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Abstract. We study visibility of Shafarevich–Tate groups of modu-
lar abelian varieties in Jacobians of modular curves of higher level. We
prove a theorem about the existence of visible elements at a specific
higher level under certain hypothesis which can be verified explicitly.
We also provide a table of examples of visible subgroups at higher
level and state a conjecture inspired by our data.
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1 Introduction

1.1 Motivation

Mazur originally suggested that the Shafarevich–Tate group X(A/K) of an
abelian variety A over a number field K could be studied via a collection of
finite subgroups (the visible subgroups) corresponding to different embeddings
of the variety into other abelian varieties C over K (see [Maz99] and [CM00]).
The advantage of this approach is that the isomorphism classes of principal
homogeneous spaces, for which one has a priori little geometric information,
can be given a much more explicit description as K-rational points on the
quotient abelian variety C/A (the reason why they are called visible elements).

Agashe, Cremona, Klenke and the second author built upon the ideas of
Mazur and proved many results about visibility of Shafarevich–Tate groups of
abelian varieties over number fields (see [Aga99b, AS02, AS05, CM00, Kle01,
Ste00]). More precisely, Agashe and Stein provided sufficient conditions for the
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existence of visible subgroups of certain order in the Shafarevich–Tate group
and applied their general theory to the case of newform subvarieties Af /Q

of

the Jacobian J0(N)/Q of the modular curve X0(N)/Q (here, f is a newform of
level N and weight 2 which is an eigenform for the Hecke operators acting on
the space S2(Γ0(N)) of cuspforms of level N and weight 2). They gave many
examples of nontrivial elements of X(Af/Q) that are visible with respect to the
embedding Af →֒ J0(N), along with many examples that are not, assuming the
Birch and Swinnerton-Dyer conjecture. The results of the present paper allow
us in some cases to remove this dependence on the Birch and Swinnerton-Dyer
conjecture.

In this paper we consider the case of modular abelian varieties over Q
and make use of the algebraic and arithmetic properties of the corresponding
newforms to provide sufficient conditions for the existence of visible elements of
X(Af/Q) in Jacobians of modular curves of levels multiples of the base levelN .

More precisely, we consider morphisms of the form Af →֒ J0(N)
φ
−→ J0(MN),

where φ is a suitable linear combination of degeneracy maps whose kernel is
2-torsion. For specific examples, the sufficient conditions can be verified explic-
itly. We also provide a table of examples where certain elements of X(Af/Q)
which are not visible in J0(N) become visible at a suitably chosen higher level.
At the end, we state a conjecture inspired by our results.

1.2 Organization of the paper

Section 2 discusses the basic definitions and notation for modular abelian va-
rieties, modular forms, Hecke algebras, the Shimura construction and modular
degrees. Section 3 is a brief introduction to visibility theory for Shafarevich–
Tate groups. In Section 4 we state and prove a refinement of a theorem of
Agashe-Stein (see [AS05, Thm 3.1]) which guarantees existence of visible el-
ements. The result is stronger since it makes use of the Hecke action on the
Jacobian J0(N).

In Section 5 we introduce the notion of strong visibility which is relevant for
visualizing cohomology classes in Jacobians of modular curves whose level is a
multiple of the level of the original abelian variety. Theorem 5.1.3 guarantees
existence of strongly visible elements of the Shafarevich–Tate group under a
hypothesis on the component groups, a congruence condition between modular
forms, and irreducibility of the Galois representation. In Section 5.4 we prove
a variant of the same theorem (Theorem 5.4.2) with hypotheses that are easier
to verify.

Section 6 discusses in detail two computational examples for which strongly
visible elements of certain order exist. These examples provide evidence for the
Birch and Swinnerton-Dyer conjecture. We state a general conjecture (Conjec-
ture 7.1.1) in Section 7 according to which every element of the Shafarevich–
Tate group of a modular abelian variety becomes visible at higher level. We
provide evidence for the conjecture in Section 7.2 and a table of computational
data in Section 7.4.

Documenta Mathematica 12 (2007) 673–696



Visibility of the Shafarevich–Tate Group . . . 675

Acknowledgement: The authors would like to thank David Helm, Ben
Howard, Barry Mazur, Bjorn Poonen and Ken Ribet for various discussions
and comments on the paper.

2 Notation

1. Abelian varieties. For a number field K, A/K denotes an abelian variety over
K. We denote the dual of A by A∨

/K . If ϕ : A → B is an isogeny of degree n,

we denote the complementary isogeny by ϕ′; this is the isogeny φ′ : B → A,
such that ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = [n], the multiplication-by-n map on A. Unless
otherwise specified, Néron models of abelian varieties will be denoted by the
corresponding caligraphic letters, e.g., A denotes the Néron model of A over
the ring of integers of K.

2. Galois cohomology. For a fixed algebraic closure K of K, GK will be the
Galois group Gal(K/K). If v is any non-archimedean place of K, we let Kv and
kv denote the completion and the residue field of K at v, respectively. By Kur

v

we denote the maximal unramified extension of the completion Kv. Given a
GK-module M , we let H1(K,M) be the Galois cohomology group H1(GK ,M).

3. Component groups. The component group of A at v is the finite group
ΦA,v = Akv

/A0
kv

which also has the structure of a finite group scheme over
kv. The Tamagawa number of A at v is cA,v = #ΦA,v(kv), and the component
group order of A at v is cA,v = #ΦA,v(kv).

4. Modular abelian varieties. Let h = 0 or 1. A Jh-modular abelian variety
is an abelian variety A/K which is a quotient of Jh(N) for some N , i.e. there
exists a surjective morphism Jh(N) ։ A defined over K. We define the level of
a modular abelian variety A to be the minimal N , such that A is a quotient of
Jh(N). The modularity theorem of Wiles et al. (see [BCDT01]) implies that all
elliptic curves over Q are modular. Serre’s modularity theorem (see [KhW07])
implies that the modular abelian varieties over Q are precisely the abelian
varieties over Q of GL2-type (see [Rib92, §4]).

5. Shimura construction. Let f =

∞
∑

n=1

anq
n ∈ S2(Γ0(N)) be a newform of level

N and weight 2 for Γ0(N) which is an eigenform for all Hecke operators in
the Hecke algebra T(N) generated by all Hecke operators Tn for all integers n.
Shimura (see [Shi94, Thm. 7.14]) associated to f an abelian subvariety Af /Q

of J0(N), simple over Q, of dimension d = [K : Q], where K = Q(. . . , an, . . . )
is the Hecke eigenvalue field. More precisely, if If = AnnT(N)(f) then Af is
the connected component containing the identity of the If -torsion subgroup of
J0(N), i.e. Af = J0(N)[If ]0 ⊂ J0(N). The quotient T(N)/If of the Hecke
algebra T(N) is a subalgebra of the endomorphism ring EndQ(A/Q). Also
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L(Af , s) =

d
∏

i=1

L(fi, s), where the fi are the GQ-conjugates of f . We also

consider the dual abelian variety A∨
f which is a quotient variety of J0(N).

