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1 Introduction

It is well known that the eigenvalues of the one–particle Dirac operator are
in much better accordance with the spectroscopic data then the eigenvalues of
the Schrödinger operator. However, due to the presence of the negative con-
tinuum of positronic states the multiparticle Coulomb–Dirac operator has no
eigenvalues and its essential spectrum is the whole real line. Coupling with the
quantized electromagnetic field does not correct this situation. However, there
are ways to construct a semibounded operator which will take the relativistic
effects into account. Such models, although nonlocal, find their applications
in numerical studies of heavy elements and cosmology, where the relativistic
effects cannot be ignored.
The most obvious choice of the kinetic energy (sometimes called Chandrasekhar

or Herbst operator) given by
√

p2c2 +m2c4, p and m being the momentum
and mass of the particle, suffers from the lack of semiboundedness for nuclear
charges exceeding 87, as shown in [9]. Most other operators considered in the
literature are obtained by reducing the (multiparticle) Dirac operator onto some
subspace on which it becomes semibounded. One of such models, extensively
studied recently, is by Brown and Ravenhall [4], see also Bethe and Salpeter [3],
Sucher [18, 19]. In this model every particle is confined the positive spectral
subspace of the free Dirac operator. Since the multiplication by interaction
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potentials does not leave this subspace invariant, the potential energy terms
are projected back by the corresponding projector.
The mathematical study of the Brown–Ravenhall operator started from the
one–particle case in the article of Evans, Perry, and Siedentop [7]. The au-
thors have proved that the atomic Hamiltonian is semibounded from below for
nuclear charges not exceeding 124. This makes the Brown–Ravenhall model
applicable to all existing elements. It was also proved in [7] that the essential
spectrum of the one–particle atomic Brown–Ravenhall operator is [mc2,∞)
with m being the mass of the particle, and that the singular continuous spec-
trum is empty.

Further studies of the Brown–Ravenhall operator include the improved lower
bounds by Tix [21, 22] (see also Burenkov and Evans [5]) in the atomic case,
the proof that the eigenvalues of Brown–Ravenhall operator are strictly bigger
than those of the one–particle Dirac operator by Griesemer et al. [8], proofs
of stability of one-electron molecule by Balinsky and Evans [2], the proof of
stability of matter by Hoever and Siedentop [10], and the asymptotic result
on the ground state energy for large atomic charges Z (with Z/c fixed) by
Cassanas and Siedentop [6].
The essential spectrum of the multiparticle operator was characterized by
Jakubaßa–Amundsen [12, 13], and in our joint work with S. Vugalter [16] in
terms of two–cluster decompositions. This is usually referred to as HVZ theo-
rem after the well known result for the multiparticle Schrödinger operator. In
[11] an analogous result is proved in presence of the constant magnetic field. It
is also proved in [16] that the neutral atoms or positively charged atomic ions
have infinitely many bound states.
In all these previous studies the nuclei were considered as fixed sources of the
external field, the particles were assumed to be identical, and the interaction
potentials were purely Coulombic.

In this paper we generalize the HVZ theorem of [12, 13, 16] as follows: We allow
any number of (massive) particles of the system to be identical. We allow quite
general matrix interaction potentials. In particular, our result applies in the
presence of the magnetic fields if the vector potential decays at infinity in some
weak sense. Another problem we address is the reduction to any irreducible
representations of the groups of rotation–reflection symmetry and permuta-
tions of identical particles. Note that such a reduction allows to analyze the
eigenvalues of some irreducible representations even if they are embedded into
the continuous spectrum of some other representations. For some particular
models (including atoms and molecules in the Born–Oppenheimer approxima-
tion) the existence of such eigenvalues can be shown along the same lines as in
[16].

From the technical point of view, the nonlocality of the model due to the
presence of the spectral projections of the free Dirac operator is overcome with
the same ideas as in [16]. One more complication should be stressed: for the
Brown–Ravenhall operator the center of mass motion cannot be separated in
the same way as it is usually done for Schrödinger operators, where the complete
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Hamiltonian without external field can be represented in suitable coordinates
as

H = A⊗ I + I ⊗B,

where A describes the free motion of the center of mass and B is the internal
Hamiltonian of the system (see [14]). Such a decomposition appears to be
especially fruitful in the presence of rotation symmetries. Since it cannot be
obtained for pseudorelativistic operators due to the form of kinetic energy, we
have used a completely different approach based on the commutation of the
Hamiltonian with the absolute value of the total momentum of the system.
Note that the proof of the HVZ theorem for a system of particles described
by the Chandrasekhar operator was till now not known for operators reduced
to irreducible representations of the rotation–reflection symmetry group (see
the article of Lewis, Siedentop and Vugalter [15] for the case without such
reductions). Such a proof can now be obtained as a simplified modification of
the proof given in this paper.
In Section 2 we introduce the model and make the necessary assumptions. At
the end of this section we formulate the main result in Theorem 6. The rest of
the article contains the proof of this theorem.

2 Setup and Main Result

[A,B] = AB−BA is the commutator of two operators. 〈·, ·〉 and ‖ · ‖ stand for

the inner product and the norm in L2(R
3d,C4d

), where d is the dimension of
the underlying configuration space. Irrelevant constants are denoted by C. IΩ
is the indicator function of the set Ω. For a selfadjoint operator A we denote its
spectrum and the corresponding sesquilinear form by σ(A) and 〈A·, ·〉 = 〈·, A·〉,
respectively. We use the conventional units ~ = c = 1. Sometimes we denote
the unitary Fourier transform by ·̂.
In the Hilbert space L2(R

3,C4) the Dirac operator describing a particle of mass
m > 0 is given by

Dm = −iα · ∇ + βm,

where α := (α1, α2, α3) and β are the 4 × 4 Dirac matrices [20]. The
form domain of Dm is the Sobolev space H1/2(R3,C4) and the spectrum is
(−∞,−m] ∪ [m,+∞). Let Λm be the orthogonal projector onto the positive
spectral subspace of Dm:

Λm :=
1

2
+

−iα · ∇ + βm

2
√
−∆ +m2

. (2.1)

We consider a finite system of N particles with positive masses mn, n =
1, . . . , N . To simplify the notation we write Dn and Λn for Dmn and Λmn ,

respectively. Let HN :=
N
⊗
n=1

ΛnL2(R
3,C4) be the Hilbert space with the inner

product induced by those of
N
⊗
n=1

L2(R
3,C4) ∼= L2(R

3N ,C4N

). In this space the
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N–particle Brown–Ravenhall operator is formally given by

HN = ΛN
( N∑

n=1

(Dn + Vn) +

N∑

n<j

Unj

)
ΛN , (2.2)

with

ΛN :=
N∏

n=1

Λn =
N
⊗
n=1

Λn. (2.3)

Here and below the indices n and j indicate the particle, on whose coordinates
the corresponding operator acts. In (2.2) Vn is the external field potential
for the nth particle, i.e., the operator of multiplication by a hermitian 4 × 4
matrix–function Vn(xn), n = 1, . . . , N , and Unj is the potential energy of
the interaction between the nth and jth particles, given by the operator of
multiplication by a hermitian 16 × 16 matrix–function Unj(xn − xj), n < j =
1, . . . , N . More explicitly, if we let sj ∈ {1, 2, 3, 4} be the spinor index of the
jth particle, then

(Vnψ)(x1, s1; . . . ;xn, sn; . . . ;xN , sN )

:=
∑

esn

V sn,esn
n (xn)ψ(x1, s1; . . . ;xn, s̃n; . . . ;xN , sN ),

and

(Unjψ)(x1, s1; . . . ;xn, sn; . . . ;xj , sj ; . . . ;xN , sN )

:=
∑

esn,esj

U
snsj ,esnesj

nj (xn − xj)ψ(x1, s1; . . . ;xn, s̃n; . . . ;xj , s̃j ; . . . ;xN , sN ).

Before we make other assumptions on the interaction potentials, let us consider
possible decompositions of the system into two clusters. Let Z = (Z1, Z2) be a
decomposition of the index set I := {1, . . . , N} into two disjoint subsets:

I = Z1 ∪ Z2, Z1 ∩ Z2 = ∅.

