
Documenta Math. 569

Eigenvalue Clusters of the Landau Hamiltonian

in the Exterior of a Compact Domain

Alexander Pushnitski and Grigori Rozenblum

Received: August 30, 2007

Revised: October 20, 2007

Communicated by Heinz Siedentop

Abstract. We consider the Schrödinger operator with a constant
magnetic field in the exterior of a compact domain on the plane. The
spectrum of this operator consists of clusters of eigenvalues around
the Landau levels. We discuss the rate of accumulation of eigenvalues
in a fixed cluster.

2000 Mathematics Subject Classification: Primary 35P20; Secondary
35Q40.
Keywords and Phrases: Schrödinger operator, magnetic field, spectral
asymptotics, exterior problem

1 Introduction

1.1 Preliminaries

The Landau Hamiltonian describes a charged particle confined to a plane in a
constant magnetic field. The Landau Hamiltonian is one of the earliest explic-
itly solvable quantum mechanical models. Its spectrum consists of the Landau
levels,1 infinitely degenerate eigenvalues placed at the points of an arithmetic
progression.
In [7], the Landau Hamiltonian was considered in the exterior of a compact
obstacle. Introducing the obstacle produces clusters of eigenvalues of finite
multiplicity around the Landau levels. Various asymptotics (high energy, semi-
classical) of these eigenvalue clusters were studied in [7]. In this paper we focus

1It is a little known fact that this was worked out by Fock two years before Landau; see
[4, 9].
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on a different aspect of the spectral analysis of this model: for a fixed eigen-
value cluster, we consider the rate of accumulation of eigenvalues in this cluster
to the Landau level. We describe this rate of accumulation rather precisely in
terms of the logarithmic capacity of the obstacle.
Our construction is motivated by the recent progress in the study of the Landau
Hamiltonian on the whole plane perturbed by a compactly supported or fast
decaying electric or magnetic field, see [15, 13, 3, 16]. In particular, we use
some operator theoretic constructions from [15] and [13] and some concrete
analysis (related to logarithmic capacity) from [3].

1.2 The Landau Hamiltonian

We will write x = (x1, x2) ∈ R
2 and identify R

2 with C in the standard way,
setting z = x1 + ix2 ∈ C. The Lebesgue measure in R

2 will be denoted by
dx and in C by dm(z). The derivatives with respect to x1, x2 are denoted by
∂k = ∂xk

; we set, as usual, ∂̄ = (∂1 + i∂2)/2, ∂ = (∂1 − i∂2)/2.
We denote by B > 0 the magnitude of the constant magnetic field in R

2. We
choose the gauge A(x) = (A1(x), A2(x)) = (− 1

2Bx2,
1
2Bx1) for the magnetic

vector potential associated with this field. The magnetic Hamiltonian on the
whole plane is defined as

X0 = −(∇− iA)2 in L2(R2). (1)

More precisely, for u ∈ C∞
0 (R2) we set

‖u‖2
H1

A

=

∫

R2

|i∇u(x) +A(x)u(x)|2 dx (2)

and define X0 as the selfadjoint operator which corresponds to the closure of
the quadratic form ‖u‖2

H1
A

, u ∈ C∞
0 (R2).

It is well known (see [4, 9] or [10]) that the spectrum of X0 consists of the
eigenvalues Λq = (2q + 1)B, q = 0, 1, . . . , of infinite multiplicity. In particular,
we have

‖u‖2
H1

A

≥ B‖u‖2
L2 , u ∈ C∞

0 (R2). (3)

We will denote by Lq the eigenspace of X0 corresponding to Λq and by Pq the
operator of orthogonal projection onto Lq in L2(R2). Later on, we will need
an explicit description of Lq; this will be discussed in section 4.2.
Let Ω ⊂ R

2 be an open set. In order to define the magnetic Hamiltonian in
Ω, it is convenient to consider the associated quadratic form. Following [12],
we denote by H1

A(Ω) the closure of C∞
0 (Ω) with respect to the norm ‖u‖H1

A
.

The quadratic form ‖u‖2
H1

A

is closed in L2(Ω) and (by (3)) positively definite.

This form defines a self-adjoint operator in R
2 which we denote by X(Ω). If

Ω is bounded by a smooth curve, then the usual computations show that this
definition of X(Ω) corresponds to setting the Dirichlet boundary condition on
∂Ω. The operator X0 corresponds to taking Ω = R

2 in the above definitions.
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Note that for a bounded Ω, the norm in H1
A(Ω) is equivalent to the standard

Sobolev norm H1(Ω); in particular, in this case the embedding H1
A(Ω) ⊂ L2(Ω)

is compact.

1.3 Main results

LetK ⊂ R
2 be a compact set andKc its complement. Our main results concern

the spectrum of the operator X(Kc). First we state a preliminary result which
gives a general description of the spectrum of X(Kc). This result is already
known (see [7]) but as part of our construction, we provide a simple proof in
Section 1.4.

