Documenta Math. 587

VISIBILITY OF MORDELL-WEIL GROUPS

WILLIAM A. STEIN¹

Received: March 8, 2005 Revised: August 21, 2007

Communicated by Stephen Lichtenbaum

ABSTRACT. We introduce a notion of visibility for Mordell-Weil groups, make a conjecture about visibility, and support it with theoretical evidence and data. These results shed new light on relations between Mordell-Weil and Shafarevich-Tate groups.

11G05, 11G10, 11G18, 11Y40

Keywords and Phrases: Elliptic Curves, Abelian Varieties, Mordell-Weil Groups, Shafarevich-Tate Groups, Visibility

1 Introduction

Consider an exact sequence $0 \to C \to B \to A \to 0$ of abelian varieties over a number field K. We say that the covering $B \to A$ is *optimal* since its kernel C is connected. As introduced in [LT58], there is a corresponding long exact sequence of Galois cohomology

$$0 \to C(K) \to B(K) \to A(K) \xrightarrow{\delta} H^1(K,C) \to H^1(K,B) \to H^1(K,A) \to \cdots$$

The study of the Mordell-Weil group A(K) is central in arithmetic geometry. For example, the Birch and Swinnerton-Dyer conjecture (BSD conjecture) of [Bir71, Tat66]), which is one of the Clay Math Problems [Wil00], asserts that the rank r of A(K) equals the ordering vanishing of L(A,s) at s=1, and also gives a conjectural formula for $L^{(r)}(A,1)$ in terms of the invariants of A.

The group $\mathrm{H}^1(K,A)$ is also of interest in connection with the BSD conjecture, because it contains the Shafarevich-Tate group

$$\mathrm{III}(A/K) = \mathrm{Ker}\left(\mathrm{H}^1(K,A) \to \bigoplus_v \mathrm{H}^1(K_v,A)\right),$$

which is the most mysterious object appearing in the BSD conjecture.

 $^{^{\}rm 1}{\rm This}$ material is based upon work supported by the National Science Foundation under Grant No. 0555776.

DEFINITION 1.0.1 (Visibility). The visible subgroup of $\mathrm{H}^1(K,C)$ relative to the embedding $C \hookrightarrow B$ is

$$\operatorname{Vis}_{B} \operatorname{H}^{1}(K, C) = \operatorname{Ker}(\operatorname{H}^{1}(K, C) \to \operatorname{H}^{1}(K, B))$$

$$\cong \operatorname{Coker}(B(K) \to A(K)).$$

The visible quotient of A(K) relative to the optimal covering $B \to A$ is

$$\operatorname{Vis}^{B}(A(K)) = \operatorname{Coker}(B(K) \to A(K))$$

 $\cong \operatorname{Vis}_{B} \operatorname{H}^{1}(K, C).$

We say an abelian variety over \mathbb{Q} is modular if it is a quotient of the modular Jacobian $J_1(N) = \text{Jac}(X_1(N))$, for some N. For example, every elliptic curve over \mathbb{Q} is modular [BCDT01].

This paper gives evidence toward the following conjecture that Mordell-Weil groups should give rise to many visible Shafarevich-Tate groups.

Conjecture 1.0.2. Let A be an abelian variety over a number field K. For every integer m, there is an exact sequence $0 \to C \to B \to A \to 0$ such that:

- 1. The image of B(K) in A(K) is contained in mA(K), so A(K)/mA(K) is a quotient of $Vis^B(A(K))$.
- 2. If $K = \mathbb{Q}$ and A is modular, then B is modular.
- 3. The rank of C is zero.
- 4. We have $\operatorname{Coker}(B(K) \to A(K)) \subset \coprod (C/K)$, via the connecting homomorphism.

In [Ste04] we give the following computational evidence for this conjecture.

THEOREM 1.0.3. Let E be the rank 1 elliptic curve $y^2 + y = x^3 - x$ of conductor 37. Then Conjecture 1.0.2 is true for all primes m = p < 25000 with $p \neq 2,37$.

Let $f = \sum a_n q^n$ be the newform associated to the elliptic curve E of Theorem 1.0.3. Suppose p is one of the primes in the theorem. Then there is an $\ell \equiv 1 \pmod{p}$ and a surjective Dirichlet character $\chi : (\mathbb{Z}/\ell\mathbb{Z})^* \to \mu_p$ such that $L(f \otimes \chi, 1) \neq 0$. The C of the theorem belongs to the isogeny class of abelian varieties associated to f^{χ} and C has dimension p-1.

In general, we expect the construction of [Ste04] to work for any elliptic curve and any odd prime p of good reduction. The main obstruction to proving that it does work is proving a nonvanishing result for the special values $L(f^{\chi}, 1)$. In [Ste04], we verified this hypothesis using modular symbols for p < 25000.

A surprising observation that comes out of the construction of [Ste04] is that $\#\mathrm{III}(C)=p\cdot n^2$, where n^2 is an integer square. We thus obtained the first ever examples of abelian varieties whose Shafarevich-Tate groups have order neither a square nor twice a square.

1.1 Contents

In Section 2, we give a brief review of results about visibility of Shafarevich-Tate groups. In Section 3, we give evidence for Conjecture 1.0.2 using results of Kato, Lichtenbaum and Mazur. Section 4 is about bounding the dimension of the abelian varieties in which Mordell-Weil groups are visible. We prove that every Mordell-Weil group is 2-visible relative to an abelian surface. In Section 5, we describe how to construct visible quotients of Mordell-Weil groups, and carry out a computational study of relations between Mordell-Weil groups of elliptic curves and the arithmetic of rank 0 factors of $J_0(N)$.

1.2 Acknowledgement

The author had extremely helpful conversations with Barry Mazur and Grigor Grigorov. Proposition 3.0.3 was proved jointly with Ken Ribet. The author was supported by NSF grant DMS-0400386. He used MAGMA [BCP97] and SAGE [Sage07] for computing the data in Section 5.

2 Review of Visibility of Galois Cohomology

In this section, we briefly review visibility of elements of $H^1(K, A)$, as first introduced by Mazur in [CM00, Maz99], and later developed by Agashe and Stein in [Aga99a, AS05, AS02]. We describe two basic results about visibility, and in Section 2.2 we discuss modularity of elements of $H^1(K, A)$.

Consider an exact sequence of abelian varieties

$$0 \to A \to B \to C \to 0$$

over a number field K. Elements of $H^0(K, C)$ are points, so they are relatively easy to "visualize", but elements of $H^1(K, A)$ are mysterious.