Let
Nj := #Zj , j = 1, 2 (2.4)

be the number of particles in each cluster. We will write n#j if n and j belong
to different clusters. Let

HZ,1 :=
∑

n∈Z1

(Dn + Vn) +
∑

n,j∈Z1
n<j

Unj , (2.5)

HZ,2 :=
∑

n∈Z2

Dn +
∑

n,j∈Z2
n<j

Unj . (2.6)
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We omit HZ,j if Zj = ∅, j = 1, 2. Let us introduce the operators corresponding
to noninteracting clusters, with the second cluster transferred far away from
the sources of the external field:

H̃Z,j := ΛZ,jHZ,jΛZ,j , in HZ,j := ⊗
n∈Zj

ΛnL2(R
3,C4), j = 1, 2, (2.7)

where
ΛZ,j :=

∏

n∈Zj

Λn.

We make the following assumptions:

Assumption 1 There exists C > 0 such that for any Z and j = 1, 2

∣∣〈HZ,jϕ, ψ〉
∣∣ 6 C‖ϕ‖H1/2‖ψ‖H1/2 , for any ϕ, ψ ∈ ⊗

n∈Zj

H1/2(R3,C4). (2.8)

For Coulomb interaction potentials (2.8) follows from Kato’s inequality.

Assumption 2 There exist C1 > 0 and C2 ∈ R such that for any Z

〈H̃Z,jψ, ψ〉 > C1〈
∑

n∈Zj

Dnψ, ψ〉 − C2‖ψ‖2,

for any ψ ∈ ⊗
n∈Zj

ΛnH
1/2(R3,C4), j = 1, 2.

(2.9)

Remark 3 Note that for ψ ∈ ⊗
n∈Zj

ΛnH
1/2(R3,C4) the metric

〈
∑

n∈Zj

Dnψ, ψ〉1/2 =
∥∥∥

∑

n∈Zj

|Dn|1/2ψ
∥∥∥

is equivalent to the norm of ψ in ⊗
n∈Zj

H1/2(R3,C4), since

ΛnDnΛn = Λn|Dn|Λn = Λn
√
−∆ +m2

nΛn. (2.10)

An equivalent formulation of Assumption 2 is that the operator H̃Z,j is semi-
bounded from below even if we multiply all the interaction potentials by 1 + ε
with ε > 0 small enough. This is only slightly more restrictive than the semi-
boundedness of H̃Z,j .

Assumption 4 For any R > 0 there exists a finite constant CR > 0 such that

N∑

n=1

( ∫

|x|6R

∣∣Vn(x)
∣∣2dx

)1/2

+

N∑

n<j

( ∫

|x|6R

∣∣Unj(x)
∣∣2dx

)1/2

6 CR. (2.11)
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This means that the interaction potentials are locally square integrable.

Assumption 5 For any ε > 0 there exists R > 0 big enough such that for all
n = 1, . . . , N

‖VnI{|xn|>R}ψ‖ 6 ε
∥∥|Dn|1/2ψ

∥∥, for all ψ ∈ H1/2(R3,C4), (2.12)

and for all n < j = 1, . . . , N

‖UnjI{|xn−xj|>R}ϕ‖ 6 εmin
{∥∥|Dn|1/2ϕ

∥∥,
∥∥|Dj |1/2ϕ

∥∥
}
,

for all ϕ ∈ H1/2(R6,C16).
(2.13)

By Remark 3 this assumption is weaker then the decay of L∞ norms of the
interaction potentials at infinity.
It follows from (2.9) and Remark 3 that for any Z there exists a constant C > 0
such that for any ψ ∈ ⊗

n∈Zj

ΛnH
1/2(R3,C4)

‖ψ‖2
H1/2 6 C

(
〈H̃Z,jψ, ψ〉 + ‖ψ‖2

)
, j = 1, 2. (2.14)

Hence by Assumptions 1 and 2, the quadratic forms of operators (2.7)
(and, in particular, HN ) are semibounded from below and closed on
⊗

n∈Zj

ΛnH
1/2(R3,C4). Thus these operators are well–defined in the form sense.

Some particles of the system (say, kth and lth) can be identical (in which case
mk = ml, Vk = Vl, and Ukj = Ulj for all j). Then the operator HN can be
reduced to the subspace of functions which transform in a certain way under
permutations of identical particles. The most physically motivated assumption
is that any transposition of two identical particles should change the sign of
the wave function ψ ∈ HN describing the system. This is the Pauli principle
applied to the identical fermions (the model describes spin 1/2 particles, thus
fermions).
Let Π be the subgroup of the symmetric group SN generated by transpositions
of identical particles. We denote the number of elements of Π by hΠ. Let E be
some irreducible representation of Π with dimension dE and character ξE . For
ψ ∈ HN let

PEψ :=
dE
hΠ

∑

π∈Π

ξE(π)πψ, (2.15)

where π is the operator of permutation:

(πψ)(x1, s1; . . . ;xN , sN) = ψ(xπ−1(1), sπ−1(1); . . . ;xπ−1(N), sπ−1(N)).

Here s1, . . . , sN are the spinor coordinates of the particles. The operator PE

defined in (2.15) is the projector to the subspace of functions in HN which
transform according to the representation E of Π. Since any π ∈ Π commutes
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with HN , PE reduces HN . Let HE
N be the corresponding reduced selfadjoint

operator in
HEN := PEHN .

For a decomposition Z = (Z1, Z2) let ΠZ
j be the group generated by transposi-

tions of identical particles inside Zj, j = 1, 2. For any irreducible representation
Ej of ΠZ

j with dimension dEj and character ξEj the projection to the space of

functions in HZ,j transforming according to Ej under the action of ΠZj is given
by

PEjψ :=
dEj

hΠZ
j

∑

π∈ΠZ
j

ξEj (π)πψ, ψ ∈ HZ,j ,

where hΠZ
j

is the cardinality of ΠZj . Projectors PEj reduce operators H̃Z,j . We

introduce the reduced operators H̃Ej

Z,j in

H
Ej

Z,j := PEjHZ,j , j = 1, 2.

Given an irreducible representation E of Π and a decomposition Z = (Z1, Z2),
we have

HEN ⊂ ⊕
(E1,E2)

(
HE1

Z,1 ⊗ HE2

Z,2

)
, (2.16)

where E1,2 are some irreducible representations of ΠZ
1,2. We write (E1, E2) ≺

Z
E

if the corresponding term cannot be omitted on the r. h. s. of (2.16) without
violation of the inclusion.
Apart from permutations of identical particles the operator HE

N can have some
rotation–reflection symmetries. Let γ be an orthogonal transform in R3: the
rotation around the axis directed along a unit vector nγ through an angle ϕγ ,
possibly combined with the reflection x 7→ −x. The corresponding unitary
operator Oγ acts on the functions ψ ∈ HN as (see [20], Chapter 2)

(Oγψ)(x1, . . . ,xN ) =

N∏

n=1

e−iϕγnγ ·Snψ(γ−1x1, . . . , γ
−1xN ).

Here Sn = − i
4αn ∧ αn is the spin operator acting on the spinor coordinates of

the nth particle. The compact group of orthogonal transformations γ such that
Oγ commutes with Vn and Unj for all n, j = 1, . . . , N (and thus with HE

N ) we
denote by Γ. Further, we decompose HEN into the orthogonal sum

HEN = ⊕
α∈A

H
Dα,E
N , (2.17)

where H
Dα,E
N consists of functions which transform under Oγ according to some

irreducible representation Dα of Γ, and A is the set indexing all such irre-
ducible representations. The decomposition (2.17) reduces HE

N . We denote the

selfadjoint restrictions of HE
N to H

Dα,E
N by HDα,E

N . For any fixed irreducible
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representationD with dimension dD and character ζD the orthogonal projector
in HN onto the subspace of functions which transform according to D is

PD := dD

∫

Γ

ζD(γ)Oγdµ(γ),

where µ is the invariant probability measure on Γ.
For j = 1, 2 let Dj be some irreducible representations of Γ with dimensions
dDj and characters ζDj . The corresponding projectors in HZ,j are given by

PDj = dDj

∫

Γ

ζDj (γ)Oγ,jdµ(γ),

where Oγ,j is the restriction of Oγ to HZ,j :

(Oγ,jψ)(xn1 , . . . ,xnNj
) =

∏

n∈Zj

e−iϕγnγ ·Snψ(γ−1xn1 , . . . , γ
−1xnNj

).

