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Abstract. We define and study equivariant analytic and local
cyclic homology for smooth actions of totally disconnected groups
on bornological algebras. Our approach contains equivariant entire
cyclic cohomology in the sense of Klimek, Kondracki and Lesniewski
as a special case and provides an equivariant extension of the local
cyclic theory developped by Puschnigg. As a main result we construct
a multiplicative Chern-Connes character for equivariant KK-theory
with values in equivariant local cyclic homology.
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1. Introduction

Cyclic homology can be viewed as an analogue of de Rham cohomology in the
framework of noncommutative geometry [1], [3]. In this framework geomet-
ric questions are studied by means of associative algebras which need not be
commutative. An important feature of cyclic homology is the fact that the
theory can easily be defined on a large class of algebras, including Fréchet
algebras as well as algebras without additional structure. In many cases ex-
plicit calculations are possible using standard tools from homological algebra.
The connection to de Rham theory is provided by a fundamental result due to
Connes [1] showing that the periodic cyclic homology of the Fréchet algebra
C∞(M) of smooth functions on a compact manifold M is equal to the de Rham
cohomology of M .
However, in general the theory does not yield good results for Banach algebras
or C∗-algebras. Most notably, the periodic cyclic cohomology of the algebra
C(M) of continuous functions on a compact manifold M is different from de
Rham cohomology. An intuitive explanation of this phenomenon is that C(M)
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only encodes the information of M as a topological space, whereas it is the
differentiable structure that is needed to define de Rham cohomology.
Puschnigg introduced a variant of cyclic homology which behaves nicely on the
category of C∗-algebras [33]. The resulting theory, called local cyclic homology,
allows for the construction of a general Chern-Connes character for bivariant
K-theory. Using the machinery of local cyclic homology, Puschnigg proved
the Kadison-Kaplansky idempotent conjecture for hyperbolic groups [32]. Un-
fortunately, the construction of the local theory is quite involved. Already the
objects for which the theory is defined in [33], inductive systems of nice Fréchet
algebras, are rather complicated.
There is an alternative approach to local cyclic homology due to Meyer [24].
Based on the theory of bornological vector spaces, some features of local
cyclic homology become more transparent in this approach. It is known that
bornological vector spaces provide a very natural framework to study analytic
and entire cyclic cohomology [21]. Originally, entire cyclic cohomology was in-
troduced by Connes [2] in order to define the Chern character of θ-summable
Fredholm modules. The analytic theory for bornological algebras contains en-
tire cyclic cohomology as a special case. Moreover, from a conceptual point of
view it is closely related to the local theory. Roughly speaking, the passage
from analytic to local cyclic homology consists in the passage to a certain de-
rived category.
An important concept in local cyclic homology is the notion of a smooth sub-
algebra introduced by Puschnigg [29], [33]. The corresponding concept of an
isoradial subalgebra [24], [26] plays a central role in the bornological account
to the local theory by Meyer. One of the main results in [24] is that local cyclic
homology is invariant under the passage to isoradial subalgebras. In fact, an
inspection of the proof of this theorem already reveals the essential ideas behind
the definition of the local theory. A basic example of an isoradial subalgebra
is the inclusion of C∞(M) into C(M) for a compact manifold as above. In
particular, the natural homomorphism C∞(M)→ C(M) induces an invertible
element in the bivariant local cyclic homology group HL∗(C

∞(M), C(M)).
Hence, in contrast to periodic cyclic cohomology, the local theory does not dis-
tinguish between C(M) and C∞(M). Let us also remark that invariance under
isoradial subalgebras is responsible for the nice homological properties of the
local theory.
In this paper we define and study analytic and local cyclic homology in the
equivariant setting. This is based on the general framework for equivariant
cyclic homology developped in [35] and relies on the work of Meyer in the
nonequivariant case. In particular, a large part of the necessary analytical con-
siderations is already contained in [26]. In addition some of the material from
[24] will be reproduced for the convenience of the reader. On the other hand,
as far as homological algebra is concerned, the framework of exact categories
used by Meyer is not appropriate in the equivariant situation. This is due to
the fact that equivariant cyclic homology is constructed using paracomplexes
[35].
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We should point out that we restrict ourselves to actions of totally discon-
nected groups in this paper. In fact, one meets certain technical difficulties in
the construction of the local theory if one moves beyond totally disconnected
groups. For simplicity we have thus avoided to consider a more general setting.
Moreover, our original motivation to study equivariant local cyclic homology
and the equivariant Chern-Connes character comes from totally disconnected
groups anyway.
Noncommutative Chern characters constitute one of the cornerstones of non-
commutative geometry. The first contributions in this direction are due to
Karoubi and Connes, see [14] for an overview. In fact, the construction of the
Chern character in K-homology was the motivation for Connes to introduce
cyclic cohomology [1]. Bivariant Chern characters have been studied by several
authors including Kassel, Wang, Nistor, Puschnigg and Cuntz [17], [37], [28],
[33], [4]. As already explained above, our character is closely related to the
work of Puschnigg.
Let us now describe how the paper is organized. In section 2 we review some
facts about smooth representation of totally disconnected groups and anti-
Yetter-Drinfeld modules. These concepts are basic ingredients in the construc-
tion of equivariant cyclic homology. For later reference we also discuss the
notion of an essential module over an idempotented algebra. We remark that
anti-Yetter-Drinfeld modules are called covariant modules in [35], [36]. The
terminology used here was originally introduced in [10] in the context of Hopf
algebras. In section 3 we discuss the concept of a primitive module over an
idempotented algebra and exhibit the relation between inductive systems of
primitive modules and arbitrary essential modules. This is needed for the def-
inition of the local derived category given in section 4. From the point of view
of homological algebra the local derived category is the main ingredient in the
construction of local cyclic homology. In section 5 we recall the definition of
the analytic tensor algebra and related material from [21]. Moreover we review
properties of the spectral radius for bornological algebras and discuss locally
multiplicative algebras [26]. Section 6 contains the definition of the equivari-
ant X-complex of a G-algebra and the definition of equivariant analytic and
local cyclic homology. This generalizes the constructions in [21], [24] as well
as the definition of entire cyclic cohomology for finite groups given by Klimek,
Kondracki and Lesniewski [19]. We also discuss briefly the connection to the
original approach to local cyclic homology due to Puschnigg. In section 7 we
prove homotopy invariance, stability and excision for equivariant analytic and
local cyclic homology. The arguments for the analytic and the local theory are
analogous since both theories are constructed in a similar way. In section 8
we study a special situation where analytic and local cyclic homology are in
fact isomorphic. Section 9 is devoted to the proof of the isoradial subalgebra
theorem. As in the non-equivariant case this theorem is the key to establish
some nice features of the local theory. In particular, using the isoradial subal-
gebra theorem we study in section 10 how local cyclic homology behaves with
respect to continuous homotopies and stability in the sense of C∗-algebras. As
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a preparation for the definition of the Chern-Connes character in the odd case
we consider in section 11 the equivariant X-complex of tensor products. In
section 12 we recall the general approach to bivariant K-theories developped
by Cuntz [4], [5]. Based on the resulting picture of equivariant KK-theory we
define the equivariant Chern-Connes character in section 13. In the even case
the existence of this transformation is an immediate consequence of the uni-
versal property of equivariant KK-theory [34], [22]. As in the non-equivariant
case the equivariant Chern-Connes character is multiplicative with respect to
the Kasparov product and the composition product, respectively. Finally, we
describe an elementary calculation of the Chern-Connes character in the case
of profinite groups. More detailed computations together with applications will
be discussed in a separate paper.
Throughout the paper G will be a second countable totally disconnected locally
compact group. All bornological vector spaces are assumed to be separated and
convex.
I am indebted to R. Meyer for providing me his preprint [24] and answering
several questions related to local cyclic homology.

2. Smooth representations and anti-Yetter-Drinfeld modules

In this section we recall the basic theory of smooth representations of totally dis-
connected groups and the concept of an anti-Yetter-Drinfeld module. Smooth
representations of locally compact groups on bornological vector spaces were
studied by Meyer in [25]. The only difference in our discussion here is that we
allow for representations on possibly incomplete spaces. Apart from smooth
representations, anti-Yetter-Drinfeld modules play a central role in equivariant
cyclic homology. These modules were called covariant modules in [35], [36].
Smooth representations and anti-Yetter-Drinfeld modules for totally discon-
nected groups can be viewed as essential modules over certain idempotented
algebras in the following sense.

Definition 2.1. An algebra H with the fine bornology is called idempotented
if for every small subset S ⊂ H there exists an idempotent e ∈ H such that
e · x = x = x · e for all x ∈ S.

In other words, for every finite set F of elements in H there exists an idempo-
tent e ∈ H which acts like a unit on every element of F . We call a separated
H-module V essential if the natural map H⊗HV → V is a bornological isomor-
phism. Since H carries the fine bornology, the completion V c of an essential
H-module is again essential, and our notion is compatible with the concept of
an essential module over a bornological algebra with approximate identity [25].
Clearly an idempotented algebra is a bornological algebra with approximate
identity.
Let us now consider smooth representations. A representation of G on a sepa-
rated bornological vector space V is a group homomorphism π : G → Aut(V )
where Aut(V ) denotes the group of bounded linear automorphisms of V . A
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bounded linear map between representations of G is called equivariant if it com-
mutes with the action of G. We write HomG(V,W ) for the space of equivariant
bounded linear maps between the representations V and W . Let F (G,V ) be
the space of all functions from G to V . The adjoint of a representation π is
the bounded linear map [π] : V → F (G,V ) given by [π](v)(t) = π(t)(v). In the
sequel we write simply t · v instead of π(t)(v).
We write D(G) for the space of smooth functions on G with compact support
equipped with the fine bornology. Smoothness of a function f on a totally dis-
connected group is equivalent to f being locally constant. If V is a bornological
vector space then D(G) ⊗ V = D(G,V ) is the space of compactly supported
smooth functions on G with values in V . The space E(G,V ) consists of all
smooth functions on G with values in V .

Definition 2.2. Let G be a totally disconnected group and let V be a separated
(complete) bornological vector space. A representation π of G on V is smooth if
[π] defines a bounded linear map from V into E(G,V ). A smooth representation
is also called a separated (complete) G-module.

Let V be a separated G-module. Then for every small subset S ⊂ V the
pointwise stabilizer GS of S is an open subgroup of G. Conversely, if π is a
representation of G on a bornological vector space V such that GS is open for
every small subset S ⊂ V then π is smooth. In particular, if V carries the
fine bornology the above definition reduces to the usual definition of a smooth
representation on a complex vector space. Every representation of a discrete
group is smooth. Note that a representation π of G on a separated bornological
vector space V determines a representation πc of G on the completion V c. If
V is a separated G-module then V c becomes a complete G-module in this way.
As already mentioned in the beginning, smooth representations can be iden-
tified with essential modules over a certain idempotented algebra. The Hecke
algebra of a totally disconnected group G is the space D(G) equipped with the
convolution product

(f ∗ g)(t) =

∫

G

f(s)g(s−1t)ds

where ds denotes a fixed left Haar measure on G. Since G is totally discon-
nected this algebra is idempotented. Every separated G-module V becomes
an essential D(G)-module by integration, and conversely, every essential D(G)-
module is obtained in this way. This yields a natural isomorphism between
the category of separated (complete) G-modules and the category of separated
(complete) essential D(G)-modules.
A separated (complete) G-algebra is a separated (complete) bornological al-
gebra which is also a G-module such that the multiplication A ⊗ A → A is
equivariant. For every separated G-algebra A the (smooth) crossed product
A⋊G is the space D(G,A) with the convolution multiplication

(f ∗ g)(t) =

∫

G

f(s)s · g(s−1t)ds.
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Note in particular that the crossed product associated to the trivial action of
G on C is the Hecke algebra of G.
In connection with actions on C∗-algebras we will have to consider represen-
tations of G which are not smooth. For an arbitrary representation of G on a
bornological vector space V the smoothing SmoothG(V ) is defined by

SmoothG(V ) = {f ∈ E(G,V )|f(t) = t · f(e) for all t ∈ G}
equipped with the subspace bornology and the right regular representation.
We will usually simply write Smooth instead of SmoothG in the sequel. The
smoothing Smooth(V ) is always a smooth representation ofG. If V is complete,
then Smooth(V ) is a complete G-module. There is an injective equivariant
bounded linear map ιV : Smooth(V )→ V given by ιV (f) = f(e).

Proposition 2.3. Let G be a totally disconnected group and π be a representa-
tion of G on a separated bornological vector space V . The equivariant bounded
linear map ιV : Smooth(V )→ V induces a natural isomorphism

HomG(W,V ) ∼= HomG(W,Smooth(V ))

for all separated G-modules W .

Hence the smoothing functor Smooth is right adjoint to the forgetful functor
from the category of smooth representations to the category of arbitrary rep-
resentations.
Assume that A is a separated bornological algebra which is at the same time
equipped with a representation of G such that the multiplication A⊗A→ A is
equivariant. Then Smooth(A) is a separated G-algebra in a natural way. This
applies in particular to actions on C∗-algebras. When C∗-algebras are viewed
as bornological algebras we always work with the precompact bornology. If A is
a G-C∗-algebra we use the smoothing functor to obtain a complete G-algebra
Smooth(A). We will study properties of this construction in more detail in
section 10.
Next we discuss the concept of an anti-Yetter-Drinfeld module. Let OG be
the commutative algebra of compactly supported smooth functions on G with
pointwise multiplication equipped with the action of G by conjugation.

Definition 2.4. Let G be a totally disconnected group. A separated (com-
plete) G-anti-Yetter-Drinfeld module is a separated (complete) bornological vec-
tor space M which is both an essential OG-module and a G-module such that

s · (f ·m) = (s · f) · (s ·m)

for all s ∈ G, f ∈ OG and m ∈M .

A morphism φ : M → N between anti-Yetter-Drinfeld modules is a bounded
linear map which is OG-linear and equivariant. In the sequel we will use the
terminology AYD-module and AYD-map for anti-Yetter-Drinfeld modules and
their morphisms. Moreover we denote by HomG(M,N) the space of AYD-maps
between AYD-modules M and N . Note that the completion M c of a separated
AYD-module M is a complete AYD-module.
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We write A(G) for the crossed product OG ⋊ G. The algebra A(G) is idem-
potented and plays the same role as the Hecke algebra D(G) in the context of
smooth representations. More precisely, there is an isomorphism of categories
between the category of separated (complete) AYD-modules and the category
of separated (complete) essential modules over A(G). In particular, A(G) itself
is an AYD-module in a natural way. We may view elements of A(G) as smooth
functions with compact support on G×G where the first variable corresponds
to OG and the second variable corresponds to D(G). The multiplication in
A(G) becomes

(f · g)(s, t) =

∫

G

f(s, r)g(r−1sr, r−1t)dr

in this picture. An important feature of this crossed product is that there exists
an isomorphism T : A(G)→ A(G) of A(G)-bimodules given by

T (f)(s, t) = f(s, st)

for f ∈ A(G). More generally, if M is an arbitrary separated AYD-module we
obtain an automorphism ofM ∼= A(G)⊗A(G)M by applying T to the first tensor
factor. By slight abuse of language, the resulting map is again denoted by T .
This construction is natural in the sense that Tφ = φT for every AYD-map
φ : M → N .

