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Abstract. Comessatti proved that the set of all real points of a
rational real algebraic surface is either a nonorientable surface, or
diffeomorphic to the sphere or the torus. Conversely, it is well known
that each of these surfaces admits at least one rational real algebraic
model. We prove that they admit exactly one rational real algebraic
model. This was known earlier only for the sphere, the torus, the real
projective plane and the Klein bottle.
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1 Introduction

Let X be a rational nonsingular projective real algebraic surface. Then the
set X(R) of real points of X is a compact connected topological surface. Comes-
satti showed that X(R) cannot be an orientable surface of genus bigger than 1.
To put it otherwise, X(R) is either nonorientable, or it is orientable and dif-
feomorphic to the sphere S2 or the torus S1 × S1 [Co2, p. 257].
Conversely, each of these topological surfaces admits a rational real algebraic
model, or rational model for short. In other words, if S is a compact connected
topological surface which is either nonorientable, or orientable and diffeomor-
phic to the sphere or the torus, then there is a nonsingular rational projective
real algebraic surface X such that X(R) is diffeomorphic to S. Indeed, this
is clear for the sphere, the torus and the real projective plane: the real pro-
jective surface defined by the affine equation x2 + y2 + z2 = 1 is a rational
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model of the sphere S2, the real algebraic surface P
1 × P

1 is a rational model
of the torus S1 ×S1, and the real projective plane P

2 is a rational model of the
topological real projective plane P

2(R). If S is any of the remaining topolog-
ical surfaces, then S is diffeomorphic to the n-fold connected sum of the real
projective plane, where n ≥ 2. A rational model of such a topological surface
is the real surface obtained from P

2 by blowing up n−1 real points. Therefore,
any compact connected topological surface which is either nonorientable, or
orientable and diffeomorphic to the sphere or the torus, admits at least one
rational model.
Now, if S is a compact connected topological surface admitting a rational
model X, then one can construct many other rational models of S. To see
this, let P and P be a pair of complex conjugate complex points on X. The
blow-up X̃ of X at P and P is again a rational model of S. Indeed, since P
and P are nonreal points of X, there are open subsets U of X and V of X̃ such
that

• X(R) ⊆ U(R), X̃(R) ⊆ V (R), and

• U and V are isomorphic.

In particular, X(R) and X̃(R) are diffeomorphic. This means that X̃ is a
rational model of S if X is so. Iterating the process, one can construct many
nonisomorphic rational models of S. We would like to consider all such models
of S to be equivalent. Therefore, we introduce the following equivalence relation
on the collection of all rational models of a topological surface S.

Definition 1.1. Let X and Y be two rational models of a topological surface S.
We say that X and Y are isomorphic as rational models of S if there is a
sequence
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X = X0 X2 · · · X2n = Y

where each morphism is a blowing-up at a pair of nonreal complex conjugate
points.

We note that the equivalence relation, in Definition 1.1, on the collection of all
rational models of a given surface S is the smallest one for which the rational
models X and X̃ mentioned above are equivalent.
Let X and Y be rational models of a topological surface S. If X and Y
are isomorphic models of S, then the above sequence of blowing-ups defines a
rational map

f : X 99K Y

having the following property. There are open subsets U of X and V of Y such
that
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• the restriction of f to U is an isomorphism of real algebraic varieties from
U onto V , and

• X(R) ⊆ U(R) and Y (R) ⊆ V (R).

It follows, in particular, that the restriction of f to X(R) is an algebraic diffeo-
morphism from X(R) onto Y (R), or in other words, it is a biregular map from
X(R) onto Y (R) in the sense of [BCR].
Let us recall the notion of an algebraic diffeomorphism. Let X and Y be
smooth projective real algebraic varieties. Then X(R) and Y (R) are compact
manifolds, not necessarily connected or nonempty. Let

f : X(R) −→ Y (R) (1)

be a map. Choose affine open subsets U of X and V of Y such that X(R) ⊆
U(R) and Y (R) ⊆ V (R). Since U and V are affine, we may assume that they
are closed subvarieties of A

m and A
n, respectively. Then X(R) is a closed

submanifold of R
m, and Y (R) is a closed submanifold of R

n. The map f
in (1) is algebraic or regular if there are real polynomials p1, . . . , pn, q1, . . . , qn

in the variables x1, . . . , xm such that none of the polynomials q1, . . . , qn vanishes
on X(R), and

f(x) =

(
p1(x)

q1(x)
, . . . ,

pn(x)

qn(x)

)

for all x ∈ X(R).
One can check that the algebraicity of f depends neither on the choice of the
affine open subsets U and V nor on the choice of the embeddings of U and V
in affine space. Note that the algebraicity of f immediately implies that f is a
C∞-map.
The map f in (1) is an algebraic diffeomorphism if f is algebraic, bijective, and
f−1 is algebraic.
Again let X and Y be rational models of a topological surface S. As observed
above, if X and Y are isomorphic models of S, then there is an algebraic
diffeomorphism

f : X(R) −→ Y (R) .

Conversely, if there is an algebraic diffeomorphism f : X(R) −→ Y (R), then
X and Y are isomorphic models of S, as it follows from the well known
Weak Factorization Theorem for birational maps between real algebraic sur-
faces(see [BPV, Theorem III.6.3] for the WFT over C, from which the WFT
over R follows).
Here we address the following question. Given a compact connected topological
surface S, what is the number of nonisomorphic rational models of S?
By Comessatti’s Theorem, an orientable surface of genus bigger than 1 does
not have any rational model. It is known that the topological surfaces S2,
S1 × S1 and P

2(R) have exactly one rational model, up to isomorphism (see
also Remark 3.2). Mangolte has shown that the same holds for the Klein
bottle [Ma, Theorem 1.3] (see again Remark 3.2).