6. I-torsion submodules. If M is a module over a commutative ring R and I
is an ideal of R, let

M [I] = {x ∈M : mx = 0 all m ∈ I}

be the I-torsion submodule of M .

7. Hecke algebras. Let S2(Γ) denote the space of cusp forms of weight 2 for
any congruence subgroup Γ of SL2(Z). Let

T(N) = Z[. . . , Tn, . . .] ⊆ EndQ(J0(N))

be the Hecke algebra, where Tn is the nth Hecke operator. T(N) also acts on
S2(Γ0(N)) and the integral homology H1(X0(N),Z).

8. Modular degree. If A is an abelian subvariety of J0(N), let

θ : A →֒ J0(N) ∼= J0(N)∨ → A∨

be the induced polarization. The modular degree of A is

mA =

√

#Ker(A
θ
−→ A∨).

See [AS02] for why mA is an integer and for an algorithm to compute it.

3 Visible Subgroups of Shafarevich–Tate Groups

Let K be a number field and ι : A/K →֒ C/K be an embedding of an abelian
variety into another abelian variety over K.

Definition 3.0.1. The visible subgroup of H1(K,A) relative to ι is

VisC H1(K,A) = Ker
(

ι∗ : H1(K,A) → H1(K,C)
)

.

The visible subgroup of X(A/K) relative to the embedding ι is

VisC X(A/K) = X(A/K) ∩ VisC H1(K,A)

= Ker (X(A/K) → X(C/K))

Let Q be the abelian variety C/ι(A), which is defined over K. The Galois
cohomology exact sequence associated to 0 → A→ C → Q→ 0 gives rise to

0 → A(K) → C(K) → Q(K) → VisC H1(K,A) → 0.

Surjectivity of the last map implies that the cohomology classes of
VisC H1(K,A) are exactly the images of K-rational points on Q, which is why
Mazur called these classes visible. The group VisC H1(K,A) is finite since it is
torsion and since Q(K) is finitely generated.
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Remark 3.0.2. If A/K is an abelian variety and c ∈ H1(K,A) is any cohomol-
ogy class, there exists an abelian variety C/K and an embedding ι : A →֒ C

defined over K, such that c ∈ VisC H1(K,A), i.e. c is visible in C (see [AS02,
Prop. 1.3]). The C of [AS02, Prop. 1.3] is the restriction of scalars of
AL = A×K L down to K, where L is any finite extension of K such that c has
trivial image in H1(L,A).

4 Refined Visibility

Let K be a number field, let A/K and B/K be abelian subvarieties of an abelian
variety C/K , such that C = A + B and A ∩ B is finite. Let Q/K denotes the
quotient C/B. Let N be a positive integer divisible by all primes of bad
reduction for C.

Let ℓ be a prime such that B[ℓ] ⊂ A and e < ℓ − 1, where e is the largest
ramification index of any prime of K lying over ℓ. Suppose that

ℓ ∤ N · #B(K)tor · #Q(K)tor ·
∏

v|N

cA,vcB,v.

Under these conditions, Agashe and Stein (see [AS02, Thm. 3.1]) constructed
a homomorphism B(K)/ℓB(K) → X(A/K)[ℓ] whose kernel has Fℓ-dimension
bounded by the rank of A(K).

We refine the above theorem by taking into account the algebraic structure
coming from the endomorphism ring EndK(C). In particular, when we apply
the theory to modular abelian varieties, we would like to use the additional
structure coming from the Hecke algebra. There are examples (see [AS05])
where the theorem of Agashe and Stein does not apply, but nevertheless, we
can use our refinement to prove existence of visible elements of X(Af/Q) at
higher level (e.g., see Propositions 6.1.3 and 6.2.1 below).

4.1 The main theorem

Let A/K , B/K , C/K , Q/K , N and ℓ be as above. Let R be a commutative
subring of EndK(C) that leaves A and B stable, and let m be a maximal ideal
of R of residue characteristic ℓ. By the Néron mapping property, the subgroups
ΦA,v(kv) and ΦB,v(kv) of kv-points of the corresponding component groups can
be viewed as R-modules.

Theorem 4.1.1 (Refined Visibility Theorem). Suppose that A(K) has rank
zero and that the groups Q(K)[m], B(K)[m], ΦA,v(kv)[m] and ΦB,v(kv)[ℓ] are
all trivial for all nonarchimedean places v of K. Then there is an injective
homomorphism of R/m-vector spaces

(B(K)/ℓB(K))[m] →֒ VisC(X(A/K))[m]. (1)

Remark 4.1.2. Applying the above result for R = Z, we recover the result of
Agashe and Stein in the case when A(K) has rank zero. We could relax the
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hypothesis that A(K) is finite and instead give a bound on the dimension of
the kernel of (1) in terms of the rank of A(K) similar to the bound in [AS02,
Thm. 3.1]. We will not need this stronger result in our paper.

4.2 Some commutative algebra

Before proving Theorem 4.1.1 we recall some well-known lemmas from commu-
tative algebra. Let M be a module over a commutative ring R and let m be a
finitely generated prime ideal of R.

Lemma 4.2.1. If Mm is Artinian, then Mm 6= 0 ⇐⇒ M [m] 6= 0.

Proof. We first prove that Mm = 0 implies M [m] = 0 by a slight modification
of the proof of [AM69, Prop. I.3.8]. Suppose Mm = 0, yet there is a nonzero
x ∈ M [m]. Let I = AnnR(x). Then I 6= (1) is an ideal that contains m, so
I = m. Consider x/1 ∈ Mm. Since Mm = 0, we have x/1 = 0 and hence, x is
killed by some element of the set-theoretic difference R−m. But AnnR(x) = m,
a contradiction, so M [m] = 0.

Conversely, we will show that Mm 6= 0 implies M [m] 6= 0. Since Mm is
Artinian over Rm, by [AM69, Prop. 6.8], Mm has a composition series:

Mm = M0 ⊃M1 ⊃ · · · ⊃Mn−1 ⊃Mn = 0,

where each quotient Mi/Mi+1 is a simple Rm-module. In particular, Mn−1 is
a simple Rm-module. Suppose x ∈ Mn−1 is nonzero, and let I = AnnRm

(x).
Then

Rm/I ∼= Rm · x ⊂Mn−1,

so by simplicity Rm/I ∼= Mn−1 is simple. Thus I = m, otherwise Rm/I would
have m/I as a proper submodule. Thus x ∈Mn−1[m] is nonzero.

Write x = y/a with y ∈ M and a ∈ R − m. Since a ∈ R − m, the element
a acts as a unit on Mm, hence ax = y/1 ∈ Mn−1 is nonzero and also still
annihilated by m (by commutativity).