3. Primitive modules and inductive systems

In this section we introduce primitive anti-Yetter-Drinfeld-modules and discuss
the relation between inductive systems of primitive modules and general anti-
Yetter-Drinfeld-modules for totally disconnected groups. This is needed for the
definition of equivariant local cyclic homology.
Recall from section 2 that anti-Yetter-Drinfeld modules for a totally discon-
nected group G can be viewed as essential modules over the idempotented
algebra A(G). Since it creates no difficulties we shall work in the more general
setting of essential modules over an arbitrary idempotented algebra H in this
section. We let C be either the category of separated or complete essential
modules over H. Morphisms are the bounded H-module maps in both cases.
Moreover we let ind(C) be the associated ind-category. The objects of ind(C)
are inductive systems of objects in C and the morphisms between M = (Mi)i∈I

and (Nj)j∈J are given by

Hom ind(C)(M,N) = lim←−
i∈I

lim−→
j∈J

HomC(Mi, Nj)

where the limits are taken in the category of vector spaces. There is a canon-
ical functor lim−→ from ind(C) to C which associates to an inductive system its
separated inductive limit.
If S is a small disk in a bornological vector space we write 〈S〉 for the associated
normed space. There is a functor which associates to a (complete) bornological
vector space V the inductive system of (complete) normed spaces 〈S〉 where S
runs over the (completant) small disks in V . We need a similar construction
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in the context of H-modules. Let M be a separated (complete) essential H-
module and let S ⊂ M be a (completant) small disk. We write H〈S〉 for the
image of the natural map H ⊗〈S〉 →M equipped with the quotient bornology
and the induced H-module structure. By slight abuse of language we call this
module the submodule generated by S and write H〈S〉 ⊂M .

Definition 3.1. An object of C is called primitive if it is generated by a single
small disk.

In other words, a separated (complete) essential H-module P is primitive iff
there exists a (completant) small disk S ⊂ P such that the natural map
H〈S〉 → P is an isomorphism. Note that in the special case H = C the
primitive objects are precisely the (complete) normed spaces.
Let us write ind(P (C)) for the full subcategory of ind(C) consisting of induc-
tive systems of primitive modules. For every M ∈ C we obtain an inductive
system of primitive modules over the directed set of (completant) small disks
in M by associating to every disk S the primitive module generated by S. This
construction yields a functor dis from C to ind(P (C)) which will be called the
dissection functor. Note that the inductive system dis(M) has injective struc-
ture maps for every M ∈ C. By definition, an injective inductive system is an
inductive system whose structure maps are all injective. An inductive system is
called essentially injective if it is isomorphic in ind(C) to an injective inductive
system.
The following assertion is proved in the same way as the corresponding result
for bornological vector spaces [21].

Proposition 3.2. The direct limit functor lim−→ is left adjoint to the dissection
functor dis. More precisely, there is a natural isomorphism

HomC(lim−→(Mj)j∈J , N) ∼= Hom ind(P (C))((Mj)j∈J , dis(N))

for every inductive system (Mj)j∈J of primitive objects and every N ∈ C.
Moreover lim−→ dis is naturally equivalent to the identity and the functor dis is
fully faithful.

In addition we have that dis lim−→(Mi)i∈I is isomorphic to (Mi)i∈I provided the

system (Mi)i∈I is essentially injective. It follows that the dissection functor
dis induces an equivalence between C and the full subcategory of ind(P (C))
consisting of all injective inductive systems of primitive modules.

4. Paracomplexes and the local derived category

In this section we review the notion of a paracomplex and discuss some related
constructions in homological algebra. In particular, in the setting of anti-
Yetter-Drinfeld modules over a totally disconnected group, we define locally
contractible paracomplexes and introduce the local derived category, following
[24].
Let us begin with the definition of a para-additive category [35].
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Definition 4.1. A para-additive category is an additive category C together
with a natural isomorphism T of the identity functor id : C → C.
It is explained in section 2 that every AYD-module is equipped with a natural
automorphism denoted by T . Together with these automorphisms the category
of AYD-modules becomes a para-additive category in a natural way. In fact,
for our purposes this is the main example of a para-additive category.

Definition 4.2. Let C be a para-additive category. A paracomplex C = C0⊕C1

in C is a given by objects C0 and C1 together with morphisms ∂0 : C0 → C1

and ∂1 : C1 → C0 such that
∂2 = id−T.

A chain map φ : C → D between two paracomplexes is a morphism from C to
D that commutes with the differentials.

The morphism ∂ in a paracomplex is called a differential although this con-
tradicts the classical definition of a differential. We point out that it does not
make sense to speak about the homology of a paracomplex in general.
However, one can define homotopies, mapping cones and suspensions as usual.
Moreover, due to naturality of T , the space HomC(P,Q) of all morphisms be-
tween paracomplexes P and Q with the standard differential is an ordinary
chain complex. We write H(C) for the homotopy category of paracomplexes
associated to a para-additive category C. The morphisms in H(C) are homo-
topy classes of chain maps. The supension of paracomplexes yields a translation
functor on H(C). By definition, a triangle

C // X // Y // C[1]

in H(C) is called distinguished if it is isomorphic to a mapping cone triangle.
As for ordinary chain complexes one proves the following fact.

Proposition 4.3. Let C be a para-additive category. Then the homotopy cat-
egory of paracomplexes H(C) is triangulated.

Let us now specialize to the case where C is the category of separated (complete)
AYD-modules. Hence in the sequel H(C) will denote the homotopy category of
paracomplexes of AYD-modules. We may also consider the homotopy category
associated to the corresponding ind-category of paracomplexes. There is a
direct limit functor lim−→ and a dissection functor dis between these categories
having the same properties as the corresponding functors for AYD-modules.
A paracomplex P of separated (complete) AYD-modules is called primitive
if its underlying AYD-module is primitive. By slight abuse of language, if
P is a primitive paracomplex and ι : P → C is an injective chain map of
paracomplexes we will also write P for the image ι(P ) ⊂ C with the bornology
induced from P . Moreover we call P ⊂ C a primitive subparacomplex of C in
this case.

Definition 4.4. A paracomplex C is called locally contractible if for every
primitive subparacomplex P of C the inclusion map ι : P → C is homotopic to
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zero. A chain map f : C → D between paracomplexes is called a local homotopy
equivalence if its mapping cone Cf is locally contractible.

The class of locally contractible paracomplexes forms a null system in H(C).
We have the following characterization of locally contractible paracomplexes.

Lemma 4.5. A paracomplex C is locally contractible iff H∗(HomC(P,C)) = 0
for every primitive paracomplex P .

Proof. Let P ⊂ C be a primitive subparacomplex. If H∗(HomC(P,C)) = 0
then the inclusion map ι : P → C is homotopic to zero. It follows that C
is locally contractible. Conversely, assume that C is locally contractible. If
P is a primitive paracomplex and f : P → C is a chain map let f(P ) ⊂ C
be the primitive subparacomplex corresponding to the image of f . Since C is
locally contractible the inclusion map f(P ) → C is homotopic to zero. Hence
the same is true for f and we deduce H0(HomC(P,C)) = 0. Similarly one
obtains H1(HomC(P,C)) = 0 since suspensions of primitive paracomplexes are
primitive. �

We shall next construct projective resolutions with respect to the class of locally
projective paracomplexes. Let us introduce the following terminology.

Definition 4.6. A paracomplex P is locally projective if H∗(HomC(P,C)) = 0
for all locally contractible paracomplexes C.

All primitive paracomplexes are locally projective according to lemma 4.5. Ob-
serve moreover that the class of locally projective paracomplexes is closed under
direct sums.
By definition, a locally projective resolution of C ∈ H(C) is a locally projec-
tive paracomplex P together with a local homotopy equivalence P → C. We
say that a functor P : H(C) → H(C) together with a natural transformation
π : P → id is a projective resolution functor if π(C) : P (C) → C is a locally
projective resolution for all C ∈ H(C). In order to construct such a functor we
proceed as follows.
Let I be a directed set. We view I as a category with objects the elements of I
and morphisms the relations i ≤ j. More precisely, there is a morphism i→ j
from i to j in this category iff i ≤ j. Now consider a functor F : I → C. Such a
functor is also called an I-diagram in C. We define a new diagram L(F ) : I → C
as follows. Set

L(F )(j) =
⊕

i→j

F (i)

where the sum runs over all morphisms i→ j in I. The map L(F )(k)→ L(F )(l)
induced by a morphism k → l sends the summand over i → k identically
to the summand over i → l in L(F )(l). We have a natural transformation
π(F ) : L(F ) → F sending the summand F (i) over i → j to F (j) using the
map F (i→ j). The identical inclusion of the summand F (j) over the identity
j → j defines a section σ(F ) for π(F ). Remark that this section is not a natural
transformation of I-diagrams in general.
Now let H : I → C be another diagram and let (φ(i) : F (i) → H(i))i∈I be
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an arbitrary family of AYD-maps. Then there exists a unique natural trans-
formation of I-diagrams ψ : L(F ) → H such that φ(j) = ψ(j)σ(F )(j) for all
j. Namely, the summand F (i) over i → j in L(F )(j) is mapped under ψ(j)
to H(j) by the map H(i → j)φ(i). We can rephrase this property as follows.
Consider the inclusion I(0) ⊂ I of all identity morphisms in the category I.
There is a forgetful functor from the category of I-diagrams to the category of
I(0)-diagrams in C induced by the inclusion I(0) → I and a natural isomorphism

HomI(L(F ),H) ∼= HomI(0)(F,H)

where HomI and HomI(0) denote the morphism sets in the categories of I-
diagrams and I(0)-diagrams, respectively. This means that the previous con-
struction defines a left adjoint functor L to the natural forgetful functor.
For every j ∈ I we have a split extension of AYD-modules

J(F )(j) //ι(F )(j)// L(F )(j)
π(F )(j)// // F (j)

where by definition J(F )(j) is the kernel of the AYD-map π(F )(j) and ι(F )(j)
is the inclusion. The AYD-modules J(F )(j) assemble to an I-diagram and we
obtain an extension

J(F ) // ι(F ) // L(F )
π(F ) // // F

of I-diagrams which splits as an extension of I(0)-diagrams. We apply the
functor L to the diagram J(F ) and obtain a diagram denoted by LJ(F ) and a
corresponding extension as before. Iterating this procedure yields a family of
diagrams LJn(F ). More precisely, we obtain extensions

Jn+1(F ) //ι(Jn(F ))// LJn(F )
π(Jn(F ))// // Jn(F )

for all n ≥ 0 where J0(F ) = F , J1(F ) = J(F ) and LJ0(F ) = L(F ). In addition
we set LJ−1(F ) = F and ι(J−1(F )) = id. By construction there are natural
transformations LJn(F )→ LJn−1(F ) for all n given by ι(Jn−1(F ))π(Jn(F )).
In this way we obtain a complex

· · · → LJ3(F )→ LJ2(F )→ LJ1(F )→ LJ0(F )→ F → 0

of I-diagrams. Moreover, this complex is split exact as a complex of I(0)-
diagrams, that is, LJ•(F )(j) is a split exact complex of AYD-modules for all
j ∈ I.
Assume now that F is an I-diagram of paracomplexes in C. We view F as a pair
of I-diagrams F0 and F1 of AYD-modules together with natural transformations
∂0 : F0 → F1 and ∂1 : F1 → F0 such that ∂2 = id−T . Let us construct a family
of I-diagrams (LJ(F ), dh, dv) as follows. Using the same notation as above we
set

LJ(F )pq = LJq(Fp)

for q ≥ 0 and define the horizontal differential dh
pq : LJ(F )pq → LJ(F )p−1,q by

dh
pq = (−1)qLJq(∂p).
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The vertical differential dv
pq : LJ(F )pq → LJ(F )p,q−1 is given by

dv
pq = ι(Jq−1(Fp))π(Jq(Fp)).

Then the relations (dv)2 = 0, (dh)2 = id−T as well as dvdh + dhdv = 0 hold.
Hence, if we define Tot(LJ(F )) by

(TotLJ(F ))n =
⊕

p+q=n

LJ(F )pq

and equip it with the boundary dh + dv we obtain an I-diagram of paracom-
plexes. We write ho- lim−→(F ) for the inductive limit of the diagram TotLJ(F )
and call this paracomplex the homotopy colimit of the diagram F . There is a
canonical chain map ho- lim−→(F )→ lim−→(F ) and a natural filtration on ho- lim−→(F )
given by

ho- lim−→(F )≤k
n =

⊕

p+q=n
q≤k

lim−→LJ(F )pq

for k ≥ 0. Observe that the natural inclusion ιk : ho- lim−→(F )≤k → ho- lim−→(F )

is a chain map and that there is an obvious retraction πk : ho- lim−→(F ) →
ho- lim−→(F )≤k for ιk. However, this retraction is not a chain map.

Proposition 4.7. Let F = (Fi)i∈I be a directed system of paracomplexes. If
the paracomplexes Fj are locally projective then the homotopy colimit ho- lim−→(F )

is locally projective as well. If the system (Fi)i∈I is essentially injective then
ho- lim−→(F )→ lim−→(F ) is a local homotopy equivalence.

Proof. Assume first that the paracomplexes Fj are locally projective. In order
to prove that ho- lim−→(F ) is locally projective let φ : ho- lim−→(F )→ C be a chain
map where C is a locally contractible paracomplex. We have to show that φ
is homotopic to zero. The composition of the natural map ι0 : ho- lim−→(F )≤0 →
ho- lim−→(F ) with φ yields a chain map ψ0 = φι0 : lim−→LJ0(F ) → C. By con-

struction of LJ0(F ) we have isomorphisms

HomC(lim−→LJ0(F ), C) ∼= HomI(LJ
0(F ), C) ∼= HomI(0)(F,C)

where we use the notation introduced above and C is viewed as a constant
diagram of paracomplexes. Hence, since the paracomplexes Fj are locally pro-
jective, there exists a morphism h0 of degree one such that ∂h0 + h0∂ = ψ0.
This yields a chain homotopy between ψ0 and 0. Using the retraction
π0 : ho- lim−→(F ) → ho- lim−→(F )≤0 we obtain a chain map φ1 = φ − [∂, h0π0]

from ho- lim−→(F ) to C. This map is clearly homotopic to φ and by construction

we have φ1ι0 = 0. Consider next the map ψ1 given by the composition

lim−→LJ1(F )→ ho- lim−→(F )→ C

where the first arrow is the natural one and the second map is φ1. Since φ1

vanishes on ho- lim−→(F )≤0 we see that ψ1 is a chain map. Observe moreover

that J1(F ) is a locally projective paracomplex. The same argument as before
yields a homotopy h1 : lim−→LJ1(F )→ C such that ∂h1 + h1∂ = ψ1. We define
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a chain map φ2 by φ2 = φ1− [∂, h1π1] = φ− [∂, h1π1 +h0π0] and get φ2ι1 = 0.
Continuing this process we obtain a family of AYD-maps hn : lim−→LJn(F )→ C
which assembles to a homotopy between φ and zero.
Let C(π) be the mapping cone of the natural map π : ho- lim−→(F ) → lim−→(F ).

