crossing permutation can be identified with a non-crossing
partition, by forgetting the order on the cycles. There is exactly one cyclic
order on the blocks of a non-crossing partition which makes it into a non-
crossing permutation.

3.2.3. Annular non-crossing permutations. Fix m,n € N and denote by vy, »,
the product of the two cycles

Ymon = (1,2,...,m)(m+1,m+2,...,m+n).

More generally, we shall denote by vy, ... m, the product of the corresponding
k cycles.

We call a m € Sy,1p, connected if the pair 7 and ,, , generates a transitive
subgroup in S, 1,. A connected permutation m € Sy, 1, always satisfies

(8) ]+ ™ < m4 .

If  is connected and if we have equality in that equation then we call © annular
non-crossing. Note that if 7 is annular non-crossing then 7, ,7~! is also
annular non-crossing. Again, we call the latter the complement of w. Of course,
all the above notations depend on the pair (m,n); if we want to emphasize
this dependency we will also speak about (m,n)-connected permutations and
(m,n)-annular non-crossing permutations.

We will denote the set of (m,n)-annular non-crossing permutations by
Sne(m,n). A cycle of a m € Sye(m,n) is called a through-cycle if it con-
tains points on both cycles. Each m € Syc(m,n) is connected and must thus
have at least one through-cycle. The subset of Syc(m,n) where all cycles are
through-cycles will be denoted by SHL (m,n).

Again one can go over from annular non-crossing permutations to annular non-
crossing partitions by forgetting the cyclic orders on cycles; however, in the
annular case, the relation between non-crossing permutation and non-crossing
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FLUCTUATIONS OF RANDOM MATRICES 15

partition is not one-to-one. Since we will not use the language of annular
partitions in the present paper, this is of no relevance here.

Annular non-crossing permutations and partitions were introduced in [MN04];
there, many different characterizations—in particular, the one (8) above in
terms of the length function—were given.

3.3. PARTITIONS. We say that V = {Vi,...,V,} is a partition of a set [1,n] if
the sets V; are disjoint and non—empty and their union is equal to [1,n]. We
call Vi, ...,V the blocks of partition V.

Ity ={V,....,Vi} and W = {Wy,...,W;} are partitions of the same set, we
say that V < W if for every block V; there exists some block W; such that
Vi € W;. For a pair of partitions V,W we denote by V V W the smallest
partition ¢ such that V < U and W < U. We denote by 1,, = {[1,71]} the
biggest partition of the set [1,n].

If # € S, is a permutation, then we can associate to 7 in a natural way a
partition whose blocks consist exactly of the cycles of 7; we will denote this
partition either by 0, € P(n) or, if the context makes the meaning clear, just
by m € P(n).

For a permutation m € S,, we say that a partition V is m-invariant if m preserves
each block of V. This means that 0, <V (which we will usually write just as
T < V).

If Vv ={V,...,Vi} is a partition of the set [1,n] and if, for 1 < i <k, 7; is a
permutation of the set V; we denote by m; X --- X m, € S, the concatenation
of these permutations. We say that @ = m; X - -+ X 7, is a cycle decomposition
if additionally every factor m; is a cycle.

3.4. CLASSICAL CUMULANTS. Given some classical probability space (2, P)
we denote by E the expectation with respect to the corresponding probability
measure,

E(a) ::/Qa(w)dP(w)

and by L~ (£, P) the algebra of random variables for which all moments exist.
Let us for the following put A := L>°~(Q, P).

We extend the linear functional E : A — C to a corresponding multiplicative
functional on all partitions by (V € P(n), a1,...,a, € A)

(9) Evlai,...,a,] = HE[al,...,anh/],
vevy
where we use the notation
Ela1,...,an|v] :=E(as -~ a;,) for V=_>1< - <is) €V.
Then, for V € P(n), we define the classical cumulants ky as multilinear func-

tionals on A by
(10) k’y[al,...,an} = Z EW[al,...7an] MObp(n)(W,V),

WEP(n)
w<v
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16 COLLINS, MINGO, SNIADY, SPEICHER

where Mébp(,,) denotes the Mébius function on P(n) (see [Rot64]).
The above definition is, by M6bius inversion on P(n), equivalent to

E(al"'an): Z kﬂ[(ll’"')a'n]'
TEP(n)

The k, are also multiplicative with respect to the blocks of ¥V and thus deter-
mined by the values of

kn(al, ... an) =k [a1,...,a,].
Note that we have in particular
k1(a) = E(a) and ka(a1,a2) = E(ajaz) — E(a1)E(a2).

An important property of classical cumulants is the following formula of Leonov
and Shiryaev [LS59] for cumulants with products as arguments.
Let m,n € Nand 1 <i(1) <i(2) < --- < i(m) = n. Define U € P(n) by

U={(1,....i(1), (1) +1,...,i2),..., (i(m = 1)+ 1,...,i(m)) }.
Consider now random variables a,...,a, € A and define
A1 : :a1~--ai(1)

Aot = ai()41 0 Gig2)

Ap = Qi(m—1)+1 """ Qi(m)-
Then we have
(11) km(Ar, A, Am) = > kylag,. .. an).
YA

The sum on the right-hand side is running over those partitions of n elements
which satisfy VVU = 1,,, which are, informally speaking, those partitions which
connect all the arguments of the cumulant k,,, when written in terms of the
a;.

Here is an example for this formula; for ks (ajag, azas). In order to reduce the
number of involved terms we will restrict to the special case where E(a;) = 0
(and thus also k1(a;) = 0) for all i+ = 1,2,3,4. There are three partitions
7 € P(4) without singletons which satisfy

7wV {(1,2),(3,4)} =14,

namely
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FLUCTUATIONS OF RANDOM MATRICES 17

and thus formula (11) gives in this case

ka(araz,azas) = ka(ai, a2, a3, aq)
+ ka(ar, as)ka(as, as) + ka(ar, as)ka(az, as).

As a consequence of (11) one has the following important corollary: If
{a1,...,a,} and {by,...,b,} are independent then

(12) kwlaiby, ... anba] = > kylay,...,an] - ky[br,... bl

v,V eP(n)
vvy/=w

3.5. HAAR DISTRIBUTED UNITARY RANDOM MATRICES AND THE WEIN-
GARTEN FUNCTION. In the following we will be interested in the asymptotics
of special matrix integrals over the group U(N) of unitary N x N-matrices.
We always equip the compact group U (N) with its Haar probability measure.
A random matrix whose distribution is this measure will be called a Haar dis-
tributed unitary random matriz. Thus the expectation E over this ensemble is
given by integrating with respect to the Haar measure.

The expectation of products of entries of Haar distributed unitary random
matrices can be described in terms of a special function on the permutation
group. Since such considerations go back to Weingarten [Wei78], Collins [Col03]
calls this function the Weingarten function and denotes it by Wg. We will
follow his notation. In the following we just recall the relevant information
about, this Weingarten function, for more details we refer to [Col03, CS06].
We use the following definition of the Weingarten function. For = € S,, and
N > n we put

Wg(N, 7T) = E[Ull C UnppUin(1) unw(n)]a

where U = (uij)gjzl is an N x N Haar distributed unitary random matrix.
Sometimes we will suppress the dependency on N and just write Wg (7). This
Wg(N,n) depends only on the conjugacy class of m. General matrix integrals
over the unitary group can be calculated as follows:

(13)  Eluiygy - wig, gy Wirgy *+ Wingi)

—_— . . ... . . . . ) . . _1
- Z Oisity oy Ot Oy O,y WB(BAT)-
a,BESy

This formula for the calculation of moments of the entries of a Haar unitary
random matrix bears some resemblance to the Wick formula for the joint mo-
ments of the entries of Gaussian random matrices; thus we will call (13) the
Wick formula for Haar unitary matrices.

The Weingarten function is quite a complicated object, and its full understand-
ing is at the basis of questions around Itzykson-Zuber integrals. One knows
(see, e.g., [Col03, CS06]) that the leading order in 1/N is given by || +n and
increases in steps of 2.
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18 COLLINS, MINGO, SNIADY, SPEICHER

3.6. CUMULANTS OF THE WEINGARTEN FUNCTION. We will also need some
(classical) relative cumulants of the Weingarten function, which were intro-
duced in [Col03, §2.3]. As before, let M6bp(,,) be the Mdbius function on the
partially ordered set of partitions of [1,n] ordered by inclusion.
Let us first extend the Weingarten function by multiplicative extension, for
V>, by

We(V,m) = [[ Walxlv),

Vey

where 7|y denotes the restriction of 7 to the block V' € V (which is invariant
under 7 since m < V).
The relative cumulant of the Weingarten function is now, for 0 < V < W,
defined by

(14) Cyw(o)= > MsbU,W) - Wel,0).

UeP(n)
V<U<W

Note that, by Mdbius inversion, this is, for any o <V < W, equivalent to

(15) WegW,0)= > Cyulo).

UcP(n)

V<U<W
In [Col03, Cor. 2.9] it was shown that the order of Cy (o) is at most
(16) N72n+#a+2#W72#V.

4. CORRELATION FUNCTIONS FOR RANDOM MATRICES

4.1. CORRELATION FUNCTIONS AND PARTITIONED PERMUTATIONS. Let us
consider N x N-random matrices By, ..., B, : & — My(C). The main infor-
mation we are interested in are the “correlation functions” ¢, of these matrices,
given by classical cumulants of their traces, i.e.,

On(B1,...yBp) = kn(Tr(By),. .., Tr(By)).

Even though these correlation functions are cumulants, it is more adequate to
consider them as a kind of moments for our random matrices. Thus, we will
also call them sometimes correlation moments.
We will also need to consider traces of products which are best encoded via
permutations. Thus, for 7 € S,,, ¢(7)[B,...,B,] shall mean that we take
cumulants of traces of products along the cycles of w. For an n-tuple B =
(B1,...,B,) of random matrices and a cycle ¢ = (i1, i2,...,i;) with £k <n we
denote

B|c = BilBiQ e Bik~
(We do not distinguish between products which differ by a cyclic rotation of
the factors; however, in order to make this definition well-defined we could
normalize our cycle ¢ = (i1,14s,...,4x) by the requirement that i, is the smallest
among the appearing numbers.) For any 7 € S(n) and any n-tuple B =
(B1,...,B,) of random matrices we put

‘P(W)[Bla .- -an] = (PT(B‘clv~-~aB|cr)7
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FLUCTUATIONS OF RANDOM MATRICES 19

where 7 consists of the cycles cq,...,c;.
Example:

©((1,3)(2,5,4))[B1, B2, Bs, By, Bs| = ¢y(B1B3, By BsBy)
= kQ(TI‘(BlBg), TI‘(BQB5B4))

Furthermore, we also need to consider more general products of such ¢(m)’s.
In order to index such products we will use pairs (V, 1) where 7 is, as above,
an element in S, and V € P(n) is a partition which is compatible with the
cycle structure of 7, i.e., each block of V is fixed under 7, or to put it another
way, V > 7. In the latter inequality we use the convention that we identify a
permutation with the partition corresponding to its cycles if this identification
is obvious from the structure of the formula; we will write this partition 0, or
just 0 if no confusion will result.

NOTATION 4.1. A partitioned permutation is a pair (V, ) consisting of = € S,,
and V € P(n) with V > w. We will denote the set of partitioned permutations
of n elements by PS(n). We will also put

PS:= | PS(n).

neN
For such a (V,7) € PS we denote finally
eV, m)[B1,....Bn] == [] #(xlv)[B1,.... Bulv]-
vey
Example:

90({1> 37 4}{2}7 (17 3)(2)(4)) [Bh 327 337 B4}
= p2(B1Bs, Ba) - ¢1(B2)
= kQ(TI‘(BlB3),TI'(B4)) . kl (TI‘(BQ))

Let us denote by Tr, as usual a product of traces along the cycles of o. Then
we have the relation

E{Tr,[A1,..., A} = > oW, 0)[41,..., Ay].

WEP(n)
W>o

By using the formula (11) of Leonov and Shiryaev one sees that in terms of the

entries of our matrices By, = (bg?)%:l our p(U, ) can also be written as

N
_ (1) (n)
(17) U, ) [Bi,...,Bal = Y > by Dt

v<u 4 1 =
VVy=U i(1),...,i(n)=1

4.2. MOMENTS OF UNITARILY INVARIANT RANDOM MATRICES. For unitarily
invariant random matrices there exists a definite relation between cumulants
of traces and cumulants of entries. We want to work out this connection in

this section. Related considerations were presented by Capitaine and Casalis
in [CCO6].
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20 COLLINS, MINGO, SNIADY, SPEICHER

DEFINITION 4.2. Random matrices Ay, ..., A, are called unitarily invariant if
the joint distribution of all their entries does not change by global conjugation
with any unitary matrix, i.e., if, for any unitary matrix U, the matrix-valued
random variables Ay, ..., A, : @ — My(C) have the same joint distribution as
the matrix-valued random variables UA,U*, ..., UA,U* : Q@ — My(C).

Let Aq,..., A, be unitarily invariant random matrices. We will now try ex-
pressing the microscopic quantities “cumulants of entries of the A;” in terms
of the macroscopic quantities “cumulants of traces of products of the A;”.