There is a geometric way to view elements of $H^1(K, A)$. The Weil-Chatalet group WC(A/K) of A over K is the group of isomorphism classes of principal homogeneous spaces for A, where a principal homogeneous space is a variety X and a simply-transitive action $A \times X \to X$. Thus X is a twist of A as a variety, but $X(K) = \emptyset$, unless X is isomorphic to A. Also, the elements of III(A) correspond to the classes of X that have a K_v -rational point for all places v. By [LT58, Prop. 4], there is an isomorphism between $H^1(K, A)$ and WC(A/K).

In [CM00], Mazur introduced the visible subgroup of H¹ as in Definition 1.0.1 in order to help unify diverse constructions of principal homogeneous spaces. Many papers were subsequently written about visibility, including [Aga99b, Maz99, Kle01, AS02, MO03, DWS03, AS05, Dum01].

Remark 2.0.1. Note that $Vis_B H^1(K, A)$ depends on the embedding of A into B. For example, if $B = B_1 \times A$, then there could be nonzero visible elements if A is embedded into the first factor, but there will be no nonzero visible elements if A is embedded into the second factor.

A connection between visibility and WC(A/K) is as follows. Suppose

$$0 \to A \to B \xrightarrow{\pi} C \to 0$$

is an exact sequence of abelian varieties and that $c \in H^1(K, A)$ is visible in B. Thus there exists $x \in C(K)$ such that $\delta(x) = c$, where $\delta : C(K) \to H^1(K, A)$ is the connecting homomorphism. Then $X = \pi^{-1}(x) \subset B$ is a translate of A in B, so the group law on B gives X the structure of principal homogeneous space for A, and this homogeneous space in WC(A/K) corresponds to c.

2.1 Basic Facts

Two basic facts about visibility are that the visible subgroup of $H^1(K, A)$ in B is finite, and that each element of $H^1(K, A)$ is visible in some B.

LEMMA 2.1.1. The group $Vis_B H^1(K, A)$ is finite.

Proof. Let C = B/A. By the Mordell-Weil theorem C(K) is finitely generated. The group $\operatorname{Vis}_B \operatorname{H}^1(K,A)$ is a homomorphic image of C(K) so it is finitely generated. On the other hand, it is a subgroup of $\operatorname{H}^1(K,A)$, so it is a torsion group. But a finitely generated torsion abelian group is finite.

PROPOSITION 2.1.2. Let $c \in H^1(K, A)$. Then there exists an abelian variety B and an embedding $A \hookrightarrow B$ such that c is visible in B. Moreover, B can be chosen to be a twist of a power of A.

Proof. See [AS02, Prop. 1.3] for a cohomological proof or [JS05, $\S 5$] for an equivalent geometric proof. Johan de Jong also proved that everything is visible somewhere in the special case $\dim(A) = 1$ using Azumaya algebras, Néron models, and étale cohomology, as explained in [CM00, pg. 17–18], but his proof gives no (obvious) specific information about the structure of B.

2.2 Modularity

Usually one focuses on visibility of elements in $\mathrm{III}(A) \subset \mathrm{H}^1(K,A)$. The papers [CM00, AS02, AS05] contain a number of results about visibility in various special cases, and tables involving elliptic curves and modular abelian varieties.

For example, if $A \subset J_0(389)$ is the 20-dimensional simple newform abelian variety, then we show that

$$\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}/5\mathbb{Z} \cong E(\mathbb{Q})/5E(\mathbb{Q}) \subset \mathrm{III}(A),$$

where E is the elliptic curve of conductor 389. The divisibility $5^2 \mid \# \coprod (A)$ is as predicted by the BSD conjecture. The paper [AS05] contains a few dozen other examples like this; in most cases, explicit computational construction of the Shafarevich-Tate group seems hopeless using any other known techniques.

The author has conjectured that if A is a modular abelian variety, then every element of $\mathrm{III}(A)$ is modular, i.e., visible in a modular abelian variety. It is a theorem that if $c \in \mathrm{III}(A)$ has order either 2 or 3 and A is an elliptic curve, then c is modular (see [JS05]).

3 Results Toward Conjecture 1.0.2

The main result of this section is a proof of parts 1 and 2 of Conjecture 1.0.2 for elliptic curves over \mathbb{Q} . We prove more generally that Mazur's conjecture on finite generatedness of Mordell-Weil groups over cyclotomic \mathbb{Z}_p -extensions implies part 1 of Conjecture 1.0.2. Then we observe that for elliptic curves over \mathbb{Q} , Mazur's conjecture is known, and prove that the abelian varieties that appear in our visibility construction are modular, so parts 1 and 2 of Conjecture 1.0.2 are true for elliptic curves over \mathbb{Q} .

For a prime p, the cyclotomic \mathbb{Z}_p -extension of \mathbb{Q} is an extension $\mathbb{Q}_{p^{\infty}}$ of \mathbb{Q} with Galois group \mathbb{Z}_p ; also $\mathbb{Q}_{p^{\infty}}$ is contained in the cyclotomic field $\mathbb{Q}(\mu_{p^{\infty}})$. We let \mathbb{Q}_{p^n} denote the unique subfield of $\mathbb{Q}_{p^{\infty}}$ of degree p^n over \mathbb{Q} . If K is an arbitrary number field, the cyclotomic \mathbb{Z}_p -extension of K is $K_{p^{\infty}} = K \cdot \mathbb{Q}_{p^{\infty}}$. We denote by K_{p^n} the unique subfield of $K_{p^{\infty}}$ of degree p^n over K. The extension $K_{p^{\infty}}$ of K decomposes as a tower

$$K = K_{p^0} \subset K_{p^1} \subset \cdots \subset K_{p^n} \subset \cdots \subset K_{p^\infty} = \bigcup_{n=0}^{\infty} K_{p^n}.$$

Mazur hints at the following conjecture in [Maz78] and [RM05, §3]:

Conjecture 3.0.1 (Mazur). If A is an abelian variety over a number field K and p is a prime, then $A(K_{p^{\infty}})$ is a finitely generated abelian group.

Let L/K be a finite extension of number fields and A an abelian variety over K. In much of the rest of this paper we will use the restriction of scalars $R = \text{Res}_{L/K}(A_L)$ of A viewed as an abelian variety over L. Thus R is an abelian variety over K of dimension [L:K], and R represents the following functor on the category of K-schemes:

$$S \mapsto E_L(S_L)$$
.