Documenta Mathematica 12 (2007) 549–567



552 Indranil Biswas and Johannes Huisman

Mangolte asked how large n should be so that the n-fold connected sum of the
real projective plane admits more than one rational model, up to isomorphism;
see the comments following Theorem 1.3 in [Ma]. The following theorem shows
that there is no such integer n.

Theorem 1.2. Let S be a compact connected real two-manifold.

1. If S is orientable of genus greater than 1, then S does not admit any
rational model.

2. If S is either nonorientable, or it is diffeomorphic to one of S2 and S1 ×
S1, then there is exactly one rational model of S, up to isomorphism. In
other words, any two rational models of S are isomorphic.

Of course, statement 1 is nothing but Comessatti’s Theorem referred to above.
Our proof of statement 2 is based on the Minimal Model Program for real
algebraic surfaces developed by János Kollár in [Ko1]. Using this Program,
we show that a rational model X of a nonorientable topological surface S is
obtained from P

2 by blowing it up successively in a finite number of real points
(Theorem 3.1). The next step of the proof of Theorem 1.2 involves showing
that the model X is isomorphic to a model X ′ obtained from P

2 by blowing
up P

2 at real points P1, . . . , Pn of P
2. At that point, the proof of Theorem 1.2

would have been finished if we were able to prove that the group Diffalg(P
2(R))

of algebraic diffeomorphisms of P
2(R) acts n-transitively on P

2(R). However,
we were unable to prove such a statement. Nevertheless, a statement we were
able to prove is the following.

Theorem 1.3. Let n be a natural integer. The group Diffalg(S
1 × S1) acts

n-transitively on S1 × S1.

We conjecture, however, the following.

Conjecture 1.4. Let X be a smooth projective rational surface. Let n be a
natural integer. Then the group Diffalg(X(R)) acts n-transitively on X(R).1

The only true evidence we have for the above conjecture is that it holds for X =
P

1 × P
1 according to Theorem 1.3.

Now, coming back to the idea of the proof of Theorem 1.2, we know that any
rational model of S is isomorphic to one obtained from P

2 by blowing up P
2

at real points P1, . . . , Pn. Since we have established n-transitivity of the group
of algebraic diffeomorphisms of S1 ×S1, we need to realize X ′ as a blowing-up
of P

1 × P
1 at a finite number of real points.

Let L be the real projective line in P
2 containing P1 and P2. Applying a

nontrivial algebraic diffeomorphism of P
2 into itself, if necessary, we may as-

sume that Pi 6∈ L for i ≥ 3. Then we can do the usual transformation of P
2

into P
1 × P

1 by first blowing-up P1 and P2, and then contracting the strict

1This conjecture is now proved [HM].
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transform of L. This realizes X ′ as a surface obtained from P
1×P

1 by blowing-
up P

1 × P
1 at n − 1 distinct real points. Theorem 1.2 then follows from the

(n − 1)-transitivity of Diffalg(S
1 × S1).

We will also address the question of uniqueness of geometrically rational models
of a topological surface. By yet another result of Comessatti, a geometrically ra-
tional real surface X is rational if X(R) is nonempty and connected. Therefore,
Theorem 1.2 also holds when one replaces “rational models” by “geometrically
rational models”. Since the set of real points of a geometrically rational surface
is not neccesarily connected, it is natural to study geometrically rational mod-
els of not necessarily connected topological surfaces. We will show that such a
surface has an infinite number of geometrically rational models, in general.

The paper is organized as follows. In Section 2 we show that a real Hirze-
bruch surface is either isomorphic to the standard model P

1 × P
1 of the real

torus S1 × S1, or isomorphic to the standard model of the Klein bottle. The
standard model of the Klein bottle is the real algebraic surface BP (P2) obtained
from the projective plane P

2 by blowing up one real point P . In Section 3, we
use the Minimal Model Program for real algebraic surfaces in order to prove
that any rational model of any topological surface is obtained by blowing up one
of the following three real algebraic surfaces: P

2, S
2 and P

1×P
1 (Theorem 3.1).

Here S
2 is the real algebraic surface defined by the equation x2 + y2 + z2 = 1.

As a consequence, we get new proofs of the known facts that the sphere, the
torus, the real projective plane and the Klein bottle admit exactly one rational
model, up to isomorphism of course. In Section 4 we prove a lemma that will
have two applications. Firstly, it allows us to conclude the uniqueness of a
rational model for the “next” topological surface, the 3-fold connected sum of
the real projective plane. Secondly, it also allows us to conclude that a rational
model of a nonorientable topological surface is isomorphic to a model obtained
from P

2 by blowing up a finite number of distinct real points P1, . . . , Pn of P
2.

In Section 5 we prove n-transitivity of the group of algebraic diffeomorphisms
of the torus S1 × S1. In Section 6 we construct a nontrivial algebraic diffeo-
morphism f of P

2(R) such that the real points f(Pi), for i = 3, . . . , n, are not
on the real projective line through f(P1) and f(P2). In Section 7 we put all the
pieces together and complete the proof of Theorem 1.2. In Section 8 we show
by an example that the uniqueness does not hold for geometrically rational
models of nonconnected topological surfaces.

Acknowledgement. The second author thanks the Tata Institute of Fun-
damental Research for its hospitality.

