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Abstract. We deal with a 
ertain observation mapping de�ned bymeans of weighted measurments on a dynami
al system and give ne
-essary and su�
ient 
onditions, under whi
h this mapping is generi-
ally an inje
tive immersion.2000 Mathemati
s Subje
t Classi�
ation: 93B07, 37C20, 37C10,94A20.Keywords and Phrases: Observability, generi
, dynami
al system,sampling.
1 IntroductionThe observability problem of nonlinear dynami
al systems has been an inter-esting subje
t and a
tive �eld of resear
h throughout the last de
ades. In thepresent work we 
onsider time invariant systems of the form∗

ẋ = f(x)

y = h(x).The �rst equation des
ribes a real dynami
 pro
ess. Its state x(t) at time tis assumed to be element of a smooth se
ond 
ountable (hen
e para
ompa
t)n-dimensional manifold M 
alled state spa
e. The dynami
s of the systemis given by the ve
tor �eld f on M . The output fun
tion h is a mappingfrom the state spa
e into the reals and stands for a measuring devi
e. These
ond equation des
ribes the output, whi
h 
ontains partial informationof the state. The output y is the only measurable quantity. There is avery broad variety of systems, whi
h 
an be des
ribed in this way. We 
allthe triple (M, f, h) or simply the pair (f, h) a system. The system is 
alled
∗We use the 
ustomary abbreviations: Time t denotes the natural 
oordinate on R andthe �rst equation is identi�ed with its lo
al representative.
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506 Esfandiar Nava Yazdani

Cr i�M , f and h are Cr. We denote the set of Cr ve
tor �elds onM by X
r(M).In many appli
ations it is of essential importan
e to know the state of thesystem at any time t. But measurement of the entire state (e.g. all its
oordinates) is often impossible or very di�
ult. For instan
e be
ause of high
osts or te
hni
al reasons. In most 
ases one has only partial information frommeasurement of the output y, mathemati
ally being des
ribed by the se
ondequation. So the issue is to get the state (as well as distinguish di�erent states)by using only output measurement∗. If this is possible, then the system issaid to be observable. Hen
e, the issue of the observability problem is thefollowing. Find 
riteria on the system, su
h that by means of informationfrom the output traje
tory, it is possible to distinguish di�erent states as wellas to re
onstru
t the states. There is no uniform or 
anoni
al de�nition ofobservability in the literature. The weakest and most natural de�nition is thefollowing.

Definition 1.1 The system (f, h) is said to be observable (or distinguishable)if for ea
h (x, x′) ∈M ×M with x 6= x′ there exists a time t0 = t0(x, x
′) su
hthat h(Φt0(x)) 6= h(Φt0(x

′)).However, the above de�nition is not well-suited for the treatment of theobservability problem. Therefore one seeks to establish a stonger notion of ob-servability as follows. Consider a mapping Θ (in the sequel 
alled observationmapping), whi
h maps the state spa
e into some �nite dimensional Eu
lidianspa
e, assigning states to data derived from the output traje
tories on someobservation time interval J . Then de
ide the observability of the system bymeans of inje
tivity of Θ. Moreover the following natural question arises. Isobservability in this sense (, i.e. with respe
t to Θ) generi
? The latter is themain issue of the present work. In the 
ontrol theory the noatation of observeris generally standing for another system having the output (and input in the
ontrolled 
ase) of the original system as input and generating an output whi
his an asymptoti
 estimate of the original system state.Beside the task of re
onstru
tion of the state, observability has also appli
a-tion in the theory of 
haos and turbulen
e in the following sense. Suppose anobservable system has a global attra
tor. Then using an observation mappingone 
an get a homeomorphi
 pi
ture of the attra
tor or at least informationabout some of its 
hara
teristi
 properties. Examples 
an be found in [RT℄and [T℄. We 
onsider a 
ertain observation mapping introdu
ed in [KE℄ and[E℄. We derive ne
essary and su�
ient 
onditions for generi
ity of observabilityand lo
al observability with respe
t to this mapping. Basi
ally, there are twoother well-knwon approa
hes to the observability task: sampling and high-gainapproa
h. In his 
lassi
al work [T℄, Takens proved generi
ity results similar to
∗It is worth to mention that often the information by output measurements underly someerrors leading to the problem of stabiliy.
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Generic Observability of Dynamical Systems 507ours for these approa
hes. About the same time Aeyels [Ay℄ a
hieved sharperresults 
on
erning the sampling approa
h. Further results on high-gain ap-proa
h 
an be found in [GK℄, [GHK℄ and [J℄. Parti
ularly, for a 
omrehensiveand intensive investigation of deterministi
 observation theory and appli
a-tions in
luding many deep results 
on
erning high-gain approa
h we refer to[GK℄. Our approa
h has the disadvantage that a suitable linear �lter has tobe 
onstru
ted. On the other side in 
ontrast to high-gain approa
h we do notneed to restri
t ourselves to smooth systems. For more on our approa
h withappli
ations we refer to [N℄.
2 Main Results

Definition 2.1 Let 0 < τ < ∞, (A, b) be a stable and 
ontrollable m-dimensional linear �lter and (M, f, h) a Cr-system with �ow Φ. We 
all themapping M ∋ x 7→ Θf,h :=
∫ 0

