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1. Introduction

Let i : A → B be a closed embedding of finite CW complexes. One useful
fact is that A admits a cofinal system of neighborhoods T in B with A→ T a
deformation retract. This is often used in the case where B is a differentiable
manifold, showing for example that A has the homotopy type of the differen-
tiable manifold T . This situation occurs in algebraic geometry, for instance
in the case of the inclusion of the special fiber in a degeneration of smooth
varieties X → C over the complex numbers.
To some extent, one has been able to mimic this construction in purely algebraic
terms. The rigidity theorems of Gillet-Thomason [14], extended by Gabber
(details appearing a paper of Fujiwara [13]) indicated that, at least through
the eyes of torsion étale sheaves, the topological tubular neighborhood can be
replaced by the Hensel neighborhood. However, basic examples of non-torsion
phenomena, even in the étale topology, show that the Hensel neighborhood
cannot always be thought of as a tubular neighborhood, perhaps the simplest
example being the sheaf Gm.1

Our object in this paper is to construct an algebraic version of the tubular
neighborhood which has the basic properties of the topological construction,
at least for a reasonably large class of cohomology theories. It turns out that

1If O is a local ring with residue field k and maximal ideal m, the surjection Gm(O) →

Gm(k) has kernel (1 + m)×, which is in general non-zero, even for O Hensel
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a “homotopy invariant” version of the Hensel neighborhood does the job, at
least for theories which are themselves homotopy invariant. If one requires in
addition that the given cohomology theory has a Mayer-Vietoris property for
the Nisnevich topology, then one also has an algebraic version of the punctured
tubular neighborhood. We extend these constructions to the case of a (reduced)
strict normal crossing subscheme by a Mayer-Vietoris procedure, giving us
the tubular neighborhood and punctured tubular neighborhood of a normal
crossing subscheme of a smooth k-scheme.
Morel and Voevodsky have constructed an algebro-geometric version of homo-
topy theory, in the setting of presheaves of spaces or spectra on the category
of smooth varieties over a reasonable base scheme B; we concentrate on the
A1-homotopy category of spectra, SHA1(B). For a map f : X → Y , they
construct a pair of adjoint functors

Rf∗ : SHA1(X)→ SHA1(Y )

Lf∗ : SHA1(Y )→ SHA1(X).

If we have a closed immersion i : W → X with open complement j : U → X,
then one has the functor

Li∗Rj∗ : SHA1(U)→ SHA1(W )

One of our main results is that, in case W is a strict normal crossing subscheme
of a smooth X, the restriction of Li∗Rj∗E to a Zariski presheaf on W can be
viewed as the evaluation of E on the punctured tubular neighborhood of W in
X.
Consider a morphism p : X → A1 and take i : W → X to be the inclusion
of p−1(0). Following earlier constructions of Spitzweck [43], Ayoub has con-
structed a “unipotent specialization functor” in the motivic setting, essentially
(in the case of a semi-stable degeneration) by evaluating Li∗Rj∗E on a cosim-
plicial version of the appropriate path space on Gm with base-point 1. Applying
the same idea to our tubular neighborhood construction gives a model for this
specialization functor, again only as a Zariski presheaf on p−1(0).
Ayoub has also defined a motivic monodromy operator and monodromy se-
quence involving the unipotent specialization functor and the functor Li∗Rj∗,
for theories with Q-coefficients that satisfy a certain additional condition (see
definition 9.2.2). We give a model for this construction by combining our
punctured tubular neighborhood with a Q-linear version of the Gm-path space
mentioned above. We conclude with an application of our constructions to the
moduli spaces of smooth curves and a construction of a specialization func-
tor for category of mixed Tate motives, which in some cases yields a purely
algebraic construction of tangential base-points. Of course, the construction
of Ayoub, when restricted to the triangulated category of Tate motives, also
gives such a specialization functor, but we hope that the explicit nature of our
construction will be useful for applications.
We have left to another paper the task of checking the compatibilities of our
constructions with others via the appropriate realization functor. As we have
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already mentioned, our punctured tubular neighborhood construction is com-
parable with the motivic version of the functor Li∗Rj∗ for the situation of a
normal crossing scheme i : D → X with open complement j : X \ D → X;
this should imply that it is a model for the analogous functor after realization.
Similarly, our limit cohomology construction should transform after realization
to the appropriate version of the sheaf of vanishing cycles, at least in the case of
a semi-stable degeneration, and should be comparable with the constructions
of Rappaport-Zink [37] as well as the limit mixed Hodge structure of Katz [22]
and Steenbrink [44]. Our specialization functor for Tate motives should be
compatible with the Betti, étale and Hodge realizations; similarly, realization
functors applied to our limit motive should yield for example the limit mixed
Hodge structure. We hope that our rather explicit construction of the limiting
motive will be useful in giving a geometric view to the limit mixed Hodge struc-
ture of a semi-stable degeneration but we have not attempted an investigation
of these issues in this paper.
My interest in this topic began as a result of several discussions on limit mo-
tives with Spencer Bloch and Hélène Esnault, whom I would like to thank for
their encouragement and advice. I would also like to thank Hélène Esnault for
clarifying the role of the weight filtration leading to the exactness of Clemens-
Schmidt monodromy sequence (see Remark 9.3.6). An earlier version of our
constructions used an analytic (i.e. formal power series) neighborhood instead
of the Hensel version now employed; I am grateful to Fabien Morel for suggest-
ing this improvement. Finally, I want to thank Joseph Ayoub for explaining
his construction of the nearby cycles functor; his comments suggested to us
the use of the cosimplicial path space in our construction of limit cohomology.
In addition, Ayoub noticed a serious error in our first attempt at construct-
ing the monodromy sequence; the method used in this version is following his
suggestions and comments. Finally, we would like to thank the referee for giv-
ing unusually thorough and detailed comments and suggestions, which have
substantially improved this paper. In particular, the material in sections 7
comparing our construction with the categorical ones of Morel-Voevodsky, as
well as the comparison with Ayoub’s specialization functor and monodromy
sequence in section 8.3 and section 9 was added following the suggestion of the
referee, who also supplied the main ideas for the proofs.

2. Model structures and other preliminaries

2.1. Presheaves of simplicial sets. We recall some facts on the model
structures in categories of simplicial sets, spectra, associated presheaf categories
and certain localizations. For details, we refer the reader to [17] and[19].
For a small category I and category C, we will denote the category of functors
from I to C by CI .
We let Ord denote the category with objects the finite ordered sets [n] :=
{0, . . . , n} (with the standard ordering) and morphisms the order-preserving
maps of sets. For a category C, the functor categories COrd, COrdop

are the
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categories of cosimplicial objects of C, resp. simplicial objects of C. For C =

Sets, we have the category of simplicial sets, Spc := SetsOrdop

, and similarly
for C the category of pointed sets, Sets∗, the category of pointed simplicial sets

Spc∗ := SetsOrdop

∗ .
We give Spc and Spc∗ the standard model structures: cofibrations are
(pointed) monomorphisms, weak equivalences are weak homotopy equivalences
on the geometric realization, and fibrations are detemined by the right lift-
ing property (RLP) with respect to trivial cofibrations; the fibrations are then
exactly the Kan fibrations. We let |A| denote the geometric realization, and
[A,B] the homotopy classes of (pointed) maps |A| → |B|.
For an essentially small category C, we let Spc(C) be the category of presheaves
of simplicial sets on C. We give Spc(C) the so-called injective model structure,
that is, the cofibrations and weak equivalences are the pointwise ones, and the
fibrations are determined by the RLP with respect to trivial cofibrations. We
let HSpc(C) denote the associated homotopy category (see [17] for details on
these model structures for Spc and Spc(C)).

2.2. Presheaves of spectra. Let Spt denote the category of spectra. To
fix ideas, a spectrum will be a sequence of pointed simplicial sets E0, E1, . . .
together with maps of pointed simplicial sets ǫn : S1 ∧ En → En+1. Maps of
spectra are maps of the underlying simplicial sets which are compatible with
the attaching maps ǫn. The stable homotopy groups πsn(E) are defined by

πsn(E) := lim
m→∞

[Sm+n, Em].

The category Spt has the following model structure: Cofibrations are maps
f : E → F such that E0 → F0 is a cofibration, and for each n ≥ 0, the map

En+1

∐

S1∧En

S1 ∧ Fn → Fn+1

is a cofibration. Weak equivalences are the stable weak equivalences, i.e., maps
f : E → F which induce an isomorphism on πsn for all n. Fibrations are
characterized by having the RLP with respect to trivial cofibrations. We write
SH for the homotopy category of Spt.
For X ∈ Spc∗, we have the suspension spectrum Σ∞X := (X,ΣX,Σ2X, . . .)
with the identity bonding maps. Dually, for a spectrum E := (E0, E1, . . .) we
have the 0-space Ω∞E := limn ΩnEn. These operations form a Quillen pair
of adjoint functors (Σ∞,Ω∞) between Spc∗ and Spt, and thus induce adjoint
functors on the homotopy categories.
Let C be a category. A functor E : Cop → Spt is called a presheaf of spectra on
C.
We use the following model structure on the category of presheaves of spec-
tra (see [19]): Cofibrations and weak equivalences are given pointwise, and
fibrations are characterized by having the RLP with respect to trivial cofibra-
tions. We denote this model category by Spt(C), and the associated homotopy
category by HSpt(C).
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As a particular example, we have the model category of simplicial spectra

SptOrdop

= Spt(Ord). We have the total spectrum functor

Tot : Spt(Ord)→ Spt

which preserves weak equivalences. The adjoint pair (Σ∞,Ω∞) extend point-
wise to define a Quillen pair on the presheaf categories and an adjoint pair on
the homotopy categories.
Let B be a noetherian separated scheme of finite Krull dimension. We let
Sm/B denote the category of smooth B-schemes of finite type over B. We
often write Spc(B) and HSpc(B) for Spc(Sm/B) and HSpc(Sm/B), and
write Spt(B) and HSpt(B) for Spt(Sm/B) and HSpt(Sm/B).
For Y ∈ Sm/B, a subscheme U ⊂ Y of the form Y \ ∪αFα, with {Fα} a
possibly infinite set of closed subsets of Y , is called essentially smooth over B;
the category of essentially smooth B-schemes is denoted Smess.

2.3. Local model structure. If the category C has a topology, there is often
another model structure on Spc(C) or Spt(C) which takes this into account. We
consider the case of the small Nisnevich site XNis on a scheme X (assumed to
be noetherian, separated and of finite Krull dimension), and the big Nisnevich
sites Sm/BNis or Sch/BNis, as well as the Zariski versions XZar, Sm/BZar,
etc. We describe the Nisnevich version for spectra below; the definitions and
results for the Zariski topology and for spaces are exactly parallel.

Definition 2.3.1. A map f : E → F of presheaves of spectra on XNis is a local
weak equivalence if the induced map on the Nisnevich sheaf of stable homotopy
groups f∗ : πsm(E)Nis → πsm(F )Nis is an isomorphism of sheaves for all m. A
map f : E → F of presheaves of spectra on Sm/BNis or Sch/BNis is a local
weak equivalence if the restriction of f to XNis is a local weak equivalence for
all X ∈ Sm/B or X ∈ Sch/B. �

The Nisnevich local model structure on the category of presheaves of spectra
on XNis has cofibrations given pointwise, weak equivalences the local weak
equivalences and fibrations are characterized by having the RLP with re-
spect to trivial cofibrations. We write Spt(XNis) for this model category, and
HSpt(XNis) for the associated homotopy category. The Nisnevich local model
categories Spt(Sm/BNis) and Spt(Sch/BNis), with homotopy categories
HSpt(Sm/BNis) and HSpt(Sch/BNis), are defined similarly. A similar local-
ization gives model categories of presheaves of spaces Spc(XNis), Spc(XZar),
Spc(Sm/BNis), etc., and homotopy categories HSpc(XNis), HSpc(XZar),
HSpc(Sm/BNis), etc. We also have the adjoint pair (Σ∞,Ω∞) in this set-
ting. For details, we refer the reader to [19].
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Remark 2.3.2. Let E be in Spt(Sm/BNis), and let

W ′ i′ //

��

Y ′

f

��

W
i

// X

be an elementary Nisnevich square, i.e., f is étale, i : W → X is a closed
immersion, the square is cartesian, and W ′ → W is an isomorphism, with X
and X ′ in Sm/B (see [34, Definition 1.3, pg. 96]) .
If E is fibrant in Spt(Sm/BNis) then E transforms each elementary Nisnevich
square to a homotopy cartesian square in Spt. Conversely, suppose that E
transforms each elementary Nisnevich square to a homotopy cartesian square
in Spt. Then E is quasi-fibrant, i.e., for all Y ∈ Sm/B, the canonical map
E(Y )→ Efib(Y ), where Efib is the fibrant model of E, is a weak equivalence.
See [19] for details.
If we define an elementary Zariski square as above, with X ′ → X an open
immersion, the same holds in the model category Spt(Sm/BZar). More pre-
cisely, one can show (see e.g. [45]) that, if E transforms each elementary Zarisk
square to a homotopy cartesian square in Spt, then E satisfies Mayer-Vietoris
for the Zariski topology: if X ∈ Sm/B is a union of Zariski open subschemes
U and V , then the evident sequence

E(X)→ E(U)⊕ E(V )→ E(U ∩ V )

is a homotopy fiber sequence in SH. �

Remark 2.3.3. Let C be a small category with an initial object ∅ and admiting
finite coproducts over ∅, denoted X ∐ Y . A functor E : Cop → Spt is called
additive if for each X,Y in C, the canonical map

E(X ∐ Y )→ E(X)⊕ E(Y )

in SH is an isomorphism. It is easy to show that if E ∈ Spt(Sm/B) satisfies
Mayer-Vietoris for the Zariski topology, and E(∅) ∼= 0 in SH, then E is additive.
From now on, we will assume that all our presheaves of spectra E satisfy
E(∅) ∼= 0 in SH. �

2.4. A1-local structure. One can perform a Bousfield localization on
Spc(Sm/BNis) or Spt(Sm/BNis) so that the maps Σ∞X × A1

+ → Σ∞X+

induced by the projections X × A1 → X become weak equivalences. We call
the resulting model structure the Nisnevich-local A1-model structure, denoted
SpcA1(Sm/BNis) or SptA1(Sm/BNis). One has the Zariski-local versions as
well. We denote the homotopy categories for the Nisnevich version by HA1(B)
(for spaces) and SHA1(B) (for spectra). For the Zariski versions, we indicate
the topology in the notation. We also have the adjoint pair (Σ∞,Ω∞) in this
setting. For details, see [30, 31, 34].
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2.5. Additional notation. Given W ∈ Sm/S, we have restriction functors

Spc(S)→ Spc(WZar)

Spt(S)→ Spt(WZar);

we write the restriction of some E ∈ Spc(S) to Spc(WZar) as E(WZar). We
use a similar notation for the restriction of E to Spt(WZar), or for restrictions
to WNis. More generally, if p : Y → W is a morphism in Sm/S, we write
E(Y/WZar) for the presheaf U 7→ E(Y ×W U) on WZar.
For Z ⊂ Y a closed subset, Y ∈ Sm/S and for E ∈ Spc(S) or E ∈ Spt(S),
we write EZ(Y ) for the homotopy fiber of the restriction map

E(Y )→ E(Y \ Z).

We define the presheaf EZZar(Y ) by setting, for U ⊂ Z a Zariski open sub-
scheme with closed complement F ,

EZZar(Y )(U) := EU (Y \ F ).

A co-presheaf on a category C with values in A is just an A-valued preheaf on
Cop.
As usual, we let ∆n denote the algebraic n-simplex

∆n := Spec Z[t0, . . . , tn]/
∑

i

ti − 1,

and ∆∗ the cosimplicial scheme n 7→ ∆n. For a scheme X, we have ∆n
X :=

X ×∆n and the cosimplicial scheme ∆∗
X .

Let B be a scheme as above. For E ∈ Spc(B) or in Spt(B), we say that E is
homotopy invariant if for allX ∈ Sm/B, the pull-back map E(X)→ E(X×A1)
is a weak equivalence (resp., stable weak equivalence). We say that E satisfies
Nisnevich excision if E transforms elementary Nisnevich squares to homotopy
cartesian squares.

3. Tubular neighborhoods for smooth pairs

Let i : W → X be a closed immersion in Sm/k. In this section, we construct the

tubular neighborhood τ X̂ǫ (W ) of W in X as a functor from WZar to cosimplicial

pro-k-schemes. Given E ∈ Spc(k), we can evaluate E on τ X̂ǫ (W ), yielding the

presheaf of spaces E(τ X̂ǫ (W )) on WZar, which is our main object of study.

3.1. The cosimplicial pro-scheme τ X̂ǫ (W ). For a closed immersion W → T
in Sm/k, let TWNis be the category of Nisnevich neighborhoods of W in T , i.e.,
objects are étale maps p : T ′ → T of finite type, together with a section
s : W → T ′ to p over W . Morphisms are morphisms over T which respect the
sections. Note that TWNis is a left-filtering essentially small category.

Sending (p : T ′ → T, s : W → T ′) to T ′ ∈ Sm/k defines the pro-object T̂hW of
Sm/k; the sections s : W → T ′ give rise to a map of the constant pro-scheme

W to T̂hW , denoted

îW : W → T̂hW .
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Given a k-morphism f : S → T , and closed immersions iV : V → S, iW : W →
T such that f ◦ iV factors through iW (by f̄ : V →W ), we have the pull-back
functor

f∗ : TWNis → SVNis,

f∗(T ′ → T, s : W → T ′) := (T ′ ×T S, (s ◦ f̄ , iV )).

This gives us the map of pro-objects fh : ŜhV → T̂hW , so that sending W → T

to T̂hW and f to fh becomes a pseudo-functor.

We let fh : ŜhV → T̂hW denote the induced map on pro-schemes. If f happens
to be a Nisnevich neighborhood of W → X (so f̄ : V →W is an isomorphism)

then fh : ŜhV → T̂hW is clearly an isomorphism.

Remark 3.1.1. The pseudo-functor (W → T ) 7→ T̂hW can be rectified to an
honest functor by first replacing TWNis with the cofinal subcategory TWNis,0 of

neighborhoods T ′ → T , s : W → T ′ such that each connected component of T ′

has non-empty intersection with s(W ). One notes that TWNis,0 has only identity

automorphisms, so we replace TWNis,0 with a choice of a full subcategory TWNis,00

giving a set of representatives of the isomorphism classes in TWNis,0. Given a

map of pairs of closed immersions f : (V
iV−→ S) → (W

iW−−→ T ) as above,
we modify the pull-back functor f∗ defined above by passing to the connected
component of (s ◦ f̄ , iV )(V ) in T ′ ×T S. We thus have the honest functor

(W → T ) 7→ TWNis,00 which yields an equivalent pro-object T̂hW .
As pointed out by the referee, one can also achieve strict functoriality by rec-
tifying the fiber product; in any case, we will use a strictly functorial version
from now on without comment. �

For a closed immersion i : W → X in Sm/k, set ∆̂n
X,W := (∆̂n

X)h∆n
W

. The

cosimplicial scheme

∆∗
X : Ord→ Sm/k

[n] 7→ ∆n
X

thus gives rise to the cosimplicial pro-scheme

∆̂∗
X,W : Ord→ Pro-Sm/k

[n] 7→ ∆̂n
X,W

The maps î∆n
W

: ∆n
W → (∆̂n

X)h∆n
W

give the closed immersion of cosimplicial

pro-schemes
îW : ∆∗

W → ∆̂∗
X,W .

Also, the canonical maps πn : ∆̂n
X,W → ∆n

X define the map

πX,W : ∆̂∗
X,W → ∆∗

X .

Let (p : X ′ → X, s : W → X ′) be a Nisnevich neighborhood of (W,X). The
map

p : ∆̂n
X′,W → ∆̂n

X,W
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is an isomorphism respecting the closed immersions îW . Thus, sending a Zariski
open subscheme U ⊂ W with complement F ⊂ W ⊂ X to ∆̂n

X\F,U defines a

co-presheaf ∆̂n
X̂,WZar

on WZar with values in pro-objects of Sm/k; we write

τ X̂ǫ (W ) for the cosimplicial object

n 7→ ∆̂n
X̂,WZar

.

We use the X̂ in the notation because the co-presheaf ∆̂n
X̂,WZar

is depends only

on the Nisnevich neighborhood of W in X.
Let ∆∗

WZar
denote the co-presheaf on WZar defined by U 7→ ∆∗

U . The closed

immersions îU define the natural transformation

îW : ∆∗
WZar

→ τ X̂ǫ (W ).

The maps πX\F,W\F for F ⊂W a Zariski closed subset define the map

πX,W : τ X̂ǫ (W )→ ∆∗
X|WZar

where X|WZar is the co-presheaf W \ F 7→ X \ F on WZar. We let

(3.1.1) π̄X,W : τ X̂ǫ (W )→ X|WZar

denote the composition of πX.W with the projection ∆∗
X|WZar

→ X|WZar.

3.2. Evaluation on spaces. Let i : W → T be a closed immersion in Sm/k.

For E ∈ Spc(T ), we have the space E(T̂Wh ), defined by

E(T̂hW ) := colim
(p:T ′→T,s:W→T ′)∈TW

Nis

E(T ′).

Given a Nisnevich neighborhood (p : T ′ → T, s : W → T ′), we have the
isomorphism

p∗ : E(T̂hW )→ E(T̂ ′
h

s(W )).

Thus, for each open subscheme j : U → W , we may evaluate E on the

cosimplicial pro-scheme τ X̂ǫ (W )(U), giving us the presheaf of simplicial spectra

E(τ X̂ǫ (W )) on WZar:

E(τ X̂ǫ (W ))(U) := E(τ X̂ǫ (W )(U)).

Now suppose that E is in Spc(k). The map îW : ∆∗
WZar

→ τ X̂ǫ (W )) gives us
the map of presheaves on WZar

i∗W : E(τ X̂ǫ (W ))→ E(∆∗
WZar

).

Similarly, the map πX,W gives the map of presheaves on WZar

π∗
X,W : E(∆∗

X|WZar
)→ E(τ X̂ǫ (W )).

The main result of this section is
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Theorem 3.2.1. Let E be in Spc(k). Then the map i∗W : E(τ X̂ǫ (W )) →
E(∆∗

WZar
) is a weak equivalence for the Zariski-local model structure, i.e., for

each point w ∈ W , the map i∗W,w on the stalks at w is a weak equivalence of
the associated total space.

3.3. Proof of Theorem 3.2.1. The proof relies on two lemmas.

Lemma 3.3.1. Let i : W → X be a closed immersion in Sm/k, giving the closed
immersion A1

W → A1
X . For t ∈ A1(k), we have the section it : W → A1

W ,
it(w) := (w, t). Then for each E ∈ Spc(k), the maps

i∗0, i
∗
1 : E(∆̂∗

A1
X
,A1

W
)→ E(∆̂∗

X,W )

are homotopic.

Proof. This is just an adaptation of the standard triangulation argument. For
each order-preserving map g = (g1, g2) : [m]→ [1]× [n], let

Tg : ∆m → ∆1 ×∆n,

be the affine-linear extension of the map on the vertices

vi 7→ (vg1(i), vg2(i)).

idX × Tg induces the map

T̂g : ∆̂m
X,W → ( ̂∆1 ×∆n

X)h∆1×∆n
W

We note that the isomorphism (t0, t1) 7→ t0 of (∆1, v1, v0) with (A1, 0, 1) induces
an isomorphism of cosimplicial schemes

∆̂∗
A1

X
,A1

W

∼= ( ̂∆1 ×∆∗
X)h∆1×∆∗

W
.