Moreover we write C(j) for the mapping cone of TotLJ(F )(j) → F (j). It
follows immediately from the constructions that C(j) is contractible for every
j ∈ I. Now let P ⊂ C(π) be a primitive subparacomplex. If the system F
is essentially injective then there exists an index j ∈ I such that P ⊂ C(j).
Consequently, the map P → C(π) is homotopic to zero in this case, and we
conclude that π is a local homotopy equivalence. �

Using the previous proposition we can construct a projective resolution functor
with respect to the class of locally projective paracomplexes. More precisely,
one obtains a functor P : H(C)→ H(C) by setting

P (C) = ho- lim−→ dis(C)

for every paracomplex C. In addition, there is a natural transformation P → id
induced by the canonical chain map ho- lim−→(F ) → lim−→(F ) for every inductive

system F . Since dis(C) is an injective inductive system of locally projective
paracomplexes for C ∈ H(C) it follows from proposition 4.7 that this yields a
projective resolution functor as desired.
Let us now define the local derived category of paracomplexes.

Definition 4.8. The local derived category D(C) is the localization of H(C)
with respect to the class of locally contractible paracomplexes.

By construction, there is a canonical functor H(C) → D(C) which sends lo-
cal homotopy equivalences to isomorphisms. Using the projective resolution
functor P one can describe the morphism sets in the derived category by

HomD(C)(C,D) ∼= HomH(C)(P (C),D) ∼= HomH(C)(P (C), P (D))

for all paracomplexes C and D.
For the purposes of local cyclic homology we consider the left derived functor
of the completion functor. This functor is called the derived completion and is
given by

XLc = P (X)c

for every paracomplex X of separated AYD-modules. Inspecting the construc-
tion of the homotopy colimit shows that XLc ∼= ho- lim−→(dis(X)c) where the
completion of an inductive system is defined entrywise.

5. The analytic tensor algebra and the spectral radius

In this section we discuss the definition of the analytic tensor algebra as well as
analytically nilpotent algebras and locally multiplicative algebras. The spectral
radius of a small subset in a bornological algebra is defined and some of its basic
properties are established. We refer to [21], [24], [26] for more details.
Let G be a totally disconnected group and let A be a separated G-algebra. We
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write Ωn(A) for the space of (uncompleted) noncommutative n-forms over A.
As a bornological vector space one has Ω0(A) = A and

Ωn(A) = A+ ⊗A⊗n

for n > 0 where A+ denotes the unitarization of A. Simple tensors in Ωn(A)
are usually written in the form a0da1 · · · dan where a0 ∈ A+ and aj ∈ A for
j > 0. Clearly Ωn(A) is a separated G-module with the diagonal action. We
denote by Ω(A) the direct sum of the spaces Ωn(A). The differential d on Ω(A)
and the multiplication of forms are defined in an obvious way such that the
graded Leibniz rule holds.
For the purpose of analytic and local cyclic homology it is crucial to consider
a bornology on Ω(A) which is coarser than the standard bornology for a direct
sum. By definition, the analytic bornology on Ω(A) is the bornology generated
by the sets

[S](dS)∞ = S ∪
∞
⋃

n=1

S(dS)n ∪ (dS)n

where S ⊂ A is small. Here and in the sequel the notation [S] is used to denote
the union of the subset S ⊂ A with the unit element 1 ∈ A+. Equipped with
this bornology Ω(A) is again a separated G-module. Moreover the differential
d and the multiplication of forms are bounded with respect to the analytic
bornology. It follows that the Fedosov product defined by

ω ◦ η = ωη − (−1)|ω|dωdη

for homogenous forms ω and η is bounded as well. By definition, the analytic
tensor algebra T A of A is the even part of Ω(A) equipped with the Fedosov
product and the analytic bornology. It is a separated G-algebra in a natural
way. Unless explicitly stated otherwise, we will always equip Ω(A) and T A
with the analytic bornology in the sequel.
The underlying abstract algebra of T A can be identified with the tensor alge-
bra of A. This relationship between tensor algebras and differential forms is
a central idea in the approach to cyclic homology developped by Cuntz and
Quillen [6], [7], [8]. However, since the analytic bornology is different from the
direct sum bornology, the analytic tensor algebra T A is no longer universal for
all equivariant bounded linear maps from A into separated G-algebras. In order
to formulate its universal property correctly we need some more terminology.
The curvature of an equivariant bounded linear map f : A→ B between sepa-
rated G-algebras is the equivariant linear map ωf : A⊗A→ B given by

ωf (x, y) = f(xy)− f(x)f(y).

By definition, the map f has analytically nilpotent curvature if

ωf (S, S)∞ =
∞
⋃

n=1

ωf (S, S)n

is a small subset ofB for all small subsets S ⊂ A. An equivariant bounded linear
map f : A → B with analytically nilpotent curvature is called an equivariant
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lanilcur. The analytic bornology is defined in such a way that the equivariant
homomorphism [[f ]] : T A → B associated to an equivariant bounded linear
map f : A→ B is bounded iff f is a lanilcur.
It is clear that every bounded homomorphism f : A → B is a lanilcur. In
particular, the identity map of A corresponds to the bounded homomorphism
τA : T A→ A given by the canonical projection onto differential forms of degree
zero. The kernel of the map τA is denoted by JA, and we obtain an extension

JA // // T A // // A

of separated G-algebras. This extension has an equivariant bounded linear
splitting σA given by the inclusion of A as differential forms of degree zero.
The algebras JA and T A have important properties that we shall discuss
next.
A separated G-algebra N is called analytically nilpotent if

S∞ =
⋃

n∈N

Sn

is small for all small subsets S ⊂ N . For instance, every nilpotent bornological
algebra is analytically nilpotent. The ideal JA in the analytic tensor algebra of
a bornological A is an important example of an analytically nilpotent algebra.
A separated G-algebra R is called equivariantly analytically quasifree provided
the following condition is satisfied. If K is an analytically nilpotent G-algebra
and

K // // E // // Q

is an extension of complete G-algebras with equivariant bounded linear split-
ting then for every bounded equivariant homomorphism f : R→ Q there exists
a bounded equivariant lifting homomorphism F : R→ E. The analytic tensor
algebra T A of a G-algebra A is a basic example of an equivariantly analytically
quasifree G-algebra. Another fundamental example is given by the algebra C

with the trivial action. Every equivariantly analytically quasifree G-algebra is
in particular equivariantly quasifree in the sense of [35].
We shall next discuss the concept of a locally multiplicative G-algebra. If A
is a bornological algebra then a disk T ⊂ A is called multiplicatively closed
provided T ·T ⊂ T . A separated bornological algebra A is called locally multi-
plicative if for every small subset S ⊂ A there exists a positive real number λ
and a small multiplicatively closed disk T ⊂ A such that S ⊂ λT . It is easy to
show that a separated (complete) bornological algebra is locally multiplicative
iff it is a direct limit of (complete) normed algebras. We point out that the
group action on a G-algebra usually does not leave multiplicatively closed disks
invariant. In particular, a locally multiplicative G-algebra can not be written
as a direct limit of normed G-algebras in general.
It is clear from the definitions that analytically nilpotent algebras are locally
multiplicative. In fact, locally multiplicatively algebras and analytically nilpo-
tent algebras can be characterized in a concise way using the notion of spectral
radius.
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Definition 5.1. Let A be a separated bornological algebra and let S ⊂ A be a
small subset. The spectral radius ρ(S) = ρ(S;A) is the infimum of all positive
real numbers r such that

(r−1S)∞ =

∞
⋃

n=1

(r−1S)n

is small. If no such number r exists set ρ(S) =∞.

A bornological algebra A is locally multiplicative iff ρ(S) < ∞ for all small
subsets S ⊂ A. Similarly, a bornological algebra is analytically nilpotent iff
ρ(S) = 0 for all small subsets S of A.
Let us collect some elementary properties of the spectral radius. If λ is a
positive real number then ρ(λS) = λρ(S) for every small subset S. Moreover
one has ρ(Sn) = ρ(S)n for all n > 0. Remark also that the spectral radius does
not distinguish between a small set and its disked hull. Finally, let f : A→ B
be a bounded homomorphism and let S ⊂ A be small. Then the spectral radius
is contractive in the sense that

ρ(f(S);B) ≤ ρ(S;A)

since f((r−1S)∞) = (r−1f(S))∞ ⊂ B is small provided (r−1S)∞ is small.

6. Equivariant analytic and local cyclic homology

In this section we recall the definition of equivariant differential forms and the
equivariant X-complex and define equivariant analytic and local cyclic homol-
ogy. In addition we discuss the relation to equivariant entire cyclic homology
for finite groups in the sense of Klimek, Kondracki and Lesniewski and the
original definition of local cyclic homology due to Puschnigg.
First we review basic properties of equivariant differential forms. The equivari-
ant n-forms over a separated G-algebra A are defined by Ωn

G(A) = OG⊗Ωn(A)
where Ωn(A) is the space of uncompleted differential n-forms over A. The
group G acts diagonally on Ωn

G(A) and we have an obvious OG-module struc-
ture given by multiplication on the first tensor factor. In this way the space
Ωn

G(A) becomes a separated AYD-module.
On equivariant differential forms we consider the following operators. We have
the differential d : Ωn

G(A)→ Ωn+1
G (A) given by

d(f(s)⊗ x0dx1 · · · dxn) = f(s)⊗ dx0dx1 · · · dxn

and the equivariant Hochschild boundary b : Ωn
G(A)→ Ωn−1

G (A) defined by

b(f(s)⊗x0dx1 · · · dxn) = f(s)⊗ x0x1dx2 · · · dxn

+

n−1
∑

j=1

(−1)jf(s)⊗ x0dx1 · · · d(xjxj+1) · · · dxn

+ (−1)nf(s)⊗ (s−1 · xn)x0dx1 · · · dxn−1.
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Moreover there is the equivariant Karoubi operator κ : Ωn
G(A) → Ωn

G(A) and

the equivariant Connes operator B : Ωn
G(A)→ Ωn+1

G (A) which are given by the
formulas

κ(f(s)⊗ x0dx1 · · · dxn) = (−1)n−1f(s)⊗ (s−1 · dxn)x0dx1 · · · dxn−1

and

B(f(s)⊗x0dx1 · · · dxn) =

n
∑

i=0

(−1)nif(s)⊗s−1 · (dxn+1−i · · · dxn)dx0 · · · dxn−i,

respectively. All these operators are AYD-maps, and the natural symmetry
operator T for AYD-modules is of the form

T (f(s)⊗ ω) = f(s)⊗ s−1 · ω
on equivariant differential forms. We shall write ΩG(A) for the direct sum of
the spaces Ωn

G(A) in the sequel. The analytic bornology on ΩG(A) is defined
using the identification ΩG(A) = OG ⊗ Ω(A).
Together with the operators b and B the space ΩG(A) of equivariant differen-
tial forms may be viewed as a paramixed complex [35] which means that the
relations b2 = 0, B2 = 0 and [b,B] = bB + Bb = id−T hold. An important
purpose for which equivariant differential forms are needed is the definition of
the equivariant X-complex of a G-algebra.

Definition 6.1. Let A be a separated G-algebra. The equivariant X-complex
XG(A) of A is the paracomplex

XG(A) : Ω0
G(A)

d //
Ω1

G(A)/b(Ω2
G(A)).

b
oo

Remark in particular that if ∂ denotes the boundary operator in XG(A) then
the relation ∂2 = id−T follows from the fact that equivariant differential forms
are a paramixed complex.
After these preparations we come to the definition of equivariant analytic cyclic
homology.

Definition 6.2. Let G be a totally disconnected group and let A and B be
separated G-algebras. The bivariant equivariant analytic cyclic homology of A
and B is

HAG
∗ (A,B) = H∗(HomG(XG(T (A⊗KG))c,XG(T (B ⊗KG))c)).

The algebra KG occuring in this definition is the subalgebra of the algebra of
compact operators K(L2(G)) on the Hilbert space L2(G) obtained as the linear
span of all rank-one operators |ξ〉〈η| with ξ, η ∈ D(G). This algebra is equipped
with the fine bornology and the action induced from K(L2(G)). An important
property of the G-algebra KG is that it is projective as a G-module.
We point out that the Hom-complex on the right hand side of the definition,
equipped with the usual boundary operator, is an ordinary chain complex al-
though both entries are only paracomplexes. Remark also that for the trivial
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group one reobtains the definition of analytic cyclic homology given in [21].
It is frequently convenient to replace the paracomplex XG(T (A⊗KG)) in the
definition of the analytic theory with another paracomplex construced using the
standard boundary B + b in cyclic homology. For every separated G-algebra
A there is a natural isomorphism XG(T A) ∼= Ωtan

G (A) of AYD-modules where
Ωtan

G (A) is the space ΩG(A) equipped with the transposed analytic bornology.
The transposed analytic bornology is the bornology generated by the sets

D ⊗ S ∪D ⊗ [S]dS ∪
∞
⋃

n=1

n!D ⊗ [S][dS](dS)2n

where D ⊂ OG and S ⊂ A are small. The operators b and B are bounded with
respect to the transposed analytic bornology. It follows that Ωtan

G (A) becomes
a paracomplex with the differential B + b. We remark that rescaling with the
constants n! in degree 2n and 2n + 1 yields an isomorphism between Ωtan

G (A)
and the space ΩG(A) equipped with the analytic bornology.

Theorem 6.3. Let G be a totally disconnected group. For every separated
G-algebra A there exists a bornological homotopy equivalence between the para-
complexes XG(T A) and Ωtan

G (A).

Proof. The proof follows the one for the equivariant periodic theory [35] and the
corresponding assertion in the nonequivariant situation [21]. LetQn : ΩG(A)→
Ωn

G(A) ⊂ ΩG(A) be the canonical projection. Using the explicit formula for
the Karoubi operator one checks that the set {CnκjQn| 0 ≤ j ≤ n, n ≥ 0 } of
operators is equibounded on ΩG(A) with respect to the analytic bornology for
every C ∈ R. Similarly, the set {κnQn|n ≥ 0} is equibounded with respect to
the analytic bornology and hence {CnκjQn| 0 ≤ j ≤ kn, n ≥ 0 } is equibounded
as well for each k ∈ N. Thus an operator on ΩG(A) of the form

∑∞
j=0Qnhn(κ)

is bounded with respect to the analytic bornology if (hn)n∈N is a sequence of
polynomials whose degrees grow at most linearly and whose absolut coefficient
sums grow at most exponentially. By definition, the absolute coefficient sum

of
∑k

j=0 ajx
j is

∑k

j=0 |aj |. The polynomials fn and gn occuring in the proof

of theorem 8.6 in [35] satisfy these conditions. Based on this observation, a
direct inspection shows that the maps involved in the definition of the desired
homotopy equivalence in the periodic case induce bounded maps on ΩG(A)
with respect to the analytic bornology. This yields the assertion. �

Let G be a finite group and let A be a unital Banach algebra on which G acts
by bounded automorphisms. Klimek, Kondracki and Lesniewski defined the
equivariant entire cyclic cohomology of A in this situation [19]. We may also
view A as a bornological algebra with the bounded bornology and consider the
equivariant analytic theory of the resulting G-algebra.

