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Introduction

We first learn of Euler characteristic as ‘vertices minus edges plus faces’, and
later as an alternating sum of ranks of homology groups. But Euler character-
istic is much more fundamental than these definitions make apparent, as has
been made increasingly explicit over the last fifty years; it is something akin
to cardinality or measure. More precisely, it is the fundamental dimensionless
quantity associated with an object.

The very simplest context for Euler characteristic is that of finite sets, and
of course the fundamental way to assign a quantity to a finite set is to count
its elements. Euler characteristic of topological spaces can usefully be thought
of as a generalization of cardinality; for instance, it obeys the same laws with
respect to unions and products.

1Partially supported by a Nuffield Foundation award NUF-NAL 04 and an EPSRC Ad-

vanced Research Fellowship
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In a more sophisticated context, integral geometry, Euler characteris-
tic also emerges clearly as the fundamental dimensionless invariant. A sub-
set of Rn is polyconvex if it is a finite union of compact convex subsets.
Let Vn be the vector space of finitely additive measures, invariant under
Euclidean transformations, defined on the polyconvex subsets of Rn. Had-
wiger’s Theorem [KR] states that dim Vn = n + 1. (See also [Sc2], and [MS]
for an important application to materials science.) A natural basis con-
sists of one d-dimensional measure for each d ∈ {0, . . . , n}: for instance,
{Euler characteristic, perimeter, area} when n = 2. Thus, up to scalar multipli-
cation, Euler characteristic is the unique dimensionless measure on polyconvex
sets.

Schanuel [Sc1] showed that for a certain category of polyhedra, Euler char-
acteristic is determined by a simple universal property, making its fundamental
nature transparent.

All of the above makes clear the importance of defining and understanding
Euler characteristic in new contexts. Here we do this for finite categories.

Categories are often viewed as large structures whose main purpose is
organizational. However, some different viewpoints will be useful here. A
combinatorial point of view is that a category is a directed graph (objects and
arrows) equipped with some extra structure (composition and identities). We
will concentrate on finite categories (those with only finitely many objects and
arrows), which also suits the combinatorial viewpoint, and the composition and
identities will play a surprisingly minor role.

A topological point of view is that a category can be understood through its
classifying space. This is formed by starting with one 0-cell for each object, then
gluing in one 1-cell for each arrow, one 2-cell for each commutative triangle,
and so on.

Both of these points of view will be helpful in what follows. The topological
perspective is heavily used in the sequel [BL] to this paper.

With topology in mind, one might imagine simply transporting the defini-
tion of Euler characteristic from spaces to categories via the classifying space
functor, as with other topological invariants: given a category A, define χ(A)
as the Euler characteristic of the classifying space BA. The trouble with this
is that the Euler characteristic of BA is not always defined. Below we give a
definition of the Euler characteristic of a category that agrees with the topo-
logical Euler characteristic when the latter exists, but is also valid in a range of
situations when it does not. It is a rational number, not necessarily an integer.

A version of the definition can be given very succinctly. Let A be a finite
category; totally order its objects as a1, . . . , an. Let Z be the matrix whose
(i, j)-entry is the number of arrows from ai to aj . Let M = Z−1, assuming
that Z is invertible. Then χ(A) is the sum of the entries of M . Of course, the
reader remains to be convinced that this definition is the right one.

The foundation on which this work rests is a generalization of Möbius–Rota
inversion (§1). Rota developed Möbius inversion for posets [R]; we develop it
for categories. (A poset is viewed throughout as a category in which each hom-
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set has at most one element: the objects are the elements of the poset, and
there is an arrow a - b if and only if a ≤ b.) This leads, among other
things, to a ‘representation formula’: given any functor known to be a sum of
representables, the formula tells us the representation explicitly. This in turn
can be used to solve enumeration problems, in the spirit of Rota’s paper.

However, the main application of this generalized Möbius inversion is to
the theory of the Euler characteristic of a category (§2). We actually use a dif-
ferent definition than the one just given, equivalent to it when Z is invertible,
but valid for a wider class of categories. It depends on the idea of the ‘weight’
of an object of a category. The definition is justified in two ways: by showing
that it enjoys the properties that the name would lead one to expect (behaviour
with respect to products, fibrations, etc.), and by demonstrating its compati-
bility with Euler characteristics of other types of structure (groupoids, graphs,
topological spaces, orbifolds). There is an accompanying theory of Lefschetz
number.

The technology of Möbius inversion and weights also solves another prob-
lem: what is the cardinality of a colimit? For example, the union of a family
of sets and the quotient of a set by a free action of a group are both examples
of colimits of set-valued functors, and there are simple formulas for their cardi-
nalities. (In the first case it is the inclusion-exclusion formula.) We generalize,
giving a formula valid for any shape of colimit (§3).

Rota and his school proved a large number of results on Möbius inversion
for posets. As we will see repeatedly, many are not truly order-theoretic: they
are facts about categories in general. In particular, important theorems in
Rota’s original work [R] generalize from posets to categories (§4).

(The body of work on Möbius inversion in finite lattices is not, however, so
ripe for generalization: a poset is a lattice just when the corresponding category
has products, but a finite category cannot have products unless it is, in fact, a
lattice.)

Other authors have considered different notions of Möbius inversion for cat-
egories; notably, there is that developed by Content, Lemay and Leroux [CLL]
and independently by Haigh [H]. This generalizes both Rota’s notion for posets
and Cartier and Foata’s for monoids [CF]. (Here a monoid is viewed as a one-
object category.) The relation between their approach and ours is discussed
in §4. Further approaches, not discussed here, were taken by Dür [D] and
Lück [Lü].

In the case of groupoids, our Euler characteristic of categories agrees with
Baez and Dolan’s groupoid cardinality [BD]. The cardinality of the groupoid
of finite sets and bijections is e = 2.718 . . ., and there are connections to ex-
ponential generating functions and the species of Joyal [J, BLL]. Paré has a
definition of the cardinality of an endofunctor of the category of finite sets [Pa];
I do not know whether this can be related to the definition here of the Lefschetz
number of an endofunctor.

The view of Euler characteristic as generalized cardinality is promoted
in [Sc1], [BD] and [Pr1]. The appearance of a non-integral Euler characteristic
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is nothing new: see for instance Wall [Wl], Bass [Ba] and Cohen [Co], and the
discussion of orbifolds in §2.

Ultimately it would be desirable to have the Euler characteristic of cate-
gories described by a universal property, as Schanuel did for polyhedra [Sc1].
For this, it may be necessary to relax the constraints of the present work, where
for simplicity our categories are required to be finite and the coefficients are
required to lie in the ring of rational numbers. Rather than asking, as below,
‘does this category have Euler characteristic (in Q)?’, we should perhaps ask ‘in
what rig (semiring) does the Euler characteristic of this category lie?’ However,
this is not pursued here.

Acknowledgements I thank John Baez, Andy Baker, Nick Gurski, Ieke
Moerdijk, Urs Schreiber, Ivan Smith and Stephen Watson for inspiration
and useful discussions. I am grateful to the Centre de Recerca Matemàtica,
Barcelona, for their hospitality. I also thank the very helpful referee.

1 Möbius inversion

We consider a finite category A, writing obA for its set of objects and, when a
and b are objects, A(a, b) for the set of maps from a to b.

