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Abstract. The equivariant main conjecture of Iwasawa theory is
shown to hold for a Galois extension K/k of totally real number fields
with Galois group an l-adic pro-l Lie group of dimension 1 containing
an abelian subgroup of index l, provided that Iwasawa’s µ-invariant
µ(K/k) vanishes.
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This note justifies a remark made in the introduction of [6] according to which
the “main conjecture” of equivariant Iwasawa theory, as formulated in [2,
p.564], holds when G = G(K/k) is a pro-l group with an abelian subgroup
G′ of index l.

We quickly repeat the general set-up and, in doing so, refer the reader to [5,§1]
for facts and notation that is taken from our earlier papers on Iwasawa theory.
Namely, l is a fixed odd prime number and K/k a Galois extension of totally
real number fields, with k/Q and K/k∞ finite, where k∞ is the cyclotomic
Zl-extension of k. Throughout it will be assumed that Iwasawa’s µ-invariant
µ(K/k) vanishes. We also fix a finite set S of primes of k containing all primes
above ∞ and all those whose ramification index in K/k is divisible by l.

In this situation it is shown in [5] that the “main conjecture” of equivariant
Iwasawa theory would follow from two kinds of hypothetical congruences bet-
ween values of Iwasawa L-functions. One of these kinds, the so-called torsion
congruences (see [5, Proposition 3.2]), stated as

ver(λKab/k)

λK/k′
≡ 1 mod T ′

1We acknowledge financial support provided by NSERC and the University of Augsburg.
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118 Jürgen Ritter and Alfred Weiss

in the proof of the proposition in §2, has meanwhile been verified in [6].

The purpose of the present paper is to show that the torsion congruences al-
ready suffice to obtain the whole conjecture in the special case when G is a
pro-l group with an abelian subgroup G′ of index l. Before stating the precise
theorem we need to recall some notation (compare [5,§1]).

Λ∧G is the l-completion of the localization Λ•G which is obtained from
the Iwasawa algebra ΛG = Zl[[G]] by inverting all central elements which
are regular in ΛG/lΛG; Q∧G is the total ring of fractions of Λ∧G;

T (Q∧G) = Q∧G/[Q∧G,Q∧G] is the quotient of Q∧G by Lie commuta-
tors;

if G is a pro-l group, then (see [5,§2] 2)

(LD)

K1(Λ∧G)
L

−→ T (Q∧G)
Det ↓ Tr

≃ ↓

HOM(RlG, (Λ
c
∧Γk)

×)
L
−→ Hom∗(RlG,Q

c
∧Γk)

is the logarithmic diagram defining the logarithmic pseudomeasure

tK/k ∈ T (Q∧G) by Tr(tK/k) = L(LK/k)

where LK/k = LK/k,S ∈ HOM(RlG, (Λ
c
∧Γk)

×) is the Iwasawa L-function.

Theorem. With K/k and S as at the beginning and G = G(K/k) a pro-l
group, tK/k is integral (i.e., tK/k ∈ T (Λ∧G)) whenever G has an abelian
subgroup G′ of index l.

As a corollary, by [5, Proposition 3.2] and [6, Theorem], LK/k ∈ DetK1(Λ∧G) ,
which implies the conjecture (see [3, Theorem A]), up to its uniqueness asser-
tion. However, SK1(QG) = 1 because each simple component, after tensoring
up with a suitable extension field of its centre, becomes isomorphic to a ma-
trix ring of dimension a divisor of l2 by the proof of [2, Proposition 6], as the
character degrees χ(1) all divide l. Now apply [7, p.334, Corollary].