2 Real Hirzebruch surfaces

The set of real points of the rational real algebraic surface P
1 × P

1 is the
torus S1×S1. We call this model the standard model of the real torus. Fix a real
point O of the projective plane P

2. The rational real algebraic surface BO(P2)
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obtained from P
2 by blowing up the real point O is a model of the Klein

bottle K. We call this model the standard model of the Klein bottle.
Let d be a natural integer. Let Fd be the real Hirzebruch surface of degree d.
Therefore, Fd is the compactification P(OP1(d)⊕OP1) of the line bundle OP1(d)
over P

1. Recall that the real algebraic surface Fd is isomorphic to Fe if and
only if d = e. The restriction of the line bundle OP1(d) to the set of real
points P

1(R) of P
1 is topologically trivial if and only if d is even. Consequently,

Fd is a rational model of the torus S1 × S1 if d is even, and it is a rational
model of the Klein bottle K if d is odd (see [Si, Proposition VI.1.3] for a
different proof).
The following statement is probably well known, and is an easy consequence
of known techniques (compare the proof of Theorem 6.1 in [Ma]). We have
chosen to include the statement and a proof for two reasons: the statement is
used in the proof of Theorem 3.1, and the idea of the proof turns out also to
be useful in Lemma 4.1.

Proposition 2.1. Let d be a natural integer.

1. If d is even, then Fd is isomorphic to the standard model P
1 × P

1 of
S1 × S1.

2. If d is odd, then Fd is isomorphic to the standard model BO(P2) of the
Klein bottle K.

(All isomorphisms are in the sense of Definition 1.1.)

Proof. Observe that

• the real algebraic surface P
1 × P

1 is isomorphic to F0, and

• that the real algebraic surface BO(P2) is isomorphic to F1.

Therefore, the proposition follows from the following lemma.

Lemma 2.2. Let d and e be natural integers. Then the two models Fd and Fe

are isomorphic if and only if d ≡ e (mod 2).

Proof. Since the torus is not diffeomorphic to the Klein bottle, the rational
models Fd and Fe are not isomorphic if d 6≡ e (mod 2). Conversely, if d ≡ e
(mod 2), then Fd and Fe are isomorphic models, as follows from the following
lemma using induction.

Lemma 2.3. Let d be a natural integer. The two rational models Fd and Fd+2

are isomorphic.

Proof. Let E be the section at infinity of Fd. The self-intersection of E is equal
to −d. Choose nonreal complex conjugate points P and P on E. Let F and F
be the fibers of the fibration of Fd over P

1 that contain P and P , respectively.
Let X be the real algebraic surface obtained from Fd by blowing up P and P .
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Denote again by E the strict transform of E in X. The self-intersection of E
is equal to −d− 2. The strict transforms of F and F , again denoted by F and
F respectively; they are disjoint smooth rational curves of self-intersection −1,
and they do not intersect E. The real algebraic surface Y obtained from X
by contracting F and F is a smooth P

1-bundle over P
1. The image of E in Y

has self-intersection −d − 2. It follows that Y is isomorphic to Fd+2 as a real
algebraic surface. Therefore, we conclude that Fd and Fd+2 are isomorphic
models.

3 Rational models

Let Y be a real algebraic surface. A real algebraic surface X is said to be ob-
tained from Y by blowing up if there is a nonnegative integer n, and a sequence
of morphisms

X = Xn

fn

// Xn−1
fn−1

// · · ·
f1
// X0 = Y ,

such that for each i = 1, . . . , n, the morphism fi is either the blow up of Xi−1 at
a real point, or it is the blow up of Xi−1 at a pair of distinct complex conjugate
points.
The surface X is said to be obtained from Y by blowing up at real points only
if for each i = 1, . . . , n, the morphism fi is a blow up of Xi−1 at a real point
of Xi−1.
One defines, similarly, the notion of a real algebraic surface obtained from Y
by blowing up at nonreal points only.
The real algebraic surface defined by the affine equation

x2 + y2 + z2 = 1

will be denoted by S
2. Its set of real points is the two-sphere S2. The real

Hirzebruch surface F1 will be simply denoted by F. Its set of real points is the
Klein bottle K.
Thanks to the Minimal Model Program for real algebraic surfaces due to János
Kollár [Ko1, p. 206, Theorem 30], one has the following statement:

Theorem 3.1. Let S be a compact connected topological surface. Let X be a
rational model of S.

1. If S is not orientable then X is isomorphic to a rational model of S
obtained from P

2 by blowing up at real points only.

2. If S is orientable then X is isomorphic to S
2 or P

1 × P
1, as a model.

Proof. Apply the Minimal Model Program to X in order to obtain a sequence
of blowing-ups as above, where Y is one of the following:

1. a minimal surface,
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2. a conic bundle over a smooth real algebraic curve,

3. a Del Pezzo surface of degree 1 or 2, and

4. P
2 or S

2.

(See [Ko1, p. 206, Theorem 30].) The surface X being rational, we know that
X is not birational to a minimal surface. This rules out the case of Y being
a minimal surface. Since X(R) is connected, it can be shown that X is not
birational to a Del Pezzo surface of degree 1 or 2. Indeed, such Del Pezzo
surfaces have disconnected sets of real points [Ko1, p. 207, Theorem 33(D)(c–
d)]. This rules out the case of Y being a Del Pezzo surface of degree 1 or 2. It
follows that

• either Y is a conic bundle, or

• Y is isomorphic to P
2, or

• Y is isomorphic to S
2.