If L/K is Galois, then we have an isomorphism of $\operatorname{Gal}(\overline{\mathbb{Q}}/K)$ -modules

$$R(\overline{\mathbb{Q}}) = A(\overline{\mathbb{Q}}) \otimes_{\mathbb{Z}} \mathbb{Z}[\operatorname{Gal}(L/K)],$$

where $\tau \in \operatorname{Gal}(\overline{\mathbb{Q}}/K)$ acts on $\sum P_{\sigma} \otimes \sigma$ by

$$\tau\left(\sum P_{\sigma}\otimes\sigma\right)=\sum\tau(P_{\sigma})\otimes\tau_{|L}\cdot\sigma,$$

where $\tau_{|L|}$ is the image of τ in Gal(L/K).

THEOREM 3.0.2. Conjecture 3.0.1 implies part 1 of Conjecture 1.0.2. More precisely, if A/K is an abelian variety, m is a positive integer, and $A(K_{p^{\infty}})$ is finitely generated for each $p \mid m$, then there is an optimal covering of the form $B = \operatorname{Res}_{L/K}(A_L) \to A$ such that L is abelian over K and the image of B(K) in A(K) is contained in mA(K).

Proof. Fix a prime $p \mid m$. Let $M = K_{p^{\infty}}$. Because A(M) is finitely generated, some finite set of generators must be in a single sufficiently large $A(K_{p^n})$, and for this n we have $A(M) = A(K_{p^n})$. For any integer j > 0 let

$$R_j = \operatorname{Res}_{K_{nj}/K}(A_{K_{nj}}).$$

Then, as explained in [Ste04], the trace map induces an exact sequence

$$0 \to B_j \to R_j \xrightarrow{\pi_j} A \to 0,$$

with B_j an abelian variety. Then for any $j \geq n$, $A(K_{p^j}) = A(K_{p^n})$, so

$$\begin{aligned} \operatorname{Vis}^{B_{j}}(A(K)) &\cong A(K)/\pi_{j}(R_{j}(K)) \\ &= A(K)/\operatorname{Tr}_{K_{p^{j}}/K}(A(K_{p^{j}})) \\ &= A(K)/\operatorname{Tr}_{K_{p^{n}}/K}(\operatorname{Tr}_{K_{p^{j}}/K_{p^{n}}}(A(K_{p^{j}}))) \\ &= A(K)/\operatorname{Tr}_{K_{p^{n}}/K}(\operatorname{Tr}_{K_{p^{j}}/K_{p^{n}}}(A(K_{p^{n}}))) \\ &= A(K)/\operatorname{Tr}_{K_{p^{n}}/K}(p^{j-n}A(K_{p^{n}})) \\ &= A(K)/p^{j-n}\operatorname{Tr}_{K_{p^{n}}/K}(A(K_{p^{n}})) \\ &\to A(K)/p^{j-n}A(K), \end{aligned}$$

where the last map is surjective since

$$\operatorname{Tr}_{K_{p^n}/K}(A(K_{p^n})) \subset A(K).$$

Arguing as above, for each prime $p \mid m$, we find an extension L_p of K of degree a power of p such that $\operatorname{Tr}_{L_p/K}(A(L_p)) \subset p^{\nu_p}A(K)$, where $\nu_p = \operatorname{ord}_p(m)$. Let L be the compositum of the fields L_p . Then for each $p \mid m$,

$$\mathrm{Tr}_{L/K}(A(L))=\mathrm{Tr}_{L_p/K}(\mathrm{Tr}_{L/L_p}(A(L)))\subset \mathrm{Tr}_{L_p/K}(A(L_p))\subset p^{\nu_p}A(K).$$

Thus

$$\operatorname{Tr}_{L/K}(A(L)) \subset \bigcap_{p|m} p^{\nu_p} A(K) = mA(K), \tag{1}$$

where for the last equality we view A(K) as a finite direct sum of cyclic groups. Let $R = \operatorname{Res}_{L/K}(A_L)$. Then trace induces an optimal cover $R \to A$, and (1) implies that we have the required surjective map

$$\operatorname{Vis}^R(A(K)) = A(K)/\operatorname{Tr}_{L/K}(A(L)) \to A(K)/mA(K).$$

We will next prove parts 1 and 2 of Conjecture 1.0.2 for elliptic curves over \mathbb{Q} by observing that Conjecture 3.0.1 is a theorem of Kato in this case. We first prove a modularity property for restriction of scalars. Recall that a modular abelian variety is a quotient of $J_1(N)$.

DOCUMENTA MATHEMATICA 12 (2007) 587-606

PROPOSITION 3.0.3. If A is a modular abelian variety over \mathbb{Q} and K is an abelian extension of \mathbb{Q} , then $\operatorname{Res}_{K/\mathbb{Q}}(A_K)$ is also a modular abelian variety.

Proof. Since A is modular, A is isogenous to a product of abelian varieties A_f attached to newforms in $S_2(\Gamma_1(N))$, for various N. Since the formation of restriction of scalars commutes with products, it suffices to prove the proposition under the hypothesis that $A = A_f$ for some newform f. Let $R = \operatorname{Res}_{K/\mathbb{Q}}(A_f)$. As discussed in [Mil72, pg. 178], for any prime p there is an isomorphism of \mathbb{Q}_p -adic Tate modules

$$V_p(R) \cong \operatorname{Ind}_{G_K}^{G_{\mathbb{Q}}} V_p(A_K).$$

The induced representation on the right is the direct sum of twists of $V_p(A_K)$ by characters of $\operatorname{Gal}(K/\mathbb{Q})$. This is isomorphic to the \mathbb{Q}_p -adic Tate module of some abelian variety $P = \prod_{\chi} A_{g^{\chi}}$, where χ runs through certain Dirichlet characters corresponding to the abelian extension K/\mathbb{Q} , and g runs through certain $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -conjugates of f, and g^{χ} denotes the twist of g by χ . Falting's theorem (see e.g., [Fal86, §5]) then gives us the desired isogeny $R \to P$.

It is not necessary to use the full power of Falting's theorem to prove this proposition, since Ribet [Rib80] gave a more elementary proof of Falting's theorem in the case of modular abelian varieties. However, we must work some to apply Ribet's theorem, since we do not know yet that R is modular.