Given representations Dj and Ej , projector PDjPEj = PEjPDj reduces H̃Z,j .
We denote the reduced operators in

H
Dj ,Ej

Z,j := PDjPEj HZ,j

by H̃Dj ,Ej

Z,j . Let

κj(Z,Dj , Ej) := inf σ(H̃Dj ,Ej

Z,j ). (2.18)

We write (D1, E1;D2, E2) ≺
Z

(D,E) if the corresponding term cannot be omit-

ted on the r. h. s. of

H
D,E
N ⊂ ⊕

(D1,E1)
(D2,E2)

(
H
D1,E1

Z,1 ⊗ H
D2,E2

Z,2

)

without violation of the inclusion. For Z2 6= ∅ let

κ(Z,D,E)

:=

{
inf

{
κ1(Z,D1, E1)+κ2(Z,D2, E2) : (D1, E1;D2, E2) ≺

Z
(D,E)

}
, Z1 6= ∅,

κ2(Z,D,E), Z1 = ∅.

(2.19)

The main result of the article is

Theorem 6 Suppose Assumptions 1, 2, 4, and 5 hold true. For N ∈ N let D
be some irreducible representation of Γ, and E some irreducible representation
of Π, such that PDPE 6= 0. Then

σess(HD,E
N ) =

[
κ(D,E),∞

)
,

where
κ(D,E) = min

{
κ(Z,D,E) : Z = (Z1, Z2), Z2 6= ∅

}
. (2.20)
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Remark 7 We only need Assumption 2 for the operators H̃Dj ,Ej

Z,j which appear
in (2.18), (2.19).

3 Commutator Estimates

3.1 One Particle Commutator Estimate

Lemma 8 Let χ ∈ C2
B(R3) (i. e. a bounded twice–differentiable function with

bounded derivatives). Then for mn > 0 the commutator [χ,Λn] is a bounded
operator from L2(R

3,C4) to H1(R3,C4). There exists C(m) > 0 such that

∥∥[χ,Λn]
∥∥
L2(R3,C4)→H1(R3,C4)

6 C(mn)
(
‖∇χ‖L∞

+ ‖∂2χ‖L∞

)
. (3.1)

Here ‖∂2χ‖L∞
= max

z∈R
3

k,l∈{1,2,3}

∣∣∂2
klχ(z)

∣∣.

Proof. In the coordinate representation for f ∈ C1
0 (R3,C4) the operator Λn

acts as

(Λnf)(x) =
f(x)

2
+
imn

2π2
lim
ε→+0

∫

|y−x|>ε

α · (x − y)

|x − y|3 K1

(
mn|x − y|

)
f(y)dy

+
m2
n

4π2

∫

R3

(
β
K1

(
mn|x − y|

)

|x − y| +
iα · (x − y)

|x− y|2 K0

(
mn|x − y|

))
f(y)dy,

where the limit on the r. h. s. is the limit in L2(R
3,C4) (see Appendix B of [16],

where this formula is derived in the case mn = 1). The rest of the proof is an
obvious modification of the proof of Lemma 1 of [16], where the case mn = 1
is considered. •

Remark 9 Since we only deal with a finite number of particles with positive
masses, we will not trace the m-dependence of the constant in (3.1) any longer.

3.2 Multiparticle Commutator Estimate

Lemma 10 For any d, k ∈ N there exists C > 0 such that for any χ ∈ C1
B(Rd)

and u ∈ H1/2(Rd,Ck)

‖χu‖H1/2(Rd,Ck) 6 C
(
‖χ‖L∞(Rd) + ‖∇χ‖L∞(Rd)

)
‖u‖H1/2(Rd,Ck). (3.2)

Proof of Lemma 10. We can choose the norm in H1/2(Rd,Ck) as (see [1],
Theorem 7.48)

‖u‖2
H1/2(Rd,Ck) := ‖u‖2

L2(Rd,Ck) +

∫∫ ∣∣u(x) − u(y)
∣∣2

|x− y|d+1
dxdy.
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Then

‖χu‖2
H1/2(Rd,Ck) = ‖χu‖2

L2(Rd,Ck) +

∫∫ ∣∣χ(x)u(x) − χ(y)u(y)
∣∣2

|x − y|d+1
dxdy

6 ‖χ‖2
L∞

‖u‖2
L2

+

∫∫ (∣∣χ(x)
∣∣2∣∣u(x) − u(y)

∣∣2

|x − y|d+1
+

∣∣χ(x) − χ(y)
∣∣2∣∣u(y)

∣∣2

|x − y|d+1

)
dxdy

6 ‖χ‖2
L∞

‖u‖2
H1/2 + sup

y∈Rd

∫ ∣∣χ(x) − χ(y)
∣∣2

|x − y|d+1
dx‖u‖2

L2
.

(3.3)

The supremum on the r. h. s. of (3.3) can be estimated as

sup
y∈Rd

∫ ∣∣χ(x) − χ(y)
∣∣2

|x − y|d+1
dx 6 sup

y∈Rd

∫

|x−y|61

∣∣χ(x) − χ(y)
∣∣2

|x − y|d+1
dx

+ sup
y∈Rd

∫

|x−y|>1

∣∣χ(x) − χ(y)
∣∣2

|x − y|d+1
dx 6 |Sd−1|

(
‖∇χ‖2

L∞

+ 4‖χ‖2
L∞

)
,

(3.4)

where |Sd−1| is the area of (d− 1)–dimensional unit sphere. Substituting (3.4)
into (3.3) we obtain (3.2). •

Lemma 11 For any χ ∈ C2
B(R3N ) the operator [χ,ΛN ] is bounded in

H1/2(R3N ,C4N

), and for any ψ ∈ H1/2(R3N ,C4N

) we have

∥∥[χ,ΛN ]ψ
∥∥
H1/2 6 C

(
‖∇χ‖L∞

+ ‖∂2χ‖L∞

)(
‖χ‖L∞

+ ‖∇χ‖L∞

)
‖ψ‖H1/2

(3.5)

with C depending only on N and the masses of the particles.

Proof. Successively commuting χ with Λn, n = 1, . . . , N (see (2.3)) we obtain

[χ,ΛN ] =

N∑

n=1

n−1∏

k=1

Λk[χ,Λn]

N∏

l=n+1

Λl, (3.6)

where the empty products should be replaced by identity operators. By (2.1)
the operators Λn are bounded in H1/2 for any n = 1, . . . , N . This, together
with (3.6) and Lemmata 8 and 10, implies (3.5). •

4 Lower Bound of the Essential Spectrum

In this section we prove that

inf σess(HD,E
N ) > κ(D,E). (4.1)
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4.1 Partition of Unity

Lemma 12 There exists a set of nonnegative functions {χZ} indexed by possi-
ble 2–cluster decompositions Z = (Z1, Z2) satisfying

1. χZ ∈ C∞(R3N ) for all Z;

2. χZ(κX) = χZ(X) for all |X| = 1, κ > 1, Z2 6= ∅;

3.
∑

Z

χ2
Z(X) = 1, for all X ∈ R

3N ; (4.2)

4.
There exists C > 0 such that for any X ∈ supp χZ

min
{
|xj − xn| : xj ∈ Z1, xn ∈ Z2; |xn| : xn ∈ Z2

}
> C|X|;

(4.3)

5.
χZ(γx1, . . . , γxN ) = χZ(x1, . . . ,xN ) for any orthogonal

transformation γ;

6. χZ is invariant under permutations of variables preserving Z1,2.

Proof. The proof is essentially based on the modification of the argument
given in [17], Lemma 2.4.