The proof of the theorem is carried out in §2; before, in a short §1, we introduce
restriction maps

ResG
′

G : T (Q∧G) → T (Q∧G
′)

and
ResG

′

G : Hom∗(RlG,Q
c
∧Γk) → Hom∗(RlG

′,Qc
∧Γk′ )

2RlG is the ring of all (virtual) Ql
c-characters of G with open kernel; Γk =

G(k∞/k) ; Λc
∧
Γk = Zl

c ⊗Zl
Λ∧Γk with Zl

c the ring of integers in a fixed algebraic clos-

ure Ql
c of Ql
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making the diagram

K1(Λ∧G)
L

−→ T (Q∧G)
Tr
−→ Hom∗(RlG,Q

c
∧Γk)

resG
′

G ↓ ResG
′

G ↓ ResG
′

G ↓

K1(Λ∧G
′)

L
′

−→ T (Q∧G
′)

Tr′

−→ Hom∗(RlG
′,Qc

∧Γk′)

commute 3 for any pair of pro-l groups G = G(K/k) and G′ = G(K/k′) ≤ G

such that [G : G′] is finite. We remark that replacing ResG
′

G by the “natural”
restriction map,

(resG
′

G f)(χ′) = f(indGG′χ′) , f ∈ Hom∗(RlG,Q
c
∧Γk) , χ

′ ∈ RlG
′ ,

does not work, because induction and Adams operations do not commute.

1 . Res

Let G = G(K/k) be a pro-l group and G′ = G(K/k′) ≤ G an open subgroup.
Recall that Ψ : Λc

∧Γk → Λc
∧Γk is the map induced by Ψ(γ) = γl for γ ∈ Γk

(compare [5,§1]) and that ψl is the lth Adams operation on Rl(−).

Definition. ResG
′

G : Hom∗(RlG,Q
c
∧Γk) → Hom∗(RlG

′,Qc
∧Γk′) sends f to

ResG
′

G f =
[

χ′ 7→ f(indGG′χ′) +
∑

r≥1

Ψr

lr
(f(ψr−1

l χ))
]

,

where χ = ψl(indGG′χ′) − indGG′(ψlχ
′) .

To justify the definition we must show that the sum
∑

r≥1 is actually a finite

sum. For this, let {t} be a set of coset representatives of G′ in G, so G = ∪̇ttG
′,

and define
m(g) = min{r ≥ 0 : gl

r

∈ G′} for g ∈ G .

Then
indGG′χ′(g) =

∑

t

χ̇′(gt) =
∑

{t:m(gt)=0}

χ′(gt) ,

if, as usual, χ̇′ coincides with χ′ on G′ and vanishes on G \G′. Hence,

χ(g) = (indGG′χ′)(gl) − indGG′(ψlχ
′)(g)

=
∑

m(glt)=0 χ
′(glt) −

∑

m(gt)=0 χ
′(glt) =

∑

m(gt)=1 χ
′(glt) .

If r0 is such that Gl
r0

⊂ G′, then ψr0−1
l χ = 0 and

∑

r≥1 =
∑r0−2

r=1 , because

the sum
∑

m(gt)=1 is empty when g ∈ Gl
r0−1

.

3For finite G, this ResG
′

G
, making the left square commute, appears already in [1, p.14].

For us the properties (HD),(TD) of ResG
′

G
shown in §1 are equally necessary for the proof of

the Theorem above.
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It remains to show that ResG
′

G f ∈ Hom∗(RlG
′,Qc

∧Γk′) , i.e., ResG
′

G f is a Galois
stable homomorphism, compatible with W-twists (see [5,§1]), and taking values
in Qc

∧Γk′ . The first property is easily checked and the third follows from the
second as in [2, proof of Lemma 9]. We turn to twisting.

Let ρ′ be a type-W character of G′, so ρ′ is inflated from Γk′ , and write ρ′ =
resG

′

G ρ with ρ inflated from Γk to G. Then

f(indGG′(ρ′χ′)) = f(ρ · indGG′χ′) = ρ♯(f(indGG′χ′)) = (ρ′)♯(f(indGG′χ′))

as f(indGG′χ′) ∈ Qc
∧Γk′ . Moreover, since ψl is multiplicative,

ψl(indGG′(ρ′χ′))− indGG′(ψl(ρ
′χ′)) = ψl(ρ · indGG′χ′)− indGG′((ρ′)l ·ψlχ

′) = ρl ·χ

and thus

Ψr

lr (f(ψr−1
l (ρl · χ)))) = Ψr

lr f(ρl
r

· ψr−1
l χ) =

Ψr

lr ((ρl
r

)♯(f(ψr−1
l χ))) = ρ♯( Ψr

lr f(ψr−1
l χ)) = (ρ′)♯( Ψr

lr f(ψr−1
l χ)) .