Proposition 1.1. Let K ⊂ R
2 be a compact set. Then

σess(X(Kc)) = σess(X0) = ∪∞

q=0{Λq}, Λq = (2q + 1)B.

Moreover, for all q and all λ ∈ (Λq−1,Λq) the number of eigenvalues of X(Kc)
in (λ,Λq) is finite.

In other words, the last statement means that the eigenvalues of X(Kc) can
accumulate to the Landau levels only from above.
For all q ≥ 0, we enumerate the eigenvalues of X(Kc) in (Λq,Λq+1):

λq
1 ≥ λq

2 ≥ . . .

Proposition 1.1 ensures that λq
n → Λq as n → ∞. Below we describe the rate

of this convergence. Roughly speaking, we will see that for large n,

an

n!
≤ λq

n − Λq ≤ bn

n!
(4)

with some a, b depending on K. In order to discuss the dependence of a, b on
the domain K, let us introduce the following notation:

∆q(K) = lim sup
n→∞

[n!(λq
n − Λq)]

1/n,

δq(K) = lim inf
n→∞

[n!(λq
n − Λq)]

1/n.
(5)

The estimates for these spectral characteristics will be given in terms of the
logarithmic capacity of K, which is denoted by Cap (K). Below we recall the
definition and basic properties of logarithmic capacity; for the details, see e.g.
[11] or [18]. For a measure µ ≥ 0 in R

2, its logarithmic energy is defined by

I(µ) =

∫ ∫

log
1

|z − t|dµ(z)dµ(t).

For a compact set K ⊂ R
2, its logarithmic capacity is defined by

Cap (K) = e−V (K),

V (K) = inf{I(µ) | µ ≥ 0 is a measure in R
2, suppµ ⊂ K, µ(K) = 1}.
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The logarithmic capacity of compact sets in R
2 has the following properties:

(i) if K1 ⊂ K2 then Cap K1 ≤ Cap K2;
(ii) the logarithmic capacity of a disc of radius r is r;
(iii) if K2 = {αx | x ∈ K1}, α > 0, then Cap K2 = αCap K1;
(iv) Cap K coincides with the logarithmic capacity of the polynomial convex
hull Pc (K) of K (=the complement of the unbounded connected component
of Kc).
(v) Continuity of capacity: if Kε = {x ∈ R

2 | dist (x,K) ≤ ε}, then Cap Kε →
Cap K as ε→ +0.
To extend the notion of capacity to arbitrary Borel sets E, one defines the
inner and outer capacities

Cap i(E) = sup{Cap (K) | K ⊂ E, K compact}
Cap o(E) = inf{Cap i(U) | E ⊂ U, U open}.

Then every Borel set E is capacitable in the sense that Cap i(E) = Cap o(E)
and one can simply write Cap (E) for this common value. We will also need
another version of inner capacity, which we denote by Cap−(K) and define by

sup{Cap S | S ⊂ K is a compact set with a Lipschitz boundary}.

Theorem 1.2. Let K ⊂ R
2 be a compact set; then for all q ≥ 0 one has

∆q(K) ≤ B

2
(Cap (K))2,

δq(K) ≥ B

2
(Cap−(Pc (K)))2.

In particular, if K is a compact set with a Lipschitz boundary, then ∆q(K) =
δq(K) = B

2 (Cap (K))2 for all q ≥ 0.

The lower bound in the above theorem is strictly positive if and only if Pc (K)
has a non-empty interior. In particular, for such compacts the number of
eigenvalues λq

1, λ
q
2, . . . is infinite for each q. However, even for some compacts

without interior points, lower spectral bounds can be obtained. In particular,
this can be done for the compact K being a smooth (not necessarily closed)
curve.

Theorem 1.3. Let K ⊂ R
2 be a C∞ smooth simple curve of a finite length.

Then for all q ≥ 0, one has

∆q(K) = δq(K) =
B

2
(Cap (K))2.

Remark. 1. One can prove that

if Cap (K) = 0, then C∞

0 (Kc) is dense in H1
A(R2). (6)
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It follows that for K of zero capacity, H1
A(Kc) = H1

A(R2) and therefore
X(Kc) = X0. Thus, for such K the spectrum of X(Kc) consists of
Landau levels Λq.

The statement (6) seems to be well known to the experts in the field
although it is difficult to pinpoint the exact reference. One can use the
argument of [1], Theorem 9.9.1; this argument applies to the usual H1

Sobolev norm, but it is very easy to modify it for the norm H1
A. In this

theorem the Bessel capacity rather than the logarithmic capacity is used;
however, the Bessel capacity of a compact set vanishes if and only if its
logarithmic capacity vanishes. In order to prove the latter fact (again,
well known to experts) one has to combine Theorem 2.2.7 in [1] and
Sect.II.4 in [11].

