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1 Introduction

A quadratic space over a field F is a pair (V, q) of a vector space V over F
together with a map q : V −→ F such that

• q(λx) = λ2q(x) for all λ ∈ F , x ∈ V , and

• the map bq : V × V −→ F defined by bq(x, y) = q(x + y) − q(x) − q(y)
(x, y ∈ V ) is F -bilinear.

If dimV = n < ∞, one may identify (after fixing a basis of V ) the quadratic
space (V, q) with a form (a homogeneous polynomial) of degree 2 in n variables.
Via this identification, a finite-dimensional quadratic space over F will also be
referred to as quadratic form over F . Recall that a quadratic space (V, q) is
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said to be isotropic, if there exists x ∈ V \ {0} such that q(x) = 0; otherwise,
(V, q) is said to be anisotropic.
Questions about isotropy are at the core of the algebraic theory of quadratic
forms over fields. A natural and much studied field invariant in this context is
the so-called u-invariant of a field F . If F is of characteristic not 2 and nonreal
(i.e. −1 is a sum of squares in F ), then u(F ) is defined to be the supremum of
the dimensions of anisotropic finite-dimensional quadratic forms over F . See
Section 2 for the general definition of the u-invariant. The main purpose of the
present article is to give examples of fields having infinite u-invariant but not
admitting any anisotropic infinite-dimensional quadratic space.
Assume now that the quadratic space (V, q) over F is anisotropic. For any
positive integer n ≤ dim(V ), let Vn be any n-dimensional subspace of V and
consider the restriction qn = q|Vn

. Clearly, the n-dimensional quadratic form
(Vn, qn) is again anisotropic. This simple argument shows that if there is
an anisotropic quadratic space over F of infinite dimension, then there exist
anisotropic quadratic forms over F of dimension n for all n ∈ N.
While this observation is rather trivial, it motivates us to examine the con-
verse statement. If we assume that the field F has anisotropic quadratic forms
of arbitrarily large finite dimensions, does this imply the existence of some
anisotropic quadratic space (V, q) over F of infinite dimension? As already
mentioned, this is generally not so.
It appears that originally this question has been formulated by Herbert
Gross. He concludes the introduction to his book ‘Quadratic forms in infinite-
dimensional vector spaces’ [12] (published in 1979) by the following sample of
‘a number of pretty and unsolved problems’ in this area, which we state in his
words (cf. [12], p. 3):

1.1 Question (Gross). Is there any commutative field which admits no
anisotropic ℵ0-form but which has infinite u-invariant, i.e. admits, for each
n ∈ N, some anisotropic form in n variables?

Note that implicitly, Gross is looking for a nonreal field, because anisotropic
quadratic spaces of infinite dimension always exist over real fields. (We use
the term ‘real field’ for what is often called ‘formally real field’.) Indeed, one
observes that the field F is real if and only if the infinite-dimensional quadratic
space (V, q) given by V = F (N) and q : V −→ F, (xi) 7−→

∑
x2

i is anisotropic.
By restricting to those quadratic spaces that are totally indefinite, i.e. indefinite
with respect to every field ordering, one can formulate a meaningful analogue
of the Gross Question also for real fields, to which we will provide a solution
as well.
We also study the Gross Question in characteristic 2 where one has to distin-
guish between bilinear forms and quadratic forms. For quadratic forms, one
furthermore has to distinguish the cases of nonsingular quadratic forms and of
arbitrary quadratic forms. The analogue to the Gross Question for nonsingular
quadratic forms in characteristic 2 can be treated in more or less the same way
as in characteristic not 2, simply by invoking suitable analogues of the results
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that we use in our proofs in the case of characteristic different from 2. Yet, if
translated to bilinear forms or to arbitrary quadratic forms (possibly singular)
in characteristic 2, it is not difficult to show that the Gross Question has in
fact a negative answer, in other words, the ‘bilinear’ resp. ‘general quadratic’
u-invariant is infinite if and only if there exist infinite-dimensional anisotropic
bilinear resp. quadratic spaces.

The paper is structured as follows. In the next section, we are going to discuss
in more detail the u-invariant of a field and some related concepts. In Section 3
we will give two different constructions of nonreal fields, each giving a positive
answer to the Gross Question.
All our constructions will be based on Merkurjev’s method where one starts
with an arbitrary field and then uses iterated extensions obtained by composing
function fields of quadrics to produce an extension with the desired properties.
Our first construction will show the following:

1.2 Theorem I. Let F be a field of characteristic different from 2. There
exists a field extension K/F with the following properties:

(i) K has no finite extensions of odd degree.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K that contain β.

(iii) For any k ∈ N, there is an anisotropic k-fold Pfister form over K.

In particular, K is a perfect, nonreal field of infinite u-invariant, IkK 6= 0 for
all k ∈ N, and any infinite-dimensional quadratic space over K is isotropic.

Here and in the sequel, IkF stands for the kth power of IF , the fundamental
ideal consisting of classes of even-dimensional forms in the Witt ring WF of F .
The proof of this theorem only uses some basic properties of Pfister forms
and standard techniques from the theory of function fields of quadratic forms.
Varying this construction and using this time products of quaternion algebras
and Merkurjev’s index reduction criterion (see [24] or [38], Théorème 1), we
will then show the following:

1.3 Theorem II. Let F be a field of characteristic different from 2. There
exists a field extension K/F with the following properties:

(i) K has no finite extensions of odd degree and I3K = 0.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K that contain β.

(iii) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.
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In particular, K is a nonreal field of infinite u-invariant, and any infinite-
dimensional quadratic space over K is isotropic. Furthermore, K is perfect
and of cohomological dimension 2.

In Section 4, we will show two analogous theorems for real fields.

1.4 Theorem III. Assume that F is real. Then there exists a field extension
K/F with the following properties:

(i) K has a unique ordering.

(ii) K has no finite extensions of odd degree and I3K is torsion free.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that con-
tain β.

(iv) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

In particular, K is a real field of infinite u-invariant, and any totally indef-
inite quadratic space of infinite dimension over K is isotropic; moreover, the
cohomological dimension of K(

√
−1) is 2.

While this can be seen as a counterpart to Theorem II for real fields, we can
also prove an analogue of Theorem I in this situation.

1.5 Theorem IV. Assume that F is real. Then there exists a field extension
K/F with the following properties:

(i) K has a unique ordering.

(ii) K has no finite extensions of odd degree.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that con-
tain β.

(iv) for any k ∈ N, there is an element a ∈ K× which is a sum of squares in
K, but not a sum of k squares.

In particular, K is a real field for which the Pythagoras number, the Hasse
number, and the u-invariant are all infinite, the torsion part of IkK is nonzero
for all k ∈ N, and any totally indefinite quadratic space of infinite dimension
over K is isotropic.

In Section 5, we will discuss the Gross Question for quadratic, nonsingular
quadratic, and symmetric bilinear forms in characteristic 2. As already men-
tioned, for nonsingular quadratic forms, we obtain similar results as in char-
acteristic different from 2, whereas for arbitrary quadratic forms and for sym-
metric bilinear forms the answer turns out to be negative.
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In the final Section 6, we discuss an abstract version of the Gross Question,
formulated for an arbitrary monöıd together with two subsets satisfying some
requirements. We give examples of such monöıds whose elements are well
known objects associated to an arbitrary field, such as central simple algebras
or symbols in Milnor K-theory modulo a prime p. In some of the cases that
we shall discuss, the answer to (the analogue of) the Gross Question will be
positive, in others it will be negative.

For all prerequisites from quadratic form theory in characteristic different from
2 needed in the sequel, we refer to the books of Lam and Scharlau (see [20], [21]
and [34]). In general, we use the standard notations introduced there. However,
we use a different sign convention for Pfister forms: Given a1, . . . , ar ∈ F×, we
write 〈〈a1, . . . , ar〉〉 for the r-fold Pfister form 〈1,−a1〉 ⊗ · · · ⊗ 〈1,−ar〉. If ϕ is
a quadratic form over F and n ∈ N, we denote by n× ϕ the n-fold orthogonal
sum ϕ ⊥ · · · ⊥ ϕ.
A quadratic space (V, q) is said to be nonsingular if the radical

Rad(V, q) = {x ∈ V | bq(x, y) = 0 for all y ∈ V }
is reduced to 0. Anisotropic quadratic spaces in characteristic different from 2
are obviously always nonsingular, but this need not be so in characteristic 2.
Given two quadratic spaces (resp. forms) ϕ and ψ over F . We say that ψ is a
subspace (resp. subform) of ϕ if ψ is isometric to the restriction of ϕ to some
subspace of the underlying vector space of ϕ. We write ψ ⊂ ϕ if there exists
a quadratic space τ over F such that ϕ ∼= ψ ⊥ τ . If ϕ, ψ are quadratic forms
over F with ψ nonsingular, then ψ ⊂ ϕ if and only if ψ is a subform of ϕ.
Unless stated otherwise, the terms ‘form’ or ‘quadratic form’ will always stand
for ‘nonsingular quadratic form’. A binary form is a 2-dimensional quadratic
form.
We recall the definition of the function field F (ϕ) associated to a nonsingular
quadratic form ϕ over F in characteristic different from 2. If dim(ϕ) ≥ 3
or if dim(ϕ) = 2 and ϕ is anisotropic, then F (ϕ) is the function field of the
projective quadric given by the equation ϕ = 0. We put F (ϕ) = F if ϕ is the
hyperbolic plane or if dim(ϕ) ≤ 1. We refer to [34], Chapter 4, §5, or [21],
Chapter X, for the crucial properties of function field extensions. They will
play a prominent rôle in all our constructions.
Let K/F be an arbitrary field extension. If ϕ is a quadratic form over F ,
then we denote by ϕK the quadratic form over K obtained by scalar extension
from F to K. Similarly, given an F -algebra A, we write AK for the K-algebra
A⊗F K. Central simple algebras are by definition finite-dimensional. A central
simple algebra without zero-divisors will be called a ‘division algebra’ for short.
For the basics about central simple algebras and the Brauer group of a field,
the reader is referred to [34], Chapter 8, or [31], Chapters 12-13.

