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Abstract. Displays were introduced to classify formal p-divisible
groups over an arbitrary ring R where p is nilpotent. We define a more
general notion of display and obtain an exact tensor category. In many
examples the crystalline cohomology of a smooth and proper scheme
X over R carries a natural display structure. It is constructed from
the relative de Rham-Witt complex. For this we refine the comparison
between crystalline cohomology and de Rham-Witt cohomology of
[LZ]. In the case where R is reduced the display structure is related
to the strong divisibility condition of Fontaine [Fo].
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1 Introduction

Displays of formal p-divisible groups were introduced in [Z2]. They are one
possible extension of classical Dieudonné theory to more general ground rings.
In [LZ] we gave a direct construction of a display for an abelian scheme by the
relative de Rham-Witt complex. In the case where the p-divisible group of the
abelian scheme is local the construction leads to the display of [Z2].
We define here a more general notion of display over a ring R, where a given
prime number p is nilpotent. If R is a perfect field a display is just a finitely
generated free W (R)-module M endowed with an injective Frobenius linear
map F : M →M , while a display of [Z2] is a Dieudonné module, where V acts
topologically nilpotent. Our category of displays is an exact tensor category
which contains the displays of [Z2] as a full subcategory. There is also a good
notion of base change for displays with respect to arbitrary ring morphisms
R → R′. Neither the construction of the tensor product nor the construction
of base change is straightforward. Special types of tensor products are related
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in [Z2] to biextensions of formal groups. Other operations of linear algebra as
exterior products and duals up to Tate twist may be performed but we don’t
discuss them here, since we don’t use them essentially and their construction
requires just the same ideas. We add that the exact category of displays is
Karoubian [T] and has a derived category.
In many examples we have a display structure on the cohomology of a projective
and smooth scheme which arises as follows: Let p be a fixed prime number and
let R be a ring such that p is nilpotent in R. We denote by W (R) the ring
of Witt vectors and we set IR = VW (R). Let X be a projective and smooth
scheme over R. Let WΩ·X/R be the de Rham-Witt complex. We define for

m ≥ 0 the Nygaard complex NmWΩ·X/R of sheaves of W (R)-modules:

(WΩ0
X/R)[F ]

d
→ . . .

d
→ (WΩm−1

X/R )[F ]
dV
→ WΩmX/R

d
→WΩm+1

X/R

d
→ . . . .

Here F indicates restriction of scalars with respect to the Frobenius F :
W (R) → W (R). We remark that N 0WΩ·X/R = WΩ·X/R. These complexes

were considered by Nygaard, Illusie and Raynaud [I-R], and Kato [K] if R is a
perfect field.
Let m be a nonnegative integer and consider the hypercohomology groups

Pi = Hm(X,N iWΩX/R)

for i ≥ 0. The structure of the de Rham-Witt complex gives naturally three
sets of maps (compare: Definition 2.2):

1) A chain of morphisms of W (R)-modules

. . .→ Pi+1
ιi→ Pi → . . .→ P1

ι0→ P0.

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi → Pi+1.

3) For each i ≥ 0 a Frobenius linear map

Fi : Pi → P0.

The composition of ι and α is the multiplication IR ⊗ Pi → Pi. Moreover we
have the equation:

Fi+1(αi(
V η ⊗ x)) = ηFix, η ∈ IR, x ∈ Pi (1)

We will call a set of data P = (Pi, ιi, αi, Fi) with the properties above a pre-
display. The predisplays form an abelian category. The equation (1) implies:

Fi(ιi(y)) = pFi+1(y)

i.e. the Frobenius F0 becomes more and more divisible by p if it is restricted
to the Nygaard complexes.
We are interested in predisplays, which are obtained by the following construc-
tion. We start with a set of data which are called standard:
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A sequence L0, . . . , Ld of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i = 0, . . . d:

Φi : Li → L0 ⊕ . . .⊕ Ld

We require that the map ⊕iΦi is a Frobenius linear automorphism of L0⊕ . . .⊕
Ld.
From these data one defines a predisplay P = (Pi, ιi, αi, Fi), with

Pi = (IR ⊗ L0)⊕ . . .⊕ (IR ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld

for i ∈ Z, i ≥ 0. The definition of the maps ιi, αi, Fi (compare Definition 2.2)
is not obvious, but we skip it for the moment. We should warn the reader
that the Pi for i > d are obviously isomorphic, but these isomorphisms are not
canonical, i.e. they depend on our construction and not only on the predisplay
P.

Definition: A predisplay is called a display if it is isomorphic to a predisplay
associated to standard data.

A decomposition P0 = L0 ⊕ L1 ⊕ . . . ⊕ Ld which is given by standard data is
called a normal decomposition.
If we start with standard data for d = 1 we obtain exactly the 3n-displays of
[Z2], which are called displays in [Me]. In this work we call them 1-displays.
If we assume that the Li are free the map ⊕Φi is represented by a block matrix
(Aij), where Aij is the matrix of the Frobenius linear map Lj → Li induced by
⊕Φi, where 0 ≤ i, j ≤ d. Conversely any block matrix (Aij) from GL(W (R))
defines standard data for a display. Over a local ring R it would be possible to
define the category of displays in terms of matrices.
We note that the maps ιi for a display P are generally not injective unless the
ring R is reduced. In this case the whole display is uniquely determined by the
Frobenius module (P0, F0). Indeed the display property implies that:

Pi = {x ∈ P0 | F0(x) ∈ p
iP0} (2)

One has Fi = (1/pi)F0. This makes sense because p is not a zero divisor in
W (R) if R is reduced. Therefore over a reduced ring a display is a special kind
of Frobenius module.
If R = k is a perfect field a display is just the same as a Frobenius module
(P0, F0). Indeed, consider the map F0 : P0⊗Q→ P0⊗Q. We obtain inclusions
of W (k)-modules:

P0 ⊂ F
−1
0 P0 ⊂ P0 ⊗Q.

By the theory of elementary divisors we find a decomposition byW (R)-modules
P0 = L0 ⊕ L1 ⊕ . . .⊕ Ld, such that

F−1
0 P0 = L0 ⊕ p

−1L1 ⊕ . . .⊕ p
−dLd.
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Therefore the restriction of p−iF0 to Li defines a map Φi : Li → P0, for
i = 0, . . . , d. These are the standard data for the display associated to the
Frobenius module (P0, F0).
If pR = 0 Moonen and Wedhorn [MW] introduced the structure of an F -zip.
It is defined in terms of the de Rham cohomology of the scheme X/R. As one
should expect any display gives rise to an F -zip (compare the remark after
Definition 2.6.).
For an arbitrary projective and smooth variety X/R we can’t expect that the
crystalline cohomology Hm

crys(X/W (R)) has a display structure. Therefore we
consider the following assumptions: There is a compatible system of smooth
liftings X̃n/Wn(R) for n ∈ N of X/R such that the following properties hold:

(*) The cohomology groupsHj(X̃n,Ω
i
X̃n/Wn(R)

) are for each n, i and j locally

free Wn(R)-modules of finite type.

(**) The de Rham spectral sequence degenerates at E1

Eij1 = Hj(X̃n,Ω
i
X̃n/Wn(R)

)⇒ Hi+j(X̃n,Ω
·
X̃n/Wn(R)

).

Theorem: Let X be smooth and projective over a reduced ring R, such that
the assumptions (*) and (**) are satisfied. Let d be an integer 0 ≤ m < p.
Consider the Frobenius module P0 = Hm

crys(X/W (R)) and define Pi by the
formula (2).
Then the Pi form a display and Pi coincides with the hypercohomology of the
Nygaard complex N iWΩ·X/R.

It would follow from the general conjecture made below that this theorem holds
without the restriction m < p.
Finally we indicate how to proceed if the ring R is not reduced. In order to
overcome the problem with the p-torsion in W (R) we use frames [Z1]. A frame
for R is a triple (A, σ, α), where A is a p-adic ring without p-torsion, σ : A→ A
is an endomorphism which lifts the Frobenius on A/pA, and α : A → R is a
surjective ring homomorphism whose kernel has divided powers. Let us assume
that X admits a lifting to a smooth formal scheme Y over Spf A, which satisfies
assumptions analogous to (*) and (**). We define “displays” relative toA which
we call windows (see [Z1]). Theorem 5.5 says that under the conditions made
Hm
crys(X/A,OX/A) has a window structure for m < p . There is a morphism

A → W (A) → W (R) which allows to pass from windows to displays. We
remark that because of this morphism the assumptions (*) and (**) for A are
stronger than the original assumption for W (R). In equal characteristic we
obtain e.g. the following:

Theorem Let X be smooth and projective over a ring R, such that pR = 0. Let
us assume that there is a frame A → R and a smooth p-adic lifting Y/Spf A
of X, which satisfies the conditions analogous to (*) and (**).
Then there is a canonical display structure on Hm

crys(X/W (R)) for m < p,
which does not depend on the lifting Y nor on the frame A.
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De Rham-Witt Cohomology and Displays 151

We discuss three examples where the assumptions (∗) and (∗∗) hold. In these
examples the assumptions made on X in the two preceding theorems are full-
filled.

LetX be aK3-surface over R. We assume without restriction of generality that
R is noetherian. We denote by TX/R the tangent bundle of X. The cohomology
group H2(X, TX/R) commutes with base change by [M] §5 Cor.3. From the case
where R is an algebraically closed field, we deduce that this cohomology group
vanishes. It follows that X has a formal lifting over SpfW (R) resp. Spf A.
From the Hodge numbers of a K3-surface over an algebraically closed field
[De1] one deduces that H1(X,OX) = 0, H0(X,Ω1

X/R) = 0, H2(X,Ω1
X/R) =

0, H1(X,Ω2
X/R) = 0. It follows that the cohomology of X commutes with

arbitrary base change and is therefore locally free [M] loc.cit.. The degeneration
of the de Rham spectral sequence follows now because the Hodge numbers
above are zero, because there is no room for non-zero differentials.

Let X be an abelian variety over R. In this case the assumptions (∗) and (∗∗)
are fullfilled by [BBM] 2.5.2.

Finally let X be a smooth relative complete intersection in a projective space
over R. Then the conditions (∗) and (∗∗) are fullfilled by [De2] Thm.1.5.

Let p be a prime number. Let R be a ring such that p is nilpotent in R. In [LZ]
Thm. 3.5 we proved a comparison between the crystalline cohomology and the
hypercohomology of the de Rham-Witt complex extending a result of Illusie [I]
if R is a perfect field. We show here a filtered version of this comparison, which
is the key to the display structure. We conjecture a more precise comparison,
which would lead to a wide generalization of the theorems above.

Let Wn(R) be the truncated Witt vectors. We set IR,n = VWn−1(R). This
ideal is 0 for n = 1.

Let X/R be a smooth and projective scheme. We consider the crystalline
site Crys(X/Wn(R)) with its structure sheaf OX/Wn(R). Let us denote by

JX/Wn(R) ⊂ OX/Wn(R) the sheaf of pd-ideals. We denote by J
[m]
X/Wn(R) its

m-th divided power. Let

un : Crys(X/Wn(R))∼ −→ X∼zar

be the canonical morphism of topoi.

The comparison isomorphism [LZ] is an isomorphism in the derived category
D(Xzar) of sheaves of Wn(R)-modules on Xzar:

Run∗OX/Wn(R) −→WnΩ
·
X/R

We will prove a filtered version of this. Let m be a natural number. Let
ImWnΩ

·
X/R be the following subcomplex of the de Rham-Witt complex:

pm−1VWn−1Ω
0
X/R

d
→ pm−2VWn−1Ω

1
X/R . . .

d
→ VWn−1Ω

m−1
X/R

d
→WnΩ

m
X/R . . .
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The filtered comparison Theorem 4.6 says that for m < p we have an isomor-
phism in the derived category

Run∗J
[m]
X/Wn(R) −→ I

mWnΩ
·
X/R (3)

We would like to have a similar comparison theorem for the truncated Nygaard
complex NmWnΩ

·
X/R instead of ImWnΩ

·
X/R:

(Wn−1Ω
0
X/R)[F ]

d
→ . . .

d
→ (Wn−1Ω

m−1
X/R )[F ]

dV
→ WnΩ

m
X/R

d
→WnΩ

m+1
X/R

d
→ . . .