−τ
e−Atbh(Φt(x))dt ∈ R

m the observation map-ping and the number m observation dimension. If Θf,h is inje
tive we 
all thesystem (M, f, h) Θ-observable or simply observable.Furthermore we 
all the system lo
ally observable if Θf,h is an immersion.The indistinguishable subset of M ×M is given by
Ωf,h := {(x, x′) ∈M ×M \ ∆M : Θf,h(x) = Θf,h(x′)}.The time interval I := [−τ, 0] has the physi
al interpretation of observationinterval. We treat for simpli
ity of notation and in view of the physi
alinterpretation of the observation data as history of the output mapping, the
ase I ⊂ R≤0, 0 ∈ I. For unbounded intervals modi�
ations are needed, whi
hwe give expli
itly for the 
ase I = R≤0.The key point in the proof of the following generi
ity results is to show thatzero is a regular value of the observation mapping. Proving this we then applytransversality density and openness theorems to get lo
ally our statements,whi
h then will be globalized to the whole state spa
e. A Baire argument thenyields the �nal results. Parti
ularly for τ < ∞ in any Cr neighborhood of thesystem there is a system whi
h is both observable and lo
ally observable withrespe
t to Θ. An appropriate statement is also valid for τ = ∞ in the C1topology.If the state spa
e is not 
ompa
t, it is more suitable to 
onsider the so 
alledstrong or Whitney (Cr-)topology on Cr(M,R) and X

r(M). The reason is thatin this topology one has more 
ontrol on the behavior of the fun
tions and ve
-tor �elds at in�nity. Note that density in this topology is a stronger propertythan in the 
ompa
t-open (also 
alled weak) topology. For instan
e, roughlyspeaking, a sequen
e of output fun
tions hj 
onverges in Whitney topology to
h i� there exists a 
ompa
t set K su
h that hj = h outside of K ex
ept for�nitely many j and all the derivatives up to order k 
onverge uniformly on K.
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508 Esfandiar Nava YazdaniThe 
ase of smooth ve
tor �elds is similar. The well known fa
t that Cr(M,R)and X
r(M) are Baire spa
es in the Whitney topology (proofs 
an be found inin [H, 2.4.4℄ and [P℄) is of basi
 importan
e for our results. A residual subset of

Cr(M,R) or X
r(M) is dense. From now on the spa
es of Cr fun
tions as wellas ve
tor �elds on M are equipped with their Cr Whitney topology, unless oth-erwise indi
ated. If the state spa
e M is 
ompa
t and r <∞, then Cr(M,Rk)and X

r(M) endowed with the 
ompa
t-open topology are Bana
h spa
es (whilein general Fré
het spa
es), their Whitney and 
ompa
t-open topology 
oin-
ide and the �ow Φ of ea
h ve
tor �eld f ∈ X
r(M) is de�ned globally onM×R.For some pairs in X

r(M) × Cr(M,R) there is no possibility to distin-guish or lo
ally distinguish the states. For generi
ity results it is an es-sential fa
t that the 
omplement of the set of su
h pairs is residual. Let
Sing(f) := {x ∈ M : f(x) = 0x ∈ TxM} denote the set of singularities ofthe ve
tor �eld f (equilibria of the system), where 0x is the zero of TxM . Inthe sequel we shall often omit the subs
ript x and write simply f(x) = 0 for
x ∈ Sing(f).Re
all that a singularity x0 ∈ Sing(f) is 
alled simple i� the prin
ipial partof the linearization of f at x0, i.e. the linear mapping dx0

f : Tx0
M → Tx0

M ,does not have zero as an eigenvalue.We denote the set of Cr ve
tor �elds, whose singularities are all simple, by
X

r
0(M). It is well known that a simple singularity is isolated and X

r
0(M) is anopen and dense subset of X

r(M) (for a proof we refer to [PD, 3.3℄).
Definition 2.2 We 
all x0 ∈ M a Θ-simple singularity i� there exists a
otangent ve
tor v ∈ T ∗

x0
M su
h that the linear system (Tx0

M,dx0
f, vT ) isobservable, i.e., the linear mapping

∫ 0

−τ

e−tAbvetdx0
fdt : Tx0

M → R
mis inje
tive. In this 
ase we say that vT is a Θ-
o
y
li
 
ove
tor of dx0

f .We denote by X
r
1(M) the set of Cr ve
tor �elds on M , whose singularities are

Θ-simple. Moreover we set X
r
0,1(M) := X

r
0(M) ∩ X

r
1(M).In the limiting 
ase τ = ∞ dense orbits as well as nontrivial re
urren
e 
ausedi�
ulties and spe
ial 
onsiderations are ne
essary. We investigate this 
aseunder the assumption that M is 
ompa
t. Appropriate results in the non
om-pa
t 
ase 
an be similarly deriven if we further restri
t (in order to a
hievewell-de�nedness of the observation mapping) the systems to be globally Lip-s
hitzian. Furthermore, in order to ensure di�erentiability of the observationmapping, if τ = ∞ we restri
t the ve
tor �elds to the open set