2 The derived u-invariant

In this section, all fields are assumed to be of characteristic different from 2.
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The question about the existence of an anisotropic infinite-dimensional quad-
ratic space over the field F can be rephrased within the framework of finite-
dimensional quadratic form theory, as we shall see now.
We call a sequence of quadratic forms (ϕn)n∈N over F a chain of quadratic
forms over F if, for any n ∈ N, we have dim(ϕn) = n and ϕn ⊂ ϕn+1. Given
such a chain (ϕn)n∈N over F , the direct limit over the quadratic spaces ϕn

with the appropriate inclusions has itself a natural structure of a nonsingular
quadratic space over F of dimension ℵ0 (countably infinite). We denote this
quadratic space over F by limn∈N(ϕn) and observe that it is anisotropic if and
only if ϕn is anisotropic for all n ∈ N. Moreover, any infinite-dimensional
nonsingular quadratic space over F contains a subspace isometric to the direct
limit limn∈N(ϕn) for some chain (ϕn)n∈N and we thus get:

2.1 Proposition. There exists an anisotropic quadratic space of infinite di-
mension over F if and only if there exists a chain of anisotropic quadratic
forms (ϕn)n∈N over F .

Recall that a form ϕ is torsion if its Witt class is a torsion element in the Witt
ring WF . In [9], Elman and Lam defined the u-invariant of F as

u(F ) = sup {dim(ϕ) | ϕ is an anisotropic torsion form over F} .

It is well known that if F is nonreal, then any form over F is torsion, in which
case the above supremum is actually taken over all anisotropic forms over F .
If F is real, then Pfister’s Local-Global Principle says that torsion forms are
exactly those forms that have signature zero with respect to each ordering of
F (i.e. that are hyperbolic over each real closure of F ). In the remainder of
this section, we are mainly concerned with nonreal fields.

It will be convenient to consider also the following relative u-invariants. Given
an anisotropic quadratic form ϕ over F , we define

u(ϕ,F ) = sup {dim(ψ) | ψ anisotropic form over F with ϕ ⊂ ψ} .

Note that, trivially, dim(ϕ) ≤ u(ϕ,F ). If F is nonreal, we further have that
u(ϕ,F ) ≤ u(F ) with equality if dimϕ = 1. Moreover, if ϕ1 and ϕ2 are
anisotropic forms over F such that ϕ1 ⊂ ϕ2, then u(ϕ1, F ) ≥ u(ϕ2, F ).
We introduce now the derived u-invariant of F as

u′(F ) = sup {dim(ϕ) | ϕ anisotropic form over F with u(ϕ,F ) = ∞}.

Whenever there exists an anisotropic form ϕ over F with u(ϕ,F ) = ∞, we
have u′(F ) > 0; if no such forms exist, we put u′(F ) = sup ∅ = 0.

2.2 Proposition. If there exists an infinite-dimensional quadratic space over
F , then u′(F ) = ∞.

Proof. Assume that there exists an anisotropic infinite-dimensional quadratic
space over F . Then there is also a chain (ϕn)n∈N of anisotropic forms over F .
Obviously, u(ϕn, F ) = ∞ for any n ∈ N, and therefore u′(F ) = ∞.
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In particular, the proposition shows that u′(F ) = ∞ if F is a real field. Cer-
tainly, one could modify the definition of u′ to make this invariant more inter-
esting for real fields, but we will not pursue this matter here.

2.3 Proposition. Assume that F is nonreal. Then u(F ) is finite if and only
if u′(F ) = 0.

Proof. If u(F ) = ∞, then u(〈1〉, F ) = u(F ) = ∞ and thus u′(F ) ≥ 1. On the
other hand, if u(F ) <∞, then there is no anisotropic form ϕ over F such that
u(ϕ,F ) = ∞, and therefore u′(F ) = 0.

By the previous two propositions, any nonreal field F with 0 < u′(F ) <∞
will yield an example that answers the Gross Question in the positive. Now
Theorem I and Theorem II each say that nonreal fields K with u′(K) = 1 do
exist.

2.4 Lemma. For the field F ((t)) of Laurent series in the variable t over F , one
has

u′(F ((t)) ) = 2u′(F ) .

The proof of this lemma is straightforward and based on the well known rela-
tionship between quadratic forms over F and over F ((t)) (see [20], Chapter VI,
Proposition 1.9). Details are left to the reader.

2.5 Corollary. Let m ∈ N. Then there exists a nonreal field L such that
u′(L) = 2m. Moreover, L can be constructed such that in addition Im+3L = 0,
or IrL 6= 0 for all r ∈ N, respectively.

Proof. Theorem I and Theorem II, respectively, assert the existence of such
fields for m = 0. The induction step from m to m + 1 is clear from the
preceding lemma.

This raises the following question.

2.6 Question. Does there exist a nonreal field F with u′(F ) = ∞ such that
every infinite-dimensional quadratic space over F is isotropic?

3 Nonreal fields with infinite u-invariant

We are going to give a construction, in several variants, which allows us to prove
the theorems formulated in the introduction. The proof that the field obtained
by this construction has infinite u-invariant will be based on known facts about
the preservation of properties such as anisotropy of a fixed quadratic form, or
absence of zero-divisors in a central simple algebra, under certain types of field
extensions.

First, we consider a finite field extension K/F of odd degree. Springer’s The-
orem (see [20], Chapter VII, Theorem 2.3) says that any anisotropic quadratic
form over F stays anisotropic after scalar extension from F to K.
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Springer’s Theorem has an analogue in the theory of central simple algebras.
It says that if D is a (central) division algebra over F with exponent equal
to a power of 2 and if K/F is a finite field extension of odd degree, then the
K-algebra DK = D ⊗F K is also a division algebra (see [31], Section 13.4,
Proposition (vi)).
Both statements also hold in characteristic 2. One can immediately generalise
them to ‘odd’ algebraic extensions that are not necessarily finite.
An algebraic extension L/F is called an odd closure of F if L is F -isomorphic
to MG, where M is an algebraic (resp. separable) closure of F if char(F ) 6= 2
(resp. char(F ) = 2), and G is a 2-Sylow subgroup of the Galois group of M/F .
Then L itself has no odd degree extension and all finite subextensions of F
inside L are of odd degree. In particular, L is perfect if char(F ) 6= 2. We call a
field extension K/F an odd extension if it can be embedded into an odd closure
of F . In this case, K/F is algebraic, thus equal to the direct limit of its finite
subextensions, which are all of odd degree.
We thus get immediately the following (where we do not make any assumption
on the characteristic).

3.1 Lemma. Let K/F be an odd extension.

(i) Any anisotropic quadratic form over F stays anisotropic over K.

(ii) Any central division algebra of exponent 2 over F remains a division
algebra over K.

For the remainder of this section, all fields are assumed to be of characteristic
different from 2.
We now consider extensions of the type F (ϕ)/F , where F (ϕ) is the function
field of a quadratic form ϕ over F .

3.2 Lemma. Let π be an anisotropic Pfister form over F and ϕ a form over
F with dim(ϕ) > dim(π). Then π stays anisotropic over F (ϕ).

Proof. By the assumption on the dimensions, ϕ is certainly not similar to any
subform of π. Therefore, by [34], Theorem 4.5.4 (ii), πF (ϕ) is not hyperbolic.
Hence πF (ϕ) is anisotropic as it is a Pfister form (see [34], Lemma 2.10.4).

3.3 Remark. The statement of the last lemma is actually a special case of a
more general phenomenon. Let ϕ and π be anisotropic forms over F such that,
for some n ∈ N, one has dim(π) ≤ 2n < dim(ϕ). Then π stays anisotropic over
F (ϕ) (see [14]). In the particular situation where π is an n-fold Pfister form,
we immediately recover (3.2).

The next statement was the key in Merkurjev’s construction of fields of arbi-
trary even u-invariant (see [24]). It is readily derived from [38], Théorème 1.

3.4 Theorem (Merkurjev). Let D be a division algebra over F of exponent
2 and degree 2m, where m > 0. Let ϕ be a quadratic form over F such that
dim(ϕ) > 2m+ 2 or ϕ ∈ I3F . Then DF (ϕ) is a division algebra.
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3.5 Remark. It is also well known that if K/F is a purely transcendental ex-
tension, then anisotropic forms (resp. division algebras) over F stay anisotropic
(resp. division) over K. We will use this fact repeatedly, especially when
K = F (ϕ) is the function field of an isotropic quadratic form ϕ over F , in which
case F (ϕ)/F is purely transcendental of transcendence degree dim(ϕ)− 2 (see
[34], 4.5.2 (vi)).