Definition 1.1 We denote by R(A) the Q-algebra of functions obA ×
ob A - Q, with pointwise addition and scalar multiplication, multiplica-
tion defined by

(θφ)(a, c) =
∑

b∈A

θ(a, b)φ(b, c)

(θ, φ ∈ R(A), a, c ∈ A), and the Kronecker δ as unit.
The zeta function ζA = ζ ∈ R(A) is defined by ζ(a, b) = |A(a, b)|. If

ζ is invertible in R(A) then A is said to have Möbius inversion; its inverse
µA = µ = ζ−1 is the Möbius function of A.

If a total ordering is chosen on the n objects of A then R(A) can be
regarded as the algebra of n × n matrices over Q. The defining equations of
the Möbius function are

∑

b

µ(a, b)ζ(b, c) = δ(a, c) =
∑

b

ζ(a, b)µ(b, c)

for all a, c ∈ A. By finite-dimensionality, µζ = δ if and only if ζµ = δ.
The definitions above could be made for directed graphs rather than cat-

egories, since they do not refer to composition. However, this generality seems
to be inappropriate. For example, the definition of Möbius inversion will lead to
a definition of Euler characteristic, and if we use graphs rather than categories
then we obtain something other than ‘vertices minus edges’. Proposition 2.10
clarifies this point.

A different notion of Möbius inversion for categories has been considered;
see §4.
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Examples 1.2 a. Any finite poset A has Möbius inversion; this special case
was investigated by Rota [R] and others. We may compute µ(a, c) by
induction on the number of elements between a and c:

µ(a, c) = δ(a, c) −
∑

b:a≤b<c

µ(a, b).

In particular, µ(a, c) = 0 unless a ≤ c, and µ(a, a) = 1 for all a. See also
Theorem 1.4 and Corollary 1.5.

b. Let M be a finite monoid, regarded as a category with unique object ⋆.
(The arrows of the category are the elements of the monoid, and composi-
tion in the category is multiplication in the monoid.) Then ζ(⋆, ⋆) = |M |,
so µ(⋆, ⋆) = 1/|M |.

c. Let N ≥ 0. Write D
inj
N for the category with objects 0, . . . , N whose maps

a - b are the order-preserving injections {1, . . . , a} - {1, . . . , b}.
Then ζ(a, b) =

(
b
a

)
, and it is easily checked that µ(a, b) = (−1)b−a

(
b
a

)
. If

we use surjections instead of injections then ζ(a, b) =
(
a−1
b−1

)
and µ(a, b) =

(−1)a−b
(
a−1
b−1

)
.

A category with Möbius inversion must be skeletal (isomorphic objects
must be equal), for otherwise the matrix of ζ would have two identical rows.
The property of having Möbius inversion is not, therefore, invariant under
equivalence of categories.

In general we cannot hope to just spot the Möbius function of a category.
In 1.3–1.7 we make tools for computing Möbius functions. These cover large
classes of categories, although not every finite skeletal category has Möbius
inversion (1.11(d), (e)).

Let n ≥ 0, let A be a category or a directed graph, and let a, b ∈ A. An
n-path from a to b is a diagram

a = a0
f1- a1

f2- · · ·
fn- an = b (1)

in A. It is a circuit if a = b, and (when A is a category) nondegenerate if no fi

is an identity.

Lemma 1.3 The following conditions on a finite category A are equivalent:

a. every idempotent in A is an identity

b. every endomorphism in A is an automorphism

c. every circuit in A consists entirely of isomorphisms.

Proof (a) ⇒ (b) follows from the fact that if f is an element of a finite
monoid then some positive power of f is idempotent. The other implications
are straightforward. �
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26 Tom Leinster

Theorem 1.4 Let A be a finite skeletal category in which the only idempotents
are identities. Then A has Möbius inversion given by

µ(a, b) =
∑

(−1)n/|Aut(a0)| · · · |Aut(an)|

where Aut(a) is the automorphism group of a ∈ A and the sum runs over all
n ≥ 0 and paths (1) for which a0, . . . , an are all distinct.

Proof First observe that for a path (1) in A, if a0 6= a1 6= · · · 6= an then the
ais are all distinct. Indeed, if 0 ≤ i < j ≤ n and ai = aj then the sub-path
running from ai to aj is a circuit, so by Lemma 1.3, fi+1 is an isomorphism,
and by skeletality, ai = ai+1.

Now let a, c ∈ A and define µ by the formula above. We have

∑

b∈A

µ(a, b)ζ(b, c) = µ(a, c)ζ(c, c) +
∑

b:b6=c

µ(a, b)ζ(b, c)

= |Aut(c)|




µ(a, c) +
∑

b:b6=c, g∈A(b,c)

µ(a, b)/|Aut(c)|






= |Aut(c)|
{

µ(a, c) +
∑

(−1)n/|Aut(a0)| · · · |Aut(an)||Aut(c)|
}

,

where the last sum is over all n ≥ 0 and paths

a = a0
f1- · · ·

fn- an = b
g- c

such that a0 6= · · · 6= an 6= c. By definition of µ, the term in braces collapses
to 0 if a 6= c and to 1/|Aut(a)| if a = c. Hence

∑
b µ(a, b)ζ(b, c) = δ(a, c), as

required. �

Corollary 1.5 Let A be a finite skeletal category in which the only endomor-
phisms are identities. Then A has Möbius inversion given by

µ(a, b) =
∑

n≥0

(−1)n|{nondegenerate n-paths from a to b}| ∈ Z.

�

When A is a poset, this is Philip Hall’s theorem (Proposition 3.8.5 of [St]
and Proposition 6 of [R]).

An epi-mono factorization system (E ,M) on a category A consists of a
class E of epimorphisms in A and a class M of monomorphisms in A, satisfying
axioms [FK]. The axioms imply that every map f in A can be expressed as me
for some e ∈ E and m ∈ M, and that this factorization is essentially unique:
the other pairs (e′, m′) ∈ E × M satisfying m′e′ = f are those of the form
(ie, mi−1) where i is an isomorphism. Typical examples are the categories of
sets, groups and rings, with E as all surjections and M as all injections.
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Theorem 1.6 Let A be a finite skeletal category with an epi-mono factorization
system (E ,M). Then A has Möbius inversion given by

µ(a, b) =
∑

(−1)n/|Aut(a0)| · · · |Aut(an)|

where the sum is over all n ≥ r ≥ 0 and paths (1) such that a0, . . . , ar are
distinct, ar, . . . , an are distinct, f1, . . . , fr ∈ M, and fr+1, . . . , fn ∈ E.

Proof The objects of A and the arrows in E determine a subcategory of A,
also denoted E ; it satisfies the hypotheses of Theorem 1.4 and therefore has
Möbius inversion. The same is true of M.

Any element α ∈ Qob A =
∏

a∈A
Q gives rise to an element of R(A), also

denoted α and defined by α(a, b) = δ(a, b)α(b). This defines a multiplication-
preserving map from Qob A to R(A), where the multiplication on Qob A is coor-
dinatewise. We have elements |Aut| and 1/|Aut| of Qob A, where, for instance,
|Aut|(a) = |Aut(a)|.