X
r(M,a) := {f ∈ X

r(M) : sup
x∈M

‖dj
xf‖ < a for all j = 1, ..., r}Denoting the set of 
riti
al elements (equilibria and 
losed orbits) of a ve
tor

Documenta Mathematica 12 (2007) 505–520



Generic Observability of Dynamical Systems 509�eld f by C(f) and the union of the negative limit sets by L−(f), we set
X

r
−(M) := {f ∈ X

r(M) : L−(f) ⊂ C(f)}.We denote that some ineteresting 
lasses of ve
tor �elds like Morse-Smale �elds∗are 
ontained in X
r
−(M). Parti
ularly, sin
e the set 
onsisting of Morse-Smaleve
tor �elds is open and nonempty in Xr(M), the interior int(Xr

−(M)) of
X

r
−(M) is a Baire spa
e (in the indu
ed topology). Furthermore note that thelimit set of a gradient �eld 
onsists only of the 
riti
al points of the potentialfun
tion. Therefore X

r
−(M) also 
ontains the set of gradient �elds. Moreoverwe set
X

r
2(M) := X

r(M,a) ∩ int(Xr
−(M)).It is well known that on a 
ompa
t manifold C1-generi
ally the nonwander-ing set of a smooth ve
tor �eld 
oin
ides with the 
losure of the set of itsperiodi
 points. This statement 
alled general density theorem is a 
onse-quen
e of Pugh's 
losing lemma, whi
h ensures that a nonwandering point
an be made periodi
 by a small C1-petrubation in a neighbourhood of thepoint. See also [Pu℄, [AR, 7.3.6℄ and the referen
es given there∗. Parti
ularly

{f ∈ X
1(M) : L−(f) ⊂ C(f)} is a residual subset of X

1(M).We set for y ∈ Er
a,τ := {y ∈ Cr([−τ, 0],R) :

∫ 0

−τ
eat|y(t)|dt <∞}

Pτy :=

∫ 0

−τ

e−Atby(t)dtand for �xed τ simply write P instead of Pτ .
Lemma 2.1 Let r, τ ≤ ∞.Furthermore let q0 ∈ R

m and T, δ > 0. Thenthe followings hold.a) There exists a fun
tion y ∈ Cr(R,R) being 
ompa
tly supported in ] − δ, 0[and satisfying Pτy = q0.b) There exists a T -periodi
 fun
tion y ∈ Cr(R,R) with Pτy = q0 and
supp(y|[−(k+1)T,0]) ⊂] − (k + 1)δ, 0[ for all k ∈ Z.
Proof: Ad a) Let ǫ := min{δ, τ}. The mapping L1([−ǫ, 0]) ∋ y 7→ K(y) :=∫ 0

−ǫ
e−Atby(t)dt ∈ R

m is linear, 
ontinuous and be
ause of the 
ontrollabilityof (A, b) surje
tive. Cr
ǫ is a dense linear subspa
e of L1([−ǫ, 0]). Therefore

R := K(Cr
ǫ ) is a dense linear subspa
e of R

m and 
onsequently R = R
m.Therefore there exists a fun
tion y0 ∈ Cr

ǫ having the property K(y0) = q0.The trivial extension of y0 on R is obviously the desired fun
tion.Ad b) If τ ≤ T , the assertion follows dire
tly from part a). We provethe result for τ > T using sampling. Assume �rst τ < ∞ and let
N := max{k ∈ N : NT ≤ τ}. Due to the stability of A the series ∑∞

k=0 e
kTA

∗Re
all that Morse-Smale ve
tor �elds are stru
turally stable.
∗It is still unknown whether the Ck-
losing lemma with k ≥ 2 fails in general.
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510 Esfandiar Nava Yazdani
onverges to (I − eTA)−1 and SN :=
∑N

k=0 e
kTA = (I − eTA)−1(I − e(N+1)TA)is invertible. Let us write ǫ := min{τ −T, δ}. A

ording to part a) there exists

ỹ0 ∈ Cr
ǫ with PT ỹ0 = S−1

N q0 (as well as (I − eTA)q0 in 
ase τ = ∞). Let y0denote the trivial extension of ỹ0 on [−T, 0]. Then we have PT y0 = S−1
N q0.Let y denote the T -periodi
 extension of y0 on R. Consequently

∫ 0

−τ

e−Atby(t)dt =

N∑

k=0

∫ −kT

−(1+k)T

e−Atby0(t+ kT )dt

=

N∑

k=0

ekTA

∫ 0

−T

e−Atby0(t)dt

= q0,whi
h yields immediately the desired 
on
lusion. �Let π denote the 
anoni
al proje
tion of the tangent bundle TM :
π : TM →M, π(v) := x for v ∈ TxM.Let M be endowed with a Riemannian metri
. Denoting the indu
ed norm onthe tangent spa
es by |.|, the unit tangent bundle T1M is given by
T1M := ∪

x∈M
{v ∈ TxM : |v| = 1}.Re
all that T1M is a (2n − 1)-dimensional Cr−1 submanifold of TM . It is
ompa
t, if M is 
ompa
t.Let K be a subset ofM . We set T0K := K×K \∆K and denote the restri
tionof T1M to K with T1K, i.e., T1K := {v ∈ T1M : π(v) ∈ K}. Re
all that if Kis an s-dimensional submanifold, then T1K has dimension n+ s− 1.