3.6 Proof of Theorem I.

Recall that F is an arbitrary field of characteristic different from 2. We define
recursively a tower of fields (Fn)n∈N, starting with F0 = F . Suppose that for

a certain n ≥ 1 the field Fn−1 has already been defined. Let F#
n−1 be an odd

closure of Fn−1 and let

F
(n)
n−1 = F#

n−1(X
(n)
1 , . . . ,X(n)

n )

where X
(n)
1 , . . . ,X

(n)
n are indeterminates over F#

n−1. We define Fn as the free

compositum1 of all function fields F
(n)
n−1(ϕ) where ϕ ranges over all anisotropic

forms defined over Fn−1 such that, for some j < n, dim(ϕ) = 2j + 1 and ϕ
contains a binary form defined over Fj .
Let K be the direct limit of the tower of fields (Fn)n∈N. We are going to show
that the field K has the following properties:

(i) K has no finite extensions of odd degree.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K that contain β.

(iii) For any k ∈ N, there is an anisotropic k-fold Pfister form over K.

Once these are established the remaining claims in Theorem I will follow. In-
deed, (ii) implies that every infinite-dimensional quadratic space over K is
isotropic and that K is nonreal, whereas (iii) implies that u(K) = ∞ and that
IkK 6= 0 for all k ∈ N. Finally, since char(K) = char(F ) 6= 2, it follows from
(i) that K is perfect.

(i) Consider an irreducible polynomial f over K of odd degree. Then f is
defined over Fn for some n ∈ N. Since K contains Fn+1 which in turn contains
an odd closure of Fn, it follows that f has degree one. This shows that K is
equal to its odd closure.
(ii) Consider an anisotropic binary form β over K. There is some j ∈ N

such that β is defined over Fj . Let ϕ be a form of dimension 2j + 1 over K
containing β. Let n > j be an integer such that ϕ is defined over Fn−1. Then

by construction, Fn contains F
(n)
n−1(ϕ) and ϕ is therefore isotropic over Fn and

1See [21], p. 333, for a precise description of the notion of ‘free compositum’ of a family
of function fields of quadratic forms.
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thus over K. This shows that u(β,K) ≤ 2j . Here, j depends on the binary
form β, but in any case we have that u(β,K) is finite, proving (ii).
(iii) Given positive integers n and j, we write Fn,j for the compositum of Fn

with the algebraic closure of Fj inside a fixed algebraic closure of K. Similarly,

we write F#
n−1,j and F

(n)
n−1,j , for the compositum of F#

n−1, F
(n)
n−1, respectively,

with the algebraic closure of Fj .

Fn,j

k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k

Fn

compositum

F
(n)

n−1,j

k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k

F
(n)

n−1

purely transc.

F #
n−1,j

k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k
k

F #
n−1

odd

Fn−1,j

j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j
j

Fn−1

From now on, let n > j. Note that F
(n)
n−1,j = F#

n−1,j(X
(n)
1 , . . . ,X

(n)
n ) is a purely

transcendental extension of F#
n−1,j . Further, F#

n−1,j is an odd extension of
Fn−1,j . Using (3.1), it follows that every anisotropic form over Fn−1,j stays

anisotropic over F#
n−1,j , hence also over F

(n)
n−1,j . Moreover, Fn,j is obtained

from F
(n)
n−1,j as a free compositum of certain function fields F

(n)
n−1,j(ϕ) where ϕ

is a form defined over the subfield Fn−1 of F
(n)
n−1,j , either dim(ϕ) ≥ 2j+1 + 1,

or dim(ϕ) = 2ℓ + 1 with ℓ ≤ j in which case ϕ contains a binary subform

defined over Fℓ ⊂ Fj . But in this latter case, ϕ is isotropic over F
(n)
n−1,j and

thus F
(n)
n−1,j(ϕ)/F

(n)
n−1,j is purely transcendental.

Consider now an anisotropic m-fold Pfister form π defined over F
(n)
n−1,j , where

m ≤ j + 1. Since, by the above, Fn,j is obtained from F
(n)
n−1,j as a compositum

of function fields of forms of dimension at least 2j+1 + 1 and of purely tran-
scendental extensions, (3.2) and (3.5) imply that π stays anisotropic over Fn,j .

But then π stays anisotropic over F
(n+1)
n,j as well. Repeating this, we see that

π stays anisotropic over all the fields Fm,j for all m ≥ n.
Let now k be any positive integer. Let π denote the k-fold Pfister form

〈〈X(k)
1 , . . . ,X

(k)
k 〉〉. This form is defined over F

(k)
k−1. Since X

(k)
1 , . . . ,X

(k)
k are

algebraically independent over Fk−1, hence also over its algebraic closure
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Fk−1,k−1 = F#
k−1,k−1, we know that π is still anisotropic when considered

as a form over the field F
(k)
k−1,k−1 = F#

k−1,k−1(X
(k)
1 , . . . ,X

(k)
n ). Now the above

argument shows that, for any n ≥ k, the form π is anisotropic over Fn,k−1 and,
thus, over Fn. This implies that π is anisotropic over K, the direct limit of the
fields Fn.
Hence we showed that for any k ∈ N, there exists an anisotropic k-fold Pfister
form over K.

3.7 Proof of Theorem II.

Again, we define recursively a tower of fields (Fn)n∈N, starting with F0 = F .

Suppose that for a certain n ≥ 1, the field Fn−1 is defined. As before, let F#
n−1

denote an odd closure of Fn−1. This time we define

F
(n)
n−1 = F#

n−1(X
(n)
1 , Y

(n)
1 , . . . ,X(n)

n , Y (n)
n )

where X
(n)
1 , Y

(n)
1 , . . . ,X

(n)
n , Y

(n)
n are indeterminates over F#

n−1. Let Fn denote

the free compositum of the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic

form over Fn−1 such that

• ϕ is a 3-fold Pfister form, or

• dim(ϕ) = 2j+3 for some j < n and ϕ contains a binary subform defined
over Fj .

Let K be the direct limit of the tower of fields (Fn)n∈N. We want to show that
K has the following properties:

(i) K has no finite extensions of odd degree and I3K = 0.

(ii) For any binary quadratic form β over K, there is an upper bound on the
dimensions of anisotropic quadratic forms over K which contain β.

(iii) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

Note that (iii) implies that u(K) = ∞ (see [24] or [28], Lemma 1.1(d)), while
(ii) prohibits the existence of infinite-dimensional anisotropic quadratic spaces
over K. Now the field K is perfect and nonreal by (i). Furthermore, (i) and
(iii) together imply that the cohomological dimension of K is exactly 2 (see
[24]).

(i) As in the proof of Theorem I, we see that K has no finite extensions of odd
degree.
Let π be an arbitrary 3-fold Pfister form over K. It is defined as a 3-fold Pfister
form over Fn−1 for some n ≥ 1. By the construction of the field Fn, π becomes
isotropic over Fn and thus over K. Hence, every 3-fold Pfister form over K is
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isotropic and therefore hyperbolic. Since I3K is additively generated by the
3-fold Pfister forms over K (see [34], p. 156), we conclude that I3K = 0.
(ii) Let β be an anisotropic binary form over K. There is an integer j ∈ N

such that β is defined over Fj . Let ϕ be any form of dimension 2j + 3 over K
containing β. There is some integer n > j such that ϕ is defined over Fn−1.
Since F#

n−1(ϕ) is part of the compositum Fn, ϕ becomes isotropic over Fn and
thus over K. Therefore u(β,K) ≤ 2j + 2, establishing (ii).

(iii) For positive integers n and j, we denote by Fn,j , F
#
n−1,j , F

(n)
n−1,j the compo-

sita of the fields Fn, F#
n−1, F

(n)
n−1, respectively, with the algebraic closure of Fj

inside a fixed algebraic closure of K.
Assume from now on that n > j. Similarly as in the proof of Theorem I,

we have that F
(n)
n−1,j is equal to F#

n−1,j(X
(n)
1 , Y

(n)
1 , . . . ,X

(n)
n , Y

(n)
n ), a purely

transcendental extension of F#
n−1,j , which in turn is an odd extension of Fn−1,j .

Using (3.1) and (3.5), it follows that every division algebra of exponent 2 over

Fn−1,j remains a division algebra after scalar extension to F
(n)
n−1,j .

Moreover, Fn,j is obtained from F
(n)
n−1,j as a free compositum of certain function

fields F
(n)
n−1,j(ϕ) where ϕ is a form defined over F

(n)
n−1,j which is either a 3-fold

Pfister form, or which has dimension at least 2j+3, or which contains a binary

form defined over Fj and thus is isotropic over F
(n)
n−1,j . Hence, by (3.4) and

(3.5), any division algebra over F
(n)
n−1,j of exponent 2 and of degree at most 2j

remains a division algebra after scalar extension to the field Fn,j .

Consider now a central simple algebra D of exponent 2 and degree 2j over F
(j)
j−1

for some j ∈ N. Assume that for some n > j, the algebra D will stay a division

algebra after extending scalars to F
(n)
n−1,j . Combining the observations above,

we see that D also remains a division algebra when we extend scalars to Fn,j ,

or even to F
(n+1)
n,j . Repeating this argument shows that D will stay a division

algebra after scalar extension to F
(N)
N−1,j for any N ≥ n.