By the essentially unique factorization property, ζA = ζE ·
1

|Aut| ·ζM. Hence

A has Möbius function µA = µM · |Aut| · µE . Theorem 1.4 applied to µM and
µE then gives the formula claimed. �

Example 1.7 Let N ≥ 0 and write FN for the full subcategory of Set with
objects 1, . . . , N , where n denotes a (chosen) n-element set. Let E be the set
of surjections in FN and M the set of injections; then (E ,M) is an epi-mono
factorization system. Theorem 1.6 gives a formula for the inverse of the matrix
(ij)i,j . For instance, take N = 3; then µ(1, 2) may be computed as follows:

Paths Contribution to sum

1-
2- 2 −2/1!2! = −1

1-
3- 3

6-- 2 3 · 6/1!3!2! = 3/2

1-
2- 2-

6- 3
6-- 2 −2 · 6 · 6/1!2!3!2! = −3

Here ‘1-
2- 2’ means that there are 2 monomorphisms from 1 to 2, ‘3

6-- 2’
that there are 6 epimorphisms from 3 to 2, etc. Hence µ(1, 2) = −1+3/2−3 =
−5/2.

One of the uses of the Möbius function is to calculate Euler character-
istic (§2). Another is to calculate representations. Specifically, suppose that
we have a Set-valued functor known to be familially representable, that is, a
coproduct of representables. The Yoneda Lemma tells us that the family of
representing objects is unique (up to isomorphism). But if we have Möbius
inversion, there is actually a formula for it:

Proposition 1.8 Let A be a finite category with Möbius inversion and let
X : A - Set be a functor satisfying

X ∼=
∑

a

r(a)A(a,−)
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28 Tom Leinster

for some natural numbers r(a) (a ∈ A). Then

r(a) =
∑

b

|X(b)|µ(b, a)

for all a ∈ A.

In the first formula,
∑

denotes coproduct of Set-valued functors.

Proof Follows from the definition of Möbius function. �

In the spirit of Rota’s programme, this can be applied to solve counting
problems, as illustrated by the following standard example.

Example 1.9 A derangement is a permutation without fixed points. We cal-
culate dn, the number of derangements of n letters.

Fix N ≥ 0. Take the category D
inj
N of Example 1.2(c) and the functor

S : D
inj
N

- Set defined as follows: S(n) is Sn, the underlying set of the nth

symmetric group, and if f ∈ D
inj
N (m, n) and τ ∈ Sm, the induced permutation

Sf (τ) ∈ Sn acts as τ on the image of f and fixes all other points. Any permu-
tation consists of a derangement together with some fixed points, so there is
an isomorphism of sets

Sn
∼=
∑

m

dmD
inj
N (m, n)

where
∑

denotes disjoint union. Then by Proposition 1.8 and Example 1.2(c),

dn =
∑

m

|Sm|µ(m, n) =
∑

m

m!(−1)n−m

(
n

m

)
= n!

(
1

0!
−

1

1!
+ · · · +

(−1)n

n!

)
.

To set up the theory of Euler characteristic we will not need the full
strength of Möbius invertibility; the following suffices.

Definition 1.10 Let A be a finite category. A weighting on A is a function
k• : obA - Q such that for all a ∈ A,

∑

b

ζ(a, b)kb = 1.

A coweighting k
•

on A is a weighting on Aop.

Note that A has Möbius inversion if and only if it has a unique weighting,
if and only if it has a unique coweighting; they are given by

ka =
∑

b

µ(a, b), kb =
∑

a

µ(a, b).
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Examples 1.11 a. Let L be the category

b1

a

-

b2.
-

Then the unique weighting k• on L is (ka, kb1 , kb2) = (−1, 1, 1).

b. Let M be a finite monoid, regarded as a category with unique object ⋆.
Again there is a unique weighting k•, with k⋆ = 1/|M |.

c. If A has a terminal object 1 then δ(−, 1) is a weighting on A.

d. A finite category may admit no weighting at all. (This can happen even
when the category is Cauchy-complete, in the sense defined in the Ap-
pendix.) An example is the category A with objects and arrows

a1 a2

a3

a4

--��
HHHHHHHjHHHHHHHY ���������������*

?

@
@

@
@

@
@

@R

�
�

�
�

�
�

�	

�
�

�
�

�
�

�	

jj ��

K

�

f12,g12

f21,g21f13

f31

f23

f32

f34

f14 f24

g24

1f11 1 f22

f44=1

f33=1

where if ai
p- aj

q- ak and neither p nor q is an identity then
q ◦ p = fik.

e. A category may certainly have more than one weighting: for instance,
if A is the category consisting of two objects and a single isomorphism
between them, a weighting on A is any pair of rational numbers whose sum
is 1. But even a skeletal category may admit more than one weighting.
Indeed, the full subcategories B = {a1, a2} and C = {a1, a2, a3} of the
category A of the previous example both have a 1-dimensional space of
weightings.

In contrast to Möbius invertibility, the property of admitting at least one
weighting is invariant under equivalence:

Lemma 1.12 Let A and B be equivalent finite categories. Then A admits a
weighting if and only if B does.
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Proof Let F : A - B be an equivalence. Given a ∈ A, write Ca for the
number of objects in the isomorphism class of a. Take a weighting l• on B and
put ka = (

∑
b:b∼=F (a) lb)/Ca. I claim that k• is a weighting on A.

To prove this, choose representatives a1, . . . , am of the isomorphism classes
of objects of A; then F (a1), . . . , F (am) are representatives of the isomorphism
classes of objects of B. Let a′ ∈ A. For any a ∈ A, the numbers ζ(a′, a) and ka

depend only on the isomorphism class of a. Hence

∑

a∈A

ζ(a′, a)ka =

m∑

i=1

∑

a:a∼=ai

ζ(a′, a)ka

=

m∑

i=1

Cai
ζ(a′, ai)k

ai

=
m∑

i=1

∑

b:b∼=F (ai)

ζ(a′, ai)l
b

=
∑

b∈B

ζ(F (a′), b)lb

= 1,

as required. �

Weightings and Möbius functions are compatible with sums and products
of categories. We write

∑
i∈I Ai for the sum of a family (Ai)i∈I of categories,

also called the coproduct or disjoint union and written
∐

i∈I Ai. The following
lemma is easily verified.

Lemma 1.13 Let n ≥ 0 and let A1, . . . , An be finite categories.

a. If each Ai has a weighting k•

i then
∑

i Ai has a weighting l• given by
la = ka

i whenever a ∈ Ai. If each Ai has Möbius inversion then so does∑
i Ai, where for a ∈ Ai and b ∈ Aj,

µ∑
Ak

(a, b) =

{
µAi

(a, b) if i = j
0 otherwise.

b. If each Ai has a weighting k•

i then
∏

i Ai has a weighting l• given by
l(a1,...,an) = ka1

1 · · · kan

n . If each Ai has Möbius inversion then so does∏
i Ai, with

µ∏
Ai

((a1, . . . , an), (b1, . . . , bn)) = µA1
(a1, b1) · · ·µAn

(an, bn).

�

Thinking of R(A) as a matrix algebra (as described after Definition 1.1),
the part of (a) concerning Möbius inversion merely says that the inverse of a
block sum of matrices is the block sum of the inverses.
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To every Set-valued functor X there is assigned a ‘category of elements’
E (X). (See the Appendix for a review of definitions.) This is also true of
functors X taking values in Cat, the category of small categories and functors,
even when X is only a weak or ‘pseudo’ functor. We say that a Set- or Cat-
valued functor X is finite if E (X) is finite. When the domain category A is
finite, this just means that each set or category X(a) is finite.