Definition 2.3 We de�ne the τ -history of K by the �ow Φ of the ve
-tor �eld f to be the 
losure of
Φ(K; τ) := {Φt(x) : −τ < t ≤ 0, x ∈ K}.We denote

∆Θf,h(x, x′) := Θf,h(x) − Θf,h(x′) for x, x′ ∈M .Let V be an open subset of M 
ontaining the τ -history of K and L be the
losure of V . Then we denote
H0(L;K) := {h ∈ Cr(L,R) : zero is a regular value of ∆Θf,h|Λ0K},and

H1(L;K) := {h ∈ Cr+1(L,R) : zero is a regular value of dΘf,h|Λ1K}.
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Generic Observability of Dynamical Systems 511In the sequel we set i = 0, 1 as well as Hi(K) := Hi(M ;K) and Hi := Hi(M).If K ′ ⊂ K and for an output fun
tion h, zero is a regular value of themapping ∆Θf,h on Λ0K, then it is also a regular value of the restri
ted map-ping ∆Θf,h|Λ0K′ , that is, H0(K) ⊂ H0(K
′). Similarly H1(K) ⊂ H1(K

′) holds.In the following, if f ∈ X
r
0,1(M), then H0(L) stands for the set of outputfun
tions h ∈ Cr(L,R) su
h that

h(x0) 6= h(x′0) for all (x0, x
′
0) ∈ Λ0(L ∩ Sing(f)),and H1(L) for those h ∈ Cr+1(L,R) su
h that

dx0
h is a Θ-
o
y
li
 
ove
tor of dx0

f for all x0 ∈ L ∩ Sing(f).Note that if L is 
ompa
t, then the number of singularities of f in L is �niteand for �nite r, as an immediate appli
ation of the transversality opennessand density theorems, it follows that Hi(L) is an open and dense subset of theBana
h spa
e Cr+i(L,R).
Lemma 2.2 Assume that i < r < ∞ and f ∈ X

r
0,1(M) is 
omplete. Let

S be a Cr submanifold of M su
h that the τ -history of S is 
ontained in anopen subset V of M with 
ompa
t 
losure L := V̄ . Consider the mappings
F i : Hi(L) × ΛiS → R

m de�ned by
F 0(h, x, x′) := ∆Θf,h(x, x′)and
F 1(h, v) := dπ(v)Θf,h(v).Then the following holds.a) Zero is a regular value of F 0.b) Zero is a regular value of F 1.Suppose moreover that f ∈ Xr

2 (M). Then the assertions also hold for τ = ∞.
Proof: Ad a) Let W0 := {(h, x, x′) ∈ H0(L) × T0S : F 0(h, x, x′) = 0}.We have to show that the fun
tion F 0 is submersive on W0. Sin
e
R

m is �nite dimensional, it su�
ies to prove that the linear mapping
d(h,x,x′)F

0 : T(h,x,x′)(H0(L) × T0S) → R
m is surje
tive for all (h, x, x′) ∈ W0.Fix (h, x, x′) ∈W0 and q0 ∈ R

m. A

ording to the 
ondition h ∈ H0(L) we seethat x and x′ 
annot be both equilibrium points. Therefore we assume withoutloss of generality that x is not an equilibrium point. Sin
e H0(L) is open and
d
ds
|s=0F

0(h + sg, x, x′) = ∆Θf,g(x, x
′) = F 0(g, x, x′), it is su�
ient to showthe existen
e of an output fun
tion g ∈ Cr(L,R) satisfying F 0(g, x, x′) = q0.We use the fa
t that the �ow through a point of the state spa
e M maps ea
h
losed �nite time interval on a 
losed subset ofM and de�ne a suitable mapping

g on an appropriate 
losed subset of the state spa
e and then extend it to L.
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512 Esfandiar Nava YazdaniLet γ and γ′ denote the τ -histories of the points x and x′ respe
tively and
Z := γ ∪ γ′. We de�ne g on Z. We �rst treat the 
ase τ <∞.Case 1: Both orbits are 
riti
al elements. Let T denote the period of x. In viewof lemma 2.1 there exists a T -periodi
 fun
tion y ∈ Ck(R,R), whi
h satis�esthe 
ondition Pτy = q0. We set g(Φt+kT (x)) = y(t) for 0 ≤ t ≤ T, k ∈ Z and
g = 0 else.Case 2: One of the integral 
urves, say Φ(x), is inje
tive and the other one isperiodi
 or an equilibrium point. A

ording to Lemma 2.1 there is a fun
tion
y ∈ Ck([−τ, 0],R) with 
ompa
t support su
h that Pτy = q0. We de�ne g on γby g(Φt(x)) = y(t) for −τ ≤ t ≤ 0 and g = 0 else. If Φ(x′) is inje
tive and x isperiodi
, we just set g = 0 on γ and de�ne g on γ′ su
h that Pτ (g ◦ Φ(x′))) =
−q0.Case 3: Both integral 
urves are inje
tive. In this 
ase we de�ne g on γ as in
ase 2 and on γ′ by g = 0.If τ = ∞, then be
ause of eventual presen
e of dense orbits g 
annot be simplyde�ned on a part of Z and then trivially extended. Hen
e the 
onstru
tionof g be
omes a little more deli
ate. Assuming f ∈ X2 ensures then that there
urren
e is trivial and the previous pro
edure also works. If both orbitsare 
riti
al elements, i.e. in 
ase 1, then everything remains the same as for�nite observation time. Problems 
ould arise in 
ase 2 or 3 if at least oneof the integral 
urves is inje
tive and the past half of one of the orbits, saythe one through x′, belongs to the negative limit set of the other orbit oritself, i.e., {Φt(x