2. We do not know whether it possible for Λq to remain eigenvalues ofX(Kc)
of infinite multiplicity if Cap (K) > 0.

3. Following the proof of Theorem 1.2 and using the results of [3], it is easy
to show that for q = 0, the lower bound in this theorem can be replaced
by the following one:

δ0(K) ≥ B

2
(Cap (K−))2,

K− = {z ∈ C | lim sup
r→+0

logm(Pc(K) ∩Dr(z))

log r
<∞},

where Dr(z) = {ζ ∈ C | |ζ − z| ≤ r}, and m(·) is the Lebesgue measure.

4. Analysing the proof of Theorem 1.3, it is easy to see that if we are only
interested in its statement for finitely many q, it suffices to require some
finite smoothness of the curve K.

1.4 Outline of the proof

Let us write L2(R2) = L2(Kc)⊕L2(K). (If the Lebesgue measure ofK vanishes
then, of course, L2(K) = {0}.) With respect to this decomposition, let us define

R(Kc) = X(Kc)−1 ⊕ 0 in L2(R2) = L2(Kc) ⊕ L2(K). (7)

Clearly, for any λ 6= 0 we have

λ ∈ σ(X(Kc)) ⇔ λ−1 ∈ σ(R(Kc)) (8)

with the same multiplicity. Thus, it suffices for our purposes to study the
spectrum of the operator R(Kc).
First note that in the “free” case K = ∅ we have R(R2) = X−1

0 and the
spectrum of X−1

0 consists of the eigenvalues Λ−1
q of infinite multiplicity and

their point of accumulation, zero.
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Next, it turns out (see section 3) that

R(Kc) = X−1
0 −W, where W ≥ 0 is compact. (9)

Thus, the Weyl’s theorem on the invariance of the essential spectrum under
compact perturbations ensures that σess(R(Kc)) = σess(X

−1
0 ). Moreover, a

simple operator theoretic argument (see e.g. [2, Theorem 9.4.7]) shows that the
eigenvalues of R(Kc) do not accumulate to the inverse Landau levels Λ−1

q from
above. Thus, the spectrum of R(Kc) consists of zero and the eigenvalue clusters
{(λq

1)
−1, (λq

2)
−1, . . . } with the eigenvalues in the q’th cluster accumulating to

Λ−1
q . In section 2.3 we show that the rate of accumulation of (λq

n)−1 to Λ−1
q

can be described in terms of the spectral asymptotics of the Toeplitz type
operator PqWPq; here W is defined by (9) and Pq is the projection onto Lq =
Ker (X0 − Λq) = Ker (X−1

0 − Λ−1
q ).

The spectrum of PqWPq is studied in sections 4 and 5, using the results of [3].
The fact that the logarithmic capacity of the domain appears in this problem
probably deserves some explanation. In [3], the spectral asymptotics of PqWPq

was related to the asymptotics of the singular numbers of the embedding of
the Segal-Bargmann space F2 (see section 4.2 below) into an L2 space with
the weight related to W . Following the technique of [14], in [3] the analysis of
this asymptotics is then reduced to the analysis of the sequence of polynomials
of a complex variable, orthogonal with respect to the relevant weight. After
this, the results of [18] ensure that the asymptotics of these polynomials is
determined by the logarithmic capacity of the support of the weight.
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of the programme “Spectral Theory and Partial Differential Equations”. It is
a pleasure to thank the Institute and the organisers of the programme for
providing this opportunity. The authors are also grateful to Uzy Smilansky for
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2 Some abstract results

Here we collect some general operator theoretic statements that are used in
the proof. The statements themselves, with the exception of the last one, are
almost obvious, but spelling them out explicitly helps explain the main ideas
of our construction.

2.1 Quadratic forms

Our arguments can be stated most succinctly if we are allowed to deal with
quadratic forms whose domains are not necessarily dense in the Hilbert space.
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Here is the corresponding abstract framework; related constructions appeared
before in the literature; see e.g. [17].
Let a be a closed positive definite quadratic form in a Hilbert space H with
the domain d[a]. Let the closure of d[a] in H be Ha. Then the form a defines
a self-adjoint operator A in Ha. Let Ja : Ha → H be the natural embedding
operator; its adjoint J∗

a : H → Ha acts as the orthogonal projection onto the
subspace Ha of H. The operator JaA

−1J∗
a in H can be considered as the direct

sum
JaA

−1J∗

a = A−1 ⊕ 0 in the decomposition H = Ha ⊕H⊥

a ;

here we have in mind (7). Now let b be another closed positive definite form
in H and let B, d[b], Hb, Jb be the corresponding objects constructed for this
form.

Proposition 2.1. Suppose that d[b] ⊂ d[a] and b[x, y] = a[x, y] for all x, y ∈
d[b]. Then:
(i) JbB

−1J∗

b ≤ JaA
−1J∗

a on H;
(ii) if x ∈ d[b] ∩ Dom (A), then x ∈ Dom (B), Bx = Ax, and JbB

−1J∗

bAx =
JaA

−1J∗
aAx.

Proof. It suffices to consider the case Ha = H.
(i) The hypothesis implies

b[x, x] = a[Jbx, Jbx] for all x ∈ d[b].