The advantage of the Nygaard complex is that the restriction of the Frobenius
from WΩ·X/R to NmWΩ·X/R is in a natural way divisible by pm even if p is a
zero divisor. For a reduced ring R the Nygaard complex NmWΩ·X/R is quasi-
isomorphic to ImWΩ·X/R. Unfortunately in general we don’t know a definition
for the Nygaard complex in terms of crystalline cohomology. Nevertheless we
make the conjecture 4.1:

Conjecture: Assume that X̃/Wn(R) is a smooth lifting of X. Then the Ny-
gaard complex is in the derived category canonically isomorphic to the following
complex FmΩ·

X̃/Wn(R)
:

IR,n ⊗Wn(R) Ω0
X̃/Wn(R)

pd
→ . . .

pd
→ IR,n ⊗Wn(R) Ωm−1

X̃/Wn(R)

d
→ Ωm

X̃/Wn(R)

d
→ . . . .

Assume that we have for varying n a compatible system of smooth liftings
X̃n/Wn(R). We obtain a formal scheme X = lim

−→
X̃n. We set:

FmΩ·X/W (R) = lim
←−

n

FmΩ·
X̃n/Wn(R)

NmWΩ·X/R = lim
←−

n

NmWnΩ
·
X/R

We show the following weak form of the conjecture (Corollary 4.7):

Theorem: Assume that R is reduced and that m < p. Then there is a natural
isomorphism in the derived category of W (R)-modules on Xzar:

NmWΩ·X/R
∼= FmΩ·X/W (R)

Moreover we can show in support of our conjecture, that the complexes
NmWnΩ

·
X/R and FmΩ·

X̃n/Wn(R)
are always locally quasi-isomorphic on Xzar.

The last theorem is closely related to strong divisibility in the sense of [Fo]
1.3: Assume the assumptions (∗) and (∗∗) are satisfied. By the last theorem
the splitting of the Hodge filtration of the formal scheme X defines a normal
decomposition:

Hm(X,F jΩ·X/W (R)) = IRL0 ⊕ . . .⊕ IRLj−1 ⊕ Lj ⊕ . . .⊕ Ld

It is obvious from Definition 2.2 that the Frobenius Fj : Hm(X,N jWΩ·X/R)→

Hm(X,WΩ·X/R) is bijective if j is bigger than the dimension. Therefore F0 ⊕
F1 ⊕ . . .⊕ Fd: induces a bijection:

IRL0 ⊕ . . .⊕ IRLd → L0 ⊕ . . .⊕ Ld

This is what strong divisibility asserts.
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2 The Category of Displays

Let R be a ring, and letW (R) be the ring of Witt vectors. We set IR = VW (R).
If no confusion is possible we sometimes use the abbreviation I = IR. Let
Φ : M → N a Frobenius-linear homomorphism of W (R)-modules. We define a
Frobenius-linear homomorphism Φ̃:

Φ̃ : IR ⊗W (R) M → N
V ξ ⊗m 7→ ξΦ(m)

(4)

Definition 2.1 A predisplay over R consists of the following data:

1) A chain of morphisms of W (R)-modules

. . .→ Pi+1
ιi→ Pi → . . .→ P1

ι0→ P0.

2) For each i ≥ 0 a W (R)-linear map

αi : IR ⊗W (R) Pi → Pi+1.

3) For each i ≥ 0 a Frobenius linear map

Fi : Pi → P0.

The following axioms should be fulfilled

(D1) For i ≥ 1 the diagram below is commutative and its diagonal
IR ⊗ Pi → Pi is the multiplication.

IR ⊗ Pi
αi−−−−→ Pi+1

IR⊗ιi−1





y

ιi





y

IR ⊗ Pi−1
αi−1
−−−−→ Pi

For i = 0 the following map is the multiplication:

IR ⊗ P0
α0−−−−→ P1

ι0−−−−→ P0

(D2) Fi+1αi = F̃i : IR ⊗ Pi.→ P0

We will denote a predisplay as follows:

P = (Pi, ιi, αi, Fi), i ∈ Z≥0.

Let X be a smooth and proper scheme over a scheme S. Then we obtain a
predisplay structure on the crystalline cohomology through the Nygaard com-
plexes NmWnΩX/S which are built from the de Rham-Witt complex as follows:

(Wn−1Ω
0
X/S)[F ]

d
→ . . .

d
→ (Wn−1Ω

m−1
X/S )[F ]

dV
→ WnΩ

m
X/S

d
→WnΩ

m+1
X/S . . .
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This is considered as a complex of Wn(OS)-modules. The index [F ] means
that we consider this term as a Wn(OS)-module via restriction of scalars F :
Wn(OS)→Wn−1(OS).
Let IS,n = VWn−1(OS) ⊂Wn(OS) be the sheaf of ideals. We define three sets
of maps:

α̂m : IS,n ⊗Wn(OS) N
mWnΩ

·
X/S → Nm+1WnΩ

·
X/S

ι̂m : Nm+1WnΩ
·
X/S → NmWnΩ

·
X/S

F̂m : NmWnΩ
·
X/S → Wn−1Ω

·
X/S

(5)

These maps are given in this order by the maps between the following vertically
written procomplexes (the index n is omitted):

IS ⊗ (WΩ0
X/S)[F ] −−−−−→ (WΩ0

X/S)[F ]
p

−−−−−→ (WΩ0
X/S)[F ]

id
−−−−−→ WΩ0

X/S

IS⊗d

?

?

y

d

?

?

y

d

?

?

y

d

?

?

y

. . . . . . . . . . . .

IS ⊗ (WΩm−1
X/S )[F ] −−−−−→ (WΩm−1

X/S )[F ]
p

−−−−−→ (WΩm−1
X/S )[F ]

id
−−−−−→ WΩm−1

X/S

id⊗dV

?

?

y

d

?

?

y

dV

?

?

y

d

?

?

y

IS ⊗ (WΩm
X/S)

F̃
−−−−−→ (WΩm

X/S)[F ]
V

−−−−−→ WΩm
X/S

F
−−−−−→ WΩm

X/S

id⊗d

?

?

y

dV

?

?

y

d

?

?

y

d

?

?

y

IS ⊗ WΩm+1
X/S

mult
−−−−−→ WΩm+1

X/S

id
−−−−−→ WΩm+1

X/S

pF
−−−−−→ WΩm+1

X/S

id⊗d

?

?

y

d

?

?

y

d

?

?

y

d

?

?

y

IS ⊗ WΩm+2
X/S

mult
−−−−−→ WΩm+2

X/S

id
−−−−−→ WΩm+2

X/S

p2F
−−−−−→ WΩm+2

X/S

. . . . . . . . . . . .

The first unlabeled arrows on the left hand side denote the maps V ξ⊗ω 7→ ξω,
where the product is taken in WΩiX/S (without restriction of scalars).

Definition 2.2 Let S = SpecR be an affine scheme. Let X/S be a smooth
and proper scheme. Then we associate a predisplay. We set:

Pi = Hd(X,N iWΩX/S)

The predisplay structure on the Pi is easily obtained by taking the cohomology
of the maps (5).

Here we write NmWΩ·X/R = lim
←−

n

NmWnΩ
·
X/R. The Pi coincide with the coho-

mology of R lim
←−

n

RΓ(X,N iWnΩX/S) by the proof of [LZ] Prop. 1.13 (compare

[BO] Appendix).
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Remark: Let S = Spec k be the spectrum of a perfect field. Then I(k) is
isomorphic to W (k) as W (k)-module. The maps of complexes which define α̂i
and ι̂i are in this case the maps F̃ and Ṽ used by Kato in his definition of the
F -gauges GHd(X/S).

Let A/S be an abelian scheme. Then the predisplay structure on the crystalline
cohomology H1(A/W (R),OA/W (R)) is in fact a 3n-display structure in the
sense of [Z2]. We will introduce additional properties of predisplay structures
which arise in the crystalline cohomology of smooth and proper varieties.
Let P be a predisplay. Then we have a commutative diagram:

Pi
Fi−−−−→ P0

ιi

x





p

x





Pi+1
Fi+1
−−−−→ P0

(6)

Indeed, let y ∈ Pi+1. Then we obtain from (D1) that

αi(
V 1⊗ ιi(y)) = V 1y

If we apply Fi+1 to the last equation and use (D2), we obtain:

Fi(ιi(y)) = pFi+1(y)

Definition 2.3 A predisplay P = (Pi, ιi, αi, Fi) is called separated if the map
of Pi+1 to the fibre product induced by the commutative diagram (6) is injective.

Remark: Predisplays form obviously an abelian category. To each predisplay
P we can associate a separated predisplay Psep and a canonical surjection
P → Psep. This is defined inductively: P sep0 = P0 and P sepi+1 is the image of
Pi+1 in the fibre product of:

P sepi

F sep
i−−−−→ P 0 p

←−−−− P 0

The functor P 7→ Psep to the category of separated displays is left adjoint to
the forgetful functor, but it is not exact.

It is not difficult to prove that a separated predisplay has the following property:
Consider the iteration of the maps α:

I⊗k ⊗ Pi
αi−−−−→ I⊗k−1 ⊗ Pi+1

αi+1
−−−−→ . . .

αi+k−1
−−−−−→ Pi+k (7)

Here the maps α pick up the last factor of I⊗. The following map is called the
“Verjüngung”:

ν(k) : I⊗k → I
V ξ1 ⊗ . . .⊗

V ξk 7→ V (ξ1 · . . . · ξk)
(8)
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For a separated display the iteration (7) factors through the Verjüngung:

I⊗k ⊗ Pi
ν(k)

−−−−→ I ⊗ Pi −−−−→ Pi+k

The last arrow will be called α
(k)
i . In particular this shows that the iteration

(7) is independent of the factors we picked up, when forming αj .
For a separated display the data αi, i ≥ 0 are uniquely determined by the
remaining data. This is seen by the following commutative diagram:

I ⊗ Pi

Pi+1

Pi P0

P0

Fi

ιi

F̃i

p

Fi+1

αi

(∗)

�
�
�
�
�
�
�
���

�
���

���������*

6 6

-

-

For a predisplay P the cokernel Ei+1 := Coker αi is annihilated by I. It is
therefore an R-module.

Definition 2.4 We say that a predisplay is of degree d (or a d-predisplay), if
the maps αi are surjective for i ≥ d.

A separated predisplay of degree d is already uniquely determined by the data:

P0, . . . Pd, ι0, . . . ιd−1, F0, . . . , Fd, α0, . . . , αd−1 (9)

For this consider the diagram (∗) above for i = d. The data already given
determine a map of I ⊗Pd to the fibre product. This map is αd and the image
is Pd+1. Thus inductively all data of the display are uniquely determined.
Conversely assume that we have data (9) which satisfy all predisplay axioms
reasonable for these data. Then we define Pd+1 by the diagram (∗) above. We
obtain also the maps αd, ιd, and Fd+1. The axioms for the extended data are
trivially satisfied, except for the requirement that

I ⊗ Pd+1 → I ⊗ Pd → Pd+1
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is the multiplication. But this follows easily by composing the diagram (∗) for
i = d, with the arrow id⊗ιd : I ⊗ Pi+1 → I ⊗ Pi. Inductively we see that a
set of data (9) satisfying the predisplay axioms may be extended uniquely to a
predisplay of degree d.

We may define the twist of a predisplay. Let

P = (Pi, ιi, αi, Fi)

be a predisplay. Then we define its Tate-twist

P(1) = (P ′i , ι
′
i, α
′
i, F
′
i ) (10)

as follows: For i ≥ 1 we set P ′i = Pi−1, ι
′
i = ιi−1, α

′
i = αi−1, F

′
i = Fi−1. We set

P ′0 = P0 = P ′1, F
′
0 = pF0, ι

′
0 = idP0

. Finally α′0 : I ⊗ P0 → P0 is defined to be
the multiplication. If we repeat this n-times we write P(n).