In order to make this connection we have to use the unitary invariance of our
ensemble. By definition, this means that Aj, ..., A, has the same distribution
as Aq,..., A, where A; := UA;U*. Since this holds for any unitary U, the
same is true after averaging over such U, i.e., we can take in the definition
of the A; the U as Haar distributed unitary random matrices, independent
from Aq,...,A,. This reduces calculations for unitarily invariant ensembles
essentially to properties of Haar unitary random matrices; in particular, the

Wick formula for the U’s implies that we have an analogous Wick formula for
(k)\N

joint moments in the entries of the A;. Let us write Ay = (a”

)” 1, and

A, = (a Ef))l j—1- Then we can calculate:

E{a(l) coeglm) } = E{a(l ) }

piT1 PnTn p1i7T1 PnTn
_ (n)
= E E{uplilailjlu"‘ljl cUpyig, azn]nurwn}

(2%

1
- Z E{upliluﬁjl FUpin Wiy i, } E{a§1;1 a 'E:;n}

1 it
Z Z 5T,poﬂ5j7iOUWg(o—7T ) E{aéljl o af'nljn}

i,j woES,
- Z(S,pOTr g [Ala--~7 n]»
TES,
where
(18)  G(m[Ar,.... A= > Wg(on! ZE{ a0}
oeS,
=Y Wg(or ') - E{Tr,[A,..., Ay}
oceSy
= Z Wg(on™t) - Z oW, 0)[A1, ..., A,
€Sy WeP(n)

W>o

= > Wglor ) -oW,0)[Ar,. .., A
W,o)ePS(n)

The important point here is that G(7)[A1, ..., A,] depends only on the macro-
scopic correlation moments of A.
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We can extend the above to products of expectations by

Ey(ap,r,s- - Gpyr] = D Orpor - GV, m)[A1, ..., Ayl

TESH
<V

where G(V, ) is given by multiplicative extension:

GV, mAr,..., Ax) i = [ 9rlv)[Ar, ..., Aulv]
Vevy

Z We(V,om 1) - oW, 0)[As, ..., Al

(W,0)EPS(n)
w<v

(19)

Now we can look on the cumulants of the entries of our unitarily invariant
matrices A;; they are given by

kv{ald. ... alM } = Z Mébp(n) U, V) - Eylall), . ...al"), |
UeP(n)
u<v

=3 > Srpor - Mébp(y U, V) - GU, 7)[A1, ..., Ay

ULSY m€Sn
=Y U

= > brpor D, MébpgU,V)-GU,m)[As, ..., Ay].

nE€Sn UEP(n)
<V V>uU>n

With the definition
(200 KOV, m)[A1,.. . Anl = > Mébpgy U, V) - GU, ) (A1, ..., Al

UeP(n)

v>u>n
we thereby get
(21) ky{aid. . ....af Y =" bppor - £V, T)[A1,..., Ayl
TESH
x<V

It follows that

_ 1) ()
PUN AL A= > Z 18yt Gimic )

v<u
S (1)) =

> Z S Giomion - KV, M)A, ., Ay

UEU (1), i(m)=1 €5y

= > > kW) Al,.. LAy N#OT,

V<U wESp
Vwy=u =<V

Since V Vv = U is, under the assumption 7 < V, equivalent to V'V yr~! = U
we can write this also as

(22) @(uv'y)[Alv"wAn] = Z K(V,?T)[Al,...,An] -N#(’Yﬂil)

(V,m)ePS(n)
vy —l=u
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Remark 4.3. 1) Note that although the quantity « is defined by (20) in terms
of the macroscopic moments of the A;, they have also a very concrete meaning
in terms of cumulants of entries of the A;. Namely, if we choose m € S,
and distinct 1 < ¢(1),...,i(n) < N then equation (21) becomes, when we set
V=1,,

_ 1) (n)
(23) K(lp,m)[A1, ..., Ap] = kn (ai(l)i(w(l)), cee ai(n)i(ﬂ(n)))

as the the only term in the sum that survives is the one for .

2) Equation (22) should be considered as a kind of moment-cumulant formula in
our context, thus it should contain all information for defining the “cumulants”
k in terms of the moments ¢. Actually, we can solve this linear system of
equations for x in terms of ¢, by using equation (20) to define xk and equation

(19) for G.

kW, m)[A1,..., Ay
= D Mobpy@. V). Y Wehon ) oW, 0)[Ar.... A

UeP(n) (W,o)ePS(n)
v>uU>n w<u

= > eW.o)Ar,.. Ay Y Mdbp,) (U, V) WelU,om ).
(W,0)EPS(n) vEEZ

Thus, by using the relative cumulants of the Weingarten function from (14),
we get finally

(24) K(V.m)[Ar,.. A= > oWV, 0)[A1,.. An - Crovwp(om™").

(W,0)EPS(n)
W<V

3) One should also note that we have defined the Weingarten function only
for N > n; thus in the above formulas we should always consider sufficiently
large N. This is consistent with the observation that the system of equations
(22) might not be invertible for N too small; the matrix (N#(””fl))g e, 18
invertible for N > n, however, in general not for all N < n (e.g, clea’urly not
for N = 1). One can make sense of some formulas involving the Weingarten
function also for N < n (see [CS06]). However, since we are mainly interested
in the asymptotic behavior of our formulas for N — oo, we will not elaborate
on this.

4.3. PRODUCT OF TWO INDEPENDENT ENSEMBLES. Let us now calculate the
correlation functions for a product of two independent ensembles Aq,..., A,
and Bi,..., B, of random matrices, where we assume that one of them, let’s
say the B;’s, is unitarily invariant. We have, by using (17) and the special
version (12) of the formula of Leonov and Shiryaev, the following:
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@(U;V)[AlBla e A Bn]

= Z > mlaihiay - G BB sy b))
’L z(n) v, v/'<u
VVV/Vy=U

'(1) -53(n)

(20) (n)
Z Do D bugen KOLMIAL s Al R by U

V,V/'<u TwESn
vV vy=u TV

=Y ) sV mAL .., A

7ES, VEP(n)
u
0 (n)
' ( o by bi(n)z‘(rw(n»])'

>V>nw
v/ <u i
V' VVVy=U

In order to evaluate the second factor we note first that, under the assumption
7 <V, the condition V' VV V vy = U is equivalent to V' VVV 71y =U. Next,
we rewrite the sum over all V' € P(n) with V' < U and V' VYV V71 ly =U
as a double sum over all W € P(n) with VVW = U and all V' € P(n) with
V' < W and V/\Mr*l’y:W

(n)
> ka VSR R

V' EP(n)
S ke ) ()
> v Biyicey @y Bimyiceta ()]

V' <uU,v'vvvy=u
WEeP(n) v/ <w
VVW=U yiyr—ly=yy

> oW, 7 y)[By, ..., B,).

WEP(n)
w>r—ly vvw=u

Thus we finally get
(p<u7 rY)[AlBla s 7AnB7l]

=> > > k(V,m)[A1, ..., An] - @OV, 77 19)[By, . . ., By

TES, VEP(n) WEP(n)
UZV>m w>r—ly vvw=u

= > KV, )AL, - An] - oW, 77 19)[By, . .., B).

v, 7r) (W,0)EPS(n)
VW=U,ro="

Let us summarize the result of our calculations in the following theorem. In
order to indicate that our main formulas are valid for any fixed N, we will
decorate the relevant quantities with a superscript ). Note that up to now
we have not made any asymptotic consideration.

THEOREM 4.4. Let My := My ® L>®(2) be an ensemble of N x N-random
matrices. Define correlation functions gp( ) on My bymeN, Dy,...,D, €
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My )
(25) o N(Dy,...,Dy) = kn(Tx(Dy),...,Tr(Dy))

and corresponding “cumulant functions” k(N) (form < N) by
(26)
KM@, D = Y @MW, 0) D, ..., Dy Oy (omY),
WEeP(n),c€S,
W<y

or equivalently by the implicit system of equations

@7 eMUANIDL,...,Da) = kMW, 1Dy, Dy] - NFOT,
Vv,

where the sum is over allV € P(n) all m € S,, such that m <V and Yvyr~! =
U.

1) Let Ax be an algebra of unitarily invariant random matrices in My. Then
we have for all n < N, all distinct i(1),...,i(n), all Ay = (agf))i\[j:l e Ay,
and all w € S, that

_ (1) (n)
(28) KN (1, m)[AL, ..., An] = ky, (@it G loyica(n))-

2) Assume that we have two subalgebras An and By of My such that

o Ay is a unitarily invariant ensemble,

o Ay and By are independent.
Then we have for alln € N with n < N and all Ay,..., A, € Ay and
Bi,...,B, € By:

= Y MW AL A oW, 0)[By, ..., Byl
YV, 7, W,o

where the sum is over all V,2W € P(n) and all 7,0 € S, such that 7 <V,
o<W, VVW=U, and v = 7o.

4.4. LARGE N ASYMPTOTICS FOR MOMENTS AND CUMULANTS. Our main in-
terest in this paper will be the large N limit of formula (29). This structure
in leading order between independent ensembles of random matrices which are
randomly rotated against each other will be captured in our abstract notion of
higher order freeness.

Of course, now we must make an assumption about the asymptotic behavior
in N of our correlation functions. We will require that the cumulants of traces
of our random matrices decays in N with the same order as in the case of
Gaussian or Wishart random matrices. In these cases one has very detailed
“genus expansions” for those cumulants; see, e.g. [Oko00, MNO04] and one
knows that the n-th cumulant of unnormalized traces in polynomials of those
random matrices decays like N27™ (see e.g. [MS06, Thm. 3.1 and Thm. 3.5]).
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DEFINITION 4.5. Let, for each N € N, B{N), . .,Bq(«N) C My ® L™~ (Q) be
N x N-random matrices. Suppose that the leading term of the correlation
moments of B§N), . ,BﬁN) are of order 2 — n, i.e., that for all n € N and all
polynomials p1,...,p; in r non-commuting variables the limits

1\}51100 @%N)(pl(BEN)a . 'an("N))7 s ?pt(BgN)v . an(”N))) ' Nn72

exist. Then we will say that {BiN), . .,BﬁN)} has limit distributions of all
orders. Let B be the free algebra generated by generators by,...,b,.. Then we
define the limit correlation functions of B by

Son(pl(blw",bT)7"'apt<b17"' 7bT))
:A}iinoo<p(N)(p1(B§N),...7B(N)),...,pt(B£N),...,BﬁN)))-N"‘Q

n T

Note that this assumption implies that the leading term for the quantities
©M (V1) is of order 24 (V) — #(n). Indeed, if V has k blocks and the 4t
block of V contains 7; cycles of 7 then @ ™) (V1) = ¢, ---¢,, and each ¢,
has order 2 — r;. Then the order of o™ (V1) is (2 —r1) +---+ (2 —1p) =
2k — (r1+ -+ rg) = 2#(V) — #(n). Thus
@(V7 ﬂ-)(pl(bla ey b?‘)7 e 7pt(b17 ey b’l‘))
= Jim o MV.mE B, BN (B, BY))

| N2V )
From formula (27) one can deduce that the leading order of xN)(V, 1) is given
by the term (U,~) = (V, ) and thus must be of order
N7n+2#vf#7r.
(Indeed, this also follows from equation (24) and the leading order of the relative
cumulant of the Weingarten function given in equation (16).)

Thus we can define the limiting cumulant functions to be the limit of the
leading order of the cumulants by the equation

(30) KV, m)[b1,... bp] = lim N"=2#VH#T Ny oyBWN) BV

N —o0
When (V,7) = (1,,,7,) and By = By = --- = B,, = B equation (28) becomes
N _ (N) (N)
K (L, ) (B, -, Bl = kn (01 i2)0 - Bimyi1))

Thus to prove Theorem 2.6 we must show that x)(1,,,7,)[B,...,B] - N}

converges to k% the n'" free cumulant of the limiting eigenvalue distribution of
BW),

When (V,7) = (Ly4n; Ym,n) €quation (28) becomes

N _ () ) ()
A Lty Yoo )IBy -+ BY = Kot By -+ Bigmyicay» Biniacay -+ Vi)
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Thus to prove Theorem 2.12 we must show that £ (1,40, Y )[Bs -, B] -
N™F" converges to lﬁ:l;nyn the (m,n)*" free cumulant of second order of the

limiting second order distribution of BM).

4.5. LENGTH FUNCTIONS. We want to understand the asymptotic behavior of
formula (29). The leading order in N of the right hand side is given by

—n 4 2#V — #71 4 2#W — #o =n+ (|n| — 2|V|) + (|o] — 2|W)),
whereas the leading order of the left hand side is given by
2H#U — H#y =2#V VW) — #(om) = n+ (|na| — 2]V VW)).

This suggests the introducing of the following “length functions” for permuta-
tions, partitions, and partitioned permutations.

NOTATION 4.6.
(1) For V € P(n) and 7 € S,, we put
V| :=n—#V
|7r| :=mn — #m.
(2) For any (V,7) € PS(n) we put
|V, m)] = 2|V] = || = n — 2#V — #n).

Let us first observe that these quantities behave actually like a length. It is
clear from the definition that they are always non-negative; that they also obey
a triangle inequality is the content of the next lemma.

LEMMA 4.7.
(1) For all m,0 € S,, we have
|ro| < |m| + |o].
(2) For allV,W € P(n) we have
VVWI< V[ + W]
(3) For all partitioned permutations (V,m), W, o) € PS(n) we have
(VY W, mo)| <[(V,m)|+ (W, 0)].

Proof. (1) This is well-known, since || is the minimal number of factors needed
to write m as a product of transpositions.

(2) Each block B of W can glue at most #B — 1 many blocks of V together,
i.e., W can glue at most n —#VV many blocks of V together, thus the difference
between |V| and |V V W| cannot exceed n — #W and hence

#Y —#V VW) <n—#W.

This is equivalent to our assertion.

(3) We prove this, for fixed 7 and o by induction over |V| 4+ |W|. The smallest
possible value of the latter appears for |V| = |x| and [W| = |o] (i.e., V = 0,
and W = 0,). But then we have (since VV W > 7o)

2]V VW = |ra| < [VV W] < V[ + W],
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which is exactly our assertion for this case. For the induction step, on the
other side, one only has to observe that if one increases |V| (or |W|) by one
then [V V W| can also increase by at most 1.

Remark 4.8. 1) Note that the triangle inequality for partitioned permutations
together with (29) implies the following. Given random matrices A = (Ax)nen
and B = (Bx)nen which have limit distributions of all orders. If A and B are
independent and at least one of them is unitarily invariant, then C = (Cn)nen
with Cy := An By also has limit distributions of all orders.

2) Since we know that Gaussian and Wishart random matrices have limit dis-
tributions of all orders (see e.g. [MS06, Thm. 3.1 and Thm. 3.5]), and since
they are unitarily invariant, it follows by induction from the previous part
that any polynomial in independent Gaussian and Wishart matrices has limit
distributions of all orders.