Let R and P be as above. Over $\overline{\mathbb{Q}}$, the abelian variety A is isogenous to a power of a simple abelian variety B, since if more than one non-isogenous simple occurred in the decomposition of $A/\overline{\mathbb{Q}}$, then $\operatorname{End}(A/\overline{\mathbb{Q}})$ would not be a matrix ring over a (possibly skew) field (see [Rib92, §5]). For any character χ , by the (3) \Longrightarrow (2) assertion of [Rib80, Thm. 4.7], the abelian varieties A_f and $A_{f^{\chi}}$ are isogenous over $\overline{\mathbb{Q}}$ to powers of the same abelian variety A', hence to powers of the simple B. A basic property of restriction of scalars is that R_K is isomorphic to a power of $(A_f)_K$, hence R_K is isogenous over $\overline{\mathbb{Q}}$ to a power of B, so R is isogenous to P over $\overline{\mathbb{Q}}$, since they have the same dimension, as their Tate modules are isomorphic. Let L be a Galois number field over which such an isogeny is defined. Consider the natural $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ -equivariant inclusion

$$\operatorname{Hom}(R_{\mathbb{Q}}, P_{\mathbb{Q}}) \otimes \mathbb{Q}_p \hookrightarrow \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})}(V_p(R), V_p(P)).$$
 (2)

By Ribet's proof of the Tate conjecture for modular abelian varieties [Rib80], the inclusion

$$\operatorname{Hom}(R_L, P_L) \otimes \mathbb{Q}_p \hookrightarrow \operatorname{Hom}_{\operatorname{Gal}(\overline{\mathbb{Q}}/L)}(V_p(R), V_p(P))$$
 (3)

is an isomorphism, since there is an isogeny $P_L \to R_L$ and P is modular. But then (2) must also be an isomorphism, since (2) is the result of taking $\operatorname{Gal}(L/\mathbb{Q})$ -invariants of both sides of (3).

By construction of P, there is an isomorphism $V_p(R) \cong V_p(P)$ of $\operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q})$ modules, so by (2) there is an isomorphism in $\operatorname{Hom}(R_{\mathbb{Q}}, P_{\mathbb{Q}}) \otimes \mathbb{Q}_p$. Thus there is

a \mathbb{Q}_p -linear combination of elements of $\operatorname{Hom}(R_{\mathbb{Q}}, P_{\mathbb{Q}})$ that has nonzero determinant. However, if a \mathbb{Q}_p -linear combination of matrices has nonzero determinant, then some \mathbb{Q} -linear combination does, since the determinant is a polynomial function of the coefficients and \mathbb{Q} is dense in \mathbb{Q}_p . Thus there is an isogeny $R \to P$ defined over \mathbb{Q} , so R is modular.

COROLLARY 3.0.4. Parts 1 and 2 of Conjecture 1.0.2 are true for every elliptic curve E over \mathbb{Q} .

Proof. Suppose p is a prime, and let $\mathbb{Q}_{p^{\infty}}$ be the cyclotomic \mathbb{Z}_p extension of \mathbb{Q} . By [BCDT01], E is a modular elliptic curve, so work of Rohrlich [Roh84], Kato [Kat04, Sch98], and Serre [Ser72] implies that $E(\mathbb{Q}_{p^{\infty}})$ is finitely generated (see [Rub98, Cor. 8.2]). Theorem 3.0.2 implies that if $x \in E(\mathbb{Q})$ and $m \mid \operatorname{order}(x)$, then x is m-visible relative to an optimal cover of E by a restriction of scalars E from an abelian extension. Then Proposition 3.0.3 implies that E is modular.

4 The Visibility Dimension

The visibility dimension is analogous to the visibility dimension for elements of $\mathrm{H}^1(K,A)$ introduced in [AS02, §2]. We prove below that elements of order 2 in Mordell-Weil groups of elliptic curves over $\mathbb Q$ are 2-visible relative to an abelian surface. Along the way, we make a general conjecture about stability of rank and show that it implies a general bound on the visibility dimension.

DEFINITION 4.0.5 (Visibility Dimension). Let A be an abelian variety over a number field K and suppose m is an integer. Then A has m-visibility dimension n if there is an optimal cover $B \to A$ with $n = \dim(B)$ and the image of B(K) in A(K) is contained in mA(K), so A(K)/mA(K) is a quotient of $\operatorname{Vis}^B(A(K))$.

The following rank-stability conjecture is motivated by its usefulness for proving a result about m-visibility.

Conjecture 4.0.6. Suppose A is an abelian variety over a number field K, that L is a finite extension of K, and m > 0 is an integer. Then there is an extension M of K of degree m such that $\operatorname{rank}(A(K)) = \operatorname{rank}(A(M))$ and $M \cap L = K$.

The following proposition describes how Conjecture 4.0.6 can be used to find an extension where the index of A(K) in A(M) is coprime to m.

PROPOSITION 4.0.7. Let A be an abelian variety over a number field K and suppose m is a positive integer. If Conjecture 4.0.6 is true for A and m, then there is an extension M of K of degree m such that A(M)/A(K) is of order coprime to m.

Proof. Choose a finite set P_1, \ldots, P_n of generators for A(K). Let

$$L = K\left(\frac{1}{m}P_1, \dots, \frac{1}{m}P_n\right)$$

be the extension of K generated by all mth roots of each P_i . Since the set of mth roots of a point is closed under the action of $Gal(\overline{K}/K)$, the extension L/K is Galois. Note also that the m torsion of A is defined over L, since the differences of conjugates of a given $\frac{1}{m}P_i$ are exactly the elements of A[m]. Let S be the set of primes of K that ramify in L.

By our hypothesis that Conjecture 4.0.6 is true for A and m, there is an extension M of K of degree m such that

$$rank(A(K)) = rank(A(M))$$

and $M \cap L = K$. In particular, C = A(M)/A(K) is a finite group. Suppose, for the sake of contradiction, that $\gcd(m, \#C) \neq 1$, so there is some prime divisor $p \mid m$ and an element $[Q] \in C$ of exact order p. Here $Q \in A(M)$ is such that $pQ \in A(K)$ but $Q \notin A(K)$. Because P_1, \ldots, P_n generate A(K) and $pQ \in A(K)$, there are integers $a_1, \ldots a_n$ such that

$$pQ = \sum_{i=1}^{n} a_i P_i.$$

Then for any fixed choice of the $\frac{1}{n}P_i$, we have

$$Q - \sum_{i=1}^{n} a_i \cdot \frac{1}{p} P_i \in A[p],$$

since

$$p\left(Q - \sum_{i=1}^{n} a_i \cdot \frac{1}{p} P_i\right) = pQ - \sum_{i=1}^{n} a_i \cdot P_i = 0.$$

Thus $Q \in A(L)$. But then since $L \cap M = K$, so we obtain a contradiction from

$$Q \in A(L) \cap A(M) = A(K).$$

With Proposition 4.0.7 in hand, we show that Conjecture 4.0.6 bounds the visibility dimension of Mordell-Weil groups. In particular, we see that Conjecture 4.0.6 implies that for any abelian variety A over a number field K, and any m, there is an embedding $A(K)/mA(K) \hookrightarrow \mathrm{H}^1(K,C)$ coming from a δ map, where C is an abelian variety over K of rank 0.