To say that y/1 is annihilated by m means that for all α ∈ m there exists
t ∈ R− m such that tαy = 0 in M . Since m is finitely generated, we can write
m = (α1, . . . , αn) and for each αi we get corresponding elements t1, . . . , tn and
a product t = t1 · · · tn. Also t 6∈ m since m is a prime ideal and each ti 6∈ m.
Let z = ty. Then for all α ∈ m we have αz = tαy = 0. Also z 6= 0 since t acts
as a unit on Mn−1. Thus z ∈M [m], and is nonzero, which completes the proof
of the lemma.

Lemma 4.2.2. Suppose 0 → M1 → N → M2 → 0 is an exact sequence of
R-modules, such that (M1)m, Nm and (M2)m are all Artinian. Then

N [m] 6= 0 ⇐⇒ (M1 ⊕M2)[m] 6= 0.
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Proof. By Lemma 4.2.1 we have N [m] 6= 0 if and only if Nm 6= 0. By Proposi-
tion 3.3 on page 39 of [AM69], the localized sequence

0 → (M1)m → Nm → (M2)m → 0

is exact. Thus Nm 6= 0 if and only if at least one of (M1)m or (M2)m is nonzero.
Again by Lemma 4.2.1, at least one of (M1)m or (M2)m is nonzero if and only
if at least one of M1[m] or M2[m] is nonzero. The latter is the case if and only
if (M1 ⊕M2)[m] 6= 0.

Remark 4.2.3. One could also prove the lemmas by using that M [m] ∼=
HomR(R/m,M) and the exactness properties of Hom, but many of the same
details have to be checked.

Lemma 4.2.4. Let G be a finite cyclic group, M be a finite G-module that is
also a module over a commutative ring R such that the action of G and R
commute (i.e., M is an R[G]-module). Suppose p is a finitely-generated prime
ideal of R, and H0(G,M)[p] = 0. Then H1(G,M)[p] = 0.

Proof. The proof is exactly the same as [Se79, Prop. VIII.4.8], but we note that
all modules are modules over R and all maps are morphisms of R-modules.

4.3 Proof of Theorem 4.1.1

Proof of Theorem 4.1.1. The proof is very similar to the proof of [AS02,
Thm. 3.1], except that [ℓ] is replaced by [m] and we apply the above lemmas
to verify properties of various maps between m-torsion modules.

We now give the details of the proof, for the benefit of the reader who is
not convinced by the above brief sketch. The construction of [AS02, Lem. 3.6]
yields the following commutative diagram with exact rows and columns:

M0

��

M1

��

M2

��

0 // B(K)/(B(K)[ℓ])
ℓ

//

��

B(K)

π

''N

N

N

N

N

N

N

N

N

N

N

//

��

B(K)/ℓB(K) //

ϕ

��

0

0 // C(K)/A(K) //

��

Q(K) // VisC(H1(K,A)) // 0

M3.

Here, M0, M1 and M2 denote the kernels of the corresponding vertical maps
and M3 denotes the cokernel of the first map. Since R preserves A, B, and
B[ℓ], all objects in the diagram are R-module and the morphisms of abelian
varieties are also R-module homomorphisms.
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The snake lemma yields an exact sequence

0 →M0 →M1 →M2 →M3.

By hypothesis, B(K)[m] = 0, so N0 = Ker(B(K) → C(K)/A(K)) has no m

torsion. Noting that B(K)[ℓ] ⊂ N0, it follows that M0 = N0/(B(K)[ℓ]) has
no m torsion either, by Lemma 4.2.2. Also, M1[m] = 0 again since B(K)[m] = 0.

By the long exact sequence on Galois cohomology, the quotient C(K)/B(K)
is isomorphic to a subgroup of Q(K) and by hypothesis Q(K)[m] = 0, so
(C(K)/B(K))[m] = 0. Since Q is isogenous to A and A(K) is finite and
C(K)/B(K) →֒ Q(K), we see that C(K)/B(K) is finite. ThusM3 is a quotient
of the finite R-module C(K)/B(K) that has no m-torsion, so Lemma 4.2.2
implies that M3[m] = 0. The same lemma implies that M1/M0 has no m-
torsion, since it is a quotient of the finite module M1 which has no m-torsion.
Thus, we have an exact sequence

0 →M1/M0 →M2 →M3 → 0,

and both of M1/M0 and M3 have trivial m-torsion. It follows by Lemma 4.2.2,
that M2[m] = 0. Therefore, we have an injective morphism of R/m-vector
spaces

ϕ : (B(K)/ℓB(K))[m] →֒ VisC(H1(K,A))[m].

It remains to show that for any x ∈ B(K), we have ϕ(x) ∈ VisC(X(A/K)),
i.e., that ϕ(x) is locally trivial.

We proceed exactly as in Section 3.5 of [AS05]. In both cases char(v) 6= ℓ
and char(v) = ℓ we arrive at the conclusion that the restriction of ϕ(x) to
H1(Kv, A) is an element c ∈ H1(Kur

v /Kv, A(Kur
v )). (Note that in the case

char(v) 6= ℓ the proof uses that ℓ ∤ #ΦB,v(kv).) By [Mil86, Prop I.3.8], there is
an isomorphism

H1(Kur
v /Kv, A(Kur

v )) ∼= H1(kv/kv,ΦA,v(kv)). (2)

We will use our hypothesis that

ΦA,v(kv)[m] = ΦB,v(kv)[ℓ] = 0

for all places v of bad reduction to deduce that the image of ϕ lies in
VisC(X(A/K))[m]. Let d denote the image of c in H1(kv/kv,ΦA,v(kv)). The
construction of d is compatible with the action of R on Galois cohomology,
since (as is explained in the proof of [Mil86, Prop. I.3.8]) the isomorphism (2)
is induced from the exact sequence of Gal(Kur

v /Kv)-modules

0 → A0(Kur
v ) → A(Kur

v ) → ΦA,v(kv) → 0,

where A is the Néron model of A and A0 is the subgroup scheme whose generic
fiber is A and whose closed fiber is the identity component of Akv

. Since
ϕ(x) ∈ H1(K,A)[m], it follows that

d ∈ H1(kv/kv,ΦA,v(kv))[m].

Documenta Mathematica 12 (2007) 673–696



Visibility of the Shafarevich–Tate Group . . . 681

Lemma 4.2.4, our hypothesis that ΦA,v(kv)[m] = 0, and that

H1(kv/kv,ΦA,v(kv)) = lim
−→

H1(Gal(k′v/kv),ΦA,v(k′v))),

together imply that H1(kv/kv,ΦA,v(kv))[m] = 0, hence d = 0. Thus c = 0, so
ϕ(x) is locally trivial, which completes the proof.

5 Strong Visibility at Higher Level

5.1 Strongly visible subgroups

Let A/Q be an abelian subvariety of J0(N)/Q and let p ∤ N be a prime. Let

ϕ = δ∗1 + δ∗p : J0(N) → J0(pN), (3)

where δ∗1 and δ∗p are the pullback maps on equivalence classes of degree-zero

divisors of the degeneracy maps δ1, δp : X0(pN) → X0(N). Let H1(Q, A)odd

be the prime-to-2-part of the group H1(Q, A).