Let now k be a positive integer and let D denote the tensor product of

quaternion algebras (X
(k)
1 , Y

(k)
1 ) ⊗ · · · ⊗ (X

(k)
k , Y

(k)
k ) over the field F

(k)
k−1. This

is a division algebra over F
(k)
k−1 of degree 2k and of exponent 2. Since

X
(k)
1 , Y

(k)
1 , . . . ,X

(k)
k , Y

(k)
k are algebraically independent over the field Fk−1,

hence also over its algebraic closure Fk−1,k−1 = F#
k−1,k−1, it follows that

D
F

(k)
k−1,k−1

is a division algebra over the field F
(k)
k−1,k−1. Now the argument

above applies, showing that DFn,k−1
is a division algebra over Fn,k−1 for any

n ≥ k. But then DFn
is a division algebra for any n ≥ k, implying that the

tensor product of k quaternion algebras DK is a division algebra over K.

3.8 Remark. At first glance, it may seem that the fields K constructed in
the proofs of the theorems are horrendously big. However, a closer inspection
of the proofs reveals that if the field F we start with is infinite, the field K
obtained by the construction will have the same cardinality as F . For example,
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if we start with F = Q, then the field K will be countable and thus can be
embedded into C.

4 Real fields and totally indefinite spaces

In our answer to the Gross Question, we had to construct a field F which in
particular has the property that all infinite-dimensional quadratic spaces over
F are isotropic. A real such field cannot exist as mentioned previously. In
fact, for a quadratic space ϕ (of finite or infinite dimension) over a real field
F to be isotropic, a necessary condition is that ϕ be totally indefinite, i.e.
indefinite with respect to each ordering. To get a meaningful analogue to the
Gross Question in the case of real fields, it is therefore reasonable to restrict our
attention to quadratic spaces that are totally indefinite. We start this section
with the definition of this notion and some general observations before proving
the ‘real’ analogues to the constructions that answer the Gross Question.

Let F be real and let P be an ordering on F with corresponding order relation
<P . A quadratic space (V, q) over F is said to be indefinite at P , if there exist
elements v1, v2 ∈ V such that q(v1) <P 0 <P q(v2). If (V, q) is indefinite at
every ordering of F , then we say that (V, q) is totally indefinite. Note that
this definition of (total) indefiniteness extends the common one for quadratic
forms. (By definition, if F is nonreal, every form over F is totally indefinite.)
The Hasse number ũ of F is defined by

ũ(F ) = sup {dim(ϕ) | ϕ anisotropic, totally indefinite form over F} .

Since any nontrivial torsion form is obviously totally indefinite, one has u(F ) ≤
ũ(F ). On the other hand, there are examples of real fields F where u(F ) <∞
while ũ(F ) = ∞. For a survey on the possible pairs of values (u(F ), ũ(F )), we
refer to [15].
Recall that the Pythagoras number p(F ) of F is the least integer m ≥ 1 such
that every sum of squares is a sum of m squares in F if such an m exists,
otherwise p(F ) = ∞. It is well known and not difficult to see that if p(F ) = ∞,
then also u(F ) = ũ(F ) = ∞, and if u(F ) > 0 then p(F ) ≤ u(F ).
The following observation is useful when dealing with infinite-dimensional to-
tally indefinite quadratic spaces.

4.1 Proposition. Every totally indefinite quadratic space over a real field
F contains a finite-dimensional, nonsingular, totally indefinite quadratic sub-
space.

Proof. Let (V, q) be a totally indefinite quadratic space over F . We may assume
(V, q) nonsingular. If (V, q) is isotropic then it contains a hyperbolic plane which
yields the desired subspace. Hence, we may assume that (V, q) is anisotropic.
In particular, any subspace of (V, q) is nonsingular. After scaling we may
furthermore assume that there exists a vector v0 ∈ V with q(v0) = 1. Since
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(V, q) is totally indefinite, for each ordering P there exists a vector vP ∈ V
such that q(vP ) <P 0.
Recall that the set of all orderings of F , denoted byXF , is a compact topological
space that has as a subbasis the clopen sets

H(a) = {P ∈ XF | a ∈ P}

(see [32], Theorem 6.5). We put aP = q(vP ) for every P ∈ XF . Clearly,
P ∈ H(−aP ) and hence XF =

⋃
P∈XF

H(−aP ). The compactness of XF thus
yields that there are finitely many orderings P1, . . . , Pn ∈ XF such that

XF = H(−aP1
) ∪ · · · ∪H(−aPn

).

We put vi = vPi
for 1 ≤ i ≤ n. By the last equality, for each ordering P of F

we have q(vi) <P 0 for at least one i ∈ {1, . . . , n}.
Let W be the subspace of V generated by the vectors v0, v1, . . . , vn. Then
it follows that (W, q) is an anisotropic, finite-dimensional, totally indefinite
subspace of (V, q).

Recall that any ordering P of F can be extended to the odd closure of F as
well as to any purely transcendental extension of F . From [10], Theorem 3.5,
Remark 3.6, we cite the following simple criterion for when an ordering can be
extended to the function field of a given quadratic form.

4.2 Lemma. Let P be an ordering of F and let {ϕi} be any family of quadratic
forms over F of dimension at least 2. Then P can be extended to the free
compositum of the F (ϕi) if and only if each ϕi is indefinite at P .

We are now going to modify the constructions presented in the last section and
prove the remaining two theorems formulated in the introduction.

4.3 Proof of Theorem III.

This time, starting with the real field F = F0 and any ordering P0 on it, we
construct a tower of fields with orderings (Fn, Pn)n∈N, where the ordering Pn+1

on Fn+1 extends the ordering Pn on Fn for all n. Suppose now that the pair
(Fn−1, Pn−1) has been defined for a certain n ≥ 1. Let F#

n−1 denote an odd

closure of Fn−1 and let P#
n−1 be any ordering on F#

n−1 extending Pn−1. Let

F
(n)
n−1 = F#

n−1(X
(n)
1 , Y

(n)
1 , . . . ,X(n)

n , Y (n)
n )

where X
(n)
1 , Y

(n)
1 , . . . ,X

(n)
n , Y

(n)
n are indeterminates over F#

n−1. Let P
(n)
n−1 be

any ordering on F
(n)
n−1 extending P#

n−1. Let now Fn be the free compositum of

the function fields F
(n)
n−1(ϕ) where ϕ is an anisotropic form over Fn−1 such that

• ϕ is a 3-fold Pfister form and indefinite at Pn−1, or

• dim(ϕ) = 2j + 3 for some j < n, and ϕ contains a binary form defined
over Fj and indefinite at Pj .
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Note that considered as forms over F
(n)
n−1 and by the construction of our order-

ings, all the above forms are in fact totally indefinite at P
(n)
n−1. By (4.2), the

ordering P
(n)
n−1 extends to an ordering Pn on Fn. In particular, Fn is a real

field.
Note that, for any 2-fold Pfister form ρ over Fn−1 and any a ∈ Fn−1, at least
one of the 3-fold Pfister forms ρ⊗ 〈〈a〉〉 and ρ⊗ 〈〈−a〉〉 is indefinite at Pn−1 and
thus becomes hyperbolic over Fn by the construction of this field.
Let K be the direct limit of the tower of fields (Fn)n∈N. We will show that K
has the following properties:

(i) K has a unique ordering which is given by P =
⋃

n∈N
Pn.

(ii) K has no finite extensions of odd degree and I3K is torsion free.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K that
contain β.

(iv) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

Once these properties of K are established, the remaining claims in Theorem
III are immediate consequences:

• K is a real field and by (iii) and (4.1), every infinite-dimensional aniso-
tropic quadratic space over K is definite with respect to the unique or-
dering.

• (i) implies that K is SAP (see, e.g., [32], § 9, for the definition of and some
facts about SAP), I3K is torsion free, and (iv) implies that the symbol
length λ(K) of K is infinite. (Recall that the symbol length λ(K) is
the smallest m ∈ N such that each central simple algebra of exponent 2
over K is Brauer equivalent to a tensor product of at most m quaternion
algebras provided such an integer exists, otherwise λ(K) = ∞.) It follows
from [15], Theorem 1.5, that u(K) = ∞.

• (i) and (ii) yield that the cohomological dimension of K(
√
−1) is at most

2. (iv) then implies that it is exactly 2.

We now proceed to the proof of (i)–(iv).

(i) Since all the fields Fn (n ∈ N) are real, the same holds for K. It follows
from what we observed during the construction above that, for any a ∈ K×,
one of the forms 〈〈−1,−1, a〉〉 and 〈〈−1,−1,−a〉〉 is hyperbolic over K, which
means that either a or −a is a sum of four squares in K. This shows that
K is uniquely ordered. It is clear that the unique ordering on K is given by⋃

n∈N
Pn.

(ii) There is no change — compared to the previous constructions — in the
argument that K has no finite extensions of odd degree.
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The torsion subgroup of I3K is generated by those 3-fold Pfister forms over K
that are torsion. Indeed, this is a general fact (see [2], Corollary 2.7) which,
however, could be proven very easily in our particular situation where K is
uniquely ordered.

Let π be any torsion 3-fold Pfister form over K. Then π is defined as a 3-fold
Pfister form over Fn−1 for some n ≥ 1. Since the unique ordering on K extends
the ordering Pn−1 on Fn−1, it follows that π (considered as 3-fold Pfister form
over Fn−1) is indefinite at Pn−1. The construction of Fn then yields that π
becomes isotropic and hence hyperbolic over Fn. Therefore, π is hyperbolic
over K. This shows that I3K is torsion free.