Lemma 1. The diagram below commutes. In it, L and L
′ are the lower hori-

zontal maps of the logarithmic diagram (LD) for G and G′, respectively.

(HD)

HOM(RlG, (Λ
c
∧Γk)

×)
L
−→ Hom∗(RlG,Q

c
∧Γk)

resG
′

G ↓ ResG
′

G ↓

HOM(RlG
′, (Λc

∧Γk′)
×)

L
′

−→ Hom∗(RlG
′,Qc

∧Γk′) .

Indeed, for f ∈ HOM(RlG, (Λ
c
∧Γk)

×) we get

(ResG
′

G Lf)(χ′) = (Lf)(indGG′χ′) +
∑

r≥1
Ψr

lr [(Lf)(ψr−1
l χ)]

=̇(Lf)(indGG′χ′) +
∑

r≥1
Ψr

lr [log(f(ψr−1
l χ)) − Ψ

l log(f(ψrl χ))]

= (Lf)(indGG′χ′) +
∑

r≥1
Ψr

lr log(f(ψr−1
l χ)) −

∑

r≥2
Ψr

lr log(f(ψr−1
l χ))

= (Lf)(indGG′χ′) + Ψ
l log(f(χ)) = 1

l log f(indχ′)l

Ψ(f(ψlindχ′)) + Ψ
l log f(ψlindχ′)

f(indψlχ′)

= 1
l log f(indχ′)l·Ψf(ψlindχ′)

Ψf(ψlindχ′)·Ψf(indψlχ′) = 1
l log f(indχ′)l

Ψf(indψlχ′)

= (L′resG
′

G f)(χ′) .

The dotted equality sign, =̇, is due to the congruence f(χ)l

Ψf(ψlχ) ≡ 1 mod lΛc
∧Γk

(see [5,§1]) and to χ(1) = 0, so (ψr−1
l χ)(1) = 0 for every r. In fact, with

χ̃
def
= ψr−1

l χ, we have

f(χ̃)l ≡ Ψf(ψlχ̃) mod lΛc
∧Γk =⇒

f(χ̃)l
s

≡ Ψsf(ψsl χ̃) ≡ Ψsf(χ̃(1)1) = 1 mod lΛc
∧Γk

for big enough s. Thus (Lf)(χ̃) = log(f(χ̃))− Ψ
l log(f(ψlχ̃)) as ‘log’ converges

on an element a power of which is ≡ 1 mod lΛc
∧Γk.
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Equivariant Iwasawa Theory: An Example 121

The proof of Lemma 1 is complete.

By means of the trace isomorphism Tr : T (−) → Hom∗(−) we next transport

ResG
′

G to ResG
′

G : T (Q∧G) → T (Q∧G
′), i.e., the diagram

(TD)

T (Q∧G)
Tr
−→ Hom∗(RlG,Q

c
∧Γk)

ResG
′

G ↓ ResG
′

G ↓

T (Q∧G
′)

Tr′
−→ Hom∗(RlG

′,Qc
∧Γk′ )

commutes.

Lemma 2.

K1(Λ∧G)
L
→ T (Q∧G)

resG
′

G ↓ ResG
′

G ↓

K1(Λ∧G
′)

L
′

→ T (Q∧G
′)

commutes and ResG
′

G tK/k = tK/k′ .

The first claim follows from gluing together the diagrams (LD), (HD), (TD)
and applying [2, Lemma 9]; the second claim follows from resG

′

G LK/k = LK/k′
[2, Proposition 12].

The next lemma already concentrates on the case when G′ is abelian and
[G : G′] = l. We set A = G/G′ = 〈a〉 and observe that a acts on G′ by
conjugation.

Lemma 3. Let τ : Λ∧G→ T (Λ∧G) denote the canonical map and g ∈ G. If G′

is abelian 4 and of index l in G, then

ResG
′

G (τg) =

{

∑l−1
i=0 g

ai

if g ∈ G′

gl if g /∈ G′ .

