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Abstract. Let M be a Chow motive over a field F . Let X be a
smooth projective variety over F and N be a direct summand of the
motive of X . Assume that over the generic point of X the motives M
and N become isomorphic to a direct sum of twisted Tate motives.
The main result of the paper says that if a morphism f : M → N
splits over the generic point of X then it splits over F , i.e., N is a
direct summand of M . We apply this result to various examples of
motives of projective homogeneous varieties.
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1 Introduction

By a variety X over a field F we always mean a reduced and irreducible scheme
of finite type over F . By F (X) we denote the function field of X .

Definition 1.1. Let M be a Chow motive over F . We say M is split over F
if it is a direct sum of twisted Tate motives over F . We say a motive M is
generically split if there exists a smooth projective variety X over F and an
integer l such that M is a direct summand of the twisted motive M(X){l} of
X and M is split over F (X). In particular, a smooth projective variety X is
called generically split if its Chow motive M(X) is split over F (X).

The classical examples of such varieties are Severi-Brauer varieties, Pfister
quadrics and maximal orthogonal Grassmannians. In the present paper we
provide useful technical tool to study motivic decompositions of generically
split varieties (motives). Namely, we prove the following

1Partially supported by SFB 701, INTAS 05-1000008-8118 and DFG GI 706/1-1.
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Theorem 1.2. Let M be a Chow motive over a field F . Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume that M and N are split over F (X). Then a morphism M → N splits,
i.e. N is a direct summand of M , if it splits over F (X).

The paper is organized as follows. In section 2 we introduce the category of
Chow motives over a relative base. In section 3 we provide the version of the
Rost nilpotence theorem for generically split varieties. In section 4 we prove the
main result of this paper (see the above theorem). The last section is devoted
to various applications and examples.

2 Chow motives over a relative base

Let X be a variety over a field F . We say X is essentially smooth over F
if it is an inverse limit of smooth varieties Xi over F taken with respect to
open embeddings. Let CHm(X ; Λ) = CHm(X) ⊗Z Λ denote the Chow group
of codimension m cycles on X with coefficients in a commutative ring Λ. If X
is essentially smooth, then CHm(X ; Λ) = lim

−→
CHm(Xi; Λ), where the limit is

taken with respect to the pull-backs induced by open embeddings.
In the present section we introduce the category of Chow motives over an
essentially smooth variety X with Λ-coefficients. Our arguments follow the
paper [9].

I. First, we define the category of correspondences C(X ; Λ). The objects of
C(X ; Λ) are smooth projective maps Y → X . The morphisms are given by

Hom([Y → X ], [Z → X ]) = ⊕i CHdim(Zi/X)(Y ×X Zi; Λ),

where the sum is taken over all irreducible components Zi of Z of relative
dimensions dim(Zi/X). The composition of two morphisms is given by the
usual correspondence product

ψ ◦ φ = (pY,T )∗
(

(pY,Z)∗(φ) · (pZ,T )∗(ψ)
)

,

where φ ∈ Hom([Y → X ], [Z → X ]), ψ ∈ Hom([Z → X ], [T → X ]) and
pY,T , pY,Z, pZ,T are projections Y ×X Z ×X T → Y ×X T , Y ×X Z, Z ×X T .
The category C(X ; Λ) is a tensor additive category, where the direct sum is
given by [Y → X ] ⊕ [Z → X ] := [Y

∐

Z → X ] and the tensor product by
[Y → X ]⊗ [Z → X ] := [Y ×X Z → X ] (cf. [9, §2-4]). As usual we denote by
φt ∈ CH(Z ×X Y ) the transposition of a cycle φ ∈ CH(Y ×X Z).
The category of effective Chow motives Chow eff(X ; Λ) can be defined as the
pseudo-abelian completion of C(X ; Λ). Namely, the objects are pairs (U, ρ),
where U is an object of C(X ; Λ) and ρ ∈ EndC(X;Λ)(U) is a projector, i.e.
ρ ◦ ρ = ρ. The morphisms between (U1, ρ1) and (U2, ρ2) are given by the
group ρ2 ◦ HomC(X;Λ)(U1, U2) ◦ ρ1. The composition of morphisms is induced
by the correspondence product. In the case X = Spec(F ) and Λ = Z we obtain
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the usual category Chow eff(F ) of effective Chow motives over F with integral
coefficients (cf. [9, §5]).

Consider the projective line P1 over F . The projector ρ = [Spec(F ) × P1] ∈
CH1(P1 × P1) defines an object (P1, ρ) in Chow eff(F ) called the Tate motive
over F and denoted by Z{1} (cf. [9, §6]).

