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Abstract. We study discrete subsets of Cd, relating “tameness”
with growth conditions.
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1. Results

A discrete subset D in Cn ( n ≥ 2) is called “tame” if there exists a holomorphic
automorphism φ of Cn such that φ(D) = Z×{0}n−1 (see [3]). If there exists a
linear projection π of Cn onto some Ck (0 < k < n) for which the image π(D)
is discrete, then D is tame ([3]). If D is a discrete subgroup (e.g. a lattice) of
the additive group (Cn+), then D must be tame ([1], lemma 4.4 in combination
with corollary 2.6). On the other hand there do exist discrete subsets which
are not tame (see [3], theorem 3.9).
Here we will investigate how “tameness” is related to growth conditions for D.
Slow growth implies tameness as we well see. On the other hand, rapid growth
can not imply non-tameness, since every discrete subset of Cn−1 is tame re-
garded as subset of Cn = Cn−1 × C.
The key method is to show that sufficiently slow growth implies that a generic
linear projection will have discrete image for D.
The main result is:

Theorem 1. Let n be a natural number and let vk be a sequence of elements
in V = Cn.
Assume that

∑

k

1

||vk||2n−2
< ∞

Then D = {vk : k ∈ N} is tame, i.e., there exists a biholomorphic map φ :
Cn → Cn such that

φ(D) = Z × {0}n−1.

This growth condition is fulfilled for discrete subgroups of rank at most 2n−3,
implying the following well-known fact:
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Corollary 1. Let Γ be a discrete subgroup of Z-rank at most 2n − 3 of the
additive group (Cn, +).
Then Γ is a tame discrete subset of Cn.

While this is well-known (even with no condition on the Z-rank of Γ), our
approach yields the additional information that these discrete subsets remain
tame after a small deformation:

Corollary 2. Let Γ be a discrete subgroup of Z-rank at most 2n − 3 of the
additive group (Cn, +), 0 < λ < 1 and K > 0. Let D be a subset of Cn for
which there exists a bijective map ζ : Γ → D with

||ζ(v) − v|| ≤ λ||v|| + K

for all v ∈ Γ.
Then D is a tame discrete subset of Cn.

This confirms the idea that tame sets should be stable under deformation.
Similarily one would hope that the category of non-tame sets is also stable under
deformation. Here, however, one has to be careful not to be too optimistic,
because in fact the following is true:

Proposition. For every non-tame discrete subset D ⊂ Cn (n > 1) there is a
tame discrete subset D′ and a bijection α : D → D′ such that

||α(v) − v|| ≤ 1√
2
||v|| ∀v ∈ D

and
||w − α−1(w)|| ≤ ||w|| ∀w ∈ D′.

In particular, if D is a tame discrete subset and ζ : D → C
n is a bijective map

with ||ζ(v) − v|| ≤ ||v|| for all v ∈ D, it is possible that ζ(D) is not tame.
Still, one might hope for a positive answer to the following question:

Question. Let n ∈ N, n ≥ 2, let 1 > λ > 0, K > 0, let D be a tame discrete
subset of Cn and let ζ : D → Cn be a map such that

||ζ(v) − v|| ≤ λ||v|| + K

for all v ∈ D. Does this imply that ζ(D) is a tame discrete subset of Cn ?

Technically, the following is the key point for the proof of our main result
(theorem 1):

Theorem 2. Let n > d > 0. Let V be a complex vector space of dimension n
and let vk be a sequence of elements in V .
Assume that

∑

k

1

||vk||2d
< ∞

Then there exists a complex linear map π : V → C
d such that the set of all

π(vk) is discrete in Cd.

In a similar way on can prove such a result for real vector spaces:
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Theorem 3. Let n > d > 0. Let V be a real vector space of dimension n and
let vk be a sequence of elements in V .
Assume that

∑

k

1

||vk||d
< ∞

Then there exists a real linear map π : V → Rd such that the set of all π(vk)
is discrete in Rd.

For the proof of the existence of a linear projection π with π(D) discrete we
proceed by regarding randomly chosen linear projections and verifying that the
image of D under a random projection has discrete image with probability 1 if
the above stated series converges.

2. Proofs

First we deduce an auxiliary lemma.

Lemma 1. Let k, m > 0, n = k + m and let S denote the unit sphere in
Rn = Rk ⊕ Rm. Furthermore let

Mǫ = {(v, w) ∈ R
k × R

m : ||v|| ≤ ǫ, (v, w) ∈ S}.
Then there are constants δ > 0, C1 > C2 > 0 such that for all ǫ < δ we have

C1ǫ
k ≥ λ(Mǫ) ≥ C2ǫ

k

where λ denotes the rotationally invariant probability measure on S.