The maps
T̂ ∗
g : E(∆̂n

A1
X
,A1

W
)→ E(∆̂m

X,W )

induce a simplicial homotopy T between i∗0 and i∗1. Indeed, we have the simpli-
cial sets ∆[n] : HomOrd(−, [n]). Let (∆1 ×∆∗)∆[1] be the cosimplicial scheme

n 7→ (∆1 ×∆n)∆[1]([n]) :=
∏

s∈∆[1]([n])

∆1 ×∆n

where the product is ×Z. The inclusions δ0, δ1 : [0]→ [1] thus induce the maps
of cosimplicial schemes

δ∗0 , δ
∗
1 : (∆1 ×k ∆∗)∆[1] → ∆1 ×k ∆∗.

The maps Tg satisfy the identities necessary to define a map of cosimplicial
schemes

T : ∆∗ → (∆1 ×∆∗)∆[1].

with δ∗0 ◦ T = i0, δ
∗
1 ◦ T = i1. Applying the functor h, we see that the maps T̂g

define the map of cosimplicial schemes

T̂ : ∆̂∗
X,W → (∆̂∗

A1
X
,A1

W
)∆[1],

with δ∗0 ◦ T̂ = î0, δ
∗
1 ◦ T̂ = î1; we then apply E. �
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Lemma 3.3.2. Take W ∈ Smk. Let X = AnW and let i : W → X be the

0-section. Then i∗W : E(∆̂∗
X,W )→ E(∆∗

W ) is a homotopy equivalence.

Proof. Let p : X →W be the projection, giving the map

p̂ : ∆̂∗
X,W → ∆̂∗

W,W = ∆∗
W

and p̂∗ : E(∆∗
W )→ E(∆̂∗

X,W ). Clearly î∗W ◦ p̂
∗ = id, so it suffices to show that

p̂∗ ◦ î∗W is homotopic to the identity.
For this, we use the multiplication map µ : A1 × An → An,

µ(t;x1, . . . , xn) := (tx1, . . . , txn).

The map µ× id∆∗ induces the map

µ̂ : ( ̂A1 × AnW ×∆∗)hA1×0W ×∆∗ → ( ̂AnW ×∆∗)h0W ×∆∗

with µ̂ ◦ î0 = îW ◦ p̂ and µ̂ ◦ î1 = id. Since î∗0 and î∗1 are homotopic by
Lemma 3.3.1, the proof is complete. �

To complete the proof of Theorem 3.2.1, take a point w ∈ W . Then replacing
X with a Zariski open neighborhood of w, we may assume there is a Nisnevich
neigborhood X ′ → X, s : W → X ′ of W in X such that W → X ′ is in
turn a Nisnevich neighborhood of the zero-section W → AnW , n = codimXW .

Since E(∆̂n
X,W ) is thus weakly equivalent to E(∆̂n

An
W
,0W

), the result follows

from Lemma 3.3.2.

Corollary 3.3.3. Suppose that E ∈ Spc(Sm/k), resp. E ∈ Spt(Sm/k) is
homotopy invariant. Then for i : W → X a closed immersion, there is a
natural isomorphism in HSpc(WZar), resp. HSpt(WZar)

E(τ X̂ǫ (W )) ∼= E(τ N̂i
ǫ (0W ))

Here Ni is the normal bundle of the immersion i, and 0W ⊂ Ni is the 0-section.

Proof. This follows directly from Theorem 3.2.1: Since E is homotopy invari-
ant, the canonical map

E(T )→ E(∆∗
T )

is a weak equivalence for each T ∈ Sm/k. The desired isomorphism in the
respective homotopy category is constructed by composing the isomorphisms

E(τ X̂ǫ (W ))
i∗W−−→ E(∆∗

WZar
)← E(WZar)

= E(0WZar)→ E(∆∗
0WZar

)
i∗0W←−− E(τ N̂i

ǫ (0W )).

�

4. Punctured tubular neighborhoods

Our real interest is not in the tubular neighborhood τ X̂ǫ (W ), but in the punc-

tured tubular neighborhood τ X̂ǫ (W )0. In this section, we define this object and
discuss its basic properties.
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4.1. Definition of the punctured neighborhood. Let i : W → X be
a closed immersion in Sm/k. We have the closed immersion of cosimplicial
pro-schemes

î : ∆∗
W → ∆̂∗

X,W

giving for each n the open complement ∆̂n
X\W := ∆̂n

X,W \∆n
W . We may pass

to the cofinal subcategory of Nisnevich neighborhoods of ∆n
W in ∆n

X ,

(p : T → ∆n
X , s : ∆n

W → T )

for which the diagram

T \ s(∆n
W ) //

��

T

��

∆n
X \∆n

W
// ∆n

X

is cartesian, giving us the cosimplicial proscheme n 7→ ∆̂n
X\W and the map

ĵ : ∆̂∗
X\W → ∆̂∗

X,W ,

which defines the “open complement” ∆̂∗
X\W of ∆∗

W in ∆̂∗
X,W . Extending this

construction to all open subschemes of X, we have the co-presheaf on WZar,

U = W \ F 7→ ∆̂∗
(X\F )\U ,

which we denote by τ X̂ǫ (W )0.
Let ∆n

(X\W )Zar
be the constant co-presheaf on WZar with value ∆n

X\W , giving

the cosimplicial co-presheaf ∆∗
(X\W )Zar

. The maps

ĵU : ∆̂∗
(X\F )\U → ∆̂∗

(X\F ),U

define the map ĵ : τ X̂ǫ (W )0 → τ X̂ǫ (W ). The maps ∆̂∗
U\W∩U → ∆∗

X\W give us

the map

π : τ X̂ǫ (W )0 → ∆∗
X\W

where we view ∆∗
X\W as the constant co-sheaf on WZar.

To give a really useful result on the presheaf E(τ X̂ǫ (W )0), we will need to
impose additional conditions on E. These are

(1) E is homotopy invariant
(2) E satisfies Nisnevich. excision

One important consequence of these properties is the purity theorem of Morel-
Voevodsky:

Theorem 4.1.1 (Purity [34, theorem 2.23]). Suppose E ∈ Spt(k) is homotopy
invariant and satisfies Nisnevich excision. Let i : W → X be a closed immer-
sion in Sm/k and s : W → Ni the 0-section of the normal bundle. Then there
is an isomorphism in HSpt(WZar)

EWZar(X)→ EWZar(Ni)

�
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Let E(X|WZar) be the presheaf on WZar

W \ F 7→ E(X \ F )

and E(X \W ) the constant presheaf.
Let

res : E(X|WZar)→ E(τ X̂ǫ (W ))

res0 : E(X \W )→ E(τ X̂ǫ (W )0)

be the pull-back by the natural maps τ X̂ǫ (W )(W \ F ) → X \ F , τ X̂ǫ (W )0 →

X\W . Let E∆∗
W (τ X̂ǫ (W )) ∈ Spt(WZar) be the homotopy fiber of the restriction

map

ĵ : E(τ X̂ǫ (W ))→ E(τ X̂ǫ (W )0).

The commutative diagram in Spt(WZar)

E(X|WZar)
j∗

//

res

��

E(X \W )

res0

��

E(τ X̂ǫ (W ))
ĵ∗

// E(τ X̂ǫ (W )0)

induces the map of homotopy fiber sequences

EWZar(X) //

ψ

��

E(X|WZar)
j∗

//

res

��

E(X \W )

res0

��

E∆∗
W (τ X̂ǫ (W )) // E(τ X̂ǫ (W ))

j∗
// E(τ X̂ǫ (W )0)

We can now state the main result for E(τ X̂ǫ (W )0).

Theorem 4.1.2. Suppose that E ∈ Spt(k) is homotopy invariant and satisfies
Nisnevich excision. Let i : W → X be a closed immersion in Sm/k. Then the
map ψ is a Zariski local weak equivalence.

Proof. Let i∆∗ : ∆∗
W → ∆∗

X be the immersion id × i. For U = W \ F ⊂ W ,

τ X̂ǫ (W )0(U) is the cosimplicial pro-scheme with n-cosimplices

τ X̂ǫ (W )0(U)n = ∆̂n
X\F,U \∆n

U

so by Nisnevich excision we have the natural isomorphism

α : E∆∗
WZar (∆∗

X|WZar
)→ E∆∗

W (τ X̂ǫ (W )),

where E∆∗
WZar (∆∗

X|WZar
)(W \F ) is the total spectrum of the simplicial spectrum

n 7→ E∆n
W\F (∆n

X\F ).

The homotopy invariance of E implies that the pull-back

EW\F (X \ F )→ E∆n
W\F (∆n

X\F )
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is a weak equivalence for all n, so we have the weak equivalence

β : EWZar(X)→ E∆∗
WZar (∆∗

X|WZar
).

It follows from the construction that ψ = αβ, completing the proof. �

Corollary 4.1.3. There is a distinguished triangle in HSpt(WZar)

EWZar(X)→ E(WZar)→ E(τ X̂ǫ (W )0)

Proof. By Theorem 3.2.1, the map î∗ : E(τ X̂ǫ (W )) → E(∆∗
WZar

) is a weak
equivalence; using homotopy invariance again, the map

E(WZar)→ E(∆∗
WZar

)

is a weak equivalence. Combining this with Theorem 4.1.2 yields the result. �

For homotopy invariant E ∈ Spt(k), we let

φE : E(τ N̂i
ǫ (0W ))→ E(τ X̂ǫ (W )).

be the isomorphism in HSpt(WZar) given by corollary 3.3.3.

Corollary 4.1.4. Suppose that E ∈ Spt(k) is homotopy invariant and satis-
fies Nisnevich excision. Let i : W → X be a closed immersion in Sm/k and
let N0

i = Ni \ 0W .

(1) The restriction maps

res : E(Ni/WZar)→ E(τ N̂i
ǫ (0W ))

res0 : E(N0
i /WZar)→ E(τ N̂i

ǫ (0W )0)

are weak equivalences in Spt(WZar).

(2) There is a canonical isomorphism in HSpt(WZar)

φ0
E : E(τ N̂i

ǫ (0W )0)→ E(τ X̂ǫ (W )0)

(3) Consider the diagram (in HSpt(WZar)):

E0WZar(Ni) // E(Ni/WZar)

resE

��

// E(N0
i /WZar)

res0E
��

E0WZar(Ni) //

π

��

E(τ N̂i
ǫ (0W ))

ˆjN
∗

//

φE

��

E(τ N̂i
ǫ (0W )0)

φ0
E

��

EWZar(X) // E(τ X̂ǫ (W ))
ĵ∗

// E(τ X̂ǫ (W )0)

EWZar(X) // E(X|WZar)

resE

OO

j∗
// E(X \W )

res0E

OO

The first and last rows are the homotopy fiber sequences defining the presheaves
E0WZar(Ni) and EWZar(X), respectively, the second row and third rows are the
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distinguished triangles of Theorem 4.1.2, and π is the Morel-Voevodsky purity
isomorphism. Then this diagram commutes and each triple of vertical maps
defines a map of distinguished triangles.

Proof. It follows directly from the weak equivalence (in Theorem 4.1.2) of the
homotopy fiber of

ĵ∗ : E(τ X̂ǫ (W ))→ E(τ X̂ǫ (W )0)

with EWZar(X) that the triple (id, resE , res
0
E) defines a map of distinguished

triangles. The same holds for the map of the first row to the second row; we
now verify that this latter map is an isomorphism of distinguished triangles.
For this, let s : W → Ni be the zero-section. We have the isomorphism

i∗W : E(τ N̂i
ǫ (0W ))→ E(WZar) defined as the diagram of weak equivalences

E(τ N̂i
ǫ (0W ))

i∗∆∗
WZar−−−−−→ E(∆∗

WZar
)
ι0∗←−− E(WZar).

From this, it is easy to check that the diagram

E(Ni/WZar)
resE //

s∗
''O

O

O

O

O

O

O

O

O

O

O

O

E(τ N̂i
ǫ (0W ))

i∗W

��

E(WZar)

commutes in HSpt(WZar). As E is homotopy invariant, s∗ is an isomorphism,
hence resE is an isomorphism as well. This completes the proof of (1).
The proof of (2) and (3) uses the standard deformation diagram. Let µ̄ : Ȳ →
X × A1 be the blow-up of X × A1 along W , let µ̄−1[X × 0] denote the proper
transform, and let µ : Y → X × A1 be the open subscheme Ȳ \ µ̄−1[X × 0].
Let p : Y → A1 be p2 ◦ µ. Then p−1(0) = Ni, p

−1(1) = X × 1 = X, and Y
contains the proper transform µ̄−1[W × A1], which is mapped isomorphically
by µ to W × A1 ⊂ X × A1. We let ĩ : W × A1 → Y be the resulting closed
immersion. The restriction of ĩ to W × 0 is the zero-section s : W → Ni and
the restriction of ĩ to W × 1 is i : W → X. The resulting diagram is

(4.1.1) W
i0 //

s

��

W × A1

ĩ

��

W
i1oo

i

��

Ni
i0 //

p0

��

Y

p

��

X
i1oo

p1

��

0
i0

// A1 1
i1

oo
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Together with Theorem 4.1.2, diagram (4.1.1) gives us two maps of distin-
guished triangles:

[
E0

W×A1Zar(Y )→ E(τ Ŷǫ (W × A1))→ E(τ Ŷǫ (W × A1)0)
]

i∗1−→
[
EWZar(X)→ E(τ X̂ǫ (W ))→ E(τ X̂ǫ (W )0)

]

and
[
E0

W×A1Zar(Y )→ E(τ Ŷǫ (W × A1))→ E(τ Ŷǫ (W × A1)0)
]

i∗0−→
[
E0WZar(Ni)→ E(τ N̂i

ǫ (0W ))→ E(τ N̂i
ǫ (0W )0)

]

As above, we have the commutative diagram

E(τ Ŷǫ (W × A1))
i∗0 //

i∗
W×A1

��

E(τ N̂i
ǫ (0W ))

i∗W

��

E(W × A1)
i∗0

// E(W ).

As E is homotopy invariant, the maps i∗W , i∗W×A1 and i∗0 : E(W ×A1)→ E(W )
are isomorphisms, hence

i∗0 : E(τ Ŷǫ (W × A1))→ E(τ N̂i
ǫ (0W ))

is an isomorphism. Similarly,

i∗1 : E(τ Ŷǫ (W × A1))→ E(τ X̂ǫ (W ))

is an isomorphism. The proof of the Morel-Voevodsky purity theorem [34,
Theorem 2.23] shows that

i∗0 : E0
W×A1Zar(Y )→ E0WZar(Ni)

i∗1 : E0
W×A1Zar(Y )→ EWZar(X)

are weak equivalences; the purity isomorphism π is by definition i∗1 ◦ (i∗0)
−1.

Thus, both i∗0 and i∗1 define isomorphisms of distinguished triangles, and

i∗1 ◦ (i∗0)
−1 : E(τ N̂i

ǫ (0W ))→ E(τ X̂ǫ (W ))

is the map φE . Defining φ0
E to be the isomorphism

i∗1 ◦ (i∗0)
−1 : E(τ N̂i

ǫ (0W )0)→ E(τ X̂ǫ (W )0)

proves both (2) and (3). �
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Remarks 4.1.5. (1) It follows from the construction of φE and φ0
E that both of

these maps are natural in E.

(2) The maps φ0
E are natural in the closed immersion i : W → X in the

following sense: Suppose we have closed immersions ij : Wj → Xj , j = 1, 2
and a morphism f : (W1,X1) → (W2,X2) of pairs of immersions such that f
restricts to a morphism X1 \W1 → X2 \W2. Fix E and let φ0

jE be the map
corresponding to the immersions ij We have the evident maps

ι : τ X̂1
ǫ (W1)

0 → τ X̂2
ǫ (W2)

0 η : τ
N̂i1
ǫ (W1)

0 → τ
N̂i2
ǫ (W2)

0

Then the diagram

E(τ
N̂i2
ǫ (W )0)

φ2E
//

η∗

��

E(τ Ŷǫ (W )0)

ι∗

��

E(τ
N̂i1
ǫ (W )0) φ1E

// E(τ X̂ǫ (W )0)

commutes. Indeed, the map f induces a map of deformation diagrams.
�

5. The exponential map

If i : M ′ → M is a submanifold of a differentiable manifold M , there is a
diffeomorphism exp of the normal bundle NM ′/M of M ′ in M with the tubular

neighborhood τMǫ (M ′). In addition, exp restricts to a diffeomorphism exp0 of
the punctured normal bundle NM ′/M \ 0M ′ with the punctured tubular neigh-

borhood τMǫ (M ′) \M ′. Classically, this has been used to define the bound-
ary map in the Gysin sequence for M ′ → M , by using the restriction map
exp0∗ : H∗(M \M ′)→ H∗(NM ′/M \ 0M ′) followed by the Thom isomorphism

H∗(NM ′/M \ 0M ′) ∼= H∗−d(M ′).
In this section, we use our punctured tubular neighborhood to construct a
purely algebraic version of the classical exponential map, at least for the as-
sociated suspension spectra. We will use this in section 11 to define a purely
algebraic version of the gluing of Riemann surfaces along boundary compo-
nents.

5.1. Let i : W → X be a closed immersion in Sm/k with normal bundle
p : Ni →W . We have the map

exp : Ni → X

in Spc(k), defined as the composition Ni → W → X. We also have the
Morel-Voevodsky purity isomorphism

π : Th(Ni)→ X/(X \W )

in H(k). In fact:
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Lemma 5.1.1. The diagram

(5.1.1) Ni
q′

//

exp

��

Th(Ni)

π

��

X q
// X/(X \W )

commutes in H(k).

Proof. As we have already seen, the construction of the purity isomorphism π
relies on the deformation to the normal bundle; we retain the notation from the
proof of corollary 4.1.4. We have the total space Y → A1 of the deformation.
The fiber Y0 over 0 ∈ A1 is canonically isomorphic to Ni and the fiber Y1 over
1 is canonically isomorphic to X; the inclusions W × 0 → Y0, W × 1 → Y1

are isomorphic to the zero-section s : W → Ni and the original inclusion
i : W → X, respectively. The proper transform µ−1[W × A1] is isomorphic
to W × A1, giving the closed immersion ι : W × A1 → Y . The diagram thus
induces maps in Spc(k):

ī0 : Th(Ni)→ Y/(Y \W × A1)

ī1 : X/X \W → Y/(Y \W × A1)

which are isomorphisms in H(k) (see [34, Thm. 2.23]); the purity isomorphism
is by definition π := ī−1

1 ◦ ī0.
We have the commutative diagram in Spc(k):

W

id

��i0 //

s

��

W × A1
p1

//

ι

��

W
i1

oo

i

��

Ni //

p

OO

q′

��

OO

Y

��

Xoo

q

��

Th(Ni)
ī0

// Y/(Y \W × A1) X/X \W
ī1

oo

from which the result follows directly. �

Remark 5.1.2. Since we have the homotopy cofiber sequences:

Ni \ 0W → Ni → Th(Ni)→ Σ(Ni \ 0W )+

X \W → X → X/(X \W )→ Σ(X \W )+

the diagram (5.1.1) induces a map

Σ(Ni \ 0W )+ → Σ(X \W )+

in H(k), however, this map is not uniquely determined, hence is not canonical.
�
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5.2. The construction. In this section we define a canonical map

exp0 : Σ∞(Ni \ 0W )+ → Σ∞(X \W )+

in SHA1(k) which yields the map of distinguished triangles in SHA1(k):

Σ∞(Ni \ 0W )+

exp0

��

// Σ∞Ni+ //

exp

��

Σ∞Th(Ni)

π

��

Σ∞(X \W )+ // Σ∞X+
// Σ∞X/(X \W )

To define exp0, we apply Corollary 4.1.4 with E a fibrant model of Σ∞(X\W )+.
Denote the composition

E(X \W )
res0E−−−→ E(τ X̂ǫ (W )0)(W )

(φ0
E)−1

−−−−−→ E(τ N̂i
ǫ (0W )0)(W )

(res0E)−1

−−−−−→ E(N0
i )

by exp0∗
E . Since E is fibrant, we have canonical isomorphisms

π0E(N0
i ) ∼= HomSH

A1 (k)(Σ
∞N0

i+, E)

∼= HomSH
A1 (k)(Σ

∞N0
i+,Σ

∞(X \W )+)

π0E(X \W ) ∼= HomSH
A1 (k)(Σ

∞(X \W )+, E)

∼= HomSH
A1 (k)(Σ

∞(X \W )+,Σ
∞(X \W )+)

so exp0∗
E induces the map

HomSH
A1 (k)(Σ

∞(X \W )+,Σ
∞(X \W )+)

exp0∗
E−−−→ HomSH

A1 (k)(Σ
∞N0

i+,Σ
∞(X \W )+).

We set

exp0 := exp0∗
E (id).

To finish the construction, we show

Proposition 5.2.1. The diagram, with rows the evident homotopy cofiber se-
quences,

Σ∞(Ni \ 0W )+

exp0

��

// Σ∞Ni+ //

exp

��

Σ∞Th(Ni)

π

��

∂ // ΣΣ∞(Ni \ 0W )+

Σ exp0

��

Σ∞(X \W )+ // Σ∞X+
// Σ∞X/(X \W )

∂
// ΣΣ∞(X \W )+

commutes in SHA1(k).
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Proof. It suffices to show that, for all fibrant E ∈ Spt(k), the diagram formed
by applying HomSH

A1 (k)(−, E) to our diagram commutes. This latter diagram
is the same as applying π0 to the diagram

(5.2.1) E(Ni \ 0W ) E(Ni)oo E0W (Ni)oo ΩE(Ni \ 0W ))
∂oo

E(X \W )

exp0∗

OO

E(X)

exp∗

OO

oo EW (X)

π∗

OO

oo ΩE(X \W )
∂

oo

Ω exp0∗

OO

where the rows are the evident homotopy fiber sequences. It follows by the
definition of exp0 and exp that this diagram is just the “outside” of the diagram
in Corollary 4.1.4(3), extended to make the distinguished triangles explicit.
Thus the diagram (5.2.1) commutes, which finishes the proof. �

Remark 5.2.2. The exponential maps exp and exp0 are natural with respect

to maps of closed immersions f : (W ′ i′
−→ X ′) → (W

i
−→ X) satisfying the

cartesian condition of remark 4.1.5(2). This follows from the naturality of the
isomorphisms φE , φ0

E described in Remark 4.1.5, and the functoriality of the
(punctured) tubular neighborhood construction. �

6. Neighborhoods of normal crossing schemes

We extend our results to the case of a strict normal crossing divisor W ⊂ X
by using a Mayer-Vietoris construction.