Theorem 4.0.8. Let A be an abelian variety over a number field K and suppose m is a positive integer. If Conjecture 4.0.6 is true for A and m, then there is an optimal covering $B \to A$ with B of dimension m such that

$$\operatorname{Vis}^B(A(K)) \cong A(K)/mA(K).$$

Proof. By Proposition 4.0.7, there is an extension M of K of degree m such that the quotient A(M)/A(K) is finite of order coprime to m. Then, as in [Ste04], the restriction of scalars $B = \operatorname{Res}_{M/K}(A_M)$ is an optimal cover of A and

$$\operatorname{Vis}^B(A(K)) \cong A(K) / \operatorname{Tr}(A(M)).$$

However, there is also an inclusion $A \hookrightarrow B$ from which one sees that

$$mA(K) \subset Tr(A(M)),$$

so $\operatorname{Vis}^B(A(K))$ is an *m*-torsion group.

We have

$$[\operatorname{Tr}(A(M)) : \operatorname{Tr}(A(K))] \mid [A(M) : A(K)].$$

We showed above that gcd([A(M):A(K)],m)=1, so since

$$\operatorname{Tr}(A(M))/\operatorname{Tr}(A(K))$$

is killed by m, it follows that Tr(A(M)) = Tr(A(K)). We conclude that

$$\operatorname{Vis}^B(A(K)) = A(K)/mA(K).$$

PROPOSITION 4.0.9. If E is an elliptic curve over \mathbb{Q} and m=2, then Conjecture 4.0.6 is true for E and m.

Proof. Let L be as in Conjecture 4.0.6, so L is an extension of $\mathbb Q$ of possibly large degree. Let D be the discriminant of L. By [MM97, BFH90] there are infinitely many quadratic imaginary extensions M of $\mathbb Q$ such that $L(E^M,1) \neq 0$, where E^M is the quadratic twist of E by M. By [Kol91, Kol88] all these curves have rank 0. Since there are only finitely many quadratic fields ramified only at the primes that divide D, there must be some field M that is ramified at a prime $p \nmid D$. If M is contained in L, then all the primes that ramify in M divide D, so M is not contained in L. Since M is quadratic, it follows that $M \cap L = \mathbb Q$, as required. Since the image of $E(\mathbb Q) + E^M(\mathbb Q)$ in E(M) has finite index, it follows that $E(M)/E(\mathbb Q)$ is finite.

COROLLARY 4.0.10. If E is an elliptic curve over \mathbb{Q} , then there is an optimal cover $B \to E$, with B a 2-dimension modular abelian variety, such that

$$\operatorname{Vis}^{B}(E(\mathbb{Q})) \cong E(\mathbb{Q})/2E(\mathbb{Q}).$$

Proof. Combine Proposition 4.0.9 with Theorem 4.0.8. Also B is modular since it is isogenous to $E \times E'$, where E' is a quadratic twist of E.

Note that the B of Corollary 4.0.10 is isomorphic to $(E \times E^D)/\Phi$, where E^D is a rank 0 quadratic imaginary twist of E and $\Phi \cong E[2]$ is embedded antidiagonally in $E \times E^D$. Note that E^D also has analytic rank 0, since it was constructed using the theorems of [Kol91, Kol88] and [MM97, BFH90]. Thus our construction is compatible with the one of Proposition 5.1.1 below.

5 Some Data About Visibility and Modularity

This section contains a computational investigation of modularity of Mordell-Weil groups of elliptic curves relative to abelian varieties that are quotients of $J_0(N)$. One reason that we restrict to $J_0(N)$ is so that computations are more tractable. Also, for m > 2, the twisting constructions that we have given in previous sections are no longer allowed since they take place in $J_1(N)$. Furthermore, the work of [KL89] suggests that we understand the arithmetic of $J_0(N)$ better than that of $J_1(N)$.

5.1 A VISIBILITY CONSTRUCTION FOR MORDELL-WEIL GROUPS

The following proposition is an analogue of [AS02, Thm. 3.1] but for visibility of Mordell-Weil groups (compare also [CM00, pg. 19]).

PROPOSITION 5.1.1. Let E be an elliptic curve over a number field K, and let $\Phi = E[m]$ as a $\operatorname{Gal}(\overline{K}/K)$ -module. Suppose A is an abelian variety over K such that $\Phi \subset A$, as $G_{\mathbb{Q}}$ -modules. Let $B = (A \times E)/\Phi$, where Φ is embedded anti-diagonally. Then there is an exact sequence

$$0 \to B(K)/(A(K) + E(K)) \to E(K)/mE(K) \to \operatorname{Vis}^B(E(K)) \to 0.$$

Moreover, if (A/E[m])(K) is finite of order coprime to m, then the first term of the sequence is 0, so

$$\operatorname{Vis}^{B}(E(K)) \cong E(K)/mE(K).$$

Proof. Using the definition of B and multiplication by m on E, we obtain the following commutative diagram, whose rows and columns are exact:

Taking K-rational points we arrive at the following diagram with exact rows

DOCUMENTA MATHEMATICA 12 (2007) 587-606

598

and columns:

$$0 \longrightarrow E(K)/E(K)[m] \xrightarrow{m} E(K) \longrightarrow E(K)/mE(K) \longrightarrow 0$$

$$\downarrow \cong \qquad \qquad \downarrow \cong \qquad \qquad \downarrow$$

$$0 \longrightarrow B(K)/A(K) \longrightarrow E(K) \longrightarrow \operatorname{Vis}^{B}(E(K)) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow$$

$$B(K)/(A(K) + E(K)) \qquad 0$$

The snake lemma and the fact that the middle vertical map is an isomorphism implies that the right vertical map is a surjection with kernel isomorphic to B(K)/(A(K) + E(K)). Thus we obtain an exact sequence

$$0 \to B(K)/(A(K) + E(K)) \to E(K)/mE(K) \to \operatorname{Vis}^B(E(K)) \to 0.$$

This proves the first statement of the proposition. For the second, note that we have an exact sequence $0 \to E \to B \to A/E[m] \to 0$. Taking Galois cohomology yields an exact sequence

$$0 \to E(K) \to B(K) \to (A/E[m])(K) \to \cdots$$

so $\#(B(K)/E(K)) \mid \#(A/E[m])(K)$. If (A/E[m])(K) is finite of order coprime to m, then B(K)/(A(K) + E(K)) has order dividing #(A/E[m])(K), so the quotient B(K)/(A(K) + E(K)) is trivial, since it injects into E(K)/mE(K).