The lemma is just a special case of

Proposition A. Let H be an open subgroup of G = G(K/k). For g ∈ G set
mH
G (g) = min{r ≥ 0 : gl

r

∈ H} 5, and let t run through a set of left

representatives of H in G, i.e., G = ˙⋃tH . Then

1. ResHG τG(g) =
∑

t τH((t−1gt)l
mH

G (t−1gt)

)/lm
H
G (t−1gt) ,

2. Res is transitive ,

3. ResHG is integral, i.e., ResHG (T (Λ∧G)) ⊂ T (Λ∧H) for H ≤ G of finite
index.

Proposition A will be shown in the Appendix.

For the purpose of this paper it is enough to know Lemma 3 which we quick-
ly prove directly on applying Tr′ to both sides and employing the formula
Tr′(τ ′g)(χ′) = χ′(g)g with g denoting the image of g ∈ G′ in Γk′ (see [5,§1]) :

4whence τ ′ : Λ∧G′ → T (Λ∧G′) is the identity map
5so mH

G
(g) is the m(g) defined earlier with H = G′

Documenta Mathematica 13 (2008) 117–129



122 Jürgen Ritter and Alfred Weiss

1. (Tr′ResG
′

G (τg))(χ′) = ResG
′

G (Tr(τg))(χ′) = Tr(τg)(ind G
G′χ′) +

Ψ
l Tr(τg)(χ) since Gl ⊂ G′. Now, if g ∈ G′, Tr(τg)(indGG′χ′) =

∑l−1
i=0 χ

′(ga
i

)g and χ(g) = 0. On the other hand, if g /∈ G′,

Tr(τg)(ind G
G′χ′) = 0 and Ψ

l Tr(τg)(χ) = 1
l indGG′χ′(gl)gl = χ′(gl)gl

since we may choose a = g mod G′.

2. Tr′(
∑l−1

i=0 g
ai

)(χ′) =
∑l−1

i=0 χ
′(ga

i

)g, since ga
i

and g have the same image

in Γk and so in Γk′ . On the other hand, Tr′(gl)(χ′) = χ′(gl)gl .

The lemma is established.

We note that if Γ (≃ Zl) is a central subgroup of G contained in the abelian
subgoup G′ of index l, then the elements of T (Λ∧G) can uniquely be written
as

∑

g βgτ(g) with βg ∈ Λ∧Γ and g running through a set of preimages of
conjugacy classes of G/Γ (see [3, Lemma 5]). For each summand we have

ResG
′

G (βgτ(g)) =

{

∑l−1
i=0 βgg

ai

if g ∈ G′

Ψ(βg)g
l if g /∈ G′ .

2 . Proof of the theorem

In this section G = G(K/k) is a pro-l group and G′ = G(K/k′) an abelian
subgroup of index l (K/k is as in the introduction). As before, A = G/G′ = 〈a〉 ,
and we set Â = 1 + a+ · · · + al−1 .

If G itself is abelian, the theorem holds by [4,§5, Example 1], whence we assume
that G is non-abelian.

Lemma 4. Assume that there exists an element x ∈ T (Λ∧G) such that

deflG
ab

G x = deflG
ab

G tK/k and ResG
′

G x = ResG
′

G tK/k . Then tK/k ∈ T (Λ∧G).

Denoting by Kab the fixed field of the finite group [G,G], we first obser-

ve, because of [5, Lemma 2.1] and Lemma 2, that deflG
ab

G tK/k = tKab/k and

ResG
′

G tK/k = tK/k′ are integral : indeed, a logarithmic pseudomeasure is integral
whenever the group is abelian.

From [4, Proposition 9] we obtain a power ln of l such that lntK/k ∈ T (Λ∧G).

Consider the element x̃ = ln(x − tK/k) ∈ T (Λ∧G). It satisfies deflG
ab

G x̃ =

0 = ResG
′

G x̃ . We are going to prove x̃ = 0 which implies x = tK/k because
Hom∗(RlG,Q

c
∧Γk), and so T (Q∧G), is torsionfree; whence the the lemma will

be verified.