6.1. Normal crossing schemes. Let D be a reduced effective Cartier di-
visor on a smooth k-scheme X with irreducible components D1,. . ., Dm. For
each I ⊂ {1, . . . ,m}, we set

DI := ∩i∈IDi

We let i : D → X the inclusion. For each I 6= ∅, we let ιI : DI → D,
iI : DI → X be the inclusions; for I ⊂ J ⊂ {1, . . . ,m} we have as well the
inclusion ιI,J : DJ → DI .
Recall that D is a strict normal crossing divisor if for each I, DI is smooth
over k and codimXDI = |I|.
We extend this notion a bit: We call a closed subscheme D ⊂ X a strict normal
crossing subscheme if X is in Sm/k and, locally on X, there is a smooth locally
closed subscheme Y ⊂ X containing D such that D is a strict normal crossing
divisor on Y

6.2. The tubular neighborhood. Let D ⊂ X be a strict normal crossing
subscheme with irreducible components D1, . . . ,Dm. For each I ⊂ {1, . . . ,m},

I 6= ∅, we have the tubular neighborhood co-presheaf τ X̂ǫ (DI) on DI . The
various inclusions ιI,J give us the maps of co-presheaves

ι̂I,J : ιI,J∗(τ
X̂
ǫ (DJ ))→ τ X̂ǫ (DI);
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pushing forward by the maps ιI yields the diagram of co-presheaves on DZar

(with values in cosimplicial pro-objects of Sm/k)

(6.2.1) I 7→ ιI∗(τ
X̂
ǫ (DI))

indexed by the non-empty I ⊂ {1, . . . ,m}. We have as well the diagram of
identity co-presheaves

(6.2.2) I 7→ ιI∗(DIZar)

as well as the diagram

(6.2.3) I 7→ ιI∗(∆
∗
DIZar

)

We denote these diagrams by τ X̂ǫ (D), D• and ∆∗
D•

, respectively. The projec-

tions pI : ∆∗
DIZar

→ DIZar and the closed immersions ι̂DI
: ∆∗

DIZar
→ τ X̂ǫ (DI)

yield the natural transformations

D•
p•
←− ∆∗

D•

ι̂D•−−→ τ X̂ǫ (D).

Now take E ∈ Spt(k). Applying E to the diagram (6.2.1) yields the diagram
of presheaves on DZar

I 7→ ιI∗(E(τ X̂ǫ (DI)))

Similarly, applying E to (6.2.2) and (6.2.3) yields the diagrams of presheaves
on DZar

I 7→ ιI∗(E(DIZar))

and

I 7→ ιI∗(E(∆∗
DIZar

)).

Definition 6.2.1. For D ⊂ X a strict normal crossing subscheme and E ∈
Spt(k), set

E(τ X̂ǫ (D)) := holim
I 6=∅

ιI∗(E(τ X̂ǫ (DI))).

Similarly, set

E(D•) := holim
I 6=∅

ιI∗(E(DI))

E(∆∗
D•

) := holim
I 6=∅

ιI∗(E(∆∗
DI

))

�

The natural transformations ι̂D and p• yield the maps of presheaves on DZar

E(D•)
p∗•−→ E(∆∗

D•
)
ι̂∗D←−− E(τ X̂ǫ (D)).

Proposition 6.2.2. Suppose E ∈ Spt(Sm/k) is homotopy invariant and sat-
isfies Nisnevich excision. Then the maps ι̂∗D and p∗• are Zariski-local weak
equivalences.
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Proof. The maps p∗I are pointwise weak equivalences by homotopy invariance.
By Theorem 3.2.1, the maps ι̂DI

are Zariski-local weak equivalences. Since
the homotopy limits are finite, the stalk of each homotopy limit is weakly
equivalence to the homotopy limit of the stalks. By [8] this suffices to conclude
that the map on the homotopy limits is a Zariski-local weak equivalence. �

Remark 6.2.3. One could also attempt a more direct definition of τ X̂ǫ (D) by
just using our definition in the smooth case i : W → X and replacing the
smooth W with the normal crossing scheme D, in other words, the co-presheaf
on DZar

D \ F 7→ ∆̂∗
X\F,D\F .

Labeling this choice τ X̂ǫ (D)naive, and considering τ X̂ǫ (D)naive as a constant di-
agram, we have the evident map of diagrams

φ : τ X̂ǫ (D)→ τ X̂ǫ (D)naive

We were unable to determine if φ induces a weak equivalence after evaulation
on E ∈ Spt(k), even assuming that E is homotopy invariant and satisfies
Nisnevich excision. We were also unable to construct such an E for which φ
fails to be a weak equivalence. �

6.3. The punctured tubular neighborhood. To define the punctured

tubular neighborhood τ X̂ǫ (D)0, we proceed as follows: Fix a subset I ⊂
{1, . . . ,m}, I 6= ∅. Let p : X ′ → X, s : DI → X ′ be a Nisnevich neighborhood
of DI in X, and let DX′ = p−1(D). Sending X ′ → X to ∆n

DX′
gives us the

pro-scheme ∆̂n
D⊂X,DI

, and the closed immersion ∆̂n
D⊂X,DI

→ ∆̂n
X,DI

. Varying

n, we have the cosimplicial pro-scheme ∆̂∗
D⊂X,DI

, and the closed immersion

∆̂∗
D⊂X,DI

→ ∆̂∗
X,DI

.

Take a closed subset F ⊂ DI , and let U := DI \ F . As in the definition of the
punctured tubular neighborhood of a smooth closed subscheme in section 4.1,
we pass to the appropriate cofinal subcategory of Nisnevich neighborhoods to
show that the open complements ∆̂n

X\F,U \ ∆̂n
D\F⊂X\F,U for varying n form a

cosimplicial pro-scheme

n 7→ ∆̂n
X\F,U \ ∆̂n

D\F⊂X\F,U .

Similarly, we set

τ X̂ǫ (D,DI)
0(U) := ∆̂∗

X\F,U \ ∆̂∗
D\F⊂X\F,U .

This forms the co-presheaf τ X̂ǫ (D,DI)
0 on DIZar. The open immersions

ĵI(U)n : ∆̂n
X\F,U \ ∆̂n

D\F⊂X\F,U → ∆̂n
X\F,U

define the map

ĵI(U) : τ X̂ǫ (D,DI)
0(U)→ τ X̂ǫ (DI)(U),

giving the map of co-presheaves

ĵI : τ X̂ǫ (D,DI)
0 → τ X̂ǫ (DI).
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For J ⊂ I, we have the map ι̂J,I : ∆̂∗
X,DI

→ ∆̂∗
X,DJ

and

ι̂−1
J,I(∆̂

∗
D⊂X,DJ

) = ∆̂∗
D⊂X,DI

.

Thus we have the map ι̂0J,I : τ X̂ǫ (D,DI)
0 → τ X̂ǫ (D,DJ )0 and the diagram of

co-presheaves on DZar

(6.3.1) I 7→ ιI∗(τ
X̂
ǫ (D,DI)

0)

which we denote by τ X̂ǫ (D)0. The maps ĵI define the map

ĵ : τ X̂ǫ (D)0 → τ X̂ǫ (D).

The projection maps πI : τ X̂ǫ (DI)→ X (where we consider X as the constant

co-presheaf on DIZar) restrict to maps π0
I : τ X̂ǫ (D,DI)

0 → X \D, which in turn
induce the map

π0 : τ X̂ǫ (D)0 → X \D,

where we consider X \ D the constant diagram of constant co-presheaves on
DZar.

Definition 6.3.1. For E ∈ Spt(k), let E(τ X̂ǫ (D)0) be the presheaf on DZar,

E(τ X̂ǫ (D)0) := holim
∅6=I⊂{1,...,m}

ιI∗E(τ X̂ǫ (D,DI)
0).

�

The map ĵ defines the map of presheaves

ĵ∗ : E(τ X̂ǫ (D))→ E(τ X̂ǫ (D)0).

We let EDZar(τ X̂ǫ (D)) denote the homotopy fiber of ĵ∗. Via the commutative
diagram

E(X \ F )

π∗

��

j∗
// E(X \D)

π0∗

��

E(τ X̂ǫ (D))(D \ F )
ĵ∗

// E(τ X̂ǫ (D))0(D \ F )

we have the canonical map

π∗
D : EDZar(X)→ EDZar(τ X̂ǫ (D)).

We want to show that the map π∗
D is a weak equivalence, assuming that E is

homotopy invariant and satisfies Nisnevich excision. We first consider a simpler
situation. We begin by noting the following

Lemma 6.3.2. Let �
n
0 denote the category of non-empty subsets of {1, . . . , n}

with maps the inclusions, let C be a small category and let F : C × �
n
0 →

SptOrdop

be a functor. Let holim�n
0
F : C → SptOrdop

be the functor with

Documenta Mathematica 12 (2007) 71–146



94 Marc Levine

value the simplicial spectrum m 7→ holim�n
0
F (i × [m]) at i ∈ C. There is a

isomorphism

Tot(holim
�n

0

F )→ holim
�n

0

Tot(F ).

in HSpt(Cop).

Proof. Letting �
n be the category of all subsets of {1, . . . , n} (including the

empty set), we may extend F to F∗ : �
n → Spt(Ord

op) by F ∗ (∅) = 0.
Similarly, given a functor G : �

n → Spt, we may extend G to G♮ : �
n+1
0 → Spt

by G♮(I) = 0, G♮(I∪{n+1}) = G(I) for I ⊂ {1, . . . , n}. We define the iterated
homotopy fiber of G, fibnG ∈ Spt, by

hofibn(G) := holim
�

n+1
0

G♮.

One easily checks that for a map g : A → B of spectra, considered in the
evident manner as a functor g1 : �

1 → Spt, we have hofibg = hofib1g1. More
generally, if we let i−, i+ : �

n−1 → �
n be the inclusions

i−(I) := I, i+(I) := I ∪ {n}

we have the evident natural transformation ω : i− → i+ and for G : �
n → Spt

a functor, we have a natural isomorphism

hofib(hofibn−1G ◦ i−
hofibn−1G(ω)
−−−−−−−−−→ hofibn−1G ◦ i+) ∼= hofibnG,

hence the name iterated homotopy fiber. Finally, one has the natural isomor-
phism

hofibnG∗ ∼= Ωholim
�n

0

G

for G : �
n
0 → Spt.

Since Tot is compatible with suspension we may replace our original functor
F with ΣF ∼= Ω−1F ; using induction on n, it suffices to show that there is a
natural isomorphism in HSpt(Cop)

Tot(hofibF )→ hofibTot(F )

for F : A→ B a map in SptC×Ordop

.
For this, note that for f : X → Y a map of spectra, there is a natural weak
equivalence

a(f) : Σhofibf → hocofibf

Since Tot commutes with suspension and preserves weak equivalences, it suffices
to define a natural weak equivalence

Tot(hocofibf)→ hocofib(Totf).

In fact, since Tot preserves cofiber squares and is compatible with the wedge

action of pointed simplicial sets on SptOrdop

and Spt, there is a natural iso-
morphism Tot(hocofibf)→ hocofib(Totf), completing the proof. �
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This lemma allows us to define a simplicial model for EDZar(τ X̂ǫ (D)), induced

by the cosimplicial structure on the co-presheaves τ X̂ǫ (DI) and τ X̂ǫ (DI)
0. In

fact, let

E(τ X̂ǫ (D))n := holim
I 6=∅

ιI∗E(∆̂n
X̂,DIZar

)

E(τ X̂ǫ (D)0)n := holim
I 6=∅

ιI∗E(∆̂n
X̂,DIZar

\ ∆̂n
D⊂X,DIZar

)

and set

EDZar(τ X̂ǫ (D))n := hofib(ĵ∗n : E(τ X̂ǫ (D))n → E(τ X̂ǫ (D)0)n).

It follows from lemma 6.3.2 that E(τ X̂ǫ (D)), E(τ X̂ǫ (D)0) and EDZar(τ X̂ǫ (D))
are isomorphic in the homotopy category to the total presheaves of spectra
associated to the simplical presheaves

n 7→ E(τ X̂ǫ (D))n

n 7→ E(τ X̂ǫ (D)0)n

n 7→ EDZar(τ X̂ǫ (D))n

respectively. The map π∗
D is defined by considering EDZar(X) as a constant

simplicial object. Let

π∗
D,0 : EDZar(X)→ EDZar(τ X̂ǫ (D))0

be the map of EDZar(X) to the 0-simplices of EDZar(τ X̂ǫ (D)).

Proposition 6.3.3. Suppose that E satisfies Nisnevich excision and D is a
strict normal crossing subscheme of X. Then π∗

D,0 is a weak equivalence.

Before we give the proof of this result, we prove two preliminary lemmas.

Lemma 6.3.4. Let x be a point on a finite type k-scheme X, let Y = SpecOX,x
and Z and W be closed subschemes of Y . Then Ŷ hZ ×Y W

∼= Ŵh
Z∩W .

Proof. Since Y andW are local, the pro-schemes Ŷ hZ and ŴZ∩W are represented
by local Y -schemes. If Y ′ → Y, s : Z → Y ′ is a Nisnevich neighborhood
of Z in Y , and i : Z ∩ W → W is the inclusion, then Y ′ ×Y W → W ,
(s|Z∩W , i) : Z ∩W → Y ′ ×Y W is a Nisnevich neighborhood of Z ∩W in W ,
giving us the W -morphism

f : Ŵh
Z∩W → Ŷ hZ ×Y W.

As W is local, we have a co-final family in the category of all finite type étale
morphisms W ′ →W of the form W ′ = Spec (OW [T ]/F )G, i.e., the localization
of OW [T ]/F with respect to some G ∈ O[T ], where (∂F/∂T, F ) is the unit ideal
in OW [T ]G. Those W ′ →W of this form which give a Nisnevich neighborhood
of Z∩W are those for which F contains a linear factor, modulo the ideal IZ∩W

of Z ∩W . Each such pair (F,G) lifts to a pair (F̃ , G̃) of elements in OY [T ]
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such that Spec (OY [T ]/F̃ )G̃ → Y is étale, and such that the linear factor in F

mod IZ∩W lifts to a linear factor of F̃ mod IZ . This easily implies that f is an
isomorphism. �

Let i : W → Y be a closed immersion of finite type k-schemes, E ∈ Spt(YZar).
Define the functor

i! : Spt(YZar)→ Spt(WZar)

by

(i!E)(W \ F ) := hofib(E(Y \ F )→ E(Y \W ))

for each F ⊂W closed.
For each I ⊂ {1, . . . ,m}, let ιI : DI → D be the inclusion. For J ⊂ I, and
F ⊂ D closed, the diagram of restriction maps

E(D \ (DI ∩ F )) //

��

E(D \DI)

��

E(D \ (DJ ∩ F )) // E(D \DJ )

gives the map

ιI∗ι
!
IE → ιJ∗ι

!
JE

Lemma 6.3.5. Suppose E ∈ Spt(DZar) is satisfies Zariski excision. Then the
evident map

hocolim
I∈�

nop
0

ιI∗ι
!
IE → E

is a pointwise weak equivalence.

Proof. Suppose temporarily thatD is an arbitrary finite type k-scheme, written
as a union of two closed subschemes: D = D1∪D2, and take an E ∈ Spt(DZar)
which is additive. LetD12 := D1∩D2, with inclusions ιj : Dj → D, ι12 : D12 →
D, ιj,12 : D12 → Dj . We have the natural map

hocolim




ι12∗ι
!12E

ι1,12
∗ //

ι2,12
∗

��

ι1∗ι
1!E

ι2∗ι
2!E




α
−→ E

We first show that α is a pointwise weak equivalence. It suffices to show that
α is a weak equivalence on global sections, equivalently, that the diagram

ED
12

(D) //

��

ED
1

(D)

��

ED
2

(D) // E(D)

is homotopy cocartesian.
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The homotopy cofiber of ED
1

(D) → E(D) is homotopy equivalence to E(D \

D1) and the homotopy cofiber of ED
12

(D)→ ED
2

(D) is homotopy equivalent

to ED
2\D12

(D \D12). Since

D \D12 = D1 \D12 ∐D2 \D12

and E is additive, the map on the homotopy cofibers is a weak equivalence, as
desired.
The proof of the lemma now follows easily by induction on the number m of
irreducible components of D = ∪mi=1Di. Indeed, write D = D1∪D2, with D1 =
D1 and D2 = ∪mi=2Di. Note that the Zariski excision property is preserved by
the functor i! and that a presheaf that satisfies Zariski excision is additive. By
induction the maps

hocolim
∅6=I⊂{2,...,m}

ιI∗ι
!
IE → ι2∗ι

2!E

hocolim
{1}$I⊂{1,...,m}

ιI∗ι
!
IE → ι12∗ ι

12!E

are pointwise weak equivalences. Thus the map

hocolim
I∈�

nop
0

ιI∗ι
!
IE → hocolim




ι12∗ι
!12E

ι1,12
∗ //

ι2,12
∗

��

ι1∗ι
1!E

ι2∗ι
2!E




is a pointwise weak equivalence; combined with our previous computation, this
proves the lemma. �

Proof of proposition 6.3.3. Write D as a sum, D =
∑m
i=1Di with each Di

smooth (but not necessarily irreducible), and with m minimal. We proceed by
induction on m.
For m = 1, Nisnevich excision implies that the natural map

EDZar(X)→ EDZar(X̂h
D)

is a weak equivalence in Spt(DZar). Since D is smooth, the map EDZar(X̂h
D)→

EDZar(τ X̂ǫ (D))0 is an isomorphism, which proves the result in this case.
By lemma 6.3.5 it suffices to show that ι!I(π

∗
D,0) is a weak equivalence for all I.

More generally, let ιI,J : DI → DJ be the inclusion for I ⊂ J . If E satisfies
Zariski excision on DZar, the same holds for ι!IE on DI,Zar and there is a natural
weak equivalence

ι!J,I(ι
!
IE)→ ι!JE

Thus it suffices to show that ι!i(π
∗
D,0) is a weak equivalence for all i ∈ {1, . . . ,m},

e.g., for i = m. In what follows, we will only apply ι!I to presheaves E which
satisfy Zariski excision, which suffices for the proof.
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We use the following notation: for W ⊂ DI a closed subset, we let EWZar(X)
denote the presheaf on DI

EWZar(X)(DI \ F ) := EW\F (X \ F ).

We use the same notation for the presheaf

D \ F 7→ EW\F (X \ F )

on DZar, relying on the context to make the meaning clear.
Clearly ι!mιm∗E

DmZar(X) → EDmZar(X) is a weak equivalence and the
map EDmZar(X) → EDZar(X) induces a weak equivalence ι!mE

DmZar(X) →
ι!mE

DZar(X), so we need to show that

EDmZar(X)→ ι!mE
DZar(τ X̂ǫ (D))0 = ι!m(holim

I 6=∅
EX̂DI

×XDZar(X̂DI
)

is a weak equivalence.
For this, we decompose the set of non-empty I ⊂ {1, . . . ,m} into three sets:

1. I = {m},
2. I with m 6∈ I,
3. I with {m} $ I.

Let

E1 := ι!mE
X̂h

Dm
×XDZar(X̂h

Dm
)

E2 := holim
m 6∈I

ι!mE
X̂h

DI
×XDZar(X̂h

DI
)

E3 := holim
{m}$I

ι!mE
X̂h

DI
×XDZar(X̂h

DI
)

We thus have the isomorphism

ι!m

(
holim
I 6=∅

EX̂
h
DI

×XDZar(X̂h
DI

)

)
∼= holim




E1

��

E2
// E3




For I of type 2, lemma 6.3.4 says that the natural map

X̂h
DI∪{m}

×X Dm → X̂h
DI
×X Dm

is an isomorphism. Since the restriction map

ι!mE
X̂h

DI
×XDZar(X̂h

DI
)→ ι!mE

X̂h
DI∪{m}

×XDZar
(X̂h

DI∪{m}
)

identifies itself with the pull-back

EX̂
h
DI

×XDmZar(X̂h
DI

)→ E
X̂h

DI∪{m}
×XDmZar

(X̂h
DI∪{m}

)
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the Nisnevich excision property of E implies that E2 → E3 is a weak equiva-
lence. Thus

E1 → holim




E1

��

E2
// E3




is a weak equivalence, and

EDmZar(X)→ ι!mE
DZar(τ X̂ǫ (D))0 = ι!m

(
holim
I 6=∅

EX̂
h
DI

×XDZar(X̂h
DI

)

)

is identified with

EDmZar(X)→ ι!mE
X̂h

Dm
×XDZar(X̂h

Dm
) = EX̂

h
Dm

×XDmZar(X̂h
Dm

),

which is a weak equivalence by Nisnevich excision. �

Proposition 6.3.6. Suppose that E is homotopy invariant and satisfies Nis-
nevich excision, and D is a strict normal crossing subscheme of X. Then

π∗
D : EDZar(X)→ EDZar(τ X̂ǫ (D))

is a weak equivalence in Spt(DZar).

Proof. Let pn : ∆n
D → D be the projection. Applying Proposition 6.3.3 to the

strict normal crossing subscheme ∆n
D of ∆n

X , the map

π∆n
D
,0 : pn∗E

∆n
DZar (∆n

X)→ pn∗E
∆n

DZar (τ
d∆n

X
ǫ (∆n

D))0

is a weak equivalence for each n. Thus

π∆∗
D

: p∗E
∆∗

DZar (∆∗
X)→ EDZar(τ X̂ǫ (D))

is a weak equivalence. Indeed, EDZar(τ X̂ǫ (D) is a simplicial object with n-

simplices pn∗E
∆n

DZar (τ
d∆n

X
ǫ (∆n

D))0. Since E is homotopy invariant, the map

p∗ : EDZar(X)→ p∗E
∆∗

DZar (∆∗
X)

is a weak equivalence, whence the result. �

We can now state and prove the main result for strict normal crossing schemes.

Theorem 6.3.7. Let D be a strict normal crossing scheme on some X ∈ Sm/k
and take E ∈ Spt(k) which is homotopy invariant and satisfies Nisnevich ex-
cision. Then there is a natural distinguished triangle in HSpt(DZar)

EDZar(X)
αD−−→ E(D•)

βD
−−→ E(τ X̂ǫ (D)0)

Proof. By proposition 6.3.6, we have the weak equivalence

π∗
D : EDZar(X)→ EDZar(τ X̂ǫ (D)).

By Proposition 6.2.2, we have the isomorphism

(p∗•)
−1î∗D : E(τ X̂ǫ (D))→ E(D•).
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in HSpt(DZar). Since ED(τ X̂ǫ (D)) is by definition the homotopy fiber of the

restriction map E(τ X̂ǫ (D))→ E(τ X̂ǫ (D)0), the result is proved. �

7. Comparison isomorphisms

We give a comparison of our tubular neighborhood construction with the cat-
egorical version Li∗Rj∗ of Morel-Voevodsky.

7.1. Model structure and cross functors. Fix a noetherian separated
scheme S of finite Krull dimension, and let SchS denote the category of finite
type S-schemes (for our application, we will take S = Spec k for a field k).
Morel-Voevodsky show how to make the catgory SHA1(X) functorial in X ∈
SchS , defining an adjoint pair of exact functors Lf∗, Rf∗ for each morphism
f : Y → X in SchS . Roendigs shows in [39] how to achieve this on the model
category level and in addition that this structure extends to give cross functors
(f∗, f

∗, f !, f!) as defined by Voevodsky and investigated in detail by Ayoub
[3]. We begin by describing the model structure used by Roendigs, which is
different from the one we have used up to now, and recalling his main results.
For B ∈ SchS , we denote by Spc∗mot(Sm/B) the model structure on
Spc∗(Sm/B) described by Roendigs in [39]. To describe this model structure,
we first recall the projective model structure Spc(Sm/B)proj on Spc(Sm/B).
Here the weak equivalences and fibrations are the pointwise ones and the cofi-
brations are generated by the maps

Z × ∂∆n → Z ×∆n,

with Z ∈ Sm/B. This induces a model structure Spc∗(Sm/B)proj on
Spc∗(Sm/B) by forgetting/adjoing a base-point. One has a functorial cofi-
brant replacement Ec → E defined as in [34, Lemma 1.16].
The model structure Spc∗mot(Sm/B) is defined by Bousfield localization: the
cofibrations are the same as in Spc∗(Sm/B)proj. E is fibrant if E(∅) is con-
tractible, E is a fibrant in Spc∗(Sm/B)proj, E transforms elementary Nisnevich
squares to homotopy fiber squares and transforms Z×A1 → Z to a weak equiv-
alence. A map A→ B is a weak equivalence if Hom(Bc, E)→ Hom(Ac, E) is
a weak equivalence for each fibrant E. The fibrations in Spc∗mot(Sm/B) are
determined by having the right lifting property with respect to trivial cofibra-
tions.
Let f : X → Y be a morphism in SchS . We have the functor

f∗ : Spc∗(Sm/X)→ Spc∗(Sm/Y )

defined by pre-composition with the pull-back functor −×Y X, i.e.

f∗E(Y ′ → Y ) := E(Y ′ ×Y X → X).

f∗ has the left adjoint f∗ defined as the Kan extension, and characterized by
f∗(Y ′

+) = Y ′ ×Y X+ for Y ′ → Y ∈ Sm/Y . In case f is a smooth morphism,
f∗ is given by precomposition with the functor

f ◦ − : Sm/X → Sm/Y,
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and thus has the left adjoint f♯ characterized by

f♯(Z
p
−→ X) = Z

fp
−→ Y

on the representable presheaves. We have

Proposition 7.1.1 (proposition 2.18 of [39]). Let f : X → Y be a mor-
phism in SchS. Then (f∗, f∗) is a Quillen adjoint pair Spc∗mot(Sm/X) ↔
Spc∗mot(Sm/Y ). If f is smooth, then (f♯, f

∗) is a Quillen adjoint pair
Spc∗mot(Sm/Y )↔ Spc∗mot(Sm/X).