Proposition 6.4. Let G be a finite group acting on a unital Banach algebra A
by bounded automorphisms. Then the equivariant entire cyclic cohomology of
A coincides with the equivariant analytic cyclic cohomology HAG

∗ (A,C) where
A is viewed as a G-algebra with the bounded bornology.
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Proof. It will be shown in proposition 7.5 below that tensoring with the algebra
KG is not needed in the definition of HAG

∗ for finite groups. Let us write C(G)
for the space of functions on the finite group G. Using theorem 6.3 we see
that the analytic cyclic cohomology HAG

∗ (A,C) is computed by the complex
consisting of families (φn)n≥0 of n+1-linear maps φn : A+×An → C(G) which
are equivariant in the sense that

φn(t · a0, t · a1, . . . , t · an)(s) = φn(a0, a1, . . . , an)(t−1st)

and satisfy the entire growth condition

[n/2]! max
t∈G
|φn(a0, a1, . . . , an)(t)| ≤ cS

for a0 ∈ [S], a1, . . . , an ∈ S and all small sets S in A. Here [n/2] = k for n = 2k
or n = 2k + 1 and cS is a constant depending on S. The boundary operator
is induced by B + b. An argument analogous to the one due to Khalkhali in
the non-equivariant case [18] shows that this complex is homotopy equivalent
to the complex used by Klimek, Kondracki and Lesniewski. �

Definition 6.5. Let G be a totally disconnected group and let A and B be sep-
arated G-algebras. The bivariant equivariant local cyclic homology HLG

∗ (A,B)
of A and B is given by

H∗(HomG(XG(T (A⊗KG))Lc,XG(T (B ⊗KG))Lc)).

Recall that the derived completion XLc of a paracomplex X was introduced
in section 4. In terms of the local derived category of paracomplexes defini-
nition 6.5 can be reformulated in the following way. The construction of the
derived completion shows together with proposition 4.7 that the paracomplex
XG(T (A ⊗ KG))Lc is locally projective for every separated G-algebra A. It
follows that the local cyclic homology group HLG

0 (A,B) is equal to the space
of morphisms in the local derived category between XG(T (A ⊗ KG))Lc and
XG(T (B ⊗KG))Lc. Consequently, the passage from the analytic theory to the
local theory consists in passing from the homotopy category of paracomplexes
to the local derived category and replacing the completion functor by the de-
rived completion.
Both equivariant analytic and local cyclic homology are equipped with an
obvious composition product. Every bounded equivariant homomorphism
f : A → B induces an element [f ] in HAG

∗ (A,B) and in HLG
∗ (A,B), re-

spectively. In particular, the identity map id : A → A defines an element in
these theories which acts as a unit with respect to the composition product.
If G is the trivial group then definition 6.5 reduces to the local cyclic theory
defined by Meyer in [24]. Let us briefly explain how this definition of local
cyclic homology is related to the original approach by Puschnigg. In [33] a
Fréchet algebra A is called nice if there is a neighborhood of the origin U such
that S∞ is precompact for all compact sets S ⊂ U . This condition is equivalent
local multiplicativity if A is viewed as a bornological algebra with the precom-
pact bornology [21]. Hence the class of nice Fréchet algebras can be viewed as
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a particular class of locally multiplicative bornological algebras. One has the
following result [24].

Proposition 6.6. Let (Ai)i∈I and (Bj)j∈J be inductive systems of nice Fréchet
algebras and let A and B denote their direct limits, respectively. If the systems
(Ai)i∈I and (Bj)j∈J have injective structure maps then HL∗(A,B) is naturally
isomorphic to the bivariant local cyclic homology for (Ai)i∈I and (Bj)j∈J as
defined by Puschnigg.

Proof. According to the assumptions the inductive system dis(X(T A)) is iso-
morphic to the formal inductive limit of dis(X(T Ai))i∈I in the category of
inductive systems of complexes. The completion of the latter is equivalent to
the inductive system that is used in [33] to define the local theory. Comparing
the construction of the local derived category with the definition of the derived
ind-category given by Puschnigg yields the assertion. �

Consequently, the main difference between the approaches is that Meyer works
explicitly in the setting of bornological vector spaces whereas Puschnigg uses
inductive systems and considers bornologies only implicitly.

7. Homotopy invariance, stability and excision

In this section we show that equivariant analytic and local cyclic homology are
invariant under smooth equivariant homotopies, stable and satisfy excision in
both variables.
For the proof of homotopy invariance and stability of the local theory we need
some information about partial completions. A subset V of a bornological
vector space V is called locally dense if for any small subset S ⊂ V there is a
small disk T ⊂ V such that any v ∈ S is the limit of a T -convergent sequence
with entries in V ∩T . If V is a metrizable locally convex vector space endowed
with the precompact bornology then a subset V ⊂ V is locally dense iff it is
dense in V in the topological sense [26]. Let V be a bornological vector space
and let i : V → V be a bounded linear map into a separated bornological vector
space V . Then V together with the map i is called a partial completion of V if
i is a bornological embedding and has locally dense range.
We will need the following property of partial completions.

Lemma 7.1. Let i : A → A be a partial completion of separated G-algebras.
Then the induced chain map XG(T A)Lc → XG(T A)Lc is an isomorphism. If
the derived completion is replaced by the ordinary completion the corresponding
chain map is an isomorphism as well.

Proof. Let us abbreviate C = XG(T A) and D = XG(T A). It suffices to show
that the natural map dis(C)c → dis(D)c is an isomorphism of inductive sys-
tems. Since i : A → A is a partial completion the same holds true for the
induced chain map C → D. By local density, for any small disk S ⊂ D
there exists a small disk T ⊂ D such that any point in S is the limit of a T -
convergent sequence with entries in C ∩ T . Observe that C ∩ T is a small disk
in C since the inclusion is a bornological embedding. Consider the isometry
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〈C ∩ T 〉 → 〈T 〉. By construction, the space 〈S〉 is contained in the range of
the isometry 〈C ∩ T 〉c → 〈T 〉c obtained by applying the completion functor.
Since 〈C∩T 〉c maps naturally into (A(G)〈C∩T 〉)c we get an induced AYD-map
A(G)〈S〉 → (A(G)〈C ∩ T 〉)c. Using this observation one checks easily that the
completions of the inductive systems dis(C) and dis(D) are isomorphic. �

We refer to [26] for the definition of smooth functions with values in a bornolog-
ical vector space. For metrizable locally convex vector spaces with the precom-
pact bornology one reobtains the usual notion. Let B be a separated G-algebra
and denote by C∞([0, 1], B) the G-algebra of smooth functions on the inter-
val [0, 1] with values in B. The group G acts pointwise on functions, and if
B is complete there is a natural isomorphism C∞([0, 1], B) ∼= C∞[0, 1]⊗̂B.
A smooth equivariant homotopy is a bounded equivariant homomorphism
Φ : A → C∞([0, 1], B). Evaluation at t ∈ [0, 1] yields an equivariant homo-
morphism Φt : A → B. Two equivariant homomorphisms from A to B are
called equivariantly homotopic if they can be connected by an equivariant ho-
motopy.

Proposition 7.2 (Homotopy invariance). Let A and B be separated G-algebras
and let Φ : A→ C∞([0, 1], B) be a smooth equivariant homotopy. Then the in-
duced elements [Φ0] and [Φ1] in HLG

∗ (A,B) are equal. An analogous statement
holds for the analytic theory. Hence HAG

∗ and HLG
∗ are homotopy invariant

in both variables with respect to smooth equivariant homotopies.

Proof. For notational simplicity we shall suppress occurences of the algebra KG

in our notation. Assume first that the homotopy Φ is a map from A into C[t]⊗B
where C[t] is viewed as a subalgebra of C∞[0, 1] with the subspace bornology.
The map Φ induces a bounded equivariant homomorphism T A → C[t] ⊗ T B
since the algebra C∞[0, 1] is locally multiplicative. As in the proof of homotopy
invariance for equivariant periodic cyclic homology [35] we see that the chain
maps XG(T A)→ XG(T B) induced by Φ0 and Φ1 are homotopic. Consider in
particular the equivariant homotopy Φ : C[x]⊗B → C[t]⊗C[x]⊗B defined by
Φ(p(x)⊗b) = p(tx)⊗b. We deduce that the map B → C[x]⊗B that sends b to
b⊗1 induces a homotopy equivalence between XG(T (C[x]⊗B)) and XG(T B).
It follows in particular that the chain maps XG(T (C[x]⊗B))→ XG(T B) given
by evaluation at 0 and 1, respectively, are homotopic.
Let us show that C[t] ⊗ B → C∞([0, 1], B) is a partial completion. It suffices
to consider the corresponding map for a normed subspace V ⊂ B since source
and target of this map are direct limits of the associated inductive systems
with injective structure maps. For a normed space V the assertion follows
from Grothendieck’s description of bounded subsets of the projective tensor
product C∞[0, 1]⊗̂πV .
Due to lemma 7.1 the chain map XG(T (C[t]⊗B))Lc → XG(T C∞([0, 1], B))Lc

is an isomorphism. Hence the chain maps XG(T C∞([0, 1], B))Lc → XG(T B)Lc

induced by evalution at 0 and 1 are homotopic as well. Now let Φ : A →
C∞([0, 1], B) be an arbitrary homotopy. According to our previous argument,
composing the induced chain map XG(T A)Lc → XG(T C∞([0, 1], B))Lc with
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the evaluation maps at 0 and 1 yields the claim for the local theory. The
assertion for the analytic theory are obtained in the same way. �

Next we study stability. Let V and W be separated G-modules and let b :
W × V → C be an equivariant bounded bilinear map. Then l(b) = V ⊗W is a
separated G-algebra with multiplication

(x1 ⊗ y1) · (x2 ⊗ y2) = x1 ⊗ b(y1, x2)y2

and the diagonal G-action. A particular example is the algebra KG which is
obtained using the left regular representation V = W = D(G) and the pairing

b(f, g) =

∫

G

f(s)g(s)ds

with respect to left Haar measure.
Let V and W be separated G-modules and let b : W × V be an equivariant
bounded bilinear map. The pairing b is called admissible if there exists nonzero
G-invariant vectors v ∈ V and w ∈ W such that b(w, v) = 1. In this case
p = v⊗w is an invariant idempotent element in l(b) and there is an equivariant
homomorphism ιA : A→ A⊗ l(b) given by ιA(a) = a⊗ p.
Proposition 7.3. Let A be a separated G-algebra and let b : W × V → C

be an admissible pairing. Then the map ιA induces a homotopy equivalence
XG(T A)Lc ≃ XG(T (A ⊗ l(b)))Lc. If the derived completion is replaced by the
ordinary completion the corresponding map is a homotopy equivalence as well.

This result is proved in the same way as in [35] using homotopy invariance.
As a consequence we obtain the following stability properties of equivariant
analytic and local cyclic homology.

Proposition 7.4 (Stability). Let A be a separated G-algebra and let b : W ×
V → C be a nonzero equivariant bounded bilinear map. Moreover let l(b, A)
be any partial completion of A ⊗ l(b). Then there exist invertible elements in
HLG

0 (A, l(b, A)) and HAG
0 (A, l(b, A)).

Proof. For the uncompleted stabilization A⊗ l(b) the argument for the periodic
theory in [35] carries over. If l(b, A) is a partial completion of A ⊗ l(b) the
natural chain map XG(T (A⊗ l(b)⊗KG))→ XG(T (l(b, A)⊗KG)) becomes an
isomorphism after applying the (left derived) completion functor according to
lemma 7.1. �

An application of theorem 7.3 yields a simpler description of HAG
∗ and HLG

∗ in
the case that G is a profinite group. If G is compact the trivial one-dimensional
representation is contained in D(G). Hence the pairing used to define the
algebra KG is admissible in this case. This implies immediately the following
assertion.

Proposition 7.5. Let G be a compact group. Then we have a natural isomor-
phism

HLG
∗ (A,B) ∼= H∗(HomG(XG(T A)Lc,XG(T B)Lc))

for all separated G-algebras A and B. An analogous statement holds for the
analytic theory.
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To conclude this section we show that equivariant analytic and local cyclic
homology satisfy excision in both variables.

Theorem 7.6 (Excision). Let A be a separated G-algebra and let E : 0 →
K → E → Q→ 0 be an extension of separated G-algebras with bounded linear
splitting. Then there are two natural exact sequences

HLG
0 (A,K) //

OO
HLG

0 (A,E) // HLG
0 (A,Q)

��
HLG

1 (A,Q) oo HLG
1 (A,E) oo HLG

1 (A,K)

and

HLG
0 (Q,A) //

OO
HLG

0 (E,A) // HLG
0 (K,A)

��
HLG

1 (K,A) oo HLG
1 (E,A) oo HLG

1 (Q,A)

The horizontal maps in these diagrams are induced by the maps in E and the
vertical maps are, up to a sign, given by composition product with an element
ch(E) in HLG

1 (Q,K) naturally associated to the extension. Analogous state-
ments hold for the analytic theory.

Upon tensoring the given extension E with KG we obtain an extension of sepa-
rated G-algebras with equivariant bounded linear splitting. As in [35] we may
suppress the algebra KG from our notation and assume that we are given an
extension

K // ι // E
π // // Q

of separated G-algebras together with an equivariant bounded linear splitting
σ : Q→ E for the quotient map π : E → Q.
We denote by XG(T E : T Q) the kernel of the map XG(T π) : XG(T E) →
XG(T Q)) induced by π. The splitting σ yields a direct sum decomposition
XG(T E) = XG(T E : T Q) ⊕ XG(T Q) of AYD-modules. Moreover there is a
natural chain map ρ : XG(TK)→ XG(T E : T Q).
Theorem 7.6 is a consequence of the following result.

Theorem 7.7. The map ρ : XG(TK) → XG(T E : T Q) is a homotopy equiv-
alence.

Proof. The proof follows the arguments given in [21], [35]. Let L ⊂ T E be
the left ideal generated by K ⊂ T E. Then L is a separated G-algebra and we
obtain an extension

N // // L
τ // // K

of separated G-algebras where τ : L→ K is induced by the canonical projection
τE : T E → E. As in [35] one shows that the inclusion L ⊂ T E induces a
homotopy equivalence ψ : XG(L) → XG(T E : T Q). The inclusion TK → L

induces a morphism of extensions from 0 → JK → TK → K → 0 to 0 →
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N → L → K → 0. The algebra N is analytically nilpotent and the splitting
homomorphism v : L→ T L for the canonical projection constructed by Meyer
in [21] is easily seen to be equivariant. Using homotopy invariance it follows
that the induced chain map XG(TK) → XG(L) is a homotopy equivalence.
This yields the assertion. �

8. Comparison between analytic and local cyclic homology

In this section we study the relation between equivariant analytic and local
cyclic homology. We exhibit a special case in which the analytic and local
theories agree. This allows to do some elementary calculations in equivariant
local cyclic homology. Our discussion follows closely the treatment by Meyer,
for the convenience of the reader we reproduce some results in [24].
A bornological vector space V is called subcomplete if the canonical map V →
V c is a bornological embedding with locally dense range.