Lemma 1.14 Let A be a finite category and X : A - Cat a finite weak
functor. Suppose that we have weightings on A and on each X(a), all written
k•. Then there is a weighting on E (X) defined by k(a,x) = kakx (a ∈ A,
x ∈ X(a)).

Proof Let a ∈ A and x ∈ X(a). Then

∑

(b,y)∈E(X)

ζ((a, x), (b, y))kbky =
∑

b

∑

f∈A(a,b)




∑

y∈X(b)

ζ((X(f))x, y)ky



 kb

=
∑

b

ζ(a, b)kb = 1.

�

This result will be used to show how Euler characteristic behaves with
respect to fibrations.

2 Euler characteristic

In this section, the Euler characteristic of a category is defined and its basic
properties are established. The definition is justified by a series of propositions
showing its compatibility with the Euler characteristics of other types of object:
graphs, topological spaces, and orbifolds. There follows a brief discussion of
the Lefschetz number of an endofunctor.

Lemma 2.1 Let A be a finite category, k• a weighting on A, and k
•

a coweight-
ing on A. Then

∑
a ka =

∑
a ka.

Proof

∑

b

kb =
∑

b

(
∑

a

kaζ(a, b)

)
kb =

∑

a

ka

(
∑

b

ζ(a, b)kb

)
=
∑

a

ka.

�

If A admits a weighting but no coweighting then
∑

a ka may depend on
the weighting k• chosen: see Example 4.8 of [BL].
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Definition 2.2 A finite category A has Euler characteristic if it admits both
a weighting and a coweighting. Its Euler characteristic is then

χ(A) =
∑

a

ka =
∑

a

ka ∈ Q

for any weighting k• and coweighting k
•
.

With the Gauss–Bonnet Theorem in mind, one might think of weight as
an analogue of curvature: summed over the whole structure, it yields the Euler
characteristic.

Any category A with Möbius inversion has Euler characteristic, χ(A) =∑
a,b µ(a, b), as in the Introduction.

Examples 2.3 a. If A is a finite discrete category then χ(A) = |ob A|.

b. If M is a finite monoid then χ(M) = 1/|M |. (We continue to view
monoids as one-object categories.) When M is a group, this can be
understood as follows: M acts freely on the contractible space EM , which
has Euler characteristic 1; one would therefore expect the quotient space
BM to have Euler characteristic 1/|M |. (Compare [Wl] and [Co].)

c. By Corollary 1.5, a finite poset A has Euler characteristic∑
n≥0(−1)ncn ∈ Z, where cn is the number of chains in A of length

n. (See [Pu], [Fo], [R] and [Fa] for connections with poset homology,
and §4 for further comparisons with the Rota theory.) More generally,
the results of §1 lead to formulas for the Euler characteristic of any fi-
nite category that either has no non-trivial idempotents or admits an
epi-mono factorization system.

For example, let A be a category with no non-trivial idempotents. Let
B be a skeleton of A, that is, a full subcategory containing exactly one
object from each isomorphism class of A. Theorem 1.4 tells us that B has
Möbius inversion and gives us a formula for its Möbius function, hence
for its Euler characteristic. Proposition 2.4(b) below then implies that A

has Euler characteristic, equal to that of B.

d. By 1.11(c) and its dual, if A has Euler characteristic and either an initial
or a terminal object then χ(A) = 1; moreover, if A has both an initial and
a terminal object then it does have Euler characteristic. This applies, for
instance, to the category C of 1.11(e). Hence having Möbius inversion
is a strictly stronger property than having Euler characteristic, even for
skeletal categories.

e. Euler characteristic is not invariant under Morita equivalence. Recall
that categories A and B are Morita equivalent if their presheaf categories
[Aop,Set] and [Bop,Set] are equivalent; see [Bo], for instance. Equiva-
lent categories are Morita equivalent, but not conversely. For instance,

Documenta Mathematica 13 (2008) 21–49



The Euler Characteristic of a Category 33

take A to be the two-element monoid consisting of the identity and an
idempotent, and B to be the category generated by objects and arrows

b1

i-�
s

b2

subject to si = 1. Then A and B are Morita equivalent but not equivalent.
Moreover, their Euler characteristics are different: χ(A) = 1/2 by (b), but
χ(B) = 1 by (d).

Clearly χ(Aop) = χ(A), one side being defined when the other is. The
next few propositions set out further basic properties of Euler characteristic.

Proposition 2.4 Let A and B be finite categories.

a. If there is an adjunction A
-� B and both A and B have Euler charac-

teristic then χ(A) = χ(B).

b. If A ≃ B then A has Euler characteristic if and only if B does, and in
that case χ(A) = χ(B).

In (a), it may be that one category has Euler characteristic but the other
does not: consider, for instance, the unique functor from the category A

of 1.11(d) to the terminal category.

Proof

a. Suppose that A
F-�
G

B with F ⊣ G. Then ζ(F (a), b) = ζ(a, G(b)) for all

a ∈ A, b ∈ B; write ζ(a, b) for their common value. Take a coweighting k
•

on A and a weighting k• on B. Then
∑

a ka =
∑

b kb by the same proof
as that of Lemma 2.1.

b. The first statement follows from Lemma 1.12 and its dual, and the second
from (a). �

Example 2.5 If B is a category with an initial or a terminal object then
χ(AB) = χ(A) for all A, provided that both Euler characteristics exist. In-
deed, if 0 is initial in B then evaluation at 0 is right adjoint to the diagonal
functor A - AB.

Proposition 2.6 Let n ≥ 0 and let A1, . . . , An be finite categories that all
have Euler characteristic. Then

∑
i Ai and

∏
i Ai have Euler characteristic,

with

χ

(
∑

i

Ai

)
=
∑

i

χ(Ai), χ

(
∏

i

Ai

)
=
∏

i

χ(Ai).

Proof Follows from Lemma 1.13. �
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Example 2.7 Let A be a finite groupoid. Choose one object ai from each
connected-component of A, and write Gi for the automorphism group of ai.
Then A ≃

∑
i Gi, so by 2.3(b), 2.4(b) and 2.6, we have χ(A) =

∑
i 1/|Gi|.

This is what Baez and Dolan call the cardinality of the groupoid A [BD].

One might also ask whether χ(AB) = χ(A)χ(B). By 2.3(d), 2.5 and 2.6, the
answer is yes if every connected-component of B has an initial or a terminal
object (and all the Euler characteristics exist). But in general the answer is
no: for instance, take A to be the 2-object discrete category and B to be the
category of 3.4(b). See also Propp [Pr2], Speed [Sp], and §5, 6 of Rota [R].

An important property of topological Euler characteristic is its behaviour
with respect to fibre bundles (or more generally, fibrations). Take a space
A with connected-components A1, . . . , An, take a fibre bundle E over A, and
write Xi for the fibre in the ith component. Then under suitable hypotheses,
χ(E) =

∑
i χ(Ai)χ(Xi).

