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1 INTRODUCTION

The observability problem of nonlinear dynamical systems has been an inter-
esting subject and active field of research throughout the last decades. In the
present work we consider time invariant systems of the form*

i = f(z)
= h(x).

The first equation describes a real dynamic process. Its state z(t) at time ¢
is assumed to be element of a smooth second countable (hence paracompact)
n-dimensional manifold M called state space. The dynamics of the system
is given by the vector field f on M. The output function h is a mapping
from the state space into the reals and stands for a measuring device. The
second equation describes the output, which contains partial information
of the state. The output y is the only measurable quantity. There is a
very broad variety of systems, which can be described in this way. We call
the triple (M, f,h) or simply the pair (f,h) a system. The system is called

*We use the customary abbreviations: Time ¢ denotes the natural coordinate on R and
the first equation is identified with its local representative.
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C™iff M, f and h are C". We denote the set of C" vector fields on M by X"(M).

In many applications it is of essential importance to know the state of the
system at any time ¢. But measurement of the entire state (e.g. all its
coordinates) is often impossible or very difficult. For instance because of high
costs or technical reasons. In most cases one has only partial information from
measurement of the output y, mathematically being described by the second
equation. So the issue is to get the state (as well as distinguish different states)
by using only output measurement®. If this is possible, then the system is
said to be observable. Hence, the issue of the observability problem is the
following. Find criteria on the system, such that by means of information
from the output trajectory, it is possible to distinguish different states as well
as to reconstruct the states. There is no uniform or canonical definition of
observability in the literature. The weakest and most natural definition is the
following.

DEFINITION 1.1 The system (f, h) is said to be observable (or distinguishable)
if for each (z,2") € M x M with x # 2’ there exists a time tg = ¢o(z,2’) such
that h(®y, (1)) £ h(By, ().

However, the above definition is not well-suited for the treatment of the
observability problem. Therefore one seeks to establish a stonger notion of ob-
servability as follows. Consider a mapping © (in the sequel called observation
mapping), which maps the state space into some finite dimensional Euclidian
space, assigning states to data derived from the output trajectories on some
observation time interval J. Then decide the observability of the system by
means of injectivity of ©. Moreover the following natural question arises. Is
observability in this sense (, i.e. with respect to ©) generic? The latter is the
main issue of the present work. In the control theory the noatation of observer
is generally standing for another system having the output (and input in the
controlled case) of the original system as input and generating an output which
is an asymptotic estimate of the original system state.

Beside the task of reconstruction of the state, observability has also applica-
tion in the theory of chaos and turbulence in the following sense. Suppose an
observable system has a global attractor. Then using an observation mapping
one can get a homeomorphic picture of the attractor or at least information
about some of its characteristic properties. Examples can be found in [RT]
and [T]. We consider a certain observation mapping introduced in [KE] and
[E]. We derive necessary and sufficient conditions for genericity of observability
and local observability with respect to this mapping. Basically, there are two
other well-knwon approaches to the observability task: sampling and high-gain
approach. In his classical work [T], Takens proved genericity results similar to

*Tt is worth to mention that often the information by output measurements underly some
errors leading to the problem of stabiliy.
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ours for these approaches. About the same time Aeyels [Ay| achieved sharper
results concerning the sampling approach. Further results on high-gain ap-
proach can be found in [GK], [GHK] and [J]. Particularly, for a comrehensive
and intensive investigation of deterministic observation theory and applica-
tions including many deep results concerning high-gain approach we refer to
[GK]. Our approach has the disadvantage that a suitable linear filter has to
be constructed. On the other side in contrast to high-gain approach we do not
need to restrict ourselves to smooth systems. For more on our approach with
applications we refer to [N].

2 MAIN RESULTS

DEFINITION 2.1 Let 0 < 7 < o0, (A4,b) be a stable and controllable m-
dimensional linear filter and (M, f, h) a C"-system with flow ®. We call the
mapping M > z — Oy, := f_OT e~ Abh(®,(x))dt € R™ the observation map-
ping and the number m observation dimension. If ©¢j, is injective we call the
system (M, f, h) ©-observable or simply observable.