We define a predisplay U = (Pi, ιi, αi, Fi) called the unit display as follows:
P0 = W (R), Pi = I for i ≥ 1. The chain of the maps ι is as follows:

. . . I
p
→ I . . .

p
→ I →W (R), (11)

where the last map ι0 is the natural inclusion.
The maps Fi : I = Pi →W (R) for i ≥ 1 coincide with the map

V −1 : I →W (R), V ξ 7→ ξ.

The map F0 is the Frobenius on W (R). The map α0 : I ⊗W (R) → I is the
multiplication. The maps αi : I ⊗ I → I are the Verjüngung ν(2). Since the
“Verjüngung” is surjective the unit display has degree zero.

A 3n-display (P,Q, F, V −1) as defined in [Z2] gives naturally rise to data of
type (9) with P0 = P , P1 = Q, F0 = F , F1 = V −1 and therefore extends
naturally to a predisplay of degree 1 as we explained above. We will make this
explicit later on.

Let R be a reduced ring. Then the multiplication by p is injective on W (R).
Let M be a projective W (R)-module, and F : M → M be a Frobenius linear
map. Then we set:

Pi = {x ∈M | F (x) ∈ piM}

We obtain maps
Fi = (1/pi)F : Pi → P0 = M

For ιi we take the natural inclusion Pi+1 → Pi. For αi we take the maps
I ⊗ Pi → IPi ⊂ Pi+1 induced by multiplication. The data (Pi, ιi, αi, Fi) con-
structed in this way are a separated predisplay.

The predisplays we are interested in arise from a construction which we explain
now.

Definition 2.5 The following set of data we will call standard data for a dis-
play of degree d.
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A sequence L0, . . . , Ld of finitely generated projective W (R)-modules.

A sequence of Frobenius linear maps for i = 0, . . . d:

Φi : Li → L0 ⊕ . . .⊕ Ld

We require that the map ⊕iΦi is a Frobenius linear automorphism of L0⊕ . . .⊕
Ld

From these data we obtain a predisplay in the following manner: We set:

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld

for i ∈ Z, i ≥ 0.

We note that Pi = Pd+1 for i > d. But these identifications are not part of
the predisplay structure we are going to define. They depend on the standard
data!

We define “divided” Frobenius maps:

Fi : Pi → P0

The restriction of Fi to I ⊗Lk for k < i is Φ̃k, and to Li+j for j ≥ 0 is pjΦi+j .

The map ιi : Pi+1 → Pi is given by the following diagram:

(I ⊗ L0)⊕ . . .⊕(I ⊗ Li−1)⊕(I ⊗ Li)⊕Li+1⊕ . . .⊕Ld

p





y

p





y
mult





y
id





y
id





y

(I ⊗ L0)⊕ . . .⊕(I ⊗ Li−1)⊕ Li ⊕Li+1⊕ . . .⊕Ld

(12)

The map αi : I ⊗ Pi → Pi+1 is given by the following diagram:

I ⊗ (I ⊗ L0)⊕ . . .⊕I ⊗ (I ⊗ Li−1)⊕ I ⊗ Li ⊕I ⊗ Li+1⊕ . . .⊕I ⊗ Ld

ν





y

ν





y
id





y
mult





y
mult





y

(I ⊗ L0) ⊕ . . .⊕ (I ⊗ Li−1) ⊕(I ⊗ Li)⊕ Li+1 ⊕ . . .⊕ Ld

(13)

Here ν = ν(2) is the Verjüngung. We leave the verification that P =
(Pi, ιi, αi, Fi) is a separated predisplay to the reader.

Definition 2.6 A predisplay is called a display if it is isomorphic to a predis-
play associated to standard data.
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Remark: Let us assume that pR = 0. There is the notion of an F -zip by Moo-
nen and Wedhorn. The relation to displays is as follows. Let P = (Pi, ιi, αi, Fi)
be a display over R. We define an F -zip structure on M = P0/IRP0 by the
following two filtrations. Let Ci as the image of Pi in P0/IRP0 given by the
composite of the maps ιk. This gives the decreasing “Hodge filtration”:

. . . ⊂ Cd ⊂ Cd−1 ⊂ . . . ⊂ C1 ⊂ C0 = M.

We set Di = W (R)FiPi+IRP0/IRP0 and obtain an increasing filtration, called
the “conjugate filtration”:

0 = D−1 ⊂ D0 ⊂ D1 ⊂ D2 ⊂ . . . ⊂ Dd ⊂ . . . ⊂M.

The morphisms Fi for i ≥ 0 induce Frobenius linear morphisms:

Fi : Ci/Ci+1 → Di/Di−1 (14)

These are Frobenius linear isomorphisms of R-modules. Indeed, if we choose a
normal decomposition {Li} we obtain identification:

Ci/Ci+1 ∼= Li/IRLi and Di/Di−1
∼= W (R)FiLi/IRW (R)FiLi

The two filtrations C· and D· together with the operators (14) form an F -zip
[MW] Def. 1.5.

Let P be the display associated to the standard data (Li,Φi) as above. Let
Q = (Qi, ιi, αi, Fi) be a predisplay. Assume we are given homomorphisms
ρi : Li → Qi. Then we define maps τi:

Pi = (I ⊗ L0)⊕ . . .⊕ (I ⊗ Li−1)⊕ Li ⊕ . . .⊕ Ld −→ Qi

On the summand (I ⊗ Li−k) the map τi is the composite:

I ⊗ Li−k
id⊗ρi−k
−−−−−→ I ⊗Qi−k

α(k)

−−−−→ Qk

On the summand Li+j the map τi is the composite:

Li+j
ρi+j
−−−−→ Qi+j

ι(j)

−−−−→ Qi,

where the last arrow is a compositions of ι′s.

Proposition 2.7 The maps τi define a homomorphism of predisplays P → Q
if and only if the following diagrams are commutative:

Li
ρi

−−−−→ Qi

Φi





y

Fi





y

P0
τ0−−−−→ Q0
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We omit the verification.

If P = (P,Q, F, V −1) is 3n-display in the sense of [Z2], then any normal decom-
position P = L0 ⊕ L1, Q = IL0 ⊕ L1 defines standard data, which determine
this display.

We will now define the tensor product of displays: Assume that P =
(Pi, ιi, αi, Fi) and P ′ = (P ′i , ι

′
i, α
′
i, F
′
i ) are displays over R.

A tensor product T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) may be constructed as follows. We choose

normal decompositions

P0 = ⊕
n≥0

Ln, P ′0 = ⊕
n≥0

L′n.

More precisely this means, that we fix isomorphisms of P resp. P ′ with stan-
dard displays. We obtain:

Pi = I ⊗ L0 ⊕ · · · ⊕ I ⊗ Li−1 ⊕ Li ⊕ . . .

We denote the restriction of Fi : Pi −→ P0 to the direct summand Li by Φi.

We obtain data for a standard display Kl,
◦
Φl, l ≥ 0, if we set

Kl = ⊕
n+m=l

(Ln ⊗ L
′
m).

Then ⊕lKl = P0 ⊗ P
′
0, and we define Frobenius linear maps

◦
Φl : Kl −→ P0 ⊗ P

′
0,

by
◦
Φl =

∑

n+m=l

Φn ⊗ Φ′m

From the standard data Kl,
◦
Φl we obtain a display

T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) (15)

We will show that T is up to canonical isomorphism independent of the normal
decompositions of P resp. P ′.

In order to do this we define bilinear forms of displays. Let T be an arbitrary
predisplay. A bilinear form

λ : P × P ′ −→ T .

consists of the following data.
λ is a sequence of maps of W (R)-modules

λij : Pi ⊗ P
′
j −→ Ti+j .
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We require that the following diagrams are commutative:

Pi ⊗ P
′
j −−−−→ Ti+j

Fi⊗F
′

j





y





y

◦

F i+j

P0 ⊗ P
′
0 −−−−→

id
T0

Pi ⊗ P
′
j −−−−→ Ti+j

ι⊗id

x





◦

ι

x





Pi+1 ⊗ P
′
j −−−−→ Ti+j+1

Pi ⊗ P
′
j −−−−→ Ti+j

id⊗ι′
x





x





◦

ι

Pi ⊗ P
′
j+1 −−−−→ Ti+j+1

IR ⊗ Pi ⊗ P
′
j −−−−→ IR ⊗ Ti+j

αi⊗id





y





y

◦

αi+j

Pi+1 ⊗ P ′j −−−−→ Ti+j+1

IR ⊗ Pi ⊗ P
′
j −−−−→ I ⊗ Ti+j

id⊗α′

j





y





y

◦

αi+j

Pi ⊗ P ′j+1 −−−−→ Ti+j+1.

Remark: We will consider also the maps

Pi ⊗ Pj −→ Tk, for i+ j ≥ k,

which are the compositions of λij and Ti+j −→ Tk, the iteration of ι.

If i+ j > k we obtain a commutative diagram:

Pi−1 ⊗ Pj −→ Tk
ι⊗ id ↑ ↑

Pi ⊗ Pj −→ Tk+1.
(16)

We will denote the set of bilinear forms of displays in this sense by

Bil(P × P ′, T ).

We return to the display T given by the standard data Kl,
◦
Φl. We will now

define maps λij : Pi ⊗ P
′
j −→ Ti+j . For this we write Pi ⊗ P

′
j according to the

normal decompositions:
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Pi ⊗ P
′
j = (

⊕

n<i
m<j

I ⊗ I ⊗ Ln ⊗ L
′
m)⊕ (

⊕

n<i

m≥j

m+n<i+j

I ⊗ Ln ⊗ L
′
m)

⊕(
⊕

n≥i

m<j

n+m<i+j

(I ⊗ Ln ⊗ L
′
m))⊕ (

⊕

n<i

m≥j

n+m≥i+j

I ⊗ Ln ⊗ L
′
m)

⊕(
⊕

m≥i

m≤j

n+m≥i+j

(I ⊗ Ln ⊗ L
′
m)⊕ (

⊕

n≥i

m≥j

Ln ⊗ L
′
m).

(17)

We have six direct sums in brackets, which we denote by Zi, i = 1, . . . , 6 in the
order as above.
By definition Ti+j has the decomposition

Ti+j = (
⊕

n+m<i+j

I ⊗ Ln ⊗ L
′
m)⊕ (

⊕

n+m≥i+j

Ln ⊗ L
′
m). (18)

We define λij : Pi ⊗ P
′
j −→ Ti+j as a bigraded map with respect to n,m ≥ 0,

which is on the homogeneous components as follows.
Case Z1: n < i,m < j

I ⊗ I ⊗ Ln ⊗ L
′
m −→ I ⊗ Ln ⊗ L

′
m

V ξ ⊗ V η ⊗ ln ⊗ l
′
m 7−→

V (ξη)⊗ ln ⊗ l
′
m

Case Z2: n < i, m ≥ j, n+m < i+ j

pm−j id : I ⊗ Ln ⊗ L
′
m −→ I ⊗ Ln ⊗ L

′
m

Case Z3: n ≥ i, m < j, n+m < i+ j

pn−i id : I ⊗ Ln ⊗ L
′
m −→ I ⊗ Ln ⊗ L

′
m

Case Z4: n < i, m ≥ j, n+m ≥ i+ j

pi−n−1 id : I ⊗ Ln ⊗ L
′
m −→ I ⊗ Ln ⊗ L

′
m

Case Z5: n ≥ i, m < j, n+m ≥ i+ j

pj−m−1 id : I ⊗ Ln ⊗ L
′
m −→ I ⊗ Ln ⊗ L

′
m

Case Z6: n ≥ i, m ≥ j

id : Ln ⊗ L
′
m −→ Ln ⊗ L

′
m.
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Proposition 2.8 The homomorphism λij : Pi⊗P ′j −→ Ti+j defined by Z1−Z6

above define a bilinear form of displays.

Proof: We omit the tedious but simple verification.

Lemma 2.9 The homomorphism

⊕i+j=kPi ⊗ P
′
j −→ Tk

given by the sum of λij is surjective.

Proof: We have to show that all summand of (18) are in the image. Consider
the submodule Ln ⊗L

′
m ⊂ Tk where n+m ≥ k. We set i = n and j = k− i =

k − n ≤ m. By Z6 this submodule is in the image of Pi ⊗ P
′
j −→ Tk. Next

we consider a submodule I ⊗ Ln ⊗ L′m ⊂ Tk, where n +m < k. We set i = n
and j = k − i = k − n > m. Thus we are in the case Z3 with factor pn−i = 1.
Again the submodule is in the image of Pi ⊗ P

′
j −→ Tk. Q.E.D.