There is an analogy between topological fibrations and categorical fibra-
tions, which are functors satisfying a certain condition. (In this discussion I
will use ‘fibration’ to mean what is usually called an opfibration; the differ-
ence is inessential.) The crucial property of fibrations of categories is that for
any category A, the fibrations with codomain A correspond naturally to the
weak functors A - Cat. Given a fibration P : E - A, define a functor
X : A - Cat by taking X(a), for each a ∈ A, to be the fibre over a: the
subcategory of E whose objects e are those satisfying P (e) = a and whose
arrows f are those satisfying P (f) = 1a. Conversely, given a weak functor
X : A - Cat, the corresponding fibration is the category of elements E (X)
together with the projection functor to A. For details, see [Bo], for instance.

The formula for the Euler characteristic of a fibre bundle has a categorical
analogue. Since in general the fibres of a fibration over A vary within each
connected-component of A, the formula for categories is more complicated. We
state the result in terms of Cat-valued functors rather than fibrations; the
proof follows from Lemma 1.14.

Proposition 2.8 Let A be a finite category and X : A - Cat a finite weak
functor. Let k• be a weighting on A and suppose that E (X) and each X(a)
have Euler characteristic. Then

χ(E (X)) =
∑

a

kaχ(X(a)).

�

Examples 2.9 a. When X is a finite Set-valued functor, χ(E (X)) =∑
a ka|X(a)|. For example, let M be a finite monoid. A finite functor

X : M - Set is a finite set S with a left M -action. Following [BD],
we write E (X) as S//M , the lax quotient of S by M . (Its objects are
the elements of S, and the arrows s - s′ are the elements m ∈ M
satisfying ms = s′.) Then χ(S//M) = |S|/|M |.
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b. Define a sequence (Sn)n≥−1 of categories inductively as follows. S−1 is
empty. Let L be the category of 1.11(a); define X : L - Cat by
X(a) = Sn−1 and X(b1) = X(b2) = 1 (the terminal category); put
Sn = E (X). Then explicitly, Sn is the poset

c0
- c1

- · · · - cn

d0
-

-

d1
-

-

- -
· · · -

-

dn.

-

(If we take the usual expression of the topological n-sphere Sn as a CW-
complex with two cells in each dimension ≤ n then Sn is the set of cells
ordered by inclusion; Sn is the classifying space of Sn.)

Each Sn is a poset, so has Euler characteristic. By Proposition 2.8,

χ(Sn) = −χ(Sn−1) + 2χ(1) = 2 − χ(Sn−1)

for all n ≥ 0; also χ(S−1) = 0. Hence χ(Sn) = 1 + (−1)n.

The next three propositions show how the Euler characteristics of various
types of structure are compatible with that of categories.

First, Euler characteristic of categories extends Euler characteristic of
graphs. More precisely, let G = (G1

-- G0) be a directed graph, where
G1 is the set of edges and G0 the set of vertices. We will show that if F (G)
is the free category on G then χ(F (G)) = |G0| − |G1|. This only makes sense
if F (G) is finite, which is the case if and only if G is finite and circuit-free;
then F (G) is also circuit-free. (A directed graph is circuit-free if it contains no
circuits of non-zero length, and a category is circuit-free if every circuit consists
entirely of identities.)

Proposition 2.10 Let G be a finite circuit-free directed graph. Then χ(F (G))
is defined and equal to |G0| − |G1|.

Proof Given a, b ∈ G0, write ζG(a, b) for the number of edges from a to b
in G. Then ζF (G) =

∑
n≥0 ζn

G in R(F (G)), the sum being finite since G is
circuit-free. Hence µF (G) = δ − ζG, and the result follows. �

This suggests that in the present context, it is more fruitful to view a
graph as a special category (via F ) than a category as a graph with structure.
Compare the comments after Definition 1.1.

The second result compares the Euler characteristics of categories and
topological spaces. We show that under suitable hypotheses, χ(BA) = χ(A),
where BA is the classifying space of a category A (that is, the geometric re-
alization of its nerve NA). To ensure that BA has Euler characteristic, we
assume that NA contains only finitely many nondegenerate simplices; then

χ(BA) =
∑

n≥0

(−1)n|{nondegenerate n-simplices in NA}|.
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An n-simplex in NA is just an n-path in A, and is nondegenerate in the sense
of simplicial sets if and only if it is nondegenerate as a path, so A must contain
only finitely many nondegenerate paths. This is the case if and only if A is
circuit-free, if and only if A is skeletal and contains no endomorphisms except
identities. So by Corollary 1.5, we have:

Proposition 2.11 Let A be a finite skeletal category containing no endomor-
phisms except identities. Then χ(BA) is defined and equal to χ(A). �

For the final compatibility result, consider the following schematic dia-
grams:

{triangulated manifolds}

{posets}
?

χ
- Z

χ

-

{triangulated orbifolds}

{categories}
?

χ
- Q.

χ

-

On the left, we start with a compact manifold M equipped with a finite trian-
gulation. As shown in §3.8 of [St], the topological Euler characteristic of M is
equal to the Euler characteristic of the poset of simplices in the triangulation,
ordered by inclusion. We generalize this result from manifolds to orbifolds,
which entails replacing posets by categories and Z by Q.

Let M be a compact orbifold equipped with a finite triangulation.
(See [MP] for definitions.) The simplices in the triangulation form a poset
P , and if p ∈ P is a d-dimensional simplex then ↓ p = {q ∈ P | q ≤ p} is
isomorphic to the poset Pd+1 of nonempty subsets of {1, . . . , d+1}, with p ∈↓p
corresponding to {1, . . . , d + 1} ∈ Pd+1. Every p ∈ P has a stabilizer group
G(p), and

χ(M) =
∑

p∈P

(−1)dim p/|G(p)|.

On the other hand, the groups G(p) fit together to form a complex of finite
groups on P op, that is, a weak functor G : P op - Cat taking values in finite
groups (regarded as one-object categories) and injective homomorphisms; see §3
of [M]. This gives a finite category E (G). For example, when M is a manifold,
each group G(p) is trivial and E (G) ∼= P .

The following result is joint with Ieke Moerdijk.

Proposition 2.12 Let M be a compact orbifold equipped with a finite trian-
gulation. Let G be the resulting complex of groups. Then χ(E (G)) is defined
and equal to χ(M).

Proof Every arrow in E (G) is monic, so by Theorem 1.4, E (G) has Euler
characteristic. Moreover, P is a finite poset, so has a unique coweighting k

•
,

and χ(E (G)) =
∑

p kp/|G(p)| by the dual of Proposition 2.8.
The coweight of p in P is equal to the coweight of p in ↓p ∼= Pd+1, where

d = dim p. The unique coweighting k
•

on Pd+1 is given by kJ = (−1)|J|−1, so
kp = (−1)(d+1)−1 = (−1)dim p. The result follows. �
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We now turn to the theory of Lefschetz number. Let F : A - A be an
endofunctor of a category A. The category FixF has as objects the (strict)
fixed points of F , that is, the objects a ∈ A such that F (a) = a; a map a -
b in FixF is a map f : a - b in A such that F (f) = f .

Definition 2.13 Let F be an endofunctor of a finite category. Its Lefschetz
number L(F ) is χ(FixF ), when this exists.