Proposition 8.1. Let V be a separated bornological vector space. The following
conditions are equivalent:

a) V is subcomplete.
b) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such

that every S-Cauchy sequence that converges in V is already T -convergent.
c) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such

that every S-Cauchy sequence which is a null sequence in V is already a
T -null sequence.

d) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such
that

ker(〈S〉c → 〈T 〉c) = ker(〈S〉c → 〈U〉c)
for all small disks U containing T .

e) for every small disk S ⊂ V there is a small disk T ⊂ V containing S such
that

ker(〈S〉c → 〈T 〉c) = ker(〈S〉c → V c).

Proof. a) ⇒ b) Let S ⊂ V be a small disk. Then there exists a small disk
R ⊂ V c such that every S-Cauchy sequence is R-convergent. Since V → V c is
a bornological embedding the disk T = R∩V is small in V . By construction, ev-
ery S-Cauchy sequence that converges in V is already T -convergent. b)⇒ c) is
clear since V is separated. c)⇔ d) Let U be a small disk containing S. Then the
kernel of the map 〈S〉c → 〈U〉c consists of all S-Cauchy sequences which are U -
null sequences. Since a null sequence in V is a null sequence in U for some small
disk U the claim follows. d)⇒ e) Let dis(V ) be the inductive system of normed
spaces obtained as the dissection of the bornological vector space V . Condition
d) implies that the direct limit of dis(V )c is automatically separated. That is,
V c = lim−→ dis(V )c is equal to the vector space direct limit of the system dis(V )c

with the quotient bornology. Hence ker(〈S〉 → V c) =
⋃

ker(〈S〉c → 〈U〉c)
where the union is taken over all small disks U containing S. e)⇒ a) For each
small disk S in V let us define 〈〈S〉〉 = 〈S〉c/ ker(〈S〉c → V c). According to
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e) the resulting inductive system is isomorphic to dis(V )c and lim−→〈〈S〉〉
∼= V c.

Assume that x ∈ ker(〈S〉 → 〈〈S〉〉). Then x ∈ ker(〈S〉 → 〈T 〉c) for some small
disk T containing S. This implies x = 0 since the maps 〈S〉 → 〈T 〉 → 〈T 〉c are
injective. Hence 〈S〉 → 〈〈S〉〉 is injective for all small disks S. It follows that
ι : V → V c is a bornological embedding with locally dense range. �

We are interested in conditions which imply that the space Ω(A) for a sepa-
rated bornological algebra A is subcomplete. As usual, we consider Ω(A) as a
bornological vector space with the analytic bornology. Given a small set S ⊂ A
we shall write Ω(S) for the disked hull of

S ∪
∞
⋃

n=1

S⊗n+1 ∪ S⊗n

inside Ω(A) where we use the canonical identification Ωn(A) = A⊗n+1 ⊕ A⊗n

for the space of differential forms. Remark that the sets Ω(S) generate the
analytic bornology.

Definition 8.2. A separated bornological algebra A is called tensor subcomplete
if the space Ω(A) is subcomplete.

Let us call the tensor powers V ⊗n for n ∈ N of a bornological vector space
V uniformly subcomplete provided the following condition is satisfied. For
every small disk S ⊂ V there is a small disk T ⊂ V containing S such that,
independent of n ∈ N, any S⊗n-Cauchy sequence which is a null sequence
in V ⊗n is already a T⊗n-null sequence. In particular, the spaces V ⊗n are
subcomplete for all n in this case.

Lemma 8.3. A separated bornological algebra A is tensor subcomplete iff the
tensor powers A⊗n for n ∈ N are uniformly subcomplete.

Proof. Assume first that the space Ω(A) is subcomplete. Let S ⊂ A be a small
disk and let (xk)k∈N be a S⊗n-Cauchy sequence which is a null sequence in
A⊗n. We write in : A⊗n → Ω(A) and pn : Ω(A) → A⊗n for the natural inclu-
sion and projection onto one of the direct summands A⊗n in Ω(A). The maps
in and pn are clearly bounded. In particular, the image of (xk)k∈N under in is a
Ω(S)-Cauchy sequence which is a null sequence in Ω(A). Hence it is a Ω(T )-null
sequence for some T ⊂ A. Since pn(Ω(T )) = T⊗n and xk = pnin(xk) it follows
that the sequence (xk)k∈N is a T⊗n-null sequence. Moreover the choice of T
does not depend on n. This shows that the tensor powers A⊗n are uniformly
subcomplete.
Conversely, assume that the tensor powers A⊗n are uniformly subcomplete. Let
S ⊂ A be a small disk and let T ⊂ A be a small disk such that S⊗n-Cauchy
which are null sequences in A⊗n are T⊗n-null sequences. In addition we may
assume 2S ⊂ T . Let us write Pn : Ω(A) → Ω(A) for the natural projection
onto the direct summand

⊕n

j=1A
⊗j ⊕ A⊗j . Then Pn(Ω(S)) is contained in

Ω(S) and the projections Pn are equibounded. Moreover Pn converges to the
identity uniformly on Ω(S) since id−Pn has norm ≤ 2−n as a map from 〈Ω(S)〉
into 〈Ω(2S)〉 ⊂ 〈Ω(T )〉. Now let (xk)k∈N be a null sequence in Ω(A) which is
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Ω(S)-Cauchy. The components of Pn(xk) are S⊗k-Cauchy sequences which
are null sequences in A⊗k and hence T⊗k-null sequences by hypothesis. Hence
(Pn(xk))n∈N is a Ω(T )-null sequence for all n. Moreover (Pn(xk))n∈N converges
to xk for every k, and this convergence is uniform in k. If follows that (xk)n∈N

is a Ω(T )-null sequence, and we deduce that Ω(A) is tensor subcomplete. �

Our next aim is to exhibit certain analytical conditions which are sufficient for
tensor subcompleteness. Recall that a subset S of a complete bornological vec-
tor space V is called (relatively) compact if it is a (relatively) compact subset
of the Banach space 〈T 〉 for some small completant disk T ⊂ V . A complete
bornological vector space V is a Schwartz space if every small subset of V is
relatively compact. Every Fréchet space with the precompact bornology is a
Schwartz space.
Let V be a normed space and let W be an arbitrary bornological vector space.
By definition, a sequence (fn)n∈N of bounded linear maps fn : V → W con-
verges uniformly to f : V →W if there exists a small disk T ⊂W such that all
fn and f are bounded linear maps V → 〈T 〉 and the sequence (fn)n∈N converges
to f in Hom(V, 〈T 〉) in operator norm. A bounded linear map f : V →W can
be approximated uniformly on compact subsets by finite rank operators if for
every compact disk S ⊂ V there exists a sequence (fn)n∈N of finite rank oper-
ators fn : V →W such that fn converges uniformly to f in Hom(〈S〉,W ). An
operator f : V →W is of finite rank if it is contained in the image of the natu-
ral map from the uncompleted tensor product W ⊗ V ′ into Hom(V,W ) where
V ′ = Hom(V,C) is the dual space of V . By definition, a complete bornologi-
cal vector space V satisfies the (global) approximation property if the identity
map on V can be approximated uniformly on compact subsets by finite rank
operators.
We recall that a bornological vector space V is regular if the bounded linear
functionals on V separate the points of V . Let us remark that there is also a
local version of the approximation property which is equivalent to the global
one if we restrict attention to regular spaces. Finally, we point out that for a
Fréchet space with the precompact bornology the bornological approximation
property is equivalent to Grothendieck’s approximation property [26].

Proposition 8.4. Let A be a bornological algebra whose underlying bornological
vector space is a Schwartz space satisfying the approximation property. Then
A is tensor subcomplete.

Proof. According to lemma 8.3 it suffices to show that the tensor powers of A
are uniformly subcomplete. Let S ⊂ A be a small disk. We may assume S is
compact and that there is a completant small disk T ⊂ A containing S such that
the inclusion 〈S〉 → 〈T 〉 can be approximated uniformly by finite rank operators

on A. We will show that ker(〈S〉⊗̂n → 〈U〉⊗̂n) = ker(〈S〉⊗̂n → 〈T 〉⊗̂n) for
every completant small disk U containing T . As in the proof of proposition
8.1 this statement easily implies that the tensor powers A⊗n are uniformly
subcomplete.

Take an element x ∈ ker(〈S〉⊗̂n → 〈U〉⊗̂n). Then there is a compact disk
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K ⊂ 〈S〉 such that x ∈ K⊗̂n. Since A is regular we find a sequence (fk)k∈N of
finite rank operators fk : A→ 〈T 〉 approximating the inclusion map uniformly

on K. The uniform convergence of the operators fk on K implies that f ⊗̂n
k

converges uniformly towards the canonical map 〈K〉⊗̂n → 〈T 〉⊗̂n. In particular,

the image of x in 〈T 〉⊗̂n is the limit of f ⊗̂n
k (x). Since the finite rank maps fk

are restrictions of maps defined on 〈U〉 and x is in the kernel of 〈S〉⊗̂n → 〈U〉⊗̂n

we have f ⊗̂n
k (x) = 0 for all k. Hence x ∈ ker(〈S〉⊗̂n → 〈T 〉⊗̂n) as desired. �

It follows in particular that the algebra A⊗KG is tensor subcomplete provided
A is a Schwartz space satisfying the approximation property.

Proposition 8.5. Let G be a totally disconnected group and let A be a G-
algebra whose underlying bornological vector space is a Schwartz space satisfying
the approximation property. Then the canonical chain map

XG(T (A⊗KG))Lc → XG(T (A⊗KG))c

induces an isomorphism in the local derived category.

Proof. Let us abbreviate X = XG(T (A ⊗ KG)) and remark that the AYD-
moduleX can be written in the formX = A(G)⊗V for a separated bornological
vector space V . Using this observation and proposition 8.4 one checks easily
that the inductive system dis(X)c is essentially injective. Due to proposition 4.7
it follows that the natural map XLc ∼= ho- lim−→(dis(X)c) → lim−→(dis(X)c) = Xc

is a local homotopy equivalence. This yields the claim. �

An analogous argument shows thatXG(T C)Lc → XG(T C)c is a local homotopy
equivalence. It follows that there is a chain of canonical isomorphisms

XG(T C)Lc ∼= XG(T C)c ∼= XG(C) = OG[0]

in the local derived category. In fact, the seond isomorphism is a consequence
of the fact that C is analytically quasifree combined with homotopy invariance.
The last equality is established in [35].
Consider in particular the case that G is a compact group. Then the paracom-
plex OG[0] is primitive. Taking into account stability, this yields

HLG
∗ (C, B) = H∗(HomG(OG[0],XG(T B)Lc)),

and analogously we have

HAG
∗ (C, B) = H∗(HomG(OG[0],XG(T B)c))

for every G-algebra B. We conclude that there exists a natural transforma-
tion HLG

∗ (C, B) → HAG
∗ (C, B) between equivariant local and analytic cyclic

homology if the group is compact.

Proposition 8.6. Let G be compact and let B be a G-algebra whose underly-
ing bornological vector space is a Schwartz space satisfying the approximation
property. Then the natural map

HLG
∗ (C, B)→ HAG

∗ (C, B)
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is an isomorphism. In particular, there is a canonical isomorphism

HLG
∗ (C,C) ∼= HAG

∗ (C,C) = R(G)

where R(G) is the algebra of conjugation invariant smooth functions on G.

Proof. Using stability, the first assertion follows from proposition 8.5 and the
fact that OG[0] is primitive. For the second claim observe that R(G) = (OG)G

is the invariant part of OG. �

9. The isoradial subalgebra theorem

In this section we discuss the notion of an isoradial subalgebra and prove the
isoradial subalgebra theorem which states that equivariant local cyclic homol-
ogy is invariant under the passage to isoradial subalgebras.
Recall that a subset V of a bornological vector space V is called locally dense
if for any small subset S ⊂ V there exists a small disk T ⊂ V such that any
v ∈ S is the limit of a T -convergent sequence with entries in V ∩ T . Moreover
recall that a separated (complete) bornological algebra A is locally multiplica-
tive iff it is isomorphic to an inductive limit of (complete) normed algebras.
The following definition is taken from [26].

Definition 9.1. Let A and A be complete locally multiplicative bornological
algebra. A bounded homomorphism ι : A → A between bornological algebras is
called isoradial if it has locally dense range and

ρ(ι(S);A) = ρ(S;A)

for all small subsets S ⊂ A. If in addition ι is injective we say that A is an
isoradial subalgebra of A.

We will frequently identify A with its image ι(A) ⊂ A provided ι : A → A is
an injective bounded homomorphism. However, note that the bornology of A
is usually finer than the subspace bornology on ι(A). Remark in addition that
the inequality ρ(ι(S);A) ≤ ρ(S;A) is automatic for every small subset S ⊂ A.
If A and A are G-algebras and ι : A → A is an equivariant homomorphism
defining an isoradial subalgebra we say that A is an isoradial G-subalgebra of
A .
Assume that ι : A → A is an equivariant homomorphism and consider the
equivariant homomorphism i : A⊗KG → A⊗KG obtained by tensoring ι with
the identity map on KG. It is shown in [26] that isoradial homomorphisms
are preserved under tensoring with nuclear locally multiplicative algebras. In
particular, this yields the following statement.

Proposition 9.2. If ι : A → A is an isoradial G-subalgebra then i : A⊗KG →
A⊗KG is an isoradial G-subalgebra as well.

Note that the algebra KG carries the fine bornology which implies that tensor
products of KG with complete spaces are automatically complete.
Let us now formulate and prove the isoradial subalgebra theorem.
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Theorem 9.3. Let ι : A → A be an isoradial G-subalgebra. Suppose that there
exists a sequence (σn)n∈I of bounded linear maps σn : A → A such that for
each completant small disk S ⊂ A the maps ισn converge uniformly towards
the inclusion map 〈S〉 → A. Then the class [ι] ∈ HLG

∗ (A, A) is invertible.

Note that the existence of bounded linear maps σn : A → A with these prop-
erties already implies that A ⊂ A is locally dense. We point out that the maps
σn in theorem 9.3 are not assumed to be equivariant.
In fact, as a first step in the proof we shall modify these maps in order to ob-
tain equivariant approximations. Explicitly, let us define equivariant bounded
linear maps sn : A⊗KG → A⊗KG by

sn(a⊗ k)(r, t) = t · σn(t−1 · a)k(r, t)
where we view elements in A⊗KG as smooth function on G×G with values in
A. As above we write i for the equivariant homomorphism A⊗KG → A⊗KG

induced by ι. Since the maps ισn converge to the identity uniformly on small
subsets of A by assumption, the maps isn converge to the identity uniformly
on small subsets of A⊗KG.
We deduce that theorem 9.3 is a consequence of the following theorem.