II. We have two types of restriction functors.

1) For any morphism f : X1 → X2 of essentially smooth varieties we have a
tensor additive functor

resX2/X1
: C(X2; Λ)→ C(X1; Λ)

given on the objects by [Y2 → X2] 7→ [Y2×X2 X1 → X1] and on the morphisms
by φ 7→ (id × f)∗(φ), where id × f : (Y2 ×X2 Z2) ×X2 X1 → Y2 ×X2 Z2 is the
natural map. It induces a functor on pseudo-abelian completions

resX2/X1
: Chow eff(X2; Λ)→ Chow eff(X1; Λ).

2) For any homomorphism of commutative rings h : Λ→ Λ′ we have a tensor
additive functor

resΛ′/Λ : C(X,Λ)→ C(X ; Λ′)

which is identical on objects and is given by id ⊗ h : CH(Y ×X Z; Λ) →
CH(Y ×X Z; Λ′) on morphisms. Again, it induces a functor on pseudo-abelian
completions

resΛ′/Λ : Chow eff(X ; Λ)→ Chow eff(X ; Λ′).

Observe that the functor resΛ′/Λ commutes with resX2/X1
. We denote by

resX2/X1,Λ′/Λ the composite resX2/X1
◦ resΛ′/Λ. To simplify the notation we

omit X2 (resp. Λ), if X2 = SpecF (resp. Λ = Z).

Let f : X → SpecF and h : Z → Λ be the structure maps. Then
resX,Λ : Chow eff(F ) → Chow eff(X ; Λ). Given a motive N over F we denote

by NX,Λ its image resX,Λ(N) in Chow eff(X ; Λ). The image Z{1}X,Λ of the
Tate motive is denoted by T and is called the Tate motive over X . Let M
be a motive from Chow eff(X ; Λ) and l ≥ 0 be an integer. The tensor product
M ⊗ T⊗l is denoted by M{l} and is called the twist of M . The trivial Tate
motive T⊗0 will be denoted Λ (thus, T⊗l = Λ{l}).
The same arguments as in the proof of [9, Lemma of §8] show that for any
motives U and V from Chow eff(X ; Λ) and l ≥ 0 the natural map

HomChoweff (X;Λ)(U, V )→ HomChoweff (X;Λ)(U{l}, V {l}) (1)

given by φ 7→ φ⊗ idT is an isomorphism.
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III. We define the category Chow (X ; Λ) of Chow motives over X with Λ-
coefficients as follows. The objects are pairs (U, l), where U is an object of
Chow eff(X ; Λ) and l is an integer. The morphisms are given by

Hom((U, l), (V,m)) := lim
N→+∞

HomChoweff (X;A)(U{N + l}, V {N +m}).

This is again a tensor additive category, where the sum and the product are
given by

(U, l)⊕ (V,m) := (U{l− n} ⊕ V {m− n}, n), where n = min(l,m),

(U, l)⊗ (V,m) := (U ⊗ V, l +m).

Observe that the Tate motive T is isomorphic to ([id : X → X ], 1) and, hence,
it is invertible in (Chow (X ; Λ),⊗). Moreover, we can say that Chow (X ; Λ) is
obtained from Chow eff(X ; Λ) by inverting T (cf. [9, §8]).

According to (1) the natural functor Chow eff(X ; Λ) → Chow (X ; Λ) given by
U 7→ (U, 0) is fully faithful and the restriction resX,Λ descend to the respective
functor resX,Λ : Chow (F )→ Chow (X ; Λ).
For a smooth projective morphism Y → X we denote by M(Y → X) its
effective motive ([Y → X ], id) considered as an object of Chow (X ; Λ). If
X = SpecF and Λ = Z, then we denote the motive M(Y → X) simply
by M(Y ). By definition there is a natural identification

HomChow(X;Λ)(M(Y → X){i},M(Z →X){j}) = CHdim(Z/X)+j−i(Y ×X Z; Λ).

IV. Let M be an object of Chow (X ; Λ). We define the Chow group with low
index CHm(M ; Λ) of M as

CHm(M ; Λ) := HomChow(X;Λ)(Λ{m},M)

and the Chow group with upper index CHm(M ; Λ) as

CHm(M ; Λ) := HomChow(X;Λ)(M,Λ{m}).

Observe that if M = M(Y → X), then we obtain the usual Chow groups

CHdim(Y/X)−m(Y ; Λ) and CHm(Y ; Λ) of a variety Y . A composite with a
morphism f : M → N induces a homomorphism between the Chow groups
Rm(f) : CHm(M) → CHm(N) and Rm(f) : CHm(N) → CHm(M) called the
realization map.