We will show that the statement of the theorem holds in all these three cases.
If Y is isomorphic to P

2, then Y (R) is not orientable. Since X is obtained
from Y by blowing up, it follows that X(R) is not orientable either. Therefore,
the surface S is not orientable, and also X is isomorphic to a rational model
of S obtained from P

2 by blowing up. Moreover, it is easy to see that X is
then isomorphic to a rational model of S obtained from P

2 by blowing up at
real points only. This settles the case when Y is isomorphic to P

2.
If Y is isomorphic to S

2, then there are two cases to consider: (1) the case of S
being orientable, (2) and the case of S being nonorientable. If S is orientable,
then X(R) is orientable too, and X is obtained from Y by blowing up at nonreal
points only. It follows that X is isomorphic to S

2 as a model.
If S is nonorientable, then X(R) is nonorientable too, and X is obtained from S

2

by blowing up a nonempty set of real points. Therefore, the map X −→ Y
factors through a blow up S̃

2 of S
2 at a real point. Now, S̃

2 contains two smooth
disjoint complex conjugated rational curves of self-intersection −1. When we
contract them, we obtain a real algebraic surface isomorphic to P

2. Therefore,
X is obtained from P

2 by blowing up. It follows again that X is isomorphic to
a rational model of S obtained from P

2 by blowing up at real points only. This
settles the case when Y is isomorphic to S

2.
The final case to consider is the one where Y is a conic bundle over a smooth
real algebraic curve B. Since X is rational, B is rational. Moreover, B has real
points because X has real points. Hence, the curve B is isomorphic to P

1.
The singular fibers of the the conic bundle Y over B are real, and moreover,
the number of singular fibers is even. Since X(R) is connected, we conclude
that Y (R) is connected too. it follows that the conic bundle Y over B has
either no singular fibers or exactly 2 singular fibers. If it has exactly 2 singular
fibers, then Y is isomorphic to S

2 [Ko2, Lemma 3.2.4], a case we have already
dealt with.
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Therefore, we may assume that Y is a smooth P
1-bundle over P

1. Therefore,
Y is a real Hirzebruch surface. By Proposition 2.1, we may suppose that Y =
P

1 × P
1, or that Y = F. Since F is obtained from P

2 by blowing up one real
point, the case Y = F follows from the case of Y = P

2 which we have already
dealt with above.
Therefore, we may assume that Y = P

1 × P
1. Again, two cases are to be

considered: (1) the case of S being orientable, and (2) the case of S being
nonorientable. If S is orientable, X(R) is orientable, and X is obtained from Y
by blowing up at non real points only. It follows that X is isomorphic as a
model to P

1 × P
1. If S is not orientable, X is obtained from Y by blowing up,

at least, one real point. Since Y = P
1 × P

1, a blow-up of Y at one real point
is isomorphic to a blow-up of P

2 at two real points. We conclude again by the
case of Y = P

2 dealt with above.

Note that Theorem 3.1 implies Comessatti’s Theorem referred to in the intro-
duction, i.e., the statement to the effect that any orientable compact connected
topological surface of genus greater than 1 does not admit a rational model
(Theorem 1.2.1).

Remark 3.2. For sake of completeness let us show how Theorem 3.1 implies
that the surfaces S2, S1 × S1, P2(R) and the Klein bottle K admit exactly one
rational model. First, this is clear for the orientable surfaces S2 and S1 × S1.
Let X be a rational model of P

2(R). From Theorem 3.1, we know that X is
isomorphic to a rational model of P

2(R) obtained from P
2 by blowing up at real

points only. Therefore, we may assume that X itself is obtained from P
2 by

blowing up at real points only. Since X(R) is diffeomorphic to P
2(R), it follows

that X is isomorphic to P
2. Thus any rational model of P

2(R) is isomorphic
to P

2 as a model.
Let X be a rational model of the Klein bottle K. Using Theorem 3.1 one
may assume that X is a blowing up of P

2 at real points only. Since X(R) is
diffeomorphic to the 2-fold connected sum of P

2(R), the surface X is a blowing
up of P

2 at exactly one real point. It follows that X is isomorphic to F.
Therefore, any rational model of the Klein bottle K is isomorphic to F, as a
model; compare with [Ma, Theorem 1.3].

One can wonder whether the case where S is a 3-fold connected sum of real
projective planes can be treated similarly. The first difficulty is as follows. It
is, a priori, not clear why the following two rational models of #3

P
2(R) are

isomorphic. The first one is obtained from P
2 by blowing up two real points

of P
2. The second one is obtained by a successive blow-up of P

2: first blow
up P

2 at a real point, and then blow up a real point of the exceptional divisor.
In the next section we prove that these two models are isomorphic.

4 The 3-fold connected sum of the real projective plane

We start with a lemma.

Documenta Mathematica 12 (2007) 549–567



558 Indranil Biswas and Johannes Huisman

Lemma 4.1. Let P be a real point of P
2, and let BP (P2) be the surface obtained

from P
2 by blowing up P . Let E be the exceptional divisor of BP (P2) over P .

Let L be any real projective line of P
2 not containing P . Consider L as a curve

in BP (P2). Then there is a birational map

f : BP (P2) 99K BP (P2)

whose restriction to the set of real points is an algebraic diffeomorphism such
that f(L(R)) = E(R).

Proof. The real algebraic surface BP (P2) is isomorphic to the real Hirze-
bruch surface F = F1, and any isomorphism between them takes the excep-
tional divisor of BP (P2) to the section at infinity of the conic bundle F/P

1 =
P(OP1(1) ⊕OP1). The line L in BP (P2) is given by a unique section of OP1(1)
over P

1; this section of OP1(1) will also be denoted by L. We denote again
by E the section at infinity of F.
We have to show that there is a birational self-map f of F such that the equality
f(L(R)) = E(R) holds. Let R be a nonreal point of L. Let F be the fiber of
the conic bundle F passing through R. The blowing-up of F at the pair of
points R and R is a real algebraic surface in which we can contract the strict
transforms of F and F . The real algebraic surface one obtains after these two
contractions is again isomorphic to F.
Therefore, we have a birational self-map f of F whose restriction to the set
of real points is an algebraic diffeomorphism. The image, by f , of the strict
transform of L in F has self-intersection −1. Therefore, the image, by f , of
the strict transform of L coincides with E. In particular, we have f(L(R)) =
E(R).