Theorem 9.4. Let ι : A → A be an isoradial G-subalgebra. Suppose that there
exists a sequence (σn)n∈I of equivariant bounded linear maps σn : A→ A such
that for each completant small disk S ⊂ A the maps ισn converge uniformly
towards the inclusion map 〈S〉 → A. Then the chain map XG(T A)→ XG(T A)
induced by ι is a local homotopy equivalence.

The proof of theorem 9.4 is divided into several steps. Let S ⊂ A be a small
completant multiplicatively closed disk. By the definition of uniform conver-
gence, there exists a small completant disk T ⊂ A containing S such that ισn

defines a bounded linear map 〈S〉 → 〈T 〉 for every n and the sequence (ισn)n∈N

converges to the natural inclusion map in Hom(〈S〉, 〈T 〉) in operator norm.
Hence there exists a null sequence (ǫn)n∈N of positive real numbers such that
ισn(x)−x ∈ ǫnT for all x ∈ S. After rescaling with a positive scalar λ we may
assume that T is multiplicatively closed and that S ⊂ λT . Using the formula

ωισn
(x, y) = ισn(xy)− ισn(x)ισn(y)

= (ισn(xy)− xy)− (ισn(x)− x)(ισn(y)− y)− x(ισn(y)− y)− (ισn(x)− x)y
for x, y ∈ S and that T is multiplicatively closed we see that for any given ǫ > 0
we find N ∈ N such that ωισn

(S, S) ⊂ ǫT for n ≥ N . Remark that we have
ωισn

= ιωσn
since ι is a homomorphism. We deduce

lim
n→∞

ρ(ιωσn
(S, S);A) = 0

using again that T is multiplicatively closed. This in turn implies

lim
n→∞

ρ(ωσn
(S, S);A) = 0

since A ⊂ A is an isoradial subalgebra. This estimate will be used to obtain
local inverses for the chain map induced by ι.
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We need some preparations. Let B and C be arbitrary separated G-algebras.
Any equivariant bounded linear map f : B → C extends to an equivariant
homomorphism T f : T B → T C. This homomorphism is bounded iff f has
analytically nilpotent curvature.

Lemma 9.5. Let C be a separated bornological algebra and let S ⊂ T C be small.
Then

ρ(τC(S);C) = ρ(S; T C)

where τC : T C → C is the quotient homomorphism.

Proof. Taking into account that τC is a bounded homomorphism it suffices to
show that ρ(τC(S);C) < 1 implies ρ(S; T C) ≤ 1. We may assume that the set
S is of the form

S = R+ [T ](dTdT )∞

where R ⊂ C and T ⊂ C are small disks. If ρ(τC(S);C) < 1 we find λ > 1
such that (λR)∞ ⊂ C is small. Let us choose µ such that λ−1 + µ−1 < 1
and consider the small disk P = µ(λR)∞ in C. By construction we have
R · [P ] ⊂ λ−1P as well as dRd[P ] ⊂ µ−1dPdP . Moreover the disked hull I
of P ∪ [P ](dPdP )∞ is a small subset of T C which contains R. Now consider
x ∈ R and [y0]dy1 · · · dy2n ∈ [P ](dPdP )n. Since

x ◦ [y0]dy1 · · · dy2n = x[y0]dy1 · · · dy2n + dxd[y0]dy1 · · · dy2n

the previous relations yield νR ◦ I ⊂ I for some ν > 1. By induction we see
that the multiplicative closure Q of νR in T C is small. Choose η such that
ν−1 + 2η−1 < 1, set

K = η[T ](dTdT )∞

and let L be the multiplicative closure of [Q] ◦K ◦ [Q]. By construction, the
set [Q] ◦ K ◦ [Q] is contained in the analytically nilpotent algebra JC which
implies that L ⊂ T C is small. Let J ⊂ T C be the disked hull of the set Q+L.
Then J is small and we have S ⊂ J . In addition, it is straightforward to check
R◦J ⊂ ν−1J and [T ](dTdT )∞◦J ⊂ 2η−1J which shows S◦J ⊂ J . In the same
way as above it follows that S∞ ⊂ T C is small and deduce ρ(S; T C) ≤ 1. �

Lemma 9.6. Let f : B → C be an equivariant bounded linear map between
separated G-algebras. Consider the induced chain map XG(T f) : XG(T B) →
XG(T C). Given a small subset S ⊂ XG(T B) there exists a small subset T ⊂
B such that XG(T f) is bounded on the primitive submodule generated by S
provided ωf (T, T )∞ is small.

Proof. It suffices to show that, given a small set S ⊂ T B, there exists a small
set T ⊂ B such that T f(S) ⊂ T C is small provided ωf (T, T )∞ is small. We
may assume that S is of the form [R](dRdR)∞ for some small set R ⊂ B.
Let F : B → T C be the bounded linear map obtained by composing f with
the canonical bounded linear splitting σC : C → T C. The homomorphism
T f : T B → T C is given by

T f([x0]dx1 · · · dx2n) = [F (x0)]ωF (x1, x2) · · ·ωF (x2n−1, x2n)
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which shows that T f(S) is small provided ωF (R,R)∞ is small. Consider the
natural projection τC : T C → C. According to lemma 9.5 the homomorphism
τC preserves the spectral radii of all small subsets in T C. Using τC(ωF (R,R)) =
ωf (R,R) we see that ωF (R,R)∞ is small provided ρ(ωf (R,R)) < 1. Setting
T = λR for some λ > 1 yields the assertion. �

Let us come back to the proof of theorem 9.4. If P ⊂ XG(T A) is a primitive
subparacomplex then lemma 9.6 shows that σn induces a bounded chain map
P → XG(T A) provided n is large enough. In fact, we will prove that the maps
σn can be used to define bounded local homotopy inverses to the chain map
ι∗ : XG(T A)→ XG(T A) induced by ι.
More precisely, let kn : A → A ⊗ C[t] be the equivariant bounded linear map
given by kn(x)(t) = (1 − t)(ισn)(x) + tx. Here C[t] is equipped with the
bornology induced from C∞[0, 1]. Observe that the maps kn converge to the
homomorphism sending x to x⊗ 1 uniformly on small subsets of A. The same
reasoning as for the maps ισn above shows

lim
n→∞

ρ(ωkn
(S, S);A⊗ C[t]) = 0

for all small subsets S ⊂ A. Now assume that P ⊂ XG(T A) is a primitive
subparacomplex. According to lemma 9.6 there exists N ∈ N such that the
induced chain map XG(T A) → XG(T (A ⊗ C[t])) is bounded on P for all
n > N . We compose this map with the chain homotopy between the evaluation
maps at 0 and 1 arising from homotopy invariance to get a bounded AYD-map
Kn : P → XG(T A) of degree one which satisfies ∂Kn +Kn∂ = id−(ισn)∗ on
P .
Similarly, consider the equivariant bounded linear map hn : A → A⊗C[t] given
by hn(x)(t) = (1 − t)(σnι)(x) + tx and observe that (ι ⊗ id)hn = knι. Since
the algebra C∞[0, 1] is nuclear the inclusion A⊗C[t]→ A⊗C[t] preserves the
spectral radii of small subsets [26]. Hence the above spectral radius estimate
for kn implies

lim
n→∞

ρ(ωhn
(S, S);A⊗ C[t]) = 0

for all small subsets S ⊂ A. Now let Q ⊂ XG(T A) be a primitive subparacom-
plex. For n sufficiently large we obtain in the same way as above a bounded
AYD-map Hn : Q → XG(T A) of degree 1 such that ∂Hn +Hn∂ = id−(σnι)∗
on Q.
Using these considerations it is easy to construct bounded local contracting
homotopies for the mapping cone of the chain map ι∗ : XG(T A) → XG(T A).
This shows that ι∗ is a local homotopy equivalence and completes the proof of
theorem 9.4.

10. Applications of the isoradial subalgebra theorem

In this section we study some consequences of the isoradial subalgebra theorem
in connection with C∗-algebras. This is needed to show that equivariant local
cyclic homology is a continuously and C∗-stable functor on the category of G-
C∗-algebras. Moreover, we discuss isoradial subalgebras arising from regular
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smooth functions on simplicial complexes [36].
In the sequel we write A ⊗ B for the (maximal) tensor product of two C∗-
algebras A and B. We will only consider such tensor products when one of the
involved C∗-algebras is nuclear, hence the C∗-tensor product is in fact uniquely
defined in these situations. Moreover, our notation should not lead to confusion
with the algebraic tensor product since we will not have to work with algebraic
tensor products of C∗-algebras at all. All C∗-algebras are equipped with the
precompact bornology when they are considered as bornological algebras.
As a technical preparation we have to examine how the smoothing of G-C∗-
algebras is compatible with isoradial homomorphisms. Let us recall from [25]
that a representation π of G on a complete bornological vector space V is con-
tinuous if the adjoint of π defines a bounded linear map [π] : V → C(G,V )
where C(G,V ) is the space of continuous functions on G with values in V in
the bornological sense. For our purposes it suffices to remark that the repre-
sentation of G on a G-C∗-algebra equipped with the precompact bornology is
continuous in the bornological sense. We need the following special cases of
results obtained by Meyer in [26].

Lemma 10.1. Let A and A be complete locally multiplicative bornological alge-
bras on which G acts continuously. If ι : A → A is an equivariant isoradial
homomorphism then

Smooth(ι) : Smooth(A)→ Smooth(A)

is an isoradial homomorphism as well. Moreover, if C is a complete nuclear
locally multiplicative G-algebra then the natural homomorphism

Smooth(A)⊗̂C → Smooth(A⊗̂C)

is isoradial.

Proof. It is shown in [26] that the inclusion Smooth(B) → B is an isoradial
subalgebra for every complete locally multiplicative bornological algebra B on
which G acts continuously. This yields easily the first claim. In addition, the
homomorphism Smooth(A)⊗̂C → A⊗̂C is isoradial because C is nuclear [26].
Since the action on C is already smooth it follows that

Smooth(A)⊗̂C ∼= Smooth(Smooth(A)⊗̂C)→ Smooth(A⊗̂C)

is isoradial according to the first part of the lemma. �

Let A be a G-C∗-algebra and consider the natural equivariant homomorphism
A⊗̂C∞[0, 1] → C([0, 1], A) = A ⊗ C[0, 1]. This map induces a bounded equi-
variant homomorphism

Smooth(A)⊗̂C∞[0, 1] ∼= Smooth(A⊗̂C∞[0, 1])→ Smooth(C([0, 1], A))

and we have the following result.

Proposition 10.2. The map Smooth(A)⊗̂C∞[0, 1]→ Smooth(A⊗C[0, 1]) is
an isoradial G-subalgebra and defines an invertible element in

HLG
0 (Smooth(A)⊗̂C∞[0, 1],Smooth(A⊗ C[0, 1]))
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for every G-C∗-algebra A.

Proof. It is shown in [26] that the natural inclusion ι : A⊗̂C∞[0, 1] →
C([0, 1], A) is isoradial. Hence the homomorphism Smooth(A)⊗̂C∞[0, 1] →
Smooth(C([0, 1], A)) is isoradial according to lemma 10.1.
We choose a family σn : C([0, 1], A) → A⊗̂C∞[0, 1] of equivariant smoothing
operators such that the maps ισn are uniformly bounded and converge to the
identity pointwise. It follows that the maps ισn converge towards the identity
uniformly on precompact subsets of C([0, 1], A). The maps σn induce equivari-
ant bounded linear maps σn : Smooth(C([0, 1], A)) → Smooth(A)⊗̂C∞[0, 1]
satisfying the condition of the isoradial subalgebra theorem 9.3. This yields
the assertion. �

Let KG = K(L2(G)) be the algebra of compact operators on the Hilbert space
L2(G). The C∗-algebra KG is equipped with the action of G induced by the
regular representation. For every G-C∗-algebra A we have a natural bounded
equivariant homomorphism A⊗̂KG → A ⊗ KG. This gives rise to equivariant
homomorphisms

Smooth(A)⊗̂KG → Smooth(A⊗̂KG)→ Smooth(A⊗KG).

Similarly, let K = K(l2(N)) be the algebra of compact operators on an infinite
dimensional separable Hilbert space with the trivial G-action. If M∞(C) de-
notes the direct limit of the finite dimensional matrix algebras Mn(C) we have
a canonical bounded homomorphism Smooth(A)⊗̂M∞(C)→ Smooth(A⊗K).

Proposition 10.3. The homomorphism Smooth(A)⊗̂KG → Smooth(A⊗KG)
is an isoradial G-subalgebra and defines an invertible element in

HLG
0 (Smooth(A)⊗̂KG,Smooth(A⊗KG))

for every G-C∗-algebra A. An analogous assertion holds for the homomorphism
Smooth(A)⊗̂M∞(C)→ Smooth(A⊗K).

Proof. We will only treat the map Smooth(A)⊗̂KG → Smooth(A⊗KG) since
the claim concerning the compact operators with the trivial action is obtained
in a similar way.
Observe that a small subset of KG is contained in a finite dimensional subal-
gebra of the form Mn(C). Since A ⊗Mn(C) is a bornological subalgebra of
A ⊗ KG it follows that the homomorphism ι : A⊗̂KG → A ⊗ KG is isoradial.
Due to lemma 10.1 the same is true for the induced map Smooth(A)⊗̂KG →
Smooth(A⊗KG). Since G is second countable and D(G) ⊂ L2(G) is dense we
find a countable orthonormal basis (en)n∈N of L2(G) contained in D(G). Pro-
jecting to the linear subspace C

n ⊂ L2(G) generated by the vectors e1, . . . , en

defines a bounded linear map σn : A ⊗ KG → A⊗̂KG. The maps ισn are
uniformly bounded and converge towards the identity on A ⊗ KG pointwise.
Hence they converge towards the identity uniformly on small subsets of A⊗KG.
Explicitly, if pn ∈ A+⊗̂KG denotes the element given by

pn =
n

∑

j=1

1⊗ |ej〉〈ej |
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then σn can be written as σn(T ) = pnTpn. Since the vectors ej are smooth
we conclude that σn induces a bounded linear map Smooth(A ⊗ KG) →
Smooth(A)⊗̂KG which will again be denoted by σn. The maps ισn converge
towards the identity uniformly on small subsets of Smooth(A ⊗ KG) as well.
Hence the claim follows from the isoradial subalgebra theorem 9.3. �

We conclude this section with another application of the isoradial subalgebra
theorem. Recall from [36] that a G-simplicial complex is a simplicial complex
X with a type-preserving smooth simplicial action of the totally disconnected
group G. We will assume in the sequel that all G-simplicial complexes have at
most countably many simplices. A regular smooth function on X is a function
whose restriction to each simplex σ of X is smooth in the usual sense and which
is constant in the direction orthogonal to the boundary ∂σ in a neighborhood
of ∂σ. The algebra C∞

c (X) of regular smooth functions on X with compact
support is a G-algebra in a natural way.

Proposition 10.4. Let X be a finite dimensional and locally finite G-simplicial
complex. Then the natural map ι : C∞

c (X) → C0(X) is an isoradial G-
subalgebra and defines an invertible element in

HLG
0 (C∞

c (X),Smooth(C0(X))).