3 The Rost nilpotence

We will extensively use the following version of the Rost nilpotence (cf. [14,
Proposition 9])
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Proposition 3.1. Let N be a generically split motive over a field F . Then for
any field extension E/F and any coefficient ring Λ the kernel of the restriction

resE/F : EndF (N)→ EndE(NE)

consists of nilpotents.

To simplify the notation we denote by EndX(M) the endomorphism group
HomChow(X;Λ)(M,M), where M is a motive over a variety X .

Proof. Recall that (see Definition 1.1) a motive N over F is generically split if
there exists a smooth projective variety X and l ∈ Z such that N is a direct
summand of M(X){l} and NK = resK/F (N) is split, where K = F (X) denotes
the function field of X .
We may assume that N is a direct summand of M(X) (that is, l = 0). Since for
a split motive M and a field extension E/L, the map EndL(ML)→ EndE(ME)
is an isomorphism, we may assume that E = K.
Consider the composite of ring homomorphisms

resK/F : EndF (N)
resX/F
−−−−→ EndX(NX)

resK/X
−−−−−→ EndK(NK),

where the last map is induced by passing to the generic point SpecK → X .
Observe that EndK(NK) = lim

−→
EndU (NU ), where the limit is taken over all

open subvarieties U ⊂ X . Then ker(resK/X) = ∪U ker(resU/X) and by Lemma
3.2 the kernel of resK/X consists of nilpotents.
On the other hand, the map resX/F is injective. Indeed, since N is a direct
summand of M(X), EndF (N) is a subring of EndF (M(X)) and EndX(NX) is
a subring of EndX(M(X)X). So, it is sufficient to prove the injectivity for the
case N = M(X). The restriction resX/F : EndF (M(X)) → EndX(M(X)X)
coincides with the pull-back π∗

1,2 : CH(X×X ; Λ)→ CH(X×X×X ; Λ) induced
by the projection on the first two coordinates. And π∗

1,2 splits by (idX ×
∆X)∗ : CH(X ×X ×X ; Λ)→ CH(X ×X ; Λ), where ∆X : X → X ×X is the
diagonal. The proposition is proven.

Lemma 3.2. Let X be a smooth projective variety over F and Λ be a commu-
tative ring. Let U ⊂ X be an open embedding. Then for any motive M from
Chow (X ; Λ) the kernel of the restriction map

resU/X : EndX(M)→ EndU (MU )

consists of nilpotents.

Proof. If M is a direct summand of [Y → X ]{i}, then EndX(M) is a subring
of EndX(M(Y → X)) and it is sufficient to study the case M = M(Y → X).

Recall that EndX(M(Y → X)) = CHdim(Y )−dim(X)(Y ×X Y ; Λ).
Let φ be an element from the kernel of resU/X . Let j : Z → X be the reduced
closed complement to U in X . Then by the localization sequence for Chow
groups the cycle φ belongs to the image of the induced push-forward

(id(Y ×XY ) × j)∗ : CH((Y ×X Y )×X Z; Λ)→ CH(Y ×X Y ; Λ).
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Let codim(Z) be the minimum of codimensions of irreducible components of Z,

and d := [ dim(X)
codim(Z) ]+1. We claim that the d-th power φ◦d of φ taken with respect

to the correspondence product is trivial. Indeed, φ◦d = (π1,d+1)∗(φ1 ·φ2 ·. . .·φd),
where φi = π∗

i,i+1(φ) and the map πi,i′ : Y
×(d+1) → Y ×X Y is the projection

on the i-th and i′-th components. Since π∗
i,i′ ◦ (id(Y ×XY ) × j)∗ coincides with

(idY ×(d+1) × j)∗ ◦ (πi,i′ × idZ)∗, all cycles φi belong to the image of the push-
forward

(idY ×(d+1) × j)∗ : CH(Y ×(d+1) ×X Z)→ CH(Y ×(d+1)).

By Proposition 6.1 applied to the projection Y ×(d+1) → X and the closed
embedding j : Z →֒ X we obtain that the product

φ1 · . . . · φd ∈
(

(idY ×(d+1) × j)∗ CH(Y ×(d+1) ×X Z)
)d

is trivial. Therefore, φ◦d is trivial as well.

We finish this section with the following

Definition 3.3. Given motive M over a field F and a field extension L/F we
say a cycle in CH(ML) is rational if it is in the image of the restriction map
resL/F .