1. We first prove that for any X = (x1, . . . ,xN ) ∈ R3N with |X| = 1 there
exists a 2–cluster decomposition Z = (Z1, Z2) such that

min
{
|xj − xn| : xj ∈ Z1, xn ∈ Z2; |xn| : xn ∈ Z2

}
> N−3/2. (4.4)

Indeed, let k be such that |xk| > |xj | for all j = 1, . . . , N . Then, since |X| = 1,

|xk| > N− 1
2 . (4.5)

Choose Cartesian coordinates in R3 with the first axis passing through the
origin and xk, so that xk =

(
|xk|, 0, 0

)
. Consider N regions

R1 :=
{
x ∈ R

3 : x1
6 |xk|/N

}
,

Rl :=
{
x ∈ R

3 : x1 ∈
(
(l − 1)|xk|/N, l|xk|/N

]}
, l = 2, . . . , N.

At least one of these regions does not contain xj with j 6= k. Let l0 be the
maximal index of such regions. Let Z2 be the set of indices n such that xn ∈
∪
l>l0

Rl. Z2 is nonempty since xk ∈ Z2. Setting Z1 := I \ Z2 we observe that

min
{
|xj − xn| : xj ∈ Z1, xn ∈ Z2; |xn| : xn ∈ Z2

}
> |xk|/N,

which together with (4.5) implies (4.4).

2. Choose η ∈ C∞
(
R+, [0, 1]

)
so that

η(t) ≡
{

0, t ∈ [0, 1],

1, t ∈ [2,∞).
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Let

ζZ(X) :=





η
(
2|X|

) ∏

n∈Z2

η

(
2|xn|

|X|N−3/2

) ∏

j∈Z1

η

(
2|xj − xn|
|X|N−3/2

)
, Z2 6= ∅,

1 − η
(
2|X|

)
, Z2 = ∅.

(4.6)
Functions (4.6) satisfy conditions 1, 2, 4 (with C = N−3/2/2), 5, and 6 of
Lemma 12. Moreover, by the first part of the proof

∑

Z

ζZ(X) > 1, for all X ∈ R
3N .

Hence all the conditions are satisfied by the functions

χZ := ζ
1/2
Z

(∑

Z

ζZ

)−1/2

.

•
Let

χRZ(X) := χZ(X/R), (4.7)

where the functions χZ are defined in Lemma 12. The derivatives of χRZ decay
as R tends to infinity:

‖∇χRZ‖∞ 6 CR−1, ‖∂2χRZ‖∞ 6 CR−2. (4.8)

To simplify the notation we omit the superscript R further on.

4.2 Cluster Decomposition and Lower Bound

We now estimate from below the quadratic form of HD,E
N on a function ψ from

H
D,E
N ∩ ΛN

N
⊗
n=1

H1/2(R3,C4), which is the form domain of HD,E
N .

〈HD,E
N ψ, ψ〉 = 〈

( N∑

n=1

(Dn + Vn) +

N∑

n<j

Unj

) ∑

Z

χ2
Zψ, ψ〉

=
∑

Z

〈
( N∑

n=1

(Dn + Vn) +

N∑

n<j

Unj

)
χZψ, χZψ〉.

Here we have used (4.2) and the relation

∑

Z

〈f,
N∑

n=1

∇n(χ
2
Zg)〉 =

∑

Z

〈χZf,
N∑

n=1

∇n(χZg)〉 +
∑

Z

〈f,
N∑

n=1

∇n

(χ2
Z

2

)
g〉 (4.9)
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which holds for any f, g ∈
N
⊗
n=1

H1/2(R3,C4). The last term on the r. h. s. of

(4.9) is equal to zero due to (4.2). Thus

〈HD,E
N ψ, ψ〉 =

∑

Z=(Z1,Z2)

(
〈(HZ,1 + HZ,2)Λ

NχZψ,Λ
NχZψ〉

+ 〈(HZ,1 + HZ,2)[χZ ,Λ
N ]ψ,ΛNχZψ〉

+ 〈(HZ,1 + HZ,2)χZψ, [χZ ,Λ
N ]ψ〉

+ 〈
∑

n∈Z2

Vnχ
2
Zψ, ψ〉 + 〈

∑

n<j
n#j

Unjχ
2
Zψ, ψ〉

)
.

(4.10)

By (2.12), (2.13), (4.3), (4.7), and (2.14) the terms at the last line of (4.10)
can be estimated as

〈
∑

n∈Z2

Vnχ
2
Zψ, ψ〉 + 〈

∑

n<j
n#j

Unjχ
2
Zψ, ψ〉 > −ε1(R)

(
〈HD,E

N ψ, ψ〉 + ‖ψ‖2
)

(4.11)

with ε1(R) → 0 as R → ∞. The terms at the second and third lines of (4.10)
can also be estimated as

〈(HZ,1 + HZ,2)[χZ ,Λ
N ]ψ,ΛNχZψ〉 + 〈(HZ,1 + HZ,2)χZψ, [χZ ,Λ

N ]ψ〉
> −ε2(R)

(
〈HD,E

N ψ, ψ〉 + ‖ψ‖2
)
, ε2(R) −→

R→∞
0,

according to (2.8), (3.2), (3.5), (4.8), and (2.14). For Z2 6= ∅ we estimate
the terms at the first line of (4.10) in the following way (recall the definitions
(2.18), (2.19) and (2.20)):

〈(HZ,1 + HZ,2)Λ
NχZψ,Λ

NχZψ〉
=

∑

(D1,E1;D2,E2)≺
Z

(D,E)

〈(HZ,1P
D1PE1 + HZ,2P

D2PE2)ΛNχZψ,Λ
NχZψ〉

>
∑

(D1,E1;D2,E2)≺
Z

(D,E)

〈
(
κ1(Z,D1, E1)P

D1PE1

+ κ2(Z,D2, E2)P
D2PE2

)
ΛNχZψ,Λ

NχZψ〉
> κ(D,E)〈ΛNχZψ,ΛNχZψ〉
= κ(D,E)〈χ2

Zψ, ψ〉 + κ(D,E)〈[ΛN , χZ ]ψ, χZψ〉.
(4.12)

By (3.2), (3.5), (4.8), and (2.14) the last term on the r. h. s. of (4.12) can be
estimated as

κ(D,E)〈[ΛN , χZ ]ψ, χZψ〉 > −ε3(R)
(
〈HD,E

N ψ, ψ〉 + ‖ψ‖2
)
, ε3(R) −→

R→∞
0.

(4.13)
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Substituting the estimates (4.11) — (4.13) into (4.10) we obtain

〈HD,E
N ψ, ψ〉 > κ(D,E)〈

∑

Z=(Z1 ,Z2)
Z2 6=∅

χ2
Zψ, ψ〉 + 〈HD,E

N ΛNχ(I,∅)ψ,Λ
Nχ(I,∅)ψ〉

− ε4(R)
(
〈HD,E

N ψ, ψ〉 + ‖ψ‖2
)
, ε4(R) −→

R→∞
0.

(4.14)

4.3 Estimate Inside of the Compact Region

It remains to estimate from below the quadratic form of HD,E
N on ΛNχ(I,∅)ψ.

Note that according to Lemma 12 and (4.7) suppχ(I,∅) ⊂ [−2R, 2R]3N . To
simplify the notation let

χ0 := χ(I,∅).

Lemma 13 For M > 0 let

WM :=
{
p ∈ R

3N : |pi| 6 M, i = 1, . . . , 3N
}
, W̃M := R

3N \WM .

There exists a finite set QM ⊂ L2(R
3N ) such that for any f ∈ L2(R

3N ) with
suppf ⊂ [−2R, 2R]3N , f⊥QM holds

‖f̂‖
L2(fWM )

>
1

2
‖f̂‖L2(R3N ).

The proof of Lemma 13 is analogous to the proof of Theorem 7 of [23] and is
given in Appendix C of [16].

It follows from (2.9) that for any M > 0

〈HD,E
N ΛNχ0ψ,Λ

Nχ0ψ〉 > C1〈
N∑

n=1

DnIfWM
ΛNχ0ψ,Λ

Nχ0ψ〉 − C2‖χ0ψ‖2.