The Lefschetz number is, then, the sum of the (co)weights of the fixed
points. This is analogous to the standard Lefschetz fixed point formula,
(co)weight playing the role of index. The following results further justify the
definition.

Proposition 2.14 Let A be a finite category.

a. L(1A) = χ(A), one side being defined if and only if the other is.

b. If B is another finite category and A
F-�
G

B are functors then L(GF ) =

L(FG), one side being defined if and only if the other is.

c. Let F : A - A and write BF : BA - BA for the induced map on
the classifying space of A. If A is skeletal and contains no endomorphisms
except identities then L(F ) = L(BF ), with both sides defined.

In the special case that A is a poset, part (c) is Theorem 1.1 of [BB].

Proof For (a) and (b), just note that Fix 1A
∼= A and FixGF ∼= FixFG.

For (c), recall from the proof of Proposition 2.11 that NA has only finitely
many nondegenerate simplices; then

L(BF ) =
∑

n≥0

(−1)n|{nondegenerate n-simplices in NA fixed by NF}|

=
∑

n≥0

(−1)n|{nondegenerate n-paths in FixF}|

= L(F ),

using Corollary 1.5 in the last step. �

An algebra for an endofunctor F of A is an object a ∈ A equipped with
a map h : F (a) - a. With the evident structure-preserving morphisms,
algebras for F form a category Alg F . There is a dual notion of coalgebra
(where now h : a - F (a)), giving a category CoalgF .

Proposition 2.15 Let F be an endofunctor of a finite skeletal category A

containing no endomorphisms except identities. Then χ(Alg F ) = L(F ) =
χ(Coalg F ), with all three terms defined.
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Proof First observe that A is circuit-free. Now, the inclusion FixF -
Alg F has a right adjoint R: given an algebra (a, h), circuit-freeness implies
that FN (a) is a fixed point for all sufficiently large N , and R(a, h) = FN (a).
The Euler characteristics of AlgF and FixF exist, by Corollary 1.5, and are
equal, by Proposition 2.4(a). The statement on coalgebras follows by duality.

�

For example, if f is an endomorphism of a finite poset A then the sub-
posets

{a ∈ A | f(a) ≤ a}, {a ∈ A | f(a) = a}, {a ∈ A | f(a) ≥ a}

all have the same Euler characteristic.
The theory of Euler characteristic presented here can be extended in at

least two directions.
First, we can relax the finiteness assumption. For instance, the category

of finite sets and bijections should have Euler characteristic
∑∞

n=0 1/|Sn| = e,
as observed in [BD]. See the remarks after Corollary 4.3.

Second, the Euler characteristic of categories is defined in terms of the
cardinality of finite sets, and the theory can be generalized to V-enriched cate-
gories whenever there is a suitable notion of cardinality or Euler characteristic
of objects of V . For example, V might be the category of finite-dimensional
vector spaces, with dimension playing the role of cardinality, and this leads to
an Euler characteristic for finite linear categories. For another example, a 0-
category is a set and an n-category is a category enriched in (n− 1)-categories;
iterating, we obtain an Euler characteristic for finite n-categories. In particular,
if Sn is the n-category consisting of two parallel n-cells then χ(Sn) = 1+(−1)n.

3 The cardinality of a colimit

The main theorem of this section generalizes the formulas

|X ∪ Y | = |X | + |Y | − |X ∩ Y |, |S/G| = |S|/|G|

where X and Y are finite subsets of some larger set and S is a finite set acted
on freely by a finite group G.

Take a finite functor X : A - Set. The colimit (or direct limit, or
inductive limit) lim

−→
X can be viewed as the gluing-together of the sets X(a).

Its cardinality depends on the way in which these sets are glued together, which
in turn is determined by the action of X on arrows, so in general there is no
formula for |lim

−→
X | purely in terms of the cardinalities |X(a)| (a ∈ A).

Suppose, however, that we are in the extreme case that there are no un-
forced equations of the type (X(f))(x) = (X(f ′))(x′), where f and f ′ are
arrows in A. For pushouts, this means that the two functions along which we
are pushing out are injective; when A is a group G, so that X is a set with a
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G-action, it means that the action is free. In this extreme case, |lim
−→

X | can be

calculated as a weighted sum of the cardinalities |X(a)|.
We now make this precise. Recall from §1 that a Set-valued functor is

said to be familially representable if it is a sum of representables.

Proposition 3.1 Let A be a finite category and k• a weighting on A. If X :
A - Set is finite and familially representable then |lim

−→
X | =

∑
a ka|X(a)|.

Proof The result holds if X is representable, since then |lim
−→

X | = 1. On the

other hand, the class of functors X for which the conclusion holds is clearly
closed under finite sums. �

To make use of this, we need a way of recognizing familially representable
functors. Carboni and Johnstone [CJ1, CJ2] show that when A satisfies certain
hypotheses, including having all limits, a functor A - Set is familially
representable if and only if it preserves connected limits. This does not help
directly, because our categories A are finite, and a finite category does not have
even all finite limits unless it is a lattice.

However, a standard philosophy applies: when A fails to have all limits of
a certain type, it is rarely useful to consider the functors A - Set preserving
limits of that type; the correct substitute is the class of functors that are suit-
ably ‘flat’. The notion of flatness appropriate here will be called nondegeneracy.
(This is unrelated to the usage of ‘nondegenerate’ in §1.)

Definition 3.2 Let A be a small category. A functor X : A - Set is
nondegenerate if E (X) has the following diagram-completion properties:

·

·
....
....
.-

·

-

·

-
.........-

· ..........- ·
-- ·

Explicitly, this means that

a. given arrows a
f- b �f ′

a′ in A and x ∈ X(a), x′ ∈ X(a′) satisfying

(X(f))(x) = (X(f ′))(x′), there exist arrows a �g
c

g′

- a′ and z ∈
X(c) satisfying fg = f ′g′, (X(g))(z) = x, and (X(g′))(z) = x′, and

b. given arrows a
f-
f ′

- b in A and x ∈ X(a) satisfying (X(f))(x) =

(X(f ′))(x), there exist c
g- a and z ∈ X(c) satisfying fg = f ′g and

(X(g))(z) = x.

This is the most concrete form of the definition. For further explanation,
see the Appendix; for references, see [Ln]. In the Appendix (Lemma 5.2)
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it is shown that under suitable hypotheses, nondegeneracy is equivalent to
familial representability, and from this we deduce a more applicable form of
Proposition 3.1:

Theorem 3.3 Let A be a finite Cauchy-complete category and k• a weight-
ing on A. If X : A - Set is finite and nondegenerate then |lim

−→
X | =

∑
a ka|X(a)|. �

Using the fact that lim
−→

X is the set of connected-components of E (X), this

may be rephrased as |π0(E (X))| =
∑

ka|X(a)|. On the other hand, Propo-
sition 2.8 implies that χ(E (X)) =

∑
ka|X(a)|. Indeed, under the hypotheses

of the Theorem, X is familially representable, so each connected-component of
E (X) has an initial object, so χ(E (X)) = |π0(E (X))|.