Definition 5.1.1 (Strong Visibility). The strongly visible subgroup of
H1(Q, A) for J0(pN) is

VispN H1(Q, A) = Ker
(

H1(Q, A)odd ϕ∗

−−→ H1(Q, J0(pN))
)

⊂ H1(Q, A).

Also,
VispN X(A/Q) = X(A/Q) ∩ VispN H1(Q, A).

The reason we replace H1(Q, A) by H1(Q, A)odd is that the kernel of ϕ is 2-
torsion (see [Rib90b]).

Remark 5.1.2. We could obtain more visible subgroups by considering the map
δ∗1 − δ∗p in Definition 5.1.1. However, the methods of this paper do not apply
to this map.

For a positive integer N , let

ν(N) =
1

6
·

∏

qr‖N

(qr + qr−1)
1

6
· [SL2(Z) : Γ0(N)].,

where each qr exactly divides N .
We refer to ν(N) as the Sturm bound (see [Stu87]).

Theorem 5.1.3. Let A = Af be a newform abelian subvariety of J0(N) for
which L(A/Q, 1) 6= 0 and let p ∤ N be a prime. Suppose that there is a maxi-
mal ideal λ ⊂ T(N) and an elliptic curve E/Q of conductor pN such that the
following properties are satisfied:

1. [Nondivisibility] The residue characteristic ℓ of λ satisfies

ℓ ∤ 2 ·N · p ·
∏

q|N

cE,q.
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2. [Component Groups] For each prime q | N ,

ΦA,q(Fq)[λ] = 0.

3. [Fourier Coefficients] Let an(E) be the n-th Fourier coefficient of the
modular form attached to E, and an(f) the n-th Fourier coefficient of f .
We have ap(E) = −1,

ap(f) ≡ −(p+ 1) (mod λ) and aq(f) ≡ aq(E) (mod λ),

for all primes q 6= p with q ≤ ν(pN).

4. [Irreducibility] The mod ℓ representation ρE,ℓ is irreducible.

Then there is an injective homomorphism

E(Q)/ℓE(Q) →֒ VispN (X(Af/Q))[λ].

Remark 5.1.4. In fact, we have

E(Q)/ℓE(Q) →֒ Ker(X(Af/Q) → X(C/Q))[λ] ⊂ VispN (X(Af/Q))[λ],

where C ⊂ J0(pN) is isogenous to Af × E.

5.2 Some auxiliary lemmas

We will use the following lemmas in the proof of Theorem 5.1.3. The notation
is as in the previous section. In addition, if f ∈ S2(Γ0(N)), we denote by an(f)
the n-th Fourier coefficient of f and by Kf and Of the Hecke eigenvalue field
and its ring of integers, respectively.

Lemma 5.2.1. Suppose Af ⊂ J0(N) and Ag ⊂ J0(pN) are attached to new-
forms f and g of level N and pN , respectively, with p ∤ N . Suppose that there is
a prime ideal λ of residue characteristic ℓ ∤ 2pN of an integrally closed subgroup
O of Q that contains the ring of integers of the composite field K = KfKg such
that for q ≤ ν(pN),

aq(f) ≡

{

aq(g) (mod λ) if q 6= p,

(p+ 1)ap(g) (mod λ) if q = p.

Assume that ap(g) = −1. Let λf = Of ∩ λ and λg = Og ∩ λ and assume that
Af [λf ] is an irreducible GQ-module. Then we have an equality

ϕ(Af [λf ]) = Ag[λg]

of subgroups of J0(pN), where ϕ is the morphism of equation (3) from Sec-
tion 5.1.
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Proof. Our hypothesis that ap(f) ≡ −(p+ 1) (mod λf ) implies, by the proofs
in [Rib90b], that

ϕ(Af [λf ]) ⊂ ϕ(Af ) ∩ J0(pN)p-new,

where J0(pN)p-new is the p-new abelian subvariety of J0(N).

By [Rib90b, Lem. 1], the operator Up = Tp on J0(pN) acts as −1 on
ϕ(Af [λf ]). Consider the action of Up on the 2-dimensional vector space spanned
by {f(q), f(qp)}. The matrix of Up with respect to this basis is

Up =

(

ap(f) p
−1 0

)

.

In particular, neither of f(q) and f(qp) is an eigenvector for Up. The character-
istic polynomial of Up acting on the span of f(q) and f(qp) is x2 − ap(f)x+ p.
Using our hypothesis on ap(f) again, we have

x2 − ap(f)x+ p ≡ x2 + (p+ 1)x+ p ≡ (x+ 1)(x+ p) (mod λ).

Thus we can choose an algebraic integer α such that

f1(q) = f(q) + αf(qp)

is an eigenvector of Up with eigenvalue congruent to −1 modulo λ. (It does not
matter whether x2 + ap(f)x + p has distinct roots; nonetheless, since p ∤ N ,
[CV92, Thm. 2.1] implies that it does have distinct roots.) The cusp form f1
has the same prime-indexed Fourier coefficients as f at primes other than p.
If necessary, replace O by O[α] so that α ∈ O. The p-th coefficient of f1 is
congruent modulo λ to −1 and f1 is an eigenvector for the full Hecke algebra.
It follows from the recurrence relation for coefficients of the eigenforms that

an(g) ≡ an(f1) (mod λ)

for all integers n ≤ ν(pN).

By [Stu87], we have g ≡ f1 (mod λ), so aq(g) ≡ aq(f) (mod λ) for all
primes q 6= p. Thus by the Brauer-Nesbitt theorem [CR62, page. 215], the
2-dimensional GQ-representations ϕ(Af [λf ]) and Ag[λg] are isomorphic.

Because Ag[λg] is irreducible as a Galois module, the annihilator m of Ag[λg]
in the Hecke algebra T(pN) is a maximal ideal. Thus m gives rise to an irre-
ducible Galois representation ρ

m
: GQ → GL2(T(pN)/m) isomorphic to Ag[λg].

Finally, we apply [Wil95, Thm. 2.1(i)] for H = (Z/NZ)× (i.e., JH = J0(N)) to
conclude that J0(N)(Q)[m] ∼= (T(pN)/m)2, i.e., the representation ρ

m
occurs

with multiplicity one in J0(pN). Thus

Ag[λg] = ϕ(Af [λf ]).
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Lemma 5.2.2. Suppose ϕ : A → B and ψ : B → C are homomorphisms of
abelian varieties over a number field K, with ϕ an isogeny and ψ injective.
Suppose n is an integer that is relatively prime to the degree of ϕ. If G =
VisC(X(B/Q))[n∞], then there is some injective homomorphism

f : G →֒ Ker {(ψ ◦ ϕ)∗ : X(A/Q) −→ X(C/Q)} ,

such that ϕ∗(f(G)) = G.