(4.15)

Here IfWM
is the operator of multiplication by the characteristic function of

W̃M in momentum space.
We choose

M := 8
(
κ(D,E) + C2

)
C−1

1 (4.16)

and assume henceforth that f := χ0ψ is orthogonal to the set QM defined
in Lemma 13. Since in momentum space the operator Dn acts on functions
from ΛnL2(R

3,C4) as multiplication by
√
|p|2 +m2

n, by construction of W̃M

we have

〈
N∑

n=1

DnIfWM
ΛNχ0ψ,Λ

Nχ0ψ〉 > M‖IfWM
ΛNχ0ψ‖2. (4.17)
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Inequalities (4.15) and (4.17) imply

〈HD,E
N ΛNχ0ψ,Λ

Nχ0ψ〉 > C1M‖IfWM
ΛNχ0ψ‖2 − C2‖χ0ψ‖2

> C1M
(
‖IfWM

χ0ψ‖ −
∥∥IfWM

[ΛN , χ0]ψ
∥∥
)2

− C2‖χ0ψ‖2

> C1M
(1

2
‖IfWM

χ0ψ‖2 −
∥∥IfWM

[ΛN , χ0]ψ
∥∥2

)
− C2‖χ0ψ‖2

> 4
(
κ(D,E) + C2

)
‖IfWM

χ0ψ‖2

− 8
(
κ(D,E) + C2

)∥∥[ΛN , χ0]ψ
∥∥2 − C2‖χ0ψ‖2.

(4.18)

At the last step we have used (4.16). The second term on the r. h. s. of (4.18)
can be estimated analogously to (4.13) as

−8
(
κ(D,E)+C2

)∥∥[ΛN , χ0]ψ
∥∥2

> −ε5(R)
(
〈HD,E

N ψ, ψ〉+‖ψ‖2
)
, ε5(R) −→

R→∞
0.

For the first term on the r. h. s. of (4.18) Lemma 13 implies

4‖IfWM
χ0ψ‖2

> ‖χ0ψ‖2. (4.19)

As a consequence of (4.18) — (4.19), we have

〈HD,E
N ΛNχ0ψ,Λ

Nχ0ψ〉 > κ(D,E)‖χ0ψ‖2 − ε5(R)
(
〈HD,E

N ψ, ψ〉 + ‖ψ‖2
)
,

ε5(R) −→
R→∞

0.

(4.20)

4.4 Completion of the Proof

By (4.14), (4.20), and (4.2)

〈HD,E
N ψ, ψ〉 > κ(D,E)‖ψ‖2 − ε6(R)

(
〈HD,E

N ψ, ψ〉 + ‖ψ‖2
)
, ε6(R) −→

R→∞
0.

for any ψ in the form domain of HD,E
N orthogonal to the finite set of functions

(cardinality of this set depends on R). This implies the discreteness of the

spectrum of HD,E
N below κ(D,E) and thus (4.1).

5 Spectrum of the Free Cluster

In this section we characterize the spectrum of the cluster Z2 which does not
interact with the external field.

Proposition 14 For any irreducible representations D2, E2 of rotation–
reflection and permutation groups the spectrum of H̃D2,E2

Z,2 is

σ(H̃D2,E2

Z,2 ) = σess(H̃D2,E2

Z,2 ) =
[
κ2(Z,D2, E2),∞

)
,

with some κ2(Z,D2, E2) ∈ R.
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Proof. Let us introduce the new coordinates in the configuration space R3N2

of the cluster Z2 = {n1, . . . , nN2}, in the same manner as it is done in [15]. Let
M :=

∑
n∈Z2

mn be the total mass of the particles constituting the cluster.
We introduce

y0 :=
1

M

∑

n∈Z2

mnxn,

yk := xnk+1
− xn1 , k = 1, . . . , N2 − 1.

(5.1)

The Jacobian of this variable change is one. Here y0 is the coordinate of the
center of mass, whereby yk, k = 1, . . . , N2 − 1 are the internal coordinates of
the cluster. Accordingly,

xn1 = y0 −
1

M

N2−1∑

k=1

mnk+1
yk,

xnl+1
= y0 + yl −

1

M

N2−1∑

k=1

mnk+1
yk, l = 1, . . . , N2 − 1.

(5.2)

The momentum operators in the new coordinates are

pn1 := −i∇xn1
=
mn1

M
P−

N2−1∑

k=1

(−i∇yk
),

pnk
:= −i∇xnk

=
mnk

M
P + (−i∇yk−1

), k = 2, . . . , N2,

(5.3)

where P is the total momentum of the cluster:

P :=
∑

n∈Z2

−i∇xn = −i∇y0.

Let F0 be the partial Forurier transform on H
D2,E2

Z,2 defined by

(F0f)(P,y1, . . . ,yN2−1) :=
1

(2π)3/2

∫

R3

f(y0,y1, . . . ,yN2−1)e
−iPy0dy0.

By (2.6) and (2.7) we have

H̃D2,E2

Z,2 = F−1
0 Λ̂Z,2ĤD2,E2

Z,2 Λ̂Z,2F0,

where in the new coordinates

ĤD2,E2

Z,2 :=
∑

n∈Z2

(αn ·pn+βnmn)+

N2−1∑

k=2

Un1nk
(yk)+

∑

1<k<l6N2−1

Unknl
(yk−yl),

(5.4)
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Λ̂Z,2 :=
∏

n∈Z2

Λ̂n, (5.5)

Λ̂n :=
1

2
+

αn · pn + βnmn

2
√

p2
n +m2

n

,

operators pn are given by (5.3), and P should now be interpreted as multiplica-
tion by the vector–function. The operators (5.4) and (5.5) obviously commute
with P := |P|. The operator F−1

0 PF0 (unlike F−1
0 PF0) is well–defined in

H
D2,E2

Z,2 , since it commutes with PD2 an PE2 in HZ,2. This implies that H̃D2,E2

Z,2

commutes with F−1
0 PF0.

Let ω := P/P ∈ S2. We decompose the Hilbert space H
D2,E2

Z,2 into the direct
integral

H
D2,E2

Z,2 =

∫ ∞

0

⊕H
D2,E2,P
Z,2 P2dP. (5.6)

The fibre space H
D2,E2,P
Z,2 can be considered as a subspace of L2(R

3N2−3 ×
S2,C4N2

) with the inner product

〈f, g〉∗ :=

∫

R3(N2−1)×S2

〈f, g〉
C4N2 dy1 · · · dyN2−1dω.

For f ∈ H
D2,E2

Z,2 the corresponding element of H
D2,E2,P
Z,2 is given by

fP := F0f ||P|=P.

We have

‖f‖2 =

∫ ∞

0

‖fP‖2
∗P

2dP (5.7)

in compliance with (5.6). The form domain of H̃D2,E2,P
Z,2 is

DP := ΛP
Z,2P

D2PE2H1/2(R3(N2−1) × S2,C4N2
),

where ΛP
Z,2 is given by (5.5) with the only difference that we should replace P

by ωP in (5.3). The operators on fibres of the direct integral (5.6) are

H̃D2,E2,P
Z,2 := ΛP

Z,2H
D2,E2,P
Z,2 ΛP

Z,2,

where HD2,E2,P
Z,2 is given by the r. h. s. of (5.4) with P replaced by ωP in (5.3).

We thus have

H̃D2,E2

Z,2 =

∫ ∞

0

⊕H̃D2,E2,P
Z,2 P2dP. (5.8)

The spectrum of H̃D2,E2

Z,2 can be represented as

σ(H̃D2,E2

Z,2 ) = ess
⋃

P∈R+

σ(H̃D2,E2,P
Z,2 ), (5.9)
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where the essential union is taken with respect to the Lebesgue measure in R+.

The bottom of the spectrum of H̃D2,E2,P
Z,2 is given by

µ(P) := inf
ψ∈DP

〈H̃D2,E2,P
Z,2 ψ, ψ〉∗

‖ψ‖2
∗

. (5.10)

Lemma 15 Function (5.10) is continuous on R+.

Proof of Lemma 15. Let us fix P ∈ R+ and ε > 0. We will prove that∣∣µ(P + p) − µ(P)
∣∣ < ε if |p| is small enough. Choose ψ ∈ DP such that

∣∣∣∣
〈H̃D2,E2,P

Z,2 ψ, ψ〉∗
‖ψ‖2

∗

− µ(P)

∣∣∣∣ 6
ε

2
. (5.11)

Let

φ := ΛP+p
Z,2 ψ ∈ DP+p.