′) : t ≤ 0} ⊂ α(x) ∪ α(x′). But this 
an a

ording to theassumption f ∈ X
r
2(M) only o

ur if x′ is periodi
 or an equilibrium point. Wepro
eed as in 
ase 2 of �nite τ and �nd again in view of Lemma 2.1 a fun
tion

y ∈ Cr(R,R) 
ompa
tly supported in an interval [−ǫ, 0] with ǫ > 0 and set
g(Φt(x)) := y(t) for all t and g = 0 else.In all 
ases we have de�ned a Cr fun
tion on the 
losed subset Z of the statespa
e M with the property that Z ⊂ L and Pτ (g ◦ Φ(x) − g ◦ Φ(x′)) = q0.A

ording to the smooth Tietze extension theorem, there exists a Cr extensionof the fun
tion g to L. This fun
tion denoted again by g is obviously thedesired fun
tion, whi
h satis�es F 0(g, x, x′) = q0.Ad b) Denote W1 := {(h, v) ∈ H1(L) × T1S : F 1(h, v) = 0}. We �x
(h, v) ∈ W1, set x0 := π(v) and show that F 1 is submersive at (h, v). Fix
q0 ∈ R

m. Sin
e d
ds
|s=0F

1(h + sg, v) = F 1(g, v) for arbitrary g ∈ Cr(M,R), itsu�
es to prove the existen
e of a fun
tion g ∈ Cr(L,R) with F 1(g, v) = q0lo
ally and extend it L. If x0 would be an equilibrium point, then in viewof the assumption h ∈ H1(L), the linear system (Tx0
M,dx0

f, dx0
h) would be

Θ-observable and 
onsequently F 1(h, v) 6= 0 in 
ontradi
tion to the assumption
(h, v) ∈ W1. Therefore we may assume that x0 is not an equilibrium point.Hen
e, in view of the straightening-out theorem there is a lo
al 
hart (U,ψ)at x0 su
h that ψ(U) = U ′×] − ǫ,−ǫ[ with ǫ > 0, U ′ an open subset of R

n−1,
ψ(x0) = 0 and the ve
tor �eld f has the lo
al representative (z, t) 7→ en. Here
en denotes the nth standard base ve
tor in R

n. Denote the indu
ed 
oordinate
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Generic Observability of Dynamical Systems 513fun
tion on T1M at v by ψ̂. Sin
e v 6= 0 we 
an and do assume that v hasthe lo
al representative η = (η1, η2)
T with η1 ∈ R

n−1, η2 ∈ R, η 6= 0, i.e.
v = ∂

∂z
(x0)η1 + ∂

∂t
(x0)η2. Furthermore for t ∈]− ǫ,−ǫ[, the lo
al representativeof dx0

Φt reads as [
Id 0
0 1

] and subsequently that of dx0
h ◦ Φtv as ∇h(0, t)η.By shrinking U if ne
essary, we 
an (in the 
ase τ = ∞ on a

ount of theassumption that f ∈ X

r
2(M) if the point x0 is re
urrent, then it is periodi
)and do assume that the interse
tion of U and the τ -history of x0 is 
onne
ted.A

ording to lemma 2.1 there exists a fun
tion ŷ ∈ Cr+1(R,R) with derivative

y being supported (on ea
h period, if x0 has period > τ) in [−ǫ, 0] su
hthat Pǫy(t)dt = q0. Obviously there exists a fun
tion g ∈ Cr(U ′×] − ǫ, ǫ[,R)being 
ompa
tly supported, with ∇g(0, t)η = y(t). For instan
e de�ne
g̃(z, t) = |η|−2(zT η1y(t) + η2ŷ(t)). The trivial extension of g̃ ◦ ψ to L is thedesired fun
tion g. �Sometimes in appli
ations one is interested in or limited to observation re-stri
ted to a subset of the state spa
e. It 
an be for instan
e be
ause of te
hni
alor physi
al reasons, or if it happens that all the information needed 
an be eval-uated from measurements on a 
ertain subset. The latter 
ase being perhapsthe most important one, o

urs if the subset under observation is an attra
tor.Other subsets invariant under the �ow 
an also be of interest. Therefore westate our generi
ity results for observations of subsets of the state spa
e as well.
Lemma 2.3 Suppose that K is a subset of an s-dimensional Cr submani-fold of M denoted by S, τ < ∞ and f ∈ X

r
0,1(M) is 
omplete. Then thefollowing holds.a) Assume that m ≥ n + s − r and r ≥ 2. Then H1(K) is residual. If K is
losed, then H1(K) is also open.b) Assume that m ≥ n + s + 1 − r. Then H0(K) is residual. If K is 
losed,then H0(K) 
ontains an open set.Suppose moreover that M is 
ompa
t and f ∈ X

r
2(M). Then the assertionshold also in the 
ase τ = ∞.