This can be recast as ‖B1/2x‖ = ‖A1/2Jbx‖, x ∈ d[b]. It follows that the
operator A1/2JbB

−1/2 is an isometry on Hb and therefore A1/2JbB
−1/2J∗

b is a
contraction on H. By conjugation, we get that ‖JbB

−1/2J∗

bA
1/2z‖ ≤ ‖z‖ for

all z ∈ d[a]. The last statement is equivalent to ‖JbB
−1/2J∗

b u‖ ≤ ‖A−1/2u‖ for
all u ∈ H, and so JbB

−1J∗

b ≤ A−1 as required.
(ii) Let y ∈ d[b]; then

b[x, y] = a[x, y] = (Ax, y),

and so x ∈ Dom (B) and Bx = Ax. Next, JaA
−1J∗

aAx = A−1Ax = x, and

JbB
−1J∗

bAx = JbB
−1J∗

bBx = JbB
−1Bx = Jbx = x,

which proves the required statement.

2.2 Shift in enumeration

The asymptotics of the type discussed in Theorems 1.2 and 1.3 is independent
of a shift in the enumeration of eigenvalues. This is a consequence of the
following elementary fact. Let b1 ≥ b2 ≥ . . . be a sequence of positive numbers
such that lim supn→∞[n!bn]1/n <∞. Then for all ℓ ∈ Z,

lim
n→∞

{

sup

inf

}

[n!bn+ℓ]
1/n = lim

n→∞

{

sup

inf

}

[n!bn]1/n. (10)
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2.3 Accumulation of eigenvalues

Having in mind (9), let us consider the following general situation. Let T
be a self-adjoint operator and let Λ be an isolated eigenvalue of T of infinite
multiplicity with the corresponding eigenprojection PΛ. Let τ > 0 be such that

((Λ − 2τ,Λ + 2τ) \ {Λ}) ∩ σ(T ) = ∅.

Next, let W ≥ 0 be a compact operator; consider the spectrum of T − W .
The Weyl’s theorem on the invariance of the essential spectrum under compact
perturbations ensures that

((Λ − 2τ,Λ + 2τ) \ {Λ}) ∩ σess(T −W ) = ∅.

Moreover, a simple argument (see e.g. [2, Theorem 9.4.7]) shows that the
eigenvalues of T −W do not accumulate to Λ from above (i.e. (Λ,Λ + ǫ) ∩
σ(T −W ) = ∅ for some ǫ > 0).
We will need a description of the eigenvalues of T −W below Λ in terms of
the eigenvalues of the Toeplitz operator PΛWPΛ. Let µ1 ≥ µ2 ≥ · · · be the
eigenvalues of PΛWPΛ; in order to exclude degenerate cases, let us assume that
this operator has infinite rank. Let λ1 ≤ λ2 ≤ · · · be the eigenvalues of T −W
in the interval (Λ − τ,Λ).

Proposition 2.2. Under the above assumptions, for any ǫ > 0 there exists
ℓ ∈ Z such that for all sufficiently large n, one has

(1 − ǫ)µn+ℓ ≤ Λ − λn ≤ (1 + ǫ)µn−ℓ.

The proof borrows its key element from [8, Lemma 1.1]. An alternative proof
can be found in [15, Proposition 4.1].

Proof. 1. We denote S = T −W and QΛ = I − PΛ and consider the operators

R± = ǫPΛWPΛ +
1

ǫ
QΛWQΛ ± (PΛWQΛ +QΛWPΛ).

and

S± = PΛ(T − (1 ± ǫ)W )PΛ +QΛ(T − (1 ± 1

ǫ
)W )QΛ.

We have
S = S+ +R− = S− −R+.

2. Since W is compact, the operators R± are also compact. Since R± can be
represented as

R± = (
√
ǫPΛ ± 1√

ǫ
QΛ)W (

√
ǫPΛ ± 1√

ǫ
QΛ)

and W ≥ 0, we see that R± ≥ 0.
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3. Let us discuss the spectrum of S± in (Λ − τ,Λ). Clearly, the spectrum
of PΛ(T − (1 ± ǫ)W )PΛ = ΛPΛ − (1 ± ǫ)PΛWPΛ consists of the eigenvalues
Λ − (1 ± ǫ)µn. Next, since by assumption, T |RanQΛ

has no spectrum in

(Λ− 2τ,Λ + 2τ) and W is compact, we see that QΛ(T − (1± 1
ǫ )W )QΛ |RanQΛ

has only finitely many eigenvalues in the interval (Λ − τ,Λ + τ). Since the
operators PΛ(T − (1 ± ǫ)W )PΛ and QΛ(T − (1 ± 1

ǫ )W )QΛ act in orthogonal
subspaces of our Hilbert space, the spectrum of S± is the union of the spectra
of these operators.
So we arrive at the following conclusion. Let ν±1 ≤ ν±2 ≤ · · · denote the
eigenvalues of S± in (Λ − τ,Λ). Then

ν+
n = Λ − (1 + ǫ)µn−i, ν−n = Λ − (1 − ǫ)µn−j , (11)

for some integers i, j and all sufficiently large n.
4. Let us prove that λn ≤ ν−n+k for some integer k and all sufficiently large n.