The proof of x̃ = 0 employs the commutative diagram shown in the proof of
[5, Proposition 2.2] :

1 + a∧ ֌ (Λ∧G)×
deflGab

G

։ (Λ∧G
ab)×

↓
ˇ

L ↓ Lab ↓

τ(a∧) ֌ T (Λ∧G)
deflGab

G

։ Λ∧G
ab ,
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in which L is extended to (Λ∧G)× by means of the canonical surjection
(Λ∧G)× ։ K1(Λ∧G) and a∧ = ker(Λ∧G → Λ∧G

ab). The diagram yields a

v ∈ (Λ∧G)× with L(v) = x̃, simply because deflG
ab

G x̃ = 0. Combining diagrams
(HD), (LD) and (TD), we arrive at

L
′(resG

′

G (Det v)) = ResG
′

G (L(Det v)) = ResG
′

G (Tr L(v)) = Tr′(ResG
′

G x̃) = 0

and, with resG
′

G replaced by deflG
ab

G , at

L
ab(deflG

ab

G (Det v)) = deflG
ab

G (L(Det v)) =

= deflG
ab

G (Tr L(v)) = Trab(deflG
ab

G x̃) = 0 ,

since L and Tr commute with deflation.

The first displayed formula in [3, p.46] now implies that resG
′

G (Det v)

and deflG
ab

G (Det v) are torsion elements in HOM(RlG
′, (Λc

∧Γk′)
×) and

HOM(Rl(G
ab), (Λc

∧Γk)
×), respectively. Moreover, the first paragraph of

the proof of [5, Proposition 3.2] therefore shows that Det v itself is a torsion
element in HOM(RlG, (Λ

c
∧Γk)

×). Consequently, for some natural number m,
(Det v)l

m

= 1, so lmL(Det v) = 0 = lmTr(Lv) = Tr(lmx̃) , and x̃ = 0 follows,
as has been claimed.

We now introduce the commutative diagram

τ(a∧) ֌ T (Λ∧G) ։ Λ∧G
ab = T (Λ∧G

ab)

Res ↓ ResG
′

G ↓ Res ↓
b
′
∧ = τ ′(b′∧) ֌Λ∧G

′ = T (Λ∧G
′) ։ Λ∧(G′/[G,G]) = T (Λ∧(G′/[G,G]))

with exact rows (of which the upper one has already appeared in the diagram
shown in the proof of the preceding lemma). The images of all vertical maps
are fixed elementwise by A because of Lemma 3. Thus we can turn the diagram
into

(D)

τ(a∧) ֌ T (Λ∧G) ։ Λ∧G
ab

Res ↓ ResG
′

G ↓ Res ↓

b
′
∧
A

֌ (Λ∧G
′)A → (Λ∧(G′/[G,G]))A

↓
ˇ

↓
ˇ

↓
ˇ

Ĥ0(A, b′∧) → Ĥ0(A,Λ∧G
′) → Ĥ0(A,Λ∧(G′/[G,G]))

with exact rows and canonical lower vertical maps.

Lemma 5. In (D), the left vertical column is exact and the left bottom hori-
zontal map is injective.

Proof. The ideal a∧ is (additively) generated by the elements g(c− 1) with

g ∈ G, c ∈ [G,G] ; those with g ∈ G′ generate b
′
∧. We compute ResG

′

G τ(g(c−1)),
using Lemma 3 :
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1. if g ∈ G′, ResG
′

G τ(g(c − 1)) =
∑l−1

i=0((gc)
ai

− ga
i

) =
∑l−1

i=0

(

g(c− 1)
)ai

∈

trAb
′
∧ ,

2. if g /∈ G′, ResG
′

G τ(g(c−1)) = ResG
′

G (τ(gc)−τ(g)) = (gc)l−gl = glcÂ−gl =
0 , since

(⋆) [G,G]Â = 1

by [G,G]=̇[G,G′] and [G,G′]Â = ((G′)a−1)Â = 1 as (a − 1)Â = 0. Here,
the dotted equality sign, =̇, results from the equation

[bg′1, b
ig′2] = (g′1)

−1b−1(g′2)
−1b−ibg′1b

ig′2 = (g′1)
−1(g′2

−1
)b(g′1)

bi

g′2 =
(

(g′1)
−1(g′1)

bi
)(

(g′2
−1

)bg′2

)

∈ [G′, G] · [G,G′] ≤ [G,G′]

for g′1, g
′
2 ∈ G′ and b ∈ G \G′, because G′ is abelian and normal in G.