Proof: Assume �rst r < ∞, K is 
ompa
t, U is a 
hart domain of S,whi
h 
ontains K and has 
ompa
t 
losure. By 
ompa
tness of U and �nite-ness of τ in 
ase of �nite observation time and be
ause of 
ompa
tness of Min 
ase τ = ∞, the τ -history of U is 
ompa
t. By lo
al 
ompa
tness there isan open set V ⊂ M with 
ompa
t 
losure L := V su
h that V 
ontains the
τ -history of U .Lo
al density: We prove residuality with respe
t to Hi(L). Sin
e the latteris open and dense in Cr(L,R), density of Hi(L;U) is also then shown withrespe
t to Cr(L,R).A

ording to the previous lemma zero is a regular value of the evaluation map-
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514 Esfandiar Nava Yazdaniping F i : Hi(L) × TiU → R
m de�ned by

F 0(h, x, x′) := ∆Θf,h(x, x′)and
F 1(h, v) := dπ(v)Θf,h(v).Therefore a

ording to the transversality density theorem (see for instan
e [AR,19.1℄) Hi(L;U) is a residual subset of Hi(L), and hen
e dense in Cr(L,R).Lo
al Openness: Compa
tness of K implies that T1K is also 
ompa
t in T1U .A

ording to the transversality openness theorem H1(L;K) is open (with re-spe
t to the 
ompa
t-open and by 
ompa
tness of L also with respe
t to theWhitney topology) in Cr(L,R). These 
on
lusions do not work for H0(L;K).Instead let Λ be a 
ompa
t subset of T0U . Then in view of transversalityopenness theorem

H ′
0(L; Λ) := {h ∈ Cr(L,R) : zero is a regular value of ∆Θf,h on Λ}is open in Cr(L,R).Sin
e the assertions are proved for r �nite and su�
iently large, they also holdfor r = ∞. Hen
e we assume from now on that r ≤ ∞.Globalization: This part of the proof is basi
ly standard. Therefore wegive an outline and refer to [H, 2.2℄ for details. Sin
e K ⊂ U , we have

H1(L;U) ⊂ H1(L;K). Hen
e H1(L;K) is also dense in Cr(L,R). Likewise onegets density of H
′
0(L; Λ) in Cr(L,R) from density of H0(L;U), sin
e Λ ⊂ T0Uand subsequently H0(L;U) ⊂ H

′
0(L; Λ). Using a bump fun
tion we now provethat H1(K) is dense in Cr(M,R). Fix g0 ∈ Cr(M,R). Sin
e H1(L;K) is densein Cr(L,R), there is a sequen
e {hj} in H1(L;K) 
onverging in the 
ompa
t-open topology to g0|L. Sin
e K ⊂ U , there is a Cr-fun
tion ρ : M → [0, 1] with
ompa
t support in L, su
h that ρ = 1 on an open neighborhood of K. Thesequen
e ρhj +(1−ρ)g0 
onverges to g0 with respe
t to the Whitney topology.Therefore H1(K) is a dense subset of Cr(M,R). A similar argument showsthat H

′
0(Λ) is a dense subset of Cr(M,R).We now drop the assumption that K ⊂ U . Let J be a 
ountable indexing set,

{Uj} with j ∈ J be a 
overing of S with 
hart domains Uj . Furthermore let
{Kj} be a subordinate family of 
ompa
t sets su
h thatK = ∪

J
Kj andKj ⊂ Uj .We 
an and do assume that there is a 
ompa
t 
overing ofM denoted by {Lj}su
h that the interior of Lj 
ontains the τ -history of Uj .Openness statements: Suppose that K is 
losed. Then it is also para
ompa
tand the 
overing 
an be assumed to be lo
ally �nite. Sin
e {Lj} 
overs M , itholds that H1(K) = {h ∈ Cr(M,R) : h|Lj

∈ H1(Lj ;Kj) for allj ∈ J}. Hen
elo
al �niteness of the 
overing implies that H1(K) is open. Simliarily it followsthat the set {h ∈ Cr(M,R) : zero is a regular value of ∆Θf,h on K × K} isopen. The latter is 
ontained in H0(K).Residuality statements: We now drop the assumption that K is 
losed. By thepre
eding arguments H1(Kj) is open and dense. Therefore H1(K) = ∩
j
H1(Kj)
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Generic Observability of Dynamical Systems 515is residual (and in view of the Baire property of Cr(M,R) also dense). Takinga 
ompa
t 
overing {Λj} of T0K a similar argument yields the results on
H0(K). �The openness results in the pre
eding lemma 
an also be proved (withoutapplying the transversality openness theorem) as follows. For instan
e, by
ompa
tness of L the mapping H0(U) ∋ h 7→ F 0(h, .)) ∈ Cr(T0U,R

m) is 
ontin-uous in the Whitney topology. This fa
t and openness of {F ∈ Cr(T0U,R
m) :zero is a regular value of F} (this fa
t follows, for instan
e, from the lowersemi
ontinuity of the mapping Cr(L,R)×T0U ∋ (h, x, x′) 7→ rank(d(h,x,x′)F