Furthermore we call the system locally observable if Oy, is an immersion.
The indistinguishable subset of M x M is given by

Qfﬁh = {(x,x/) e M x M\AM : @fﬁh(ft) = @fﬁh(Il)}.

The time interval I := [—7,0] has the physical interpretation of observation
interval. We treat for simplicity of notation and in view of the physical
interpretation of the observation data as history of the output mapping, the
case I C R<g, 0 € I. For unbounded intervals modifications are needed, which
we give explicitly for the case I = R<.

The key point in the proof of the following genericity results is to show that
zero is a regular value of the observation mapping. Proving this we then apply
transversality density and openness theorems to get locally our statements,
which then will be globalized to the whole state space. A Baire argument then
yields the final results. Particularly for 7 < co in any C" neighborhood of the
system there is a system which is both observable and locally observable with
respect to ©. An appropriate statement is also valid for 7 = oo in the C!
topology.

If the state space is not compact, it is more suitable to consider the so called
strong or Whitney (C"-)topology on C”(M,R) and X"(M). The reason is that
in this topology one has more control on the behavior of the functions and vec-
tor fields at infinity. Note that density in this topology is a stronger property
than in the compact-open (also called weak) topology. For instance, roughly
speaking, a sequence of output functions h; converges in Whitney topology to
h iff there exists a compact set K such that h; = h outside of K except for
finitely many j and all the derivatives up to order k£ converge uniformly on K.
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The case of smooth vector fields is similar. The well known fact that C” (M, R)
and X"(M) are Baire spaces in the Whitney topology (proofs can be found in
in [H, 2.4.4] and [P]) is of basic importance for our results. A residual subset of
C™(M,R) or X"(M) is dense. From now on the spaces of C" functions as well
as vector fields on M are equipped with their C™ Whitney topology, unless oth-
erwise indicated. If the state space M is compact and r < co, then C" (M, Rk)
and X" (M) endowed with the compact-open topology are Banach spaces (while
in general Fréchet spaces), their Whitney and compact-open topology coin-

3

cide and the flow ® of each vector field f € X"(M) is defined globally on M xR.

For some pairs in X"(M) x C"(M,R) there is no possibility to distin-
guish or locally distinguish the states. For genericity results it is an es-
sential fact that the complement of the set of such pairs is residual. Let
Sing(f) == {x € M : f(z) = 0, € T, M} denote the set of singularities of
the vector field f (equilibria of the system), where 0, is the zero of T, M. In
the sequel we shall often omit the subscript 2 and write simply f(x) = 0 for
x € Sing(f).

Recall that a singularity xg € Sing(f) is called simple iff the principial part
of the linearization of f at xo, i.e. the linear mapping dy, f : Tpo M — T M,
does not have zero as an eigenvalue.

We denote the set of C” vector fields, whose singularities are all simple, by
XG(M). It is well known that a simple singularity is isolated and X[ (M) is an
open and dense subset of X" (M) (for a proof we refer to |[PD, 3.3|).

DEFINITION 2.2 We call zp € M a O-simple singularity iff there exists a
cotangent vector v € Tj M such that the linear system (T, M,dy, f,v") is
observable, i.e., the linear mapping

0
/ e~ HAppetdeol gt TpeM — R™

-7

is injective. In this case we say that vT is a ©-cocyclic covector of dy, f.
We denote by X7(M) the set of C” vector fields on M, whose singularities are
©-simple. Moreover we set X{ ; (M) := X{(M) N X{(M).

In the limiting case 7 = oo dense orbits as well as nontrivial recurrence cause
difficulties and special considerations are necessary. We investigate this case
under the assumption that M is compact. Appropriate results in the noncom-
pact case can be similarly deriven if we further restrict (in order to achieve
well-definedness of the observation mapping) the systems to be globally Lip-
schitzian. Furthermore, in order to ensure differentiability of the observation
mapping, if 7 = co we restrict the vector fields to the open set

X"(M,a) :={f € X"(M) : sup||d’f|| <aforall j=1,..r}
zeM
Denoting the set of critical elements (equilibria and closed orbits) of a vector
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field f by C(f) and the union of the negative limit sets by L_(f), we set
XT(M) :={f e X"(M): L_(f) CC(f)}.