Proof. As for smooth manifolds one checks that the inclusion homomomor-
phism ι : C∞

c (X)→ C0(X) is isoradial. By induction over the dimension of X
we shall construct a sequence of bounded linear maps σn : C0(X) → C∞

c (X)
such that ισn converges to the identity uniformly on small sets. For k = 0
this is easily achieved by restriction of functions to finite subsets and extension
by zero. Assume that the maps σn are constructed for all (k − 1)-dimensional
G-simplicial complexes and assume that X is k-dimensional. If Xk−1 denotes
the (k − 1)-skeleton of X we have a commutative diagram

C∞(X,Xk−1) // //

��

C∞
c (X) // //

��

C∞
c (Xk−1)

��
C(X,Xk−1) // // C0(X) // // C0(X

k−1)

where C∞(X,Xk−1) and C(X,Xk−1) denote the kernels of the canonical re-
striction homomorphisms and the vertical arrows are natural inclusions. It
is shown in [36] that the upper extension has a bounded linear splitting,
and the lower extension has a bounded linear splitting as well. Note that
the C(X,Xk−1) is a C∗-direct sum of algebras of the form C0(∆

k \ ∂∆k)
where ∆k denotes the standard k-simplex and ∂∆k is its boundary. Simi-
larly, C∞

c (X,Xk−1) is the bornological direct sum of corresponding subalgebras
C∞

c (∆k \∂∆k). Hence, by applying suitable cutoff functions, we are reduced to
construct approximate inverses to the inclusion C∞

c (∆k\∂∆k)→ C0(∆
k\∂∆k).

This is easily achieved using smoothing operators. Taking into account the iso-
radial subalgebra theorem 9.3 yields the assertion. �
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11. Tensor products

In this section we study the equivariant X-complex for the analytic tensor
algebra of the tensor product of two G-algebras. This will be used in the
construction of the equivariant Chern-Connes character in the odd case.
Let us first recall the definition of the tensor product of paracomplexes of AYD-
modules [35]. If C and D are paracomplexes of separated AYD-modules then
the tensor product C ⊠D is given by

(C⊠D)0 = C0⊗OG
D0⊕C1⊗OG

D1, (C⊠D)1 = C1⊗OG
D0⊕C0⊗OG

D1

where the group G acts diagonally and OG acts by multiplication. Using that
OG is commutative one checks that the tensor product C ⊠D becomes a sep-
arated AYD-module in this way. The boundary operator ∂ in C ⊠D is defined
by

∂0 =

(

∂ ⊗ id − id⊗∂
id⊗∂ ∂ ⊗ T

)

∂1 =

(

∂ ⊗ T id⊗∂
− id⊗∂ ∂ ⊗ id

)

and turns C ⊠ D into a paracomplex. Remark that the formula for ∂ does
not agree with the usual definition of the differential in a tensor product of
complexes.
Now let A and B be separated bornological algebras. As it is explained in [6],
the unital free product A+ ∗B+ of A+ and B+ can be written as

A+ ∗B+ = A+ ⊗B+ ⊕
⊕

j>0

Ωj(A)⊗ Ωj(B)

with the direct sum bornology and multiplication given by the Fedosov product

(x1 ⊗ y1) ◦ (x2 ⊗ y2) = x1x2 ⊗ y1y2 − (−1)|x1|x1dx2 ⊗ dy1y2.
An element a0da1 · · · dan ⊗ b0db1 · · · dbn corresponds to a0b0[a1, b1] · · · [an, bn]
in the free product under this identification where [x, y] = xy − yx denotes
the ordinary commutator. Note that if A and B are G-algebras then the free
product is again a separated G-algebra in a natural way.
Consider the extension

I // // A+ ∗B+ π // // A+ ⊗B+

where I is the kernel of the canonical homomorphism π : A+ ∗B+ → A+⊗B+.
Using the description of the free product in terms of differential forms one has

Ik =
⊕

j≥k

Ωj(A)⊗ Ωj(B)

for the powers of the ideal I.
Analogous to the analytic bornology on tensor algebras we consider an analytic
bornology on free products. By definition, the analytic bornology on A+ ∗B+

is the bornology generated by the sets

S ⊗ T ∪
∞
⋃

n=1

(S(dS)n ∪ (dS)n)⊗ (T (dT )n ∪ (dT )n)
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for all small sets S ⊂ A and T ⊂ B. This bornology turns A+ ∗ B+ into
a separated bornological algebra. We write A+ ⋆ B+ for the free product of
A+ and B+ equipped with the analytic bornology. Clearly the identity map
A+ ∗ B+ → A+ ⋆ B+ is a bounded homomorphism. Consequently the natural
homomorphisms ιA : A+ → A+ ⋆ B+ and ιB : B+ → A+ ⋆ B+ are bounded.
Every unital homomorphism f : A+⋆B+ → C into a unital bornological algebra
C is determined by a pair of homomorphisms fA : A → C and fB : B → C.
Define a linear map cf : A ⊗ B → C by cf (a, b) = [fA(a), fB(b)]. Let us call
fA and fB almost commuting if

cf (S)∞ =

∞
⋃

n=1

cf (S)n

is small for every small subset S ⊂ A⊗B. Clearly, cf = 0 iff the images of fA

and fB commute. The following property of A+ ⋆ B+ is a direct consequence
of the definition of the analytic bornology.

Lemma 11.1. Let A and B be separated bornological algebras. For a pair of
bounded equivariant homomorphisms fA : A→ C and fB : B → C into a unital
bornological algebra C the corresponding unital homomorphism f : A+ ⋆ B+ →
C is bounded iff fA and fB are almost commuting.

In particular, the canonical homomorphism π : A+⋆B+ → A+⊗B+ is bounded
and we obtain a corresponding extension

I // // A+ ⋆ B+ π // // A+ ⊗B+

of bornological algebras with bounded linear splitting. It is straightforward
to verify that the ideal I with the induced bornology is analytically nilpotent.
Remark that if A and B are G-algebras then all the previous constructions are
compatible with the group action.
Let I be a G-invariant ideal in a separated G-algebra R and define the para-
complex H2

G(R, I) by

H2
G(R, I)0 = OG ⊗R/(OG ⊗ I2 + b(OG ⊗ IdR))

in degree zero and by

H2
G(R, I)1 = OG ⊗ Ω1(R)/(b(Ω2

G(R)) +OG ⊗ IΩ1(R))

in degree one with boundary operators induced from XG(R).
Now let A and B be separated G-algebras. We abbreviate R = A+ ⋆ B+ and
define an AYD-map φ : XG(A+) ⊠XG(B+)→ H2

G(R, I) by

φ(f(t)⊗ x⊗ y) = f(t)⊗ xy
φ(f(t)⊗ x0dx1 ⊗ y0dy1) = f(t)⊗ x0(t

−1 · y0)[x1, t
−1 · y1]

φ(f(t)⊗ x⊗ y0dy1) = f(t)⊗ xy0dy1
φ(f(t)⊗ x0dx1 ⊗ y) = f(t)⊗ x0dx1y
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where [x, y] = xy − yx denotes the commutator. The following result for the
analytic free product R = A+ ⋆ B+ is obtained in the same way as the corre-
sponding assertion in [35] for the ordinary free product.

Proposition 11.2. The map φ : XG(A+)⊠XG(B+)→ H2
G(R, I) defined above

is an isomorphism of paracomplexes for all separated G-algebras A and B.

After these preparations we shall prove the following assertion.

Proposition 11.3. Let A and B be separated locally multiplicative G-algebras.
Then there exists a natural chain map

XG(T (A+ ⊗B+))Lc → (XG((T A)+)Lc
⊠XG((T B)+)Lc)Lc

of paracomplexes. There is an analogous chain map if the derived completion
is replaced by the ordinary completion.

Proof. Let us abbreviate Q = (T A)+ ⊗ (T B)+. The canonical homomor-
phism τ : Q → A+ ⊗ B+ induces a bounded equivariant homomorphism
T Q → T (A+ ⊗ B+). Conversely, the obvious splitting for τ is a lanilcur
since the algebras A and B are locally multiplicative. It follows that there is
a canonical bounded equivariant homomorphism T (A+ ⊗ B+) → T Q as well.
As a consequence we obtain a natural homotopy equivalence

XG(T Q) ≃ XG(T (A+ ⊗B+))

using homotopy invariance.
We have another analytically nilpotent extension of Q defined as follows. Since
commutators in the unital free product (T A)+ ∗ (T B)+ are mapped to zero
under the natural map (T A)+ ∗ (T B)+ → Q we have the extension

I // // R
π // // Q

where R = (T A)+ ⋆ (T B)+ is the analytic free product of (T A)+ and (T B)+

and I is the kernel of the bounded homomorphism π : R → Q. Since the
G-algebra I is analytically nilpotent the natural equivariant homomorphism
T Q→ R is bounded and induces a chain map XG(T Q)→ XG(R).
Next we have an obvious chain map

p : XG(R)→ H2
G(R, I)

and by proposition 11.2 there exists a natural isomorphism

XG((T A)+) ⊠XG((T B)+) ∼= H2
G(R, I)

of paracomplexes. Assembling these maps and homotopy equivalences yields
a chain map XG(T (A+ ⊗ B+)) → XG((T A)+) ⊠XG((T B)+). Inspecting the
construction of the derived completion we get in addition a natural chain map

(XG((T A)+) ⊠XG((T B)+))Lc → (XG((T A)+)Lc
⊠XG((T B)+)Lc)Lc

which immediately yields the assertion for the derived completion. For the
ordinary completion the argument is essentially the same. �
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Corollary 11.4. Let A and B be separated locally multiplicative G-algebras.
Then there exists a natural chain map

XG(T (A⊗B))Lc → (XG(T A)Lc
⊠XG(T B)Lc)Lc.

An analogous assertion holds if the derived completion is replaced by the ordi-
nary completion.

Proof. The claim follows easily from proposition 11.3 by applying the excision
theorem 7.7 to tensor products of the extensions 0 → A → A+ → C → 0 and
0→ B → B+ → C→ 0. �

Proposition 11.5. Let A be a separated locally multiplicative G-algebra. Then
the natural chain map

XG(T (C⊗A))Lc → (XG(T C)Lc
⊠XG(T A)Lc)Lc

is a homotopy equivalence. Similarly, one obtains a homotopy equivalence if
the derived completion is replaced by the ordinary completion.

Proof. Recall that the natural mapXG(T C)Lc → XG(T C)c is a local homotopy
equivalence and that XG(T C)c ≃ XG(C) = OG[0] using the projection homo-
morphism T C → C. As a consequence we obtain a natural homotopy equiva-
lence (XG(T C)Lc

⊠XG(T A)Lc)Lc → (OG[0] ⊠XG(T A)Lc)Lc. The composition
of the latter with the chain mapXG(T (C⊗A))Lc → (XG(T C)Lc

⊠XG(T A)Lc)Lc

obtained in corollary 11.4 can be identified with the canonical homotopy equiv-
alence XG(T (C⊗A))Lc ∼= XG(T A)Lc ≃ (XG(T A)Lc)Lc. This proves the claim
for the derived completion. For the ordinary completion the argument is anal-
ogous. �

We remark that using the perturbation lemma one may proceed in a similar
way as for the periodic theory [35] in order to construct a candidate for the
homotopy inverse to the map XG(R)c → H2

G(R)c induced by the projection
p occuring in the proof of proposition 11.3. The problem is that the formula
thus obtained does not yield a bounded map in general. However, a more re-
fined construction might yield a bounded homotopy inverse. For our purposes
proposition 11.5 is sufficient.

12. Algebraic description of equivariant Kaspararov theory

In this section we review the description of equivariant KK-theory arising
from the approach developped by Cuntz [4], [5]. This approach to KK-theory
is based on extensions and will be used in the definition of the equivariant
Chern-Connes character below.
One of the virtues of the framework in [4] is that it allows to construct bivariant
versions of K-theory in very general circumstances. Moreover, one can adapt
the setup to treat equivariant versions of such theories as well. The main
ingredient in the definition is a class of extensions in the underlying category
of algebras which contains certain fundamental extensions. In particular one
needs a suspension extension, a Toeplitz extension and a universal extension.
In addition one has to specify a tensor product which preserves the given class
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of extensions.
For equivariant KK-theory the underlying category of algebras is the category
G-C∗-Alg of separable G-C∗-algebras. By definition, morphisms in G-C∗-Alg

are the equivariant ∗-homomorphisms. The correct choice of extensions is the
class E of extensions of G-C∗-algebras with equivariant completely positive
splitting. As a tensor product one uses the maximal C∗-tensor product.
The suspension extension of a G-C∗-algebra A is

Es(A) : A(0, 1) // // A(0, 1] // // A

where A(0, 1) denotes the tensor product A ⊗ C0(0, 1), and accordingly the
algebras A(0, 1] and A[0, 1] are defined. The group action on these algebras is
given by the pointwise action on A.
The Toeplitz extension is defined by

Et(A) : K⊗A // // T⊗A // // C(S1)⊗A

where T is the Toeplitz algebra, that is, the universal C∗-algebra generated by
an isometry. As usual K is the algebra of compact operators, and K and T are
equipped with the trivial G-action.
Finally, one needs an appropriate universal extension [5]. Given an algebra
A in G-C∗-Alg there exists a tensor algebra TA in G-C∗-Alg together with a
canonical surjective equivariant ∗-homomorphism τA : TA → A such that the
extension

Eu(A) : JA // // TA // // A

is contained in E where JA denotes the kernel of τA. Moreover, this extension is
universal in the following sense. Given any extension E : 0→ K → E → A→ 0
in E there exists a commutative diagram

JA // //

��

TA // //

��

A

K // // E // // A

The left vertical map JA → K in this diagram is called the classifying map
of E . One should not confuse TA with the analytic tensor algebra used in the
construction of analytic and local cyclic homology.
One defines J2A = J(JA) and recursively JnA = J(Jn−1A) for n ∈ N as
well as J0A = A. Let us denote by φA : JA → C(S1) ⊗ A the equivariant
∗-homomorphism obtained by composing the classifying map JA→ A(0, 1) of
the suspension extension with the inclusion map A(0, 1)→ C(S1)⊗A given by
viewing A(0, 1) as the ideal of functions vanishing in the point 1. This yields
an equivariant ∗-homomorphism ǫA : J2A → K ⊗ A as the left vertical arrow
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in the commutative diagram

J2A // //

ǫA

��

TJA // //

��

JA

φA

��
K⊗A // // T⊗A // // C(S1)⊗A

where the bottom row is the Toeplitz extension Et(A). The classifying map
ǫA plays an important role in the theory. If [A,B]G denotes the set of equi-
variant homotopy classes of morphisms between A and B then the previous
construction induces a map S : [JkA,K ⊗ B] → [Jk+2A,K ⊗ B] by setting
S[f ] = [(K⊗ f) ◦ ǫJk+2A]. Here one uses the identification K⊗K⊗B ∼= K⊗B.
We write KG for the algebra of compact operators on the regular representation
L2(G) equipped with its natural G-action. The equivariant stabilization AG of
a G-C∗-algebra A is defined by AG = A ⊗ K ⊗ KG. It has the property that
AG ⊗K(H) ∼= AG as G-C∗-algebras for every separable G-Hilbert space H.
Using this notation the equivariant bivariantK-group obtained in the approach
of Cuntz can be written as

kkG
∗ (A,B) ∼= lim−→

j

[J∗+2j(AG),K⊗BG]

where the direct limit is taken using the maps S defined above. It follows
from the results in [5] that kkG

∗ (A,B) is a graded abelian group and that there
exists an associative bilinear product for kkG

∗ . Let us remark that we have
inserted the algebra J∗+2j(KG⊗K⊗A) in the formula defining kkG

∗ instead of
KG ⊗ K ⊗ J∗+2jA as in [5]. Otherwise the construction of the product seems
to be unclear.
We need some more terminology. A functor F defined on the category of G-C∗-
algebras with values in an additive category is called (continuously) homotopy
invariant if F (f0) = F (f1) whenever f0 and f1 are equivariantly homotopic
∗-homomorphisms. It is called C∗-stable if there exists a natural isomorphism
F (A) ∼= F (A ⊗ K ⊗ KG) for all G-C∗-algebras A. Finally, F is called split
exact if the sequence 0 → F (K)→ F (E)→ F (Q)→ 0 is split exact for every
extension 0→ K → E → Q→ 0 of G-C∗-algebras that splits by an equivariant
∗-homomorpism σ : Q→ E.
Equivariant KK-theory [16] can be viewed as an additive category KKG with
separable G-C∗-algebras as objects and KKG

0 (A,B) as the set of morphisms
between two objects A and B. Composition of morphisms is given by the Kas-
parov product. There is a canonical functor ι : G-C∗-Alg → KKG which is
the identity on objects and sends equivariant ∗-homomorphisms to the corre-
sponding KK-elements. Equivariant KK-theory satisfies the following univer-
sal property [34], [22].