4.6. MULTIPLICATION OF PARTITIONED PERMUTATIONS. Suppose {B%N),

...,B,(LN)} has limit distributions of all orders. Then the left hand side of
equation (27) has order N2#U)=#(7) and the right hand side of equation (27)

has order N~ 2#MW)=#(®+7=""| Thus the only terms of the right hand side
that have order N2#U)~#(7) are those for which

2#U) — #(7) = —n+2#(V) — #(1) + 7|
i.e. for which |(U,~)| = |(V,7)| + |y7m—!|. Hence

N
oM, BN, ..., BN
= Z H(N)(V,W)[BgN),...,B(N)]~N|'Y’T7

n

!
(V,m)EPS(n)
VvAyr—l=u

U=V, m) [+ yr— 1]

+ O(N2#(U)*#(“/)*2)

Thus after taking limits we have

(31) eU.A)b1, . bal = Y &V, m)[br,. .., b
(V,m)ePS(n)

where the sum is over all (V, ) in PS(n) such that VVyr~! = U and |(U, )| =
|V, m)| + [yr .

A similar analysis of equation (29) gives that for independent {A(IN)7 . ,A%N)}
and {B;N), cey BT(LN)} with the AEN) ’s unitarily invariant and both having limit

distributions of all orders we have

DOCUMENTA MATHEMATICA 12 (2007) 1-70



28 COLLINS, MINGO, SNIADY, SPEICHER

eM AN BN, AN B
= Y sMEma™, AN oMW, e BN, B

(V,m),(W,o)ePS(n)
VVW=U, ro=~
[(V,m) | +I(W,0) |=[(VWW, 7o)

+ O(N2#(U)—#(7)—2)

and again after taking limits

(32) U, y)[arb,...,anby]

= Z K(Vvﬂ-)[ah"'?an]'@(W7O’)[b17"'7bn]
V,7),(W,0)ePS(n)

where the sum is over all (V,7), (W, o) € PS(n) such that

o VVW=U

o o ="y

o |(V,m)[ + (W, o) = [(U,7)]
In order to write this in a more compact form it is convenient to define a
multiplication for partitioned permutations (in CPS(n)) as follows.

DEFINITION 4.9. For (V,7), (W, o) € PS(n) we define their product as follows.
(33) (Vom) (W,0) i=
B {(v VW, o) if |(V,m)| + (W, 0)| = |(V VW, 7o),
0 otherwise.
ProproOSITION 4.10. The multiplication defined in Definition 4.9 is associative.
Proof. We have to check that
(34) ((V.m)- W,0) - @Us) = Vo7) - (W) - (U 7).

Since both sides are equal to (V VW VU, moT) in case they do not vanish, we
have to see that the conditions for non-vanishing are for both sides the same.
The conditions for the left hand side are

|V, m)[+ W, 0)] = |(VVW,70)|
and
|(VV W, mo)|+|U,7) = |[(VVWVU,ToT)|.
These imply
|V, ™)+ W, o)+ |U,7)| = |UNVWVU,7oT)|
< |V, m[+ WV, o),
However, the triangle inequality

WVU,or)| < [(W,0)| + U, T)|
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yields that we have actually equality in the above inequality, thus leading to
(W, o)l + WU, 7)[ = W VU, oT)|

and
|V, m)|+ | WVU,or)] = |[(VVWVU,T0T)|.
These are exactly the two conditions for the vanishing of the right hand side

of (34). The other direction goes analogously. O
Now we can write formulas (31) and (32) in convolution form
(35) U, Y)[b1,...,by] = Z KV, m)[b1,. .., by

(V,m)EPS(n)

(V,m)- (0,77~ DH=(U,v)

and
(36) U, y)[arbi,. .., anby]
= Y wWmlas,....an] - oW, 0) b1, .., b

(V,7),(W,0)EPS(n)
V,m)-(W,o)=MU,7)

Note that both ¢(V,7) and x(V, ) are multiplicative in the sense that they
factor according to the decomposition of V into blocks.

The philosophy for our definition of higher order freeness will be that equation
(35) is the analogue of the moment-cumulant formula and shall be used to define
the quantities «, which will thus take on the role of cumulants in our theory
— whereas the ¢ are the moments (see Definition 7.4). We shall define higher
order freeness by requiring the vanishing of mixed cumulants, see Definition
7.6. On the other hand, equation (36) would be another way of expressing the
fact that the a’s are free from the b’s. Of course, we will have to prove that
those two possibilities are actually equivalent (see Theorem 7.9).

5. MULTIPLICATIVE FUNCTIONS ON PARTITIONED PERMUTATIONS AND
THEIR CONVOLUTION

5.1. CONVOLUTION OF MULTIPLICATIVE FUNCTIONS. Formulas (35) and (36)
above are a generalization of the formulas describing first order freeness in
terms of cumulants and convolution of multiplicative functions on non-crossing
partitions. Since the dependence on the random matrices is irrelevant for this
structure we will free ourselves in this section from the random matrices and
look on the combinatorial heart of the observed formulas. In Section 7, we will
return to the more general situation involving multiplicative functions which
depend also on random matrices or more generally elements from an algebra.

DEFINITION 5.1.

(1) We denote by PS the set of partitioned permutations on an arbitrary
number of elements, i.e.,

PS = PS().

neN
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(2) For two functions

frg:PS—C
we define their convolution
frxg:PS—=C
by
(fxg)U,7) = > fW,m) gW,o)

(V,7),(W,0)EPS(n)
V,m)-(W,o)=MU,7)

for any (U,v) € PS(n).

DEFINITION 5.2. A function f : PS — C is called multiplicative if f(1,,m)
depends only on the conjugacy class of m and we have

fo,m) = 1] fQv.alv).
vey

Our main interest will be in multiplicative functions. It is easy to see that the
convolution of two multiplicative functions is again multiplicative. It is clear
that a multiplicative function is determined by the values of f(1,,7) for all
n € Nand all 7 € S,.

An important example of a multiplicative function is the d-function presented
below.

NoOTATION 5.3. The §-function on PS is the multiplicative function determined

by
1 ifn=1,
0(1,,m) = ]
0 otherwise.

Thus for (U, w) € PS(n)
SU,T) = {1 if (U, ) = (Ona (1H)(2)... (n)) for some n,

0 otherwise.
PROPOSITION 5.4. The convolution of multiplicative functions on PS is com-
mutative and § is the unit element.

Proof. Tt is clear that § is the unit element. For commutativity, we note that
for multiplicative functions we have

f(V7 7T) = f(V’ﬂ'_l)’
and thus
(g* U =(g= HUA") = > g(V. 7 f(W,0).

(V,1),(W,0)EPS(n)
(V,m)-(W,o)=U,y~1)

Since the condition (V,7) - (W,0) = (U, 1) is equivalent to the condition
W,o= Y- (V,771) = (U,~) we can continue with

(9% /U,y = > fFOV, 0™ gV, n7h) = (f * 9) (U, 7).

(V,m),(W,o0)ePS(n)
W,o=1).(v,r=h=U,~)
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O

5.2. FACTORIZATIONS. Let us now try to characterize the non-trivial factor-
izations (U,~) = (V,m) - (W, o) appearing in the definition of our convolution.
Let us first observe some simple general inequalities.

LEMMA 5.5.

(1) For permutations m,0 € S(n) we have

|| + |o| + |7ro| > 2|7V al.
(2) For partitions Vo < Vi and Wa < W) we have
Wil + Vil + [Va VIWo| > [Vi VW[ + [Wa| + Vs
and
Vi VWa|+ Vo VWi > Vi VIV + Vo V Wa.
Proof. (1) By the triangle inequality for partitioned permutations we have
[(0x V 0g, w0)| < |(O, )] + [(0g, 0)],
ie.,
(37) 2|7 Vol| —|ro| < |7+ |o].
(2) Consider first the special case Wi = W, = W. Then we clearly have
#HFV2a VW) = # V1 VW) < #V — #V1,
which leads to
Vi VW] = Vo VW] < Vi| — |Vl

From this the general case follows by

(Vi VWi = V2V Wa| = VI VW] = ViV Wal| + [V1 V Wa| — Va2 VIV,

< Wil = el + V| = [Vl
The second inequality follows from this as follows:
VI VWL = VIV IR = ViV (Vo VIV — V1V (Ve VW)
< Vo VWi — [Va VWL

THEOREM 5.6. For (V,m),(W,0) € PS(n) the equation
W, m)-W,o)=(VVW,r0)
is equivalent to the conjunction of the following four conditions:
|| + |o| + |7ro| = 2|7 V o,
V|+|rVo|=|x|+]|VVal,
W|+|xVa|=|o|+|r VW,
VVo|l+|nvVW =[VVW|+|rVal
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Proof. Adding the four inequalities given by Lemma 5.5
|7| + |o| + |7o| > 2|7V o],
2V + 2|7 Vol > 2w+ 2|V Vol
2W| +2|w Va| > 2|o| + 2|7 VW,
20VVa|+2(r VW] > 2V VW|+2|7 Vo]
gives
2V = [zl +2W| = [o] 2 2V VW| — |7a],
ie.,
W@+ W,0)] 2 [V W, o).
Since (V,m) - (W, o) = (V VW, o) means that we require equality in the last

inequality, this is equivalent to having equality in all the four inequalities. [

The conditions describing our factorizations have a quite geometrical meaning.
Let us elaborate on this in the following.
DEFINITION 5.7. Let v € S(n) be a fixed permutation.
(1) A permutation 7 € S(n) is called y-planar if
7|+ 1m ]+ Il = 2lm v ol
(2) A partitioned permutation (V,7) € PS(n) is called y-minimal if
VVAl =[xVl =V =l
Remark 5.8. i) It is easy to check (for example, by calculating the Euler char-
acteristic) that -planarity of 7 corresponds indeed to a planar diagram, i.e.
one can draw a planar graph representing permutations v and = without any
crossings. The most important cases are when  consists of a single cycle
[Bia97] and when ~y consists of two cycles [MNO4].
i1) The notion of y-minimality of (V,7) means that V connects only blocks of
7 which are not already connected by ~.
it ) If (V, m) satisfies both (1) and (2) of Definition 5.7 then (V,7)(0,771v) =
(1,7), by Theorem 5.6.

COROLLARY 5.9. Assume that we have the equation

(uy’Y) = (Va ﬂ-) : (W,O’).
Then 7 and o must be y-planar and (V,7) and (W, o) must be y-minimal.
5.3. FACTORIZATIONS OF DISC AND TUNNEL PERMUTATIONS.

NoTATION 5.10. i ) We call (V,7) € PS,, a disc permutation if V = O; the
latter is equivalent to the condition |V| = |o|. For m € Sy, by (0,7) we will
always mean the disc permutation

(0,7) := (0r,m) € PS(n).

ii) We call (V,m) € PS,, a tunnel permutation if |V| = |r|+1. This means that
V is obtained from 7 by joining a pair of cycles; i.e. one block of V contains
exactly two cycles of 7 and all other blocks contain only one cycle of 7.
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A motivation for those names comes from the identification between partitioned
permutations and so-called surfaced permutations; see the Appendix for more
information on this.

Our goal is now to understand more explicitly the factorizations of disc and
tunnel permutations. (It will turn out that those are the relevant ones for
first and second order freeness). For this, note that we can rewrite the crucial
condition for our product of partitioned permutations,

2V| = |7+ 2)W] = |o| = 2]V VW] — |r0],
in the form
(VI = Ix]) + (W] = [o]) + (VI + W] = [V VW) = ([VV W] = |0a]).

Since all terms in brackets are non-negative integers this formula can be used
to obtain explicit solutions to our factorization problem for small values of
the right hand side. Essentially, this tells us that factorizations of a disc per-
mutation can only be of the form disc x disc; and factorizations of a tunnel
permutation can only be of the form disc x disc, disc x tunnel, and tunnel x disc.
Of course, one can generalize the following arguments to higher order type per-
mutations, however, the number of possibilities grows quite quickly.
ProproSITION 5.11.

(1) The solutions to the equation
(Lns 1) = (0,7) = (V,7m) - (W, 0)

are exactly of the form

(Lo, vn) = (0,7) - (0,7 ),
for some m € NC(n).
(2) The solutions to the equation
(1m+na7m,n) =W,m)-W,0o)
are exactly of the following three forms:
(a)
(1m+n77m7n> = (0,77) : (0771'_17m,n)a
where m € Sy (m,n);
(b)
(1m+na’7m,n) = (0,7‘() : (W>7T_1'Ym,n)a

where m € NC(m)x NC(n), [W| = |7 Yym.n|+1, and W connects
a cycle of T v 5 in NC(m) with a cycle in NC(n);

(1M+n77m,n) = (V,7T) : (Oaﬂilf}/m,n)a
where 1 € NC(m) x NC(n), |V| = |x|+1, and [W| = |7 v 0| +
1, and V connects a cycle of m in NC(m) with a cycle in NC(n).
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Proof. (1) The correspondence between non-crossing partitions and permuta-
tions was studied in detail by Biane [Bia97]. In this case we have

(VI=Ixl) + (Wl = lo]) + (VI + W] = [V VW) = [1n] = |7a] = 0.

Since all three terms in brackets are greater or equal to zero, all of them must
vanish, i.e.,

V| = |xl, thus V=0,
IW| = o, thus W =0,
and
[Tl +lol =VI+ W =[VVW| =y =n-L
(2) Now we have
(IVI=Ixl) + (Wl = lol) + (VI + W] = [V v W) = (V VW] = |ro]) =1,

which means that two of the terms on the left-hand side must be equal to
0, and the other term must be equal to 1. Thus we have the following three
possibilities.