We have

φ− ψ = (ΛP+p
Z,2 − ΛP

Z,2)ψ =

N2∑

k=1

∏

i<k

ΛP+p
ni

(ΛP+p
nk

− ΛP
nk

)
∏

j>k

ΛP
nj
ψ. (5.12)

Let F be the unitary Fourier transform in L2(R
3(N2−1) × S2,C4N2

) defined by

(Fξ)(ω,q1, . . . ,qN2−1)

:= (2π)3(1−N2)/2

∫

R3(N2−1)

ξ(ω,y1, . . . ,yN2−1)e
−i

N2−1P
k=1

qk·yk

dy1 · · ·dyN2−1.

We can rewrite (5.12) as

φ− ψ = F−1
N2∑

k=1

∏

i<k

Λ̂P+p
ni

(Λ̂P+p
nk

− Λ̂P
nk

)
∏

j>k

Λ̂P
nj
Fψ, (5.13)

where Λ̂P
n , n ∈ Z2 are the operators of multiplication by the symbols

Λ̂P
n :=

1

2
+

αn · p̂n + βnmn

2
√

p̂2
n +m2

n

, (5.14)

p̂n1 :=
mn1

M
ωP−

N2−1∑

k=1

qk,

p̂nk
:=

mnk

M
ωP + qk−1, k = 2, . . . , N2.

(5.15)
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The matrix–functions (5.14) are uniformly continuous in P. Thus by (5.13)

‖φ−ψ‖
H1/2(R3(N2−1)×S2,C4N2 )

6 C

N2∑

k=1

‖Λ̂P+p
nk

−Λ̂P
nk
‖L∞

‖ψ‖H1/2 −→
|p|→0

0. (5.16)

We write

〈H̃D2,E2,P+p
Z,2 φ, φ〉∗ = 〈H̃D2,E2,P

Z,2 ψ, ψ〉∗ + 〈HD2,E2,P
Z,2 (φ− ψ), ψ〉∗

+ 〈HD2,E2,P
Z,2 φ, (φ− ψ)〉∗ + 〈(H̃D2,E2,P+p

Z,2 −HD2,E2,P
Z,2 )φ, φ〉∗.

(5.17)

The second and third terms on the r. h. s. of (5.17) tend to zero as |p| → 0
according to (5.16) and (2.8). The last term also tends to zero for small |p|,
since the symbol of the difference is

F(H̃D2,E2,P+p
Z,2 −HD2,E2,P

Z,2 )F−1 =
∑

n∈Z2

mn

M
αn · ωp.

From (5.16) and (5.17) follows that

∣∣∣∣
〈H̃D2,E2,P

Z,2 ψ, ψ〉∗
‖ψ‖2

∗

−
〈H̃D2,E2,P+p

Z,2 φ, φ〉∗
‖φ‖2

∗

∣∣∣∣ 6
ε

2
, (5.18)

if |p| is small enough. Hence by (5.11) and (5.18) for any ε > 0
∣∣µ(P + p) − µ(P)

∣∣ < ε

for |p| small enough. •
Now we prove that µ is semibounded from below and tends to infinity as |P| →
∞. This, together with (5.9) and Lemma 15, implies that the spectrum of

H̃D2,E2

Z,2 is purely essential and is concentrated on a semi–axis. Proposition 14
will be thus proved.
According to (2.9) for j = 2 and (2.10) we have

〈H̃D2,E2

Z,2 ψ, ψ〉 > C1〈
∑

n∈Z2

√
−∆n +m2

nψ, ψ〉 − C2‖ψ‖2,

for any ψ ∈ PDPE ⊗
n∈Z2

ΛnH
1/2(R3,C4).

(5.19)

Since all the operators corresponding to the quadratic forms involved in (5.19)
commute with F−1

0 PF0, it follows from (5.8) that for almost all P the inequal-
ity

〈H̃D2,E2,P
Z,2 ψ, ψ〉∗ > C1〈

∑

n∈Z2

√
p̂2
n +m2

nFψ,Fψ〉∗ − C2‖ψ‖2
∗ (5.20)

holds for every ψ ∈ DP, where p̂n are defined in (5.15). Thus µ is semibounded
from below. Since by (5.15)

P =
∣∣∣

∑

n∈Z2

p̂n

∣∣∣,

Documenta Mathematica 13 (2008) 51–79



70 Sergey Morozov

there exists n ∈ Z2 such that

|p̂n| >
P

N2

and hence ∑

n∈Z2

√
p̂2
n +m2

n >
P

N2
.

Thus the r. h. s. of (5.20) tends to infinity as P → ∞. •

6 Absence of Gaps

We are now ready to finish the proof of Theorem 6 by proving that

[
κ(D,E),∞

)
⊆ σ(HD,E

N ). (6.1)

Let us first fix a decomposition Z on which the minimum is attained in (2.20).
Following the general strategy of [14], we will prove that for any irreducible
representations (D1, E1;D2, E2) ≺

Z
(D,E) any

λ > κ1(Z,D1, E1) + κ2(Z,D2, E2)

belongs to σ(HD,E
N ). This will imply (6.1) according to the definition (2.19).

Let
λ1 := λ− κ1(Z,D1, E1) > κ2(Z,D2, E2). (6.2)

We will use the notation and results of Section 5. The following lemma is a
slight modification of Theorem 8.11 of [14] and is proved along the same lines:

Lemma 16 Let A be a selfadjoint operator in a Hilbert space H and U(γ) be
a continuous representation of a compact group Γ by unitary operators in H

such that U(γ)DomA ⊂ DomA and U(γ)A = AU(γ) for any γ ∈ Γ. Then
for any irreducible (matrix) representation D of Γ the corresponding subspace
PDH reduces A. For every λ ∈ σ(AD) where AD is the reduced operator and
every ε > 0 there exists a D–generating subspace G of DomA such that

‖Au− λu‖ 6 ε‖u‖, for all u ∈ G.

Remark 17 Recall that a subspace G of H is called D–generating if the op-
erator U(γ)|G is unitary in G for all γ ∈ Γ and there exists an orthonormal
base in G such that for every γ ∈ Γ the operator U(γ)|G is represented by the
matrix D(γ).

Proof of Lemma 16. Let r be the dimension of the representation D : γ 7→(
Dlk(γ)

)r
l,k=1

. Let us introduce in H the bounded operators Plk by

Plk := r

∫

Γ

Dlk(γ)U(γ)dµ(γ), l, k = 1, . . . , r,
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where µ is the invariant probability measure on Γ. It is shown in the proof of
Theorem 8.11 of [14] that Pll are orthogonal projections onto mutually orthog-
onal subspaces of H and that

PD =

r∑

l=1

Pll. (6.3)

In fact, Pll is the projection on the subspace of function which belong to the
lth row of the representation D. Moreover, Plk is a partial isometry between
PkkH and PllH. Since λ ∈ σ(AD), there exists a vector u0 ∈ DomAD such that

‖ADu0 − λu0‖ 6 ε‖u0‖.