Proposition 2.10 Let P and P ′ be displays. Let T = (Ti,
◦
ιi,
◦
αi,

◦
Fi) be the

display (15). Let Q be a separated predisplay. There is a canonical isomorphism
of abelian groups

Bil(P × P ′,Q) ∼= Hom(T ,Q).

Proof: Assume that we are given a bilinear form. We set T = P ⊗ P ′. The
maps Ti −→ Qi are constructed inductively. For i = 0 this map is λ00, where
λ denotes the bilinear form. For the induction step to i + 1 we consider the
diagram

Ti −−−−→ Qi
Fi−−−−→ Q0

x





p

x





Ti+1
Fi+1
−−−−→ T0 −−−−→ Q0

(19)

We claim that (19) is commutative. By Lemma 2.9 it suffices to show the
commutativity if we compose the diagram with the maps Ps⊗P

′
r −→ Ti+1, for

s+ r = i+ 1. This amounts to the commutativity of the following diagram
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Pr ⊗ P
′
s

Qi+1

Qi Q0

Q0

Fi

ι

Fr ⊗ Fs

p

�
�
�
�
�
�
�
���

�
���

���������*

6 6

-

-

But the diagram is commutative by the definition of a bilinear form. Now the
commutativity of (19) gives a map: Ti+1 −→ Qi×Fi,Q0,pQ0. It is clear from the
diagram above and Lemma 2.9 that this map factors through Qi+1. Q.E.D.

Corollary 2.11 The display (15)

T = (Ti,
◦
ιi,
◦
αi,

◦
F i)

does not depend up to canonical isomorphism on the normal decompositions of
P and P ′. We write

T = P ⊗ P ′

This is clear because of the universal property of T proved in the last proposi-
tion. Q.E.D.
Remark: Assume that P and P ′ are given by standard data (Li,Φi) and
(L′i,Φ

′
i). Assume we are given bilinear forms of W (R)-modules:

βij : Li ⊗ L
′
j → Qi+j .

Composing this with the iteration of ι, Qi+j → Q0, we obtain a bilinear form

P0 ⊗ P
′
0 = (⊕iLi)⊗ (⊕jL

′
j)→ Q0

Let us assume that the following diagrams are commutative:

Li ⊗ L
′
j

Φi⊗Φ′

j
−−−−→ P0 ⊗ P

′
0

βij





y





y

Qi+j
Fi+j
−−−−→ Q0

Then the βij extend uniquely to a bilinear form

P × P ′ → Q
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In [Z2] Definition 18 the notion of a bilinear form of 1-displays was defined. It
is obvious from the formulas there, that a bilinear form on two 1-displays in
the sense of loc.cit. is the same as a bilinear form

P × P ′ → U(1),

where the right hand side is the twisted unit display (11).
Starting from the normal decomposition of a display P it is easy to write down
the standard data of a candidate for the exterior power

∧k P. It comes with

an alternating map ⊗kP →
∧k P. One proves as above that

∧k P has the
universal property.
We will now define the base change for displays. Let R −→ S be a homomor-
phism of rings. Let P = (Pi, ιi, αi, Fi) be a display over R. We will define a
display PS = (Qi, ιi, αi, Fi) over S, with the following properties. There are
W (R)-linear maps

Pi −→ Qi,

such that the following diagrams are commutative

Pi −−−−→ Qi

ιi

x





x





ιi

Pi+1 −−−−→ Qi+1

Qi
Fi−−−−→ Q0

x





x





Pi
Fi−−−−→ P0

IR ⊗Qi
αi−−−−→ Qi+1

x





x





IR ⊗ Pi
αi−−−−→ Pi+1

(20)

Proposition 2.12 There is a unique display PS as above which enjoys the
following universal property.
If T = (Ti, ιi, αi, Fi) is an arbitrary display over S and

Pi −→ Ti

is a set of W (R)-linear morphisms, such that the diagrams above, with Qi
replaced by Ti are commutative, then there is a unique morphism of displays
over S

PS −→ T ,

such that the following diagrams are commutative:

Qi // Ti

Pi

``AAAAAAA

??~~~~~~~
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The display PS may be constructed using a normal decomposition of P. Let
P0 = ⊕Li be such a decomposition, and let Φi : Li −→ P0 be the maps induced
by Fi. Then Li,Φi are standard data for a display over R. We can define PS
to be the display over S associated to the standard data W (S)⊗W (R) Li, with
the Frobenius linear maps F ⊗W (R) Φi = Φ′i.

We will now see that this definition is up to canonical isomorphism independent
of the normal decomposition chosen. It suffices to see that PS has the universal
property Proposition 2.12.

The obvious maps Pi −→ Qi make the diagrams (20) commutative.

Lemma 2.13 The following W (S)-module homomorphism is surjective

W (S)⊗W (R) Pi ⊕ IS ⊗W (S) Qi−1 −→ Qi.

Proof: This is clear from the definitions.

Assume that Pi −→ Ti is a set of maps as in Proposition 2.12. We construct
inductively maps Qi −→ Ti, which are compatible with Fi, ιi, αi. Therefore
we obtain the desired morphism of displays PS −→ T . Since P0 −→ T0 is
W (R)-linear, we obtain a map

Q0 = W (S)⊗W (R) P0 −→ T0.

Assume we have already constructed W (S)-module homomorphisms

Qj −→ Tj ,

which are compatible with F, ι and α for j ≤ i.

Consider the diagram

Ti
Fi−−−−→ T0

x





x





p

Qi+1 −−−−→ T0.

(21)

The arrow Qi+1 −→ Ti is the composition Qi+1
ι
−→ Qi −→ Ti and the arrow

Qi+1 −→ T0 is the composition Qi+1
Fi+1
−→ Q0 −→ T0. By Lemma 2.13 we

deduce that (21) is commutative. Thus it induces a map

Qi+1 −→ Ti ×Fi,T0,p T0. (22)

It suffices to show that the last map factors through Ti+1. This is seen easily
by composing (22) with the morphism of the lemma.

The uniqueness of the constructed morphism PS −→ T is obvious. This proves
the proposition. Q.E.D.
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3 Degeneracy of some Spectral Sequences

Proposition 3.1 Let π : X → Y be a separated and quasicompact morphism.
Let K · be a complex of of flat π−1OY -modules on X which is bounded above.
We assume that each Ki is a quasicoherent OX-module. Then for each m the
hypercohomology groups Rmπ∗K

· are quasicoherent OY -modules. If M is a
quasicoherent OY -module there is a canonical isomorphism

Rπ∗(K
· ⊗L

π−1(OY ) π
−1M) ∼= Rπ∗K

· ⊗L

OY
M (23)

Proof: We may assume that Y is affine. Let U = {Ui} be a finite affine
covering of X. Let F · = C·(U ,K ·) be the Czech complex. It is the complex of
global sections of a sheafified Czech complex on Y : F · = C·(U ,K ·). The sheaves
in this complex are acyclic with respect to π∗ because the cohomology of an
affine scheme vanishes. One concludes [EGA III] Prop. 1.4.10 that Rπ∗K

m are
quasicoherent OY -modules namely the sheaves associated to the cohomology
of F ·. Since the modules and sheaves involved are flat with respect to Y the
projection formula reduces to the trivial equation:

C·(U ,K · ⊗OY
M) ∼= F · ⊗Γ(Y,OY ) Γ(Y,M)

Q.E.D.
Let π : X → S be a proper morphism of schemes, such that S is affine. In
this section we consider a bounded complex K · of flat π−1(OS)-modules. We
assume that each Ki is a quasicoherent OX -module. Moreover we assume that
the following conditions are satisfied:

(i) Rjπ∗K
i is a locally free OS-module of finite type for any i and j.

(ii) the spectral sequence of hypercohomology degenerates:

Eij1 = Rjπ∗K
i ⇒ Rnπ∗K

·

One can easily see that with these assumptions the simple complex associated
to C·(U ,K ·) as above is quasi-isomorphic to the direct sum of its cohomology
groups. It follows that Rmπ∗K

· commutes with arbitrary base change for
any m. For the same reason the cohomology groups Rjπ∗K

i commute with
arbitrary base change.
The degeneration of this spectral sequence may be reformulated as follows. Let
us denote the by σ≥mK · and σ<mK · the truncated complexes with respect to
the naive truncation. Then the cohomology sequence of

0→ σ≥mK · → K · → σ<mK · → 0,

splits into short exact sequences:

0→ Rqπ∗(σ
≥mK ·)→ Rqπ∗K

· → Rqπ∗(σ
<mK ·)→ 0. (24)
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Indeed, take a Cartan-Eilenberg resolution K · → I · by injective sheaves of
abelian groups. Let L· = π∗I

·. This complex comes with a filtration FilmL·

which is induced by the naive filtration of K. The spectral sequence in question
is the spectral sequence of this filtered complex. The condition (24) is equivalent
to the requirement that the maps

Hq(Film+1L·)→ Hq(FilmL·)

are injective for each q and m, as one may see easily from the exact cohomology
sequence. This injectivity may be restated as follows:

d(FilmLq−1) ∩ Film+1Lq = d(Film+1Lq−1).

We conclude by [De3] Prop. 1.3.2.
The observation shows that the spectral sequences of hypercohomology of the
truncated complexes σ≥mK · and σ<mK · degenerate too.

Proposition 3.2 Let π : X → S and K · be as in Proposition 3.1. Let
. . . → M0 → M1 → M2 → . . . be a sequence of OS-modules (not necessar-
ily a complex). We consider the complex

L· : . . .→ K0 ⊗OS
M0 → K1 ⊗OS

M1 → K2 ⊗M2 → . . .

Then the spectral sequence

Eij1 : Rjπ∗L
i ⇒ Rp+qπ∗L

·

degenerates.

Proof: We assume without loss of generality that Ki = 0 for i < 0. We
say that a sequence M0 → M1 → . . . is m-stationary if it is isomorphic to a
sequence of the form:

M0 → . . .→Mm−1 →Mm = Mm = . . .

Because K · is bounded it suffices to show the theorem for m-stationary se-
quences. We argue by induction. For m = 0 this is clear from the projection
formula (23). Assume that the proposition holds for r-stationary sequences
with r < m. For an m-stationary sequence we consider the following morphism
of complexes:

L· → I · (25)

K0 ⊗M0 . . . Km−2 ⊗Mm−2 −−−−→ Km−1 ⊗Mm−1 −−−−→ Km ⊗Mm . . .

id





y
id





y





y
id





y

K0 ⊗M0 . . . Km−2 ⊗Mm−2 −−−−→ Km−1 ⊗Mm −−−−→ Km ⊗Mm . . .

If we apply the induction assumption to I · we obtain an exact sequence for
each q and the given m.

0→ Rqπ∗(σ
≥mI ·)→ Rqπ∗I

· → Rqπ∗(σ
<mI ·)→ 0. (26)
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The morphism of complexes (25) induces a commutative diagram:

Rqπ∗σ
≥mL· −−−−→ Rqπ∗L

·

id





y





y

Rqπ∗σ
≥mI · −−−−→ Rqπ∗I

·

By our induction assumption (26) it follows that the upper horizontal arrow is
injective.
We have to prove that the following sequences are exact for arbitrary integers
q and n.

0→ Rqπ∗(σ
≥nL·)→ Rqπ∗L

· → Rqπ∗(σ
<nL·)→ 0.

We have seen this for n = m. For n > m we have to consider the maps.

Rqπ∗(σ
≥nL·)→ Rqπ∗(σ

≥mL·)→ Rqπ∗L
·

It suffices to show that the first arrow is injective. But this follows from the
beginning of our induction.
Finally we consider the case n < m. By the cohomology sequence it is sufficient
to see that the map

Rqπ∗L
· → Rqπ∗(σ

<nL·)

is surjective. But this map factors as:

Rqπ∗L
· → Rqπ∗(σ

<mL·)→ Rqπ∗(σ
<nL·)

We need to show that the second map is surjective. But the complex σ<mL· is
the tensor product of σ<mK · with an (m− 1)-stationary sequence of modules.
Therefore the map is surjective by induction assumption and we are done.
Q.E.D.