Examples 3.4 a. Let L be the category of 1.11(a). A functor X : L -
Set is nondegenerate if and only if both functions X(a) - X(bi) are
injective. In that case, Theorem 3.3 says that

|X(b1) +X(a) X(b2)| = |X(b1)| + |X(b2)| − |X(a)|

where the set on the left-hand side is a pushout.

b. Let B be the category

(
a

f-
g
- b

)
. A functor X : B - Set is non-

degenerate if and only if the two functions X(f), X(g) are injective and
have disjoint images. The unique weighting k• on B is (ka, kb) = (−1, 1),
and

|(X(b))/ ∼ | = |X(b)| − |X(a)|

where ∼ is the equivalence relation generated by (X(f))(x) ∼ (X(g))(x)
for all x ∈ X(a).

c. Let G be a group. A functor X : G - Set is a set S equipped with
a left G-action; the functor is nondegenerate if and only if the action is
free. Theorem 3.3 then says that the number of orbits is |S|/|G|.

d. The Theorem can be viewed as a generalized inclusion-exclusion principle.
(Compare [R].) Let n ≥ 0 and let Pn be the poset of nonempty subsets
of {1, . . . , n}, ordered by inclusion. (So P

op
2 is the category L of (a).)

Its unique coweighting k
•

is defined by kJ = (−1)|J|−1. Given subsets
S1, . . . , Sn of some set, there is a nondegenerate functor X : Pop

n
-

Set defined on objects by X(J) =
⋂

j∈J Sj and on maps by inclusion.
Theorem 3.3 gives the inclusion-exclusion formula,

|S1 ∪ · · · ∪ Sn| =
∑

∅6=J⊆{1,...,n}

(−1)|J|−1

∣∣∣∣∣∣

⋂

j∈J

Sj

∣∣∣∣∣∣
.
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Corollary 3.5 Let A be a finite Cauchy-complete category admitting a
weighting. Let X, Y : A - Set be finite nondegenerate functors satisfy-
ing |X(a)| = |Y (a)| for all a ∈ A. Then |lim

−→
X | = |lim

−→
Y |. �

The condition that A admits a weighting cannot be dropped: consider
the category A of Example 1.11(d) and the functors X = A(a1,−) + A(a4,−),
Y = A(a2,−).

If A not only has a weighting but admits Möbius inversion then a sharper
statement can be made (Proposition 1.8).

4 Relations with Rota’s theory

In 1964, Gian-Carlo Rota published his seminal paper [R] on Möbius inversion
in posets. The name is motivated as follows: in the poset of positive integers
ordered by divisibility, µ(a, b) = µ(b/a) whenever a divides b, where the µ on
the right-hand side is the classical Möbius function. He was not the first to
define Möbius inversion in posets—Weisner, Hall, and Ward preceded him—but
Rota’s contribution was the decisive one; in particular, he realized the power
of the method in enumerative combinatorics. The history of Möbius inversion
is well described in [R], [G] and [St].

In this section we discover that some of the principal results in Rota’s the-
ory are the order-theoretic shadows of more general categorical facts. We also
examine briefly a different generalization of Möbius–Rota inversion, proposed
by other authors.

Given a poset A, Rota considered its incidence algebra I(A), which is the
subring of R(A) consisting of the integer-valued θ ∈ R(A) such that θ(a, b) = 0
whenever a 6≤ b. By Example 1.2(a) or Corollary 1.5, µ ∈ I(A).

In posets, then, ζ(a, b) = 0 ⇒ µ(a, b) = 0. More generally:

Theorem 4.1 If A is a finite category with Möbius inversion then, for a, b ∈ A,

ζ(a, b) = 0 ⇒ µ(a, b) = 0.

The proof uses a combinatorial lemma.

Lemma 4.2 Let n ≥ 2 and σ ∈ Sn−1. Then there exist k ≥ 1 and p0, . . . , pk

such that

p0 = 1, p1, . . . , pk−1 ∈ {1, . . . , n − 1}, pk = n,

and pr = σ(pr−1) + 1 for each r ∈ {1, . . . , k}.

Proof Suppose not; then there is an infinite sequence (pr)r≥0 of elements of
{1, . . . , n − 1} satisfying p0 = 1 and pr = σ(pr−1) + 1 for all r ≥ 1. Let ε be
the endomorphism of the finite set {pr | r ≥ 0} defined by ε(p) = σ(p) + 1.
Then ε is injective but not surjective (since 1 is not in its image), contradicting
finiteness. �
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Proof of Theorem 4.1 Write the objects of A as a1, . . . , an. There is an
n × n matrix Z defined by Zij = ζ(ai, aj), and Z is invertible over Q with
(Z−1)ij = µ(ai, aj). Suppose that i, j ∈ {1, . . . , n} and Zij = 0. Certainly
i 6= j, so n ≥ 2 and we may assume that (i, j) = (1, n). By the standard
formula for the inverse of a matrix, our task is to prove that the (n, 1)-minor
of Z is 0.

The (n, 1)-minor of Z is

∑

σ∈Sn−1

±Z1,σ(1)+1 · · ·Zn−1,σ(n−1)+1,

and in fact we will prove that each summand is 0. Indeed, let σ ∈ Sn−1. Take
p0, . . . , pk as in the Lemma. By hypothesis, there is no map a1

- an in A.
Categories have composition, so there is no diagram

a1 = ap0

- ap1

- · · · - apk
= an

in A. Hence ζ(apr−1
, apr

) = 0 for some r ∈ {1, . . . , k}, giving Zpr−1,σ(pr−1)+1 =
0, as required. �

Given objects a, c of a category A, let Aa,c be the full subcategory consist-
ing of those b ∈ A for which there exist arrows a - b - c. Theorem 4.1
easily implies:

Corollary 4.3 Let A be a finite category. Then A has Möbius inversion if
and only if Aa,c has Möbius inversion for all a, c ∈ A, and in that case the
Möbius function of Aa,c is the restriction of that of A. �

These results suggest a way of relaxing the finiteness assumption on our
categories. It extends to categories the local finiteness condition on posets used
in the Rota theory. Let A be a category for which each subcategory Aa,c is
finite. Then each hom-set A(a, b) has finite cardinality, ζ(a, b), and there is a
Q-algebra

R̂(A) = {θ : ob A × ob A - Q | for a, b ∈ A, ζ(a, b) = 0 ⇒ θ(a, b) = 0}

with operations defined as for R(A). Evidently ζ ∈ R̂(A), and A may be said
to have Möbius inversion if ζ has an inverse µ in R̂(A). By Theorem 4.1, this
extends the definition for finite categories. For example, the skeletal category
Dinj of finite totally ordered sets and order-preserving injections has Möbius
inversion; compare Example 1.2(c).

The main theorem in Rota’s paper [R] relates the Möbius functions of two
posets linked by a Galois connection. Viewing a poset as a special category,
a Galois connection is nothing but a (contravariant) adjunction, and Rota’s
theorem is a special case of the following result.
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Proposition 4.4 Let A and B be finite categories with Möbius inversion. Let

A
F-�
G

B be an adjunction, F ⊣ G. Then for all a ∈ A, b ∈ B,

∑

a′:F (a′)=b

µ(a, a′) =
∑

b′:G(b′)=a

µ(b′, b).

Proof Write ζ(a, b) = ζ(F (a), b) = ζ(a, G(b)). Then for all a ∈ A, b ∈ B,

∑

a′:Fa′=b

µ(a, a′) =
∑

a′∈A

µ(a, a′)δ(F (a′), b) =
∑

a′∈A, b′∈B

µ(a, a′)ζ(a′, b′)µ(b′, b).