It follows from (6.3) that there exists l ∈ {1, . . . , r} such that ‖Pllu0‖ > r−1.
We can thus define ul := Pllu0/‖Pllu0‖ and then uk := Pklul for k = 1, . . . , r.
The subspace G spanned by {uk}rk=1 satisfies the statement of the lemma. •
Let

rj := dim(Dj ⊗ Ej), j = 1, 2. (6.4)

Since κ1(Z,D1, E1) belongs to the spectrum of H̃D1,E1

Z,1 (see definition (2.18)),
by Lemma 16 we can choose a sequence of (D1 ⊗ E1)–generating subspaces

{Gq}∞q=1 of Dom(H̃D1,E1

Z,1 ) such that for all q ∈ N

∥∥H̃D1,E1

Z,1 φq − κ1(Z,D1, E1)φq
∥∥

HZ,1
6 q−1‖φq‖HZ,1 , for all φq ∈ Gq. (6.5)

Analogously, for any P > 0 we can find a sequence {GP
q }∞q=1 of (D2 ⊗ E2)–

generating subspaces of Dom H̃D2,E2,P
Z,2 such that

∥∥H̃D2,E2,P
Z,2 ψP

q − µ(P)ψP
q

∥∥
∗

6 q−1‖ψP
q

∥∥
∗
, for all ψP

q ∈ GP
q . (6.6)

Moreover, we can choose an orthonormal basis {ψP
q,l}r2l=1 in GP

q in such a way

that for every q ∈ N and l = 1, . . . , r2 ψq,l belongs to the lth row of the
representation (D2 ⊗ E2) and satisfies (6.6). By Proposition 14, Lemma 15,
and (6.2) we can choose P0 in such a way that

µ(P0) = λ1. (6.7)

We choose Rq > q so that (2.12) and (2.13) hold true for all n, j = 1, . . . , N ,
n < j with

ε := q−1(N1 + 1)−1N
−1/2
2 C

1/2
1

(
C2 + |λ1| + 2

)−1/2
, (6.8)

where N1,2 are the numbers of elements in Z1,2, and C1,2 are the constants in
(2.9) for j = 2, and so that for some orthonormal base {φq,k}r1k=1 of Gq

∥∥∥∥
(
1 −

∏

j∈Z1

I{|xj |<Rq}

)
φq,k

∥∥∥∥
L2(R3N1 ,C4N1 )

6
ν0

4d2
Er1r2

, (6.9)
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where dE is the dimension of E, r1,2 are defined in (6.4), and the constant
ν0 > 0 depending only on E,E1, E2 will be specified later in the proof of
Lemma 21.

By Assumption 4 and Lemma 15, we can choose a sequence of positive numbers
{δq}∞q=1 tending to zero in such a way that

∣∣µ(P) − λ1

∣∣ 6 q−1 for all P ∈ [P0,P0 + δq], (6.10)

1

2π2
(P0 + δq)

2δqCRq < q−2, (6.11)

where CRq is the constant in (2.11), and

1

2π2
(P0 + δq)

2δq ·
4

3
πR3

q <
ν2
0

16d4
Er

2
1r

2
2

. (6.12)

Let us choose a function fq ∈ L2(R+) with supp fq ⊂ [P0,P0 + δq] so that

∫ P0+δq

P0

∣∣fq(P)
∣∣2P2dP = 1. (6.13)

Let

ψq,l(y0, . . . ,yN2−1)

:=
1

(2π)
3
2

P0+δq∫

P0

∫

S2

eiPωy0fq(P)ψP
q,l(ω,y1, . . . ,yN2−1)P

2dωdP,
(6.14)

where {y0, . . . ,yN2−1} and {xn}n∈Z2 are related by (5.1) and (5.2). It follows

from (6.13) and the choice of ψP
q,l that

‖ψq,l‖HZ,2 = 1, l = 1, . . . , N2, (6.15)

and that ψq,l belongs to the lth row of (D2 ⊗ E2). Clearly the linear subspace

G̃q spanned by {ψq,l}r2l=1 is a (D2 ⊗E2)–generating subspace of Dom H̃D2,E2

Z,2 .

Lemma 18 For any n ∈ Z2 and ψ ∈ G̃q with ‖ψ‖ = 1 the one–particle density

ρψ,n(xn) :=

∫

R3N2−3

∣∣ψ(xn1 , . . . ,xnN2
)
∣∣2(dxn1 · · ·dxnN2

)/dxn

satisfies

‖ρψ,n‖L∞(R3) 6
1

2π2
(P0 + δq)

2δq.
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Proof. By (6.14)

‖ρψ,n‖L∞(R3) 6 (2π)−3/2‖ρ̂ψ,n‖L1(R3)

=
1

(2π)6

∫

R3

∣∣∣∣
∫

R3N2

∫ P0+δq

P0

∫

S2

∫ P0+δq

P0

∫

S2

e−ip(y0+rn)e−iPωy0fq(P)

× ψP∗
q (ω,y1, . . . ,yN2−1)e

iePeωy0fq(P̃)ψ
eP
q (ω̃,y1, . . . ,yN2−1)P

2P̃2

× dω̃ dP̃ dω dP dy0 dy1 · · ·dyN2−1

∣∣∣∣dp,

(6.16)

where rn := xn−y0, see (5.2). Integrating the r. h. s. of (6.16) in y0 we obtain

(2π)3δ(p+Pω−P̃ω̃) from all the factors involving y0. Estimating the absolute
value of the integral by the integral of absolute value and taking into account
that

∫
δ(p + . . . )dp = 1 we get

‖ρψ,n‖L∞(R3) 6
1

(2π)3

∫

R3N2−3

∫ P0+δq

P0

∫

S2

∫ P0+δq

P0

∫

S2

∣∣fq(P)
∣∣∣∣fq(P̃)

∣∣

×
∣∣ψP
q (ω,y1, . . . ,yN2−1)

∣∣∣∣ψ eP
q (ω̃,y1, . . . ,yN2−1)

∣∣P2P̃2

× dω̃ dP̃ dω dP dy1 · · · dyN2−1 6
1

(2π)3
4π(P0 + δq)

2δq,

(6.17)

where at the last step we have used Schwarz inequality and ‖ψ‖ = 1. The
formal calculation (6.16) — (6.17) is justified by the fact that the integral over
R3N2 can be considered as a limit of integrals over expanding finite volumes,
since ψ ∈ L2(R

3N2). •

Corollary 19 For any W ∈ L2(R
3), n ∈ Z2, and ψ ∈ G̃q with ‖ψ‖ = 1 we

have
∫

R3N2

∣∣W (xn)ψ(xn1 , . . . ,xnN2
)
∣∣2dxn1 · · ·dxnN2

6
1

2π2
(P0 + δq)

2δq‖W‖2.

Let Fq be the subspace of HN spanned by the functions

ϕq,k,l(x1, . . . ,xN ) := φq,k(xj : j ∈ Z1) ⊗ ψq,l(xn : n ∈ Z2),

k = 1, . . . , r1, l = 1, . . . , r2,
(6.18)

where {φq,k}r1k=1 and {ψq,l}r2l=1 are orthonormal bases of Gq and G̃q, respec-
tively. We obviously have ‖ϕq,k,l‖L2(R3N ,C4N ) = 1.

Lemma 20 For any q ∈ N Fq ⊂ DomHN . For any ϕ ∈ Fq

∥∥(HN − λ)ϕ
∥∥ 6 5q−1r

1/2
1 r

1/2
2 ‖ϕ‖.

Documenta Mathematica 13 (2008) 51–79



74 Sergey Morozov

Proof. It is enough to show that the functions (6.18) belong to DomHN and
satisfy

∥∥(HN − λ)ϕq,k,l
∥∥
L2(R3N ,C4N )

6 5q−1. (6.19)

Indeed, by triangle and Cauchy inequalities for

ϕ =

r1∑

k=1

r2∑

l=1

cklϕq,k,l (6.20)

we have

∥∥(HN − λ)ϕ
∥∥ 6

r1∑

k=1

r2∑

l=1

|ckl|
∥∥(HN − λ)ϕq,k,l

∥∥

6 sup
k,l

∥∥(HN − λ)ϕq,k,l
∥∥r1/21 r

1/2
2 ‖ϕ‖.