Denote δ = (λ1−Λ+τ)/2 and let us write R+ = R
(1)
+ +R

(2)
+ , where 0 ≤ R

(1)
+ ≤

δI and rankR
(2)
− < ∞. Denote by NS(α, β) the number of eigenvalues of S in

the interval (α, β). Writing S = S− −R
(1)
+ −R

(2)
+ , we get for any λ ∈ (λ1,Λ):

NS(Λ − τ, λ) = NS(λ1 − 2δ, λ)

≥ N
S
−
−R

(1)
+

(λ1 − 2δ, λ) − rankR
(2)
− ≥ NS

−

(λ1 − δ, λ) − rankR
(2)
− .

The second inequality above follows from σ(R
(1)
+ ) ⊂ [0, δ] (see [2,

Lemma 9.4.3]). These inequalities for the eigenvalue counting functions
can be rewritten as λn ≤ ν−n+k with some integer k.

In the same way, one proves that λn ≥ ν+
n−k for large n and some integer k.

Taken together with (11), this yields the required result.

3 Preliminaries and reduction to Toeplitz operators

Let K ⊂ R
2 be a compact set; we return to the discussion of the spectrum of

X(Kc) and start with some general remarks.
First we would like to point out that the spectral asymptotics that we are
interested in is independent of the “holes” in the domain K:

δq(K) = δq(Pc(K)), ∆q(K) = ∆q(Pc(K)). (12)

Indeed, let us write Kc = Ω∪Σ, where Ω is the unbounded connected compo-
nent of Kc and Ω and Σ are disjoint. With respect to the direct sum decom-
position L2(Kc) = L2(Ω) ⊕ L2(Σ), we have X(Kc) = X(Ω) ⊕ X(Σ). By the
compactness of the embedding H1

A(Σ) ⊂ L2(Σ), the operator X(Σ) has a com-
pact resolvent. Thus, on any bounded interval of the real line the spectrum of
X(Kc) differs from the spectrum of X(Ω) by at most finitely many eigenvalues.
By (10), this yields (12).
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Next, we apply the abstract reasoning of section 2.1 to the quadratic form
a[u] = ‖u‖2

H1
A

(Kc)
with domain d[a] = H1

A(Kc), considering L2(R2) as the

main Hilbert space H. We consider the operator R(Kc) (see (7)) and write
R(Kc) = X−1

0 −W . Proposition 2.2 suggests that in order to find the rate
of accumulation of the eigenvalues of R(Kc) to Λ−1

q , one should study the
spectrum of the Toeplitz type operators PqWPq. This is done in the next
section. Denote by µq

1 ≥ µq
2 ≥ . . . the eigenvalues of PqWPq. We will prove

Proposition 3.1. Let K ⊂ R
2 be a compact set and q ≥ 0. Then

lim sup
n→∞

(n!µq
n)1/n ≤ B

2
(Cap (K))2,

lim inf
n→∞

(n!µq
n)1/n ≥ B

2
(Cap−(K))2.

If K is a C∞ smooth curve, then one has

lim
n→∞

(n!µq
n)1/n =

B

2
(Cap (K))2.

Now we can prove our main statements.

Proof of Theorem 1.1 and Theorem 1.2. Combining Proposition 3.1, Proposi-
tion 2.2 and (12), we get the estimates for the quantities

lim
n→∞

sup[n!(Λ−1
q − (λq

n)−1)]1/n ≤ B

2
(Cap (K))2,

lim
n→∞

inf[n!(Λ−1
q − (λq

n)−1)]1/n ≥ B

2
(Cap−(Pc(K))2

for any compact K. If K is a C∞ smooth curve, we get

lim
n→∞

[n!(Λ−1
q − (λq

n)−1)]1/n =
B

2
(Cap (K))2.

An elementary argument shows that

lim
n→∞

{

sup

inf

}

[n!(Λ−1
q − (λq

n)−1)]1/n = lim
n→∞

{

sup

inf

}

[n!(λq
n − Λq)]

1/n.

This yields the required statements.

Proof of (9). Let D be a disc such that K ⊂ D. By Proposition 2.1(i), we get

Dc ⊂ Kc ⊂ R
2 ⇒ R(Dc) ≤ R(Kc) ≤ X−1

0

and so
0 ≤ X−1

0 −R(Kc) ≤ X−1
0 −R(Dc). (13)

Thus, W = X−1
0 −R(Kc) is non-negative; let us address compactness.
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It is well known that if 0 ≤ V1 ≤ V2 are self-adjoint operators and V2 is compact,
then V1 is also compact. Thus, by (13), in order to prove the compactness of
W , it suffices to check that X−1

0 −R(Dc) is compact.
Let Γ = ∂D. Employing the same arguments as in the proof of (12), we see
that X(Γc)−1 −R(Dc) is the inverse of the magnetic operator on the disc and
hence a compact operator. Thus, it suffices to prove that the difference

X−1
0 −X(Γc)−1 = (X−1

0 −R(Dc)) − (X(Γc)−1 −R(Dc))

is compact.
Let us compute the quadratic form of this difference. Let f, g ∈ L2(R2),
X−1

0 f = u, X(Γc)−1g = v. We have

((X−1
0 −X(Γc)−1)f, g) = (u,X(Γc)v) − (X0u, v).