We denote that some ineteresting classes of vector fields like Morse-Smale fields*
are contained in X" (M). Particularly, since the set consisting of Morse-Smale
vector fields is open and nonempty in X"(M), the interior int(X" (M)) of
X" (M) is a Baire space (in the induced topology). Furthermore note that the
limit set of a gradient field consists only of the critical points of the potential
function. Therefore X" (M) also contains the set of gradient fields. Moreover
we set
X5(M) :=X"(M,a) Nint(X" (M)).

It is well known that on a compact manifold C'-generically the nonwander-
ing set of a smooth vector field coincides with the closure of the set of its
periodic points. This statement called general density theorem is a conse-
quence of Pugh’s closing lemma, which ensures that a nonwandering point
can be made periodic by a small C'-petrubation in a neighbourhood of the
point. See also [Pu], [AR, 7.3.6] and the references given there*. Particularly
{f e XY (M) : L_(f) C €(f)} is a residual subset of X! (M).

We set for y € Ej | := {y € C"([-7,0],R) : fET ely(t)|dt < oo}

0
Py ;:/ e Aby(t)dt

-7

and for fixed 7 simply write P instead of P;.

LEMMA 2.1 Let r,7 < oo.Furthermore let g9 € R™ and 7,0 > 0. Then
the followings hold.

a) There exists a function y € C"(R,R) being compactly supported in | — 4§, 0]
and satisfying P,y = qo.

b) There exists a T-periodic function y € C"(R,R) with P,y = ¢o and
supp(Yli—k+1)r,0) €| — (B +1)6,0[ for all k € Z.

PROOF: Ad a) Let € := min{d,7}. The mapping L!([—¢,0]) > y — K(y) :=
fi e~ Aby(t)dt € R™ is linear, continuous and because of the controllability
of (A,b) surjective. CT is a dense linear subspace of L'([—¢,0]). Therefore
R := K(CT7) is a dense linear subspace of R"™ and consequently R = R™.
Therefore there exists a function yo € CT having the property K(yo) = qo-
The trivial extension of yy on R is obviously the desired function.

Ad b) If 7 < T, the assertion follows directly from part a). We prove

the result for 7 > 7T using sampling. Assume first 7 < oo and let
N :=maz{k € N: NT < 7}. Due to the stability of A the series Y -, e*T4

*Recall that Morse-Smale vector fields are structurally stable.
*It is still unknown whether the C*-closing lemma with k > 2 fails in general.
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converges to (I —e?4)~! and Sy := Z]kvzo eFTA = (I — TA)=1(T — (N+1TA)
is invertible. Let us write € := min{r —T,d}. According to part a) there exists
Jo € C! with Prgo = Sg,lqo (as well as (I —eT4)qp in case 7 = 00). Let yo
denote the trivial extension of go on [—7,0]. Then we have Pry, = S;,lqo.
Let y denote the T-periodic extension of yg on R. Consequently

0 N kT
/ e~ Moy(t)dt = Z/ e Mbyo(t + kT)dt
. o) —(1+R)T
N 0
= ZekTA/ e Abyo(t)dt
k=0 -T
= 4o,
which yields immediately the desired conclusion. O

Let 7 denote the canonical projection of the tangent bundle T'M:
7:TM — M, 7n(v) := x for v € T, M.

Let M be endowed with a Riemannian metric. Denoting the induced norm on
the tangent spaces by [.|, the unit tangent bundle 71 M is given by

TWM:= U {veT,M:|v=1}
zeM

Recall that T3 M is a (2n — 1)-dimensional C"~! submanifold of TM. Tt is
compact, if M is compact.

Let K be a subset of M. We set ToK := K x K\ Ag and denote the restriction
of 'M to K with 1K, i.e., 'K := {ve T'M : n(v) € K}. Recall that if K
is an s-dimensional submanifold, then 77 K has dimension n + s — 1.

DEFINITION 2.3 We define the 7-history of K by the flow ® of the vec-
tor field f to be the closure of

O(K;7) = {Py(z) : =7 <t < 0,2 € K}.
We denote
A@f,h(zafp/) = Oy n(x) — @fyh(I/) for z, 2’ € M.