Proof. Let m be the degree of the isogeny ϕ : A → B. Consider the com-
plementary isogeny ϕ′ : B → A, which satisfies ϕ ◦ ϕ′ = ϕ′ ◦ ϕ = [m]. By
hypothesis m is coprime to n, so gcd(m,#G) = gcd(m,n∞) = 1, hence

ϕ∗(ϕ
′
∗(G)) = [m]G = G.

Thus ϕ′
∗(G) maps, via ϕ∗, to G ⊂ X(B/Q), which in turn maps to 0 in

X(C/Q).

Lemma 5.2.3. Let M be an odd integer coprime to N and let R be the subring
of T(N) generated by all Hecke operators Tn with gcd(n,M) = 1. Then R =
T(N).

Proof. See the lemma on page 491 of [Wil95]. (The condition that M is odd is
necessary, as there is a counterexample when N = 23 and M = 2.)

Lemma 5.2.4. Suppose λ is a maximal ideal of T(N) with generators a prime
ℓ ∈ Z and Tn − an, with an ∈ Z. For each integer p ∤ N , and let λp be the ideal
in T(N) generated by ℓ and all Tn − an with with p ∤ n. Then λ = λp.

Proof. Since λp ⊂ λ and λ is maximal, it suffices to prove that λp is maximal.
Let R be the subring of T(N) generated by Hecke operators Tn with p ∤ n.
The quotient R/λp is a quotient of Z since each generator Tn is equivalent to
an integer. Also, ℓ ∈ λp, so R/λp = Fℓ. But by Lemma 5.2.3, R = T(N), so
T(N)/λp = Fℓ, hence λp is a maximal ideal.

Lemma 5.2.5. Suppose that A is an abelian variety over a field K. Let R be a
commutative subring of End(A) and I an ideal of R. Then

(A/A[I])[I] ∼= A[I2]/A[I],

where the isomorphism is an isomorphism of R[GK ]-modules.

Proof. Let a + A[I] for some a ∈ A be an I-torsion element of A/A[I]. Then
by definition, xa ∈ A[I] for each x ∈ I. Therefore, a ∈ A[I2]. Thus a+A[I] 7→
a+A[I] determines a well-defined homomorphism of R[GK ]-modules

ϕ : (A/A[I])[I] → A[I2]/A[I].

Clearly this homomorphism is injective. It is also surjective as every element
a + A[I] ∈ A[I2]/A[I] is I-torsion as an element of A/A[I], as Ia ∈ A[I].
Therefore, ϕ is an isomorphism of R[GK ]-modules.
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Lemma 5.2.6. Suppose ℓ is a prime and φ : E → E′ is an isogeny of degree
coprime to ℓ over a number field K between two elliptic curve over K. If v is
any place of K then ℓ | cE,v if and only if ℓ | cE′,v.

Proof. Consider the complementary isogeny φ′ : E′ → E. Both φ and φ′ induce
homomorphisms φ : ΦE,v(kv) → ΦE′,v(kv) and φ′ : ΦE′,v(kv) → ΦE,v(kv) and
φ ◦ φ′ and φ′ ◦ φ are multiplication-by-n maps. Since (n, ℓ) = 1 then #kerφ
and #kerφ′ must be coprime to ℓ which implies the statement.

5.3 Proof of Theorem 5.1.3

Proof of Theorem 5.1.3. By [BCDT01] E is modular, so there is a rational
newform f ∈ Snew

2 (pN) which is an eigenform for the Hecke operators and an
isogeny E → Ef defined over Q, which by Hypothesis 4 can be chosen to have
degree coprime to ℓ. Indeed, every cyclic rational isogeny is a composition of
rational isogenies of prime degree, and E admits no rational ℓ-isogeny since
ρE,ℓ is irreducible.

By Hypothesis 1 the Tamagawa numbers of E are coprime to ℓ. Since E
and Ef are related by an isogeny of degree coprime to ℓ, the Tamagawa numbers
of Ef are also not divisible by ℓ by Lemma 5.2.6. Moreover, note that

E(Q) ⊗ Fℓ
∼= Ef (Q) ⊗ Fℓ.

Let m be the ideal of T(pN) generated by ℓ and Tn − an(E) for all integers
n coprime to p. Note that m is maximal by Lemma 5.2.4.

Let ϕ be as in (3), and let A = ϕ(Af ). Note that if Tn ∈ T(pN) then
Tn(Ef ) ⊂ Ef since Ef is attached to a newform, and if, moreover p ∤ n, then
Tn(A) ⊂ A since the Hecke operators with index coprime to p commute with
the degeneracy maps. Lemma 5.2.1 implies that

Ef [ℓ] = Ef [m] = ϕ(Af [λ]) ⊂ A,

so Ψ = Ef [ℓ] is a subgroup of A as a GQ-module. Let

C = (A× Ef )/Ψ,

where we embed Ψ in A × Ef anti-diagonally, i.e., by the map x 7→ (x,−x).
The antidiagonal map Ψ → A×Ef commutes with the Hecke operators Tn for
p ∤ n, so (A × Ef )/Ψ is preserved by the Tn with p ∤ n. Let R be the subring
of End(C) generated by the action of all Hecke operators Tn, with p ∤ n. Also
note that Tp ∈ End(J0(pN)) acts by Hypothesis 3 as −1 on Ef , but Tp need
not preserve A.

Suppose for the moment that we have verified that the hypothesis of Theo-
rem 4.1.1 are satisfied with A, B = Ef , C, Q = C/B, R as above and K = Q.
Then we obtain an injective homomorphism

E(Q)/ℓE(Q) ∼= Ef (Q)/ℓEf (Q) →֒ Ker(X(A/Q) → X(C/Q))[m].
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We then apply Lemma 5.2.2 with n = ℓ, Af , A, and C, respectively, to see
that

Ef (Q)/ℓEf (Q) ⊂ Ker(X(Af/Q) → X(C/Q))[λ].

That Ef (Q)/ℓEf (Q) lands in the λ-torsion is because the subgroup of
VisC(X(Ef/Q)) that we constructed is m-torsion.

Finally, consider A × Ef → J0(pN) given by (x, y) 7→ x + y. Note that Ψ
maps to 0, since (x,−x) 7→ 0 and the elements of Ψ are of the form (x,−x).
We have a (not-exact!) sequence of maps

X(Af/Q) → X(C/Q) → X(J0(pN)/Q),

hence inclusions

Ef (Q)/ℓEf (Q) ⊆ Ker(X(Af/Q) → X(C/Q))

⊆ Ker(X(Af/Q) → X(J0(pN)/Q)),

which gives the conclusion of the theorem.
It remains to verify the hypotheses of Theorem 4.1.1. That C = A + B

is clear from the definition of C. Also, A ∩ Ef = Ef [ℓ], which is finite. We
explained above when defining R that each of A and Ef is preserved by R.
Since K = Q and ℓ is odd the condition 1 = e < ℓ− 1 is satisfied. That A(Q)
is finite follows from our hypothesis that L(Af , 1) 6= 0 (by [KL89]).