0)and 
ompa
tness of L) in the Whitney topology implies that H0(L;U) isopen in the Whitney topology and by 
ompa
tness of L also open in the
ompa
t-open topology of Cr(L,R). Other parts follow likewise.In light of the pre
eding lemmas we 
an now prove the generi
ity results onoutput fun
tions just by 
omparing dimensions.
Theorem 2.1 Suppose that K is 
ontained in an s-dimensional Cr sub-manifold of M and f ∈ X

r
0,1(M) is 
omplete. Then the following assertionshold.a) Assume that r ≥ 2 and m ≥ n+ s. Then fun
tions h belonging to Cr(M,R)su
h that Θf,h is immersive at ea
h point of K, 
onstitute a residual set. Thisset is also open, if K is 
losed.b) Assume that m ≥ 2s+1. Then the set of fun
tions h belonging to Cr(M,R)su
h that Θf,h is inje
tive (respe
tively an inje
tive immersion) on K, isresidual (respe
tively, if r ≥ 2). It 
ontains an open set, if K is 
losed.Supposing m ≤ 2s and r > 2s−m the same results hold for the set of fun
tions

h belonging to Cr(M,R) su
h that the Θ-unobservable points of K×K belongto a submanifold of dimension 2s−m.Suppose moreover that M is 
ompa
t and f ∈ X
r
2(M). Then the assertionsalso hold for τ = ∞.

Proof: Ad a) Sin
e m ≥ n + s, the set of fun
tions h belonging to
Cr(M,R) su
h that Θf,h is an immersion at ea
h point of K, 
oin
ides with
H1(K), i.e., dΘf,h|T1K is transversal to {0} ∈ R

m. Therefore the assertionfollows immediately from the previous lemma.Ad b) A

ording to the previous lemma H0(K) is residual and 
ontains anopen set, if K is 
losed. If m ≥ 2s + 1, then the set of fun
tions h belongingto Cr(M,R) su
h that the restri
tion of Θf,h to K is inje
tive (respe
tively aninje
tive immersion), is pre
isely H0(K) (respe
tively H0(K) ∩ H1(K)). Thestatement on the indistinguishable set follows from the preimage theorem. �

Remark 2.2 As it 
an easily be seen from the proof of lemma 2.2, thedimension 
ondition m ≥ n + s in part a) of the pre
eding theorem 
an beweakend to m ≥ 2s, if immersivity is repla
ed by immersivity on TS.
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516 Esfandiar Nava YazdaniIf the state spa
e is 
ompa
t, we get sharper results. In parti
ular the followingtheorem is important, sin
e embedding of the state spa
e gives information onlimit behavior of the system.
Theorem 2.2 Suppose that m ≥ 2n + 1, f ∈ X

r
0,1(M) and M is 
om-pa
t. Then output fun
tions h ∈ Cr(M,R) su
h that Θf,h is an embedding
onstitute an open and dense set.If we further assume that f ∈ X

r
2(M), then the assertion remains true in the
ase τ = ∞.

Proof: Re
all that by 
ompa
tness of M an inje
tive immersion is alsoan embedding (
ase 2 ≤ r ≤ ∞ in Theorem 2.1) and an inje
tive mappingis also a topologi
al embedding (
ase r = 1). Hen
e density follows fromTheorem 2.1. Openness is a 
onsequen
e of the fa
t that by 
ompa
tness ofMthe mapping Cr(M,R) × T0M ∋ h 7→ ∆Θf,h ∈ Cr(M,Rm) is 
ontinuous andthe set of embeddings Embr(M,Rm) := {F ∈ Cr(M,Rm) : F is embedding}is open. �Next we shall prove residuality of X
r
0,1(M) by using the 
hara
terization of sim-pli
ity and Θ-simpli
ity of a singularity, in terms of transversal noninterse
tion.

Lemma 2.4 Assume that m ≥ n. Then X
r
0,1(M) is open and dense in

X
r(M). Moreover, the assertion holds also for τ = ∞, if we restri
t the ve
tor�elds to Xr(M,a).

Proof: We give a proof for τ < ∞. The arguments for τ = ∞ aresimilar. It su�
ies to show that X
r
1(M) is open and dense. Let O resp.

U denote the set of n-dimensional Θ-observable resp. unobservable linearsystems. Let f ∈ X
r
1(M), x0 ∈ Sing(f) and dx0

f denote the prin
ipial part ofthe linearization of f .Note that f ∈ X
r
1(M) if and only if there exists a v ∈ Tx0

M su
h that thesystem (dx0
f, v) avoids the set of Θ-unobservable linear systems on Tx0

M .We now give a lo
al 
hara
terization. Let ψ : U → R
n be a lo
al 
hartsu
h that U has 
ompa
t 
losure and ψ(x0) = 0. The tangent mapping

dψ : TU → R
n × R

n de�ned by dψ(v) = (ψ(x), dxψv) with x = π(v) is a lo
al
hart for TM . Let Pr
2
denote the proje
tion R

n ×R
n ∋ (x,w) 7→ w. Considerthe mapping ξf := Pr

2
dψf ◦ψ−1 on ψ(U). Hen
e d0ξf = dx0

ψdx0
fd0ψ

−1. Thesingularity x0 is Θ-simple if and only if (d0ξf , dx0
v) /∈ U for some v ∈ Tx0