Proposition 3.3 Let T : C → D be a left exact functor of abelian categories
such that C has enough injective objects. Let K · be a complex in C which is
bounded below. We assume that the spectral sequences in hypercohomology

Eij1 = RjTKi ⇒ Ri+jTK ·

degenerates. Let f · : K · → K · be a homomorphism of complexes. Then for each
integer m the corresponding spectral sequence of hypercohomology associated to
the complex

K(m, f) :
d
→ Km−2 d

→ Km−1 f
md
→ Km d

→ Km+1 → . . .

degenerates.

We omit the proof because it uses exactly the same arguments as above.
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4 Filtered Comparison Theorems for the de Rham-Witt complex

Let R be a ring such that p is nilpotent in R. We consider a smooth scheme X
over R. We will fix a natural number n. Assume we are given a smooth lifting
X̃/Wn(R). If X̃ admits a Witt-lift ([LZ] Def.3.3) OX̃ −→ Wn(OX) we obtain
a morphism of complexes

Ω·
X̃/Wn(R)

−→ Ω·Wn(X)/Wn(R) −→WnΩ
·
X/R. (27)

It is shown in [LZ] 3.2 and 3.3, that even if X̃ admits no Witt lift, there is a
natural isomorphism in the derived category D+(Xzar,Wn(R)) of sheaves of
Wn(R)-modules on X:

Ω·
X̃/Wn(R)

−→WnΩ
·
X/R.

The aim of this section is to prove a filtered version of this isomorphism.
For typographical reasons we use the abbreviations:

Ω̃·n = Ω·
X̃/Wn(R)

, WnΩ
· = WnΩ

·
X/R.

Let us denote by FmΩ·
X̃/W (R)

the complex

IR,n ⊗Wn(R) Ω̃0
n
pd
→ . . .

pd
→ IR,n ⊗Wn(R) Ω̃m−1

n
d
→ Ω̃mn

d
→ Ω̃m+1

n → . . . . (28)

Conjecture 4.1 There is a canonical isomorphism in the derived category
D+(Xzar,Wn(R)) between the Nygaard complex and the complex (28):

NmWnΩ
·
X/R
∼= FmΩ·

X̃/Wn(R)

This question is closely related to the work of Deligne and Illusie [DI]. We will
now see that the complexes in question are always locally isomorphic.
Let us assume we are given a Witt-lift. It induces a map

κ : Ω̃·n −→WnΩ
·.

By composition with the Frobenius F : WnΩ
· →Wn−1Ω

·
[F ] we obtain a map

F̃ :IR,n ⊗Wn(R) Ω̃·n −→Wn−1Ω[F ].
V ξ ⊗ ω 7−→ ξ Fκ(ω)

Using F̃ we obtain a morphism of complexes of FmΩ̃· −→ NmWnΩ:

IR ⊗ Ω̃0
n

pd
−−−−→ . . .

pd
−−−−→ IR ⊗ Ω̃m−1

n
d

−−−−→ Ω̃mn
d

−−−−→ . . .

F̃





y F̃





y





y

Wn−1Ω
0
[F ]

d
−−−−→ . . .

d
−−−−→ Wn−1Ω

m−1
[F ]

dV
−−−−→ WnΩ

m d
−−−−→ . . .

(29)
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Let us consider the morphism (29) in the following simple situation:
Let A = R[T1, . . . , Td] and X = SpecA. We set Ã = Wn(R)[T1, . . . Td] and
X̃ = Spec Ã. We consider the Witt-lift:

Ã −→Wn(A)

Ti −→ [Ti].
(30)

It is the unique map of Wn(R)-algebras, which maps Ti to its Teichmüller
representative in Wn(A).

Proposition 4.2 For the Witt-lift (30) the induced morphism

FmΩ·
X̃/Wn(R)

−→ NmWnΩ
·
X/R (31)

is for any m ≥ 0 a quasi-isomorphism.

Proof: We use the Wn(R)-basis of Ωl
Ã/Wn(R)

given by p-basic differential

forms. For each weight function k : [1, d]→ Z≥0 we fix an order on the set

Supp k = {i1, . . . , ir}, such that

ordpki1 ≤ · · · ≤ ordpkir .

For any ascending partition of Supp k into disjoint intervals

P : Supp k = I0 ⊔ I1 ⊔ · · · ⊔ Il,

such that It 6= ∅ for 1 ≤ t ≤ l, we have the p-basic differential

ẽ(k,P) = T kI0

(

p−ordpkI1dT kI1

)

· · · · ·
(

p−ordpkIldT Il
)

. (32)

The order on Supp k is fixed once for all and therefore not indicated in the
notation (compare [LZ] 2.1).
In [LZ] 2.2 we have defined the basic Witt differentials

en(ξ, k,P) ∈WnΩ
l
A/R.

They are defined for functions k : [1, d] → Z≥0[
1
p ], and ξ ∈ V u(k)Wn−u(k)(R),

where u(k) is the minimal nonnegative integer, such that the weight pu(k)k
takes integral values.
In our case the map (27) is the unique Wn(R)-linear map given by

Ωl
Ã/Wn(R)

−→WnΩ
l
A/R.

ẽ(k,P) 7−→ en(1, k,P).
(33)

The map F̃ looks as follows

F̃ :IR ⊗Wn(R) Ωl
Ã/Wn(R)

−→Wn−1Ω
l
A/R,[F ]

V ξ ⊗ ẽ(k,P) 7−→ en−1(ξ, pk,P).
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For each weight k : [1, d] −→ Z≥0[
1
p ], we consider the subgroup WnΩ

l
A/R(k)

of WnΩ
l
A/R, which is generated by basic Witt-differentials en(ξ, k,P) of fixed

weight k. The complex NmWnΩ splits into a direct sum of subcomplexes
Nm(k):

Wn−1Ω
0
[F ](pk)

d
→ · · ·

d
→Wn−1Ω

m−1
[F ] (pk)

dV
→ WnΩ

m
[F ](k)→ · · · .

Similarly let Ωl
Ã/Wn(R)

(k) ⊂ Ωl
Ã/Wn(R)

the Wn(R)-submodule generated by the

p-basic differentials ẽ(k,P) of fixed integral weight k. Then FmΩ̃· is the direct
sum of the following subcomplexes Fm(k):

IR ⊗Wn(R) Ω̃0
n(k)

pd
→ · · ·

pd
→ IR ⊗Wn(R) Ω̃m−1

n (k)
d
→ Ω̃mn (k)→ · · · .

It is obvious that for integral weight k the map

Fm(k) −→ Nm(k) (34)

is an isomorphism of complexes. Therefore the proposition follows if we show
that for k not integral the complexes Nm(k) are acyclic. This follows in degrees
not equal tom−1 orm from the corresponding statement for the de Rham-Witt
complex (see [LZ] Proof of thm. 3.5).
For non-integral k consider a cycle ω ∈ Wn−1Ω

m−1
[F ] (k), i.e. dV ω = 0. Because

of the relation FdV = d, it follows that ω is also a cycle in the de Rham-Witt
complex Wn−1Ω

· and consequently a boundary, because k is not integral.
Finally consider a cycle ω ∈WnΩ

m(k). It may be uniquely written as a sum

ω =
∑

P

en(ξP , k,P).

By [LZ] Prop. 2.6 ω is a cycle, iff P = ∅ ⊔ P ′, i.e. iff the first interval I0 of the
partition P is empty, for all en(ξP , k,P) 6= 0 which appear in the sum. Since k
is not integral the coefficient ξP is of the form ξP = V τP and

d V en−1(τP , pk,P) = en(ξP , k,P).

Q.E.D.

We make n variable. We set A = R[T1, . . . , Td], An = Wn(R)[T1 . . . Td]. We
extend the Frobenius homomorphism F : Wn(R) −→Wn−1(R) to a map

φn :An −→ An−1,

Ti 7−→ T pi .
(35)

We denote δn : An −→ Wn(A) the Wn(R)-algebra homomorphism, such that
δn(Ti) = [Ti].
Assume we are given an étale homomorphism A −→ B of R-algebras. Then we
find a unique set of lifting Bn of B, which are étale over An and morphisms
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ψn : Bn −→ Bn−1 and εn : Bn −→Wn(B),

which are compatible with φn and δn, compare [LZ] Prop. 3.2.

Corollary 4.3 The map εn defines a quasi-isomorphism of complexes:

IR ⊗ Ω0
Bn/Wn(R)

pd
−−−−→ . . .

pd
−−−−→ IR ⊗ Ωm−1

Bn/Wn(R)

d
−−−−→ ΩmBn/Wn(R) . . .

F̃





y F̃





y





y

Wn−1Ω
0
B/R,[F ]

d
−−−−→ . . .

d
−−−−→ Wn−1Ω

m−1
B/R,[F ]

dV
−−−−→ WnΩ

m
B/R . . .

Proof: For the given number n, we find a number m such that pmWn(R) = 0.
Let us denote by φm : Am+n −→ An the composite of m morphisms of type
(35). It is clear from the definition that

dφm : Am+n −→ Ω1
An/Wn(R)

is zero. Consider the commutative diagram

Bm+n
dψm

→ Ω1
Bn/Wn(R)

↑ ↑

Am+n
dφm

→ Ω1
An/Wn(R).

The derivation Am+n −→ Ω1
Bn/Wn(R) is zero. Since Bm+n/Am+n is étale, the

extension dψm is zero too.
Consider the commutative diagram

Bm+n
ψm

−→ Bm
↑ ↑

Am+n
φm

→ An.

It induces a morphism of algebras which are étale over An:

Bm+n ⊗Am+n,φm An −→ Bn. (36)

This is an isomorphism. Indeed since An −→ A/pA has nilpotent kernel it
is enough to show that (36) becomes an isomorphism after tensoring with
⊗An

A/pA. But then we obtain the well-known isomorphism

B/pB ⊗A/pA,Frobm A/pA −→ B/pB

b⊗ a 7−→ bp
m

· a.

From the isomorphism (36) we deduce an isomorphism

Bm+n ⊗Am+n,φm Ω·An/R
−̃→ Ω·Bn/R

b ⊗ ω 7−→ ψm(b) · ω.
(37)
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We note that (37) becomes an isomorphism of complexes if we take 1 ⊗ d as
a differential on the left hand side. Hence the first row of (4.3) is obtained by
tensoring the corresponding complex for Bn = An with Bn+m.
Let us consider the complex

Wn−1Ω
0
A/R,[F ]

d
→ · · ·

d
→Wn−1Ω

m−1
A/R,[F ]

dV
→ WnΩ

m
A/R

d
→ · · · . (38)

We consider it as a complex of Wn+m(A)-modules via Fm : Wn+m(A) −→
Wn(A). Then all differentials become linear (compare [LZ] Remark 1.8).
This shows that we obtain the second row of diagram of Corollary 4.3 if we ten-
sorize (38) with Wn+m(B)⊗Wn+m(A),Fm . Because of the obvious isomorphism
([LZ] (3.2))

Bn+m ⊗An+m,δ Wn+m(A)→̃Wn+m(B),

the result is the same if we tensorize (38) by

Bn+m ⊗An+m,δφm .

Therefore the whole diagram of Corollary 4.3 is obtained from the correspond-
ing diagram for B = A by tensoring with Bn+m⊗An+m,φm . Since this ten-
sor product is an exact functor we obtain the corollary from the proposition.
Q.E.D.

LetX/R be a smooth scheme. We assume that R is reduced and p·R = 0. Then
we consider still another complex derived from the de Rham-Witt complex. We
set WΩl = WΩlX/R and define ImWnΩX/R starting in degree 0.

pm−1VWn−1Ω
0 d
→ pm−2VWn−1Ω

1 d
→ · · ·

d
→ VWn−1Ω

m−1 d
→WnΩ . . . . (39)

We recall the relation pd V ω = V dω of [LZ] 1.17. For varying n we obtain a
procomplex ImW·ΩX/R.