(a)

V| =|rl, thus Y =0,,
(W] =|o|, thus W =0
and
7|+ |o| = V| + W] = [VVW|+1=m+n.
Note that

aNVo=VVW=1,4in,
and thus 7 connects the two cycles of v, ,. This means that 7 is a
non-crossing (m, n)-permutation.
V| = |n|, thus V = 0O,

W[ = o] +1,
and
VI+W=VVW|=m+n-1
This implies
|7T| + |7m,n77_1| =m+n-—2,

which means that 7 must be a disconnected non-crossing (m,n)-
annular permutation, i.e.,

T =71 X Ty with m € NC(m),m € NC(n).
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V= r| +1,
W| =lo| +1,, thus W =0,
and
i+ W= YVVW| =m+n-—1.
This implies
|| + |'7m,n7771| =m+n—2,
which means that 7 must be a disconnected non-crossing (m,n)-
annular permutation, i.e.,
T =T X Ta with m € NC(m),m € NC(n).

O

EXAMPLE 5.12. We can now use the previous description of factorizations of
disc and tunnel permutations to write down explicit first and second order
formulas for our convolution of multiplicative functions.

1) In the first order case we have

38)  (Fx9)nyn) =(F+9)0v) = > f(0,m)g(0,7 "m).

TENC(n)

This equation is exactly the formula for the convolution of multiplicative func-
tions on non-crossing partitions, which is the cornerstone of the combinatorial
description of first order freeness [NSp97]. (Note that 71+, is in this case the
Kreweras complement of 7.)

2) In the second order case we have

(f*g)(lernv'Ym,n) = Z f(O»W)g(Oaﬂ—il’Vm,n)
TeSNnc(m,n)
+ > (fOmam gV )+ FV, )90, 7 ).

TENC(m)x NC(n)
[V]=[m|+1

We should expect that this formula is the combinatorial key for the understand-
ing of second order freeness. However, in this form it does not match exactly the

formulas appearing in [MSSO?]. Let us, however, for a multiplicative function
f put, for m € NC(n),

(39) fi(m) = f(la,m)  (m € NC(n))

and, for m; € NC(m) and m € NC(n),

(40) fg(ﬂ'l,ﬂ'z) = Z f(V, T X 7T2).
VL

V\/(7r1><7r2):1m+n

Note that in the definition of f, the sum is running over all V which connect
exactly one cycle of m; with one cycle of ms.
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Then, with h = f x g, we have
ho(l, 1) = D> fima(m ™ ym,n)

T€SNc(m,n)

+ Z (fa(my, m2) g (mr X 73 Ymen)
m1,T2ENC(m)x NC(n)

+ fi(m1 % )G (77 ym, T3 )

In this form we recover exactly the structure of the formula (10) from [MSS07],
which describes second order freeness. The descriptions in terms of f and in
terms of f, are equivalent. Whereas f is multiplicative, fo satisfies a kind
of cocycle property. From our present perspective the description of second
(and higher) order freeness in terms of multiplicative functions seems more
natural. In any case, we see that our convolution of multiplicative functions on
partitioned permutations is a generalization of the structure underlying first
and second order freeness.

5.4. ZETA AND MOBIUS FUNCTION. In the definition of our convolution we are
running over factorizations of ({4,~) into products (V,7) - (W, ). In the first
order case the second factor is determined if the first factor is given. In the
general case, however, we do not have such a uniqueness of the decomposition;
if we fix (V, ) there might be different choices for (W), o). For example, this
situation was considered in Proposition 5.11 in the case (2b). However, in the
case when (W, o) is a disc permutation, it must be of the form (0;-1,, 7 7)
and is thus uniquely determined. Note that factorizations of such a special
form appear in our formula (35) and thus deserve special attention.

NoTaTION 5.13. Let (U,7) € PS be a fixed partitioned permutation. We say
that (V,m) € PS is (U, y)-non-crossing if

Vo) - (Op-1yy w7 1y) = (U, 7).
The set of (U, ~y)—non-crossing partitioned permutations will be denoted by
PSnc(U,), see Remark 5.8.

To justify this notation we point out that (1,,,7,)—non-crossing partitioned
permutations can be identified with non-crossing permutations; to be precise

PSnc(lnn) = {0, 7) [ m € NC(n)}.

Furthermore,

PSNC(lerm'Ym,n) = {(Ow,ﬂ') | IS SNc(m,n)}U
U{(V,m x ) | m € NC(m),m € NC(n),V > m,|V|=|r|+1
and V connects one cycle of 71 to a cycle of ma}.

We can now also use a special multiplicative function, which we will call Zeta-
function ¢, to single out such factorizations. It will be useful to be able to invert
formula (35), which means we need also the inverse of ¢ under our convolution.
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This inverse, called the M&bius-function pu, is a key object in the theory and
contains a lot of important information.
NOTATION 5.14.

(1) The Zeta-function ¢ is the multiplicative function on PS which is de-
termined by

(1, m) = {

1 if (1,,7) is a disc permutation, i.e., if 1,, = O,
0 otherwise.

(2) The Mdbius function p is the inverse of ¢ under convolution, i.e., it is

determined by
Crp=10=pxC
Note that in general
1, fy=0
V,TF _ ) ™

¢wm) {0, if V> 0g.

It is also quite easy to see that the Mobius function exists and is uniquely
determined as the inverse of the Zeta-function — the determining equations can
be solved recursively. Indeed letting p1n, = p(1n, ¥n) and pimn = (lmtn, Ym.n)
we have

0=p1,1+ p2
0=p12+ 2010011 + 203 + 2p1pt2
0= pi2,2 + 4papizg +4p3pag + 4 + 8paps + 203 + 4uf s
0= pu1,3 + 3papz + 3papn 1 + s + 6papis + 35 + 33 o
0= o3+ 201413 + i fin,2 + 3popu 2 + T 12 + 6y piapin1 + 645 1
+ 615 + 1801 a + 120015 + 1802 iz + 1201 3 + 63 o
0= 3,3+ 6pipizs + Gpapys + 6p3p1 s + IuTpie 2 + 1811 piapir 2 + 1843y 2
+ 93 + 183 papa 1 + i paa + e + 36415 + 2Tpuapis + 5L pa
+ 93 + T2p1 papis + 3643 ps + 1203 + 364713 + I pra
This shows how, knowing the first order M&bius function p,, the second order

Mbobius function fi, , can be calculated recursively.
One should observe that with these notations we have

(f+QU,7) = > FV,m).
V,m)ePSNnc(U,y)

In the following we will use the notation

SETSINEIS

—_———
p-times

It is clear, by definition, that {*P counts factorizations into the product of p
disc permutations, thus we have the following result.

PROPOSITION 5.15. For (U,v) € PS and p > 1 we have
C*p(uvry) = #{(7‘(’1, cee 77rp) | (u77) = (Oa 771) e (077Tp)}-
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Of special interest for us is the case p = 2.

PROPOSITION 5.16. We have for allr > 1 and n(1),...,n(r) € N, n:=n(1) +
-+ n(r) that

(< * C)(lnv 'Yn(l),“.,n(r)) = #SNC(R(1)7 s ,n(r)).

Proof. As noted above, (¢ * ¢)(1n,Vn(1),.- ,n(r)) counts the number of factor-
izations of (1, ¥n(1),..., n(T)) into a product of two disc permutations, i.e., the
number of factorizations of the form

(1n77n(1),...,n(r)) = (07’”) : (077-‘—_1’7n,(1),...,n(7"))7

with

ml+lm =l =n—r
and 7V v = 1,,. But this describes exactly connected (n(1),...,n(r))-annular
permutations m € Syc(n(1),...,n(r)). O

NoTATION 5.17. We put
Cn(1),...,n(r) = #Snc(n(1),...,n(r)).

Note in particular that ¢, counts the number of non-crossing partitions of n
elements and thus is the Catalan number

1 2n
C, =
" n4+1\n )’

and that ¢, , counts the number of non-crossing (m, n)-annular permutations,

and thus [MN04]
2mn <2m — 1) (Zn — 1)
Cm,n = .
’ m-+n m n

More generally, an explicit formula for the number of factorizations into p
factors was derived by Bousquet-Mélou and Schaeffer [BMS00], namely one
has (with n:=n(1) 4+ -- -+ n(r))

p—1n—1] " -1
P mi) =27 nfrw [ (" )

and thus in particular

(n—1)! -1
Cn(1),...,n(r) = o+ 2 ' ) .

For our purposes, however, the following recursive formula for the number of
factorizations is more interesting.

In the next theorem we will show how to reduce the problem of counting the
number of disc factorizations on [n] to counting the factorizations on [n — 1].
This will enable of to obtain a recursive formula for ¢, .. n,
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NOTATION 5.18. Let (U, ) be a partitioned permutation of [n] with v(1) # 1.
Let 44 be the restriction of (1,%)v(1,7~1(k)) to the invariant subset [2,n] :=
{2,3,4,...,n}. Then

|v] if 1 and k are in different cycles of ~,

. |y =1 ifk=1or~(1)

Il = |v] —2 if 1 and k are in the same cycle of ~,

but k # 1 and k # (1),

Let U = U|j2,n) be the restriction of U to [2,7n], i.e.if the blocks of U are
Ui,..., U, and 1 € U, then the blocks of U are U1,Us,...,U, where U; =
Ui N [2,n]. In the theorem below we sum over a set of partitions Py of [2,n]
described as follows.
For k =1, 4(1) or k not in the y-orbit of 1, Py, = {U } i.e. P consists of the
single partition U.
For k in the v-orbit of 1 but k # 1, (1), Py, = {ﬁ | A <U, |Z:i| = |U| — 2, and
U=1UV (k,v(k))}. In words this means U is split into two blocks:
o the first containing the cycle of 4, containing v~!(k) and some (possibly
none) of the other cycles of 7 contained in U;
o the second containing the cycle of 4 containing k& and the remaining (pos-
sibly none) cycles of v contained in Uj.

More explicitly, in the case k is in the y-orbit of 1 but k # 1, v(1), let us write
7 as as a product of cycles d; - - - ds where d; = (1,7(1),...,~7%(1)) is the cycle
that contains 1. Let dj = (y(1),~4%(1),...,7~ 1(kz)) and d'/ = (k,...,7*(1)).

Then 4, = djd/dy---ds. Py consists of all partitions U of [2,n] such that
U ={U,,U!' Us,..., U} where U, UU} = Uy, U, NUY =0, U, contains d},
Uy contains df, and each cycle of v that was in U; is now in either Uy or Uy,
ie. A <U and [U| = [U| - 2.

THEOREM 5.19.

(41) Z > ¢ (UL

k=1gjep,

Proof. We must show that for each factorization (0, 7)-(0,0) of (U, ) there are
k :=m(1), U € Py, and permutations of [2,n], # and & such that (0,7)-(0,6) =
(Z) k). Conversely we must show that given k, U e P and a factorization
(0,#) - (0,6) of (i,4x) there are = and & such that (0,7) - (0,0) = (U,~)
and 7(1) = k. Moreover we must show that these two maps are inverses of
each other. The relation between 7, o and 7, & is given by & = (1, k)72,
6 = o(1,77'(k))|j2,n)- So on the level of permutations we have a bijection.
The main work of the proof is to show that starting with = and o we have
U:=#Vé e Pyand 2U| — |5| = |#| + |6]; and then conversely starting with
U € P, and a factorization (0,7) - (0,6) of (U, 4x) then 2| — |v| = |x| + |o]
and T Vo =U.
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Note that we have for all k

-1 ke
7] = _
|| k=1

o] k=~(1)
It is necessary to break the proof into four cases: k is not in the ~-orbit of 1;
k is in the y-orbit of 1 but k # 1,v(1); £ = 1; and k = ~(1).
Suppose we have a factorization
(u77) = (077T) : (070)7

ie,y=mo,U =mV o, and

|&:{|a|—1 k#(1)

2U| = Iyl = |x| + o]
with &k := 7(1) not in the v-orbit of 1. Then|9x| = |7y| and P}, contains only the
partition of [2,n] which results from U by removing 1, i.e. U = U. Then we
have U| = |U| — 1. Hence |7|+ 6| = |n|+|o| =2 = 2| — |5| =2 = [U| — ]| =
] . A
Also 0W|[27n] = 07 and 07‘[2,7,} < 04,. ThusU = (7w V 7)‘[2,11] < 7V Ag. On the
other hand the difference between 0,2 ,,) and 05, is that the blocks containing
1 and k have been joined. However these points were already connected by 7.
Thus 7 V4 < Zz and so U = 7V &, and thus

U,5) = (0,7)-(0,6).
Conversely, given a factorization (0,7) - (0,5) of (LA{, A), let m = (1, k)7 and
o =6(1,71(k)). Then mV o = U because 1 has been connected to the block
of U containing k. Also #(r) = #(#) and #(o) = #(6); thus || = |#| — 1 and
|o| = 6| — 1, and so |«| + |o| = 2|U| — |y|. This establishes the bijection when
k is not in the y-orbit of 1.
Let us now consider the case that 1 and k are in the same cycle of v, but
k # 1,~(1). Again suppose that (0,7) - (0,0) is a factorization of (U,~y) with
m(1) = k. In this case we have that x| = |y| — 2 and so by the triangle
inequality, Lemma 4.7

217V e — |yl +2=2]7Va|— 4
= (7 V &,75)|
< 1(0,#)[ +1(0,6)]
= |7+ 5]
= |m| + o] -2
=2U| -] -2,

and thus
|7V a| < |U|l-2.

DOCUMENTA MATHEMATICA 12 (2007) 1-70



FLUCTUATIONS OF RANDOM MATRICES 41

On the other hand, let us compare
TNV =7VH with U=mVr.

Note that all our changes of the permutations affected only what happens on
the first cycle of . Since the transition from v to 4 consists in removing the
point 1 and splitting the first cycle of v into two cycles, we can lose at most
one block by going over from 7 V4 to 7w V . Thus

FV 6= (n—1) = #(7 V) = (n—1) — (#U+1) = U] 2,
so that we necessarily have the equality
|7V é|=|U|-2.