The result follows by symmetry. �

For example, when l is an element of a finite lattice L, the inclusion of
the sub-poset {x ∈ L | x ≤ l} into L has right adjoint (−∧ l), giving Weisner’s
Theorem (p.351 of [R]).

The Euler characteristic of posets has been studied extensively; see [St] for
references. Given a finite poset A, the classifying space BA always has Euler
characteristic, which by Proposition 2.11 is equal to the Euler characteristic of
the category A. On the other hand, we may form a new poset Ã by adjoining
to A a least element 0 and a greatest element 1, and then χ(A) = µ

Ã
(0, 1)+ 1:

see [R] or §3.8 of [St]. This result can be extended from posets to categories:

Proposition 4.5 Let A be a finite category. Write Ã for the category obtained
from A by freely adjoining an initial object 0 and a terminal object 1. If A has
Möbius inversion then Ã does too, and χ(A) = µ

Ã
(0, 1) + 1.

Proof Suppose that A has Möbius inversion. Let A0 be the category obtained
from A by freely adjoining an initial object 0. Extend µ ∈ R(A) to a function
µ ∈ R(A0) by defining

µ(0, b) = −
∑

a∈A

µ(a, b), µ(a, 0) = 0, µ(0, 0) = 1

(b, a ∈ A). It is easily checked that this is the Möbius function of A0.

Dually, if B is a finite category with Möbius inversion then the category
B1 obtained from B by freely adjoining a terminal object 1 also has Möbius
inversion, with µ(c, 1) = −

∑
b∈B

µ(c, b) for all c ∈ B. Take B = A0: then

A01 = Ã has Möbius inversion, and

µ(0, 1) = −
∑

b∈A0

µ(0, b) = −
∑

b∈A

µ(0, b) − µ(0, 0) =
∑

a,b∈A

µ(a, b) − 1 = χ(A) − 1.

�
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Remark Given categories B, A and a functor M : Bop × A - Set, the
collage of M is the category C formed by taking the disjoint union of B and A

and adjoining one arrow b - a for each b ∈ B, a ∈ A and m ∈ M(b, a), with
composition defined using M [CKW]. Assuming finiteness, if B and A have
Möbius inversion then so does C:

µC(b, b′) = µB(b, b′), µC(a, a′) = µA(a, a′), µC(a, b) = 0,

µC(b, a) = −
∑

b′,a′

µB(b, b′) |M(b′, a′)|µA(a′, a)

(b, b′ ∈ B, a, a′ ∈ A). In the proof above, the calculation of the Möbius function
of A0 is the special case where B is the terminal category and M has constant
value 1. The ordinal sum of posets is another special case. Moreover, one easily
deduces a formula for the Euler characteristic of a collage, which in the special
case of posets is essentially Theorem 3.1 of Walker [Wk].

Let us now look at the different generalization of Rota’s Möbius inversion pro-
posed, independently, by Content, Lemay and Leroux [CLL] and by Haigh [H].
(See also [Lr] and §4 of [La]. Haigh briefly considered the same generalization
as here, too; see 3.5 of [H].) Given a sufficiently finite category A, they take
the algebra I(A) of functions from {arrows of A} to Q (or more generally, to
some base commutative ring), with a convolution product:

(θφ)(f) =
∑

hg=f

θ(g)φ(h).

Taking ζ ∈ I(A) to have constant value 1, they call the Möbius function of A

the inverse µ = ζ−1 in I(A), if it exists. When A is a poset, this agrees with
Rota; when A is a monoid, it agrees with Cartier and Foata [CF].

They seek to solve a harder problem than we do: if a finite category
A has Möbius inversion in their sense then it does in ours (with µ(a, b) =∑

f∈A(a,b) µ(f)), but not conversely. For instance, a non-trivial finite group
never has Möbius inversion in their sense, but always does in ours.

5 Appendix: category theory

Here follows a skeletal account of some standard notions: category of elements,
flat functors, and Cauchy-completeness. Details can be found in texts such
as [Bo]. Throughout, A denotes a small category.

Let X : A - Set. The category of elements E (X) of X has as objects
all pairs (a, x) where a ∈ A and x ∈ X(a), and as maps (a, x) - (a′, x′) all
maps f : a - a′ in A such that (X(f))(x) = x′.

Similarly, let X : A - Cat, where Cat is the category of small cate-
gories and functors. Then X has a category of elements E (X); its objects are
pairs (a, x) where a ∈ A and x ∈ X(a), and its maps (a, x) - (a′, x′) are
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pairs (f, ξ) where f : a - a′ in A and ξ : (X(f))(x) - x′ in X(a′). This
definition can be made even when X is a weak functor or pseudofunctor, that
is, only preserves composition and identities up to coherent isomorphism. The
weak functors A - Cat correspond to the fibrations over Aop; see [Bo].

A set can be viewed as a discrete category (one in which the only maps are
the identities). From this point of view, Set-valued functors are special Cat-
valued functors, and the second definition of the category of elements extends
the first.

Any two functors Y : Aop - Set and X : A - Set have a tensor
product Y ⊗ X , a set, defined by

Y ⊗ X =

(
∐

a∈A

Y (a) × X(a)

)
/ ∼

where ∼ is the equivalence relation generated by (y, (X(f))(x)) ∼
((Y (f))(y), x) whenever f : a - b, x ∈ X(a) and y ∈ Y (b). (It may be help-
ful to think of X and Y as left and right A-modules.) A functor X : A -
Set is flat if

−⊗ X : [Aop,Set] - Set

preserves finite limits. An equivalent condition is that E (X) is cofiltered, that
is, every finite diagram in E (X) admits at least one cone.

Proposition 5.1 The following conditions on a functor X : A - Set are
equivalent:

a. X is nondegenerate (in the sense of 3.2)

b. every connected-component of E (X) is cofiltered

c. X is a sum of flat functors.

d. −⊗ X : [Aop,Set] - Set preserves finite connected limits

Proof See [Ln] or [ABLR]. �

An idempotent e : a - a in A splits if there exist a
s-�
i

b such that

si = 1 and is = e. The category A is Cauchy-complete if every idempotent
in A splits. (This is a very weak form of completeness. Let I be the category
consisting of one object, the identity on it, and an idempotent u. Then a
splitting of e is precisely a limit of the functor I - A defined by u 7−→ e.)
All of the examples of categories in this paper are Cauchy-complete, except
that a finite monoid is Cauchy-complete if and only if it is a group.

Lemma 5.2 Let A be a Cauchy-complete category and X : A - Set a finite
functor. Then X is familially representable if and only if X is nondegenerate.
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As in §1, ‘finite’ means that E (X) is a finite category.

Proof By Proposition 5.1, it is enough to prove that a finite functor X is
representable if and only if it is flat. ‘Only if’ is immediate.

For ‘if’, suppose that X is flat. Then E (X) is cofiltered and finite, so the
identity functor 1E(X) admits a cone. Also, E (X) is Cauchy-complete since A

is. Now, if C is a Cauchy-complete category and (j
pc- c)c∈C is a cone on 1C

then pj is idempotent, and the object through which it splits is initial. Hence
E (X) has an initial object; equivalently, X is representable. �
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