5.2 Tables

The data in this section suggests the following conjecture.

Conjecture 5.2.1. Suppose E is an elliptic curve over \mathbb{Q} and p is a prime such that E[p] is irreducible. Then there exists infinitely many newforms $g \in S_2(\Gamma_0(N))$, for various integers N, such that $L(g,1) \neq 0$ and $E[p] \subset A_g$ and $\operatorname{Vis}^B(E(\mathbb{Q})) = E(\mathbb{Q})/pE(\mathbb{Q})$, where $B = (A_g \times E)/E[p]$.

Let E be the elliptic curve $y^2 + y = x^3 - x$. This curve has conductor 37 and Mordell-Weil group free of rank 1. According to [Cre97], E is isolated in its isogeny class, so each E[p] is irreducible.

Table 1 gives for each N the odd primes p such that there is a mod p congruence between f_E and some newform g in $S_2(\Gamma_0(37N))$ such that A_g has rank 0 and the isogeny class of A_g contains no abelian variety with rational p torsion. The first time a p occurs, it is in bold. We bound the torsion in the isogeny class using the algorithm from [AS05, §3.5] with primes up to 17. Thus by Proposition 5.1.1, the Mordell-Weil group of E is p-modular of level 37N. A — means there are no such p. Table 2, which was derived directly from Table 1, gives for a prime p, all integers N such that $E(\mathbb{Q})$ is p-modular of level 37N.

Table 1: Visibility of Mordell-Weil for $y^2 + y = x^3 - x$

N	p's	N	p's	N	p's	N	p's	N	p's	N	p's	N	p's
2	5	19	5	36	_	53	53	70	_	87	_	104	_
3	7	20	-	37	-	54	_	71	3,7	88	_	105	_
4	_	21	7	38	5	55	_	72	_	89	43	106	5
5	_	22	-	39	_	56	_	73	3,5	90	_	107	3,5
6	_	23	11	40	-	57	_	74	-	91	3	108	_
7	3	24	-	41	3,17	58	_	75	-	92	_	109	3,7
8	-	25	-	42	-	59	13	76	-	93	7	110	_
9	_	26	-	43	7	60	_	77	_	94	_	111	_
10	_	27	3	44	_	61	5, 7	78	-	95	_	112	_
11	17	28	-	45	-	62	_	79	-	96	_	113	3, 11
12	-	29	3	46	-	63	3	80	-	97	47	114	_
13	_	30	_	47	3	64	_	81	3	98	_	115	_
14	_	31	3	48	_	65	_	82	_	99	_	116	_
15	-	32	-	49	-	66	-	83	3, 11	100	-	117	_
16	_	33	7	50	5	67	3, 5	84	_	101	3,11	118	_
17	3	34	_	51	-	68	_	85	_	102	_	119	3
18	_	35	_	52	_	69	_	86	_	103	43	120	_

N	p's	N	p's	N	p's	N	p's	N	p's	N	p's
121	_	138	_	155	_	172	_	189	3	206	_
122	_	139	17	156	_	173	3, 5, 11	190	_	207	_
123	_	140	_	157	3,5	174	_	191	7	208	-
124	-	141	_	158	-	175	_	192	_	209	-
125	5	142	_	159	-	176	_	193	5,11		
126	_	143	_	160	_	177	_	194	_		
127	127	144	_	161	_	178	_	195	_		
128	-	145	_	162	-	179	3	196	-		
129	-	146	_	163	7,13	180	_	197	3, 5, 13		
130	_	147	7	164	_	181	3, 59	198	_		
131	3	148	_	165	_	182	_	199	3, 11		
132	-	149	5, 31	166	-	183	_	200	_		
133	-	150	_	167	3,5	184	_	201	_		
134	_	151	17	168	_	185	_	202	5		
135	_	152	_	169	_	186	_	203	3		
136	_	153	3	170	_	187	_	204	_		
137	3	154	_	171	_	188	_	205	_		

Table 2: Levels Where Mordell-Weil is p-Visible for $y^2 + y = x^3 - x$

p	N such that 37N is a level of p-modularity of $E(\mathbb{Q})$
	7, 17, 27, 29, 31, 41, 47, 63, 67, 71, 73, 81, 83, 91, 101, 107,
3	109, 113, 119, 131, 137, 153, 157, 167, 173, 179, 181, 189,
	197, 199, 203
5	2, 19, 38, 50, 61, 67, 73, 106, 107, 125, 149, 157, 167, 173,
9	193, 197, 202
7	3, 21, 33, 43, 61, 71, 93, 109, 147, 163, 191
11	23, 83, 101, 113, 173, 193, 199
13	59, 163, 197
17	11, 41, 139, 151
19 - 29	-
31	149
37 - 41	-
43	89, 103
47	97
53	53
59	181
61 - 113	-
127	127

Ribet's level raising theorem [Rib90] gives necessary and sufficient conditions on a prime N for there to be a newform g of level 37N that is congruent to f_E modulo p. Note that the form g is new rather than just p-new since 37 is prime and there are no modular forms of level 1 and weight 2. If, moreover, we impose the condition $L(g,1) \neq 0$, then Ribet's condition requires that p divides $N+1+\varepsilon a_N$, where ε is the root number of E. Since E has odd analytic rank, in this case $\varepsilon=-1$. For each primes $p\leq 127$ and each $N\leq 203$, we find the levels of such g. If f is a newform, the torsion multiple of f is a positive integer that is a multiple of the order of the rational torsion subgroup of any abelian variety attached to f, as computed by the algorithm in [AS05]. The only cases in which we don't already find a congruence level already listed in Table 2 corresponding to a newform with torsion multiple coprime to p are

$$p = 3$$
, $N = 43$ and $p = 19$, $N = 47,79$.