For spectra, the projective model structure Sptmot(Sm/B)proj on Spt(Sm/B)
is defined as follows: For φ : E → F a morphism in Spt(Sm/B), φ : E → F
is a cofibration if φ0 : E0 → F0 is a cofibration in Spc∗mot(Sm/B) and if for
each n ≥ 1, the map

φn ∪ Σφn−1 : En ∪ΣEn−1
ΣFn−1 → Fn

is a cofibration in Spc∗(Sm/B)proj. Weak equivalences (resp. fibrations) are
maps φ such that φn is a weak equivalence (resp. fibration) in Spc∗mot(Sm/B)
for all n. There is a functorial cofibrant replacement Ec → E.
Now for the motivic model structure Sptmot(Sm/B): The cofibrations are
the same as in Sptmot(Sm/B)proj. φ is a fibration if φn is a fibration in
Spc∗mot(Sm/B) for all n and the diagram

En //

φn

��

ΩEn+1

Ωφn+1

��

Fn // ΩFn+1

is homotopy cartesian in Spc∗mot(Sm/B) for all n. There is a fibrant replace-
ment functor E → Ef ; φ : E → F is a weak equivalence if φf : Ef → F f is a
weak equivalence in Sptmot(Sm/B)proj.
Given f : X → Y in SchS , define the functors f∗ : Spt(Sm/X)→ Spt(Sm/Y )
and f∗ : Spt(Sm/Y )→ Spt(Sm/X) by f∗(E)n := f∗(En), f

∗(F )n := f∗(Fn).
If f is smooth, we have f♯ : Spt(Sm/X) → Spt(Sm/Y ) defined similarly by
f♯(E)n := f♯(En).
We have the following result from [39]:

Proposition 7.1.2 (proposition 2.23 of [39]). Let f : X → Y be a morphism in
SchS. Then (f∗, f

∗) is a Quillen adjoint pair Sptmot(Sm/X)↔ Spt(Sm/Y ).
If f is smooth, then (f♯, f

∗) is a Quillen adjoint pair Sptmot(Sm/Y ) ↔
Sptmot(Sm/X). In particular:

(1) f∗ preserves cofibrations and trivial cofibration and f∗ preserves fibra-
tions and trivial fibrations.

(2) if f is smooth, then f∗ preserves fibrations and f♯ preserves cofibrations

It is clear that a cofibration in Sptmot(Sm/X) is pointwise a cofibration in Spt,
hence a cofibration in SptA1(Sm/XNis). As mentioned in [39] a fibrant object
in Sptmot(Sm/X) satisfies both Nisnevich excision and is A1-local, hence the
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weak equivalences between fibrant objects in Sptmot(Sm/X) are weak equiv-
alences in SptA1(Sm/XNis) and are in fact pointwise weak equivalences in
Spt(Sm/X); similarly one shows that each fibration in SptA1(Sm/XNis) is a
fibration in Sptmot(Sm/X) and each (trivial) cofibration in Sptmot(Sm/X) is
a (trivial) cofibration in SptA1(Sm/XNis). Thus the identity on Spt(Sm/X)
defines a (left) Quillen equivalence Sptmot(Sm/X) → SptA1(Sm/XNis). In
particular, we have the equivalence of the homotopy categories

HSptA1(Sm/XNis) ∼= HSptmot(Sm/X).

We write SHA1(X) for either HSptmot(Sm/X) or HSptA1(Sm/XNis), de-
pending on the context.
One main result of [39] is

Theorem 7.1.3 ([39, corollary 3.17]). Sending f : Y → X in SchS to
Lf∗ : SHA1(X) → SHA1(X) satisfies the conditions of [3, definition 1.4.1].
In particular, the properties of a “2-foncteur homotopique stable” described in
[3] are satisfied for X 7→ SHA1(X).

Remark 7.1.4. Let i : D → X be a closed immersion in SchS with open
complement j : U → X. We have the functor

Li∗Rj∗ : SHA1(X \D)→ SHA1(D),

We would like to view our construction E(τ X̂ǫ (D)0) as a weak version of Li∗Rj∗,
in case D is a normal crossing divisor on a smooth k scheme X, the in-

put E is the pull-back from Spt(Sm/k), and the output E(τ X̂ǫ (D)0) is in

HSpt(DZar). In particular, E(τ X̂ǫ (D)0) is only defined on Zariski open subsets
of D, rather than on all of Sm/D. In this section, we make this statement pre-

cise, defining an isomorphism of E(τ X̂ǫ (D)0) with the restriction of Li∗Rj∗(E)
to HSpt(DZar). �

7.2. The smooth case. Let i : W → X be a closed immersion in SchS with
open complement j : U → X. Let

Θ : Sptmot(Sm/U)→ Sptmot(Sm/W )

be the functor representing Li∗Rj∗, i.e.

Θ(E) := i∗(j∗(E
f )c)f .

Remark 7.2.1. Even for E ∈ Sptmot(Sm/U) bifibrant, one cannot simplify this
expression for Li∗Rj∗E beyond replacing Ef with E. The inexplicit nature of
the cofibrant and fibrant replacement functors make a concrete determination of
Li∗Rj∗E difficult, which is one advantage of our approach using the punctured
tubular neighborhood. �

Lemma 7.2.2. Let i : W → X be a closed immersion in SchS with open
complement j : U → X.
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(1) For fibrant E ∈ Sptmot(Sm/U) all the maps in the square

j∗(E)c //

��

Rj∗(E)c

��

j∗(E) // Rj∗(E)

are pointwise weak equivalences
(2) Let X ′ → X be in Sm/X, let W ′ := W ×X X ′. There is a canonical

map
ν0
X′ : Rj∗(E)c(X ′)→ ΘE(W ′)

natural in X ′.

Proof. (1) Since E is fibrant, the canonical map E → Ef is a trivial cofi-
bration of fibrant objects in Sptmot(Sm/U), hence a homotopy equivalence.
Thus j∗E → Rj∗E := j∗(E

f ) is a homotopy equivalence of fibrant objects in
Sptmot(Sm/X), hence a pointwise weak equivalence. Applying the cofibrant
replacement functor, we see that (j∗E)c → (Rj∗E)c is also a homotopy equiv-
alance and a pointwise weak equivalence. Also the cofibrant replacement maps
(j∗E)c → j∗E, (Rj∗E)c → Rj∗E are trivial fibrations between fibrant objects
of Sptmot(Sm/X), hence are both pointwise weak equivalences.
For (2), the unit id → i∗i

∗ for the adjunction applied to (Rj∗E)c gives us the
map

ν0
X′ : (Rj∗E)c(X ′)→ i∗i

∗(Rj∗E)c(X ′)

natural in X ′. As i∗i
∗(Rj∗E)c(X ′) = i∗(Rj∗E)c(W ′), we have the natural

transformation
ν0
X′ : (Rj∗E)c(X ′)→ i∗(Rj∗E)c(W ′)

Composing with the canonical map i∗(Rj∗E)c → (i∗(Rj∗E)c)f = Θ(E) gives
us the map we want. �

For E ∈ Spt(Sm/B) or in Spt(BNis), we let EZar denote the restriction to
Spt(BZar). Identifying SHA1(B) with the homotopy category of bifibrant
objects in Sptmot(Sm/B), we have the similarly defined restriction functor
SHA1(B)→ HSpt(BZar) sending E to EZar.
Let i : W → X be a closed immersion in Sm/k with open complement j : U →
X. We note that the “evaluation” maps

E 7→ E(τ X̂ǫ (W )), E 7→ E(τ X̂ǫ (W )0)

are in fact defined for E ∈ Spt(Sm/X). Similarly, the evaluation map E 7→

E(τ X̂ǫ (W )0) is defined for E ∈ Spt(Sm/U). In addition, for E ∈ Spt(Sm/U)
we have a canonical isomorphism

(7.2.1) E(τ X̂ǫ (W )0) ∼= (j∗E)(τ X̂ǫ (W ))

since ∆̂n
X,W \∆n

W
∼= ∆̂n

X,W ×X U (as a pro-scheme).

Lemma 7.2.3. Let i : W → X be a closed immersion in Sm/k with open
complement j : U → X, and let E ∈ Sptmot(Sm/U) be fibrant.
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(1) There is a map

ηcE : (Rj∗E)c(τ X̂ǫ (W ))→ Θ(E)Zar

in HSpt(WZar), natural in E.
(2) Let

j∗(E)c(τ X̂ǫ (W )) //

��

Rj∗(E)c(τ X̂ǫ (W ))

��

E(τ X̂ǫ (W )0)
φ

∼ // j∗(E)(τ X̂ǫ (W )) // Rj∗(E)(τ X̂ǫ (W ))

be the diagram in Spt(WZar) formed by evaluating the diagram of

lemma 7.2.2(1) at τ X̂ǫ (W ), and adding the isomorphism (7.2.1). Then
all the maps in this diagram are pointwise weak equivalences.

Proof. By lemma 7.2.2, we have maps

η0
X′ : (Rj∗E)c(X ′)→ Θ(E)(X ′ ×X W )

natural in X ′ ∈ Sm/X. For each open subscheme U = D \ F ⊂ W , the maps
η∆̂n

X\F,U

define the map

η0
∆∗(U) : (Rj∗E)c(τ X̂ǫ (W )(U))→ Θ(E)(∆∗

U ).

Since Θ(E) is A1-local, the canonical map Θ(E)(U) → Θ(E)(∆∗
U ) is a weak

equivalence. This gives us the natural map in HSpt(WZar)

η0 : (Rj∗E)c(τ X̂ǫ (W ))→ Θ(E)Zar,

proving (1).
(2) follows immediately from lemma 7.2.2(1). �

Combining the morphism (1) with the diagram (2) gives us the canonical mor-
phism in HSpt(WZar)

η0
E : E(τ X̂ǫ (W )0)→ Θ(E)Zar.

Let i : D → X be a closed immersion in SchS . We have the exact functor
i! : SHA1(X) → SHA1(D) which is characterized by the identity for fibrant
E ∈ Sptmot(Sm/X):

i∗i
!E(X ′ → X) := hofib(E(X ′)→ E(X ′ ×X (X \D)).

In fact, this operation gives the distinguished triangle, natural in fibrant E ∈
Sptmot(Sm/X):

Ri∗i
!E → E → Rj∗j

∗E → i∗i
!E[1].

Applying Li∗ (and noting that the counit Li∗Ri∗ → id is an isomorphism [3,
definition 1.4.1]) gives the distinguished triangle in SHA1(D)

(7.2.2) i!E → Li∗E → Θ(j∗E)→ i!E[1]
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We refer the reader to [3, proposition 1.4.9] for the construction of this triangle
in the abstract setting.

Proposition 7.2.4. Let E ∈ Sptmot(Sm/k) be fibrant, let f : X → Spec k
be in Sm/k and let i : W → X be a closed immersion in Sm/k with open
complement j : U → X. Then

η0
E : E(τ X̂ǫ (W )0)→ Θ(j∗f∗E)Zar

is an isomorphism in HSpt(WZar).

Proof. Let fW : W → Spec k be the structure morphism. Since f and fi = fW
are smooth, we have Lf∗ ∼= f∗, f∗W

∼= L(fi)∗ ∼= Li∗f∗, so Li∗f∗ is isomorphic
to the restriction functor for fW ◦− : Sm/W → Sm/k. The definition of i! gives
the commutative diagram for each X ′ → X in Sm/X (with W ′ := X ′ ×X W )

EW
′

(X ′) //

φX′

��

E(X ′)

ηX′

��

i!f∗E(W ′) // Li∗f∗E(W ′)
∼
E(W ′)

where ηX′ is just the restriction map E(X ′)→ E(W ′) and φX′ is the canonical
isomorphism given by the definition of i!. Using lemma 7.2.3, this gives us the
map of distinguished triangles in SH

EW
′

(X ′) //

φX′

��

E(X ′) //

ηX′

��

E(X ′ \W ′) //

η0
X′

��

EW
′

(X ′)[1]

��

i!f∗E(W ′) // E(W ′) // Li∗Rj∗j
∗f∗E(W ′) // i!f∗E(W ′)[1]

Just as for η0
E , these give rise to the natural map in HSpt(Sm/WZar)

ηE : E(τ X̂ǫ (W ))→ Li∗f∗EZar

and the commutative diagram in HSpt(WZar)

EWZar(X) //

φ

��

E(τ X̂ǫ (W )) //

η

��

E(τ X̂ǫ (W )0) //

η0

��

EWZar(X)[1]

��

i!f∗EZar
// Li∗f∗EZar

// Li∗Rj∗j
∗f∗EZar

// i!f∗EZar[1]

The bottom row is the distinguished triangle (7.2.2) for f∗E, restricted toWZar,
and the top row is the distinguished triangle of corollary 4.1.3, after applying
theorem 3.2.1. Similarly, theorem 3.2.1 shows that η is an isomorphism in
HSpt(WZar). Since φ is an isomorphism in HSpt(WZar) η

0 is an isomorphism
as well. �
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7.3. The normal crossing case. We fix a reduced strict normal crossing di-
visor i : D → X on some X ∈ Sm/k. Write D =

∑m
i=1Di with the Di smooth.

For X ′ → X in Sm/X, we write D′ for X ′ ×X D and D′
I for X ′ ×X DI and

for I ⊂ {1, . . . ,m}. As in the previous section, we note that our definition

of E(τ X̂ǫ (D)) extends without change to E ∈ Spt(Sm/X), and similarly, the

construction of E(τ X̂ǫ (D)0) extends without change to E ∈ Spt(Sm/X \ D).
The extension of proposition 7.2.4 to the normal crossing case follows essen-
tially the same outline as before, with some additional patching results for the
operation Li∗Rj∗ that allow us give a description of Li∗Rj∗ as a homotopy

limit, matching our definition of E(τ X̂ǫ (W )0).

Lemma 7.3.1. Suppose that F ∈ Spt(Sm/D) satisfies Nisnevich excision. For
I ⊂ {1, . . . ,m}, I 6= ∅, let FI be the presheaf on Sm/X

FI(X
′) := F (X̂ ′h

D′
I
×X D).

Then the canonical map
i∗F → holim

I 6=∅
FI

is a weak equivalence in Spt(Sm/X).

Proof. Let {Uj → D′ | j ∈M} be a Nisnevich cover of D′, with M a finite set.
For J ⊂ M , set UJ :=

∏
j∈J Uj , where the product is ×D′ . Since F satisfies

Nisnevich excision, the canonical map

F (D′)→ holim
J 6=∅

F (UJ )

is a weak equivalence. An argument similar to that of lemma 6.3.2 shows
that one can replace the Ui with a pro-system of Nisnevich covers (with M
fixed). Similarly, the Zariski stalk of holimI 6=∅ FI at x ∈ X ′ ∈ Sm/X is weakly

equivalent to holimI 6=∅ F (X̂ ′h
x,D′

I
×XD), where X ′

x = SpecOX′,x. Thus we need

only show that forX ′ → X smooth, withX ′ local, the schemes Ui := X̂ ′h
D′

i
×XD

form a pro-Nisnevich cover of D′, and that
∏

i∈I

Ui ∼= X̂ ′h
D′

I
×X D

for each non-empty I ⊂ {1, . . . ,m}.

In fact the pro-schemes X̂ ′h
D′

i
×X D, i = 1, . . . ,m, obvioiusly form a pro-

Nisnevich cover of D′; it follows from lemma 6.3.4 that for each I ⊂ {1, . . . ,m},
I 6= ∅, we have natural isomorphisms (where

∏
is ×X′)

∏

i∈I

X̂ ′h
D′

i

∼= X̂ ′h
D′

I
.

Thus (with the product over D′)
∏

i∈I

X̂ ′h
D′

i
×X D ∼= X̂ ′h

D′
I
×X D.

�

Documenta Mathematica 12 (2007) 71–146



Motivic Tubular Neighborhoods 107

Lemma 7.3.2. Let i : D → X be a strict normal crossing divisor on some
f : X → Spec k in Sm/k, and let E ∈ Sptmot(Sm/U) be fibrant. Then there
is a canonical map in HSpt(DZar),

η0
E : E(τ X̂ǫ (W )0)→ Θ(E)Zar,

natural in E.

Proof. As in the smooth case, we construct η0
E using lemmas 7.2.2 and 7.3.1.

Indeed, let j : X \D → X be the inclusion. Let Θ(E)IZar denote the pull-back

of Θ(E) to Spt(X̂h
DI
×X DZar). Let Θ(E)∗IZar be the presheaf

Θ(E)∗IZar(U) := Θ(E)IZar(∆
∗
U ).

Similarly, let Θ(E)∗Zar denote the presheaf on DZar

Θ(E)∗Zar(U) := Θ(E)(∆∗
U )

and let Θ(E)Zar denote the restriction of Θ(E) to DZar.
The construction of lemma 7.2.3 gives us the diagram of maps

η̃0
E,I : (Rj∗E)c(τ X̂ǫ (DI))→ Θ(E)∗IZar

and thus the map

η̃0
E : (Rj∗E)c(τ X̂ǫ (D))→ holim

I 6=∅
(I 7→ Θ(E)∗IZar)

By lemma 7.3.1 we have the canonical isomorphism in HSpt(DZar)

holim
I 6=∅

(I 7→ Θ(E)∗IZar)
∼= Θ(E)∗Zar.

Since Θ(E) is A1-homotopy invariant, the canonical map Θ(E)Zar → Θ(E)∗Zar

is a pointwise weak equivalence, giving us the map in HSpt(DZar)

η̃0
E : (Rj∗E)c(τ X̂ǫ (D))→ Θ(E)Zar

Using the diagram of lemma 7.2.3, with W = DI , and then taking the appro-
priate homotopy limit, we arrive at a canonical isomorphism in HSpt(DZar)

(Rj∗E)c(τ X̂ǫ (D)) ∼= E(τ X̂ǫ (D)0).

Combining η̃0
E with this isomorphism gives us the desired map η0

E . �

Lemma 7.3.3. Let i : W → X be a closed immersion in SchS. Suppose
W is a union of closed subschemes, W = W1 ∪ W2. Let W12 := W1 ∩ W2

and let ij : Wj → X, j = 1, 2, i12 : W12 → X be the inclusions. Then
for E ∈ SHA1(Sm/X) there is a canonical homotopy cartesian diagram in
SHA1(Sm/X)

Ri∗Li
∗E //

��

Ri1∗Li
∗
1E

��

Ri2∗Li
∗
2E // Ri12∗L

∗
12E
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Proof. Throughout the proof we use the canonical lifting of Li∗, Ri∗, etc.,
to functors on Sptmot(Sm/−) by taking the appropriate cofibrant/fibrant re-
placement, but we use the same notation to denote these liftings.
Let ι : W1 →W be the inclusion. The unit id→ Rι∗Lι

∗ gives the map

Li∗E → Rι∗Lι
∗Li∗E ∼= Rι∗Li

∗
1E

in SHA1(Sm/W ); applying Ri∗ gives the map Ri∗Li
∗E → Ri1∗Li

∗
1E. The

other maps in the square are defined similarly; as the two compositions
Ri∗Li

∗E → Ri12∗L
∗
12E are likewise defined by the adjoint property, these

agree and the diagram commutes.
To show that the diagram is homotopy cartesian, let j : U → X be the
complement of W , j1 : U1 → X the complement of W1 and j′ : U → U1,
i′2 : D2 ∩ U1 → U1 the inclusions.
We have the distinguished triangles (see [3, Lemme 1.4.6])

Lj!j
∗E → E → Ri∗Li

∗E → Lj!j
∗E[1]

Lj1!j
∗
1E → E → Ri1∗Li

∗
1E → Lj1!j

∗
1E[1]

Lj′!j
∗E → j∗1E → Ri′2∗Li

′∗
2 j

∗
1E → Lj′!j

∗E[1]

Applying Lj1! to the last line gives us the distinguished triangle

Lj!j
∗E → Lj1!j

∗
1E → Lj1!Ri

′
2∗Li

′∗
2 j

∗
1E → Lj!j

∗E[1]

Thus we have the distinguished triangle

Lj1!Ri
′
2∗Li

′∗
2 j

∗
1E → Ri∗Li

∗E → Ri1∗Li
∗
1E → Lj1!Ri

′
2∗Li

′∗
2 j

∗
1E[1]

The same argument applied to the complement j2 : U2 → X of W2, the map
j′′ : U2 → U ′′ := U \W12, j

′
1 : U ′′ → X and the inclusion i′′2 : D2 ∩ U1 → U ′′

gives the distinguished triangle

Lj′1!Ri
′′
2∗Li

′′∗
2 j′∗1 E → Ri2∗Li

∗
2E → Ri12∗Li

∗
12E → Lj′1!Ri

′′
2∗Li

′′∗
2 j′∗1 E[1]

Since D2 ∩ U1 is closed in U1 and in U ′′, the natural map

Lj1!Ri
′
2∗Li

′∗
2 j

∗
1E → Lj′1!Ri

′′
2∗Li

′′∗
2 j′∗1 E

is an isomorphism. This shows that the diagram is homotopy cartesian. �

Given a strict normal crossing divisor i : D → X, D =
∑m
i=1Di, we have

the inclusions ιI : DI → D, ιI,J : DJ → DI for I ⊂ J and iI : DI → X.
For E ∈ Spt(Sm/X) we thus have the presheaves i∗IE ∈ Spt(Sm/DI). The
isomorphism ι∗I,J i

∗
IE
∼= i∗JE gives us the canonical maps i∗IE → ιI,J∗i

∗
JE;

applying ιI∗ to this map gives us the natural maps αJ,I : ιI∗i
∗
IE → ιJ∗i

∗
JE.

For E ∈ Sptmot(Sm/X), using the cofibrant replacement of E, we see that the
same procedure gives us the functor

I 7→ ιI∗(i
∗
IE

c)f ∈ Spt(Sm/D)

together with the natural map

α : i∗(Ec)f → holim
I 6=∅

ιI∗(i
∗
IE

c)f .
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Lemma 7.3.4. The map α is an isomorphism in SHA1(D).