Proposition 4.4 Let R be a reduced ring of char p. The procomplexes ImW·Ω
and NmW·Ω are isomorphic in the pro-category of the category of complexes
of abelian sheaves on Xzar.

Proof: We have an obvious morphism of procomplexes

NmW·Ω −→ I
mW·Ω (40)

Wn−1Ω
0
[F ]

d
→ Wn−1Ω

1
[F ] . . . Wn−1Ω

m−1
[F ]

dV
→ WnΩm d

→ . . .

pm−1V ↓ pm−2V ↓ V ↓ id ↓

pm−1V Wn−1Ω
0 d

→ pm−2V Wn−1Ω
1 . . . V Wn−1Ω

m−1 d
→ WnΩm d

→ . . . .

We have to prove that this induces an isomorphism of proobjects. We set
WΩ = lim

←−
WnΩ. On WΩ the multiplication by p and the Verschiebung are

injective. Therefore we have an inverse piVWΩ
p−iV −1

−→ WΩ[F ].
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Lemma 4.5 Let n > k ≥ i + 1. Then there is a map piVWnΩ
l −→ Wn−kΩ

l,
which makes the following diagram commutative

piVWnΩ
l
X/R −→ Wn−kΩ

l
X/R,[F ]

↑ ↑

piVWΩlX/R
p−iV −1

−→ WΩlX/R,[F ].

(41)

Proof of the lemma: Let n > k ≥ i. For ξ ∈ Wn(R) we denote by ξ̄ its
restriction to Wn−k(R). Then we have a well-defined map

piVWn(R) −→ Wn−k(R)

pi V ξ 7−→ ξ̄.
(42)

Indeed, write ξ = (x0, . . . , xn−1). Then

pi V ξ = (0, . . . , 0, xp
i

0 , . . . , x
pi

n−i−1) ∈Wn+1(R).

Therefore the vector (x0, . . . , xn−i−1) ∈ Wn−i(R) is uniquely determined by
pi V ξ. We view Wn−i(R) as a Wn+1(R)-module via

Wn+1(R)
F
−→Wn(R)

Res
−→Wn−i(R).

Then we obtain a morphism of Wn+1(R)-modules because of the following
commutative diagram

piVW (R)
p−iV −1

−→ W (R)
↓ ↓

piVWn(R) −→ Wn−i(R).

The existence of the diagram (41) is clearly local for the Zariski-topology on
X.
We begin with the case, where X = SpecA and A = R[T1, . . . , Td] is a poly-
nomial algebra. In this case an element of piVWΩlA/R may be expressed, in
terms of basic Witt-differentials:

ω =
∑

pi V en(ξP,k, k,P), ξP,k ∈ V
u(k)Wn−u(k)(R). (43)

Note that en(ξP,k, k,P) = 0, when u(k) ≥ n.
The terms of the sum (43) are uniquely determined by [LZ] Prop.2.5 because
of the direct decomposition

Wn+1Ω
l
A/R = ⊕k,PWn+1Ω

l
A/R(

k

p
,P).

Using loc. cit. we find:

pi V e(ξP,k, k,P) = pi V e(ξ′P,k, k,P), (44)
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iff pi V ξP,k = pi V ξ′P,k, except in the case where k/p is not integral and I0 = ∅.

In the latter case the equality (44) holds, iff pi+1 V ξP,k = pi+1 V ξ′P,k.
With the lemma above this shows that the following map is well-defined:

piVWnΩ
l −→ Wn−(i+1)Ω

l

ω 7−→
∑

en−(i+1)(ξ̄k,P , k,P).

This proves the lemma in the case of a polynomial algebra A. Assume now
that A −→ B is a étale morphism.
The image of the canonical injection

Wn+1(B)⊗Wn+1(A) p
iVWnΩA/R →Wn+1(B)⊗Wn+1(A)WnΩA/R ≃Wn+1ΩB/R

coincides with piVWnΩB/R. This follows from the following commutative dia-
gram

Wn+1(B)⊗Wn+1(A),F WnΩA/R
∼

−−−−→ WnΩB/R

id⊗piV





y
piV





y

Wn+1(B)⊗Wn+1(A) Wn+1ΩA/R
∼

−−−−→ Wn+1ΩB/R.

The top horizontal arrow is given by ξ ⊗ ω 7→F ξω and the lower horizontal
arrow is multiplication.
Now we find the desired map by tensoring piVWnΩA/R −→Wn−(i+1)ΩA/R:

Wn+1(B)⊗Wn+1(A) p
iVWnΩA/R −→ Wn−i(B)⊗Wn−i(A),F Wn−(i+1)ΩA/R

≀ ↓ ≀ ↓

piVWnΩB/R −→ Wn−(i+1)ΩB/R.

The composition of the last map with piV : Wn−(i+1)ΩB/R −→ Wn−iΩB/R is
just the restriction. This proves the lemma. Q.E.D.
The proposition follows immediately because we obtain an inverse to the map
(40):

pm−1V Wn−1Ω
0 d

→ pm−2V Wn−1Ω
1 . . . V Wn−1Ω

m−1 d
→ WnΩm . . .

↓ ↓ ↓ ↓Res

Wn−m−1Ω
0
[F ]

d
→ Wn−m−1Ω

1
[F ] . . . Wn−m−1Ω

m−1
[F ]

dV
→ Wn−m−1Ω

m . . .

The first m vertical maps defined by the lemma are equivariant with respect
to

Wn(R)
Res
→ Wn−m(R)

F
→Wn−m−1(R)
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The remaining maps are equivariant with respect to Wn(R)→Wn−m(R). The
commutativity of the diagram follows, since it is a homomorphic image of a
corresponding diagram for WΩ without level. This proves the proposition.
Q.E.D.
Let X/R be a smooth scheme. Let us denote by JX/Wn(R) ⊂ OX/Wn(R) the

sheaf of pd-ideals. We denote by J
[m]
X/Wn(R) its m-th divided power. Let

un : Crys(X/Wn(R)) −→ Xzar

be the canonical morphism of sites. We are going to define a morphism in
D(Xzar) the derived category of abelian sheaves on Xzar for m < p:

Run∗J
[m]
X/Wn(R) −→ I

mWnΩ
·
X/R (45)

In order to define (45) we begin with the case, where X admits an embedding
in a smooth scheme Y/R, such that Y has a Witt-lift: Ỹ /Wn(R) and OỸ −→
Wn(OY ).
The left hand side of (45) may be computed with the filtered Poincaré lemma
[BO] Theorem 7.2: Let D be the divided power hull of X in Ỹ . Let ID ⊂
OD be the pd-ideal. The pd-de Rham-complex Ω̆D/Wn(R) has the following

subcomplex FilmΩ̆D/Wn(R):

I
[m]
D Ω̆◦D/Wn(R)

d
→ I

[m−1]
D Ω̆1

D/Wn(R)
d
→ . . . IDΩ̆m−1

D/Wn(R)

d
→ Ω̆D/Wn(R) . . . (46)

Then the left hand side of (45) is isomorphic to the hypercohomology of (46).
The Witt-lift defines a morphism

OỸ −→Wn(OY ) −→Wn(OX).

It maps the ideal sheaf of X ⊂ Ỹ to the ideal sheaf IX = VWn−1(OX) ⊂
Wn(OX). Since IX is endowed with divided powers, we obtain

OD −→Wn(OX), (47)

mapping ID to IX . The homomorphism (47) induces a map of the pd-de Rham
complexes

Ω̆D/Wn(R) −→ Ω̆Wn(X)/Wn(R) −→WnΩX/R.

Taking into account that I
[h]
X = ph−1IX for h < p, we obtain the desired

morphism from (46) to the complex ImWnΩ if m < p:

pm−1IXWnΩ
0
X/R −→ . . . −→ IXWnΩ

m−1
X/R

d
→WnΩX/R → . . . .

We note that IXWnΩ
l
X/R = VWn−1Ω

l
X/R follows from the formula

V (ηdω1 . . . dωr) = V ηd V ω1 . . . d
V ωr.
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Hence we obtain a morphism

Run∗J
[m]
X/Wn(R)→̃Fil

mΩ̆D/Wn(R) −→ I
mWnΩX/R. (48)

The independence of the last arrow from the embedding of X into a Witt
lift (Y, Ỹ ) is proved in a standard manner: Let X →֒ Y ′ be an embedding
into a second Witt lift (Y ′, Ỹ ′). Then we obtain a Witt lift of the product
Y ×SpecR Y

′ : Indeed, Ỹ ×SpecWn(R) Ỹ
′ is a lifting of Y ×Y ′ and the two given

Witt lifts induce a morphism:

OỸ ⊗Wn(R) OỸ ′ −→Wn(OY )⊗Wn(R) Wn(OY ′) −→Wn(OY ⊗OY ′).

If P denotes the pd-hull of X in Ỹ ×SpecWn(R) Ỹ
′. We obtain a commutative

diagram

FilmΩ̆D/Wn(R)

��

((RRRRRRRRRRRRR

ImWnΩX/R

FilmΩ̆P/Wn(R)

66lllllllllllll

Since the vertical arrow induces by [BO] the identity on Run∗J
[m]
X/Wn(R) the

independence of (45) of the chosen Witt lift follows.

If X admits no embedding in a smooth scheme Y which has a Witt lift, one
can proceed by simplicial methods [I] or [LZ] §3.2, but we omit the details here.

Theorem 4.6 For each m < p and n the map in D+(Xzar,Wn(R))

Run∗J
[m]
X/Wn(R) −→ I

mWnΩX/R (49)

is a quasi-isomorphism.

Proof: Clearly the question is local for the Zariski-topology on X. We
may therefore assume that X = SpecB, where the R-algebra B is étale over
R[T1, . . . , Td]. From the discussion above we know that any Witt-lift of B
leads to the same morphism (49). We choose a Frobenius lift {Bn}n∈N of the
algebra B as in the corollary 4.3. We begin with the reduction to the case
B = R[T1, . . . , Td]. Let J be the kernel of Bn −→ B. Then J [i] = pi−1IRBn,
where IR = VWn−1(R) ⊂ Wn(R). Hence we have to show that the following
morphism of complexes induces a quasi-isomorphism:
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pm−1IRΩ0
Bn/Wn(R)

d
−−−−→ . . . IRΩm−1

Bn/Wn(R)

d
−−−−→ ΩmBn/Wn(R)

d
−−−−→





y





y





y

pm−1VWn−1Ω
0
B/R

d
−−−−→ . . . V Wn−1Ω

m−1
B/R

d
−−−−→ WnΩ

m
B/R

d
−−−−→

(50)
We choose a number s, such that psWn(R) = 0. We consider the groups
in the first complex as Bn+s modules via ψs : Bn+s → Bn. As shown in
the proof of Corollary 4.3 we obtain a complex of Bn+s-modules. The same
is true if we consider the groups in the second complex as Bn+s-modules by
ψs : Bn+s → Bn →Wn(B).
We obtain the diagram above from the corresponding diagram for B = A by
tensoring with Bn+s⊗An+s

. Since Bn+s is étale over An+s, we have reduced
our statement to the case where B = R[T1, . . . , Td] and where the Witt-lift is
a standard one.
In the case of a polynomial algebra we have a decomposition of the de Rham
Witt complex according to weights [LZ] 2.17.
Because the operator V is homogeneous, we have a similar decomposition
for the complex ImWnΩA/R. In fact, by [LZ] Prop. 2.5 an element of

pm−l−1VWn−1Ω
l, for l ≤ m− 1 may be uniquely written as a sum of elements

of the following types
en(p

m−l−1 V ξ, k, I0, . . . , Il) for k integral
en(p

m−l−1 V ξ, k, I0, . . . , Il) for I0 6= ∅, k not integral
en(p

m−l V ξ, k, I0, . . . , Il) for I0 = ∅, k not integral.
Here ξ ∈Wn−1(R) for k integral and ξ ∈ V u(k)−1Wn−u(k)(R) for k nonintegral.
Clearly the elements of the first type span a subcomplex of ImWnΩA/R which
is isomorphic to the complex in the first row of (50). Indeed, the p-basic
differentials of this complex are mapped to basic Witt-differentials of the first
type above. The last two types of Witt-differentials above span an acyclic
subcomplex because of the formula

den(p
m−l−1 V ξ, k, I0, . . . , Il) = en(p

m−l−1 V ξ, k, φ, I0, . . . , Il),

for I0 6= ∅ and k not integral. The exactness of the non integral part atWnΩ
m
B/R

follows in the same way. Q.E.D.