Proposition 4.2. Let S be the 3-fold connected sum of P
2(R). Then S admits

exactly 1 rational model.

Proof. Fix two real points O1, O2 of P
2, and let BO1,O2

(P2) be the real algebraic
surface obtained from P

2 by blowing up O1 and O2. The surface BO1,O2
(P2) is

a rational model of the 3-fold connected sum S of P
2(R).

Let X be a rational model of S. We prove that X is isomorphic to BO1,O2
(P2),

as a model. By Theorem 3.1, we may assume that X is obtained from P
2 by

blowing up real points only. Since X(R) is diffeomorphic to a 3-fold connected
sum of the real projective plane, the surface X is obtained from P

2 by blowing
up twice real points. More precisely, there is a real point P of P

2 and a real
point Q of the blow-up BP (P2) of P

2 at P , such that X is isomorphic to the
blow-up BQ(BP (P2)) of BP (P2) at Q.
Choose any real projective line L in P

2 not containing P . Then, L is also a
real curve in BP (P2). We may assume that Q 6∈ L. By Lemma 4.1, there is
a birational map f from BP (P2) into itself whose restriction to the set of real
points is an algebraic diffeomorphism, and such that

f(L(R)) = E(R) ,
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where E is the exceptional divisor on BP (P2). Let R = f(Q). Then R 6∈ E,
and f induces a birational isomorphism

f̃ : BQ(BP (P2)) −→ BR(BP (P2))

whose restriction to the set of real points is an algebraic diffeomorphism.
Since R 6∈ E, the point R is a real point of P

2 distinct from P , and the
blow-up BR(BP (P2)) is equal to the blow up BP,R(P2) of P

2 at the real points
P,R of P

2. It is clear that BP,R(P2) is isomorphic to BO1,O2
(P2). It follows

that X is isomorphic to BO1,O2
(P2) as rational models of the 3-fold connected

sum of P
2(R).

Lemma 4.3. Let S be a nonorientable surface and let X be a rational model
of S. Then, there are distinct real points P1, . . . , Pn of P

2 such that X is
isomorphic to the blowing-up of P

2 at P1, . . . , Pn, as a model.

Proof. By Theorem 3.1, we may assume that X is obtained from P
2 by blowing

up at real points only. Let

X = Xn

fn

// Xn−1
fn−1

// · · ·
f1
// X0 = P

2. (2)

be a sequence of blowing ups, where for each i = 1, . . . , n, the map fi is a
blowing up of Xi−1 at a real point Pi of Xi−1.
To a sequence of blowing-ups as in (2) is associated a forest F of trees. The
vertices of F are the centers Pi of the blow-ups fi. For i > j, there is an edge
between the points Pi and Pj in F if

• the composition fj+1 ◦ · · · ◦ fi−1 is an isomorphism at a neighborhood
of Pi, and

• maps Pi to a point belonging to the exceptional divisor f−1
j (Pj) of Pj in

Xj .

Let ℓ be the sum of the lengths of the trees belonging to F . We will show by
induction on ℓ that X is isomorphic, as a model, to the blowing-up of P

2 at a
finite number of distinct real points of P

2.
This is obvious if ℓ = 0. If ℓ 6= 0, let Pj be the root of a tree of nonzero length,
and let Pi be the vertex of that tree lying immediately above Pj . By changing
the order of the blowing-ups fi, we may assume that j = 1 and i = 2.
Choose a real projective line L in P

2 which does not contain any of the roots
of the trees of F . By Lemma 4.1, there is a birational map g1 from X1 =
BP1

(P2) into itself whose restriction to the set of real points is an algebraic
diffeomorphism and satisfies the condition g1(L(R)) = E(R), where E is the
exceptional divisor of X1.
Put X ′

0 = P
2, X ′

1 = X1, and f ′
1 = f1. We consider g1 as a birational map

from X1 into X ′
1. Put P ′

2 = g1(P2). Let X ′
2 be the blowing-up of X ′

1 at P ′
2,

and let
f ′
2 : X ′

2 −→ X ′
1
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be the blowing-up morphism. Then, g1 induces a birational map g2 from X2

into X ′
2 which is an algebraic diffeomorphism on the set of real points.

By iterating this construction, one gets a sequence of blowing ups

f ′
i : X ′

i −→ X ′
i−1 ,

where i = 1, . . . , n, and birational morphisms gi from Xi into X ′
i whose restric-

tions to the sets of real points are algebraic diffeomorphisms. In particular, the
rational models X = Xn and X ′ = X ′

n of S are isomorphic.

Let F ′ be the forest of the trees of centers of X ′. Then the sum of the lengths ℓ′

of the trees of F ′ is equal to ℓ− 1. Indeed, one obtains F ′ from F by replacing
the tree T of F rooted at P1 by the disjoint union of the tree T \ P1 and the
tree {P1}. This follows from the fact that P ′

2 does not belong to the exceptional
divisor of f ′

1, and that, no root of the other trees of F belongs to the exceptional
divisor of f ′

1 either.

As observed in the Introduction, if we are able to prove the n-transitivity of the
action of the group Diffalg(P

2(R)) on P
2(R), then the statement of Theorem 1.2

would follow from Lemma 4.3. However, we did not succeed in proving so.
Nevertheless, we will prove the n-transitivity of Diff(S1 × S1), which is the
subject of the next section.