Thus U := #V 6 € Py and 2|7 V 6| — |9%| = |#] + |6]. Hence (0,7) - (0,6) is a
factorization of (Zj k)

Conversely let us suppose that k is in the y-orbit of 1 but k& # 1 or (1) and
U € Py and (0,7) - (0,6) is a factorization of (If,4y). We must show that
7V o =U and that |7| + |o] = 2|U| — |7|- 1 and k are in the same orbit of
7 and 1 and v~ 1(k) are in the same orbit of o. So the blocks of u containing
dy and di are joined in V0. Thus 7 Vo = U. Also Ul = U] — 2, so
[l +lo| = 7]+ 6] +2 = 2U| — || + 2 = [U]| = |3x] — 2 = 2[d| = |y|. Thus
(0,7) - (0,0) is a factorization of (U,~). This establishes the bijection in the
case k is in the v-orbit of 1 but k # 1 or v(1).

Next suppose that k¥ = 1 and (0,7) - (0,0) is a factorization of (I/{,/'\y) with
7(1) = 1. Then [#]+13] = [x|+|o]—1 = 20|~ y|—1 = 20|~ y|+1 = 20| 3.
Let U; be the block of U containing 1 and U; = Uy N[2,n]. We must show that
U, is a block of # V 4. Since 7V v = U we know that if d; and d; are cycles
of v contained in U; then 7 must connect them. Since 7|z = 7|z, we see
that 7 connects the corresponding cycles of 45 (which are unchanged except
for the cycle containing 1). Similarly if f; and fo are cycles of 7 contained in
U; and neither is a singleton then they are connected by v and thus by 4.
Thus (0,7) - (0,6) is a factorization of U, 4).-

Conversely suppose that k = 1, Ue P, and (0,7) - (0,5) is a factorization of
(U,4%). We must show that (1) = 1 and (0,7) - (0,0) is a factorization of
(U, 7). Since VA, = U and ~ connects 1 to v(1) € Uy, we have that 7Vy = U.
Also || + |of = |7 +[6| + 1 = 20U| = |3 + 1 = 2JU| — |51| =1 = 2| = [7].
Thus (0,7) - (0,0) is a factorization of (I4,v). This completes the case when
k = 1. The proof in the case k = (1) is exactly the same except that the roles
of m and o are reversed. |

Let us take a closer look at the meaning of Theorem 5.19 for the case (U,vy) =
(10, Yn(1),...,n(r))- To reduce the depth of subscripts we shall write c(ny, ..., n;)

for ¢y, .. .n(r)-
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PROPOSITION 5.20. We have for all r,nq,...,n, € N the recursion

T
(42) c(ny,...,n,.) = an ce(ny+np—1ng, . oo g1, Nyg1, ey M)
1=2

nq

+Z Z ek —1,n,... .0, )c(ny —k,ng,, ... nj,)
k=1 A={i1,..., is}
B={j1,-jt}

where the sum is over all pairs of subsets A, B C [2,7] such that ANB = and
AU B = [2,r] including the possibility that either A or B could be empty. We

have for all m,n >1
Cn = Z Ck—1Cn—k;

1<k<n
and
(43) Cm,n = Z (Ckrflcmmfk + cm,kflcnfk) + mCm+4n—1,
1<k<n
where we use the convention that co = 1 but ¢(ny,...,n.) =0 4if r > 1 and for

some i, n; = 0.

Proof. Let n = ny + -+ + n,.. By Proposition 5.16 ¢(ny,...,n,) = C*z(ln7
Ynq....n,)- S0 we must give the correspondence between the terms on the right
hand side of (41) and the right hand side of (42). In this case U = 1,, and U =
1p—1 (in the notation of 5.18). Thus Py = {1,-1}. Also for ny +---+mn;_1 <
k<ni+---+ny, C*2(1n713’3’k) = c(n1 +n;—1,n9,... s =1, M1y - - ,nT). Thus

(44) Z Z C*Q(Zja ’3%) = Z <*2(]—n—17;)/k)

k=ni1+1 Z;{\E’Pk k=ni1+1
P it

E g c(ny +np—1,ng, o, n1, Mg, M)

1=2 k=ni+-+n;_1+1

T

g np-c(ny +ng—Lng, oo m1, g1, .., ny)
1—2

For k < nq, 4 = djd/ds - - - d,, with d] a cycle of length k —1 and df a cycle of
length n; — k. Py, is the set of all partitions of the cycles of 4y into two blocks
such that d] and df are in different blocks. Hence

2,5 A
Z C* (u,’}/k): Z c(nl7k’n1'17""nis)c(k71anj17~--anjt)
UePy, A={i1,...is}
B:{jlw'“vjt}

where the sum is over all pairs of subsets A, B C [2,7] such that ANB =0
and AU B = [2,r] including the possibility that either A or B could be empty.
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Thus
ny
2.5
(45) > > ¢ U
k=1giep,
nq
:Z Z c(ny —k,ngy, ..o ni ek —1,m5,,...,m5,)
k=1 A={i1,...,is}
B={j1,.--,j¢}
Assembling equations (44) and (45) gives the result. O

In [OZ84], O’Brien and Zuber used a similar formula of this kind in order to
compute the asymptotics of, so called, external field matrix integral. See also
[BMS00] and Theorem 5.22.

Clearly, our notions around the convolution of functions on PS are analogous
to (and motivated by) the convolution of functions on posets. Even though we
are not able to put the above theory into the framework of posets, it seems that
this analogy goes quite far. The following description of the M&bius functions
is an instance of this—its poset analogue is due to Hall (see [Rot64]). It is
essentially the simple observation that one can expand the Mobius function in
terms of a geometric series as

o0
p=CT = (04 (C-8)T =D (=DRC - 8y,

k=0
PROPOSITION 5.21. We have for any (U,~) € PS that

pU,y) =6U7) + Y > (D,

k=1 M,v)=(0,71)--(0,7)

;e Vi
Proof. As noted above this is just the geometric series for

CR(E))
(Note that we are working for this in the algebra of functions on PS with the
pointwise sum and the convolution as sum and product—we are not bothering
about multiplicativity.) The only thing to check is that the sum is finite, and
this is the case because the number of factors k is bounded by |(U, )|, since
[(0,7)] > 1 for any 7 # e. O

This description of the Md&bius function allows us now to derive a recursive
formula for p.

THEOREM 5.22. Consider (U,~) € PS such that v(1) # 1. Then we have

(0,(1,k))-(V,m)=U,v)
k1

where the sum runs over all decompositions of (U,~) into a product of a disc
transposition (0, (1,k)) (with k > 2) and a (V,7) € PS.
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The proof of this theorem will rely on the following lemma.

LEMMA 5.23. Let (U,7) € PS such that y(1) # 1. For p € N, we denote by S,
the set consisting of all tuples (w1, ...,m,) of permutations such that m; # e for
alli=1,...,p and

(Oyﬂ-l) e (077Tp) = (u77)
We consider now the two sums

(47) Spe=> > (=1

p=1 (my,...,mp)ES,

and

(48) Spi=) > (—1)P
p=1

(715ens Tp)ESp
71 = (1, k) for k # 1

where the second sum Ss is over all tuples (m1,...,mp) as for the first sum St,
but now with the additional property that m is a transposition interchanging
the element 1 with some other element.

Then the two sums (47) and (48) are equal,

S1=5,.

Proof. Let m = (m1,...,mp) € Sp. Let 1 < ¢ < p denote the smallest index for
which 1 is not a fixed point of m,; note that such a g necessarily exists since
~(1) # 1. We shall group all factorizations into three classes: 1a), 1b) and 2).
Class 1) consists of factorizations for which 7, is a transposition interchanging
1 with some other element. The subclass 1a) consists of factorizations for which
q = 1 and subclass 1b) of those for which ¢ > 2. Class 2) consists of all other
factorizations.

Let IT = (m,...,m,) be a factorization from the class 1b). We define

Ir = (7‘(‘17...,71';71) = (M1, s g2y Mg—1Tgs Tgt1s - - - 5 Tp)-

In the following we shall prove that f : IT — II' is a bijection between factor-
izations of class 1b) and factorizations of class 2).

Firstly, we prove that II' € S, and is of class 2). Clearly, m;_; = m;_17, is a
permutation which does not fix 1, it is not a transposition interchanging 1 with
some other element, and we have

(0,7g-1) - (0,mg) = (077Tz/171)'
In order to show that f is a bijection we shall describe its inverse. If II' =
(71, mp_1) € Sp and is of class 2), we define 1 < ¢ < p—1 to be the
smallest number for which 7r(’]71 does not fix 1. There is a unique decomposition
7r(’]71 = mg—1mq such that 1 is a fixed point of m,_; and 7, is a transposition
interchanging 1 with some other element. Thus |m,—1| + |7y| = |m;_;|. The
assumption that the factorization IT’ is of class 2) implies that m,_1 # e. For
1<i<g—2wesetm = and for ¢+ 1 < i < p we set m; = m,_;. In this
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way we defined IT = (mq,..., 7). Now it is easy to check that g : II' — Il is a
left and right inverse of f.

Since the factorization IT and the corresponding II' contribute to (47) with the
opposite signs, the contribution of all factorizations of class 1b) cancels with
the contribution of factorizations of class 2). O

Proof of 5.22. In the proof we will consider all factorizations (0,71) -
(0,m2)---(0,7p) = (U,7) with the requirement that m; # e for all 4, i.e.
(m1,...,7mp) € Sp, as in the proof of Lemma 5.23. Sometimes we will require
in addition that m = (1,k) with k& # 1. To simplify the notation we will not
explicitly state every time that m; # e. Since y(1) # 1 we have 6(U, ) = 0.
When « is a transposition the right hand side of equation (46) is —1; so we
can assume that 7y is not a transposition. So by Proposition 5.21 we have

s (5.23)

ST S sy

p=1 (07771)"'(077710) p=1 (07(17k))"'(017rp)
=U.) =U.)

> >, v
2 @RV Om)-(0m,)
O.(LR)-(Vm=W) =)

UD DD DEED DI b
(0,(1,k)),(v,ﬂ') p=2 (0771'2)‘“(0,71'17)
(0)(17k))'(v>7‘-):(u7'\/) :(Vaﬂ-)

S S VI SISt
(0’(17k)))(v)7r) p=2 (07772)"'(0’7"}))
(Or(l’k))'(vaﬂ-):(u"\/) :(vaﬂ-)

= - Z /’L(V’ﬂ-)

(0,(1,k)),(V,m)
(0,(1,k))-(V,m)=(U,7)

pwU,7)

I
M8

P

O

One observes that the recursion formulas for the Mobius function and for ¢*2
look very similar. However, there are some significant differences. The re-
cursion for ¢*2 effectively expresses (*? for n points in terms of ¢*2 for n — 1
points. The recursion for the Mébius function does not reduce the number of
points. Nevertheless, at least for first and second order one can match the two
recursions and connect the values of the M6bius function with the values of the
function ¢*? (i.e., with the number of non-crossing partitions and non-crossing
annular permutations). In order to see this let us first specify the meaning of
Theorem 5.22 for first and second order. In first order we get

P vn) == > (e W)Ly Yo ),
1<k<n-—1
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which shows that (—=1)"u(1p11,¥nt1) and ¢*?(1,,7,) satisfy the same recur-
sion (namely the one for the Catalan numbers). This is, of course, just the
well-known fact [Kre72, Spe94] that the Mobius function on non-crossing par-
titions is given by the signed and shifted Catalan numbers. In second order
our recursion reads

(_1)N(1m+nv ’Ym,n) =m- ﬂ(1m+na ’Yern)
+ Z (,u(lm_pk,’}/m,k),u(ln—k,"Yn—k) + ,L’f(17n+n—k7'7m,n—k)ﬂ(1ka7k))7
1<k<n—1

which we recognize — by taking into account the shifted relation between u
and ¢*? on the first level — as the recursion for (—1)™""C*2(1pn, Ym.n). Let
us collect these explicit results about the Mobius function in the following
theorem.

THEOREM 5.24. We have for m,n € N that
() = (—1)" T ENC(n = 1) = (<1)" sy
and
/’L(lm+n7’ym7n) = (_1)m+n : #SNC(m7n) = (_1)m+n *Cm,n-

For higher orders we were not able to match the values of p with those of (*2.

6. R-TRANSFORM FORMULAS

Let us consider the situation that two multiplicative functions f and h on PS
are related by h = f % (. We want to understand what this means for the
relations between the numbers ki, := f(1n,7,) and Kpn = f(Lmsn, Ym.n) OL
one side and the numbers a, := h(1,,7n) and amn = M(Lptn; Ymn) o0 the
other side. In particular, we want to express this in terms of the generating
power series of these numbers,

Cz):=1+ Z Knx", C(z,y) = Z EmnZ Y™
n>1 m,n>1

and
M(z) =1+ Z ", M(z,y) = Z Qpn " Y".
n>1 m,n>1

(Note that the above summation corresponds to putting formally

f(Lo,0) =1 and f(1o,70,0) :==0

for a multiplicative f. Our notation is motivated by the fact that the most
important realization of the relation h = f % { will be the situation where the
a’s are the correlation moments and the x’s the corresponding cumulants, thus
M is a moment series and C' is a cumulant series.) On the first order level we
have

Qn = Z f(Or,m),

TENC(n)
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which is the usual moment-cumulant formula of free probability theory, and it
is well-known [Spe94] that this is equivalent to

Our main goal now is to derive the analogue of this for the second order level.
There we have

Qo = Z f(Or,m) + Z F(V,m x m2).