(iii) Since K has a unique ordering, every (totally) indefinite form over K
contains an indefinite binary subform. Hence, (iii) needs only to be proven for
binary indefinite forms β. The proof goes along the same lines as that of (ii)
in Theorem II.

(iv) This part is identical to the corresponding part (iii) in the proof of The-
orem II.

4.4 Proof of Theorem IV.

Again, starting with the real field F = F0 and any ordering P0 on it, we define
a tower of ordered fields (Fn, Pn)n∈N where the ordering Pn+1 on Fn+1 extends
the ordering Pn on Fn for all n.

Suppose that for a certain n ≥ 1 the pair (Fn−1, Pn−1) is already defined. Let

F#
n−1 be an odd closure of Fn−1 and let F

(n)
n−1 be the rational function field

F#
n−1(X

(n)). As before, Pn−1 extends to some ordering P#
n−1 of F#

n−1 which

in turn extends to an ordering P
(n)
n−1 on F

(n)
n−1 = F#

n−1(X
(n)) at which X(n) is

positive.

We define Fn to be the free compositum of all function fields F
(n)
n−1(ϕ) where

ϕ is an anisotropic form defined over Fn−1 such that, for some j < n, we have
dim(ϕ) = 2j + 1 and ϕ contains an binary form which is defined over Fj and

indefinite at Pj . By (4.2), P
(n)
n−1 extends to an ordering Pn of Fn.

Let K be the direct limit of the tower (Fn)n∈N. We are going to establish the
following properties:

(i) K has a unique ordering which is given by P =
⋃

n∈N
Pn.

(ii) K has no finite extensions of odd degree.

(iii) For any totally indefinite quadratic form β over K, there is an upper
bound on the dimensions of anisotropic quadratic forms over K which
contain β.

(iv) for any k ∈ N, there is an element a ∈ K× which is a sum of squares in
K, but not a sum of k squares.
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Note that (iv) implies that the Pythagoras number of K is infinite, which in
turn forces the Hasse number and the u-invariant of K to be infinite as well. As
before, (iii) implies that every infinite-dimensional anisotropic quadratic space
over K is definite with respect to the unique ordering of K.

(i) Since each Fn is real, so is the direct limit K. Consider an arbitrary element
a ∈ K×. Then a ∈ Fn for some n ∈ N. Now either 〈1,−a〉 or 〈1, a〉 is indefinite
at Pn. Therefore, by construction, either 2n × 〈1〉 ⊥ 〈−a〉 or 2n × 〈1〉 ⊥ 〈a〉
becomes isotropic over the field Fn+1. Hence, a or −a is a sum of 2n squares
in K. It readily follows that K has a unique ordering given by

⋃
n∈N

Pn.

(ii) K is equal to its odd closure, by the same arguments as before.

(iii) The argument here is the same as for (iii) in the last proof.

(iv) We denote by Fn−1,j , F
#
n−1,j , and F

(n)
n−1,j , the composita of Fn−1, F

#
n−1,

and F
(n)
n−1, respectively, with the real closure of Fj at the ordering Pj . Assume

now that n > j. Then we observe as before that every anisotropic quadratic

form defined over Fn−1,j stays anisotropic over F
(n)
n−1,j . Note that Fn,j is ob-

tained from F
(n)
n−1,j as a compositum of function fields F

(n)
n−1,j(ϕ) where ϕ is

a form defined over F
(n)
n−1,j which is either of dimension at least 2j+1 + 1, or

which contains a binary form defined over Fj and indefinite at Pj and which

is therefore isotropic over F
(n)
n−1,j . As in part (iii) of the proof of Theorem I,

we conclude that if π is an anisotropic m-fold Pfister form over F
(n)
n−1,j with

m ≤ j + 1, then π stays anisotropic over Fn,j .

Let now k ∈ N. Then the (k + 1)-fold Pfister form 2k × 〈〈X(k)〉〉 is defined

over F
(k)
k−1 and is still anisotropic over F

(k)
k−1,k−1. It follows now from the above

arguments that this form stays anisotropic over Fn,k−1, for all n > k. In
particular, 2k × 〈〈X(k)〉〉 is anisotropic over all fields Fn for n ≥ k, thus also
over K. This shows that the element X(k) is not a sum of 2k squares in K. On
the other hand, by the construction we have X(k) ∈ P , so that X(k) is a sum
of squares in K, by (i).

5 Fields of characteristic 2

Throughout this section, all fields considered will be of characteristic 2. To
translate the Gross Question into this setting, we have to take into account
the different types of objects for which analogous problems might be formu-
lated: quadratic, nonsingular quadratic, and symmetric bilinear spaces. We
maintain the convention to use the term ‘form(s)’ for finite-dimensional spaces.
For nonsingular quadratic forms we shall obtain analogues to Theorems I and
II stated in the introduction, thus obtaining a positive answer to (the corre-
sponding formulation of) the Gross Question in this case, too. On the other
hand, for arbitrary quadratic forms as well as for symmetric bilinear forms, the
corresponding answer turns out to be negative. In fact, this is relatively easy
to prove, so we treat these types of forms first.
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We refer the reader to [3], [30], or [16] for further details on notation, termi-
nology and basic results on quadratic and bilinear forms in characteristic 2.
Let (V, q) be a quadratic space over a field F of characteristic 2 and bq : V ×V →
F its associated bilinear form given by bq(x, y) = q(x+ y)+ q(x)+ q(y). Recall
that the radical of (q, V ) is the F -subspace

V ⊥ = Rad(q, V ) = {x ∈ V | bq(x, y) = 0 for all y ∈ V } .

The quadratic space (V, q) is said to be

• nonsingular if V ⊥ = 0;

• singular if V ⊥ 6= 0;

• totally singular if V ⊥ = V .

If we write V = V0⊕V ⊥ and we put q0 = q|V0
and qts = q|V ⊥ , then q ∼= q0 ⊥ qts

with q0 nonsingular and qts totally singular. If we also have q ∼= ϕ0 ⊥ ϕts with
ϕ0 nonsingular and ϕts totally singular, then qts ∼= ϕts (any isometry maps
radicals bijectively to radicals), but q0 and ϕ0 might not be isometric. Note
that (V, q) is totally singular if and only if q(x+y) = q(x)+q(y) for all x, y ∈ V .
For a, b ∈ F , the 2-dimensional quadratic form aX2+XY +bY 2 is nonsingular,
and we will denote it by [a, b]. The hyperbolic plane is then the form H =
[0, 0] = XY . For a1, . . . , as ∈ F , the s-dimensional quadratic form

∑s
i=1 aiX

2
i

is totally singular, and it will be denoted by 〈a1, . . . , as〉.
Let now q be a quadratic form over F and let n = dim(q). Then there exist
r, s ∈ N with 2r + s = n and a1, b1, . . . , ar, br, c1, . . . , cs ∈ F such that

q ∼= [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, . . . , cs〉 ,

and we clearly have qts ∼= 〈c1, . . . , cs〉. In particular, nonsingular quadratic
forms are always of even dimension.

There are two versions of the u-invariant in characteristic 2, referring to the
different types of quadratic forms, denoted by u and û, respectively. They are
defined as follows:

u(F ) = sup{dim(q) | q anisotropic nonsingular quadratic form over F}
û(F ) = sup{dim(q) | q anisotropic quadratic form over F}

Clearly, we have u(F ) ≤ û(F ), and u(F ) is always even if finite.
One could define corresponding u-invariants also for the classes of anisotropic
symmetric bilinear forms, and of anisotropic totally singular quadratic forms,
respectively, but (5.3) below will show that both suprema thus obtained coin-
cide with [F : F 2], the degree of inseparability of F .

We will now concentrate for a moment on totally singular quadratic spaces, a
case that is very easy to treat.
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For a field F of characteristic 2 we fix an algebraic closure F and put
√
F =

{x ∈ F | x2 ∈ F}. Note that
√
F/F is a purely inseparable algebraic field

extension of degree [F : F 2]. Hence the squaring map sq : x 7→ x2 yields a
quadratic map sqF :

√
F → F over F , and the quadratic space (

√
F , sqF ) is

clearly of dimension [F : F 2].

5.1 Proposition. Let F be a field of characteristic 2. The quadratic space
(
√
F , sqF ) is anisotropic, totally singular, and of dimension [F : F 2]. Any

anisotropic totally singular quadratic space over F is isometric to a subspace
of (

√
F , sqF ).

Proof. The first part is obvious. Consider now a totally singular quadratic
space (V, q) over F and assume that it is anisotropic. We define

ρ : V −→
√
F , v 7−→

√
q(v) .

Since q is totally singular, ρ is F -linear and we have sqF ◦ ρ = q. Since
furthermore q is anisotropic, ρ is injective and thus (V, q) is isometric to the
subspace (ρ(V ), sqF |ρ(V )) of (

√
F , sqF).

We will now briefly look at symmetric bilinear spaces (V, b) over a field F of
characteristic 2. A symmetric bilinear space (V, b) is said to be isotropic if
there exists x ∈ V \ {0} such that b(x, x) = 0, anisotropic otherwise. In other
words, (V, b) is anisotropic if and only if (V, qb) is so, where qb : V → F is the
induced quadratic map defined by qb(x) = b(x, x).

5.2 Lemma. Let F be a field of characteristic 2 and V an F -vector space.
There exists an anisotropic symmetric bilinear map b : V × V → F if and only
if there exists an anisotropic totally singular quadratic map q : V → F .