Now that we know that the topological surfaces S1, S1 × S1 and #n
P

2(R), for
n = 1, 2, 3, admit exactly one rational model, one may also wonder whether
Lemma 4.3 allows us to tackle the “next” surface, which is the 4-fold connected
sum of P

2(R). We note that Theorem 1.2 and Lemma 4.3 imply that a rational
model of such a surface is isomorphic to a surface obtained from P

2 by blowing
up 3 distinct real points. However, it it is not clear why the two surfaces of
the following type are isomorphic as models. Take three distinct non-collinear
real points P1, P2, P3, and three distinct collinear real points Q1, Q2, Q3 of P

2.
Then the surfaces X = BP1,P2,P3

(P2) and Y = BQ1,Q2,Q3
(P2) are rational

models of #4
P

2(R) (the 4-fold connected sum of P
2(R)), but it is not clear why

they should be isomorphic. One really seems to need some nontrivial algebraic
diffeomorphism of P

2(R), that maps Pi to Qi for i = 1, 2, 3, in order to show
that X and Y are isomorphic models. We will come back to this in Section 6
(Lemma 6.1).

5 Algebraic diffeomorphisms of S1 × S1 and n-transitivity

The following statement is a variation on classical polynomial interpolation.

Lemma 5.1. Let m be a positive integer. Let x1, . . . , xm be distinct real num-
bers, and let y1 . . . , ym be positive real numbers. Then there is a real poly-
nomial p of degree 2m that does not have real zeros, and satisfies the condi-
tion p(xi) = yi for all i.
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Proof. Set

p(ζ) :=
m∑

j=1

∏

k 6=j

(ζ − xk)2

(xj − xk)2
· yj .

Then p is of degree 2m, and p does not have real zeros. Furthermore, we have
p(xi) = yi for all i.

Corollary 5.2. Let m be a positive integer. Let x1, . . . , xm be distinct real
numbers, and let y1 . . . , ym, z1, . . . , zm be positive real numbers. Then there are
real polynomials p and q without any real zeros such that degree(p) = degree(q),
and

p(xi)

q(xi)
=

yi

zi

for all 1 ≤ i ≤ m.

The interest in the rational functions p/q of the above type lies in the following
fact.

Lemma 5.3. Let p and q be two real polynomials of same degree that do not
have any real zeros. Define the rational map f : P

1 × P
1

99K P
1 × P

1 by

f(x, y) =

(
x,

p(x)

q(x)
· y

)
.

Then f is a birational map of P
1 ×P

1 into itself whose restriction to the set of
real points is an algebraic diffeomorphism.

Theorem 5.4. Let n be a natural integer. The group Diffalg(P
1 × P

1) acts
n-transitively on P

1(R) × P
1(R).

Proof. Choose n distinct real points P1, . . . , Pn and n distinct real points
Q1, . . . , Qn of P

1 × P
1. We need to show that there is a birational map f

from P
1 × P

1 into itself, whose restriction to (P1 × P
1)(R) is an algebraic dif-

feomorphism, such that f(Pi) = Qi, for i = 1, . . . , n.
First of all, we may assume that P1, . . . , Pn, Q1, . . . , Qn are contained in the
first open quadrant of P

1(R) × P
1(R). In other words, the coordinates of Pi

and Qi are strictly positive real numbers. Moreover, it suffices to prove the
statement for the case where Qi = (i, i) for all i.
By the hypothesis above, there are positive real numbers xi, yi such that Pi =
(xi, yi) for all i. By Corollary 5.2, there are real polynomials p and q without
any real zeros such that degree(p) = degree(q), and such that the real numbers

p(xi)

q(xi)
· yi

are positive and distinct for all i. Define f : P
1 × P

1
99K P

1 × P
1 by

f(x, y) :=

(
x,

p(x)

q(x)
· y

)
.
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By Lemma 5.3, f is birational, and its restriction to (P1 × P
1)(R) is an alge-

braic diffeomorphism. By construction, the points f(Pi) have distinct second
coordinates. Therefore, replacing Pi by f(Pi) if necessary, we may assume that
the points Pi have distinct second coordinates, which implies that y1, . . . , ym

are distinct positive real numbers.
By Corollary 5.2, there are real polynomials p, q without any real zeros such
that degree(p) = degree(q), and

p(yi)

q(yi)
· xi = i.

Define f : P
1 × P

1
99K P

1 × P
1 by

f(x, y) =

(
p(y)

q(y)
· x, y

)
.

By Lemma 5.3, f is birational and its restriction to the set of real points is
an algebraic diffeomorphism. By construction, one has f(Pi) = (i, yi) for all i.
Therefore, we may assume that Pi = (i, yi) for all i.
Now, again by Corollary 5.2, there are two real polynomials p and q without
any real zeros such that degree(p) = degree(q), and

p(i)

q(i)
· yi = i

for all i. Define f : P
1 × P

1
99K P

1 × P
1 by

f(x, y) =

(
x,

p(x)

q(x)
· y

)
.

By Lemma 5.3, f is birational, and its restriction to the set of real points is an
algebraic diffeomorphism. By construction f(Pi) = Qi for all i.