Let V be an open subset of M containing the 7-history of K and L be the
closure of V. Then we denote

Ho(L; K) :={h € C"(L,R) : zero is a regular value of AOy ;|A¢K},
and

Hi(L; K) := {h € C"TY(L,R) : zero is a regular value of dO |A1 K}.
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In the sequel we set ¢ = 0,1 as well as H;(K) := H;(M; K) and H; := H;(M).
If K/ ¢ K and for an output function h, zero is a regular value of the
mapping AOyj on AgK, then it is also a regular value of the restricted map-
ping Aej’,h|AgK’; that is, }CO(K) C j‘fo(K’). Similarly H; (K) Cc Hy (K/) holds.

In the following, if f € X{;(M), then Ho(L) stands for the set of output
functions h € C"(L,R) such that

h(zo) # h(zg) for all (zg,x() € Ao(L N Sing(f)),
and H; (L) for those h € C"*1(L,R) such that
dgoh is a ©-cocyclic covector of dg, f for all 2o € L N Sing(f).

Note that if L is compact, then the number of singularities of f in L is finite
and for finite r, as an immediate application of the transversality openness
and density theorems, it follows that H;(L) is an open and dense subset of the
Banach space C" (L, R).

LEMMA 2.2 Assume that i < r < oo and f € X{,(M) is complete. Let
S be a C" submanifold of M such that the 7-history of S is contained in an
open subset V of M with compact closure L := V. Consider the mappings
F':H;(L) x A;S — R™ defined by

FO(h,2,2") .= AO (")

and
Fl(h, v) = dﬂ(v)@fyh(v).

Then the following holds.

a) Zero is a regular value of F°.

b) Zero is a regular value of F'!.

Suppose moreover that f € X7 (M). Then the assertions also hold for 7 = co.

ProOF: Ad a) Let Wy := {(h,z,2") € Ho(L) x TpS : F°(h,z,2’) = 0}.
We have to show that the function F° is submersive on Wy.  Since
R™ 1is finite dimensional, it sufficies to prove that the linear mapping
dn,z,a)FO : Tih e (Ho(L) x ToS) — R™ is surjective for all (h,z,2') € Wy.
Fix (h,z,2") € Wy and ¢o € R™. According to the condition h € Hy(L) we see
that = and 2’ cannot be both equilibrium points. Therefore we assume without
loss of generality that  is not an equilibrium point. Since Hy(L) is open and
L oFOh+ sg,x,2') = MOy 4(z,a') = F(g,x,2'), it is sufficient to show
the existence of an output function g € C"(L,R) satisfying F°(g,z,2’) = qo.

We use the fact that the flow through a point of the state space M maps each
closed finite time interval on a closed subset of M and define a suitable mapping
g on an appropriate closed subset of the state space and then extend it to L.
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Let v and ' denote the 7-histories of the points z and 2’ respectively and
Z :=~vU~'. We define g on Z. We first treat the case 7 < oo.

Case 1: Both orbits are critical elements. Let T" denote the period of x. In view
of lemma 2.1 there exists a T-periodic function y € C*(R,R), which satisfies
the condition P,y = qo. We set g(®rypr(x)) = y(t) for 0 <t < T,k € Z and
g =0 else.

Case 2: One of the integral curves, say ®(x), is injective and the other one is
periodic or an equilibrium point. According to Lemma 2.1 there is a function
y € C*([~7,0],R) with compact support such that P,y = go. We define g on ~y
by g(®:(z)) = y(t) for —7 <t <0 and g = 0 else. If ®(2’) is injective and z is
periodic, we just set g = 0 on v and define g on 4’ such that P;(g o ®(z'))) =
—4qo-

Case 3: Both integral curves are injective. In this case we define g on v as in
case 2 and on 7 by g = 0.