WGSNC(my’ﬂ) 71 X ENC(m)X NC(n)
[VI=|my Xma|+1

It turns out that the second term, the sum over disconnected partitions, is
quite easy to deal with. The first term, the sum over connected annular per-
mutations, looks much more involved, however, one can handle this also if one
realizes that one can reduce this first term to the second one. Namely, one
can sum over all connected annular permutations by first bundling all through-
cycles into one through-cycle and secondly decomposing this through-cycle into
sub-cycles all of which are through-cycles. In this way one can reduce the prob-
lem of dealing with all annular non-crossing permutations to the problem of
considering permutations with exactly one through-cycle and the problem of
considering permutations where all cycles are through-cycles. The first prob-
lem corresponds exactly to the above sum over disconnected partitions. So we
can write

Z f(o‘ﬂ'?ﬂ-): Z f(vvﬂ-l XF?)?

r€Snc(m,n) 71 X7 ENC(m)x NC(n)
[V]=|m1 x7g|+1

where f is now the multiplicative function corresponding to

f(lna'Yn) = Kn, f(1m+n7’7m,n) = ’%m,n
with

Rn = Kn

and
Rm,n 1= Z f (O, ).
TI'GSK,lé (m,n)
Thus we can combine this to get finally
Qi = > (fVym X m) + f(V,m1 x 7))

7T XT €ENC(m)Xx NC(n)
[VI=|my xma|+1

= > g(V,m X m3),

7] X ENC(m)x NC(n)
|V|=|m1 X7a|+1

where ¢ is the multiplicative function corresponding to
9(Ln,vn) = G, I(Lmtns Ymn) = Gmon
with
Qp = Fn = Knp
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and
Omn = Kmn + Rm,n-

So we have to translate the relation between &,,, and f and the relation
between «,,, and g into relations between the corresponding formal power
series.

PRrROPOSITION 6.1. Let f be a multiplicative function on PS with

F(Ln,vn) =: g and C(z):=1+ Z Knx™.

n>1
Put
’%m,n = Z f(OTHTr))

meSYL (m,n)
where SYL(m,n) denotes the permutations in Snc(m,n) for which all cycles
are through-cycles. Consider the corresponding generating power series

Cla,y) =Y FEmna™y"
m,n>1

Then we have

x 0? zC(y) —yC(z
Clay) =~y 5,5 Tos (ylz (@)

or equivalently

S — oy ((C@) —2C(@))(Cly) —yC'y) 1
Clo) = y( («C(y) — yC(z))® (a:—y)2>‘

Proof. Note that we can parameterize an element 7 € Sj‘{,”c (m,n) in a bijective

way by specifying the number of cycles, the number of elements on each circle
for all cycles, the position of a fixed element (let’s say 1) in its cycle and the
first element on the other circle of this cycle. Let us denote the number of
cycles by r, the number of elements of the cycles on the first circle by 4, ...,
and the number of elements of those cycles on the other circle by ji,...,j:.
Thus the [-th cycle contains ¢; + j; elements and makes the contribution x;, 45,
in the calculation of &, ,,. We normalize things so that the first cycle contains
the element 1. Fixing 41,...,4, and j1,...,J, we thus have i; possibilities for
where 1 sits in the first cycle and n possibilities for the first element of this
cycle on the other circle. This means we have

Km,n = § E UNKiy 51 " Riptgy

r>1 i1.- ip21 1., jr=1
ipteotip=m j1teir=n
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and thus

Z Z Z ]1 +- j )Ei1+j1 “"‘iirJrjrxil "'xiT.yjl "'yjr

r>141,..,0,2>1 j1,.. 7]r>1

p— i /L"r' j "V'
=>. > ) “ya (Kivgbags =+ K, @ o alryltooy?r)

r>141,..,0p 21 51,0, 21

_Zyi(( Z i15i1+j1xi1y]1 ’ Z "{12+J2x yjz ’ Z ﬁzmﬂr ))

r>1 11,5121 ig,j2>1 ip,gr>1

) = Z fiz‘+j$iyj~

4,521

Let us now use the notation

Then we can continue with

0= vy ((e55000) - oy ™)

r>1

|

8

<
é’\w
/N
S| =
o5}
S|
—
2
&

&
3
S~—
N—

The assertions follow now by noting that
N C(y) —yC
Cloy) =12 (y) —yC(x)
r—y
and by working out the partial derivatives. (|

PROPOSITION 6.2. Let g be a multiplicative function on PS. Put
dm,n = g(1m+n7 ’Ym,n)
and denote its generating power series of second order by

§ ~ m, n
AUmnd Y

m,n>1
Put
= (9% ) (1n,1m)

Oy, 1= Z gV, m)

(V,my xma)
[VI=lmy xma|+1

and denote the corresponding generating functions by

():=1+ Z apx” and M(z,y) :== Z Q™ Y".

n>1 m,n>1

and
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Then we have the relation

M'(z) M'(y)

M(z,y) = H(@M(x),yM(y)) - (1+ 2 ) ) (1+y ) ).
Proof. Let us do the summation in the definition of a, , in the way that we
first fix the two cycles V; € w1 and V5 € 7 which are connected by V and sum
over all possibilities for fixed Vi, V,. If V] has k elements and V5 has [ elements
then this contributes the factor éy ;. Furthermore, m1\V; decomposes into k
independent non-crossing partitions and the summations over them (for fixed
V1) gives the «; for the intervals between consecutive elements from V;. (Of
course, we are counting here modulo m.) For the final summation over V; we
have to notice that there are two different possibilities: either a fixed number
(let’s say 1) is an element of V; - in which case we can specify the situation
by prescribing the number k of elements of Vi and the differences i1, ...,
between consecutive elements in V; - or 1 is not an element of Vi, — in which
case we need an extra factor i1, because we have now i1 different possibilities
how 1 can lie between two consecutive elements of V. Since we have the same
situation for V5 we can thus write ayy, 5, in the form

O = ) ) Do G a0y (1 +i+ g+ iljl)-

k,J>1 B15eens i >0 Flseees 1 >0
ktig4-tig=m l4j1+Fi=n

Translating this into generating power series gives the assertion. U

The combination of the previous two propositions, with
H(z,y) = C(z,y) + C(z,y),
gives now our main result.

THEOREM 6.3. Let f and h be multiplicative functions on PS which are related
by
h=f=x(.

Denote

Rn = f(1n7'7n)7 Km,mn ‘= f(1M+n7’7m,n)
and

= h(1,,v), Amon = M Lmgn, Ymon)
and define the corresponding generating power series

Cz) =1+ Z K™, C(z,y) == Z Emnx " y"
n>1 mn>1

and
M(z):=1+ Z anx”, M(z,y) = Z " yY".

n>1 m,n>1

Then we have as formal power series the first order relation

(49) C(zM(z)) = M(z)
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and for the second order

L(@M@) M)

(50) M(z,y) = H(zM(z),yM(y)) - 4 i o
where
O i) = Ole) g (),

or equivalently,

L@M(@) &uMY)
M(x) My
. (cj‘i(wM(w)) M) 1 )
(zM(z) —yM(y))? (z —y)?
Proof. The formulation (50) and (51) follows directly from a combination
of Propositions 6.1 and 6.2. In order to reformulate this to (52) one uses

the equivalence of the two formulas in Proposition 6.1 and the fact that
C(zM(z)) = M(z) yields

(52) M(z,y) = C(zM(z),yM(y)) -

1—zC'(zM(z)) =

O

If we go over from the moment generating series M to a kind of Cauchy trans-
form like quantity G, then these formulas take on a particularly nice form.

COROLLARY 6.4. Consider the same situation and notations as in Theorem
6.3. In terms of

1 1 1
= —M(1 — — M(1/z,1 N
Gla) i= TM(1/2), Glary) = LM/5 /1), Riay) = —Cay)
the Equation (52) can be written as

1 1
53) G(z,y) = G(2)G R(G(z),G + - .
(53)  Gle,y) = 6@ W{RGE.6C0) + G amp) G
R(z,y) is the second order R-transform. Note that Voiculescu’s first order
R-transform R is defined by the relation C'(z) = 1+ 2R(z), and equation (49)
says for this

1
G(x)
i.e., that G(z) and K (z) := = 4+ R(x) are inverses of each other under compo-
sition.

+ R(G(2)) = =,

EXAMPLE 6.5. Let us apply our formulas to some examples.

1) If we put f to be the multiplicative function with k3 = 1 and all other
kn and all K, , vanishing, then h = f * ¢ counts the non-crossing pairings,
i.e., in this case M (z) is the generating function of the number of non-crossing
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pairings (on one circle) and M(x,y) is the generating function of the number
of non-crossing annular pairings (on two circles). Let us calculate it by using
the above theorem.

We have

C(z) =1+ 22, C(xz,y) =0

and we know that M is the generating function of number of non-crossing
pairings on a circle. In this case

C(z,y) = xy,

and thus
2

0 B Ty

H(z,y) = Wa

which yields the result
s (@M()) - 5 (M (y))
(1~ ayM(x)M(y))’

Related formulas are known in the physical literature, see, e.g, [FMP78],
[AIM90], [ACKM93] and also [BZ93], [KKP95].

2) If we put f = ¢ then h = { *( counts the non-crossing permutations, i.e., in
this case M (x) is the generating function of the number of non-crossing permu-
tations (which is the same as non-crossing partition) on one circle and M(z,y)
is the generating function of the number of annular non-crossing permutations
(on two circles).

M(x,y) =zy

We have
1
Clw)=r—, Clay)=0.

In this case

A -z —y

Con) = ana—yy
and thus

02 Ty
H(z,y) = *zyamay log(1 —ay) = m7

which yields
' s (@M(2)) - L (yM(y))
(1—2M(z) - yM(y))*

3) Let us finally see whether we can extract the value of the M6bius function
from our formula. Since we have § = u * (, our formula with

M(z)=1+z,  M(a,y) =0

M(x,y) =zy

should allow to solve for C'(z,y) which is then the generating function for the
annular Mobius function. Note that we already know M (x) in this case to be
the generating function of the disc M6bius function.
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If M(z,y) vanishes identically this implies that H(z,y) vanishes identically,
leading to the identity

BE C(y) — yC
C(x,y)=wyaxay log(* ) —yC(z)

)

r—y
_ xy<(0(:v) —2C'(2) - (Cly) —yC'(y) 1 )
(xC(y) —yC(x))? (x —y)?

7. HIGHER ORDER FREENESS AND CORRESPONDING CUMULANTS
7.1. ABSTRACT FRAMEWORK.

DEFINITION 7.1. A higher-order (non-commutative) probability space, or briefly
HOPS, (A, ¢) consists of a unital algebra A and a collection ¢ = (¢p)nen of
maps (n € N)
On:AX--xA—C,
—_——
n times

which are linear and tracial in each of its n arguments and which are symmetric
under exchange of its n arguments and which satisfy

p1(1) =1
and
on(l,ag,...,a,) =0
for all n > 2 and all as,...,a, € A.

Of course, we can include the usual (first order) non-commutative probability
space (A, 1) into this framework by putting all higher ¢, equal to zero. In
the same way we recover a second order non-commutative probability space
(A, ¢1,p2) by putting ¢, = 0 for all n > 3.

DEFINITION 7.2. 1) We denote by PS(A) the set of partitioned permutations
decorated with elements from A, i.e.,

PS = |J (PS(n) x A™).

neN

2) For a function
f:PSA) —C
W,7) x (a1y...,an) — f(V,m)]a1,...,an]

and a function

g:PS—C
we define their convolution

fxg:PS(A) —C
by
(fxg)U,Y)]a1,s...,an] = Z fV,ma1,...,an] - gW,0)

(V,7),(W,0)EPS(n)
(V,m)-(W,o)=U,v)

DOCUMENTA MATHEMATICA 12 (2007) 1-70



54 COLLINS, MINGO, SNIADY, SPEICHER

for all (U,v) € PS(n) and all ay,...,a, € A.

DEFINITION 7.3. A function f : PS(A) — C is called multiplicative if we have

fV.mar,....an] = [[ fUs 7l8)l(ar,. .. an)s]

Bey
and
f(1n, a_lwa)[aa(l), o lomy) = f(1n,m)[ag, ..., ay]
for all a1,...,a, € A and all 7,0 € S(n).

Note that this extension of our formalism on multiplicative functions on PS and
their convolution from the last section is not changing the results from the last
section. The structure of all formulas remains the same; one just has to insert
the ay,...,a, as dummy variables at the right positions. Thus, in particular,
¢ is still the unit for this extended convolution and f = g * ( is equivalent to
g = [ = p for multiplicative f,g on PS(A). And again, the convolution of a
multiplicative function on PS(A) with a multiplicative function on PS gives a
multiplicative function on PS(A).

It is clear that a multiplicative function f on PS(.A) is uniquely determined by
the values of f(1.,Yn(1),....n(r))]@1, - ., an] (Where we put n :=n(1)+---+n(r))
for all r € N, all n(1),...,n(r) € N and all ay,...,a, € A.

7.2. MOMENT AND CUMULANT FUNCTIONS. Let us now apply this formalism
to get moment and cumulant functions for higher order probability spaces. So
let a HOPS (A, ¢) be given. We will use the ¢,, to produce a multiplicative
“moment” function on PS(A), which we will also denote by ¢. Namely, we
put

<)0(17La r)/n(l),...,n(r))[ah EEEE) an]
= Qor(al o Qn(1)s e Q) +en(r=1)+1 " an)

and extend this by multiplicativity. (Note that we need the ¢, to be tracial in
their arguments for this extension.)
Here is an example for our function (.

SO({L 37 4}{2}’ (17 3)(2)(4)) [alv az,as, CL4] = @2([110437 CL4) : 301(02)

DEFINITION 7.4. For a given HOPS (A, ¢) we define the corresponding (higher
order) free cumulants as a function on PS(A) by

K=@*H,

or more explicitly

K‘(u77)[a13-~'van} = Z @(Vaﬂ-)[ala"'aan] U(Wa O’)’
(V,7),(W,o0)ePS(n)
(V,m) (W,o)=U,v)

foralln e N, (U,~) € PS(n), a1,...,a, € A.
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As we noted before the definition above is equivalent to the statement ¢ = k*(,
ie.,
U, Va1, .., a,] = Z k(V,m)a1,...,an]
V,m)eEPSNnc(U,y)
for all (U,7)[a1,...,a,] € PS(A).
Furthermore, as with ¢, k is also a multiplicative function on PS(A). Thus in
the same way as all p(U, ) are determined by the knowledge of all

@(171’ ’Yn(l),...,n(r))[ah SR an]
= @r(a1 - Ap1); - ()4 fn(r=1)F1 """ On(1)+edgn(r))

the free cumulants (U, v) are determined by the values of

H(lnv Vn(l),...,n(r))[ala cee an]
= Kn(1),een() (@15 -+ 5 (1) -+ 5 QD) 4oedn(r—1) 415 -+ - » T (D)o tn(r))-
Remark 7.5. Note that whereas on the level of ¢ we also know (by definition)
that we can multiply elements along the cycles of 7 (and thus we do not need

a comma as separator for those elements along a cycle), this is not true for «.
Thus we have, e.g.,

©(15,(1,2)(3))[a1, az, as] = pa(araz;az) = ¢(12, (1), (2))[a1az2; as],

but no clear relation exists among

/{(13, (1, 2)(3))[@1, as, ag] = IigJ(CLl, as; CL3)
and
H(IQ, (1), (2))[a1a2; a3] = nl,l[alag; ag].