It remains is to verify that the groups

Q(Q)[m], Ef (Q)[m], ΦA,q(Fq)[m], and ΦEf ,q(Fq)[ℓ],

are 0 for all primes q | pN . Since ℓ ∈ m, we have by Hypothesis 4 that

Ef (Q)[m] = Ef (Q)[ℓ] = 0.

We will now verify that Q(Q)[m] = 0. From the definition of C and Ψ we
have Q ∼= A/Ψ. Let λp be as in Lemma 5.2.4 with an = an(E). The map ϕ
induces an isogeny of 2-power degree

Af/(Af [λ]) → A/Ψ.

Thus there is λp-torsion in (Af/(Af [λ]))(Q) if and only if there is m-torsion in
(A/Ψ)(Q). (Note that λp and m are both ideals generated by ℓ and Tn −an for
all n coprime to p, but for λp the Tn ∈ T(N), and for m they are in T(pN).)
Thus it suffices to prove that (Af/Af [λ])(Q)[λp] = 0.

By Lemma 5.2.4, we have λp = λ, and by Lemma 5.2.5,

(Af/Af [λ])[λ] ∼= Af [λ2]/Af [λ].

By [Maz77, §II.14], the quotient Af [λ2]/Af [λ] injects into a direct sum of
copies of Af [λ] as Galois modules. But Af [λ] ∼= E[ℓ] is irreducible, so
(Af [λ2]/Af [λ])(Q) = 0, as required.
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By Hypothesis 2, we have ΦAf ,q(Fq)[λ] = 0 for each prime divisor q | N .
Since A is 2-power isogenous to Af and ℓ is odd, this verifies the Tamagawa
number hypothesis for A. Our hypothesis that ap(E) = −1 implies that Frobp

on ΦEf ,p(Fp) acts as −1. Thus ΦEf ,p(Fp)[ℓ] = 0 since ℓ is odd. This completes
the proof.

Remark 5.3.1. An essential ingrediant in the proof of the above theorem is the
multiplicity one result used in the paper of Wiles (see [Wil95, Thm. 2.1.]). Since
this result holds for Jacobians JH of the curves XH(N) that are intermediate
covers for the covering X1(N) → X0(N) corresponding to subgroups H ⊆
(Z/NZ)× (i.e., the Galois group of X1(N) → XH is H), one should be able
to give a generalization of Theorem 5.1.3 which holds for newform subvarieties
of JH . This would likely require generalizing some of [Rib90b] to the case of
arbitrary H.

5.4 A Variant of Theorem 5.1.3 with Simpler Hypothesis

Proposition 5.4.1. Suppose A = Af ⊂ J0(N) is a newform abelian variety
and q is a prime that exactly divides N . Suppose m ⊂ T(N) is a non-Eisenstein
maximal ideal of residue characteristic ℓ and that ℓ ∤ mA, where mA is the
modular degree of A. Then ΦA,q(Fq)[m] = 0.

Proof. The component group of ΦJ0(N),q(Fq) is Eisenstein by [Rib87], so

ΦJ0(N),q(Fq)[m] = 0.

By Lemma 4.2.2, the image of ΦJ0(N),q(Fq) in ΦA∨,q(Fq) has no m torsion.

By the main theorem of [CS01], the cokernel ΦJ0(N),q(Fq) in ΦA∨,q(Fq) has
order that divides mA. Since ℓ ∤ mA, it follows that the cokernel also has
no m torsion. Thus Lemma 4.2.2 implies that ΦA∨,q(Fq)[m] = 0. Finally, the
modular polarization A → A∨ has degree coprime to ℓ, so the induced map
ΦA,q(Fq) → ΦA∨,q(Fq) is an isomorphism on ℓ primary parts. In particular,
that ΦA∨,q(Fq)[m] = 0 implies that ΦA,q(Fq)[m] = 0.

If E is a semistable elliptic curve over Q with discriminant ∆, then we see
using Tate curves that cp = ordp(∆).

Theorem 5.4.2. Suppose A = Af ⊂ J0(N) is a newform abelian variety with
L(A/Q, 1) 6= 0 and N square free, and let ℓ be a prime. Suppose that p ∤ N is
a prime, and that there is an elliptic curve E of conductor pN such that:

1. [Rank] The rank of E(Q) is positive.

2. [Divisibility] We have ℓ | cE,p but ℓ ∤ 2 ·N · p · cE,p ·
∏

q|N

cE,q.

3. [Irreducibility] The mod ℓ representation ρE,ℓ is irreducible.
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4. [Noncongruence] The representation ρE,ℓ is not isomorphic to any repre-
sentation ρg,λ where g ∈ S2(Γ0(N)) is a newform of level dividing N that
is not conjugate to f .

Then there is an element of order ℓ in X(Af/Q) that is not visible in J0(N)
but is strongly visible in J0(pN). More precisely, there is an inclusion

E(Q)/ℓE(Q) →֒ Ker(X(Af/Q) → X(C/Q))[λ] ⊂ VispN (X(Af/Q))[λ],

where C ⊂ J0(pN) is isogenous to Af × E, the homomorphism Af → C has
degree a power of 2, and λ is the maximal ideal of T(N) corresponding to ρE,ℓ.

Proof. The divisibility assumptions of Hypothesis 2 on the cE,q imply that the
Serre level of ρE,ℓ is N and since ℓ ∤ N , the Serre weight is 2 (see [RS01,
Thm. 2.10]). We have cE,p 6= cE,p since one is divisible by ℓ and the other is
not, so E has nonsplit multiplicative reduction, hence ap(E) = −1. Since ℓ is
odd, Ribet’s level lowering theorem [Rib91] implies that there is some newform
h =

∑

bnq
n ∈ S2(Γ0(N)) and a maximal ideal λ over ℓ such that aq(E) ≡ bq

(mod λ) for all primes q 6= p. By our non-congruence hypothesis, the only
possibility is that h is a GQ-conjugate of f . Since we can replace f by any
Galois conjugate of f without changing Af , we may assume that f = h. Also
ap(f) ≡ −(p+ 1) (mod λ), as explained in [Rib83, pg. 506].

Hypothesis 3 implies that λ is not Eisenstein, and by assumption ℓ ∤ mA,
so Proposition 5.4.1 implies that ΦA,q(Fq)[λ] = 0 for each q | N .

The theorem now follows from Theorem 5.1.3.

Remark 5.4.3. The non-congruence hypothesis of Theorem 5.4.2 can be verified
using modular symbols as follows. Let W ⊂ H1(X0(N),Z)new be the saturated
submodule of H1(X0(N),Z) that corresponds to all newforms in S2(Γ0(N))
that are not Galois conjugate to f . Let W = W ⊗ Fℓ. We require that the
intersection of the kernels of Tq|W − aq(E), for q 6= p, has dimension 0.