Thus, ResG
′

G τ(a∧) = trAb
′
∧ , which proves the first claim of the lemma.

The second claim follows from Ĥ−1(A,Λ∧(G′/[G,G])) = 0 and this in turn from
the trivial action of A on G′/[G,G] and the torsion freeness of Λ∧(G′/[G,G]).

Lemma 5 is established.

As seen in diagram (D), there is an element x1 ∈ T (Λ∧G) with deflG
ab

G x1 =

tKab/k. We define x′1 ∈ Λ∧G
′ by ResG

′

G x1 = tK/k′ + x′1. Because of [5, Lemma
3.1], x′1 is fixed by A. We want to change x1 modulo τ(a∧) so that the new x′1
becomes zero: then we have arrived at an x ∈ T (Λ∧G) as assumed in Lemma
4 and the theorem will have been confirmed.

The above change is possible if, and only if, x′1 ∈ ResG
′

G (τ(a∧)) and so, because

of Lemma 5, if x′1 is in T ′ def
= trA(Λ∧G

′) , the A-trace ideal of the A-action on
Λ∧G

′.

Proposition. There exists an element x1 of T (Λ∧G) with deflG
ab

G x1 = tKab/k

and x′1 ∈ T ′ .

This is seen as follows. From [5,§1] we recall the existence of pseu-
domeasures λKab/k, λK/k′ in K1(Λ∧G

ab) and K1(Λ∧G
′), respectively, sa-

tisfying DetλKab/k = LKab/k, Det λK/k′ = LK/k′ (so Lab(λKab/k) =
tKab/k, ,L

′(λK/k′ ) = tK/k′ ). From [5, 2. of Proposition 3.2] and [6, Theorem]
we know that

ver(λKab/k)

λK/k′
≡ 1 mod T ′

where ‘ver’ is the map induced from the transfer homomorphism Gab → G′.

Let y ∈ (Λ∧G)× have deflG
ab

G y = λKab/k and set resG
′

G y = λK/k′ · y
′. Then

y′ =
resG

′

G y

λK/k′
≡

ver(λKab/k)

λK/k′
≡ 1 mod T ′
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(see the proof of [5, Proposition 3.2]). Moreover, y′ ∈ 1 + b
′
∧. Now, x1

def
= L(y)

has ResG
′

G x1 = ResG
′

G L(y) = tK/k′ + x′1 with x′1
def
= L′(y′), and x′1 ∈ b

′
∧ because

of the commutativity of

1 + b
′
∧ ֌ (Λ∧G

′)× ։ (Λ∧(G′/[G,G]))×

L′ ↓ L′ ↓ L′ ↓
b
′
∧ ֌ Λ∧G

′
։ Λ∧(G′/[G,G]) .

Hence, the proposition (and therefore the theorem) will be proved, if

x′1 = L′(y′) ∈ T ′ .

However, Lemma 5 gives

y′ ∈ (1 + b
′
∧
A
) ∩ (1 + T ′) = 1 + (b′∧

A
∩ T ′) = 1 + trAb

′
∧

and as L′(y′) = 1
l log y′l

Ψ(y′) (compare [3, p.39]), we see that

(1) L′(y′) ∈ T ′ if y′l

Ψ(y′) ≡ 1 mod lT ′ .

So it suffices to show this last congruence.

Write y′ = 1 + trAβ
′ with β′ ∈ b

′
∧. Since (1 + trAβ

′)l ≡ 1 + (trAβ
′)l mod lT ′,

the congruence in (1) is equivalent to

(2) (trAβ
′)l ≡ Ψ(trAβ

′) mod lT ′.