Proof. By definition, a symmetric bilinear map b : V × V → F is anisotropic
if and only if the associated totally singular quadratic map qb : V → F is so.
Now, given an anisotropic totally singular quadratic map q : V → F , it is not
difficult to construct a symmetric bilinear map b : V ×V → F such that q = qb.
In fact, picking some F -basis (ei)i∈I of V , we can define b by b(ei, ej) = δijq(ei)
for i, j ∈ I. All this implies the claim.

The previous two statements readily imply the following.

5.3 Corollary. Let F be a field of characteristic 2. Then [F : F 2] = ∞ if and
only if there exist anisotropic totally singular quadratic spaces and anisotropic
symmetric bilinear spaces of infinite dimension over F . Moreover, if [F : F 2] <
∞, then

[F : F 2] = sup {dim(q) | q anisotr. tot. singular quadratic form over F}
= sup {dim(b) | b anisotr. symmetric bilinear form over F}
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We next consider general quadratic forms in characteristic 2 and the corre-
sponding û-invariant. The second part of the following statement is [22], Corol-
lary 1.

5.4 Proposition. Let F be a field of characteristic 2. Then û(F ) <∞ if and
only if [F : F 2] <∞, in which case

[F : F 2] ≤ û(F ) ≤ 2[F : F 2] .

Proof. If [F : F 2] = ∞ then the last corollary readily implies that û(F ) = ∞.
Now suppose [F : F 2] < ∞. Then [F : F 2] ≤ û(F ) also follows from the
corollary. To prove the second inequality, consider an anisotropic quadratic
form q over F , say,

q = [a1, b1] ⊥ · · · ⊥ [ar, br] ⊥ 〈c1, . . . , cs〉 , a1, b1, . . . , ar, br, c1, . . . , cs ∈ F.

Then the totally singular subform 〈a1, . . . , ar, c1, . . . , cs〉 is anisotropic as well,
hence r + s ≤ [F : F 2] and thus dim(q) ≤ 2 [F : F 2]. It follows that û(F ) ≤
2 [F : F 2].

So far we have shown in this section that the Gross Question (1.1) has actually
a negative answer when it is reformulated for general quadratic forms, for
totally singular quadratic forms, or for symmetric bilinear forms over a field of
characteristic 2.
Let us now return to the case of nonsingular quadratic forms and spaces. To
motivate the Gross Question (1.1), we first shall show that the existence of an
infinite-dimensional anisotropic nonsingular quadratic space implies the exis-
tence of such spaces in every finite even dimension. Again, for quadratic forms
ϕ and ψ over F we write ϕ ⊂ ψ if there exists a quadratic form τ such that
ψ ∼= ϕ ⊥ τ . It is clear that if any two of the quadratic forms ϕ, ψ, τ are
nonsingular, then so is the third.
We call a sequence of nonsingular quadratic forms (ϕn)n∈N over F a chain of
nonsingular quadratic forms over F if, for any n ∈ N, we have dim(ϕn) = 2n
and ϕn ⊂ ϕn+1. Note that we need even dimension for nonsingularity. Given
such a chain (ϕn)n∈N over F , the direct limit over the quadratic spaces ϕn

with the appropriate inclusions is again a nonsingular quadratic space over F
of countably infinite dimension. We denote this quadratic space over F by
limn∈N(ϕn) and observe that it is anisotropic if and only if ϕn is anisotropic
for all n ∈ N.

5.5 Lemma. Any infinite-dimensional nonsingular quadratic space over F has
a subspace isometric to limn∈N(ϕn) for some chain (ϕn)n∈N of nonsingular
quadratic forms.

Proof. Let (V, q) be nonsingular with dim(V ) = ∞ and let b = bq.
(i) Let x ∈ V \ {0}. The nonsingularity implies the existence of y ∈ V such
that b(x, y) 6= 0. Clearly, x and y are linearly independent as b(x, x) = 0. Let
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U1 ⊂ V be the subspace spanned by x and y. Let ϕ1 = q|U1
. One readily sees

that ϕ1 is nonsingular.
(ii) If U ⊂ V is any finite-dimensional subspace with q|U nonsingular, then the
usual argument shows that V = U ⊕ U⊥, where U⊥ = {v ∈ V | b(v, U) = 0}
(see, e.g., [34], Chapter 1, Lemma 3.4). Note that in this situation, the non-
singularity of (q, V ) implies that of q|U⊥ .
Using (i) and (ii), the lemma follows immediately by induction.

As a direct consequence, we obtain the following:

5.6 Proposition. There exists an anisotropic nonsingular quadratic space of
infinite dimension over F if and only if there exists a chain of anisotropic
nonsingular quadratic forms (ϕn)n∈N over F .

Before we state the analogues of Theorems I and II in characteristic 2, we have
to recall a few more definitions and facts.
Let WF denote the Witt ring of nonsingular bilinear forms over F , and WqF
the Witt group of nonsingular quadratic forms, which is in fact a WF -module.
The fundamental ideal of classes of even-dimensional bilinear forms in WF will
be denoted by IF , and its nth power by InF . We put In

q F = In−1F ·WqF .
Then In

q F is the submodule of WqF generated (as a group) by the n-fold
quadratic Pfister forms

〈〈a1, . . . , an]] = 〈1, a1〉b ⊗ · · · ⊗ 〈1, an−1〉b ⊗ [1, an] ,

with a1, . . . , an−1 ∈ F× and an ∈ F ; here, we denote a diagonal bilinear form
with c1, . . . , cm in the diagonal by 〈c1, . . . , cm〉b.
Quadratic Pfister forms in characteristic 2 have properties quite analogous to
those in characteristic different from 2. For example they are either anisotropic
or hyperbolic (i.e. isometric to an orthogonal sum of hyperbolic planes).
Function fields of nonsingular quadratic forms are defined as in characteristic
different from 2, again with the convention that F (H) = F . If q is a nonsingular
quadratic form of dimension 2m > 0, then F (q)/F can be realized as a purely
transcendental extension of F of transcendence degree 2m − 2 followed by a
separable quadratic extension, and F (q)/F is purely transcendental if and only
if q is isotropic.
Recall that (3.1) and (3.5) remain true in characteristic 2: anisotropic quadratic
forms (resp. division algebras of exponent a 2-power) over F stay anisotropic
(resp. division) over any odd extension of F and equally over any purely
transcendental extension of F .
Also, (3.2) stays true in characteristic 2 for nonsingular forms: if π is an
anisotropic n-fold quadratic Pfister form and q is any nonsingular form with
dim(q) > 2n, then πF (q) is anisotropic. This follows simply by invoking the
characteristic 2 analogues of the facts referred to in the proof of (3.2) (see, e.g.
[16], Theorem 4.2(i), 4.4).
The characteristic 2 version of Theorem I reads as follows.
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5.7 Theorem I(2). Let F be a field with char(F ) = 2. There exists a field
extension K/F with the following properties:

(i) K has no finite extensions of odd degree.

(ii) For any binary nonsingular quadratic form β over K, there is an upper
bound on the dimensions of anisotropic nonsingular quadratic forms over
K that contain β.

(iii) For any k ∈ N, there is an anisotropic k-fold quadratic Pfister form
over K.

In particular, K has infinite u-invariant, Ik
qK 6= 0 for all k ∈ N, and any

infinite-dimensional nonsingular quadratic space over K is isotropic.

Note that we cannot possibly expect K to be perfect. Indeed, u(F ) = ∞
implies û(F ) = ∞ and thus [K : K2] = ∞ by (5.4).
Using the above mentioned facts on nonsingular forms, quadratic Pfister forms
and function fields of nonsingular forms, the proof of Theorem I now easily
adapts to become a proof of Theorem I(2). Indeed, it suffices to add the
adjective ‘nonsingular’ whenever a quadratic form is mentioned in the proof
and to replace ‘Pfister form’ by ‘quadratic Pfister form’ (with the appropriate
notation). Also, expressions of type 2j +1 referring to the dimension of a form
must be replaced by 2j +2 as nonsingularity requires even dimension. We leave
the details to the reader.
To treat the characteristic 2 version of Theorem II, we need a few more facts
about quaternion algebras and their products over fields of characteristic 2.
A quaternion algebra (a, b]F , with a ∈ F× and b ∈ F , is a 4-dimensional central
simple F -algebra generated by two elements x, y subject to the relations x2 = a,
y2 + y = b, xy = (y + 1)x.
We now list some relevant facts that allow us to carry over the proofs from
characteristic different from 2 to characteristic 2.

5.8 Proposition. Let a1 . . . , an ∈ F× and b1, . . . , bn ∈ F be such that
A = (a1, b1]F ⊗ · · · ⊗ (an, bn]F is a division algebra. Then the following hold:

(i) The nonsingular (2n+ 2)-dimensional quadratic form

ϕ = [1, b1 + · · · + bn] ⊥ a1[1, b1] ⊥ · · · ⊥ an[1, bn]

is anisotropic.

(ii) For any field extension K/F of one of the following types, the K-algebra
AK = A⊗F K is a division algebra and ϕK is anisotropic:

• K/F is an odd extension;

• K = F (q) where q is a nonsingular quadratic form q such that
dim q ≥ 2n+ 4 or q ∈ I3

qF ;
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• K/F is purely transcendental.

Proof. (i) This is [23], Proposition 6.
(ii) By Part (i) it suffices to prove in each case that AK is a division algebra.
For a purely transcendental extension K/F this is obvious, and for an odd
extension it is also clear as the index of A is a 2-power. In the case K = F (q),
this follows from [23], Theorems 3 and 4.