Proof. As the co-unit Li∗Ri∗ → id is an isomorphism, Ri∗ is faithful, so it
suffices to show that Ri∗(α) is an isomorphism in SHA1(X). This follows from
lemma 7.3.3 and induction on m. �

Recall that for E ∈ Spt(Sm/k) and i : D → X a strict normal crossing divisor,
D =

∑m
i=1Di, we have the presheaf E(DZar) on DZar defined by

E(DZar)(U) := holim
I 6=∅

E(DI ∩ U).

Proposition 7.3.5. Let E ∈ Sptmot(Sm/k) be fibrant, i : D → X a strict
normal crossing divisor on X ∈ Sm/k, f : X → Spec k the structure morphism.
Then we have a natural isomorphism in HSpt(DZar)

E(DZar) ∼= Li∗(f∗E)Zar

Proof. Let iI : DI → X be the inclusion, fI : DI → Spec k the structure
morphism. By theorem 3.2.1, the canonical map

ηE : E(τ X̂ǫ (DI))→ (f∗IE)Zar
∼= Li∗I(f

∗E)Zar

is an isomorphism in HSpt(DIZar). By lemma 7.3.4 the induced map on the
holim gives the desired isomorphism. �

Theorem 7.3.6. Let i : D → X be a strict normal crossing divisor on f : X →
Spec k in Sm/k, and let E be a fibrant object in SptA1(Sm/kNis). Then the
map

η0
E : E(τ X̂ǫ (D)0)→ Θ(f∗E)Zar = [Li∗Rj∗(f

∗E)]Zar

is an isomorphism in HSpt(DZar).

Proof. The proof is the same as the proof of proposition 7.2.4, using the dis-
tinguished triangle of theorem 6.3.7 together with the isomorphism of proposi-
tion 7.3.5 instead of the triangle of corollary 4.1.3. �

Remark 7.3.7. Fix a fibrant E ∈ Sptmot(Sm/k). Let D′ → D be in Sm/D and
suppose we have an X ′ → X in Sm/X and a D-isomorphism D′ ∼= X ′ ×X D.
Then we can replace i : D → X with i′ : D′ → X ′ and use theorem 7.3.6 to

show that our tubular neighborhood construction gives the model E(τ X̂
′

ǫ (D′)0)
for the restriction of Li∗Rj∗(f

∗E) to Sm/D′
Zar.

If D and D′ are affine, then the theorem of [2] gives the existence of an X ′ as
above, so our result gives at least a “local” description of the entire presheaf
Li∗Rj∗(f

∗E). �

8. Limit objects

Let p : X → C be a morphism in Sm/k, with C a smooth curve. Fix a k-point
0 ∈ C(k) and a parameter t ∈ OC,0. Ayoub combines the functor Li∗Rj∗
with a cosimplicial version of the classical path space (i.e., the universal cover)
construction to define the unipotent specialization functor

sp : SH(X \ p−1(0))→ SH(p−1(0))
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Replacing Li∗Rj∗ with the punctured tubular neighborhood, the same con-
struction gives a model of this construction as a Zariski presheaf on X0. In
particular, we give a description of the “limiting values” limt→0E(Xt) for a
semi-stable degeneration X → (C, 0). As we mentioned in the introduction,
we expect that this construction, applied to a suitable version of the de Rham
complex (with weight and Hodge filtrations) as in [4] would yield the classical
limit mixed Hodge structure of a semi-stable degeneration.

Remark 8.0.8. In [3, chapter 3] Ayoub describes a general theory of special-
ization structures; we concentrate on the unipotent structure, which Ayoub
denotes Υ, and describes in [3, §3.4]. �

8.1. Path spaces. Before defining the cosimplicial models for various path
spaces and homotopy fibers, we recall some basic operations of simplicial sets
on schemes. We let Spcf denote the full subcategory of Spc consisting of
simplicial sets S with S([n]) finite for each n.
Let Y be a k-scheme. For a finite set S, let Y S :=

∏
s∈S Y , with the product

being over Spec k. This defines the contravariant functor S 7→ Y S from finite
sets to k-schemes. In particular, for S ∈ Spcf we have the cosimplicial scheme

Y S with Y S([n]) := Y S([n]), giving the functor

Y ? : Spc
op
f → Sch

Ord
k .

Similarly, if T is a simplicial set, we have the cosimplicial-simplicial set (cosim-
plicial space) TS and the functor

T ? : Spcop → SpcOrd.

Setting Y × S := ∐s∈SY , we have the functor S 7→ Y × S from finite sets to
k-schemes; if S is a simplicial set as above, we thus have the simplicial scheme
Y × S, giving the functor

Y×? : Spcf → Sch
Ordop

k .

The adjunction

HomSchk
(X × S, Y ) ∼= HomSchk

(X,Y S)

for S a finite set extends to S a simplicial set as above, giving the adjunction

HomSchOrdop

k
(X × S, Y ) ∼= HomSchOrd

k
(X,Y S)

where on the left, we consider Y as a constant simplicial scheme and on the
right, X as a constant cosimplicial scheme. This is an analog of the adjunction
for spaces

HomSpc(A× S, T ) ∼= HomSpcOrdop (A× S, T ) ∼= HomSpcOrd(A, TS)

where the first isomorphism is the well-known identity relating maps of bi-
simplicial sets with maps of the corresponding diagonal simplicial sets.
For E ∈ Spc(k) and Y a simplicial object in Sm/k, we have the cosimplicial
space E(Y ) with n cosimplices E(Y ([n])). For s an element of a finite set S,
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and a scheme Y ∈ Sm/k, we have the inclusion is : Y = Y × s → Y × S; the
inclusions is : Y → Y × S, s ∈ S induce the canonical natural map

E(Y × S)→ E(Y )S

which is an isomorphism if E is additive: E(Y ∐Y ′) ∼= E(Y )×E(Y ′). This iso-
morphsim extends immediately to finite simplicial sets S ∈ Spcf and additive
E.

Examples 8.1.1. (1) For a k-scheme Y , the free path space PY on Y is Y [0,1],
where [0, 1] is just the 1-simplex ∆[1] := HomOrd(−, [1]). Explicitly, PY has
n-cosimplices Y n+2, with structure maps as follows: Label the factors in Y n+2

from 0 to n+ 1. Send δni : [n]→ [n+ 1] to the diagonal

(y0, . . . , yn+1) 7→ (y0, . . . , yi−1, yi, yi, yi+1, . . . , yn+1)

and send sni : [n]→ [n− 1] to the projection

(y0, . . . , yn+1) 7→ (y0, . . . , yi−1, yi+1, . . . , yn+1).

The inclusion {0, 1} → [0, 1] gives rise to the projection Y [0,1] → Y {0,1}, i.e.
π : PY → Y ×k Y ; we thus have two structures of a cosimplicial Y -scheme on
PY : π1 : PY → Y and π2 : PY → Y , with πi := pi ◦ π.

(2) For a pointed k-scheme (Y, y : Spec k → Y ), we have the pointed
path space

PY (y) := PY ×(π2,y) Spec k.

(3) Now let p : Y → Y be a Y -scheme,, y : Spec k → Y a point. We have the
cosimplicial homotopy fiber of p over y:

PY/Y (y) := Y ×(p,π1) PY (y)

We extend this definition to cosimplicial Y -schemes in the evident manner:
if Y• → Y is a cosimplicial Y -scheme, we have the bi-cosimplicial Y -scheme
PY•/Y (y); the extension to functors from some small category to cosimplicial
Y -schemes is done in the same way. �

Denoting the pointed k-scheme (Y, y) by Y∗, we sometimes write PY∗
for PY (y)

and PY•/Y∗
for PY•/Y (y). For E ∈ Spt(k), we have the simplicial spectrum

E(PY/Y∗
).

The pointed path space PY (y) is contractible in the following sense:

Lemma 8.1.2. Let (Y, y) be a pointed smooth k-scheme, U a smooth k-scheme.
Then for E ∈ Spt(k), the projection U×PY (y)→ U induces a weak equivalence

E(U)→ E(U × PY (y)).

Proof. To prove the lemma, it suffices to show that, for E ∈ Spc(k), the
projection U × PY (y)→ U induces a homotopy equivalence

E(U)→ E(U × PY (y)).

We first show that U × PY (y)→ U induces a homotopy equivalance of cosim-
plicial schemes.
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The projection [0, 1]→ pt gives the map of cosimplicial schemes s : Y = Y pt →
Y [0,1]; composing with the k-point y → Y gives the point sy : Spec k → Y [0,1]

and thus the section (y, sy) : Spec k → PY (y) to the projection PY (y) →
Spec k. This induces the section sU : U → U × PY (y) to the projection pU :
U × PY (y)→ U .
We proceed to construct a homotopy between pU ◦ sU and the identity on
U × PY (y); it suffices to construct the homotopy for U = Spec k.
For this, let σ : Y [0,1] → Y [0,1] be the map induced by the map of simplicial
sets [0, 1]→ [0, 1] sending [0, 1] to 1. Then pSpec k ◦ sSpec k : PY (y)→ PY (y) is
the map (idSpec k, σ).

Let p0, p1 : Y [0,1]×[0,1] → Y [0,1] be the maps induced by the inclusions i0, i1 :
[0, 1]→ [0, 1]× [0, 1], i0(x) = x×0, i1(x) = x×1, and let π : Y → Y [0,1]×[0,1] be
the map induced by [0, 1]×[0, 1]→ pt. Let h : ([0, 1]×[0, 1], 1×[0, 1])→ ([0, 1], 1)
be any map of pairs of simplicial sets which is the identity on [0, 1]× 0 and the
map to 1 ∈ [0, 1] on [0, 1]× 1. Then h defines a map

H : Y [0,1] → Y [0,1]×[0,1]

with

p0 ◦H = idY [0,1]

p1 ◦H = σ

H ◦ s = π.

From these identities, it follows that (H, idy) induces a co-homotopy

Hy : PY (y)→ PY (y)[0,1]

with p0 ◦Hy = id, p1 ◦Hy = pSpec k ◦ sSpec k. Taking the adjoint of Hy, we have
the homotopy

hy : PY (y)× [0, 1]→ PY (y); hy ◦ i0 = id, hy ◦ i1 = pSpec k ◦ sSpec k,

where PY (y)× [0, 1] and PY (y) are to be considered as cosimplicial-simplicial
schemes, with PY (y) constant in the simplicial direction.
Applying E to idU × hy and composing with the canonical map

E(U × PY (y)× [0, 1])→ E(U × PY (y))[0,1]

gives us the co-homotopy

E(idU × hy) : E(U × PY (y))→ E(U × PY (y))[0,1]

between the identity and E(pU ◦ sU ). Thus E(U)→ E(U ×PY (y)) is a homo-
topy equivalence, as desired. �

8.2. Limit structures. For our purposes, a semi-stable degeneration need
not be proper, so even if this is somewhat non-standard terminology, we use
the following definition:
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Definition 8.2.1. A semi-stable degeneration is a flat morphism p : X →
(C, 0), where (C, 0) is a smooth pointed local curve over k, C = SpecOC,0, X
is a smooth irreducible k-scheme, p is smooth over C \ 0 and X0 := p−1(0) is
a reduced strict normal crossing divisor on X . �

For the rest of this section, we fix a semi-stable degeneration X → (C, 0). We
denote the open complement of X0 in X by X 0. We write Gm for the pointed
k-scheme (A1

k \ {0}, 1).
Fix a uniformizing parameter t ∈ OC,0, giving the morphism t : (C, 0) →
(A1

k, 0), which restricts to t : C\0→ Gm. Let p[t] : X → A1 be the composition
t ◦ p, and let p[t]0 : X 0 → Gm be the restriction of p[t]. Composing p[t] with

the canonical morphism τ X̂ǫ (X0)
0 → X 0 yields the map

p̂[t]0 : τ X̂ǫ (X0)
0 → Gm.

Let X1
0 , . . . ,X

m
0 be the irreducible components of X0. Recalling the construc-

tion of τ X̂ǫ (X0)
0 as a diagram (see (6.3.1)), let us denote, for I ⊂ {1, . . . ,m},

the co-presheaf ιI∗(τ
X̂
ǫ (X0I)

0) by τ X̂ǫ (X0)
0
I . The map p̂[t]0 makes τ X̂ǫ (X0)

0 into
a diagram of co-presheaves (on X0Zar) of cosimplicial pro-schemes over Gm.
We thus have the diagram of cosimplicial co-presheaves on X0Zar:

I 7→ Pτ X̂
ǫ (X0)0I/Gm

.

We denote this diagram by

(8.2.1) lim
t→0

Xt.

Now let E be in Spt(k). For each I ⊂ {1, . . . ,m}, we have the presheaf of
bisimplicial spectra on X0Zar, E(Pτ X̂

ǫ (X0)0I/Gm
), giving us the functor

I 7→ Ẽ(Pτ X̂
ǫ (X0)0I/Gm

).

where ˜ means fibrant model. Taking the homotopy limit over I of the asso-
ciated diagram of presheaves of total spectra gives us the fibrant presheaf of
spectra

E(lim
t→0

Xt) := holim
I 6=∅

TotẼ(Pτ X̂
ǫ (X0)0I/Gm

).

Taking the global sections gives us the spectrum E(limt→0Xt)(X0), which we
denote by limt→0E(Xt).

Remark 8.2.2. Suppose E ∈ Spt(k) is homotopy invariant and satisfies Nis-
nevich excision. We can form the homotopy limit Ē(limt→0Xt) of the diagram
of presheaves

I 7→ E(Pτ X̂
ǫ (X0)0I/Gm

).

Since E is quasi-fibrant (see remark 2.3.2) the map

E(Pτ X̂
ǫ (X0)0I/Gm

)→ Ẽ(Pτ X̂
ǫ (X0)0I/Gm

)

is a pointwise weak equivalence, hence the map Ē(limt→0Xt)→ E(limt→0Xt)
is a pointwise weak equivalence. In particular, Ē(limt→0Xt)(X)0) →
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limt→0E(Xt) is a weak equivalence. In short, if E is homotopy invariant and
satisfies Nisnevich excision, then it is not necessary to take the fibrant model
Ẽ in the construction of E(limt→0Xt) or limt→0E(Xt). �

We remind the reader of the presheaves E(X0•) and E(∆X0•) on X0Zar de-
scribed in definition 6.2.1.

Proposition 8.2.3. Suppose E is homotopy invariant and satisfies Nisnevich
excision. Then
(1) There is a canonical map in HSpt(X0Zar):

E(X0•)
γX
−−→ E(lim

t→0
Xt).

(2) If X0 is smooth, then E(X0•) = E(X0Zar) and γX is an isomorphism.

Proof. We have the maps

E(X0•)
p∗•−→ E(∆∗

X0•
)
ι̂∗
←− E(τ X̂ǫ (X0)).

which by proposition 6.2.2 are Zariski-local weak equivalences. Similarly, we
have the diagram of open immersions

ĵ : τ X̂ǫ (X0)
0 → τ X̂ǫ (X0)

inducing

ĵ∗ : E(τ X̂ǫ (X0))→ E(τ X̂ǫ (X0)
0).

Thus we have the map

p∗0 : E(X0•)→ E(τ X̂ǫ (X0)
0);

p∗0 := ĵ∗(ι̂∗)−1p∗•.
Similarly, we have the projection

Pτ X̂
ǫ (X0)0/Gm

→ τ X̂ǫ (X0)
0,

giving the map

q∗ : E(τ X̂ǫ (X0)
0)→ E(Pτ X̂

ǫ (X0)0/Gm
);

we set γX := q∗ ◦ p∗.
For (2), the diagram X• is just the identity copresheaf X0Zar, hence E(X0•) =
E(X0Zar). To show γX is an isomorphism, fix a point x ∈ X0. There is a
Zariski neighborhood U of x in X0 and a Nisnevich neighborhood X ′ → X of
U in X which is isomorphic to a Nisnevich neighborhood of U in U ×A1. Thus
it suffices to prove the result in the case X = X0 × A1, (C, 0) = (A1, 0) and
p = p2 : X → A1.
For each smooth k-scheme T , it follows from homotopy invariance and theo-

rem 3.2.1 that the canonical map p : τ X̂0×A1

ǫ (X0 × 0) → X0 × A1 induces a
weak equivalence

p∗ : E(T ×k X0Zar × A1)→ E(T ×k τ
X̂0×A1

ǫ (X0 × 0))
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The Morel-Voevodsky purity theorem [34, theorem 2.23] plus Nisnevich excision
and the homotopy property for E implies that p induces a weak equivalence

p∗ : ET×X0Zar×0(T ×k X0Zar × A1)→ ET×∆∗
X0Zar×0(T ×k τ

X̂0×A1

ǫ (X0 × 0)).

This gives us the map of homotopy fiber sequences

ET×X0Zar×0(T ×k X0Zar × A1)

��

p∗
// ET×∆∗

X0Zar×0(T ×k τ
X̂0×A1

ǫ (X0 × 0))

��

E(T ×k X0Zar × A1)

j∗

��

p∗
// E(T ×k τ X̂0×A1

ǫ (X0 × 0))

ĵ∗

��

E(T ×k X0Zar ×Gm)
p0∗

// E(T ×k τ
X̂0×A1

ǫ (X0 × 0)0)

with p0∗ induced by the restriction of p,

p0 : τ X̂0×A1

ǫ (X0 × 0)0 → X0 ×Gm.

Thus p0∗ is a weak equivalence.
Applying these term-by-term with respect to the cosimplicial schemes defining
the respective path spaces, we have the weak equivalence (assuming X = X0×
A1)

E(U × PGm
)→ E(Pτ X̂

ǫ (X0)0/Gm
)(U).

Thus we need only show that the projection U × PGm
→ U induces a weak

equivalence

E(U)→ E(U × PGm
)

for all smooth k-schemes U . This is lemma 8.1.2 �

8.3. Comparison. We conclude this section by connecting our construction
with the specialization functor sp for the specialization structure Υ defined by
Ayoub [3, chapter 3].
Let E ∈ Sptmot(Sm/k) be fibrant, let p : X → (C, 0) be a semi-stable degen-
eration and choose a parameter t ∈ OC,0. In this setting, Ayoub’s functor sp
applied to some E ∈ Spt(Sm/X 0) is defined as follows: First form the presheaf
E(P−/Gm

) on Sm/X 0 by taking the total spectrum

E(P−/Gm
)(X ′ → X 0) := Tot(E(PX′/Gm

)).

where we use the composition X ′ → X 0 t
−→ Gm as structure morphism. Then

sp(E) ∈ SHA1(Sm/X0) is represented by the presheaf

sp(E) := i∗
(
j∗

(
E(P−/Gm

)f
)c)

.

Similarly, we have the simplicial presheaf on Sm/X0 with n-simplices

sp(E)n := i∗
(
j∗

(
E(P−/Gm

[n])f
)c)

.
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Let Tot(sp(E)∗) denote the presheaf formed by taking the total spectrum of
n 7→ sp(E)n.

Lemma 8.3.1. Suppose E is fibrant. Then there is a natural isomorphism in
SHA1(X0)

Tot(sp(E)∗) ∼= sp(E)

Proof. Since E(P−/Gm
[n])f is fibrant, the presheaf E(P−/Gm

[n])f on X 0 satis-

fies Nisnevich excision and is A1 homotopy invariant. Thus the same holds for
the total spectrum of the simplicial spectrum n 7→ E(P−/Gm

[n])f , hence

Tot(n 7→ E(P−/Gm
[n])f )→

(
Tot(n 7→ E(P−/Gm

[n])f
)f

is a pointwise weak equivalence in SptA1(Sm/X 0), and thus we still have a
pointwise weak equivalence after applying j∗. Similarly, the evident map

(
Tot(n 7→ E(P−/Gm

[n])
)f
→

(
Tot(n 7→ E(P−/Gm

[n])f
)f

is a pointwise weak equivalence. Taking cofibrant models and applying i∗ gives
the isomorphism in SHA1(X0)

sp(E) ∼= i∗
((

Tot(n 7→ E(P−/Gm
[n])f

)c)
.

On the other hand, taking the total complex commutes with taking the
cofibrant model, and with the functor i∗, so we have the isomorphism in
Sptmot(Sm/X0)

sp(E) = i∗
((

Tot(n 7→ E(P−/Gm
[n]))f

)c)

∼= Tot
(
n 7→ i∗

((
E(P−/Gm

[n])f
)c))

= Tot(sp∗(E)).

�

Using the diagram of lemma 7.2.3 for the n-cosimplices τ X̂ǫ (X0)
0 × Gn

m of
Pτ X̂

ǫ (X0)0/Gm
, and taking the total spectrum, we arrive at a natural map

E(lim
t→0

Xt)→ Tot(sp(E)∗)Zar

in HSpt(X0Zar); combining this with lemma 8.3.1 gives us the comparison map

θE : E(lim
t→0

Xt)→ sp(E)Zar

in HSpt(X0Zar).

Proposition 8.3.2. The map θE : E(limt→0Xt) → sp(E)Zar is an isomor-
phism in HSpt(X0Zar).

Proof. By theorem 7.3.6, the map

θE(n) : E(Pτ X̂
ǫ (X0)0/Gm

([n]))→ spn(E)

is an isomorphism in HSpt(X0Zar) for each n, thus the map θE on the total
spectra is also an isomorphism in HSpt(X0Zar). �
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9. The monodromy sequence

In this section, we construct the monodromy sequence for the limit object
E(limt→0Xt) (see corollary 9.3.5). As pointed out to us by Ayoub, one needs
to restrict E quite a bit. We give here a theory valid for presheaves of complexes
of Q-vector space on Sm/k which are homotopy invariant and satisfy Nisnevich
excision, and satisfy an additional “alternating” property (definition 9.2.2).
Ayoub [3, Chap. 3] constructs the monodromy sequence in a more general
setting; our construction is based on his ideas applied to our tubular neigh-
borhood construction. In particular, our mondromy sequence agrees with the
monodromy sequence of loc. cite.

9.1. Presheaves of complexes. For a noetherian ring R, we let CR de-
note the category of (unbounded) homological complexes of R-modules, CR≥0

the full subcategory of CR consisting of complexes which are zero in strictly
negative degrees.
By the Dold-Kan equivalence, we may identify CR≥0 with the category of
simplicial R-modules SpcR. The forgetful functor SpcR → Spc∗ allows us
to use the standard model structure on Spc∗ to induce a model structure on
SpcR, i.e., cofibrations are degreewise monomorphisms, weak equivalences are
homotopy equivalences on the geometric realization and fibrations are maps
with the RLP for trivial cofibrations. This induces a model structure on CR≥0

with weak equivalence the quasi-isomorphisms; the suspension functor is the
usual (homological) shift operator: ΣC := C[1], C[1]n := Cn−1, dC[1],n =
−dC,n−1. This model structure is extended to CR by identifying CR with
the category of “spectra in CR≥0”, i.e., sequences (C0, C1, . . .) with bonding
maps ǫn : Cn[1] → Cn+1. Following Hovey [17], the model structure on Spt

induces a model structure on spectra of simplicial R-modules, and thus a model
structure on CR, with weak equivalences the quasi-isomorphisms. In particular,
the homotopy category HCR is just the unbounded derived category DR.
Similarly, for a category C, the model structure for the presheaf category Spt(C)
gives a model structure for presheaves of complexes on C, CR(C) with weak
equivalences the pointwise quasi-isomorphisms, and homotopy category the
derived category DR(C). We may introduce a topology (e.g., the Zariski or
Nisnevich topology), giving the model categories CR(XZar), CR(Sm/BZar),
CR(XNis), CR(Sm/BNis). These have homotopy categories equivalent to
the derived categories (on the small or big sites) DR(XZar), DR(Sm/SZar),
DR(XNis), DR(Sm/SNis), respectively. Finally, we may consider the A1-
localization, giving the Nisnevich-local A1-model structure CR,A1(Sm/BNis)
with homotopy category DRA1(B).
Let I be a small category, F : I → CR a functor. Since we can consider F as a
spectrum-valued functor by the various equivalences described above, we may
form the complex holimI F . Explicitly, this is the following complex: One first
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forms the cosimplicial complex holimIF with n-cosimplices

holimIF
n :=

∏

σ=(σ0→...→σn)∈N (I)n

F (σn).