Remark 5.5. One may wonder whether Theorem 5.4 implies that the group
Diffalg(P

2(R)) acts n-transitively on P
2(R). We will explain the implication of

Theorem 5.4 in that direction. Let P1, . . . , Pn be distinct real points of P
2, and

let Q1, . . . , Qn be distinct real points of P
2. Choose a real projective line L

in P
2 not containing any of the points P1, . . . , Pn, Q1, . . . , Qn. Let O1 and O2

be distinct real points of L. Identify P
1 ×P

1 with the surface obtained from P
2

by, first, blowing up O1, O2 and, then, contracting the strict transform of L.
Denote by E1 and E2 the images of the exceptional divisors over O1 and O2

in P
1 × P

1, respectively. We denote again by P1, . . . , Pn, Q1, . . . , Qn the real
points of P

1 × P
1 that correspond to the real points P1, . . . , Pn, Q1, . . . , Qn

of P
2.

Now, the construction in the proof of Theorem 5.4 gives rise to a birational
map f from P

1 × P
1 into itself which is an algebraic diffeomorphism on (P1 ×

P
1)(R) and which maps Pi onto Qi, for i = 1, . . . , n. Moreover, if one carries out
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carefully the construction of f , one has that f(E1(R)) = E1(R) and f(E2(R)) =
E2(R) and that the real intersection point O of E1 and E2 in P

1 ×P
1 is a fixed

point of f .
Note that one obtains back P

2 from P
1 × P

1 by blowing up O and contracting
the strict transforms of E1 and E2. Therefore, the birational map f of P

1 ×P
1

into itself induces a birational map g of P
2 into itself. Moreover, g(Pi) = Qi.

One may think that g is an algebraic diffeomorphism on P
2(R). However,

the restriction of g to the set of real points is not necessarily an algebraic
diffeomorphism! In fact, g is an algebraic diffeomorphism on P

2(R) \ {O1, O2}.
The restriction of g to P

2(R) \ {O1, O2} does admit a continuous extension g̃
to P

2(R), and g̃ is obviously a homeomorphism. One may call g̃ an algebraic
homeomorphism, but g̃ is not necessarily an algebraic diffeomorphism. It is not
difficult to find explicit examples of such algebraic homeomorphisms that are
not diffeomorphisms.
That is the reason why we do not claim to have proven n-transitivity
of Diffalg(P

2(R). The only statement about P
2(R) the above arguments prove is

the n-transitivity of the group Homeoalg(P
2(R)) of algebraic homeomorphisms.

6 A nontrivial algebraic diffeomorphism of P
2(R)

The nontrivial diffeomorphisms we have in mind are the following. They have
been studied in another recent paper as well [RV].
Let Q1, . . . , Q6 be six pairwise distinct complex points of P

2 satisfying the
following conditions:

1. the subset {Q1, · · · , Q6} is closed under complex conjugation,

2. the subset {Q1, · · · , Q6} does not lie on a complex conic,

3. the complex conic passing through any 5 of these six points is nonsingular.

Denote by C1, . . . , C6 the nonsingular complex conics one thus obtains. These
conics are pairwise complex conjugate. Consider the real Cremona transfor-
mation f = fQ of P

2 defined by first blowing-up P
2 at Q1, . . . , Q6 and then

contracting the strict transforms of C1, . . . , C6. Let R1, . . . , R6 denote the
points of P

2 that correspond to the contractions of the conics C1, . . . , C6.
The restriction to P

2(R) of the birational map f from P
2 into itself is obviously

an algebraic diffeomorphism.
The Cremona transformation f maps a real projective line, not containing any
of the points Q1, . . . , Q6, to a real rational quintic curve having 6 distinct non-
real double points at the points R1, . . . , R6. Moreover, it maps a real rational
quintic curve in P

2 having double points at Q1, . . . , Q6 to a real projective line
in P

2 that does not contain any of the points R1, . . . , R6.
Observe that the inverse of the Cremona transformation fQ is the Cremona
transformation fR. It follows that f = fQ induces a bijection from the set of
real rational quintics having double points at Q1, . . . , Q6 onto the set of real
projective lines in P

2 that do not contain any of R1, . . . , R6.
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This section is devoted to the proof of following lemma.

Lemma 6.1. Let n be a natural integer bigger than 1. Let P1, . . . , Pn be dis-
tinct real points of P

2. Then there is a birational map of P
2 into itself, whose

restriction to the set of real points is an algebraic diffeomorphism, such that
the image points f(P3), . . . , f(Pn) are not contained in the real projective line
through f(P1) and f(P2).

Proof. Choose complex points Q1, . . . , Q6 of P
2 as above. As observed before,

the Cremona transformation f = fQ induces a bijection from the set of real
rational quintic curves having double points at Q1, . . . , Q6 onto the set of real
projective lines of P

2 not containing any of the above points R1, . . . , Rn. In
particular, there is a real rational quintic curve C in P

2 having 6 nonreal double
points at Q1, . . . , Q6.
We show that there is a real projectively linear transformation α of P

2 such
that α(C) contains P1 and P2, and does not contain any of the points
P3, . . . , Pn. The Cremona transformation fα(Q) will then be a birational map
of P

2 into itself that has the required properties.
First of all, let us prove that there is α ∈ PGL3(R) such that P1, P2 ∈ α(C).
This is easy. Since C is a quintic curve, C(R) is infinite. In particular,
C contains two distinct real points. It follows that there is α ∈ PGL3(R)
such that P1, P2 ∈ α(C). Replacing C by α(C) if necessary, we may suppose
that P1, P2 ∈ C.
We need to show that there is α ∈ PGL3(R) such that α(P1) = P1, α(P2) = P2

and α(C) does not contain any of the points P3, . . . , Pn.
To prove the existence of α by contradiction, assume that there is no such
automorphism of P

2. Therefore, for all α ∈ PGL3(R) having P1 and P2 as
fixed points, the image α(C) contains at least one of the points of P3, . . . , Pn.
Let G be the stabilizer of the pair (P1, P2) for the diagonal action of PGL3

on P
2 ×P

2. It is easy to see that G is a geometrically irreducible real algebraic
group. Let

ρ : C × G −→ P
2

be the morphism defined by ρ(P, α) = α(P ). Let

Xi := ρ−1(Pi)

be the inverse image, where i = 3, . . . , n. Therefore, Xi is a real algebraic
subvariety of C × G. By hypothesis, for every α ∈ G(R), there is an integer i
such that α(C) contains Pi. Denoting by p the projection on the second factor
from C × G onto G, this means that

n⋃

i=3

p(Xi(R)) = G(R).