5.9 Corollary. Suppose that for every n ∈ N there exist a1, . . . , an ∈ F×

and b1, . . . , bn ∈ F such that (a1, b1]F ⊗ · · · ⊗ (an, bn]F is a division algebra.
Then u(F ) = ∞.

The characteristic 2 version of Theorem II reads as follows.

5.10 Theorem II(2). Let F be a field with char(F ) = 2. There exists a field
extension K/F with the following properties:

(i) K has no finite extensions of odd degree and I3
qK = 0.

(ii) For any binary nonsingular quadratic form β over K, there is an upper
bound on the dimensions of anisotropic nonsingular quadratic forms over
K that contain β.

(iii) For any k ∈ N, there is a central division algebra over K that is decom-
posable into a tensor product of k quaternion algebras.

In particular, K has infinite u-invariant and every infinite-dimensional non-
singular quadratic space over K is isotropic.

Using (5.8) and (5.9), it is now straightforward to obtain a proof of Theorem
II(2) by applying the appropriate changes to the proof of Theorem II, in a
similar fashion as was done in the case of Theorem I(2). This time, it is
expressions of type 2j + 3 in the proof of Theorem II which must be replaced
by 2j + 4 because of the nonsingularity of the forms considered. Again, we
leave the details to the reader.

5.11 Remark. In Theorem II (where char(K) 6= 2), the facts that K has no
odd degree extensions and that I3K = 0 but I2K 6= 0 together imply that K
has cohomological dimension cd(K) = 2.
In Theorem II(2) (where char(K) = 2) we have again that K has no odd
degree extension. This implies in particular that any finite separable extension
L/K also has this property, and therefore H1(L, µp) = L×/L×p vanishes for
every finite separable extension L/K and every odd prime p. This implies that
cdp(K) = 0 for the cohomological p-dimension of K for any odd prime p (see
[37], II.1.2 and II.2.3).
On the other hand, cd2(F ) ≤ 1 holds for any field F of characteristic 2
(see [37], II.2.2). In our case, there exist anisotropic nonsingular forms of
dimension at least 2 over K, thus there certainly are separable quadratic
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extensions over K. This readily implies that cd2(K) = 1 and therefore
cd(K) = sup{cdp(K) | p prime} = 1.
However, rather than considering cd2(F ) for a field F with char(F ) = 2, it
is perhaps more meaningful to ask for the separable 2-dimension dimsep

2 (F ) as
defined by P. Gille [11]:

dimsep
2 (F ) = sup{r ≥ 0 |Hr

2 (E) 6= 0 for some finite separable ext. E/F} ,

where the Hn
2 (F ) (n ≥ 0) are Kato’s cohomology groups for a field F with

char(F ) = 2 (see, e.g., [19]).
In the situation of Theorem II(2), we have a field K of characteristic 2 with no
odd degree extension and I3

qK = 0. By Kato’s proof of the Milnor conjecture
in characteristic 2 in [19], we have H3

2 (K) = 0. Furthermore, by Galois theory,
if L/K is a finite separable extension then [L : K] is a 2-power and L/K can
be obtained as a tower of separable quadratic extensions. But for any field F
of characteristic 2 and any separable quadratic extension E/F , we have that
Hn

2 (F ) = 0 implies Hn
2 (E) = 0 (see, e.g., [4], 6.6). All this together implies that

H3
2 (L) = 0 for every finite separable extension L of K, therefore dimsep

2 (K) = 2
(note that I2

qK 6= 0).

6 Analogues of the Gross Question

Let (M, ∗, ε) be a monöıd (associative semi-group) with neutral element ε. Let
A and S be nonempty subsets of M with ε /∈ S ⊂ A ⊂ M. Denoting by
〈S〉 the submonöıd of M generated by S, we furthermore assume that for any
a, b ∈ 〈S〉, if a ∗ b ∈ A then a, b ∈ A.
We now define a U -invariant for this triple (M,A,S) by

UM(A,S) = sup {m ∈ N | ∃s1, . . . , sm ∈ S with s1 ∗ · · · ∗ sm ∈ A} .

These definitions have of course been motivated by our investigations of
quadratic forms. More precisely, let F be a field with char(F ) 6= 2. Then
we take M to be the set of nonsingular quadratic forms (up to isometry) over
F , the operation ∗ the orthogonal sum, ε the trivial (0-dimensional) quadratic
form, A the set of anisotropic forms over F , and S the set of 1-dimensional
(nonzero) quadratic forms over F . In this setting, UM(A,S) is nothing else
but u(F ).
The Gross Question has now an obvious reformulation in this more abstract
setting.

6.1 Question. Suppose that UM(A,S) = ∞. Does there exist a sequence
(sn)n∈N ⊂ S such that s1 ∗ · · · ∗ sn belongs to A for every n ∈ N?

We proved that this does not always hold for anisotropy of quadratic forms over
a field F . We will now pass from quadratic forms to other types of algebraic
objects defined over a field that also naturally give rise to a triple (M,A,S),
and we will sketch answers to the above question in these new contexts.
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Symbol algebras

Let F be a field and n ≥ 2 be an integer. We assume that char(F ) does not
divide n, and that F contains a primitive nth root of unity ζ which we fix.
An F -algebra generated by two elements x, y subject to the relations xn = a,
yn = b, xy = ζyx, where a, b ∈ F×, is denoted by (a, b)n and called an n-
symbol algebra over F . Note that (a, b)n is a central simple F -algebra of degree
n. For n = 2, we recover the case of quaternion algebras. For basic properties
of symbol algebras, we refer to [7], §11 (there, such algebras are called ‘power
norm residue algebras’). In the sequel, we will concentrate on the case where
n = p is a prime number.
With F as above, let M be the set of isomorphism classes of central simple
algebras over F . The tensor product ⊗, taken over F , endows M with a monöıd
structure, where the neutral element is given by the class of F . Let A ⊂ M be
the subset of (finite dimensional) central division algebras over F . Further, let
Sp ⊂ A be the subset given by the non-split p-symbol algebras over F .
The Gross Question in this context now becomes the following:

6.2 Question. Suppose that UM(A,Sp) = ∞, i.e. suppose that to every
n ∈ N there exist p-symbol algebras Q1, . . . , Qn such that

⊗n
i=1Qi is a division

algebra. Does there exist a sequence (Ai)i∈N of p-symbol algebras Ai over F
such that

⊗n
i=1Ai is a division algebra for all n ∈ N?

Let us first consider the case p = 2. If we take F = K to be the field constructed
in the proof of Theorem II, then we have in fact shown there that UM(A,S2) =
∞, while for any sequence (An)n∈N of quaternion algebras over K, the product
A1⊗· · ·⊗An fails to be a division algebra for n ∈ N sufficiently large. Actually,
these two facts do not only follow from the way in which K was constructed,
but already from the properties (i)–(iii). We omit the details.
Hence, for p = 2, the answer to (6.2) is negative in general. In the sequel,
we will sketch how to obtain counterexamples for an arbitrary prime p. Our
construction is to some extent similar to the one in the proof of Theorem II,
but function fields of quadratic forms will now have to be replaced by function
fields of generic partial splitting varieties, also called generalized Severi-Brauer
(or Brauer-Severi) varieties, and the special case in (3.4) of Merkurjev’s index
reduction results for function fields of quadratic forms will have to be replaced
by an appropriate version concerning index reduction for function fields of
generic partial splitting varieties.
Such generic partial splitting varieties have been studied systematically perhaps
for the first time by Heuser [13], and then later by Schofield and Van den
Bergh [35], [36], and Blanchet [5]. Blanchet derives in particular an index
reduction formula for central simple algebras over function fields of generic
partial splitting varieties. This formula has been simplified by Wadsworth [39],
and it is that simpler formula which we will use. The reader interested in
the most general results on index reduction of central simple algebras over
function fields of varieties is referred to the two papers by Merkurjev, Panin
and Wadsworth [25], [26].
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Let A be a central simple algebra over F of degree n, and let s be a divisor
of n. To A we can now associate a generalized Severi-Brauer variety X =
SB(A,n, s) such that for any field exension L/F , the L-points X(L) are the
sn-dimensional right ideals in AL = A ⊗F L. If L is a splitting field, so that
A ⊗F L ∼= EndL(V ) for an n-dimensional L-vector space V , then X(L) is
isomorphic to the Grassmannian Gr(V, s) of s-dimensional subspaces of V .
The function field F (X) has the property that ind(AF (X)) divides s, and it is
generic for that property in the following sense: If L is any field extension such
that ind(AL) divides s, then there exists an F -place F (X) −→ L ∪ {∞} (see
[13]). More precisely, we have the following (see [5], Proposition 3):

6.3 Lemma. Let A, n, s, X = SB(A,n, s) be as above and let L/F be a field
extension. Then the following statements are equivalent:

(i) X has an L-rational point.

(ii) ind(AL) divides s.

(iii) The free compositum L · F (X) is a purely transcendental extension of L.

We now have the following index reduction formula for function fields of generic
partial splitting varieties, see [39], Theorem 2:

6.4 Theorem. Let A, n, s, X = SB(A,n, s) be as above, let K = F (X) and
let D be a central simple algebra over F . Then

ind(DK) = gcd

{
s

gcd(i, s)
ind(D ⊗F A−i)

∣∣∣∣ 1 ≤ i ≤ n

}
.