Let Xn/Wn(R) be a compatible system of smooth liftings of X/R for n ∈ N.
The Theorem 4.6 provides an isomorphism in the derived category between
ImWnΩX/R and

p
m−1

IRΩ0
Xn/Wn(R) → p

m−2
IRΩ1

Xn/Wn(R) → . . . IRΩm−1
Xn/Wn(R) → Ωm−1

Xn/Wn(R) . . . .

(51)

We know by Proposition 4.4 that {ImWnΩX/R} is isomorphic to the procom-
plex {NmWnΩX/R}. The same argument shows that the procomplex (51) is
quasi-isomorphic to {FmΩ·Xn/Wn(R)}n∈N . Passing to the projective limit we
obtain:
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Corollary 4.7 Let R be a reduced ring. Let X/R be a smooth and proper
scheme. Assume that Xn/Wn(R) is a compatible system of smooth liftings of
X. Then there is for each number m < p a natural isomorphism in the derived
category D+(Xzar,W (R)):

NmWΩ·X/R
∼= FmΩ·X/W (R),

where X = lim
−→

Xn in the sense of EGA I Prop. 10.6.3.

This is a weak form of the Conjecture 4.1 which asserts this for every level
separately.

5 Display Structure on crystalline cohomology

Let R be a ring such that p is nilpotent in R. Let (A, σ, α) be a frame for R
[Z1]. This means that A is a torsion free a p-adic ring with an endomorphism
σ : A → A, which induces the Frobenius endomorphism A/pA → A/pA.
The map α : A → R is a surjective ring homomorphism, such that the ideal
a = Kerα has divided powers.

Definition 5.1 An A-window consists of

1) A finitely generated projective A-module P0.

2) A descending filtration of P0 by A-submodules

. . . Pi+1 ⊂ Pi ⊂ · · · ⊂ P2 ⊂ P1 ⊂ P0. (52)

3) σ-linear homomorphisms

Fi : Pi → P0.

The following conditions are required.

(i) aPi ⊂ Pi+1 and the factor module Pi+1/aPi is a finitely generated projec-
tive R-module Ei+1 for i ≥ 0. We set E0 = P0/aP0.

(ii) The inclusions Pi+1 → Pi induce injective R-module morphisms

· · · → Ei+1 → Ei → · · · → E0,

such that Ei+1 is a direct summand of Ei.

(iii) aPi = Pi+1 if i is big enough.

(iv) Fi(x) = pFi+1(x) for x ∈ Pi+1.

(v) The union of the images Fi(Pi) for i ∈ Z≥0 generate P0 as an A-module.
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A window is called standard if it arises in the following way. Let L0, . . . , Ld be
finitely generated projective A-modules. Let

Φi : Li →
d

⊕

j=0

Lj

be σ-linear homomorphisms, such that the determinant of Φ0 ⊕ · · · ⊕ Φd is a
unit. Then we set for i ≥ 0

Pi = a
iL0 ⊕ a

i−1L1 ⊕ . . .⊕ aLi−1 ⊕ Li ⊕ · · · ⊕ Ld.

We define Fi on this direct sum as follows: The restriction of Fi to a
i−kLk for

k < i resp. Lk for k ≥ i to is defined by

Fi(ax) = σ(a)
pi−k Φk(x) for 0 ≤ k < i, x ∈ Lk, a ∈ a

i−k

Fi(x) = pk−iΦk(x) for i ≤ k x ∈ Lk.

It is clear that (Pi, Fi) form a window.
Each window is isomorphic to a standard window. Indeed, let E0 = ⊕L̄j be a
splitting of the filtration (52) in the definition:

Ei = ⊕j≥iL̄j .

Let Li be a finitely generated projective A-module which lifts L̄i. We find
homomorphisms Li → Pi which make the following diagrams commutative:

L̄i −−−−→ Ei
x





x





Li −−−−→ Pi.

It follows from the lemma of Nakayama that ⊕Li → P0 is an isomorphism,
since it is modulo a. By induction we obtain

Pi = a
iL0 ⊕ · · · ⊕ aLi−1 ⊕ Li ⊕ · · · ⊕ Ld. (53)

We set Φi = Fi|Li. The condition (v) implies that ⊕Φi : ⊕Lj → ⊕Lj is a
σ-linear epimorphism and therefore an isomorphism.
Remark: A window (Pi) is of degree d, if Pi+1 = aPi for i ≥ d. To give
a window of degree d it is enough to give only the modules P0, . . . , Pd. The
axioms may be formulated in the same way for this finite chain of modules. The
axiom (v) then requires that the union of F0(P0), F1(P1) . . . , Fd(Pd) generates
P0 as an A-module.
We will now see that an A-window induces a display over R. There is a natural
ring homomorphism δ : A → W (A), such that for the Witt-polynomials wn

there is the identity
wn(δ(a)) = σn(a), a ∈ A.

Documenta Mathematica 12 (2007) 147–191



182 Andreas Langer and Thomas Zink

Consider the composite ring homomorphism.

κ : A→W (A)→W (R).

We have by [Z1] Prop. 1.5:

κ(σ(a)) = Fκ(a) for a ∈ A

κ(σ(a)
p ) = V −1

κ(a) for a ∈ a.

The last equation makes sense because κ(a) ∈ VW (R) for a ∈ a.
It is clear that a datum (Li,Φi) for a standard window over A induces the
datum (W (R)⊗W (A) Li, F ⊗ Φi) for a standard display over R. We will show
that the resulting display does not depend on the decomposition P0 = ⊕Li we
have used.
We give an invariant construction of a display (Qi, ιi, αi, Fi) from a window
(Pi, Fi). The display comes with morphisms τi : Pi → Qi such that the follow-
ing diagrams commute

Pi
τi−−−−→ Qi

x





ιi

x





Pi+1
τi+1
−−−−→ Qi+1

Pi+1
τi+1
−−−−→ Qi+1

x





αi

x





a⊗ Pi −−−−→ IR ⊗W (R) Qi

P0
τ0−−−−→ Q0

Fi

x





Fi

x





Pi+1
τi−−−−→ Qi.

(54)
We construct Qi and τi inductively, such that the diagrams (54) commute. We
set Q0 = W (R)⊗κ,A P0 and we let τ0 : P0 → Q0 be the canonical map.
Assume that τk : Pk → Qk was constructed for k ≤ i. Then we consider the
following commutative diagrams:

Pi
τi // Qi

Fi // Q0

Q0

p

OO

Pi+1

ι

OO

Fi+1 // P0

τ0

OO
Qi

Fi // Q0

IR ⊗Qi

OO

F̃i // Q0

p

OO

We obtain a morphism to the fibre product

(W (R)⊗A Pi+1)⊕ (IR ⊗Qi)→ Qi ×Fi,Q0,p Q0. (55)

We define Qi+1 as the image of (55). This gives a map Pi+1
τi+1
→ Qi+1. We

define ι : Qi+1 → Qi and Fi+1 : Qi+1 → Q0 and αi : IR ⊗ Qi → Qi+1 as
the canonical maps determined by these data. A routine verification shows
that this construction gives the same result as the construction via standard
windows.
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Moreover the following universal property holds. Let (Q′i, ι
′
i, α
′
i, F
′
i ) be a display

over R and let τ ′i : Pi → Q′i be maps such that the diagrams (54) for τ ′i
commute. Then the maps τ ′i are the composition of τi and a morphism of
displays (Qi, ιi, αiFi)→ (Q′i, ι

′
i, α
′
i, F
′
i ).

Let A
α
→ R, σ, a as before. Let X → SpecR be a scheme which is projective

and smooth. Let Y
f
→ Spf A be a smooth pA-adic formal scheme, which lifts

X. We set An = A/pn and Yn = Y ×Spf A SpecAn. For big n the map α

factors through An
αn→ R. The kernel an inherits a pd-structure. We consider

the crystalline topos (X/A)crys. Let JX/An
⊂ OX/An

be the pd-ideal sheaf.
We are interested in the cohomology groups:

Hi(X,J
[m]
X/A) = lim

←−
n

Hi
crys(X/An,J

[m]
X/An

). (56)

Remark: It would be more accurate to consider the cohomology groups of

R lim
←−

n

RΓ(X/An,J
[m]
X/An

). But under the Assumptions 5.2 and 5.3 we are going

to make these groups will coincide.

By [BO] 7.2 the groups Hi
crys(X/An,J

[m]
X/An

) are the hypercohomology groups

of the following complex Fil[m]Ω·Yn/An
:

a
[m]
n ⊗An

Ω0
Yn/An

→ a
[m−1]
n ⊗An

Ω1
Yn/An

· · · → an⊗An
Ωm−1
Yn/An

→ ΩmYn/An
. . . (57)

We will make the following assumptions:

Assumption 5.2 The cohomology groups Hq(Yn,Ω
p
Yn/An

) are for each n lo-

cally free An-modules of finite type.

Assumption 5.3 The de Rham spectral sequence degenerates at E1

Epq1 = Hq(Yn,Ω
p
Yn/An

)⇒ Hp+q(Yn,Ω
·
Yn/An

).

Since Yn is quasicompact and separated by assumption the cohomology sheafs
Rmfn∗Ω

·
Yn/An

are quasicoherent. From the assumption we see that these
sheaves are locally free of finite type. Hence the complex Rfn∗Ω

·
Yn/An

is quasi-
isomorphic to the direct sum of its cohomology groups. This implies that the
cohomology groups Rmfn∗Ω

·
Yn/An

commute with arbitrary base change. The

same applies to the cohomology groups Rqfn∗Ω
p
Yn/An

. By Proposition 3.2 and

the projection formula (Proposition 3.1) we obtain a degenerating spectral se-
quence

Eij1 = Hj(Yn,Ω
i
Yn/An

)⊗An
a
[m−i] ⇒Hi+j(Yn, F il

[m]Ω·Yn/An
)

‖

Hi+j
crys(X/An,J

[m]
X/An

)
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If we pass to the projective limit we obtain a degenerating spectral sequence

Eij1 = a
[m−i] ⊗Hj(Y,ΩiY/A)⇒ Hi+j

crys(X/A,J
[m]
X/A). (58)

The groups involved have no p-torsion.
We set X̄ = X ×SpecR Spec R̄, where R̄ = R/pR. By [BO] 5.17 there is a
canonical isomorphism

Hi
crys(X/A,OX/A) ≃ Hi

crys(X̄/A,OX̄/A). (59)

The absolute Frobenius on X̄ and σ on A induce an endomorphism on the right
hand side of (59) and therefore an endomorphism

F : Hi
crys(X/A,OX/A)→ Hi

crys(X/A,OX/A).

Lemma 5.4 Let p[m] be the maximal power of p which divides pm/m! Then the
image of the following composition

Hi
crys(X/A,J

[m]
X/A)→ Hi

crys(X/A),OX/A)
F
→ Hi

crys(X/A,OX/A)

is contained in p[m]Hi
crys(X/A,OX/A).

Proof: The argument is well known [K], but we repeat it in the generality we
need. We may replace A by An. We embed X into a smooth and projective
An-scheme Z, such that there is an endomorphism σ : Z → Z which lifts the
absolute Frobenius modulo p and which is compatible with σ on An. We may
take for Z the projective space. Consider the pd-hull D of X in Z. It is also
the pd-hull of X̄ in Z. Therefore σ extends to D/An and to the pd-differentials
Ω̆D/An

. We obtain by [BO] an isomorphism

Hi(X, Ω̆·D/An
)
∼
−→ Hi

crys(X/A,OX/An
),

which is equivariant with respect to the action of σ on the left hand side and
F on the right hand side.
Consider the morphisms

X̄ → D → Z.