In all other cases in which Ribet's theorem produces a congruent g with $\operatorname{ord}_{s=1} L(g,s)$ even (hence possibly 0), we actually find a g with $L(g,1) \neq 0$ and can show that $\#A_g(\mathbb{Q})_{\operatorname{tor}}$ is coprime to p.

For p=3 and N=43 we find a unique newform $g\in S_2(\Gamma_0(1591))$ that is congruent to f_E modulo 3. This form is attached to the elliptic curve $y^2+y=x^3-71x+552$ of conductor 1591, which has Mordell-Weil groups $\mathbb{Z}\oplus\mathbb{Z}$. Thus this is an example of a congruence relating a rank 1 curve to a rank 2 curve. For p=19 and N=47, the newform g has degree 43, so A_g has dimension 43, we have $L(g,1)\neq 0$, but the torsion multiple is $76=19\cdot 4$, which is divisible by 19. For p=19 and N=79, the A_g has dimension 57, we have $L(g,1)\neq 0$, but the torsion multiple is 76 again.

Tables 3–4 are the analogues of Tables 1–2 but for the elliptic curve $y^2 + y = x^3 + x^2$ of conductor 43. This elliptic curve also has rank 1 and all mod p representations are irreducible. The primes p and N such that Ribet's theorem produces a congruent g with $\operatorname{ord}_{s=1} L(g,s)$ even, yet we do not find one with $L(g,1) \neq 0$ and the torsion multiple coprime to p are

$$p = 3$$
, $N = 31,61$ and $p = 11$, $N = 19,31,47,79$.

The situation for p=11 is interesting since in this case all the g with $\operatorname{ord}_{s=1} L(g,s)$ even fail to satisfy our hypothesis. At level $19\cdot 43$ we find that g has degree 18 and $L(g,1)\neq 0$, but the torsion multiple is divisible by 11.

Let E be the elliptic curve $y^2+y=x^3+x^2-2x$ of conductor 389. This curve has Mordell-Weil group free of rank 2. Tables 5–6 are the analogues of Tables 1–2 but for E. The primes p and N such that Ribet's theorem produces a congruent g with $\operatorname{ord}_{s=1} L(g,s)$ even, yet we do not find one with $L(g,1)\neq 0$ and the torsion multiple coprime to p are

$$p = 3$$
, $N = 17$ and $p = 5$, $N = 19$.

For p=3, there is a unique g of level $6613=37\cdot 17$ with $\operatorname{ord}_{s=1}L(g,s)$ even and $E[3]\subset A_q$. This form has degree 5 and L(g,1)=0, so this is another

Table 3: Visibility of Mordell-Weil for $y^2 + y = x^3 + x^2$

N	p's	N	p's	N	p's	N	p's	N	p's	N	p's	N	p's
2	5	17	3, 7	32	_	47	_	62	_	77	_	92	_
3	3	18	_	33	3	48	-	63	-	78	_	93	_
4	_	19	-	34	5	49	-	64	-	79	_	94	_
5	5	20	-	35	-	50	5	65	-	80	_	95	_
6	_	21	-	36	-	51	3	66	-	81	3	96	_
7	_	22	5	37	19	52	-	67	71	82	-	97	7, 13
8	_	23	5	38	-	53	59	68	-	83	3, 23	98	_
9	_	24	-	39	3	54	-	69	-	84	-	99	3
10	_	25	_	40	_	55	5	70	-	85	5	100	_
11	3	26	_	41	37	56	_	71	5,7	86	_		
12	_	27	3	42	_	57	3	72	-	87	3		
13	19	28	-	43	_	58	-	73	3	88	_		
14	_	29	3	44	-	59	3	74	-	89	47		
15	_	30	-	45	-	60	-	75	-	90	-		
16	_	31	_	46		61	5	76		91			

Table 4: Levels Where Mordell-Weil is p-Visible for $y^2 + y = x^3 + x^2$

p	N such that 43N is a level of p-modularity of $E(\mathbb{Q})$
3	3, 11, 17, 27, 29, 33, 39, 51, 57, 59, 73, 81, 83, 87, 99
5	2, 5, 22, 23, 34, 50, 55, 61, 71, 85
7	17, 71, 97
11	-
13	97
17	-
19	13, 37
23	83
29,31	-
37	41
41,43	-
47	89
53	-
59	53
61,67	-
71	67

Table 5: Visibility of Mordell-Weil for $y^2 + y = x^3 + x^2 - 2x$

N	p's	N	p's	N	p's	\overline{N}	p's	N	p's
1	5	7	3	13	11	19	_	25	_
2	_	8	_	14	_	20	_	26	-
3	_	9	3	15	3	21	_	27	3
4	_	10	_	16	_	22	_	28	_
5	3	11	_	17	_	23	5	29	3
6	_	12	_	18	_	24	–		

Table 6: Levels Where Mordell-Weil is p-Visible for $y^2 + y = x^3 + x^2 - 2x$

p	N such that 389N is a level of p-modularity of $E(\mathbb{Q})$
3	5, 7, 9, 15, 27, 29
5	1, 23
7	-
11	13

example where the rank 0 hypothesis of Proposition 5.1.1 is not satisfied. Note that the torsion multiple in this case is 1. For p=5, there is a unique g of level $7391=37\cdot 19$, with $\operatorname{ord}_{s=1}L(g,s)$ even and $E[5]\subset A_g$. This form has degree 4 and $L(g,1)\neq 0$, but the torsion multiple is divisible by 5.

References

- [Aga99a] A. Agashe, On invisible elements of the Tate-Shafarevich group, C.
 R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369–374. MR 1
 678 131
- [Aga99b] Amod Agashé, On invisible elements of the Tate-Shafarevich group, C. R. Acad. Sci. Paris Sér. I Math. 328 (1999), no. 5, 369–374. MR 2000e:11083
- [AS02] A. Agashe and W. A. Stein, Visibility of Shafarevich-Tate groups of abelian varieties, J. Number Theory 97 (2002), no. 1, 171–185. MR 2003h:11070
- [AS05] A. Agashe and W. Stein, Visible evidence for the Birch and Swinnerton-Dyer conjecture for modular abelian varieties of analytic rank zero, Math. Comp. 74 (2005), no. 249, 455–484 (electronic), With an appendix by J. Cremona and B. Mazur. MR 2085902