If 7 = o0, then because of eventual presence of dense orbits g cannot be simply
defined on a part of Z and then trivially extended. Hence the construction
of g becomes a little more delicate. Assuming f € X5 ensures then that the
recurrence is trivial and the previous procedure also works. If both orbits
are critical elements, i.e. in case 1, then everything remains the same as for
finite observation time. Problems could arise in case 2 or 3 if at least one
of the integral curves is injective and the past half of one of the orbits, say
the one through z’, belongs to the negative limit set of the other orbit or
itself, i.e., {P¢(2’) : t < 0} C a(z) Uaa’). But this can according to the
assumption f € X5 (M) only occur if 2’ is periodic or an equilibrium point. We
proceed as in case 2 of finite 7 and find again in view of Lemma 2.1 a function
y € C"(R,R) compactly supported in an interval [—¢, 0] with € > 0 and set
g(Pi(z)) := y(¢) for all t and g = 0 else.

In all cases we have defined a C" function on the closed subset Z of the state
space M with the property that Z C L and P.(g o ®(z) — g o ®(2')) = qo.
According to the smooth Tietze extension theorem, there exists a C" extension
of the function g to L. This function denoted again by g is obviously the
desired function, which satisfies F°(g,z,2') = qo-

Ad b) Denote Wy = {(h,v) € Hy(L) x T1S : Fl(h,v) = 0}. We fix
(h,v) € Wy, set mg := w(v) and show that F! is submersive at (h,v). Fix
qo € R™. Since L|,_oF'(h+ sg,v) = F'(g,v) for arbitrary g € C"(M,R), it
suffices to prove the existence of a function g € C"(L,R) with F(g,v) = qo
locally and extend it L. If xg would be an equilibrium point, then in view
of the assumption h € H; (L), the linear system (T, M, dy, f,dz,h) would be
©-observable and consequently F'*(h,v) # 0 in contradiction to the assumption
(h,v) € Wi. Therefore we may assume that xg is not an equilibrium point.
Hence, in view of the straightening-out theorem there is a local chart (U, 1)
at zo such that ¢(U) = U'x] — ¢, —¢[ with € > 0, U’ an open subset of R" 1,
¥(xp) = 0 and the vector field f has the local representative (z,t) — e,. Here
e, denotes the nth standard base vector in R™. Denote the induced coordinate
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function on Ty M at v by @Z Since v # 0 we can and do assume that v has
the local representative n = (n1,72)7 with 91 € R*™1 0y € R, 5 # 0, i.e.
v = %(330)771 + %(Io)ng. Furthermore for ¢ €] — ¢, —¢][, the local representative

of dg,®; reads as {Iod (1)] and subsequently that of d,, h o ®;v as Vh(0, t)n.

By shrinking U if necessary, we can (in the case 7 = oo on account of the
assumption that f € X5(M) if the point xg is recurrent, then it is periodic)
and do assume that the intersection of U and the 7-history of z( is connected.
According to lemma 2.1 there exists a function § € C"t1(R, R) with derivative
y being supported (on each period, if 2y has period > 7) in [—¢,0] such
that P.y(t)dt = qo. Obviously there exists a function g € C"(U’'x] — €, €[, R)
being compactly supported, with Vg(0,t)n = y(¢). For instance define
G(z,t) = In|72(zTmy(t) + n29(t)). The trivial extension of §o to L is the
desired function g. O

Sometimes in applications one is interested in or limited to observation re-
stricted to a subset of the state space. It can be for instance because of technical
or physical reasons, or if it happens that all the information needed can be eval-
uated from measurements on a certain subset. The latter case being perhaps
the most important one, occurs if the subset under observation is an attractor.
Other subsets invariant under the flow can also be of interest. Therefore we
state our genericity results for observations of subsets of the state space as well.

LEMMA 2.3 Suppose that K is a subset of an s-dimensional C” submani-
fold of M denoted by S, 7 < oo and f € Xf (M) is complete. Then the
following holds.

a) Assume that m > n+ s —r and r» > 2. Then 3 (K) is residual. If K is
closed, then H; (K) is also open.

b) Assume that m > n+ s+ 1 —r. Then Ho(K) is residual. If K is closed,
then Ho(K) contains an open set.

Suppose moreover that M is compact and f € X5(M). Then the assertions
hold also in the case 7 = oo.