Integrating by parts and noting that v ∈ Dom (X(Γc)) vanishes on Γ, we get

(u,X(Γc)v) − (X0u, v) =

∫

Γ

(nAv(s)
+ + nAv(s)

−)u(s)ds (14)

where nAv(s) = (∇ − iA(s))v · n(s), n(s) is the exterior normal to Γ at the
point s and the superscripts + and − indicate that the limits of the functions
are taken on the circle Γ by approaching it from the outside or inside.
Take a smooth cut-off function ω ∈ C∞

0 (R2) such that ω(x) = 1 in the neigh-
borhood of D. Then we can replace u, v by u1 = ωu, v1 = ωv in the r.h.s. of
(14). By the local elliptic regularity we have u1 ∈ H2(R2), v1 ∈ H2(Γc), and
the corresponding Sobolev norms of u1, v1 can be estimated via the L2-norms
of f, g. Now it remains to notice that the trace mapping u1 7→ u1|Γ is com-
pact as considered from H2(R2) to L2(Γ), and the mappings v1 7→ (nAv1)

±

are compact as considered from H2(Γc) to L2(Γ). It follows that the difference
X−1

0 −X(Γc)−1 is compact, as required.

4 The spectrum of Toeplitz operators

4.1 Restriction operators and the associated Toeplitz operators

Let µ be a finite measure in R
2 with a compact support. Consider the restriction

operator

γ0 : C∞

0 (R2) ∋ u 7→ u |supp(µ)∈ L2(µ).

We are interested in two special cases, namely when µ is the restriction of
the Lebesgue measure to a set with Lipschitz boundary and when µ is the arc
length measure on a simple smooth curve. In both cases γ0 can be extended
by continuity to a bounded and compact operator γ : H1

A(R2) → L2(µ).
Next, let J : H1

A(R2) → L2(R2) be the embedding operator, J : u 7→ u. Then

the adjoint J∗ : L2(R2) → H1
A(R2) acts as J∗ : u 7→ X0

−1/2u.
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For q ≥ 0, consider the operators Tq(µ) in L2(R2) defined by the quadratic
form

(Tq(µ)u, u)L2(R2) =

∫

suppµ

|(Pqu)(x)|2dµ(x), u ∈ L2(R2).

This operator can be represented as

Tq(µ) = (γJ∗X0
1/2Pq)

∗(γJ∗X0
1/2Pq) = Λq(γJ

∗Pq)
∗(γJ∗Pq).

Since γ is compact by assumption, the operator Tq(µ) is also compact.
Fix q ≥ 0; let sq

1 ≥ sq
2 ≥ . . . be the eigenvalues of Tq(µ) in L2(R2).

Proposition 4.1. (i) Let µ be the restriction of the Lebesgue measure onto a
bounded domain K ⊂ R

2 with a Lipschitz boundary. Then

lim
n→∞

(n!sq
n)1/n =

B

2
(Cap (K))2.

(ii) Let µ be the arc length measure of a C∞ smooth simple curve of a finite
length. Then

lim
n→∞

(n!sq
n)1/n =

B

2
(Cap (suppµ))2.

Before proving this proposition, we need to recall the description of the sub-
spaces Lq.

4.2 The structure of subspaces Lq

Denote Ψ(z) = 1
4B|z|2. Let us define the creation and annihilation operators

(first introduced in this context by Fock [5])

Q = −2ie−Ψ∂eΨ = −2i∂ − B

2
iz

Q
∗ = −2ieΨ∂e−Ψ = −2i∂ +

B

2
iz.

The Landau Hamiltonian can be expressed as

X0 = Q
∗
Q +B = QQ

∗ −B. (15)

The spectrum and spectral subspaces of X0 can be described in the following
way. The equation (X0 −B)u = 0 is equivalent to

Qu = −2ie−Ψ∂̄(eΨu) = 0.

This means that f = eΨu is an entire analytic function such that e−Ψf ∈ L2(C).
The space of such functions f is called Fock or Segal-Bargmann space F2 (see
[6] for an extensive discussion). So L0 = e−ΨF2. Further eigenspaces Lq,
q = 1, 2, . . . , are obtained as Lq = (Q∗)qL0. The operators Q∗,Q act between
the subspaces Lq as

Q
∗ : Lq 7→ Lq+1, Q : Lq 7→ Lq−1, Q : L0 7→ {0}, (16)
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and are, up to constant factors, isometries on Lq. In particular, the substitution

Lq ∋ u = C−1
q (Q∗)qe−Ψf, f ∈ F2, Cq =

√

q!(2B)q (17)

gives a unitary equivalence of spaces Lq and F2.