Note also that since our convolution on PS coincides on the first level with
the usual convolution of multiplicative functions on non-crossing partitions,
the above definition of cumulants reduces on the first level to the usual free
cumulants.

7.3. HIGHER ORDER FREENESS. Equipped with the notion of cumulants we
can now define “freeness” by the requirement of vanishing of mixed cumulants.

DEFINITION 7.6. We say that a family (X;);er of subsets of A is free (of all
orders) if we have the following vanishing of mixed cumulants: For all n > 2
and all a; € &) (1 <k < n) such that i(p) # i(q) for some 1 < p,qg < n we
have

k(lp,m)[a,...,an] =0
for all 7 € S(n).

EXAMPLE 7.7. Let us see that this definition includes the definition of
Voiculescu [VDNO92] for (first order) freeness and the definition of Mingo and
Speicher [MS06] for second order freeness.

1) On the first level this follows from the fact that our cumulants reduce then
to the usual free cumulants and it is well-known that freeness is equivalent to
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the vanishing of mixed cumulants. One can see it directly as follows: Let us
consider ay, € Xy with i(k) # i(k+ 1) and p1(ag) = 0 for all &k = 1,...,n.
Then we have

pr(aran) = ol )lons - vanl = 3 wOmmar,- . an].
TeNC(n)

However the vanishing of mixed moments means now that the only 7 which
contribute are those which do not connect elements from different sets. Fur-
thermore, the fact that all our variables are centered excludes singletons. But
then it is easy to see that there are no such 7 at all, so the sum is zero.

2) Now we have to consider two cyclically alternating and centered tuples
ai,...,a, and by,...,b,. Then we have

902((11 co O by "bn) = @(1m+na7m7n)[a1, ey Oy b, ~vbn]

= Z K‘(V7ﬂ-)[a17-"7amabla"'7bn]'
(V,m)ePSNnc(m,n)

Again, the vanishing of mixed moments requires that (V,7) connects only ele-
ments from the same set and the centeredness of the elements excludes single-
tons. It is then easy to see that, for n > 2, the only possibilities for such (V, )
arise for m = n and they have to be disc permutations (0, 7) which are pairings
(a1,b14s)(az,bats) - (ap,bnys) for some s. The factors k(1a, (...))[ak, bgts) are
just @1 (agbats), so that one finally gets, for n > 2, the formula

n

@2(a1 cr o Gm; bl e bn) = 6mn Z <P1(a1b1+s> T Spl(anbn+s)~
k=1

For n = m =1 one gets with

pa(ar;b1) = ka(ai, a2) + ki,1(a1;b1)

the conclusion that o (aq;b1) has to vanish if a; and by are from different sets.
Nothing is required if both are from the same set. We see that we get exactly
the defining properties for second order freeness from [MS06].

3) It would be nice to be able to reformulate in a similar way the definition of
higher order freeness in terms of the ¢ instead of the cumulants. However, the
situation with more than two circles is getting much more involved and we are
not aware of such a reformulation for third and higher order freeness.

As in the case of the first order freeness, one sees immediately that constants
are free from everything.

PROPOSITION 7.8. Let (A, ) be a HOPS. Then {1} is free of all orders from
every subset X C A.

Proof. We have to prove that
K‘(lna Vn(l),...,n(r))[L az, ... ,Cln] =0,

DOCUMENTA MATHEMATICA 12 (2007) 1-70



FLUCTUATIONS OF RANDOM MATRICES 57

unless n = 1. We will do this by induction on n. The case n = 2 is clear
because

K(12, (12))[1, a2] = p1(1 - a2) — ¢1(1) - p1(az) = 0
and
K(12, (1)(2)[1, az] = p2(1;a2) = 0.
In general, one has

O(Lns Yn(1),...n(m)[1; a2, -, an]
= Z k(V,m)[1,as,...,a,)
(V,m)ePSNnc(n(l),....,n(r))
= £(1n; Yn(1),eom(e))[1s a2, - - -, @]
+ Z k(V,m)[1,az,...,a,]

V. m)EPS NG (n(1),...on(r))
[V, ™) I<I(nsvp(1),..., n(r))l

By induction hypothesis, in the later sum exactly terms of the form ({1} U
V, (1) U ) with

(V,7) € PSnc(n(1) — 1,n(2),...,n(r))
contribute. In the case n(1) > 1 the sum over those yields

Sp(lnfh Tn(1)—1,n(2),...,n(r) [a27 v ;an]-
In this case, also
O(Lns Y1), a2, -5 an] = @(Ln—1, Y1)~ 1,0(2),... () (@25 - - - s Al
and thus &(1,, Yn(1),....n(r))[1, @2, ..., an] = 0. If, on the other side, n(1) =1
(i.e., 1 is the only element on its circle), then we have to set
PSNC(Oan(2)7 ce ,TL(T)) =0,
because then the first circle cannot be connected to the others if we ask 1 to
be a cycle of its own. But this means that in this case
K(1n77n(1),...,n(7‘))[17 az, ..., a’n] = (p(lna 7n(1)7...,n(7‘))[17 az;,. .. 7an]

However, for n(1) =1 and n > 1 we have

(P(lnaﬁyl,...,n(r))[]-a az, ... 7an] =0.
O

Note that our definition of freeness behaves clearly very nicely with respect to
decompositions of our sets. For example, we have that X}, X5, X3 are free if
and only if X7 and X5 UX3 are free and X5 and X3 are free. Thus we can reduce
the investigation of freeness to the understanding of freeness for the case of two
sets. A characterization for this is given in the next theorem.

THEOREM 7.9. Let (A, ) be a higher order probability space and consider two
subsets of X1, Xo C A. Then the following are equivalent.

(1) The sets X1, Xy are free of all orders.
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(2) The sets Xy U {1}, Xo U {1} are free of all orders.
(3) We have

U, 7)[arby, ..., anby]

= Z kW, m)[a1,...,an] - oW, 0)[b1,. .., by]
V,m)-(W,0)=U,7)

for all m € N, all (U,y) € PS(n) and all ay,...,a, € X1 U {1},
b17...,bn€X2U{1}.
(4) We have

(P(u>’7)[a1b17 B uanbn]

= > oV, m)[at, ..., an] - kOV, )b, ..., by]
(V,m)-(W,o)=U,7)

for all n € N, all (U,y) € PS(n) and dll ai,...,a, € X1 U {1},
bl,...,bnGXQU{l}.
(5) We have

KU, 7)[a1b1, ..., anby,]

= Z k(V,m)a1,...,a] - kKW, 0)[b1,...,by]
(V,m)-W,o)=U,7)

for all m € N, all (U,vy) € PSn) and all ay,...,a, € X1 U {1},
b17...,bn€XQU{l}.

In order to prove this we would like to write (U, v)[a1b1, ..., a,by,] in the form
gp(l;l,&)[al,bl, ...yGn,by]. Let us introduce the following formalism for this.
Let (U,~) € PS(n) be a partitioned permutation of the numbers 1,2,3,... n.
Double now this set of numbers by introducing a copy 1,2,3,...,7 and inter-

leave the new and old numbers as follows:
1,1,2,2,3,3,...,n,f.
If we induce now (U,v) on 1,2,...,n to (Z/A{,’y) on 1,1,...,n,7n by putting
(k) =k and  4(k) =~(k),

then this has exactly the desired property. The vanishing of mixed cumulants
means that in the factorizations of (LA{,’y) in (V,7) times a disc permutation
we are only interested in (V,7) which have the property that each block of
V contains either only unbarred numbers or only barred numbers, i.e., (V, )

must be of the form (V, UV, 7, Um,) with
(Va:ma) € PS(1,...,n) and (W, m) € PS(1,...,7).

Let us first observe some simple relations between the quantities on 1,...,n
and their relatives on 1,1,...,n, .
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LEMMA 7.10. 1) We have

Al=n+hl,  [U=n+,
and thus
(U, 3)| = n+|U)]-
2) We have
e Ump| = [ma| +|mel,  Va UVl = [Val + Vel
and thus

|(Va UV, mq U 7rb)| = |(Va»7ra)| + ‘(Vb77rb)|'
3) We have that (7, U mp)% maps unbarred to barred and barred to unbarred
elements and, for all k=1,...,n,
(7 U m)A) (k) = mmary(k),
thus
|(ma Ump)y| = n + [mpmay|
Proof. Only the third part is non-trivial. To see this observe

(7Ta ) 7Tb)’?(k) = Wa(V(k))
and thus
(0 Um)A2 (k) = myma (v(K)),
which is our first equation, with the identification of m, € S(1,...,1) with the
corresponding permutation in S(1,...,n). Since the mapping between barred
and unbarred elements is clear, this yields that (7, U )% and 77,y have the
same number of orbits which gives the last equation. O

This lemma allows us to characterize the contributing factorizations in (Z:l )
in terms of special factorizations of (U, 7).

PROPOSITION 7.11. The statement

(Va U Wy, T U 7Tb) S 'PSNc(U,’A}/)
is equivalent to the statement

(Va:ma) - Wb, m) € PSne(U,7),
1,

where in the last product we identify Vp,m) € PS(
sponding element in PS(1,...,n).

..,n) with the corre-

Proof. Note that (V, UVy, 7, Um) € PSne(U, ) is equivalent to

(54) |(Va U Vs, mq Umy)| + [(ma Ump) 14 = (U, 3)]
and
(55) U=V,UVy) VA.

On the other hand, (V,, ) - Vo, ™) € PSnc(U, ), means
(Vav’fra) : (Vbaﬂ—b) ’ (071'1)_171‘;1'}/77[-;171—;17) = (u,’)’),
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which is equivalent to

(56) |(Va 7a)| + [V, mo)| + |y g ] = (U, 7))

and

(57) U=V VIV V.

Equations (54) and (56) are, by Lemma 7.10, equivalent.

The equivalence between (55) and (57) is also easily checked. O

Equipped with these tools we can now prove our main Theorem 7.9.

Proof. The equivalences between (3), (4), and (5) follow by convolving with
the ¢ or the p function. That (2) is actually the same as (1) follows from Prop.
7.8.

(1) = (3): We have

o(U,)[arby, . ... anby] = U, 4)[a1, b1, ..., an, by

= Z k(V,m)[a1,b1,...,an,b,] - C(W, 0)
(V,‘IT)‘(W,O'):(Z/A{,’?{)

= Z k(V,m)[a1,b1,...,an,by]
(V. m)EPSNe(UA)
By our assumption on the vanishing of mixed cumulants, only (V,7) of the
form (V1 U Va, m, Ump,) with
(Va,ma) € PS(1,...,n) and (Vy,m) € PS(1,...,0)

contribute and, by the above Proposition 7.11,

(Va U Wy, e U 7Tb) S PSNC(L{,&)

is equivalent to
Vasma) - Vo, m) € PSnc(U,7).
Thus we can continue with

QO(Z/{,’)/)[Clel, R anbn]

- 3 K (Varto)arsas, . ay] - (V1) [br. b by
(VaUVy,maUmp) EPS N (U,7)

= Z K‘(Vaaﬂ-a)[aha27"'7an] 'K:(Vbaﬂ-b)[blabQV'wbn]
(Va,ma) (Vo,mp)EPSNe (U,Y)

= Z K(Va,Ta)[ar, az, ..., ap]-

(Va,ma) (Vo,me)-(W,0)=(U,7)
- k(Vp, mp)[b1, b2, ..., bn] - C(W, o)
= Z E(Va>Ta)lar, ... an] - oV, m)[b1, ..., by
(Va,ma)-(V,m)=U,7)

(3) = (1): Note that (3) allows us to calculate all moments of elements from
X1 U X, out of the moments of elements from X; and the moments of elements
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from AXs. (In order to do so, we also have to allow some of the a’s or b’s to be
equal to the unit 1.) Since this calculation rule is the same as for free sets, this
shows that the sets X; and X5 must be free. O

This theorem is now the key ingredient to transfer freeness from sets to their
generated algebras.

THEOREM 7.12. Let (A, ) be a HOPS and consider subsets (X;)ier. For each
1 € I, let A; be the unital algebra generated by elements from X;. Then the
following are equivalent.

(1) The subsets (X;)ier are free of all orders.

(2) The subalgebras (A;)icr are free of all orders.