Since G(R) is irreducible, there is an integer i0 ∈ [3, n] such that the semi-
algebraic subset p(Xi0(R)) is Zariski dense in G(R). Since G is irreducible and p
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is proper, one has p(Xi0) = G. In particular, Pi0 ∈ α(C) for all α ∈ G(C). To
put it otherwise, α−1(Pi0) ∈ C for all α ∈ G(C), which means that the orbit
of Pi0 under the action of G is contained in C. In particular, the dimension
of the orbit of Pi0 is at most one. It follows that P1, P2 and Pi0 are collinear.
Let L be the projective line through P1, P2. Then the orbit of Pi0 coincides
with L \ {P1, P2}. It now follows that L ⊆ C. This is in contradiction with the
fact that C is irreducible.

7 Proof of Theorem 1.2.2

Let S be a topological surface, either nonorientable or of genus less than 2. We
need to show that any two rational models of S are isomorphic. By Remark 3.2,
we may assume that S is the n-fold connected sum of P

2(R), where n ≥ 3.

Let O1, . . . , On−2 be fixed pairwise distinct real points of P
1 × P

1, and
let Bn−2(P

1 × P
1) be the surface obtained from P

1 × P
1 by blowing up the

points O1, . . . , On−2. It is clear that Bn−2(P
1 × P

1) is a rational model of S.

Now, it suffices to show that any rational model of S is isomorphic to Bn−2(P
1×

P
1), as a model. Let X be any rational model of S. By Lemma 4.3, we may

assume that there are distinct real points P1, . . . , Pm of P
2 such that X is the

surface obtained from P
2 by blowing up P1, . . . , Pm. Since X is a rational model

of an n-fold connected sum of P
2(R), one has m = n− 1. In particular, m ≥ 2.

By Lemma 6.1, we may assume that the points P3, . . . , Pm are not contained
in the real projective line L through P1 and P2.

The blow-up morphism X −→ P
2 factors through the blow up P̃

2 = BP1,P2
(P2).

The strict transform L̃ of L has self-intersection −1 in P̃
2. If we contract L̃,

then we obtain a surface isomorphic to P
1 × P

1. Therefore, X is isomorphic
to a model obtained from P

1 × P
1 by blowing up m − 1 = n − 2 distinct

real points of P
1 × P

1. It follows from Theorem 5.4 that X is isomorphic
to Bn−2(P

1 × P
1).

8 Geometrically rational models

Recall that a nonsingular projective real algebraic surface X is geometrically
rational if the complex surface XC = X ×R C is rational. Comessatti showed
that, if X is a geometrically rational real algebraic surface with X(R) con-
nected, then X is rational; see Theorem IV of [Co1] and the remarks thereafter
(see also [Si, Corollary VI.6.5]). Therefore, the main result, namely Theo-
rem 1.2, also applies to geometrically rational models. More precisely, we have
the following consequence.

Corollary 8.1. Let S be a compact connected real two-manifold.

1. If S is orientable and the genus of S is greater than 1, then S does not
admit a geometrically rational real algebraic model.
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2. If S is either nonorientable, or it is diffeomorphic to one of S2 and S1 ×
S1, then there is exactly one geometrically rational model of S, up to
isomorphism. In other words, any two geometrically rational models of S
are isomorphic.

Now, the interesting aspect about geometrically rational real surfaces is that
their set of real points can have an arbitrary finite number of connected compo-
nents. More precisely, Comessati proved the following statement [Co2, p. 263
and further] (see also [Si, Proposition VI.6.1]).

Theorem 8.2. Let X be a geometrically rational real algebraic surface such
that X(R) is not connected. Then each connected component of X(R) is either
nonorientable or diffeomorphic to S2. Conversely, if S is a nonconnected com-
pact topological surface each of whose connected components is either nonori-
entable or diffeomorphic to S2, then there is a geometrically rational real alge-
braic surface X such that X(R) is diffeomorphic to S.

Let S be a nonconnected topological surface. One may wonder whether the
geometrically rational model of S whose existence is claimed above, is unique
up to isomorphism of models. The answer is negative, as shown by the following
example.

Example 8.3. Let S be the disjoint union of a real projective plane and 4 copies
of S2. Then, any minimal real Del Pezzo surface of degree 1 is a geometrically
rational model of S [Ko2, Theorem 2.2(D)]. Minimal real Del Pezzo surfaces of
degree 1 are rigid; this means that any birational map between two minimal real
Del Pezzo surfaces of degree 1 is an isomorphism of real algebraic surfaces [Is,
Theorem 1.6]. Now, the set of isomorphism classes of minimal real Del Pezzo
surfaces of degree 1 is in one-to-one correspondence with an open dense subset of
the quotient P

2(R)8/PGL3(R) for the diagonal action of the group PGL3(R). It
follows that the topological surface S admits a 8-dimensional continuous family
of nonisomorphic geometrically rational models. In particular, the number of
nonisomorphic geometrically rational models of S is infinite.
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Département de Mathématiques
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