The operator domain of HN can be characterized as the set of functions

ξ from the form domain
N
⊗
n=1

ΛnH
1/2(R3,C4) on which the sesquilinear form

〈HN ξ, ·〉 is a bounded linear functional in HN . Functions (6.18) belong to
N
⊗
n=1

ΛnH
1/2(R3,C4) by construction. By (2.2), (2.5), and (2.6) we have

HN = HZ,1 + HZ,2 + ΛN
( ∑

n∈Z2

Vn +
∑

n<j
n#j

Unj

)
ΛN . (6.21)

The sesquilinear forms 〈(HZ,1 + HZ,2)ϕq,k,l, ·〉 are bounded linear functionals

over L2(R
3N ,C4N

), since φq,k ∈ Dom(H̃D1,E1

Z,1 ) and ψq,l ∈ Dom H̃D2,E2

Z,2 . More-
over, by (6.5)

∥∥∥
(
HZ,1 − κ1(Z,D1, E1)

)
ϕq,k,l

∥∥∥ =
∥∥∥
(
H̃D1,E1

Z,1 − κ1(Z,D1, E1)
)
φq,k

∥∥∥ 6 q−1,

and by (6.6), (6.7), (6.10), (6.14), and (6.15)

∥∥(HZ,2 − λ1)ϕq,k,l
∥∥ =

∥∥(H̃D2,E2

Z,2 − λ1)ψq,l
∥∥ 6 2q−1. (6.22)

In view of (6.21)—(6.22) and (6.2), to prove that ϕq,k,l ∈ DomHN and that
(6.19) holds true it is enough to obtain that

∥∥∥∥
( ∑

n∈Z2

Vn +
∑

n<j
n#j

Unj

)
ϕq,k,l

∥∥∥∥ 6 2q−1. (6.23)
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To do this, we first note that by (2.12), (2.13), and Cauchy inequality
∥∥∥∥
( ∑

n∈Z2

VnI{|xn|>Rq} +
∑

n<j
n#j

UnjI{|xn−xj |>Rq}

)
ϕq,k,l

∥∥∥∥

6 ε(N1 + 1)
∑

n∈Z2

∥∥|Dn|
1
2ψq,l

∥∥ 6 ε(N1 + 1)N
1
2
2

( ∑

n∈Z2

∥∥|Dn|
1
2ψq,l

∥∥2
) 1

2

.

(6.24)

By (2.9), (6.15), and (6.22),

∑

n∈Z2

‖D1/2
n ψq,l‖2

6 C−1
1

(∥∥(H̃D2,E2

Z,2 − λ1)ψq,l
∥∥ + C2 + |λ1|

)

6 C−1
1

(
C2 + |λ1| + 2q−1

)
.

(6.25)

Thus by (6.24), (6.25) and (6.8) for q > 1 we obtain
∥∥∥∥
( ∑

n∈Z2

VnI{|xn|>Rq} +
∑

n<j
n#j

UnjI{|xn−xj|>Rq}

)
ϕq,k,l

∥∥∥∥ 6 q−1. (6.26)

Now the scalar functions

Vn,q(x) :=
∣∣Vn(x)

∣∣I{|x|6Rq}(x) and Unj,q(x) :=
∣∣Unj(x)

∣∣I{|x|6Rq}(x)
(6.27)

are square integrable by (2.11). By Corollary 19, for n ∈ Z2

‖Vn,qϕq,k,l‖2 = ‖Vn,qψq,l‖2
6

1

2π2
δq(P0 + δq)

2‖Vn,q‖2
L2(R3) (6.28)

and for n < j, n#j

‖Unj,qϕq,k,l‖2
6 sup

z∈R3

∥∥Unj,q(· − z)ψq,l
∥∥2

6
1

2π2
δq(P0 + δq)

2‖Unj,q‖2
L2(R3).

(6.29)
Hence by (6.27), (6.28), (6.29), (2.11), and (6.11)

∥∥∥∥
( ∑

n∈Z2

VnI{|xn|6Rq} +
∑

n<j
n#j

UnjI{|xn−xj|6Rq}

)
ϕq,k,l

∥∥∥∥ 6 q−1.
(6.30)

It remains to add (6.26) and (6.30) to obtain (6.23), finishing the proof of the
lemma. •
The subspace Fq spanned by the functions (6.18) is D1 ⊗ E1 ⊗ D2 ⊗ E2–
generating. Since (D1, E1;D2, E2) ≺

Z
(D,E), Fq contains some nontrivial D–

generating subspace. Hence the subspace Kq := PDFq is not equal to {0} and
is contained in Fq.
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Lemma 21 There exists a constant CE > 0 such that for every q ∈ N

‖PEϕ‖ > CE‖ϕ‖, for all ϕ ∈ Fq. (6.31)

Proof. Projector (2.15) can be written as

PE =
dE
hΠ

∑

π∈ΠZ
1 ×ΠZ

2

ξE(π)π +
dE
hΠ

∑

π∈Π\(ΠZ
1 ×ΠZ

2 )

ξE(π)π. (6.32)

We will denote the first term in (6.32) by QE , and the second by RE. Then

‖PEϕ‖2 = 〈ϕ, PEϕ〉 = 〈ϕ,QEϕ〉 + 〈ϕ,REϕ〉. (6.33)

Relation (D1, E1;D2, E2) ≺
Z

(D,E) implies that the representation E|ΠZ
1 ×ΠZ

2

is unitarily equivalent to a sum
k
⊕
i=0
niE

(i), where ni > 0 are multiplicities of the

irreducible representations E(i) of the group ΠZ
1 × ΠZ

2 with E(0) = E1 ⊗ E2.
For the corresponding characters this gives

ξE(π) =

k∑

i=0

niξ
(i)(π), for all π ∈ ΠZ

1 × ΠZ
2 .

Hence

QE =

k∑

i=0

νiPi,

where νi > 0 and Pi is the projector corresponding to the representation E(i).
By construction, P0ϕ = ϕ for any ϕ ∈ Fq, hence Piϕ = 0 for i = 1, . . . , k. Thus
for any ϕ ∈ Fq

〈ϕ,QEϕ〉 = ν0‖ϕ‖2, ν0 > 0. (6.34)

We will now estimate the second term on the r. h. s. of (6.33). For any n ∈ Z2

and any ψ ∈ G̃q with ‖ψ‖ = 1 by Corollary 19 and (6.12) we have

‖I{|xj|<Rq}ψ‖2
6

ν2
0

16d4
Er

2
1r

2
2

. (6.35)

For any functions (6.18) and any π ∈ Π inequality (6.9) implies that

∣∣〈ϕq,k,l, πϕq,ek,el〉
∣∣ 6 〈

∏

j∈Z1

I{|xj |<Rq}|ϕq,k,l|, π|ϕq,ek,el|〉L2(R3N ) +
ν0

4d2
Er1r2

.

Now if π ∈ Π\ (ΠZ
1 ×ΠZ

2 ), then there exists j0 ∈ Z1 such that πj0 ∈ Z2. Hence
by (6.35)

〈
∏

j∈Z1

I{|xj |<Rq}|ϕq,k,l|, π|ϕq,ek,el|〉 6 〈|ϕq,k,l|, I{|xj0 |<Rq}π|ϕq,ek,el|〉 6
ν0

4d2
Er1r2

.
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Thus ∣∣〈ϕq,k,l, πϕq,ek,el〉
∣∣ 6

ν0
2d2
Er1r2

, π ∈ Π \ (ΠZ
1 × ΠZ

2 ). (6.36)

Any ϕ ∈ Fq can be written as (6.20). By (6.36) and Cauchy inequality for any
π ∈ Π \ (ΠZ

1 × ΠZ
2 )

∣∣〈ϕ, πϕ〉
∣∣ 6

∑

k,l,ek,el

|ckl||cekel|
∣∣〈ϕq,k,l, πϕq,ek,el〉

∣∣ 6
ν0

2d2
E

‖ϕ‖2. (6.37)

Since the number of elements of Π\ (ΠZ
1 ×ΠZ

2 ) does not exceed dΠ and for any
π

∣∣ξE(π)
∣∣ 6 dE as a trace of unitary matrix of dimension dE , (6.37) implies

that ∣∣〈ϕ,REϕ〉
∣∣ 6 ν0‖ϕ‖2/2.

By (6.33) and (6.34) we conclude that (6.31) holds with CE =
√
ν0/2. •

Lemmata 20 and 21 imply that Lq := PEKq is a nontrivial subspace of

DomHD,E
N and for every f = PEϕ ∈ Lq

∥∥(HD,E
N −λ)f

∥∥ 6
∥∥(HN −λ)ϕ

∥∥ 6 5q−1r
1
2
1 r

1
2
2 ‖ϕ‖ 6 5q−1r

1
2
1 r

1
2
2 C

−1
E ‖f‖, q ∈ N.

This implies that λ ∈ σ(HD,E
N ), and thus finishes the proof of Theorem 6.
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