6 Computational Examples

In this section we give examples that illustrate how to use Theorem 5.4.2 to
prove existence of elements of the Shafarevich–Tate group of a newform sub-
variety of J0(N) (for 767 and 959) which are invisible at the base level, but
become visible in a modular Jacobian of higher level.

Hypothesis 6.0.4. The statements in this section all make the hypothesis that
certain commands of various computer algebra systems such as Magma [BCP97]
produced correct output.

The main point of the examples below is to clearly illustrate how the theo-
retical quantities elsewhere in this paper behave in practice.
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6.1 Level 767

Consider the modular Jacobian J0(767). Using the modular symbols package in
Magma, one decomposes J0(767) (up to isogeny) into a product of six optimal
quotients of dimensions 2, 3, 4, 10, 17 and 23. The duals of these quotients
are subvarieties A2, A3, A4, A10, A17 and A23 defined over Q, where Ad has
dimension d. Consider the subvariety A23.

We first show that the Birch and Swinnerton-Dyer conjectural formula pre-
dicts that the orders of the groups X(A23/Q) and X(A∨

23/Q) are both divisible
by 9.

Proposition 6.1.1. Assume [AS05, Conj. 2.2]. Then

32 | #X(A23/Q) and 32 | #X(A∨
23/Q).

Proof. Let A = A∨
23. We use [AS05, §3.5 and §3.6] (see also [Ka81]) to com-

pute a multiple of the order of the torsion subgroup A(Q)tor. This multiple is
obtained by injecting the torsion subgroup into the group of Fp-rational points
on the reduction of A for odd primes p of good reduction and then computing
the order of that group. Hence, the multiple is an isogeny invariant, so one gets
the same multiple for A∨(Q)tor. For producing a divisor of #A(Q)tor, we use
the injection of the subgroup of rational cuspidal divisor classes of degree 0 into
A(Q)tor. Using the implementation in Magma we obtain 120 | #A(Q)tor | 240.
To compute a divisor of A∨(Q)tor, we use the algorithm described in [AS05,
§3.3] to find that the modular degree mA = 234, which is not divisible by any
odd primes, hence 15 | #A∨(Q)tor | 240.

Next, we use [AS05, §4] to compute the ratio of the special value of
the L-function of A/Q at 1 over the real Néron period ΩA. We obtain
L(A/Q, 1)

ΩA
= cA ·

29 · 3

5
, where cA ∈ Z is the Manin constant. Since cA | 2dim(A)

by [ARS06] then

L(A/Q, 1)

ΩA
=

2n+2 · 3

5
,

for some 0 ≤ n ≤ 23. In particular, the modular abelian variety A/Q has rank
zero over Q.

Next, using the algorithms from [CS01, KS00] we compute the Tamagawa
number cA,13 = 1920 = 23 ·3 ·5. We also find that cA,59 is a power of 2 because
W23 acts as 1 on A, and on the component group Frob = −W23, so the fixed
subgroup ΦA,59(F59) of Frobenius is a 2-group (for more details, see [Rib90a,
Prop.3.7–8]).

Finally, the Birch and Swinnerton-Dyer conjectural formula for abelian va-
rieties of rank zero (see [AS05, Conj. 2.2]) asserts that

L(A/Q, 1)

ΩA
=

#X(A/Q) · cA,13 · cA,59

#A(Q)tor · #A∨(Q)tor
.
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By substituting what we computed above, we obtain 32 | #X(A/Q). Since
L(A/Q, 1) 6= 0, [KL89] implies that X(A/Q) is finite. By the nondegeneracy
of the Cassels-Tate pairing, #X(A/Q) = #X(A∨/Q). Thus, if the BSD
conjectural formula is true then 32 | #X(A/Q) = #X(A∨/Q).

We next observe that there are no visible elements of odd order for the
embedding A23/Q →֒ J0(767)/Q.

Lemma 6.1.2. Any element of X(A23/Q) which is visible in J0(767) has order
a power of 2.

Proof. Since mA23
= 234, [AS05, Prop. 3.15] implies that any element of

X(A23/Q) that is visible in J0(767) has order a power of 2.

Finally, we use Theorem 5.4.2 to prove the existence of non-trivial elements
of order 3 in X(A23/Q) which are invisible at level 767, but become visible
at higher level. In particular, we prove unconditionally that 3 | #X(A23/Q)
which provides evidence for the Birch and Swinnerton-Dyer conjectural for-
mula.

Proposition 6.1.3. There is an element of order 3 in X(A23Q) which is not
visible in J0(767) but is strongly visible in J0(2 · 767).

Proof. Let A = A23, and note that A has rank 0, since L(A/Q, 1) 6= 0. Using
[Cre] or [Sage] we find that the elliptic curve

E : y2 + xy = x3 − x2 + 5x+ 37

has conductor 2 · 767 and E(Q) = Z ⊕ Z. Also

c2 = 2, c13 = 2, c59 = 1, c2 = 6, c13 = 2, c59 = 1.

We apply Theorem 5.4.2 with ℓ = 3 and p = 2. Since E does not admit any
rational 3-isogeny (by [Cre]), Hypothesis 3 is satisfied. The level is square free
and the modular degree of A is a power of 2, so Hypothesis 2 is satisfied.

We have a3(E) = −3. Using Magma we find

det(T3|W − (−3)) ≡ 1 (mod 3),

where W is as in Remark 5.4.3. This verifies the noncongruence hypothesis
and completes the proof.

6.2 Level 959

We do similar computations for a 24-dimensional abelian subvariety of J0(959).
We have 959 = 7 · 137, which is square free. There are five newform abelian
subvarieties of the Jacobian, A2, A7, A10, A24 and A26, whose dimensions are
the corresponding subscripts. Let Af = A24 be the 24-dimensional newform
abelian subvariety.
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Proposition 6.2.1. There is an element of order 3 in X(Af/Q) which is not
visible in J0(959) but is strongly visible in J0(2 · 959).

Proof. Using Magma we find that mA = 232 · 583673, which is coprime to 3.
Thus we apply Theorem 5.4.2 with ℓ = 3 and p = 2. Consulting [Cre] we find
the curve E=1918C1, with Weierstrass equation

y2 + xy + y = x3 − 22x− 24,

with E(Q) ∼= Z ⊕ Z ⊕ (Z/2Z), and

c2 = 2, c7 = 2, c137 = 1, c2 = 6, c7 = 2, c137 = 1.

Using [Cre] we find that E has no rational 3-isogeny. The modular form at-
tached to E is

g = q − q2 − 2q3 + q4 − 2q5 + · · · ,

and we have

det(T2|W − (−2)) = 2177734400 ≡ 2 (mod 3),

where W is as in Remark 5.4.3.