On picking a central subgroup Γ (≃ Zl) of G and writing β′ =
∑

g′,c βg′,c g
′(c−

1) with elements βg′,c ∈ Λ∧Γ, g′ ∈ G′, c ∈ [G,G], we obtain

(a)

(trAβ
′)l =

(

∑

g′,c βg′,ctrA(g′(c− 1))
)l

≡
∑

g′,c(βg′,c)
l
(

trA(g′(c− 1))
)l

≡
∑

g′,cΨ(βg′,c)
(

(trA(g′c))l − (trAg
′)l

)

mod lT ′

and

(b) Ψ(trAβ
′) =

∑

g′,cΨ(βg′,c)
(

trA((g′c)l) − trA(g′
l
)
)

as Ψ and trA commute. Thus congruence (2) will result from Lemma 6 below,
since then subtracting (b) from (a) yields the sum

∑

g′,cΨ(βg′,c)
(

(trA(g′c))l − trA((g′c)l) − (trAg
′)l + trA(g′

l
)
)

≡
∑

g′,cΨ(βg′,c)
(

− l(g′c)Â + lg′
Â
)

≡
∑

g′,c(−l)Ψ(βg′,c)g
′Â(cÂ − 1) ≡ 0 mod lT ′ ,

by (⋆) of the proof of Lemma 5.
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Lemma 6. (trAg
′)l − trA(g′

l
) ≡ −lg′

Â
mod lT ′ for g′ ∈ G′ .

Proof. Set Ã = Z/l × A and make M = Maps(Z/l, A) into an Ã-set by

defining m(z,ai)(x) = m(x− z) · ai. Then

(trAg
′)l = (

l−1
∑

i=0

g′
ai

)l =
∑

m∈M

∏

z∈Z/l

g′
m(z)

=
∑

m∈M

g′
P

z∈Z/lm(z)

with
∑

zm(z) read in Z[A].

We compute the subsums of
∑

m in which m is constrained to an Ã-orbit.

If m ∈M has stabilizer {(0, 1)} in Ã, then the Ã-orbit sum is

∑

(z,ai)∈Ã g
′
P

v∈Z/l m
(z,ai)(v)

=
∑

(z,ai)∈Ã g
′
P

v∈Z/l m(v−z)ai

=
∑

(z,ai) g
′
P

v m(v)ai

= l
∑

i(g
′
P

v m(v)
)a

i

= l · trA(g′
P

v m(v)
) ∈ lT ′ .

Note that nom ∈M is stabilized by (0, ai) with ai 6= 1 : form(z) = m(0,ai)(z) =
m(z)ai implies ai = 1. It follows that the stabilizers of the elements with
stabilizer different from {(0, 1)} must be cyclic of order l and different from
{(0, ai) : 0 ≤ i ≤ l − 1} and therefore = 〈(1, aj)〉 for a unique j mod l.

One now checks that for each j there is exactly one Ã-orbit with stabilizer
〈(1, aj)〉 and that it is represented by mj , mj(z) = ajz . Moreover, {(0, ai) :

0 ≤ i ≤ l − 1} is a transversal of the stabilizer of mj in Ã.

For each j, the sum of g′
P

z m(z)
over the Ã-orbit of mj is

∑

i g
′
P

z m
(0,ai)
j (z)

=
∑

i g
′
P

z a
jzai

. If j = 0, this is
∑

i g
′la

i

= trA(g′
l
) , accounting for that term

in the claim. If j 6= 0, it is
∑

i g
′Â·ai

= lg′Â, and summing over j 6= 0 gives

(l − 1)l · g′Â ≡ −l · g′Â mod lT ′ because l2 · g′Â = l · trA(g′Â) ∈ lT ′.

This finishes the proof of Lemma 6.

3 . Appendix

Proof of Proposition A :

We start from the formula χ(g) =
∑

mH
G (gt)=1 χ

′(glt) which appeared in the

justification of the definition in §1 (now with H = G′). It implies χ(gl
r−1

) =
∑

mH
G (t−1gt)=r χ

′((t−1gt)l
r

) for r ≥ 1. Exploiting [3, Lemma 6] for the equality
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=̇ and [3, Proposition 3] for =̈ we obtain

(ResHGTrGτG(g))(χ′)

= (TrGτG(g))(indGHχ
′) +

∑

r≥1
Ψr

lr [(TrGτG(g))(ψr−1
l χ)]