Proof. For each ǫ ∈]0, 1[ there is a bijection

φǫ : B × S′ → Mǫ

where

B = {v ∈ R
k : ||v|| ≤ 1}, S′ = {w ∈ R

m : ||w|| = 1}
and

φǫ(v, w) =
(

ǫv;
√

1 − ||ǫv||2w
)

.

The functional determinant for φǫ equals

ǫk
(

√

1 − ||ǫv||2
)m

.

It follows that

ǫk
(

√

1 − ǫ2
)m

volume(S′ × B) ≤ volume(Mǫ) ≤ ǫkvolume(S′ × B),

which in turn implies

lim
ǫ→0

ǫ−k volume(Mǫ)

volume(S′ × B)
= 1.

Hence the assertion. �
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Lemma 2. Let Γ be a discrete subgroup of Z-rank d in V = Rn.
Then

∑

γ∈Γ

||γ||−d−ǫ < ∞

for all ǫ > 0.

Proof. Since all norms on a finite-dimensional vector space are equivalent, there
is no loss in generality if we assume that the norm is the maximum norm and
Γ = Zd × {0}n−d. Then the assertion is an easy consequence of the fact that
∑

n∈N
n−s < ∞ if and only if s > 1. �

Now we proceed with the proof of theorem 2:

Proof. We fix a surjective linear map L : V → W = Cd. Let K denote U(n)
(the group of unitary complex linear transformations of V ). For each g ∈ K
we define a linear map πg : V → W as follows:

πg : v 7→ L(g · v).

For k ∈ N and r ∈ R+ define

Sk,r = {g ∈ K : ||πg(vk)|| ≤ r},

MN,r = {g ∈ K : #{k ∈ N : g ∈ Sk,r} ≥ N}
and

Mr = ∩NMN,r.

Now for each g ∈ K the set {πg(vk) : k ∈ N} is discrete unless there is a number
r > 0 such that infinitely many distinct image points are contained in a ball
of radius r. By the definition of the sets Mr it follows that {πg(vk) : k ∈ N} is
discrete unless g ∈ M = ∪Mr.
Let us now assume that there is no linear map L′ : V → W with L′(D) discrete.
Then K = M . In particular µ(M) > 0, where µ denotes the Haar measure on
the compact topological group K. Since the sets Mr are increasing in r, we
have

M = ∪r∈R+Mr = ∪r∈NMr

and may thus deduce that µ(Mr) > 0 for some number r. Fix such a number
r > 0 and define c = µ(Mr) > 0. Then µ(MN,r) ≥ c for all N , since Mr =
∩MN,r. However, for fixed N and r we have

Nµ(MN,r) ≤
∑

k

µ(Sk,r).

Hence
∑

k∈N

µ(Sk,r) ≥ Nµ(MN,r) ≥ Nc

for all N ∈ N. Since c > 0, it follows that
∑

k µ(Sk,r) = +∞.
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Let us now embedd Cd into Cn as the orthogonal complement of kerL. In this
way we may assume that L is simply the map which projects a vector onto its
first d coordinates, i.e.,

L(w1, . . . , wn) = (w1, . . . , wd; 0, . . . , 0).

Now g ∈ Sk,r is equivalent to the condition that g(vk) is a real multiple of an
element in Mǫ where Mǫ is defined as in lemma 1 with ǫ = r/||vk||. Using
lemma 1 we may deduce that

∑

k µ(Sk,r) converges if and only if
∑

k ||vk||−2d

converges. �

Proof of theorem 1. The growth condition allows us to employ theorem 2 in
order to deduce that there is a linear projection onto a space of complex di-
mension d − 1 which maps D onto a discrete image. By the results of Rosay
and Rudin it follows that D is tame. �

Proof of the proposition. We fix a decomposition Cn = C × Cn−1 and write D
as the union of all (ak, bk) ∈ C × C

n−1 (k ∈ N). We define

α(ak, bk) =

{

(ak, 0) if ||ak|| > ||bk||
(0, bk) if ||ak|| ≤ ||bk||

Then D′ = α(D) is tame because each of the projections to one of the two
factors C and Cn−1 maps D′ onto a discrete subset.
The other assertions follow from the triangle inequality. �

The proof of thm. 3 works in the same way as the proof of thm. 2, simply using
the group of all orthogonal transformations instead of the group of unitary
transformations.
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