- [BCDT01] C. Breuil, B. Conrad, F. Diamond, and R. Taylor, On the modularity of elliptic curves over Q: wild 3-adic exercises, J. Amer. Math. Soc. 14 (2001), no. 4, 843–939 (electronic). MR 2002d:11058
- [BCP97] W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3–4, 235–265, Computational algebra and number theory (London, 1993). MR 1 484 478
- [BFH90] D. Bump, S. Friedberg, and J. Hoffstein, Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic L-functions and their derivatives, Ann. of Math. (2) 131 (1990), no. 1, 53–127.
- [Bir71] B. J. Birch, Elliptic curves over Q: A progress report, 1969 Number Theory Institute (Proc. Sympos. Pure Math., Vol. XX, State Univ. New York, Stony Brook, N.Y., 1969), Amer. Math. Soc., Providence, R.I., 1971, pp. 396–400.
- [CM00] J. E. Cremona and B. Mazur, Visualizing elements in the Shafarevich-Tate group, Experiment. Math. 9 (2000), no. 1, 13–28. MR 1 758 797
- [Cre97] J.E. Cremona, Algorithms for modular elliptic curves, second ed., Cambridge University Press, Cambridge, 1997, http://www.maths.nott.ac.uk/personal/jec/book/.
- [Dum01] N. Dummigan, Congruences of modular forms and Selmer groups, Math. Res. Lett. 8 (2001), no. 4, 479–494. MR MR1849264 (2002k:11064)
- [DWS03] N. Dummigan, M. Watkins, and W.A. Stein, Constructing Elements in Shafarevich-Tate Groups of Modular Motives, Number theory and algebraic geometry, ed. by Miles Reid and Alexei Skorobogatov 303 (2003), 91–118.
- [Fal86] G. Faltings, Finiteness theorems for abelian varieties over number fields, Arithmetic geometry (Storrs, Conn., 1984), Springer, New York, 1986, Translated from the German original [Invent. Math. 73 (1983), no. 3, 349–366; ibid. 75 (1984), no. 2, 381; MR 85g:11026ab] by Edward Shipz, pp. 9–27. MR 861 971
- [JS05] D. Jetchev and W. Stein, Visibility of Shafarevich-Tate Groups at Higher Level, in preparation.
- [Kat04] Kazuya Kato, p-adic Hodge theory and values of zeta functions of modular forms, Astérisque (2004), no. 295, ix, 117–290, Cohomologies p-adiques et applications arithmétiques. III. MR MR2104361

- [KL89] V. A. Kolyvagin and D. Y. Logachev, Finiteness of the Shafarevich-Tate group and the group of rational points for some modular abelian varieties, Algebra i Analiz 1 (1989), no. 5, 171–196.
- [Kle01] T. Klenke, Modular Varieties and Visibility, Ph.D. thesis, Harvard University (2001).
- [Kol88] V. A. Kolyvagin, Finiteness of $E(\mathbf{Q})$ and $III(E, \mathbf{Q})$ for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat. 52 (1988), no. 3, 522–540, 670–671. MR 89m:11056
- [Kol91] V. A. Kolyvagin, On the Mordell-Weil group and the Shafarevich-Tate group of modular elliptic curves, Proceedings of the International Congress of Mathematicians, Vol. I, II (Kyoto, 1990) (Tokyo), Math. Soc. Japan, 1991, pp. 429–436. MR 93c:11046
- [LT58] S. Lang and J. Tate, *Principal homogeneous spaces over abelian varieties*, Amer. J. Math. 80 (1958), 659–684.
- [Maz78] B. Mazur, Rational isogenies of prime degree (with an appendix by D. Goldfeld), Invent. Math. 44 (1978), no. 2, 129–162.
- [Maz99] _____, Visualizing elements of order three in the Shafarevich-Tate group, Asian J. Math. 3 (1999), no. 1, 221–232, Sir Michael Atiyah: a great mathematician of the twentieth century. MR 2000g:11048
- [Mil72] J. S. Milne, On the arithmetic of abelian varieties, Invent. Math. 17 (1972), 177–190. MR 48 #8512
- [MM97] M. R. Murty and V. K. Murty, Non-vanishing of L-functions and applications, Birkhäuser Verlag, Basel, 1997.
- [MO03] William J. McGraw and Ken Ono, Modular form congruences and Selmer groups, J. London Math. Soc. (2) 67 (2003), no. 2, 302–318. MR MR1956137 (2004d:11033)
- [Rib80] K. A. Ribet, Twists of modular forms and endomorphisms of abelian varieties, Math. Ann. 253 (1980), no. 1, 43–62. MR 82e:10043
- [Rib90] _____, Raising the levels of modular representations, Séminaire de Théorie des Nombres, Paris 1987–88, Birkhäuser Boston, Boston, MA, 1990, pp. 259–271.
- [Rib92] _____, Abelian varieties over Q and modular forms, Algebra and topology 1992 (Taejŏn), Korea Adv. Inst. Sci. Tech., Taejŏn, 1992, pp. 53–79. MR 94g:11042
- [RM05] K. Rubin and B. Mazur, *Finding large selmer groups*, in preparation.

- [Roh84] D. E. Rohrlich, On L-functions of elliptic curves and cyclotomic towers, Invent. Math. 75 (1984), no. 3, 409–423. MR 86g:11038b
- [Rub98] K. Rubin, Euler systems and modular elliptic curves, Galois representations in arithmetic algebraic geometry (Durham, 1996), Cambridge Univ. Press, Cambridge, 1998, pp. 351–367. MR 2001a:11106
- [Sch98] A. J. Scholl, An introduction to Kato's Euler systems, Galois Representations in Arithmetic Algebraic Geometry, Cambridge University Press, 1998, pp. 379–460.
- [Ser72] J-P. Serre, Propriétés galoisiennes des points d'ordre fini des courbes elliptiques, Invent. Math. 15 (1972), no. 4, 259–331.
- [Sage07] W. Stein, SAGE: Software for Algebra and Geometry Experimentation, http://www.sagemath.org/.
- [Ste04] W. Stein, Shafarevich-Tate Groups of Nonsquare Order, Modular Curves and Abelian Varieties, Progress of Mathematics (2004), 277–289.
- [Tat66] J. Tate, On the conjectures of Birch and Swinnerton-Dyer and a geometric analog, Séminaire Bourbaki, Vol. 9, Soc. Math. France, Paris, 1965/66, pp. Exp. No. 306, 415–440.
- [Wil00] A.J. Wiles, The Birch and Swinnerton-Dyer Conjecture, http://www.claymath.org/prize_problems/birchsd.htm.

William A. Stein Department of Mathematics University of Washington Seattle, WA 98195-4350 wstein@math.washington.edu