M .Obviously U is 
losed, analyti
 and 6= End(Rn) × R
n, hen
e �nite union of
losed positive 
odimensional real analyti
 submanifold of End(Rn) × R

n.Given a pair (G,w) ∈ O, obviously there exists a ve
tor �eld g ∈ X
r(M) su
hthat g and f 
oin
ide on M \ U , x0 ∈ Sing(g) and dx0

ξg = G. An immediateappli
ation (details are similar to those in the proof of lemma 2.3) of thetransversality density and openness theorems 
ompletes the proof. �
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Generic Observability of Dynamical Systems 517We 
an now prove the main result on generi
 observability with respe
t to themapping Θ.
Theorem 2.3 Suppose that m ≥ 2n + 1 and M is 
ompa
t. Then pairs
(f, h) in X

r(M) × Cr(M,R) su
h that Θf,h is an embedding 
onstitute anopen and dense subset of X
r(M) × Cr(M,R). Restri
ing the ve
tor �elds to

X
r
2(M), the assertion remains valid for τ = ∞ as well.

Proof: Re
all that X
r
0,1(M) is open and dense. Furthermore X

r
2(M) isopen in X

r(M,a). The assertions follow immediately from this fa
ts andtheorem 2.2. �Similarily, generi
ity results for non
ompa
t state spa
es 
an be deriven, if werestri
t ourself to the set of 
omplete ve
tor �elds, repla
e open and dense byresidual and embedding by inje
tive immersion. We remark also that 
onsid-ering the observation mapping
Θg,h(x) :=

0∑

k=−N

e−kAbh(gk(x))for x ∈M and (g, h) ∈ Diff r(M)×Cr(M,R) with gk := g ◦gk−1, 
orrespond-ing results for dis
rete dynami
al systems 
an be proved likewise.
3 Concluding Remarks

Remark 3.1 Sin
e the set of m-dimensional 
ontrollable linear �lters is openand dense in End(Rm)×R
m, all generi
ity results of the last se
tion hold alsogeneri
ally with respe
t to the linear �lters.The following examples show that the 
onditions on the observation dimensionare also ne
essary, thus m ≥ 2n for generi
 lo
al observability and m ≥ 2n+ 1for generi
 observability 
an not be weakend.

Example 3.1 Let M = S1 and f(ϕ) = 1, where ϕ denotes the standardangular 
oordinate of the 
ir
le. Furthermore 
onsider the pair (λ, b) with
λ < 0 and b 6= 0. Taking τ = 2π and the output fun
tion h(ϕ) = cosϕ leads to
Θf,h(ϕ) = 1−e2λπ

1+λ2 (λcos ϕ − sin ϕ), whi
h is not an immersion. Moreover thezero of dΘf,h at ϕ0 = −arctan 1
λ
is transversal. Hen
e the nonimmersivity of

Θf,h is preserved under small perturbations of the output fun
tion, the ve
tor�eld and the linear �lter.
Example 3.2 LetM , f , ϕ and τ be as in the pre
eding example. Furthermorelet A = diag(−1,−2), b = (1 − e−2π)−1(1, 1)T and h(ϕ) = 2cos ϕ + 5cos 2ϕ.
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518 Esfandiar Nava YazdaniThen a straightforward 
omputation yields
Θf,h(ϕ) =

[
cos ϕ+ sin ϕ+ cos 2ϕ+ 2sin 2ϕ

(e−2π + 1)(2
5 (2cos ϕ+ sin ϕ) + 5

4 (cos 2ϕ+ sin 2ϕ))

] .The following �gure shows the image of S1 by Θf,h.
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Image of S1 by the 
ontinuous linear �lter mapping given by
ϕ 7→ (cosϕ+sinϕ+cos2ϕ+2sin2ϕ, (e−2π +1)( 2

5
(2cosϕ+sinϕ)+ 5

4
(cos2ϕ+sin2ϕ))Tin the XY -planeThe sel�nterse
tion of the image is transversal. Hen
e the noninje
tiveness of

Θf,h is persistent under small perturbations of the output fun
tion, the ve
tor�eld and the linear �lter.For instan
e, small perturbations of h do not result in inje
tivity, i.e., there isan ǫ > 0 su
h that for ea
h output fun
tion h̃, whi
h is Cr near to h within ǫ,the mapping Θf,h̃ is not inje
tive.Note that the 
onsidered system is also unobservable with respe
t to the high-gain mapping given by ϕ 7→ (2cos ϕ+ 5cos 2ϕ, 2sin ϕ − 10sin 2ϕ)T as well assampling mapping ϕ 7→ (2cos(ϕ+ t1)+5cos(2ϕ+2t1, 2cos(ϕ+ t2)+5cos(2ϕ+
2t2))

T with sampling times t1, t2. The following �gure shows the image of thestate spa
e by the sampling mapping with sampling times 0 and π
2 .
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Image of S1 by the sampling mapping given by
ϕ 7→ (2cos ϕ + 5cos 2ϕ,−2sin ϕ − 5cos 2ϕ)Tin the XY -plane
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