For g : [m] → [n], with g(m) = m′ ≤ n, the σ-component of the map
holimIF

n(g) sends
∏
xτ to F (σm′ → σn)(xg∗(σ)). The complex holimI F is

then the total complex of the double complex n 7→ holimIF
n, with second

differential the alternating sum of the coface maps. This construction being
functorial and preserving quasi-isomorphisms, it passes to the derived category
DR(C). If I is a finite category, the construction commutes with filtered colim-
its, hence passes to the Zariski- and Nisnevich-local derived categories, as well
as the A1-local versions.

Remarks 9.1.1. (1) For a set S, let RS denote the free R-module on S. Send-
ing a pointed space (S, ∗) to the simplicial R-module RS, with RS(n) :=
RSn/R{∗} defines the R-localization functor Spc∗ → SpcR. This extends
to the spectrum categories, and gives us the exact R-localization functor on
homotopy category ⊗R : SH → DR. The R-localization functor ⊗R extends
to all the model categories we have been considering, in particular, we have the
R-localization

⊗R : SHA1(B)→ DR,A1(B),

For R = Q, we can also take the Q-localization of SH by performing a Bous-
field localization, i.e., define Z ∈ Spt to be Q-local if πn(Z) is a Q-vector space
for all n, and E → F a Q weak equivalence if HomSpt(F,Z)→ HomSpt(E,Z)
is an isomorphism for all Q-local Z. Inverting the Q-weak equivalences defines
the Q-local homotopy category SHQ, and ⊗Q : SH → DQ identifies SHQ
with DQ. This passes to the other homotopy categories we have defined, in
particular, ⊗Q : SHA1(B)→ DQ,A1(B) identifies SHA1(B)Q with DQ,A1(B).

(2) DQ,A1(k) is not the same as the (Q-localized) big category of motives
over k, DM(k)Q; the Q-localization does not give rise to transfers. �

9.2. The log complex. Let sgn : Sn → {±1} be the sign representation of
the symmetric group Sn. Consider a presheaf of Q-vector spaces E on Sm/k.
For X,Y ∈ Sm/k, let altn : E(Y × Xn) → E(Y × Xn) be the alternating
projector

altn =
1

n!

∑

σ∈Sn

sgn(σ)(idY × σ)∗,

with σ operating on Xn by permuting the factors. Let E(Y × Xn)alt ⊂
E(Y ×Xn) be the image of altn and E(Y,Xn)alt⊥ the kernel. We extend these
constructions to presheaves of complexes E by operating degreewise.
If (X, ∗) is a pointed k-scheme, we have the inclusions ij : Y ×Xn−1 → Y ×Xn

inserting the point ∗ in the jth factor. For E a presheaf of Q-vector spaces, we
let E(Y ∧X∧n) be the intersection of the kernels of the restriction maps

(idY × ij)
∗ : E(Y ×Xn)→ E(Y ×Xn−1).
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Letting pj : Xn → Xn−1 be the projection omitting the jth factor, the com-
position (id− p∗ni

∗
n) ◦ . . . ◦ (id− p∗1i

∗
1) gives a splitting

πn : E(Y ×Xn)→ E(Y ∧X∧n)

to the inclusion E(Y ∧X∧n)→ E(Y ×Xn).
Clearly Sn acts on E(Y ∧X∧n) through its action on Xn; we let E(Y,X∧n)alt

and E(Y ∧X∧n)alt⊥ be the image and kernel of altn on E(Y ∧X∧n).
Let f : X → Gm be a morphism, E a presheaf of Q-vector spaces on Sm/k.
Let fn : X ×Gn

m → X ×Gn+1
m be the morphism

fn(x, t1, . . . , tn) := (x, f(x), t1, . . . , tn).

Denote the map altn ◦ πn ◦ f∗n : E(X ∧G∧n+1
m )alt → E(X ∧G∧n

m )alt by

∪f : E(X ∧G∧n+1
m )alt → E(X ∧G∧n

m )alt

One checks that

Lemma 9.2.1. (∪f)2 = 0.

Proof. We work in the Q-linear category QSm/k, with the same ob-
jects as Sm/k, disjoint union being direct sum, and, for X, Y con-
nected, HomQSm/k(X,Y ) is the Q-vector space freely generated by the set
HomSm/k(X,Y ). Product over k makes QSm/k a tensor category. The map

∪f is gotten by applying E to the map ∪f∨ : X×Gn
m → X×Gn+1

m in QSm/k:

(x, t1, . . . , tn−1) 7→ alt[((x, f(x))− (x, 1))⊗ t1 − 1⊗ . . .⊗ tn − 1)]

and restricting to E(X ∧G∧n
m )alt. But (∪f∨)2 is

(x, t1, . . . , tn) 7→

alt[((x, f(x), f(x))− (x, 1, f(x))− (x, f(x), 1) + (x, 1, 1))⊗ . . .⊗ tn − 1)

which is evidently the zero map. �

Form the complex E(logf ) by

E(logf )n := E(X ∧G∧n
m ))alt

with differential ∪f . Since E(logf )0 = E(X), we have the canonical map
ιX : E(X)→ E(logf ).
We extend this definition to an I-diagram of schemes over Gm, f• : X• → Gm

(with the Xn ∈ Sm/k) by

E(logf•) := holim
i∈I

E(logfi);

similarly, we extend to E a presheaf of complexes on Sm/k by taking the total
complex of the double complex n 7→ En(logf•). The map ιX extends to

ιX• : E(X•)→ E(logf•),

where

E(X•) := holim
i∈I

E(Xi).
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We consider as well a truncation of E(logf ). Recall that the stupid truncation
σ≥nC of a homological complex C is the quotient complex of C with

σ≥nCm :=

{
Cm for m ≥ n

0 for m < n.

For E a presheaf of abelian groups and f : X → Gm a morphism in Sm/k, set

E(σ≥1 logf ) := σ≥1E(logf ).

We have the quotient map N : E(logf )→ E(σ≥1 logf ), natural in f and E.
We extend to I-diagrams f• : X• → Gm and to presheaves of complexes as for
E(logf ). The quotient map N defined above extends to the natural map

N : E(logf•)→ E(σ≥1 logf•).

for f• : X• → Gm an I-diagram of morphisms in Sm/k, and E ∈ CQ(Sm/k).
Finally, for E ∈ CQ(Sm/k), define E(−1) to be the presheaf of complexes

E(−1)(X) := E(X ∧Gm)[1] := ker

(
E(X ×Gm)

i∗1−→ E(X)

)
[1].

Definition 9.2.2. Let E be be in CQ(Sm/k). Call E alternating if for every
X ∈ Sm/k and every n ≥ 0, the alternating projection

altn : E(X ∧G∧n
m )→ E(X ∧G∧n

m )alt

is a quasi-isomorphism. �

Remarks 9.2.3. (1) Clearly, E is alternating if and only if Sn acts via the sign
representation on HpE(X ∧G∧n

m ) for all X, n and p.

(2) Fix integers 1 ≤ i ≤ n. We have the split injection ιi,i+1 : E(X ∧G∧n
m ) →

E((X ×Gn−2
m ) ∧G∧2

m ) by shuffling the i, i+ 1 coordinates to position n− 1, n.
In particular, we have the injection

Hp(ιi,i+1) : HpE(X ∧G∧n
m )→ HpE((X ×Gn−2

m ) ∧G∧2
m ).

Since Sn is generated by simple transpositions, this shows that E is alter-
nating if and only if the exchange of factors in Gm ∧ Gm acts by -1 on
HpE(X ∧Gm ∧Gm) for all X and p.

(3) Suppose that E ∈ CQ(Sm/k) is homotopy invariant and satisfies Nisnevich
excision. Consider P1 as pointed by ∞. Then E(X ∧ P1) is quasi-isomorphic
to the suspension E(X ∧ Gm)[−1], hence E is alternating if and only if the
exchange of factors in P1 ∧ P1 induces the identity on HpE(X ∧ P1 ∧ P1) for
all X and p.
The homotopy invariance and Nisnevich excision properties of E give a nat-
ural quasi-isomorphism of E(X ∧ P1 ∧ P1) with E(X ∧ (A2/A2 \ {0})), with
the exchange of factors in P1 ∧ P1 going over to the linear transformation
(x, y) 7→ (y, x). If the characterstic of k is different from 2, this transformation
is conjugate to (x, y) 7→ (−x, y). Thus E is alternating if and only if the map
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[−1] : P1 → P1, [−1](x0, x1) = (x0,−x1), acts by the identity on HpE(X ∧ P1)
for all X and p.

(4) Call E oriented if E is an associative graded-commutative ring:

µ : E ⊗Q E → E

and (roughly speaking) E admits a natural Chern class transformation

c1 : Pic→ H2E

satisfying the projective bundle formula: For E → X a rank r vector bundle
with associated projective space bundle P(E) → X and tautological line bun-
dle O(1), H∗E(P(E)) is a free H∗E(X)-module with basis 1, ξ, . . . , ξr−1, where
ξ = c1(O(1)) ∈ H2E(P(E)). We do not assume that c1 is a group homomor-
phism. The projective bundle formula and the fact that [−1]∗OP1(1) ∼= OP1(1)
implies that an oriented E is alternating. In particular, rational motivic co-
homology, Qℓ(∗) étale cohomlogy, Q-singular cohomology (with respect to a
chosen embedding k → C) and rational algebraic cobordism MGL∗∗

Q are all
alternating.
On the other hand, rational motivic co-homotopy is alternating if −1 is a square
in k, but is not alternating for k = R. This is pointed out in [31]: if −1 = i2,
[−1] is represented by the 2 × 2 matrix with diagonal entries i and −i. As
this is a product of elementary matrices, one has an A1-homotopy connecting
[−1] and id. To see the non-triviality of [−1] for k = R, let [X,Y ] denote
the set of morphisms X → Y in HA1Spc∗(k). Morel defines a map (of sets)
[P1,P1]→ φ(k), where φ(k) is the set of isomorphism classes of quadratic forms
over k, and notes that the map [u],

[u](x0, x1) := (x0, ux1),

goes to the class of the form ux2. This map extends to a ring homomorphism

HomSH
S1 (k)(P

1,P1)→ GW(k),

where GW(k) is the Grothendieck-Witt ring (see also [32, Lemma 3.2.4] for
details). Identifying GW(R) with Z × Z by rank and signature, we see that
[−1] goes to the non-torsion element (1,−1).
The example of motivic (co)homotopy is in fact universal for this phenomenon,
so if [−1] vanishes in [P1,P1], then every E ∈ CQ(Sm/k) satisfying homotopy
invariance and Nisnevich excision is alternating.
We are grateful to F. Morel for explaining the computation of the transposition
action on P1∧P1 in terms of quadratic forms and the Grothendieck-Witt group.
(4) Looking at the A1-stable homotopy category of T -spectra over k, SH(k),
one can decompose the Q-linearization SH(k)Q into the symmetric part
SH(k)+ and alternating part SH(k)− with respect to the exchange of fac-
tors on Gm ∧ Gm. Morel [33] has announced a result stating that SH(k)− is
in general equivalent to Voevodsky’s big motivic category DM(k)Q, and that
SH(k)+ is zero if -1 is a sum of squares. This suggests that the alternating part
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SHS1(k) of the category of rational S1-spectra SHS1(k)Q is closely related to
the big category of effective motives (with Q-coefficients) DM eff(k)Q. �

Proposition 9.2.4. Let E be in CQ(Sm/k), f : X → Gm an I-diagram of
morphisms in Sm/k.

(1) The sequence

E(X)
ιX−−→ E(logf )

N
−→ E(σ≥1 logf )

identifies E(σ≥1 logf ) with the quotient complex E(logf )/E(X).
(2) Suppose E is alternating. Then there is a natural quasi-isomorphism

alt : E(−1)(logf )→ E(σ≥1 logf ).

Proof. It suffices to prove (1) for E a presheaf of Q-vector spaces, and f : X →
Gm a morphism in Sm/k, where the assertion is obvious. Similarly, it suffices
to construct a natural map θE,X : E(−1)(logf )→ E(σ≥1 logf ) for E a presheaf
of Q-vector spaces, extend as above to a map in general, and show that θE,X
is a quasi-isomorphism for E ∈ CQ(Sm/k) alternating and f : X → Gm a
morphism in Sm/k.
In fact, for E a presheaf of Q-vector spaces and n ≥ 1,

E(−1)(logf )n = ker[(idX × i)
∗ : E(X ×Gm,G∧n−1

m )alt → E(X,G∧n−1
m )alt]

so E(−1)(logf )n is a subspace of E(X,G∧n
m ); thus altn defines a map

E(−1)(logf )n → E(logf )n. One easily checks that this defines a map of com-
plexes

alt∗ : E(−1)(logf )→ E(σ≥1 logf ),

as desired.
Now suppose that E is alternating, i.e., that

(a) E(X ∧G∧n
m )alt → E(X ∧G∧n

m )

is a quasi-isomorphism for all n and X. This implies that the maps

E(X ×Gm,G∧n−1
m )alt → E(X ×Gm,G∧n−1

m )

E(X ∧G∧n−1
m )alt → E(X ∧G∧n−1

m )

are quasi-isomorphisms, hence

(b) idX∧Gm
× altn−1 : E((X ∧Gm) ∧G∧n−1

m )→ E((X ∧Gm) ∧G∧n−1
m )alt

is a quasi-isomorphism. Since E((X ∧ Gm) ∧ G∧n−1
m ) = E(X ∧ G∧n

m ), (a) and
(b) imply that

idX × altn : E((X ∧Gm) ∧G∧n−1
m )alt → E(X ∧G∧n

m )alt

is a quasi-isomorphism. As alt∗ : E(−1)(logf ) → E(σ≥1 logf ) is the map on
the total complex of the double complexes

n 7→ idX × altn : E((X ∧Gm) ∧G∧n−1
m )alt → E(X ∧G∧n

m )alt

we see that alt∗ is a quasi-isomorphism. �
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9.3. The log complex and path spaces. Let f : X → Gm be a morphism
in Sm/k arising from a semi-stable degeneration X → (C, 0) and choice of
parameter in OC,0. The monodromy sequence for E(limt→0Xt) arises from
the sequence of Proposition 9.2.4 by comparing the path space E(PX/Gm

) with
E(logf ).
We use the Dold-Kan correspondence to rewrite E(PX/Gm

) as a complex,
namely: take for each p the associated complex Ep(P

∗
X/Gm

) of the simplicial

abelian group n 7→ Ep(P
n
X/Gm

), with differential the alternating sum of the

face maps, and then take the total complex of the double complex

p 7→ Ep(P
∗
X/Gm

).

We write this complex as E(PX/Gm
).

We also have the normalized subcomplex NE(PX/Gm
) of E(PX/Gm

), quasi-
isomorphic to E(PX/Gm

) via the inclusion. Recall that, for a simplicial abelian
group n 7→ An, the normalized complex NA∗ has

NAn := ∩ni=1 ker di : An → An−1

with differential d0 : NAn → NAn−1. We define NE(PX/Gm
) by first taking

the normalized subcomplex NEp(PX/Gm
) of Ep(P∗

X/Gm
) for each p, and then

forming the total complex of the double complex p 7→ NEp(PX/Gm
).

In particular, we have the inclusion of double complexes

NE∗(P
∗
X/Gm

) ⊂ E∗(P
∗
X/Gm

);

which gives for each n the inclusion of single complexes

NE∗(P
n
X/Gm

) ⊂ E∗(P
n
X/Gm

);

Recalling that PnX/Gm
= X × Gn

m, we thus have for each n the inclusion of

complexes

NE∗(P
n
X/Gm

) ⊂ E∗(X ×Gn
m),

We may therefore apply the projections πn : E∗(X ×Gn
m)→ E∗(X ∧G∧n

m ) and
altn, giving the map

altn ◦ πn : NE∗(P
n
X/Gm

)→ E∗(X ∧G∧n
m )alt.

Lemma 9.3.1. Suppose that E is alternating. Then

altn ◦ πn : NE∗(P
n
X/Gm

)→ E∗(X ∧G∧n
m )alt

is a quasi-isomorphism.

Proof. The map p∗1 : E(X) → E(X ×Gm) splits i∗1 : E(X ×Gm) → E(X), so
we have the natural splitting

E(X ×Gm) = E(X)⊕ E(X ∧Gm).

Extending this to E(X×Gn
m) by using the maps i∗j and p∗j , we have the natural

splitting

(9.3.1) E(X ×Gn
m) = ⊕nm=0 ⊕I⊂{1,...,n}

|I|=m

E(X ∧G∧I
m ).
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To explain the notation: For I ⊂ {1, . . . , n}, E(X ∧ G∧I
m ) = E(X ∧ G∧|I|

m ),
included in E(X ×Gn

m) by the composition

E(X ∧G∧|I|
m ) ⊂ E(X ×G|I|

m )
(idX×pI)∗

−−−−−−−→ E(X ×Gn
m)

where pI : Gn
m → G|I|

m is the projection on the factors i1, . . . , im if I =
{i1, . . . , im} with i1 < . . . < im.
The action of Sn on E(X × Gn

m) preserves this decomposition, with σ ∈ Sn

mapping E(X ∧G∧I
m ) to E(X ∧G∧σ−1(I)

m ) in the evident manner.
Now, for a simplicial abelian group A, the inclusion NAn → An is split by uni-
versal expressions in the face and degeneracy maps. If n 7→ C∗n is a simplicial
complex, we can form the complex of normalized subgroups (with respect to the
simplicial variable) N∗2

(C∗1,∗2
) and take the homology Hp(N∗2

(C∗1,∗2
), d1), or

we can form the simplicial abelian group n 7→ Hp(C∗n) and take the normal-
ized subgroup N∗2

Hp(C∗1,∗2
, d1) ⊂ Hp(C∗1,n, d1). Using the universal spitting

mentioned above, we see that the two are the same:

Hp(N∗2
(C∗1,∗2

), d1) = N∗2
Hp(C∗1,∗2

, d1)

Since Sn acts by the sign representation on HpE(X ∧G∧n
m ), it follows that, for

1 ≤ j < n, the diagonal map

δj : Gn−1
m → Gn

m

(t1, . . . , tn−1) 7→ (t1, . . . tj , tj , tj+1, . . . tn−1)

induces the zero map on HpE(X ∧G∧n
m ). Similarly, the inclusion

in : Gn−1
m → Gn

m

(t1, . . . , tn−1) 7→ (t1, . . . tn−1, 1)

is the zero map on HpE(X ∧GI
m) if n ∈ I.

From this, it is not hard to see that

NHpE∗(NE∗(P
n
X/Gm

) = HpE∗(X ∧G∧n
m ),

with respect to the decomposition of E∗(PnX/Gm
) = E∗(X × Gn

m) given by

(9.3.1). Indeed,

ker(Hp(dn)) = ker(i∗n : HpE∗(X ×Gn
m)→ HpE∗(X ×Gn−1

m )

= ⊕I⊂{1,...,n}
n∈I

HpE∗(X ∧G∧I
m )

It is then easy to show by descending induction on i that

∩nj=i kerHp(dj) = ⊕I⊂{1,...,n}
{i,...,n}⊂I

HpE∗(X ∧G∧I
m )

from which our claim follows taking i = 1. Thus the projection

pn : NE∗(P
n
X/Gm

)→ E∗(X ∧G∧n
m )

is a quasi-isomorphism for each n. As E is alternating, the alternating projec-
tion

altn : E∗(X ∧G∧n
m )→ E∗(X ∧G∧n

m )alt
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is a quasi-isomorphism as well, completing the proof. �

Lemma 9.3.2. Let E be in CQ(Sm/k). Let δ0 : E(X × Gn
m) → E(X × Gn−1

m )
be the map [(idX , f), idGn−1

m
]∗. Then the diagram

E(X ×Gn
m)

δ0 //

altn◦πn

��

E(X ×Gn−1
m )

altn−1◦πn−1

��

E(X ∧G∧n
m )alt

∪f
// E(X ∧G∧n−1

m )alt

commutes.

Proof. This follows directly from the definition of ∪f and the fact that altn◦πn
is the identity on E(X ∧G∧n

m )alt. �

Proposition 9.3.3. Let E ∈ CQ(Sm/k) be alternating. Then the maps altn ◦
πn : NE∗(P

n
X/Gm

) → E∗(X × G∧n
m )alt define a quasi-isomorphism of total

complexes

alt ◦ π : NE(PX/Gm
)→ E(logf )

Proof. That the maps altn ◦ πn : NE∗(P
n
X/Gm

) → E∗(X ∧ G∧n
m )alt define a

map of total complex NE(PX/Gm
) → E(logf ) follows from Lemma 9.3.2 and

the fact that, for each n, the differential d0 on NE(PnX/Gm
) is the restriction

of δ0 : E(X × Gn
m) → E(X × Gn−1

m ). Lemma 9.3.1 implies that alt ◦ π is a
quasi-isomorphism. �

We collect our results in

Theorem 9.3.4. Let E ∈ CQ(Sm/k) be alternating, f• : X• → Gm an I-
diagram of morphisms in Sm/k. Consider the diagram

E(PX/Gm
) E(−1)(PX/Gm

)

E(X•)
ιX•

// NE(PX/Gm
)

alt◦π

��

i

OO

NE(−1)(PX/Gm
)

alt◦π

��

i

OO

E(−1)(logf•)

0 // E(X•)
ιX•

// E(logf•)
N

// E(σ≥1 logf•)

alt

OO

// 0

Here the maps i are the canonical inclusions and the maps ιX• are the canonical
maps given by the identities En(PXi/Gm

)0 = En(logfi)0 = En(X
i). Then

(1) The diagram commutes and is natural in E and f•.
(2) All the maps in the diagram are maps of complexes.
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(3) All the vertical maps are quasi-isomorphisms
(4) The bottom sequence is termwise exact.

Proof. The first point follows by construction, the remaining assertions follow
from the Dold-Kan correspondence, Proposition 9.3.3 and Proposition 9.2.4.

�

Corollary 9.3.5 (Monodromy sequence). Let W ∈ CQ(Sm/k) be alternating,
p : X → (C, 0) a semi-stable degeneration, t ∈ OC,0 a uniformizing parameter.
Then there is a distinguished triangle in D(X0Zar)

E(τ X̂ǫ (X0)
0)→ E(lim

t→0
Xt)

N
−→ E(−1)(lim

t→0
Xt)→ E(τ X̂ǫ (X0)

0)[1],

natural in (p, t) and in E.

Proof. The commutative diagram of Theorem 9.3.4 being natural in the choice
of I-diagram and in E, one can extend the diagram directly to the case of a
co-presheaf of cosimplicial I-diagrams

U 7→ f•(U) : X•(U)→ Gm.

If we take I to be finite, we can extend further to a co-presheaf of cosimplicial
I-diagrams f• : X• → Gm, with X•(U) a pro-scheme smooth over k, and still
preserve the quasi-isomorphisms and exactness. Feeding the I-diagram

t ◦ p : τ X̂ǫ (X0)
0 → Gm

to this machine and taking the distinguished triangle induced by the exact
sequence of log complexes at the bottom of the diagram completes the proof.