Proof. Since the cumulant k(V, 7)[ay, ..., a,] is a multi-linear functional in the
n variables a1, ..., a,, it is clear that taking sums of elements within the sets &
preserves freeness. What we have to see is that also taking products preserves
freeness. Since we can iterate our arguments, it suffices to see the following: if
Xy and X; are free, then also X; U{aga; | ap,a1 € X1} and X5 are free. Adding
one product after the other to A; and by Theorem 7.9 it is enough to show
that

o(U,y)aparby, azdbs . .., anby)
= Z oV, m)agar,as ... a,) - kW, 0)[b1,...,by]
V,m)-(W,o)=(U,7)
for all n € N, all (U,~) € PS(n) and all ag,ay,...,a, € Xy U{1}, by,...,by €
X, U{1}. Let us induce (U,7) € PS(1,...,n) to (U,7) € PS(0,1,...,n) by
requiring that W and # restricted to 1,...,n agree with W and 7, respectively,

and that 0 and 1 are in the same block of W and #(0) = 1. Then we can
calculate

QD(Z/{, 'y)[aoalbh (J,ng ce ,anbn] = (,D(Z/A{, ﬁ)[aoL a1b1, a2b27 ce ,anbn]
= > oV, m)[ag, a1, aa ..., an] - kW, 0)[1,b1, ..., bn).
Vm)-(W,0)=(UA)
By Proposition 7.8 we know that (W, o)[1,b1,...,by] is only different from
zero if W has 0 as a singleton, i.e., (W, o) has to be of the form
W={0}UW, o=(0)g,
with )
W,s6) e PS(1,...,n).
But then we must have that 7(0) = 1 and 0 and 1 must be in the same block
of V. Thus there is a unique (V',7’) so that (V,7) = (V',#’) and
(Vvﬂ-) : (Wa 0) = (Z/A{,’S/)
is equivalent to 3
V@) - (W,6) = U,).
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Note also that in this situation
kW, 0)[ag,a1,,...,a,] = n(VV, o)[b1,bay ..., by
and
oV, #ag, a1y, ..., an] = V', 7" )|agar, az, ..., a,).

So we can continue the above calculation as follows
o(U,vy)[aparbi,azbs ..., a,by]

= > oV, 7 agay, as ..., an] - KONV, 5)[b,. .., bnl,
V', 7)-(W,8)=U7)

which is exactly what we had to show. |

7.4. DISTRIBUTION OF ONE RANDOM VARIABLE. For the case where we restrict
our attention to just one random variable a € A we introduce the following
notation.

NOTATION 7.13. Let (A, ¢) be a HOPS and let a € A.
1) For, (V,7) € PS(n), we will write

@' (V,7) = (V) a, ..., a]

n-times
and

KV, m) = r(V,7)a,...,a].
——

n-times
2) A Young diagram is a A = (A1,...,N\) for some I € Nand A\q,..., N € N
with Ay > Ao > -+ > N. We put |A| := Ay + -+ + A; (the total number of
boxes of the Young diagram A). The set of all Young diagrams will be denoted
by Y.
3) The information about the higher order moments of a can also be parame-
terized by Young diagrams as follows: for A = (\q,...,\;) we put

¢ *(\) = (1 m) [ay. .. a] = (0™, ... aM)
———
n-times

where 7 is any permutation whose conjugacy class corresponds to A (i.e., 7 €
S)a| has cycles of length A1, ..., A;. The collection of all higher order moments
(©*(N)) ey is called the (higher order) distribution of a.

4) Similarly as for moments, we put

k(X)) == k(15 7) [a, ..., a],
——
n-times

where 7 is any permutation whose conjugacy class corresponds to A.

Remark 7.14. For first and second order moments and cumulants, we used in
Section 2 also the following notations:

Qp = @a(1n77n) a?n,n = ‘pa(lm-i-m’)/m,n)a
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and
HZ = Ha(1n77n) Kmmn = Ha(1m+n77m,n)7

where v,, and 7,, » are permutations with one cycle and two cycles, respectively.

The vanishing of mixed cumulants translates in this framework into the addi-
tivity of the cumulants for sums of free variables.

THEOREM 7.15. Let (A, ) be a HOPS and a,b € A free of all orders. Then
we have

KEFP(A) = K(A) + K°(N)
forall X €Y.

Proof. By the multilinearity of the cumulants and the vanishing of mixed cu-
mulants for free variable, we have for any n € N and 7w € S,,:
K1, 7m) = k(L,,m)[a+0b,...,a+b]
= k1, ma,...,a] + (1, 7)b, ..., 0]
= k"1, 7) + (1, 7).
|

8. RANDOM MATRICES, ITZYKSON-ZUBER INTEGRALS AND HIGHER ORDER
FREENESS

8.1. ASYMPTOTIC HIGHER ORDER FREENESS OF RANDOM MATRICES. Let us
now come back to our original motivation for our theory — the asymptotic
behavior of random matrices. In order to reformulate our calculations from
Section 4 in our language of higher order freeness we still need to define the
notion of “asymptotic freeness”.

DEFINITION 8.1. 1) Let (A, ) and, for each N € N, (Ay, ™)) be HOPSs.
Let I be an index set and for each i € I, a; € A and aEN) € Ay (N € N).
We say that the family (aEN) | i € I) converges, for N — oo, to (a; | i € I),
denoted by

(0")ier = (@ier,
if we have for all n € N and all polynomials pq,...,p, in |/|-many non-
commuting indeterminates that

(58)  lmpy oo </7£LN) (pl((az(‘N))iEI)a . apn((aEN))ieI))
= ¥n (pl((ai)iel)a e apn((ai)iel)) .
2) Let, for each N € N, (An, ™)) be HOPSs. Let I be an index set and,

for each ¢ € I and N € N, aEN) € An. We say that the sequence of families
(a(N))iej has a limit distribution of all orders if there exists a HOPS (A, p)

3

such that N
(@™ ier — (ai)ier,

for some a; € A (i € I)
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3) Let, for each N € N, (An, ™)) be HOPSs. Let I be an index set and, for
eachi el and N € N, aEN) € Ay. Let I = [;U---UIj be a decomposition of T
into k disjoint subsets. We say that the sets {aEN) |iei},..., {az(-N) | i€ I}
are asymptotically free of all orders if there exists a HOPS (A, ) such that

(az(‘N))iGI — (ai)ier,
for some a; € A (i € I) and such that the sets {a; | i € I1},...,{a; | i € I};}
are free of all orders in (A, ¢).

With this notation and by invoking Theorem 7.9 we can reformulate our main
result on random matrices, Theorem 4.4, in the following form.

THEOREM 8.2. Let My := My ® L™~ (2) be an ensemble of N x N-random

matrices. Define rescaled correlation functions ¢N) = (¢5LN))neN on My by

(T'LEN, Dla"'aDn EMN)
(59) GNN(Dy, ..., Dy) = kn(Te(Dy), ..., Te(D,)) - N>~
Assume that we have, for each N € N, subalgebras An, By € My such that

(1) An is a unitarily invariant ensemble,
(2) Ax and By are independent.

Let (AEN))ieI be a family of elements in (Ax,@"N)) which has a higher or-
der limit distribution and let (B](»N))jeJ (N € N) be a family of elements
m (BN,c,b(N)) which has a higher order limit distribution. Then the families

{AZ(-N) i€} and {Bj(-N) | j € J} are asymptotically free of all orders.
8.2. ITZYKSON-ZUBER INTEGRALS.

DEFINITION 8.3. For N x N matrices Ay, By their Itzykson-Zuber integral is
defined as the following function in z € C:

IZ(Z, AN; BN) = ]\772 IOg E(eZNTr(ANUBNU*)),
where U denotes a Haar unitary N x N-random matrix.

Consider now a sequence of such matrices Ay and By. Note that Ay and By
are non-random, thus all distributions of order higher than 1 vanish identically.
If we assume that Ay and By have a first order (eigenvalue) limit distribution
for N — oo, then it is known (see [Col03]) that each Taylor coefficient about
zero of z — IZ(z, Ay, By) admits a limit as N — oo. Note that the effect
of the Haar unitary random matrix in the above Itzykson-Zuber integral was
to make Ay and UBnU™* asymptotically free of all orders. We show now that
this kind of result extends also to the case of random matrices Ay and By,
and that our theory allows to identify the limit of the Taylor coefficients very
precisely.

THEOREM 8.4. Let A = (An)neny and B = (Bn)nen be two ensembles of
N x N-random matrices which are asymptotically free of all orders with respect
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to the rescaled correlation functions 3\N). Denote the corresponding limit-
ing distribution of (An)Nen by ©® and the corresponding limit distribution of
(BN)nen by @ Then, as formal power series in z, we have

(60)

X _n
: -2 2NTr(AnBn)] _ Z a b
ngnoo]\f log Ele | = Z o Z KV, ) -’ (W, 0).
n=1 (V,7),(W,c)ePS(n)
(V,m) (W,0)=(1n,e)
Proof. Recall that the logarithm of the exponential generating series of the mo-
ments of a random variable is the exponential generating series of the classical
cumulants of that variable. Thus we have

N2 .logE[e*NANEBN]

n

3 z
= N2 Z kn(NTr(AnyBy), ..., NTr(AyBy)) - -

n=1

Z’I’L

oo
= Z N2 <p(N)(1n,e)[ANBN, . ,ANBN] . H
n=1 '

By our assumption that Ay and By are asymptotically free with respect to
@%N) = N""2pN this converges to

Z:l o(1p,e)labd, ..., ab] - ot
where a and b are free of all orders with respect to ¢. Theorem 7.9 yields then

the assertion. 0

In a forthcoming work we will investigate the relevance of higher order freeness
for Itzykson-Zuber integrals more detailed, in particular, in comparison with
and extension of results of Zinn-Justin [ZJ99], Collins [Col03], and Guionnet
and Maida [GMO5].

9. APPENDIX: SURFACED PERMUTATIONS

In this appendix we will present a more geometrical view on partitioned per-
mutations. As we shall see in the following, partitioned permutations are just
special cases of “surfaced permutations”; in particular the results of this article
can be equivalently formulated in the language of surfaced permutations. On
the other hand, for the purpose of this article we do not need anything more
than just partitioned permutations and the Reader not interested in surfaced
permutations may skip this Section without much harm.

9.1. MOTIVATIONS. Our goal is to study factorizations of permutations, i.e.
solutions (71, ...,7) of the equation

V=T Tk,

where v € S, is some fixed permutation and my,...,m € S, are subject to
some additional constraints, depending on a particular context. Typically, one
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2

FIGURE 1. Example of a surfaced permutation. Its support is
equal to (1,3)(2)(4) € Ss. This surfaced permutation corre-
sponds to a partitioned permutation ({1,3,4}{2}, (1,3)(2)(4))

of these constrains concerns |m| + - - - + ||, the other one concerns the orbits
of the action of 7y, ..., 7.

It would be very useful to equip permutations 71, ..., 7, with some additional
structure in such a way that the product 7 -7 of the resulting enriched
permutations 71, ..., 7T, would carry both the information about the product
71+ T of permutations and the information about |mq| 4 - + |7k|. As we
shall see in the following, surfaced permutations provide an appropriate tool.

9.2. DEFINITION. We say that o = (S5,j) is a surfaced permutation of some
finite set A if S is a two—dimensional surface with a fixed orientation and with
a boundary 0S and if j : A — 0S5 is a injection. We can think about the
information carried by j as follows: some of the points on the boundary 05 are
distinguished and carry different labels from the set A. We also require that
every connected component of S carries at least one distinguished point. An
example of a surfaced permutation is presented on Figure 1.

We identify surfaced permutations (S1,j1), (Se,j2) of the same set A if there
exists a orientation preserving homeomorphism f : S; — Ss such that foj; =
j2. The set of surfaced permutations of set {1,...,n} will be denoted by §S,,.

9.3. SURFACED PERMUTATIONS AND THE USUAL PERMUTATIONS. Let (S,j) €
SS,; the boundary 0SS with the inherited orientation from S is just a collection
of oriented circles with some distinguished points labeled 1,...,n marked on
them. In this way we can define a permutation o € S,,, called the support of
(S, 7), the cycles of which correspond to connected components of 9.5, as it can
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5/

FI1cURE 2. Convention for splitting labels.

be seen on Figure 1. It is therefore a good idea to think that a surfaced per-
mutation is just a (usual) permutation o € S,, equipped with some additional
information carried by the surface S.

A surfaced permutation (S,j) € S8S, can be uniquely specified (up to the
equivalence relation) by its support o € S,, and by specifying the shape of the
connected components of S. The latter information is given by an equivalence
relation on cycles of o (each class corresponds to a connected component of \S)
and furthermore for each class of this relation we should specify the genus of
the corresponding connected component of S. Above it should be understood
that the genus of a surface S with a boundary is by definition equal to the genus
of a surface S’ without boundary obtained from S by gluing a disc to every
connected component of 95; for example both a disc and the lateral surface of
a cylinder have genus zero.

9.4. SURFACED PERMUTATIONS AND PARTITIONED PERMUTATIONS.

Among surfaced permutations a special class will be very important for our
purposes, namely surfaced permutations (.5, j) such that each connected com-
ponent of S has genus zero. It is easy to see that there is a bijection between
such surfaced permutations (.59, j) and partitioned permutations (V, o) given as
follows: o is the support of (S,j) and V is the partition given by connected
components of S.

9.5. PRODUCTS OF SURFACED PERMUTATIONS. Let surfaced permutations
(51,741), (S2,72) € SS, be given. On the boundary of Sy there are marked
points labeled by numbers 1,...,n; let us split every marked point k into a
consecutive pair of points k and k', as it is presented on the example from
Figure 2. In the second step, for each k € {1,...,n} we glue a small neighbor-
hood of the vertex k € 857 to a small neighborhood of the vertex k' € S5 in
such a way that the orientations of S; and S5 coincide. In this way we obtain
a new surface S which has marked points on its boundary 9S and these are

DOCUMENTA MATHEMATICA 12 (2007) 1-70



68 COLLINS, MINGO, SNIADY, SPEICHER

exactly the vertices from 0S5 labeled 1, ..., n; we denote the resulting surfaced
permutation by (S, j) and we call it a product (Si,71)(Se,j2) of the original
surfaced permutations. This choice of gluing surfaces S7 and S5 implies that
the support of (51, j1)(Ss2, j2) is equal to the product of the support of (Si, j1)
and the support of (S2,j2).

It is not difficult to explain now the definition of the product of partitioned
permutations (Definition 4.9): we treat partitioned permutations as surfaced
permutations and compute their product; if the genus of the resulting surface
is zero we can identify it with another partitioned permutation, otherwise we
set the product to be zero.

It is not difficult to show that for surfaced permutations the product is asso-
ciative and the associativity of the product of partitioned permutations is a
simple corollary.
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