=̇trace(g | Vind G
Hχ

′) +
∑

r≥1
Ψr

lr [trace(g | Vψr−1
l χ)]

=̈(indGHχ
′)(g)g +

∑

r≥1
Ψr

lr [(ψr−1
l χ)(g)g]

= (indGHχ
′)(g)g +

∑

r≥1 χ(gl
r−1

) g
lr

lr

=
∑

mH
G (t−1gt)=0 χ

′(t−1gt)g +
∑

r≥1

∑

mH
G (t−1gt)=r χ

′((t−1gt)l
r

) g
lr

lr

=
∑

t χ
′((t−1gt)l

mH
G (t−1gt)

) g
l
mH

G (t−1gt)

lm
H
G

(t−1gt)
.

On the other hand, if h ∈ H , the same calculation on the H-level gives

(TrHτH(h))(χ′) = trace(h | Vχ′) = χ′(h)h ,

and therefore, with τH(
∑

t
(t−1gt)l

mH
G (t−1gt)

lm
H
G

(t−1gt)
) ∈ T (Q(H)) , we get

(TrHτH
∑

t
(t−1gt)l

mH
G (t−1gt)

lm
H
G

(t−1gt)
)(χ′)

=
∑

t
1

lm
H
G

(t−1gt)
χ′((t−1gt)l

mH
G (t−1gt)

)(t−1gt)l
mH

G
(t−1gt)

=
∑

t χ
′((t−1gt)l

mH
G (t−1gt)

) g
l
mH

G (t−1gt)

lm
H
G

(t−1gt)

via Qc(Γk′) →֒ Qc(Γk) (where k′ is the fixed field of H).

Since these formulae agree for all characters χ′ of H (with open kernel) it

follows that ResHG τG(g) = τH(
∑

t
(t−1gt)l

mH
G (t−1gt)

lm
H
G

(t−1gt)
) by the uniqueness of this

element, proving 1. of Proposition A.

For 2. we first consider the situation H ≤ G′ ≤ G with [G : G′] = l and show

ResHG = ResHG′ ◦ ResG
′

G :

Write G = ˙⋃
xxG

′ , G′ = ˙⋃
yyH , henceG = ˙⋃

x,yxyH , and recall 6 from 1. that

ResG
′

G g =

{

τG′(
∑

x x
−1gx) , g ∈ G′

τG′(gl) , g /∈ G′ .

6if g /∈ G′, then we may use {t} = {gi : 0 ≤ i ≤ l − 1}
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Then, accordingly,

ResHG′ResG
′

G τG(g)

=

{
∑

x ResHG′τG′(x−1gx)

ResHG′τG′(gl)

=







∑

x

∑

y τH((y−1x−1gxy)l
mH

G′
(y−1x−1gxy)

)/lm
H
G′(y

−1x−1gxy)

∑

y τH((y−1gly)l
mH

G′ (y
−1gly)

)/lm
H
G′(y

−1gly)

=

{

∑

t τH((t−1gt)l
mH

G (t−1gt)

)/lm
H
G (t−1gt)

∑

t τH((t−1glt)l
mH

G′ (t
−1glt)

)/l · lm
H
G′(t

−1glt)

=
∑

t τH((t−1gt)l
mH

G (t−1gt)/lm
H
G (t−1gt) = ResHG τG(g) ,

using G′
�G and mH

G′(xl) + 1 = mH
G (x) for x /∈ G′.

Induction on [G : H ] now proves 2., ResHG = ResHG′′ ◦ ResG
′′

G for H ≤ G′′ ≤ G.
Indeed, if G′′ 6= G, find G′ ≥ G′′ with [G : G′] = l and use

ResHG′′ResG
′′

G = ResHG′′(ResG
′′

G′ ResG
′

G ) =

= (ResHG′′ResG
′′

G′ )ResG
′

G = ResHG′ResG
′

G = ResHG .

Finally, for 3., proceed by induction on [G : H ] and use 1. if H has index l in
G and 2. when the index is bigger, in which case there is a subgroup G′ of G
with H ≤ G , [G : G′] = l.

The proof of Proposition A is complete.
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