�

Remark 9.3.6. If we splice together the long exact homotopy sequence for the
monodromy distinguished triangle

E(τ X̂ǫ (X0)
0)→ E(lim

t→0
Xt)

N
−→ E(−1)(lim

t→0
Xt)

with the localization distinguished triangle of Theorem 6.3.7

EDZar(X)
αD−−→ E(DZar)

βD
−−→ E(τ X̂ǫ (D)0)

(both evaluated on D = X0), we have the complex

(9.3.2) . . .→ EX0Zar
n (X)→ En(X0Zar)→ En(lim

t→0
Xt)

N
−→

E(−1)n(lim
t→0

Xt)→ EX0Zar
n−2 (X)→ En−2(X0Zar)→ . . .

If k = C and E represents singular cohomology (for the classical topology)

En(Y ) = H−n(Y (C),Q)

then Steenbrink’s theorem [44] states that the above sequence is exact. The
argument uses the mixed Hodge structure on all the terms together with a
weight argument.
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One should be able to define a natural geometric “weight filtration” on
E(limt→0Xt) by using the stratification of X0 by faces. However, for gen-
eral E, this additional structure might not suffice to force the exactness of the
above sequence. It would be interesting to give a general additional structure
on E that would imply this exactness. �

9.4. Ayoub’s monodromy sequence. The monodromy sequence of corol-
lary 9.3.5 agrees with the monodromy sequence constructed by Ayoub in [3,
section 3.6] after making the identification described in proposition 8.3.2 and
working throughout in the category of rational motives DM(k)Q. Indeed, it is
easy to check that our complex E(logf•) agrees with the contruction E⊗f∗ηLog

∨

of [3, section 3.6.3], and that our isomorphism E(PX/Gm
) ∼= E(logf•) agrees

with the map E ⊗ f∗ηLog
∨ → E ⊗ f∗ηU induced by the map ℓ : Log∨ → U of

[3, definition 3.6.42]. From there, one can easily compare with Ayoub’s mon-
odromy sequence [3, definition 3.6.37]. We give a sketch of these comparisons.

Ayoub’s construction begins with the Kummer motive K. We denote the
object in DM(S)Q represented by a smooth S-scheme X as mS(X) and write

S for mS(S), the unit for the tensor structure in DM(S)Q; we delete the
subscript S from the notation for S = Spec k. The 1-section i1 : S → GmS

induces the splitting

mS(GmS) = S ⊕ S(1)[1]

and thus the projection π : mS(GmS)→ S(1)[1]
We take S = Gm. The diagonal ∆ : Gm → Gm ×k Gm = GmS induces
mS(∆) : S → mS(GmS); composing with π and twisting and shifting gives
the map

∪t∗ : Gm
(−1)[−1]→ Gm

The Kummer motive K ∈ DM(Gm)Q is defined as the “cone” of ∪t∗: Ayoub
shows there is a canonial distinguished triangle in DM(Gm)Q

Gm
(−1)[−1]

∪t∗−−→ Gm
→ K → Gm

(−1)

Next, Ayoub defines the object Log∨ of DM(Gm)Q. Viewing K as the two-

term complex [mS(GmS)(−1)[−1]
∪t∗−−→ mS(GmS)] with mS(GmS) in degree

zero, one sees that the nth symmetric product SymnK is the complex

Gm
(−n)[−n]

∪t∗−−→ Gm
(−n+ 1)[−n+ 1]

∪t∗−−→ . . .

∪t∗−−→ Gm
(−1)[−1]

∪t∗−−→ Gm
,

where we write the map ∪t∗(−i)[−i] as ∪t∗ for short. The map Gm
→ K

gives rise to the map SymnK → Symn+1K. We can take the limit Log∨ in
DM(Gm)Q

Log∨ := lim
n

SymnK
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As a complex, Log∨ is just

. . .
∪t∗−−→ Gm

(−n)[−n]
∪t∗−−→ Gm

(−n+ 1)[−n+ 1]
∪t∗−−→ . . .

∪t∗−−→ Gm
(−1)[−1]

∪t∗−−→ Gm
.

Now suppose we have a semi-stable degeneration f : X → A1 and an object
E ∈ DM(X 0)Q. Let f0 : X 0 → Gm be the restriction of f ; since f0 is smooth,
we have Lf0∗ = f∗. Let i : X0 → X , j : X 0 → X be the inclusions. The
logarithmic specialization functor logf is defined by

logf (E) := Li∗Rj∗(E ⊗ f
0∗Log∨)

Remark 9.4.1. If we replace X with X ×A1 SpecOA1,0, we have the canonical
identification of X 0 with the generic fiber Xη and f0 with fη. We avoid doing
this to keep with the notation of our earlier sections. �

The first step in our comparison is

Lemma 9.4.2. Take E ∈ DM(X 0)Q, represented by a fibrant object Ẽ ∈

CQ(Sm/X 0). Then E ⊗ f0∗Log∨ is represented by Ẽ(logf•).

Proof. Note that we may assume that Ẽ is alternating, since E is a motive.
LettingHom denote the internal Hom inDM(X 0)Q. We have the distinguished
triangle

E(−1)[−1]→ Hom(GmX0
, E)

i∗1−→ Hom( , E) = E → E(−1)

Thus E(−1)[−1] is represented by the presheaf

X ′ 7→ fib[Ẽ(X ′ ×k Gm)
id×i∗1−−−→ Ẽ(X ′)]

Similarly, for n ≥ 1, E(−n)[−n] is represented by the presheaf

X ′ 7→ Ẽ(X ′ ∧G∧n
m ).

SInce Ẽ is alternating, this latter presheaf is equivalent to

X ′ 7→ Ẽ(X ′,G∧n
m )alt.

Finally, the map ∪f : Ẽ(X ′
+ ∧ Gm) → Ẽ(X ′) is just the map induced by the

pull-back by f and f × id of the diagonal map Gm → Gm ×k Gm, hence ∪f
represents the map f0∗(∪t∗). The comparison follows easily from this. �

Next, Ayoub considers the object U of DM(Gm)Q. Interpreting his general
construction in the case of DM(Gm)Q, U is the motive associated to the sim-
plicial object

n 7→ HomDM(Gm)Q
(PnGm

, Gm
),

i.e., the homological complex which is HomDM(Gm)Q
(PnGm

, Gm
) in degree n,

and with differential the alternating sum of the maps induced by the coface
maps in PGm

. Naturally, to make sense of this, we need to lift this construction
to the appropriate category of complexes. In any case, the same proof as for
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lemma 9.4.2 gives us a canonical isomorphism of E ⊗ f0∗U with E(PX 0/Gm
).

Similarly, the uni-potent specialization functor Υ is given by

Υ(E) = Li∗Rj∗(E ⊗ f
0∗U).

Finally, we have

HomDM(Gm)Q
(PnGm

, Gm
) ∼= ( Gm

(−1)[−1]⊕ Gm
)⊗n

and the first differential U1 → U0 is

Gm
(−1)[−1]⊕ Gm

∪t∗+id
−−−−→ Gm

Thus we have the evident map K → U . The diagonal map on PGm
dualizes to

make U a commutive ring object in DM(Gm)Q. Ayoub notes that K → Log∨

is universal for maps of K to a commutative ring in DM(Gm)Q, hence there is
a unique ring map ℓ : Log∨ → U making

K //

""
D

D

D

D

D

D

D

D

D

Log∨

ℓ

��

U

commute. It is not hard to see that our map alt ◦ π is induced by a map of
complexes in QSm/Gm which commutes with the co-multiplications dual to
the ring multiplications for U and Log∨. Since both

E ⊗ f0∗Log∨
id⊗ℓ
−−−→ E ⊗ f0∗U

and

E(PX 0/Gm
)

alt◦π
−−−→ E(logf•)

are isomorphisms in DM(X 0)Q, it follows that these maps are inverse to each
other.
Once we have the pair of compatible isomorphisms E ⊗ f0∗Log∨ ∼= E(logf•)
and E ⊗ U ∼= E(PX 0/Gm

), it is easy to see that Ayoub’s construction of the
monodromy sequence and ours are compatible: Ayoub’s construction follows
from the obvious identification of Log∨(−1) with σ≤−1Log

∨ (cohomological
notation) giving the distinguished triangle

Gm
→ Log∨

N
−→ Log∨(−1)→ Gm

[1]

which clearly passes over to our identification E(σ≥1 logf•) ∼= E(−1) and the
monodromy distinguished triangle of corollary 9.3.5.

10. Limit motives

We use our construction of limit cohomology, slightly modified, to give a con-
struction of the limit motive of a semi-stable degeneration, as an object in the
big category of motives DM(k).
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10.1. The big category of motives. Voevodsky has defined the category
of effective motives as the full subcategory DM eff

− (k) of the derived category
of Nisnevich sheaves with transfer D−(NST(k)) consisting of those complexes
with strictly homotopy invariant cohomology sheaves.
In his thesis, Spitzweck [43] defines a “big” category of motives over a field k.
Other constructions of a big category of motives over a noetherian base scheme
S have been given by Østvar-Röndigs [40] and also by Cisinski-Deglise [9]. To
give the reader the main idea of all these constructions, we quote from a recent
letter from Röndigs [41]:
“One may construct a model category of simplicial presheaves with transfers
on Sm/k, in which the weak equivalences and fibrations are defined via the
functor forgetting transfers. Via the Dold-Kan correspondence, there is an
induced model structure on nonnegative chain complexes of presheaves with
transfers. Both may be stabilized with respect to T or P1, in the sense of [18].
The Dold-Kan correspondence extends accordingly. Since T is a suspension
already, one can then pass to a model category of Gm-spectra of integer-indexed
chain complexes as well. For k a perfect field, results from [46] show that the
homotopy category of the latter model category contains Voevodsky’s DMgm

as a full subcategory. ”
We will use the P1-spectrum model. For details, we refer the reader to [40] and
[35].

10.2. The cohomological motive. We start with the category of pre-
sheaves with transfer PST(k) on Sm/k, which is defined as in [46] as the
category of presheaves on the correspondence category Cor(k). We let
C≥0(PST(k)) denote the model category of non-negative chain complexes in
PST(k), with model structure induced from simplicial presheaves on Sm/k,
as described above. For P ∈ C≥0(PST(k)), let P (−1) denote the presheaf

Y 7→ ker[P (Y × P1)
i∗∞−−→ P (Y ×∞)][2].

where “ker” means the termwise kernel of the termwise split surjection i∗∞.
Let ZtrX denote the presheaf on Cor(k) represented by X ∈ Sm/k, and let

Z̃trP1 := coker(ZtrSpec k
i∞∗−−→ ZtrP1).

One has the adjoint isomorphism

HomC≥0(PST(k))(C ⊗ Z̃trP1 , C ′) ∼= HomC≥0(PST(k))(C,C
′(−1)[−2])

so the bonding maps for P1-spectra in C≥0(PST(k)) can be just as well defined
via maps

Cn → Cn+1(−1)[−2].

We will use this normalization of the bonding morphisms from now on.
For an integer q ≥ 0, we have the (homological) Friedlander-Suslin presheaf
ZFS(q). To define this, one starts with the presheaf with transfers of quasi-
finite cycles zq.fin(Aq), with value on Y ∈ Sm/k the cycles on Y × Aq which
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are quasi-finite over Y . One then forms the Suslin complex C∗(zq.fin(Aq)) and
reindexes:

ZFS(q)(Y )n := Cn−2q(zq.fin(Aq))(Y ) := zq.fin(Aq)(Y ×∆n−2q).

(see [26, §2.4] for a precise definition). This represents motivic cohomology
Zariski-locally:

Hp(X,Z(q)) = Hp(XZar,ZFS(q)).

More generally, for X ∈ Sm/k, define ZXFS(q) by

ZXFS(q)(Y ) := ZFS(q)(X × Y ).

We define
δn : ZXFS(n)→ ZXFS(n+ 1)(−1)

by sending a cycle W on X × Y ×∆m × An to W ×∆, where ∆ ⊂ A1 × P1 is
the graph of the inclusion A1 ⊂ P1, and then reordering the factors to yield a
cycle on X × Y × P1 ×∆m × An+1.

Definition 10.2.1. Let X be in Sm/k. The cohomological motive of X is the
sequence

h̃(X) := (ZXFS(0),ZXFS(1)[2], . . . ,ZXFS(n)[2n], . . .)

with the bonding morphisms δn[2n]. �

Remark 10.2.2. One can also define the cohomological motive h(X) ∈
DMgm(k) as the dual of the usual (homological) motive m(X) := CSus(Ztr

X).
For X of dimension d, h(X)(n) is actually in DM eff

− (k) for all n ≥ d, and is

represented by ZXFS(n). From this, one sees that the image of h̃(X) in DM(k)
is canonically isomorphic to h(X).
Also, one can work in DM eff

− (k) if one wants to define the cohomological motive
of a diagram in Sm/k if the varieties involved have uniformly bounded dimen-
sion. Since our construction of limit cohomology uses varieties of arbitrarily
large dimension, we need to work in DM(k). �

10.3. The limit motive. It is now an easy matter to define the limit motive
for a semi-stable degeneration. Let X → (C, 0) be a semi-stable degeneration
with parameter t at 0; suppose the special fiber X0 has irreducible components
X1

0 , . . . ,X
m
0 . We have the diagram (8.2.1) of cosheaves on X0Zar, limt→0Xt,

indexed by the non-empty subsets I ⊂ {1, . . . ,m}, which we write as

I 7→ [lim
t→0

Xt]I .

Taking global sections on X0 yields the diagram of cosimplicial schemes

I 7→ [lim
t→0

Xt]I(X0).

Applying h̃ gives us the diagram of P1-spectra in C≥0(PST(k))

I 7→ h̃([lim
t→0

Xt]I(X0)).

We then take the homotopy limit over this diagram forming the complex

lim
t→0

h̃(Xt) := holim
I
{I 7→ h̃([lim

t→0
Xt]I(X0))}.
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Definition 10.3.1. Let X → (C, 0) be a semi-stable degeneration with pa-
rameter t at 0. The limit cohomological motive limt→0 h(Xt) is the image of

limt→0 h̃(Xt) in DM(k). �

Using the same procedure, we have, for D ⊂ X a normal crossing scheme, the

motive of the tubular neighborhood h(τ X̂ǫ (D)) and the motive of the punc-

tured tubular neighborhood h(τ X̂ǫ (D)0). All the general results now apply for
these cohomological motives. In particular, from corollary 9.3.5 we have the
monodromy distinguished triangle (for the Q-motive)

h(τ X̂ǫ (X0)
0)Q → lim

t→0
h(Xt)Q → lim

t→0
h(Xt)Q(−1)

and theorem 6.3.7 gives the localization distinguished triangle

hX0(X )→ h(X0)→ h(τ X̂ǫ (X0)
0),

where hX0(X ) is represented by

Cone(h̃(X )
j∗

−→ h̃(X \X0))[−1].

From this latter triangle, we see that h(τ X̂ǫ (X0)
0) is in DMgm(k).

11. Gluing smooth curves

We use the exponential map defined in §5 to define an algebraic version of
gluing smooth curves along boundary components. We begin by recalling the
construction of the moduli space of smooth curves with boundary components;
for details we refer the reader to the article by Hain [15].

11.1. Curves with boundary components. For a k-scheme Y , a smooth
curve over Y is a smooth proper morphism of finite type p : C → Y with
geometrically irreducible fibers of dimension one. We say that C has genus g
if all the geometric fibers of p are curves of genus g. A boundary component
of C → Y consists of a section x : Y → C together with an isomorphism v :
OY → x∗TC/Y , where TC/Y is the relative tangent bundle on C. Equivalently,
v is a nowhere vanishing section of TC/Y along x. A smooth curve with n
boundary components is (C → Y, (x1, v1), . . . , (xn, vn)) with all the xi disjoint.
One has the evident notion of isomorphism of such tuples, so we can consider
the functor Mn

g on Schk:

Mn
g (Y )

:= {smooth genus g curves over Y with n boundary components}/ ∼=

For n = 0, this is just the well-know functor of moduli of smooth curves, which
admits the coarse moduli spaceMg. For n ≥ 1 and g ≥ 1, it is easy to show that
a smooth curve over Y with n boundary components admits no non-identity
automorphisms (over Y ), from which it follows that Mn

g is representable; we
denote the representing scheme by Mn

g as well. The same holds for genus 0 if
n ≥ 2; in fact the data of a genus zero curve C with two points 0, ∞ together
with a tangent vector v 6= 0 in T0(C) has no non-identity automorphisms.
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One can form a partial compactification ofMn
g by allowing stable curves with

boundary components. As we will not require the full extent of this theory, we
restrict ourselves to connected curves C with a single singularity, this being an
ordinary double point p. We require that the boundary components are in the
smooth locus of C. If C is reducible, then C has two irreducible components
C1, C2; we also require that both C1 and C2 have at least one boundary
component. As above, such data has no non-trivial automorphisms, which
leads to the existence of a fine moduli space M̄n

g . We let Cng → M
n
g be the

universal curve with universal boundary components (x1, v1), . . . , (xn, vn), and
C̄ng → M̄n

g the extended universal curve.

The boundary ∂M̄n
g := M̄n

g \M
n
g is a disjoint union of divisors

∂M̄n
g := D(g,n) ∐

∐

(g1,g2),(n1,n2)

D(g1,g2),(n1,n2),

where D(g1,g2),(n1,n2) consists of the curves C1 ∪ C2 with g(Ci) = gi, and with
Ci having ni boundary components (we specify which component is C1 by
requiring C1 to contain the boundary component (x1, v1)) and D(g,n) is the
locus of irreducible singular curves.
Let (C, (x1, v1), . . .) be a curve in ∂M̄n

g with singular point p. By stan-

dard deformation theory, it follows that ∂M̄n
g is a smooth divisor in M̄n

g ;
let N(g1,g2),(n1,n2) denote the normal bundle of D(g1,g2),(n1,n2). Deformation
theory gives a canonical identification of the fiber of the punctured normal
bundle N0

g1,g2,n1,n2
:= N(g1,g2),(n1,n2) \ 0 at (C, (x1, v1), . . .) with Gm-torsor of

isomorphisms

Λ2TC,p ∼= k(p).

11.2. Algebraic gluing. We can now describe our algebraic construction of
gluing curves. Fix integers g1, g2, n1, n2 ≥ 1. We define the morphism

µ̄ :Mg1,n1
×Mg2,n2

→ Dg1,g2,n1−1,n2−1.

by gluing (C1, (x1, v1), . . . , (xn1
, vn1

)) and (C2, (y1, w1), . . . , (yn2
, wn2

)) along
xn1

and y1, forming the curve C := C1 ∪ C2 with boundary components
(x1, v1), . . . , (xn1−1, vn1−1), (y2, w2), . . . , (yn2

, wn2
) and singular point p. We

lift µ̄ to

µ :Mg1,n1
×Mg2,n2

→ N0
g1,g2,n1,n2

using the isomorphism Λ2TC,p → k(p) which sends vn−1 ∧ w1 to 1 and the
identification of (N0

g1,g2,n1,n2
)C1∪C2,... described above.

We now pass to the category SHA1(k). Taking the infinite suspension, the map
µ defines the map

Σ∞µ : Σ∞Mg1,n1+ ∧ Σ∞Mg2,n2+ → Σ∞N0
g1,g2,n1,n2+.

Composing with our exponential map defined in §5 gives us our gluing map

⊕ : Σ∞Mg1,n1+ ∧ Σ∞Mg2,n2+ → Σ∞Mg1+g2,n1+n2−2+.
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Remarks 11.2.1. (1) If one fixes a curve E := (E, (x1, v1), (x2, v2)) ∈M1,2, one
can form the tower under E⊕

. . .→ Σ∞Mg,n → Σ∞Mg+1,n → . . . ,

and form the homotopy colimit Σ∞M∞,n. If E is an object of SHA1(k),
one thus has the E-cohomology E∗(M∞,n). For intance, this gives a possible
definition of stable motivic cohomology or algebraicK-theory of smooth curves.
However, it is not at all clear if this limit is independent of the choice of E .
In the topological setting, one notes that the space M1,2(C) is connected, so
the limit cohomology, for example, is independent of the choice of E . On the
contrary, M1,2(R) is not connected (the number of connected components in
the real points of the curve corresponding to a real point ofM1,2 splitsM1,2(R)
into disconnected pieces), so even there, the choice of E plays a role. It is also
not clear ifM∞,n is independent of n (up to isomorphism in SHA1(k)).
(2) In the topological setting, the map ⊕ is the infinite suspension of a map

φ :Mg1,n1
(C)×Mg2,n2

(C)→Mg1+g2,n1+n2−2(C),

making ∐g,nMg,n+2(C) into a topological monoid; the group completion is
homotopy equivalent to the plus construction on the stable moduli space
limg→∞Mg,1(C) formed as in (1). Letting M∞(C)+ denote this group com-
pletion, the group structure induces on Σ∞M∞(C)+ the structure of a Hopf
algebra (this was pointed out to me by Fabian Morel), the co-algebra structure
being the canonical one on a suspension spectrum. The functoriality of the ex-
ponential map exp0 as described in Remark 5.2.2 shows that the maps ⊕ make∨
g,n Σ∞Mg,n+2 into a biaglebra object in SHA1(k). It is not clear if there is

an analogous “Hopf algebra completion” of
∨
g,n Σ∞Mg,n+2 in SHA1(k). �

12. Tangential base-points

Since, by work of Østvar-Röndigs [35], motivic cohomology is represented in
SHA1(k), our methods are applicable to this theory. However, one can simplify
the construction somewhat, since we are dealing with complexes of abelian
groups rather than spectra. One can also achieve a refinement incorporating
the multiplicative structure; this allows for a motivic definition of tangential
base-points for the category of mixed Tate motives from the point of view
of cycle algebras. Of course, the unipotent specialization functor of Ayoub
[3], when restricted to the triangulated category of Tate motives in DM(−)
also gives tangential base-points for mixed Tate motives, but we hope our
construction will be useful for applications of this operation.

12.1. Cubical complexes. If we work with presheaves of complexes rather
than presheaves of spectra, we can replace all our simplicial constructions with
cubical versions. This enables an easy extension to the setting of differential
graded algebras (d.g.a.’s), or even graded-commutative d.g.a.’s (c.d.g.a.’s) if we
work with complexes of Q-vector spaces. We list the main results without proof
here; the methods discussed in [26, §2.5] carry over without difficulty.
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For a commutative ring R, we denote the model category of complexes of R-
modules on the big Nisnevich site, CR(Sm/SNis) by CR,Nis(S) and the derived
category by DR,Nis(S).
The cubical category Cube has objects n, n = 0, 1, . . .. Cube is a subcategory
of the category of finite sets, with n standing for the set {0, 1}n, with morphisms
making Cube the smallest subcategory of finite sets containing the following
maps:

(1) all inclusions si,n,ǫ : {0, 1}n → {0, 1}n+1, ǫ ∈ {0, 1}, i = 1, . . ., n + 1,
where si,n,ǫ is the inclusion inserting ǫ in the ith factor.

(2) all projections pi,n : {0, 1}n → {0, 1}n−1, i = 1, . . . , n, where pi,n is the
projection deleting the ith factor.

(3) all maps qi,n : {0, 1}n → {0, 1}n−1, i = 1, . . . , n− 1, n ≥ 2, defined by

qi,n(ǫ1, . . . , ǫn) := (ǫ1, . . . , ǫi−1, δ, ǫi+2, . . . , ǫn)

with

δ :=

{
0 if (ǫi, ǫi+1) = (0, 0)

1 else.