PROOF: Assume first »r < oo, K is compact, U is a chart domain of S,
which contains K and has compact closure. By compactness of U and finite-
ness of 7 in case of finite observation time and because of compactness of M
in case 7 = oo, the 7-history of U is compact. By local compactness there is
an open set V' C M with compact closure L := V such that V contains the
7-history of U.

Local density: We prove residuality with respect to H;(L). Since the latter
is open and dense in C"(L,R), density of H;(L;U) is also then shown with
respect to C" (L, R).

According to the previous lemma zero is a regular value of the evaluation map-
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ping F': H;(L) x T;U — R™ defined by
FO(h,2,2") .= AO (")

and
Fl(h, ’U) = dﬂ.(v)@f’h(v).

Therefore according to the transversality density theorem (see for instance [AR,
19.1]) 3;(L; U) is a residual subset of H;(L), and hence dense in C"(L,R).
Local Openness: Compactness of K implies that T7 K is also compact in T1U.
According to the transversality openness theorem H; (L; K) is open (with re-
spect to the compact-open and by compactness of L also with respect to the
Whitney topology) in C"(L,R). These conclusions do not work for Ho(L; K).
Instead let A be a compact subset of ToU. Then in view of transversality
openness theorem

H{(L;A) :={h € C"(L,R) : zero is a regular value of A©y ) on A}

is open in C"(L,R).

Since the assertions are proved for r finite and sufficiently large, they also hold
for r = co. Hence we assume from now on that r < oco.

Globalization: This part of the proof is basicly standard. Therefore we
give an outline and refer to [H, 2.2] for details. Since K C U, we have
Hi(L;U) € Hy(L; K). Hence Hq(L; K) is also dense in C™(L, R). Likewise one
gets density of H{(L; A) in C"(L,R) from density of Ho(L; U), since A C ToU
and subsequently 3o (L; U) C H{,(L; A). Using a bump function we now prove
that 3, (K) is dense in C"(M,R). Fix go € C"(M,R). Since H;(L; K) is dense
in C"(L,R), there is a sequence {h;} in H;(L; K) converging in the compact-
open topology to go|r. Since K C U, there is a C"-function p : M — [0, 1] with
compact support in L, such that p = 1 on an open neighborhood of K. The
sequence ph; 4+ (1 — p)go converges to go with respect to the Whitney topology.
Therefore H;(K) is a dense subset of C"(M,R). A similar argument shows
that H{(A) is a dense subset of C"(M,R).

We now drop the assumption that K C U. Let J be a countable indexing set,
{U,} with j € J be a covering of S with chart domains U;. Furthermore let
{K;} be a subordinate family of compact sets such that K = LJJKj and K; C Uj;.

We can and do assume that there is a compact covering of M denoted by {L;}
such that the interior of L; contains the 7-history of U;.

Openness statements: Suppose that K is closed. Then it is also paracompact
and the covering can be assumed to be locally finite. Since {L;} covers M, it
holds that H;(K) = {h € C"(M,R) : h|p, € Hi(L;; K;) for allj € J}. Hence
local finiteness of the covering implies that 3(; (K) is open. Simliarily it follows
that the set {h € C"(M,R) : zero is a regular value of AGy ) on K x K} is
open. The latter is contained in Ho(K).

Residuality statements: We now drop the assumption that K is closed. By the
preceding arguments 3 (K;) is open and dense. Therefore H; (K) = NH; (K;)

J
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is residual (and in view of the Baire property of C"(M,R) also dense). Taking
a compact covering {A;} of ToK a similar argument yields the results on
Hy(K). O

The openness results in the preceding lemma can also be proved (without
applying the transversality openness theorem) as follows. For instance, by
compactness of L the mapping Ho(U) > h — F°(h,.)) € C"(ToU,R™) is contin-
uous in the Whitney topology. This fact and openness of {F € C"(To,U,R™) :
zero is a regular value of F'} (this fact follows, for instance, from the lower
semicontinuity of the mapping C"(L,R) x ToU 3 (h, z,2') — rank(d, 4., F°)
and compactness of L) in the Whitney topology implies that Ho(L;U) is
open in the Whitney topology and by compactness of L also open in the
compact-open topology of C"(L,R). Other parts follow likewise.