Theorem 12.1. An additive functor F from G-C∗-Alg into an additive category
C factorizes uniquely over KKG iff it is continuously homotopy invariant, C∗-
stable and split exact. That is, given such a functor F there exists a unique
functor chF : KKG → C such that F = chF ι.
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It follows from the theory developped in [4] that the functor kkG is homotopy
invariant, C∗-stable and split exact. In fact, it is universal with respect to these
properties. As a consequence one obtains the following theorem.

Theorem 12.2. For all separable G-C∗-algebras A and B there is a natural
isomorphism KKG

∗ (A,B) ∼= kkG
∗ (A,B).

As already indicated above we will work with the description of equivariant
KK-theory provided by kkG

∗ in the sequel. In other words, for our purposes we
could as well take the definition of kkG

∗ as definition of equivariant KK-theory.

13. The equivariant Chern-Connes character

In this section we construct the equivariant Chern-Connes character from equi-
variant KK-theory into equivariant local cyclic homology. Moreover we calcu-
late the character in a simple special case.
First let us extend the definition of equivariant local cyclic homology HLG

∗ to
bornological algebras that are equipped with a not necessarily smooth action of
the group G. This is done by first applying the smoothing functor Smooth in
order to obtain separated G-algebras. In particular, we may view equivariant
local cyclic homology as an additive category HLG with the same objects as
G-C∗-Alg and HLG

0 (A,B) as the set of morphisms between two objects A and
B. By construction, there is a canonical functor from G-C∗-Alg to HLG.

Theorem 13.1. Let G be a totally disconnected group. The canonical functor
from G-C∗-Alg to HLG is continuously homotopy invariant, C∗-stable and split
exact.

Proof. Proposition 10.2 shows together with proposition 7.2 that HLG is con-
tinuously homotopy invariant. We obtain C∗-stability from proposition 10.3
together with proposition 7.4. Finally, if 0 → K → E → Q → 0 is a split
exact extension of G-C∗-algebras then 0 → Smooth(K) → Smooth(E) →
Smooth(Q)→ 0 is a split exact extension of G-algebras. Hence split exactness
follows from the excision theorem 7.6. �

Having established this result, the existence of the equivariant Chern-Connes
character in the even case is an immediate consequence of the universal prop-
erty of equivariant Kasparov theory. More precisely, according to theorem 13.1
and theorem 12.1 we obtain an additive map

chG
0 : KKG

0 (A,B)→ HLG
0 (A,B)

for all separable G-C∗-algebras A and B. The resulting transformation is mul-
tiplicative with respect to the Kasparov product and the composition product,
respectively. Remark that the equivariant Chern-Connes character chG

0 is de-
termined by the property that it maps KK-elements induced by equivariant
∗-homomorphisms to the corresponding HL-elements.
Before we extend this character to a multiplicative transformation on KKG

∗
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we shall describe chG
0 more concretely using the theory explained in sec-

tion 12. Let us fix some notation. If f : A → B is an equivariant ho-
momorphism between G-algebras we denote by ch(f) the associated class in
H0(HomG(XG(T A)Lc,XG(T B)Lc)). By slight abuse of notation we will also
write ch(f) for the corresponding element in HLG

0 (A,B). Similarly, assume
that E : 0 → K → E → Q → 0 is an extension of G-algebras with equivariant
bounded linear splitting. We denote by ch(E) the element −δ(idK) where

δ : H0(HomG(XG(TK)Lc,XG(TK)Lc))→ H1(HomG(XG(T Q)Lc,XG(TK)Lc))

is the boundary map in the six-term exact sequence in bivariant homology
obtained from the generalized excision theorem 7.7. Again, by slight abuse of
notation we will also write ch(E) for the corresponding element in HLG

1 (Q,K).
If f : A → B is an equivariant ∗-homomorphism between G-C∗-algebras we
write simply ch(f) instead of ch(Smooth(f)) for the element associated to the
corresponding homomorphism of G-algebras. In a similar way we proceed for
extensions of G-C∗-algebras with equivariant completely positive splitting.
Using theorem 13.1 one shows that ch(ǫA) ∈ HLG

∗ (J2A,K ⊗ A) is invertible.
The same holds true for the iterated morphisms ch(ǫnA) ∈ HLG

∗ (J2nA,K⊗A).
Remark also that ch(ιA) ∈ HLG

∗ (A,K⊗A) is invertible.
Now assume that x ∈ KKG

0 (A,B) is represented by f : J2nAG → K ⊗ BG.

Then the class chG
0 (f) is corresponds to

ch(ιAG
) · ch(ǫnAG

)−1 · ch(f) · ch(ιBG
)−1

inHLG
0 (AG, BG), and the latter group is canonically isomorphic toHLG

0 (A,B).

For the definition of chG
1 we follow the discussion in [4]. We denote by j :

C0(0, 1) → C(S1) the inclusion homomorphism obtained by viewing elements
of C0(0, 1) as functions on the circle vanishing in 1. Moreover let K be the
algebra of compact operators on l2(N) and let ι : C→ K be the homomorphism
determined by sending 1 to the minimal projection onto the first basis vector in
the canonical orthonormal basis. If A is any G-C∗-algebra we write ιA : A →
A⊗K for the homomorphism obtained by tensoring ι with the identity on A.
In the sequel we write Es instead of Es(C) and similarly Et instead of Et(C) for
the Toeplitz extension of C.

Proposition 13.2. With the notation as above one has

ch(Es) · ch(j) · ch(Et) =
1

2πi
ch(ι)

in H0(HomG(XG(T C)Lc,XG(T K)Lc)).

Proof. First observe that the same argument as in the proof of proposition
10.3 shows that the element ch(ι) is invertible. Let us write z for the element
in H0(HomG(XG(T C)Lc,XG(T C)Lc)) given by of (2πi) ch(Es) · ch(j) · ch(Et) ·
ch(ι)−1. It suffices to show that z is equal to the identity.
We consider the smooth analogues of the extensions Es and Et used in [4]. The
smooth version of the suspension extension is

C
∞(0, 1) // // C∞(0, 1] // // C
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where C
∞(0, 1) denotes the algebra of smooth functions on [0, 1] vanishing with

all derivatives in both endpoints. Similarly, C
∞(0, 1] is the algebra of all smooth

functions f vanishing with all derivatives in 0 and vanishing derivatives in 1,
but arbitrary value f(1). The smooth Toeplitz extension is

K
∞ // // T∞ // // C∞(S1)

where K
∞ is the algebra of smooth compact operators and T∞ is the smooth

Toeplitz algebra defined in [4]. We obtain another endomorphism z∞ of
XG(T C)Lc by repeating the construction of z using the smooth supension and
Toeplitz extensions. By naturality one has in fact z∞ = z, hence it suffices to
show that z∞ is equal to the identity.
Recall that we have a local homotopy equivalence XG(T C)Lc → XG(T C)c ≃
XG(C). Using the fact that the G-action is trivial on all algebras under consid-
eration the same argument as in [4] yields that z∞ is equal to the identity. �

We shall use the abbreviation xA = ch(Eu(A)) for the element arising from the
universal extension of the G-C∗-algebra A.

Proposition 13.3. Let A be a G-C∗-algebra and let ǫA : J2(A) → K ⊗ A be
the canonical map. Then we have the relation

xA · xJA · ch(ǫA) =
1

2πi
ch(ιA)

in H0(HomG(XG(T (Smooth(A)⊗̂KG))Lc,XG(T (Smooth(A⊗K)⊗̂KG))Lc)).

Proof. For an arbitrary G-C∗-algebra A consider the commutative diagram

XG(T (Smooth(A)⊗̂KG))Lc
∼= //

xA

��

XG(T (Smooth(C⊗A)⊗̂KG))Lc

��
XG(T (Smooth(JA)⊗̂KG))Lc //

xJA

��

XG(T (Smooth(JC⊗A)⊗̂KG))Lc

��
XG(T (Smooth(J2A)⊗̂KG))Lc //

ch(ǫA)

��

XG(T (Smooth(J2
C⊗A)⊗̂KG))Lc

ch(ǫC⊗id)

��
XG(T (Smooth(K⊗A)⊗̂KG))Lc //

ch(ιA)−1

��

XG(T (Smooth(K⊗A)⊗̂KG))Lc

ch(ιC⊗id)−1

��
XG(T (Smooth(A)⊗̂KG))Lc

∼= // XG(T (Smooth(C⊗A)⊗̂KG))Lc

where the upper part is obtain from the morphism of extensions

JA // //

��

TA // //

��

A

∼=

��
A⊗ JC // // A⊗ TC // // A⊗ C
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and a corresponding diagram with A replaced by JA. Observe that there is a
natural homomorphism D⊗̂Smooth(A)⊗̂KG → Smooth(D⊗A)⊗̂KG for every
trivial G-C∗-algebra D. For simplicity we will write Smooth(A) instead of
Smooth(A)⊗̂KG in the following commutative diagram

XG(T (C⊗̂Smooth(A)))Lc //

��

(XG(T C)Lc
⊠XG(T Smooth(A))Lc)Lc

xC⊠id

��
XG(T (JC⊗̂Smooth(A)))Lc //

��

(XG(T (JC))Lc
⊠XG(T Smooth(A))Lc)Lc

xJC⊠id

��
XG(T (J2

C⊗̂Smooth(A)))Lc //

ch(ǫC⊗̂ id)

��

(XG(T (J2
C))Lc

⊠XG(T Smooth(A))Lc)Lc

ch(ǫC)⊠id

��
XG(T (K⊗̂Smooth(A)))Lc //

ch(ιA)−1

��

(XG(T K)Lc
⊠XG(T Smooth(A))Lc)Lc

ch(ι)−1
⊠id

��
XG(T (C⊗̂Smooth(A)))Lc // (XG(T C)Lc

⊠XG(T Smooth(A))Lc)Lc

obtained using corollary 11.4. According to proposition 11.5 the first and the
last horizontal map in this diagram are homotopy equivalences. Moreover,
we may connect the right column of the first diagram with the left column
of the previous diagram. Using these observations the assertion follows from
proposition 13.2 in the same way as in [4]. �

After these preparations we shall now define the Chern-Connes character in
the odd case. For notational simplicity we assume that all G-C∗-algebras A
are replaced by their equivariant stabilizations AG. We may then use the
identification

KKG
∗ (A,B) ∼= lim−→

j

[J∗+2j(A),K⊗B]

and obtain a canonical isomorphism KKG
1 (A,B) ∼= KKG

0 (JA,B). Consider
an element u ∈ KKG

1 (A,B) and denote by u0 the element in KKG
0 (JA,B)

corresponding to u. Then the element chG
1 (u) ∈ HLG

1 (A,B) is defined by

chG
1 (u) =

√
2πi xA · chG

0 (u0)

in terms of the character in the even case obtained before. Using proposition
13.3 one concludes in the same way as in [4] that the formula

chG
i+j(x · y) = chG

i (x) · chG
j (y)

holds for all elements x ∈ KKG
i (A,B) and y ∈ KKG

j (B,C).
We have now completed the construction of the equivariant Chern-Connes char-
acter and summarize the result in the following theorem.
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Theorem 13.4. Let G be a second countable totally disconnected locally com-
pact group and let A and B be separable G-C∗-algebras. Then there exists a
transformation

chG
∗ : KKG

∗ (A,B)→ HLG
∗ (A,B)

which is multiplicative with respect to the Kasparov product in KKG
∗ and

the composition product in HLG
∗ . Under this transformation elements in

KKG
0 (A,B) induced by equivariant ∗-homomorphisms from A to B are mapped

to the corresponding elements in HLG
0 (A,B).

The transformation obtained in this way will be called the equivariant Chern-
Connes character. One shows as in nonequivariant case that, up to possibly a
sign and a factor

√
2πi, the equivariant Chern-Connes character is compatible

with the boundary maps in the six-term exact sequences associated to an ex-
tension in E.
At this point it is not clear wether the equivariant Chern-Connes character is
a useful tool to detect information contained in equivariant KK-theory. As a
matter of fact, equivariant local cyclic homology groups are not easy to cal-
culate in general. In a separate paper we will exhibit interesting situations in
which chG

∗ becomes in fact an isomorphism after tensoring the left hand side
with the complex numbers. At the same time a convenient description of the
right hand side of the character will be obtained.
Here we shall at least illustrate the nontriviality of the equivariant Chern-
Connes character in a simple special case. Assume that G is a profinite group.
The character of a finite dimensional representation of G defines an element in
the algebra R(G) = (OG)G of conjugation invariant smooth functions on G.
As usual we denote by R(G) the representation ring of G.

Proposition 13.5. Let G be a profinite group. Then the equivariant Chern-
Connes character

chG
∗ : KKG

∗ (C,C)→ HLG
∗ (C,C)

can be identified with the character map R(G) → R(G). This identification is
compatible with the products.

Proof. Let V be a finite dimensional representation of G. Then K(V ) is a
unital G-algebra and the element in R(G) = KKG

0 (C,C) corresponding to
V is given by the class of the equivariant homomorphism pV : C → K(V )
in KKG

0 (C,K(V )) ∼= KKG
0 (C,C) where pV is defined by pV (1) = idV . Us-

ing stability of HLG
∗ and proposition 8.6 we see that the class of chG

0 (pV ) in
HLG

0 (C,K(V )) ∼= HLG
0 (C,C) = R(G) corresponds to the character of the

representation V . The claim follows easily from these observations. �
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