A cubical object in a category C is a functor Cube→ C.
The basic cubical object in Sch is the sequence of n-cubes �

∗ : Cube→ Sm/k.
The operations of the projections pi,n and inclusions si,n are the evident ones;
qi,n acts by

qi,n(x1, . . . , xn) := (x1, . . . , xi−1, 1− (xi − 1)(xi+1 − 1), xi+2, . . . , xn).

Now let P : Cube → ModR be a cubical R-module. We have the cubical
realization |P |c ∈ CR with

|P |cn := P (n)/
n∑

i=1

p∗i,n(P (n− 1)).

The differential dcn : |P |cn → |P |
c
n−1 is

dcn :=

n∑

i=1

(−1)is∗i,1 −
n∑

i=1

(−1)is∗i,0.

| − |c is clearly a functor from the R-linear category of cubical R-modules to
C(R); in particular, if we apply | − |c to a complex of R-modules, we end up
with a double complex. For a complex C, also write |C|c for the total complex
of this double complex, letting the context make the meaning clear.

Example 12.1.1. For a presheaf of abelian groups P on Sm/k, we have cubical
presheaf Cc(P ) with

Cc(P )(Y ) := P (Y ×�
∗).

Taking the cubical realization yields the cubical Suslin complex C∗(P )c with

C∗(P )c(Y ) := |Cc(P )(Y )|c.

�
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The symmetric group Sn acts on Cn(P )c, we let Cn(P )calt denote the sub-
presheaf of alternating sections. If P is a presheaf of Q-vector spaces, Cn(P )calt
is a canonical summand of Cn(P )c, with projection given by the idempotent
Altn := 1

n!

∑
g sgn(g)g; one checks that the Cn(P )calt form a subcomplex of

C∗(P )c.
The main result on these constructions is

Proposition 12.1.2. (1) There is a canonical homotopy equivalence of functors

C∗ → Cc∗ : C(k)→ C(k)

(2) If P is a complex of presheaves of Q-vector spaces, the inclusion

C∗(P )calt → C∗(P )c

is a quasi-isomorphism

Sketch of proof; see [27, §5] for details. For (1), one uses the algebraic maps

�
n → ∆n

which collapse the faces xi = 1 to the vertex (0, . . . , 0, 1) to get a map C∗ → Cc∗.
The homotopy inverse is given by triangulating the �

n. For (2) one checks that
Sn acts by the sign representation on the homology sheaves of C∗(P )c. The
projections Altn define a map of complexes Alt∗ : C∗(P )c → C∗(P )calt which
thus gives the inverse in homology. �

12.2. Cubical tubular neightborhoods. For a closed immersion i : W →
X in Sm/k, set �̂

n
X,W := (�̂n

X)h
�n

W
, giving us the cubical pro-scheme

�̂
∗
X,W : Cube→ Pro-Sm/k

We use the same notation for morphisms in the cubical setting as in the sim-
plicial version, e.g., îW : �

∗
W → �̂

∗
X,W . We have as well the co-presheaf on

WZar

�̂
n
X,WZar

(W \ F ) := �̂
n
X\,W\F

and the cubical co-presheaf

τ X̂ǫ (W )c := �̂
∗
X,WZar

.

Now let P be in C(k). We define P (τ X̂ǫ (W )c)∗ to be the complex of presheaves

P (τ X̂ǫ (W )c)∗ := |P (τ X̂ǫ (W )c)|c.

We also have the alternating subcomplex P (τ X̂ǫ (W )c)alt ⊂ P (τ X̂ǫ (W )c).
We have as well the punctured tubular neighborhood in cubical form

τ X̂ǫ (W )0c := τ X̂ǫ (W )c \�
∗
WZar

on which we can evaluate P :

P (τ X̂ǫ (W )0c)∗ := |P (τ X̂ǫ (W )0c)|c.

Let P (τ X̂ǫ (W )0c)alt ⊂ P (τ X̂ǫ (W )0c) be the alternating subcomplex.

Documenta Mathematica 12 (2007) 71–146



Motivic Tubular Neighborhoods 137

We let EM : C→ Spt be a choice of the Eilenberg-Maclane spectrum functor.
Our main comparison result is

Theorem 12.2.1. (1) Let i : W → X be a closed immersion in Sm/k. For
P ∈ C(k), there are natural isomorphisms in SH(WZar)

EM(P (τ X̂ǫ (W )c)) ∼= EM(P )(τ X̂ǫ (W ))

EM(P (τ X̂ǫ (W )0c)) ∼= EM(P )(τ X̂ǫ (W )0)

(2) If P is a presheaf of complexes of Q-vector spaces, then the inclusion

P (τ X̂ǫ (W )c)alt → P (τ X̂ǫ (W )c)

is a quasi-isomorphism.

Proof. Define P (τ X̂ǫ (W )) to be the total complex of the double complex asso-

ciated to the simplicial complex n 7→ P (τ X̂ǫ (W )n). The homotopy equivalence
used in Proposition 12.1.2(1) extends, by the functoriality of the Nisnevich
neighborhood, to a homotopy equivalence

P (τ X̂ǫ (W ))c ∼ P (τ X̂ǫ (W ))

This yields a weak equivalence on the associated Eilenberg-Maclane spectra.
Since the functor EM passes to the homotopy category, we have a canonical
isomorphism

EM(P )(τ X̂ǫ (W ))) ∼= EM(P (τ X̂ǫ (W ))).

Putting these isomorphisms together completes the proof of the first assertion
for the tubular neighborhood. The proof for the punctured tubular neigh-
borhood is essentially the same. The second assertion follows from Proposi-
tion 12.1.2(2). �

12.3. The motivic c.d.g.a. There are a number of different complexes which
represent motivic cohomology; we will use the strictly functorial one of
Friedlander-Suslin, ZFS(q) (see the description in §10.2) reindexed as a co-
homological complex:

ZFS(q)n := ZFS(q)−n.

We will use the cubical version ZFS(q)c:

ZFS(q)c,n(Y ) := C2q−n(zq.fin(Aq))c(Y ).

By Proposition 12.1.2, ZFS(q)c is quasi-isomorphic to ZFS(q).
Passing to Q-coefficients, we have the quasi-isomorphic alternating subcomplex
QFS(q)calt ⊂ QFS(q)c. We may also symmetrize with respect to the coordinates
in the Aq in zq.fin(Aq); it is shown in [26] that the inclusion

QFS(q)calt,sym ⊂ QFS(q)calt

is also a quasi-isomorphism.
The product map

zq.fin(Aq)(�n × Y )⊗ zq.fin(Aq
′

)(�n′

× Y )→ zq.fin(Aq+q
′

)(�n+n′

× Y )

Documenta Mathematica 12 (2007) 71–146



138 Marc Levine

makes the graded complex

ÑZ := ⊕q≥0ZFS(q)c

into a presheaf of Adams-graded d.g.a.’s on Sm/k (with Adams grading q).
Passing to Q-coefficients, and following the product with the alternating and
symmetric projections makes

N := ⊕q≥0QFS(q)calt,sym

a presheaf of Adams-graded c.d.g.a.’s, the motivic c.d.g.a. on Sm/k.
We letN → N fib denote a fibrant model ofN in the model category of (Adams-
graded) c.d.g.a.’s on Sm/k, where the weak equivalences are Adams-graded
quasi-isomorphisms of c.d.g.a.’s for the Zariski topology.

Remarks 12.3.1. (1) Since N is strictly homotopy invariant [46, Theorem 4.2],
N fib is homotopy invariant.
(2) In case k admits resolution of singularities (i.e., chark = 0) the canonical
map ZFS(q) → ZFS(q)fib is a pointwise weak equivalence [46, Theorem 7.4].
Thus, in this case, we can use N instead of N fib. �

12.4. The specialization map. We consider the situation of a smooth curve
C over our base-field k with a k-point x. We let O denote the local ring of x
in C, K the quotient field of O and choose a uniformizing parameter t, which
we view as giving a map

t : SpecO → A1.

sending x to 0.
Letting ix : x→ SpecO be the inclusion, we have the restriction map

i∗x : N (O)→ N (k(x)),

which is a morphism of Adams-graded c.d.g.a.’s. In this section, we extend i∗x
to a map

spt : N (K)→ N (k(x))

in the homotopy category of Adams-graded c.d.g.a.’s over Q (denoted
H(c.d.g.a.Q)). This is essentially our construction of the tubular neighborhood,
where we use cubical constructions throughout to keep track of the multiplica-
tion.
First, if we apply N to �

∗ × Y and take the alternating projection again, we
have the presheaf of c.d.g.a.’s N (�∗

alt) and the quasi-isomorphism of presheaves
of c.d.g.a.’s

ι : N → N (�∗
alt).

Next, write �̂
m0
C,x for �̂

m
C,x \ �

m
x , and consider the cubical punctured tubular

neighborhood ZFS(q)c(τ Ĉǫ (x)0c). The product map

zq.fin(Aq)(�n × �̂
m0
C,x)⊗ zq.fin(A

q′)(�n′

× �̂
m′0
C,x ))

→ zq.fin(Aq+q
′

)(�n+n′

× �̂
m+m′0
C,x ))
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makes ⊕q≥0ZFS(q)c(τ
ˆSpecO

ǫ (x)0c) into an Adams-graded d.g.a.; taking the al-

ternating projection in both the �
n and �̂

m0
C,x variables, and the symmetric

projection in Aq and applying the fibrant model gives a presheaf of Adams-

graded c.d.g.a.’s, denoted N fib(τ
ˆSpecO

ǫ (x)0calt).
Similarly, we perform this construction using the full tubular neighborhood,

giving the presheaf N fib(τ Ĉǫ (x)calt), and the commutative diagram of Adams-
graded c.d.g.a.’s:

N (k(x))

ι

��

N (O)
res //

π∗
O

��

i∗xoo N (K)

ι

��

π∗
K

��

N fib(�∗
alt)(k(x)) N fib(τ Ĉǫ (x)calt) res

//

i∗x

oo N fib(τ Ĉǫ (x)0calt)

Replacing (C, x) with (A1, 0) and using A1 and Gm instead of SpecO and
SpecK yields the commutative diagram of Adams-graded c.d.g.a.’s

N (k(0))

ι

��

N fib(A1)
res //

π∗
A1

��

i∗0oo N fib(Gm)

ι

��

π∗
Gm

��

N fib(�∗
alt)(k(x)) N fib(τ Â1

ǫ (0)calt) res
//

i∗0

oo N fib(τ Â1

ǫ (0)0calt).

By Corollary 3.3.3 and Corollary 4.1.4, the maps π∗
A1 and π∗

Gm
are quasi-

isomorphisms of complexes, hence quasi-isomorphisms of Adams-graded
c.d.g.a.’s. Since N fib is homotopy invariant, the maps ι are quasi-isomorphisms
of Adams-graded c.d.g.a.’s.
Finally, the map t induces the commutative diagram of Adams-graded c.d.g.a.’s

N (k(x)) N fib(τ Ĉǫ (x)calt)
res //

i∗xoo N fib(τ Ĉǫ (x)0calt)

N (k(0))

t∗

OO

N fib(τ Â1

ǫ (x)calt) res
//

t∗

OO

i∗0

oo N fib(τ Â1

ǫ (x)0calt).

t∗

OO

Since t : (C, x) → (A1, 0) is a Nisnevich neighborhood of 0 in A1, all three
maps t∗ are isomorphisms. Putting these diagrams together and inverting
the quasi-isomorphisms ι, t∗, π∗

A1 and π∗
Gm

yields the commutative diagram in
H(c.d.g.a.Q):

(12.4.1) N (k(x)) N (O)
i∗xoo res //

φ∗
O

��

N (K)

φ∗
K

��

N (k(0))

t∗

OO

N fib(A1) res
//

i∗0

oo N fib(Gm)
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Definition 12.4.1. Let i1 : Spec k → Gm be the inclusion. The map spt :
N (K)→ N (k(x)) in H(c.d.g.a.Q) is defined to be the composition

N (K)
φ∗

K−−→ N fib(Gm)
i∗1−→ N fib(k) ∼= N (k) = N (k(0))

t∗
−→ N (k(x)).

�

Proposition 12.4.2. The diagram in H(c.d.g.a.Q)

N (O)
res //

i∗x %%J

J

J

J

J

J

J

J

J

N (K)

spt

��

N (k(x))

commutes.

Proof. Since N fib is homotopy invariant, the maps

i∗0, i
∗
1 : N fib(A1)→ N (k)

are equal in H(c.d.g.a.Q). The proposition follows directly from this and a chase
of the commutative diagrams defined above. �

Remark 12.4.3. In the situation we are considering, we already have the fol-
lowing diagram:

N (K)→ N (lim
t→0

SpecK) ∼= N (k(0)).

However, the above diagram is only a diagram in the homotopy category of
complexes of Q-vector spaces, which is thus equivalent to the same diagram
for cohomology of the complexes involved. We have gone to the trouble of
redoing our theory using cubes throughout because we need to keep track of
the multiplication, i.e. our construction lifts the above diagram in Db(Q) to
one in H(c.d.g.a.Q). �

12.5. The specialization functor. For a field k, we have the triangulated
category DMT(k) of mixed Tate motives over k, this being the full triangu-
lated subcategory of Voevodsky’s triangulated category of motives (with Q-
coefficients), DMgm(k)Q, generated by the Tate objects Q(n), n ∈ Z.
We will also use in this section the derived category of finite cell modules over
an Adams-graded c.d.g.a. A, DCM(A). This construction was introduced in
[23]; we refer the reader to the discussion in [26, §5] for the properties of DCM
we will be using below.
Let O be as in the previous section the local ring of a k-point x on a smooth
curve C over k, with quotient field K. The map spt : N (K)→ N (k(x)) yields
an exact tensor functor

spt : DMT(K)→ DMT(k(x))

Indeed, as discussed in [26, §5.5], Spitzweck’s representation theorem gives a
natural equivalence of DMT(k) with the derived category DCM(N (k)) of finite
cell modules over the Adams-graded c.d.g.a.N (k), as triangulated tensor Q-
tensor categories.
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The functor DCM associating to an Adams-graded Q-c.d.g.a. A the triangu-
lated tensor category DCM(A) takes quasi-isomorphisms to triangulated ten-
sor equivalences, hence DCM descends to a well-defined pseudo-functor on
H(c.d.g.a.Q). Thus, we may make the following

Definition 12.5.1. Let O be the local ring of a k-point x on a smooth
curve C over k, with quotient field K and uniformizing parameter t. Let
spt : DMT(K) → DMT(k(x)) be the exact tensor functor induced by
DCM(spt) : DCM(N (K)) → DCM(N (k(x)), using Spitzweck’s representation
theorem to identify the derived categories of cell modules with the appropriate
category of mixed Tate motives. �

Remark 12.5.2. (1) The discussion in [26, §5.5], in particular, the statement
and proof of Spitzweck’s representation theorem, is in the setting of motives
over a field. However, we now have available a reasonable triangulated category
DM(S) of motives over an arbitrary base-scheme S (see [48]), and we can thus
define the triangulated category of mixed Tate motives over S, DMT(S), as in
the case of a field.
Furthermore, if S is in Sm/k for k a field of characteristic zero, then N (S) has
the correct cohomology, i.e.

Hn(N (S)) = ⊕q≥0H
n(S,Q(q)),

and one has the isomorphism

Hn(S,Z(q)) ∼= HomDM(S)(Z,Z(q)).

This is all that is required for the argument in [26, §5.5] to go through,
yielding the equivalence of the triangulated tensor category of cell modules
DCM(N (S)) with DMT(S).

(2) Joshua [20] has defined the triangulated category of Q mixed Tate
motives over S as DCM(N (S)); the discussion in (1) shows that this agrees
with the definition as a subcategory of DM(S)Q. �

With these remarks, we can now state the main compatibility property of the
functor spt : DMT(K)→ DMT(k(x)).

Proposition 12.5.3. Let O be the local ring of a k-point x on a smooth
curve C over k, with quotient field K and uniformizing parameter t. Let
i∗x : DMT(O) → DMT(k) and j∗ : DMT(O) → DMT(K) be the functors
induced by the inclusions ix : Spec k → SpecO and j : SpecK → SpecO,
respectively. Then the diagram

DMT(O)
j∗

//

i∗x ''N

N

N

N

N

N

N

N

N

N

N

DMT(K)

spt

��

DMT(k(x))

commutes up to natural isomorphism.
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Proof. This follows from Proposition 12.4.2 and the functoriality (up to natural
isomorphism) of the equivalence DCM(N (S)) ∼ DMT(S). �

12.6. Compatibility with specialization on motivic cohomology. As
above, let O be the local ring of a closed point x on a smooth curve C over k,
with quotient field K and uniformizing parameter t. We have the localization
sequence for motivic cohomology

. . .→ Hn(O,Z(q))
j∗

−→ Hn(K,Z(q))
∂
−→ Hn−1(k(x),Z(q − 1))

ix∗−−→ . . .

In addition, the parameter t determines the element [t] ∈ H1(K,Z(1)). One
defines the specialization homomorphism

s̃pt : Hn(K,Z(q))→ Hn(k(x),Z(q))

by the formula

s̃pt(α) := ∂([t] ∪ α).

On the other hand, if k(x) = k, we have the specialization functor

spt : DMT(K)→ DMT(k(x))

and the natural identifications

Hn(K,Q(q)) ∼= HomDMT(K)(Q,Q(q)[n])

Hn(k,Q(q)) ∼= HomDMT(k)(Q,Q(q)[n]).

Thus the functor spt induces the homomorphism

spt : HomDMT(K)(Q,Q(q)[n])→ HomDMT(k)(Q,Q(q)[n])

and hence a new homomorphism

sp′t : Hn(K,Q(q))→ Hn(k,Q(q)).

Proposition 12.6.1. sp′t agrees with the Q-extension of s̃pt.

Proof. Using the equivalence DMT(K) ∼ DCM(N (K)) and the canonical iden-
tifications

HomDCM(K)(Q,Q(q)[n]) ∼= Hn(N (K)) ∼= ⊕q≥0H
n(K,Q(q))

(and similarly for k) we need to show that the Q-linear extension of s̃pt agrees
with the map

Hn(spt) : Hn(N (K))→ Hn(N (k))

induced by spt : N (K)→ N (k).
For this, take an element α ∈ Hn(K,Z(q)) and set

β̄ := ∂α ∈ Hn−1(k,Z(q − 1)).

Since ix : x→ SpecO is split by the structure morphism π : SpecO → Spec k,
we can lift β̄ to β : π∗(β̄) ∈ Hn−1(O,Z(q − 1)). Then

∂([t] ∪ β) = ∂([t]) ∪ i∗xβ = β̄,
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the first identity following from the Leibniz rule and the second from the fact
that ∂([t]) = 1 ∈ H0(k,Z(0)). Thus

∂(α− [t] ∪ β) = 0,

hence there is a class γ ∈ Hn(O,Z(q)) with

j∗γ = α− [t] ∪ β.

We consider γ as an element of Hn(N (O)).
By Proposition 12.4.2, we have

Hn(i∗x)(γ) = Hn(spt)(α− [t] ∪ β).

By the functoriality of the identification

Hn(N (−)) ∼= ⊕q≥0HomDCM(N (−))(Q,Q(q))

and Proposition 12.4.2 it follows that

s̃pt(j
∗γ) = Hn(i∗x)(γ) = Hn(spt)(j

∗γ)

so we reduce to showing

s̃pt([t] ∪ β) = 0 = Hn(spt)([t] ∪ β).

The first identity follows from [t] ∪ [t] = 0 in H2(K,Q(2)). For the second,
because spt is a morphism in H(c.d.g.a.q), the map H∗(spt) is multiplicative,

hence it suffices to show that H1(spt)([t]) = 0.
For this, it follows from the constuction of the map spt : N (K) → N (k(x))
in H(c.d.g.a.Q) that spt is natural with respect to Nisnevich neighborhoods
f : (C ′, x′)→ (C, x) of x, i.e.,

spf∗(t) ◦ f
∗ = spt.

Now, the map t : (C, x) → (A1, 0) is clearly a Nisnevich neighborhood of 0
(after shrinking C if necessary) and

[t] = t∗([T ])

where A1 = Spec k[T ]. Thus, we may assume that C = A1 and t = T . But
then [T ] is a well-defined element of H1(N (Gm)) hence

H1(spt)([T ]) = i∗1([T ]) = [1] = 0

by definition of spt : N (OA1,0)→ N (k). This completes the proof. �

Remark 12.6.2. Since sp′t is multiplicative, as we have already remarked, Propo-
sition 12.6.1 gives a rather long-winded re-proof of the multiplicativity of the
specialization homomorphism s̃pt �
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12.7. Tangential base-points. As shown in [29], the category DMT(k) car-
ries a canonical exact weight filtration. For an Adams-graded c.d.g.a. A, the
derived category of cell modules DCM(A) carries a natural weight filtration as
well; the equivalence DCM(N (k)) ∼ DMT(k) given by Spitzweck’s representa-
tion theorem is compatible with the weight filtrations [26, Theorem 5.24].
If A is cohomologically connected (Hn(A) = 0 for n < 0 and H0(A) = Q · id),
then DCM(A) carries a t-structure, natural among cohomologically connected
A. Finally, ifA is 1-minimal then DCM(A) is equivalent to the derived category
of the heart of this t-structure (see [26, §5]).
Thus, if N (F ) is cohomologically connected, then DMT(F ) has a t-structure;
the heart is called the category of mixed Tate motives over F , denoted MT(F ).
In fact, MT(F ) is a Tannakian category , with natural fiber functor given by
the weight filtration; let Galµ(F ) denote the pro-algebraic group scheme over
Q associated to MT(F ) by the Tannakian formalism. If N (F ) is 1-minimal,
then DMT(F ) is equivalent to Db(MT(F )), but we won’t be using this.
Now let x be a k-point on a smooth curve C over k, and t a parameter in OC,x.
The specialization functor

spt : DMT(k(C))→ DMT(k(x))

arises from the map spt : N (k(C)) → N (k(x)) in H(c.d.g.a.Q), hence spt is
compatible with the weight filtrations. When N (k(C)) and N (k(x)) are coho-
mologically connected, spt is compatible with the t-structures, hence induces
an exact functor of Tannakian categories

spt : MT(k(C))→ MT(k(x))

compatible with the fiber functors grW . By Tannakian duality, spt is equivalent
to a homomorphism

∂

∂t∗
: Galµ(k(x))→ Galµ(k(C)),

which is the tangential base-point associated to the parameter t. This gives
a purely “motivic” construction of the tangential base-point construction of
Deligne-Goncharov [10]; the construction in [10] relies on realization functors.
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[33] Morel, F. Rationalized motivic sphere spectrum and rational motivic cohomology, state-
ment of results.

[34] Morel, F. and Voevodsky, V., A1-homotopy theory of schemes, Inst. Hautes Études Sci.

Publ. Math. 90 (1999), 45–143.
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Sup. (4) 18 (1985), no. 3, 437–552.

[46] Voevodsky, V.; Suslin, A.; Friedlander, E. M. Cycles, transfers, and motivic homology

theories. Annals of Mathematics Studies, 143. Princeton University Press, Princeton,
NJ, 2000.

[47] Voevodsky, Vladimir. Cross functors. Lecture ICTP, Trieste, July 2002.

[48] Voevodsky, V. Motives over simplicial schemes. Preprint, June 16, 2003.
http://www.math.uiuc.edu/K-theory/0638/

Marc Levine∗

Department of Mathematics
Northeastern University
Boston, MA 02115
USA

∗The author gratefully acknowledges the support of the NSF via grants DMS 0140445

and DMS-0457195.

Documenta Mathematica 12 (2007) 71–146