4.3 Proof of Proposition 4.1

(i) The proof is given in [3, Lemma 3.1] for q = 0 and [3, Lemma 3.2] for q ≥ 0.
(ii) For q = 0 the result again follows from Lemma 3.1 in [3]. Although the
reasoning there concerns the operators Tq(v) = (vPq)

∗(vPq) where the function
v is separated from zero on a compact, it goes through for Tq(µ). Only nota-
tional changes are required; one simply has to replace the measure v(z)dm(z)
by dµ(z).
For q ≥ 1 below we apply the reduction to the lowest Landau level similar to
the proof of Lemma 3.2 in [3].
Denote dµ̃(z) = e−Ψ(z)dµ(z). Applying the unitary equivalence (17), we get
for u ∈ Lq

(Tq(µ)u, u)L2(R2) = C−2
q ‖(2∂ −Bz)qf‖2

L2(µ̃). (18)

In particular, for q = 0

(T0(µ)u, u)L2(R2) = C−2
0 ‖f‖2

L2(µ̃). (19)

Below we separately prove the upper and lower bound for the quadratic form
(18).
1. Upper bound. Consider the open δ-neighborhood Uδ ⊂ C

1 of the curve Γ.
As it follows from the Cauchy integral formula, for some constant C1(q, δ), the
inequality

‖∂kf‖2
L2(µ̃) ≤ C1(q, δ)

∫

Uδ

|f(z)|2dm(z).

holds for all functions f ∈ F2. Thus, we have the estimate

‖(2∂ −Bz)qf‖2
L2(µ̃) ≤ C2(q, δ)

∫

Uδ

|f(z)|2dm(z).

Using (18), (19), we arrive at the estimate

Tq(µ) ≤ CT0(χUδ
(x)dx), (20)

where χ
Uδ

is the characteristic function of the set Uδ. Now we can again
apply the estimate of [3, Lemma 3.1] to the eigenvalues s1(δ) ≥ s2(δ) ≥ . . . of
T0(χUδ

(x)dx). This estimate together with (20) yields

lim
n→∞

(n!sn)1/n ≤ lim
n→∞

(n!sn(δ))1/n ≤ B

2
(Cap (Uδ))

2.
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Finally, by the continuity of capacity, Cap (Uδ) → Cap (Γ) as δ → 0, and this
proves the upper bound.
2. Lower bound. The lower bound for the spectrum of Tq(µ) requires a little
more work. Let σ : [0, s] → C be the parameterization of Γ by the arc length.
Since f is analytic, we have

(∂f)(σ(t)) = ρ(t)
d

dt
f(σ(t)) (21)

with some smooth factor ρ(t), |ρ(t)| = 1.
Next, due to the compactness of the embedding H1(0, s) ⊂ L2(0, s), for any
β > 0 there exists a subspace of H1(0, s) of a finite codimension such that for
any u in this subspace,

∫ s

0

|u(t)|2dt ≤ β2

∫ s

0

|u′(t)|2dt. (22)

It follows from (21) and (22) that for any β > 0 there exists a subspace of F2

of a finite codimension such that for any f in this subspace
∫

Γ

|f(z)|2dµ̃(z) ≤ β2

∫

Γ

|∂f(z)|2dµ̃(z).

Arguing by induction, we obtain that for any β > 0 there exists a subspace
N = N(β, q) ⊂ F2 of finite codimension such that for all f ∈ N(β, q)

∫

Γ

|∂kf(z)|2dµ̃(z) ≤ β2

∫

Γ

|∂qf(z)|2dµ̃(z), ∀k = 0, 1, . . . , q − 1. (23)

Using (23) and choosing β sufficiently small, we can estimate the form (18)
from below as follows:

‖(2∂ −Bz)qf‖2
L2(µ̃) ≥ (‖(2∂)qf‖L2(µ̃) −

q−1
∑

k=0

Cq,k‖∂kf‖L2(µ̃))
2

≥ ‖(2∂)qf‖2
L2(µ̃)(1 −

q−1
∑

k=0

Cq,kβ)2 = C1‖∂qf‖2
L2(µ̃) ≥ C2‖f‖2

L2(µ̃)

for all f ∈ N(β, q). Using (18) and (19), we arrive at the lower bound

Tq(µ) ≥ CT0(µ) + F

where F is a finite rank operator. For the eigenvalues of T0(µ) the required
lower estimates are already obtained by reference to [3, Lemma 3.1]; this com-
pletes the proof of the lower bound.

5 Proof of Proposition 3.1

We will prove separately upper and lower bounds.
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5.1 Proof of the upper bound

1. Let U ⊂ R
2 be an open bounded set with a Lipschitz boundary, K ⊂ U ,

and let ω ∈ C∞
0 (R2) be such that ω|K = 1 and ω|Uc = 0. Denote ω̃ = 1 − ω.