In light of the preceding lemmas we can now prove the genericity results on
output functions just by comparing dimensions.

THEOREM 2.1 Suppose that K is contained in an s-dimensional C”" sub-
manifold of M and f € Xf (M) is complete. Then the following assertions
hold.

a) Assume that r > 2 and m > n+s. Then functions h belonging to C"(M,R)
such that Oy, is immersive at each point of K, constitute a residual set. This
set is also open, if K is closed.

b) Assume that m > 2s+1. Then the set of functions h belonging to C" (M, R)
such that Oy is injective (respectively an injective immersion) on K, is
residual (respectively, if » > 2). It contains an open set, if K is closed.
Supposing m < 2s and r > 2s —m the same results hold for the set of functions
h belonging to C" (M, R) such that the ©-unobservable points of K x K belong
to a submanifold of dimension 2s — m.

Suppose moreover that M is compact and f € X5(M). Then the assertions
also hold for 7 = co.

ProOOF: Ad a) Since m > n + s, the set of functions h belonging to
C"(M,R) such that ©; is an immersion at each point of K, coincides with
Hi(K), i.e., dOyp|m Kk is transversal to {0} € R™. Therefore the assertion
follows immediately from the previous lemma.

Ad b) According to the previous lemma Hy(K) is residual and contains an
open set, if K is closed. If m > 2s + 1, then the set of functions h belonging
to C"(M,R) such that the restriction of ©; to K is injective (respectively an
injective immersion), is precisely Ho(K) (respectively Ho(K) N H;1(K)). The
statement on the indistinguishable set follows from the preimage theorem. [

REMARK 2.2 As it can easily be seen from the proof of lemma 2.2, the
dimension condition m > n + s in part a) of the preceding theorem can be

weakend to m > 2s, if immersivity is replaced by immersivity on T'S.
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If the state space is compact, we get sharper results. In particular the following
theorem is important, since embedding of the state space gives information on
limit behavior of the system.

THEOREM 2.2 Suppose that m > 2n + 1, f € Xi;(M) and M is com-
pact. Then output functions h € C"(M,R) such that G is an embedding
constitute an open and dense set.

If we further assume that f € X3(M), then the assertion remains true in the
case T = 00.

PrOOF: Recall that by compactness of M an injective immersion is also
an embedding (case 2 < r < oo in Theorem 2.1) and an injective mapping
is also a topological embedding (case r = 1). Hence density follows from
Theorem 2.1. Openness is a consequence of the fact that by compactness of M
the mapping C"(M,R) x ToM 3 h +— AO¢ ) € C"(M,R™) is continuous and
the set of embeddings Emb"(M,R™) := {F € C"(M,R™) : F is embedding}
is open. O

Next we shall prove residuality of X{ ; (M) by using the characterization of sim-
plicity and ©-simplicity of a singularity, in terms of transversal nonintersection.

LEMMA 2.4 Assume that m > n. Then X (M) is open and dense in
X"(M). Moreover, the assertion holds also for 7 = oo, if we restrict the vector
fields to X" (M, a).

PROOF: We give a proof for 7 < oco. The arguments for 7 = oo are
similar. Tt sufficies to show that X7(M) is open and dense. Let O resp.
U denote the set of n-dimensional ©-observable resp. unobservable linear
systems. Let f € X{(M), zo € Sing(f) and d,, f denote the principial part of
the linearization of f.

Note that f € X7(M) if and only if there exists a v € T,,M such that the
system (dg, f,v) avoids the set of ©-unobservable linear systems on Ty, M.
We now give a local characterization. Let ¢ : U — R”™ be a local chart
such that U has compact closure and ¥(zg) = 0. The tangent mapping
dp : TU — R™ x R™ defined by dy(v) = (¢¥(z), dgpv) with x = w(v) is a local
chart for TM. Let Pr, denote the projection R” x R™ 3 (z,w) — w. Consider
the mapping &7 := Pr,dy foy=! on ¢(U). Hence do&f = dyotpdy, fdotp ™t The
singularity zo is ©-simple if and only if (do&f,ds,v) ¢ U for some v € T, M.
Obviously U is closed, analytic and # End(R™) x R™, hence finite union of
closed positive codimensional real analytic submanifold of End(R™) x R™.
Given a pair (G,w) € O, obviously there exists a vector field g € X"(M) such
that g and f coincide on M \ U, zg € Sing(g) and d,,§, = G. An immediate
application (details are similar to those in the proof of lemma 2.3) of the
transversality density and openness theorems completes the proof. O
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We can now prove the main result on generic observability with respect to the
mapping O.