Let I(X̄) be the ideal of X̄ in Z and J̄D be the ideal of X̄ in D. Consider the
diagram

(OZ , I(X̄)) //

σ

��

κ

&&NNNNNNNNNNN
(OD, J̄D)

σD

��
(OZ , I(X̄)) // (OD, J̄D)

The composite κ maps I(X̄) to p · OD. This follows because

σ(z) ≡ zp mod p for z ∈ OZ . (60)
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If z ∈ I(X̄) the image of zp in J̄D becomes divisible by p, because we have
divided powers. Therefore the induced map σD on the divided power envelope
maps J̄D to pOD. Therefore

σ(J̄
[m]
D ) ⊂ p[m]OD.

For z ∈ OZ we find from (60) that in Ω̆1
D/An

:

dσ(z) ≡ 0 mod p.

The composite map of the lemma is induced by a map of complexes:

J
[m]
D Ω̆◦D/An

−−−−→ . . . −−−−→ J
[m−i]
D Ω̆iD/An

−−−−→ . . .

σ





y

σ





y

Ω̆◦D/An
−−−−→ . . . −−−−→ Ω̆iD/An

−−−−→ . . . .

(61)

The image of this map lies in p[m] · Ω̆·D/An
= p[m]An ⊗L

An
Ω̆D/An

. The last

equality follows since by [BO] 3.32 the sheaf OD is flat over An. The hyperco-
homology of the last complex is by the projection formula

p[m]An ⊗
L RΓ(X, Ω̆D/An

) = p[m]An ⊗
L RΓcrys(X/An,OX/An

)
= p[m]An ⊗

L RΓ(Yn,Ω
·
Yn/An

)

But the cohomology of the last complex is p[m]Hi(Yn,Ω
·
Yn/An

), since we as-

sumed that the cohomology is locally free. This shows that (61) factors on
the hypercohomology through p[m]Hcrys(X/An,OX/An

) = p[m]Hi(Yn,Ω
·
Yn/An

).
Q.E.D.

Theorem 5.5 Let R be a ring, such that p is nilpotent in R. Let X be a
scheme which is projective and smooth over R. Let A → R be a frame. We
assume that X lifts to a projective and smooth p-adic formal scheme Y/Spf A
such that the assumptions 5.2 and 5.3 are fullfilled. Then for each number
n < p the canonical maps

Hn
crys(X/A,J

[m]
X/A)→ Hn

crys(X/A,J
[m−1]
X/A )→ · · · → Hn

crys(X/A,OX/A)

are injective. The A-modules Pm = Hn
crys(X/A,J

[m]
X/A) for m ≤ n together with

the maps
1

pm
F = Fm : Pm → P0

given by Lemma 5.4 form a window of degree n.

Proof: We consider a number m ≤ n. Then we have JmX/A = J
[m]
X/A, a

m =

a
[m]. We write Fil[m]Ω·Y/A = lim

←−
n

Fil[m]Ω·Yn/An
. Then we find a canonical

isomorphism

Pm = Hn(X,Fil[m]ΩY/A)
∼
= Hn

crys(X/A,J
m
X/A) (62)

Documenta Mathematica 12 (2007) 147–191



186 Andreas Langer and Thomas Zink

From the degenerating spectral sequence (58) we obtain the injectivity of Pm →
Pm−1, since we have injectivity on the associated graded groups.
In the following considerations m,n can be arbitrary natural number, without

the restriction m ≤ n < p. Then Fil
[m]
Y/A will be the complex FilmY/A

a
mΩ0
Y/A → a

m−1Ω1
Y/A → · · · → aΩm−1

Y/A → ΩmY/A → . . .

Consider the following morphism:

a⊗Hn(X,FilmΩ·Y/A)→ Hn(X, aFilmΩ·Y/A). (63)

We have for aFilmΩ·Y/A a degenerating spectral sequence as (58). Therefore

the right hand side of (63) is a subgroup of Hn(X,FilmΩ·Y/A).
We claim that the induced inclusion is an equality

aHn(X,FilmΩ·Y/A) = Hn(X, aFilmΩ·Y/A). (64)

This equality holds for m = 0 by the projection formula. Indeed, consider the
canonical map:

FilmΩY/A → a
mΩ0
Y/A → 0.

The kernel is the following complex C:

0→ a
m−1Ω1

Y/A → · · · → aΩm−1
Y/A → ΩmY/A → . . . .

This complex C is of the same nature as FilmΩ·Y/A but with less ideals involved.
By an induction we may assume that

aHn(X,C) = Hn(X, aC).

By the projection formula we find

aHn(X, amΩ0
Y/A) = a

m+1Hn(X,Ω0
Y/A).

The assertion (64) follows from the diagram

Hn(X, aC) −−−−→ Hn(X, aFilmΩ·Y/A) −−−−→ Hn(X, am+1Ω0
Y/A)

‖

x





∪

x





‖

x





aHn(X,C) −−−−→ aHn(X,FilmΩ·Y/A) −−−−→ aHn(X, amΩ0
Y/A)

(65)

The upper line is a short exact sequence by a spectral sequence argument as
above. The lower line is a complex. The first arrow is injective and the second
surjective but it is a priori not exact in the middle term. One sees that the
upper and lower line in (63) must be isomorphic. This proves (65).
We have already seen that the following maps are injective

Hn(X, aFilmΩ·Y/A)→ Hn(X,Film+1Ω·Y/A)→ Hn(X,FilmΩ·Y/A).
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Therefore we obtain an exact sequence

0→ Hn(X, aFilmΩ·Y/A)→ Hn(X,Film+1Ω·Y/A)→ Hn(X,σ≥m+1Ω·X/R)→ 0.

Since by (64) the map a ⊗ Hn(X,FilmΩY/A) → Hn(X, aFilmΩ·Y/A) is surjec-
tive, we see that

Pm = Hn(X,FilmΩ·Y/A) and Em = Hn(X,σ≥mΩ·X/R)

fulfill the conditions (i)-(iii) for a window without any restriction on m and n.
We note that for fixed n we have Pm+1 = aPm for m ≥ n. As explained after
the definition of a window, we can obtain a decomposition

Pm = a
mL0 ⊕ a

m−1L1 ⊕ · · · ⊕ a
m−nLn,

with the convention that a
k = A if k ≤ 0.

Concretely we can find the liftings Li as follows. We consider the maps:

Hn(X,FilmΩ·Y/A)→ Hn(X,σ≥mΩ·Y/A)→ H(n−m)(X,ΩmY/A)

Then Lm is obtained by splitting the last surjection. This construction gives
isomorphisms:

Lm ∼= H(n−m)(X,ΩmY/A)

We now impose the condition m ≤ n < p of the theorem. By lemma 5.4
and (62) the Frobenius endomorphism F : P0 → P0 is divisible by pm when
restricted to Pm. We set

Φm =
1

pm
F|Lm

.

The assertion that {Pm} is a window is then equivalent with the condition that

⊕ni=0Φi : ⊕ni=0Li → ⊕
u
i=0Li

is a σ-linear isomorphism, or in other words that det(⊕ni=0Φi) is a unit inW (A).
Clearly it suffices to show that for any homomorphism R→ k to a perfect field
k the image of det(⊕Φi) by the morphism

A
κ
→W (R)→W (k)→ k

is a nonzero. The compositum map A → W (k) respects the Frobenius and
induces a map on crystalline cohomology

Hn
crys(X/A,OX/A)→ Hn

crys(Xk/W (k),OXk/W (k))

which respects the Frobenius. It is induced by the base change map for de
Rham cohomology.

Hn(X,Ω·Y/A)→ Hn(Xk,Ω
·
Y⊗AW (k)/W (k)).
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The special decomposition we have chosen

Hn(X,Ω·Y/A) = ⊕Li,

induces a similar decomposition

Hn(Xk,Ω
·
YW (k)/W (k)) = Hn(X,Ω·Y/A)⊗AW (k) = ⊕Li ⊗AW (k).

Therefore we have reduced our assertion to the case R = k a perfect field and
A = W (k). This case was proved by Mazur (Compare [Fo] p.91 and Kato [K]
Prop.2.5). We give an argument in the case n < p − 2 which is based on the
comparison Corollary 4.7 but doesn’t use gauges.
For any complex A· of abelian sheaves on X consider the exact sequence in-
duced by the naive filtration.

0→ σ>iA
· → A· → σ≤iA

· → 0,

where i is an arbitrary integer. If n+ 1 ≤ i we obtain an isomorphism

Hn(X,A·) ∼= Hn(X,σ≤iA
·).

We apply this to the Nygaard complex NmWΩ·X/k and to the de Rham-Witt

complex WΩ·X/k. For i ≤ m−1 the operator F̂m (5) induces clearly a bijection
of the truncated complexes

F̂m : σ≤iN
mWΩ·X/k → σ≤iWΩ·X/k

Therefore if n+ 1 ≤ i ≤ m− 1 we obtain a bijection

Fm : Hn(X,NmWΩ·X/k)→ Hn(X,WΩ·X/k)

We set m = n + 2. Since m < p by assumption (and because k is reduced)
there are canonical isomorphisms in the derived category:

NmWΩ·X/k
∼= FmΩY/W (k)

∼= FilmΩY/W (k)

But since m > n the map Fm is identified with the linearization of ⊕Φi. This
says that the last map is a Frobenius linear isomorphism. Q.E.D.
Remark: The proof shows that Hn

DR(Y) with its Hodge filtration is strongly
divisible (compare [Fo] 1.2 Prop.) for n < p− 2. If we knew that NmWΩ·X/k
and FmΩY/W (k) are quasi-isomorphic, the last argument would imply that
Hn
DR(Y) is strongly divisible without restriction on n. We note also that the

last argument works directly over any reduced ring k.

Corollary 5.6 Let X be a smooth and projective scheme over a ring R such
that p is nilpotent in R.
Let us assume that there is a frame A→ R and a smooth and projective p-adic
lifting Y/Spf A of X, which satisfies the conditions of the theorem.
Then we obtain for n < p by base change a display structure of degree n on
Hn
crys(X/W (R),OX/W (R)). This display structure is independent of the frame

A and the formal lifting Y we have chosen if p ·R = 0.
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Proof: For a given frame A the independence of the lifting Y is clear, because
the window structure is purely defined in terms of the crystalline cohomology
of X/A.
If we have a morphism of frames B → A and a formal lifting Z of X to B, then
we set Y = ZA. Then the window associated to Y is obtained from the window
associated to Z by base change (one should think in terms of decompositions
(53)). Therefore the induced displays are the same.
If p ·R = 0 and A′ and A′′ are 2 frames, we obtain a new frame A′×RA

′′ → R.
Then σ′ × σ′′ is an endomorphism of A′ ×R A′′ because σ′ and σ′′ induce the
same endomorphism on R. If Y ′/Spf A′ and Y ′′/Spf A′′ are formal liftings, we
obtain a formal lifting Y ′ ×κ Y

′′ of X over A′ ×R A
′′. Therefore we obtain the

same display structure by base change.

Theorem 5.7 Let R be a reduced ring of characteristic p. Let X/R be a smooth
projective scheme. Assume that there is a compatible system of smooth and
projective liftings Yn/Wn(R). We assume that the assumptions 5.2 and 5.3 are
satisfied with An = Wn(R)
Then there is a display structure on Hn

crys(X/W (R),OX/W (R)) for n < p,
where

Pm = Hn(X,NmWΩX/R) = Hn
crys(X/W (R),J

[m]
X/W (R)).

Proof: The second equality is the filtered comparison theorem. If we had a
p-adic lifting Y/SpfW (R), the theorem would follow from the last one because
W (R)→ R is a frame. The slightly more general statement follows by the same
reasoning as the last theorem. Q.E.D.
We make the following conjecture:

Conjecture 5.8 Let R be a ring such that p is nilpotent in R. Let X/R
be a smooth projective scheme. Let us assume that the crystalline cohomology
groups Hi

crys(X/Wn(R)) are locally free Wn(R)-modules for i ≥ 0 and n > 1,
and that the de Rham spectral sequence

Ep,q1 = Hq(X,ΩpX/R)⇒ Hp+q(X,Ω·X/R)

degenerates.
Then the canonical predisplay structure on Pm = Hn(X,NmWΩX/R) is a dis-
play structure.
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[De3] Deligne, P.: Théorie de Hodge II, Publ.Math.IHES 40, 5-57, 1971.
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