Note that for any ψ ∈ H, the function ω̃Pqψ belongs both to Dom (X0) and
to the form domain of X(Kc). Thus, by Proposition 2.1(ii) (with A = X0 and
B = X(Kc)), we have WX0ω̃Pqψ = 0. Thus, we have

(WPqψ,Pqψ) =
1

Λ2
q

(WX0Pqψ,X0Pqψ)

=
1

Λ2
q

(WX0(ω + ω̃)Pqψ,X0(ω + ω̃)Pqψ) =
1

Λ2
q

(WX0ωPqψ,X0ωPqψ).

Since W = X−1
0 −R(Kc) ≤ X−1

0 , we have

(WX0ωPqψ,X0ωPqψ) ≤ (X−1
0 X0ωPqψ,X0ωPqψ) = ‖ωPqψ‖2

H1
A

.

Using (15), we get

‖ωPqψ‖2
H1

A

= ‖Q∗ωPqψ‖2 −B‖ωPqψ‖2 ≤ ‖Q∗ωPqψ‖2

= ‖ωQ
∗Pqψ − 2i(∂ω)Pqψ‖2 ≤ 2‖Q∗Pqψ‖2

L2(U) + C1‖Pqψ‖2
L2(U).

2. Due to the compactness of the embedding H1
0 (U) ⊂ L2(U), for any β > 0

there exists a subspace of H1
0 (U) of a finite codimension such that for all

elements u of this subspace,

∫

U

|u(x)|2dx ≤ β2

∫

U

|∇u(x)|2dx = β2

∫

U

|2∂u(x)|2dx.

Taking β sufficiently small, we obtain

‖Q∗u‖L2(U) ≥ ‖2∂u‖L2(U) −
B

2
‖zu‖L2(U) ≥ ‖2∂u‖L2(U) −

B

2
sup
U

|z|‖u‖L2(U)

≥ (1 − B

2
β sup

U
|z|)‖2∂u‖L2(U) ≥

1

2
‖2∂u‖L2(U) ≥

1

2β
‖u‖L2(U)

for all u in our subspace. It follows that on a subspace of ψ ∈ L2(R2) of a finite
codimension,

(WPqψ,Pqψ)L2(R2) ≤ 2‖Q∗Pqψ‖2
L2(U) + 4β2‖Q∗Pqψ‖2

L2(U) ≤ C‖Pq+1ψ‖2
L2(U);

the last inequality holds true by (16).
Thus, we have

PqWPq ≤ C3Pq+1χUPq+1 + F,

where χU is the characteristic function of U , and F is a finite rank operator.
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3. From Proposition 4.1 we get

lim sup
n→∞

(n!µn)1/n ≤ 1

2
B(Cap U)2.

Since U can be chosen such that Cap U is arbitrarily close to Cap K, by the
continuity property of capacity, we get the required upper bound.

5.2 Proof of the lower bound

1. Let γ, J , µ be as in section 4.1. Consider the quadratic form in L2(R2)

‖u‖2
H1

A
(R2) +

∫

suppµ

|u(x)|2dµ(x) = ‖X1/2
0 u‖2

L2(R2) + ‖γJ∗X
1/2
0 u‖2

L2(R2)

defined for u ∈ H1
A(R2). This form is closed and positively defined on L2(R2).

Denote by X̃ the corresponding self-adjoint operator in L2(R2). We have

X̃ = X0 +X
1/2
0 Jγ∗γJ∗X

1/2
0 = X

1/2
0 (I + Jγ∗γJ∗)X

1/2
0

and therefore

X−1
0 − X̃−1 = X

−1/2
0 [Jγ∗γJ∗(I + Jγ∗γJ∗)−1]X

−1/2
0 .

Since γ is compact by assumption, we have Jγ∗γJ∗ ≤ I on a subspace of a
finite codimension. Thus,

X−1
0 − X̃−1 ≥ 1

2
X0

−1/2Jγ∗γJ∗X
−1/2
0

on a subspace of finite codimension, and so

Pq(X
−1
0 − X̃−1)Pq ≥ 1

2Λq
(γJ∗Pq)

∗(γJ∗Pq) + F (24)

where F is a finite rank operator.

2. Now let K ⊂ R
2 be a compact with a non-empty interior. Let K1 ⊂ K be a

set with a Lipschitz boundary. Let µ be the restriction of the Lebesgue measure
on K1. By Proposition 2.1(i), we have X−1

0 ≥ X̃−1 ≥ R(Kc). It follows that

Pq(X
−1
0 −R(Kc))Pq ≥ Pq(X

−1
0 − X̃−1)Pq. (25)

From here, using (24) and Proposition 4.1(i), we get the required lower bound in
the first part of Proposition 3.1. Finally, consider the case of K being a smooth
curve. Let µ be the arc measure of the curve. Then, again by (24) and (25),
and applying Proposition 4.1(ii), we get the second part of Proposition 3.1.
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