7 Conjecture, evidence and more computational data

We state a conjecture, provide some evidence and finally, provide a table that
we computed using similar techniques to those in Section 6

7.1 The conjecture

The two examples computed in Section 6 show that for an abelian subvariety
A of J0(N) an invisible element of X(A/Q) at the base level N might become
visible at a multiple level NM . We state a general conjecture according to
which any element of X(A/Q) should have such a property.

Conjecture 7.1.1. Let h = 0 or 1. Suppose A is a Jh-modular abelian vari-
ety and c ∈ X(A/Q). Then there is a Jh-modular abelian variety C and an
inclusion ι : A→ C such that ι∗c = 0.

Remark 7.1.2. For any prime ℓ, the Jacobian Jh(N) comes equipped with two
morphisms α∗, β∗ : Jh(N) → Jh(Nℓ) induced by the two degeneracy maps
α, β : Xh(ℓN) → Xh(N) between the modular curves of levels ℓN and N ,
and it is natural to consider visibility of X(A/Q) in Jh(Nℓ) via morphisms ι
constructed from these degeneracy maps.

Remark 7.1.3. It would be interesting to understand the set of all levels N of
Jh-modular abelian varieties C that satisfy the conclusion of the conjecture.
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7.2 Theoretical Evidence for the Conjecture

The first piece of theoretical evidence for Conjecture 7.1.1 is Remark 3.0.2,
according to which any cohomology class c ∈ H1(K,A) is visible in some abelian
variety C/K .

The next proposition gives evidence for elements of X(E/Q) for an elliptic
curve E and elements of order 2 or 3.

Proposition 7.2.1. Suppose E is an elliptic curve over Q. Then Conjec-
ture 7.1.1 for h = 0 is true for all elements of order 2 and 3 in X(E/Q).

Proof. We first show that there is an abelian variety C of dimension 2 and an
injective homomorphism i : E →֒ C such that c ∈ VisC(X(E/Q)). If c has
order 2, this follows from [AS02, Prop. 2.4] or [Kle01], and if c has order 3, this
follows from [Maz99, Cor. pg. 224]. The quotient C/E is an elliptic curve, so
C is isogenous to a product of two elliptic curves. Thus by [BCDT01], C is a
quotient of J0(N), for some N .

We also prove that Conjecture 7.1.1 is true with h = 1 for all elements of
X(A/Q) which split over abelian extensions.

Proposition 7.2.2. Suppose A/Q is a J1-modular abelian variety over Q and
c ∈ X(A/Q) splits over an abelian extension of Q. Then Conjecture 7.1.1 is
true for c with h = 1.

Proof. Suppose K is an abelian extension such that resK(c) = 0 and let C =
ResK/Q(AK). Then c is visible in C (see Section 3.0.2). It remains to verify
that C is modular. As discussed in [Mil72, pg. 178], for any abelian variety B
over K, we have an isomorphism of Tate modules

Tateℓ(ResK/Q(BK)) ∼= Ind
GQ

GK
Tateℓ(BK),

and by Faltings’s isogeny theorem [Fal86], the Tate module determines an
abelian variety up to isogeny. Thus if B = Af is an abelian variety attached
to a newform, then ResK/Q(BK) is isogenous to a product of abelian varieties
Afχ , where χ runs through Dirichlet characters attached to the abelian exten-
sion K/Q. Since A is isogenous to a product of abelian varieties of the form
Af (for various f), it follows that the restriction of scalars C is modular.

Remark 7.2.3. Suppose that E is an elliptic curve and c ∈ X(E/Q). Is there
an abelian extension K/Q such that resK(c) = 0? The answer is “yes” if
and only if there is a K-rational point (with K-abelian) on the locally trivial
principal homogeneous space corresponding to c (this homogeneous space is
a genus one curve). Recently, M. Ciperiani and A. Wiles proved that any
genus one curve over Q which has local points everywhere and whose Jacobian
is a semistable elliptic curve admits a point over a solvable extension of Q
(see [CW06]). Unfortunately, this paper does not answer our question about
the existence of abelian points.
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Remark 7.2.4. As explained in [Ste04], if K/Q is an abelian extension of prime
degree then there is an exact sequence

0 → A→ ResK/Q(EK)
Tr
−→ E → 0,

where A is an abelian variety with L(A/Q, s) =
∏

L(fi, s) (here, the fi’s are the
GQ-conjugates of the twist of the newform fE attached to E by the Dirichlet
character associated to K/Q). Thus one could investigate the question in the
previous remark by investigating whether or not L(fE , χ, 1) = 0 which one
could do using modular symbols (see [CFK06]). The authors expect that L-
functions of twists of degree larger than three are very unlikely to vanish at
s = 1 (see [CFK06]), which suggests that in general, the question might have
a negative answer for cohomology classes of order larger than 3.

7.3 Visibility of Kolyvagin cohomology classes

It would also be interesting to study visibility at higher level of Kolyvagin
cohomology classes. The following is a first “test question” in this direction.

Question 7.3.1. Suppose E ⊂ J0(N) is an elliptic curve with conductor N ,
and fix a prime ℓ such that ρE,ℓ is surjective. Fix a quadratic imaginary field
K that satisfies the Heegner hypothesis for E. For any prime p satisfying
the conditions of [Rub89, Prop. 5], let cp ∈ H1(Q, E)[ℓ] be the corresponding
Kolyvagin cohomology class. There are two natural homomorphisms δ∗1 , δ

∗
p :

E → J0(Np). When is

(δ∗1 ± δ∗ℓ )∗(cℓ) = 0 ∈ H1(Q, J0(Np))?

When is
resv((δ∗1 ± δ∗ℓ )∗(cℓ)) = 0 ∈ H1(Qv, J0(Np))?

7.4 Table of Strong Visibility at Higher Level

The following is a table that gives the known examples of Af /Q
with square

free conductor N ≤ 1339, such that the Birch and Swinnerton-Dyer conjectural
formula predicts an odd prime divisor ℓ of X(Af/Q), but ℓ does not divide the
modular degree of Af . These were taken from [AS05]. If there is an entry in the
fourth column, this means we have verified the hypothesis of Theorem 5.4.2,
hence there really is a nonzero element in X(Af/Q) that is not visible in
J0(N), but is strongly visible in J0(pN). The notation in the fourth column
is (p,E, q), where p is the prime used in Theorem 5.4.2, E is an elliptic curve,
denoted using a Cremona label, and q 6= p is a prime such that

⋂

q′≤q

Ker(T ′
q|W − aq′(E)) = 0.
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Af dim ℓ | X(Af )? moddeg (p, E, q)’s

551H 18 3 2? · 132 (2, 1102A1, -)

767E 23 3 234 (2, 1534B1, 3)

959D 24 3 232 · 583673 (2, 1918C1, 5), (7, 5369A1,2)

1337E 33 3 259 · 71 (2, 2674A1, 5)

1339G 30 3 248 · 5776049 (2, 2678B1, 3), (11, 14729A1,2)
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