THEOREM 2.3 Suppose that m > 2n + 1 and M is compact. Then pairs
(f,h) in X"(M) x C"(M,R) such that ©) is an embedding constitute an
open and dense subset of X"(M) x C"(M,R). Restricing the vector fields to
X5(M), the assertion remains valid for 7 = oo as well.

Proor: Recall that Xg,(M) is open and dense. Furthermore Xj(M) is
open in X"(M,a). The assertions follow immediately from this facts and
theorem 2.2. g

Similarily, genericity results for noncompact state spaces can be deriven, if we
restrict ourself to the set of complete vector fields, replace open and dense by
residual and embedding by injective immersion. We remark also that consid-
ering the observation mapping

0
Og ()= Y e *bh(g"(x))
k=—N

for x € M and (g,h) € Dif f"(M) x C"(M,R) with g¥ := gogF~!, correspond-
ing results for discrete dynamical systems can be proved likewise.

3 CONCLUDING REMARKS

REMARK 3.1 Since the set of m-dimensional controllable linear filters is open
and dense in End(R™) x R™, all genericity results of the last section hold also
generically with respect to the linear filters.

The following examples show that the conditions on the observation dimension
are also necessary, thus m > 2n for generic local observability and m > 2n + 1
for generic observability can not be weakend.

EXAMPLE 3.1 Let M = S! and f(p) = 1, where ¢ denotes the standard
angular coordinate of the circle. Furthermore consider the pair (A,b) with
A < 0and b # 0. Taking 7 = 27 and the output function h(p) = cos ¢ leads to

Orn(p) = %(/\cos @ — sin @), which is not an immersion. Moreover the

zero of dOyj at g = —arctan% is transversal. Hence the nonimmersivity of
Oy 1, is preserved under small perturbations of the output function, the vector
field and the linear filter.

EXAMPLE 3.2 Let M, f, ¢ and 7 be as in the preceding example. Furthermore
let A = diag(—1,-2), b = (1 — e 2")71(1,1)T and h(p) = 2cos ¢ + 5cos 2.
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Then a straightforward computation yields

O n(p) = cos @ + sin @ + cos 2 + 2sin 2¢
Hh®) = (72 +1)(2(2cos ¢ + sin @) + 5(cos 2¢ + sin 2¢))|

The following figure shows the image of S by Oy .

Y

3

2.5¢ 1

2, 4

157 1

1, 4

0.5r i

_2 L L L L L L X
-3 -2 -1 0 1 2 3 4

Image of S* by the continuous linear filter mapping given by
© > (cosp+sinp+cos2p+2sin2p, (€77 +1)(2(2cosp+sing) + 2 (cos2p+sin2¢p))"
in the XY -plane

The selfintersection of the image is transversal. Hence the noninjectiveness of
Oy, is persistent under small perturbations of the output function, the vector
field and the linear filter.

For instance, small perturbations of A do not result in injectivity, i.e., there is
an € > 0 such that for each output function i~L, which is C" near to h within ¢,
the mapping Gfﬁ is not injective.

Note that the considered system is also unobservable with respect to the high-
gain mapping given by ¢ — (2cos ¢ + 5cos 2¢, 2sin ¢ — 10sin 2¢)T as well as
sampling mapping ¢ — (2cos(p +t1) + 5cos(2¢p + 2t1, 2cos(p + t2) + beos(2¢ +
2t5))T with sampling times t;,¢,. The following figure shows the image of the
state space by the sampling mapping with sampling times 0 and 3.
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_2, 4

_47 4

-6 I I I I I I X
% -4 -2 0 2 4 6 8

Image of S* by the sampling mapping given by
@ +— (208  + 5cos 2p, —2sin o — 5cos 2¢p) T
in the XY -plane
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