6.5 Corollary. Let p be a prime, let D be a central division algebra of index
pr over F , and let A be a central simple algebra of degree pm over F (m ≥ 1)
and of exponent dividing p. Let X = SB(A, pm, pm−1). If A is not a division
algebra, or if m > r, then DF (X) is a division algebra.

Proof. If A is not a division algebra, then ind(A) divides pm−1 and F (X)/F is
purely transcendental by (6.3). This clearly implies that D will stay a division
algebra over F (X).
Now assume that m > r. We apply the above index reduction formula with
n = pm and s = pm−1. Let i ∈ {1, . . . , n}.
If p | i, then A−i is split, because exp(A) divides p, and it follows immediately
that s

gcd(i,s) ind(D ⊗F A−i) is divisible by ind(D ⊗F A−i) = ind(D). Further-

more, for i = pm we have s
gcd(i,s) ind(D ⊗F A−i) = ind(D).

If p 6 | i then gcd(i, s) = 1. Therefore,

s

gcd(i, s)
ind(D ⊗F A−i) = pm−1 · ind(D ⊗F A−i) ,

and this number is divisible by pm−1 and thus by ind(D) = pr ≤ pm−1.
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We conclude that

ind(DF (X)) = gcd

{
s

gcd(i, s)
ind(D ⊗F A−i)

∣∣∣∣ 1 ≤ i ≤ n

}
= ind(D) ,

in other words, D stays a division algebra over F (X).

6.6 Theorem. Let p be a prime and let F be a field with char(F ) 6= p. Then
there exists a field extension K/F containing a primitive pth root of unity ζ
such that the following holds:

(i) Given a0 ∈ K×. Then there exists an ℓ ∈ N depending on a0 such that

for any a1, . . . , aℓ, b0, . . . , bℓ ∈ K×, the product
⊗ℓ

i=0(ai, bi)p is not a
division algebra.

(ii) For every n ∈ N there exist p-symbol algebras A1, . . . , An over K such
that

⊗n
i=1Ai is a division algebra.

Proof. Let F0 = F (ζ) where ζ is a primitive pth root of unity in an algebraic
closure of F . Let n ≥ 1 and suppose we have have constructed Fn−1. Let now

F
(n)
n−1 = Fn−1(X

(n)
1 , Y

(n)
1 , . . . ,X(n)

n , Y (n)
n )

where X
(n)
1 , Y

(n)
1 , . . . ,X

(n)
n , Y

(n)
n are indeterminates over Fn−1. Let Fn denote

the free compositum of function fields F
(n)
n−1(SB(A, pj+1, pj)) for all central

simple algebras A over Fn−1 of type A ∼= (a0, b0)p ⊗ (a1, b1)p ⊗ · · · ⊗ (aj , bj)p

with j < n and a0 ∈ F×
j and a1, . . . , aj , b0, . . . , bj ∈ F×

n−1.

Finally, we define K =
⋃∞

i=0 Fn and claim that K has the desired properties.

(i) Let a0 ∈ K×. Then there exists an integer ℓ > 0 such that a0 ∈ Fℓ.

Let a1, . . . , aℓ, b0, . . . , bℓ ∈ K× and consider B =
⊗ℓ

i=0(ai, bi)p. It suffices
to show that B is not a division algebra over K. Now there exists n > ℓ
such that a1, . . . , aℓ, b0, . . . , bℓ ∈ F×

n−1, so B is defined over Fn−1, and since

F
(n)
n−1(SB(B, pℓ+1, pℓ)) is part of the compositum Fn, we have that ind(BFn

)
divides pℓ, which implies that B is not a division algebra over Fn and thus also
not over K.

(ii) For n ≥ 1, consider over Fn the algebra

Cn = (X
(n)
1 , Y

(n)
1 )p ⊗ · · · ⊗ (X(n)

n , Y (n)
n )p .

It is well known that Cn is a division algebra over Fn (see, e.g., [25], Corollary
5.2). Part (ii) now follows if we can show that Cn will stay a division algebra
over K. This can be achieved by mimicking the argument in part (iii) of
the proof of Theorem II, this time by invoking (6.3) and (6.5). We omit the
details.
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Symbols in Milnor K-theory

Recall the definition of the Milnor K-groups KnF of a field F (see [27]). By
definition, K0F = Z, and K1F is the multiplicative group F×, written addi-
tively with the elements denoted by {a}, a ∈ F×, so that {ab} = {a}+ {b} for
a, b ∈ F×. For n ≥ 2, KnF is then defined to be the quotient of the tensor
product (K1F )⊗n by the subgroup generated by all {a1}⊗· · ·⊗{an} satisfying
ai + ai+1 = 1 for some i. The image of an element {a1} ⊗ · · · ⊗ {an} in the
quotient group KnF is denoted by {a1, . . . , an} and called a symbol. We then
define the Milnor K-ring as the graded Z-algebra K∗F =

⊕∞

n=0KnF with mul-
tiplication defined on symbols in the obvious way: {a1, . . . , an} ·{b1, . . . , bm} =
{a1, . . . , an, b1, . . . , bm}.
We are interested in KnF/p, the Milnor K-groups modulo p for some prime p.
The image of a symbol {a1, . . . , an} in KnF/p will again be called a symbol
and denoted in the same way.
For p = 2, these groups are linked to quadratic form theory through the Milnor
Conjecture (now a theorem due to Orlov, Vishik, and Voevodsky [29]) which
asserts that if char(F ) 6= 2 then KnF/2 is isomorphic to InF/In+1F , via an
isomorphism that maps {a1, . . . , an} to the class of 〈〈a1, . . . , an〉〉 modulo In+1F .
We now consider the abstract version of the Gross Question (6.1) in the fol-
lowing setting, where we assume F× 6= F×p because otherwise KnF/p = 0 for
all n ≥ 1. Let M = K∗F/p, S = {{a} | a ∈ F× \ F×p} (this is nonempty
by assumption), A = {{a1, . . . , an} 6= 0 |n ∈ N, ai ∈ F×}. It is obvious that
for n ≥ 1 we have KnF/p 6= 0 if and only if there exist a1, . . . , an ∈ F× with
{a1, . . . , an} 6= 0. In this setting, Question (6.1) becomes:

6.7 Question. Suppose that UM(A,S) = ∞, i.e. KnF/p 6= 0 for all n ∈ N.
Does there exist a sequence (an)n∈N ⊂ F× such that {a1, . . . , an} 6= 0 for every
n ∈ N?

Let us first consider the case where char(F ) = p. Then the answer to the above
question is positive by the following:

6.8 Proposition. Let F be a field of characteristic p > 0. Then the following
are equivalent:

(i) [F : F p] = ∞.

(ii) KnF/p 6= 0 for all n ∈ N.

(iii) There exists a sequence (an)n∈N ⊂ F× such that {a1, . . . , an} 6= 0 for
every n ∈ N.

For p = 2, the above statements are further equivalent to any of the following:

(iv) û(F ) = ∞.

(v) sup {dim(b) | b anisotropic symmetric bilinear form over F} = ∞.

Documenta Mathematica 12 (2007) 473–504



Isotropy of Quadratic Spaces 501

(vi) There exists an infinite-dimensional anisotropic quadratic space over F .

(vii) There exists an infinite-dimensional anisotropic symmetric bilinear
space over F .

Proof. Recall that a subset T ⊂ F is called p-independent if, for any finite
subset {a1, . . . , an} ⊂ T , one has [F p(a1, . . . , an) : F p] = pn, and that T ⊂ F
is called a p-basis of F if T is a minimal generating set of the extension F/F p,
i.e. F = F p(T ) and T is p-independent.
The key observation here is the fact that for a1, . . . , an ∈ F× we have that
{a1, . . . , an} 6= 0 if and only if a1, . . . , an are p-independent, in other words
[F p(a1, . . . , an) : F p] = pn. This is an immediate consequence of the Bloch-
Kato-Gabber Theorem (see [6], Theorem 2.1, or [17], Appendix A2). The
equivalence of the first three statements is now immediate and we leave the
details to the reader.
For p = 2 it readily follows from (5.3) and (5.4) that (i) is equivalent to any of
the statements (iv) to (vii).

Let us now turn to the case char(F ) 6= p. For p = 2, the answer to the above
question will be negative in general, i.e. there are fields such that KnF/2 6= 0
for all n ∈ N, but for any sequence (an)n∈N ⊂ F× one has {a1, · · · , am} = 0
for sufficiently large m.
Indeed, any field as constructed in Theorem I will do. To see this, it suffices to
note that the map from the set of isometry classes of n-fold Pfister forms over
F into KnF/2 given by 〈〈a1, . . . , an〉〉 7→ {a1, . . . , an} is well-defined, injective,
and sends the hyperbolic Pfister form to zero, see [8], Main Theorem 3.2 (here,
we do not need the full thrust of the Milnor Conjecture). We leave the details
to the reader.
Now if p 6= 2 (and char(F ) 6= p), we believe (but have not checked) that
in general the answer to the above question should be negative as well. To
construct counterexamples, it seems reasonable to try a similar approach as in
our other constructions using a tower of iterated function fields. Candidates
for these functions fields will naturally be function fields of (generic) splitting
varieties of symbols in Milnor K-theory modulo p. The norm varieties as
constructed by Rost (see [33], also [18]) provide examples for such splitting
varieties.
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