Observe that the rationality of cycles is preserved by push-forward and pull-
back maps. It also respects addition, intersection and correspondence product
of cycles.

4 Motivic splitting lemma

In the present section we prove the main result of this paper

Theorem 4.1. Let M be a Chow motive over a field F . Let X be a smooth
projective variety over F and N be a direct summand of the motive of X.
Assume that M and N are split over the function field K = F (X). Then a
morphism f : M → N splits, i.e. N is a direct summand of M , if it splits over
K.

Proof. To construct a section of f we apply recursively the following procedure
starting from g = 0 and such m that CHi(NK) = 0, for i < m.

For a morphism g : N → M such that the realization morphism
Ri(fK ◦ gK) is the identity on CHi(NK) for i < m, we construct a
new morphism g′ : N → M such that Ri(fK ◦ g′K) is the identity
on CHi(NK) for i ≤ m.

Since the motive NK splits, for the corresponding projector ρN over K we may
write (ρN )K =

∑

l ωl×ω∨
l for certain ωl ∈ CH∗(XK) and ω∨

l ∈ CH∗(XK) such
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that deg(ωl · ω∨
m) = δl,m. Elements ωl form a basis of CH∗(NK) = (ρN )K ◦

CH∗(XK) ⊂ CH∗(XK).
Consider the surjection CHm(X ×X) ։ CHm(K ×F X) = CHm(XK). Let Ωl

be a preimage of an element ωl of CHm(XK).
Consider the difference id − f ◦ g and denote it by h. Assume that over K it
sends a basis element ωj to a cycle αj . Since Ri(hK) is trivial for all i < m,
the cycle hK = hK ◦ (ρN )K can be written as

hK =
∑

codimαl=m

αl × ω
∨
l +

∑

codim αj>m

αj × ω
∨
j ∈ CHdim X(XK ×XK). (2)

From (2) we immediately see that

αl = pr1∗(Ωl,K · hK) ∈ CHm(XK) is rational. (3)

Also, αl ◦ (ρN )K = αl.
The realization Rm(fK) is a Z-linear map CHm(NK)→ CHm(MK). Let C =
(cij) be the respective matrix of coefficients, i.e.,

Rm(fK) : ωi 7→
∑

j

cjiθj ,

where {θi} is a Z-basis of CHm(MK). Let s : NK → MK be a section of
fK . The realization map Rm(s) is a left inverse to Rm(fK). Hence, for the
respective matrix of coefficients D = (dij) we have

Rm(s) : θi 7→
∑

j

djiωj

and D · C = id, i.e.,
∑

j dijcjk = δik. For each αl define the morphism ul :
N →M as

ul =
∑

i

dliΘ
∨
i ◦ (pr∗1(αl) ·∆X) ◦ pN ,

where Θ∨
i is a preimage of an element θ∨i of CHm(MK) by means of the canon-

ical surjection HomF (M(X)(m)[2m],M) → CHm(MK) and pN : N → M(X)
be the morphism presenting N as a direct summand of M(X). By definition,
ul is a rational morphism and the realization Rm(ul) is given by

θi 7→ dliαl

Hence, the composite Rm(f ◦ ul) = Rm(ul) ◦Rm(f) maps ωi to δilαl.
Set g̃ = g +

∑

l ul. By construction, the realization R(f ◦ g̃) is the identity on
CHi(NK) for i ≤ m. Consider the endomorphism id− f ◦ g̃ of N . Over K its
realization Ri(id− f ◦ g̃) is trivial for each i ≤ m.
Recursion step is proven and we obtain map g′ : N →M such that (f ◦ g′)K =
idNK . Let q = id − f ◦ g′. By the Proposition 3.1, qr = 0, for some r. Set
g = g′ ◦ (id + q + q◦2 + . . . + q◦(r−1)). Then f ◦ g = idN and N is a direct
summand of M .
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5 Examples and Applications

Geometric construction of a generalized Rost motive. Let p be a
prime and F be a field of characteristic different from p. Let n be a positive
integer. To each nonzero cyclic subgroup 〈α〉 in KM

n (F )/p consisting of pure
symbols one can assign some motiveMα in the category Chow (F ; Z/pZ), which
satisfies the following property
For an arbitrary field extension E/F

α|E 6= 0 ⇐⇒ (Mα)E = resE/F (Mα) is indecomposable;
α|E = 0 ⇐⇒ (Mα)E is split.

It follows from the results of V. Voevodsky and M. Rost that for a given sub-
group such motive always exists and is unique (see [17, § 5] and [15, Prop. 5.9]).
Moreover, when split it is isomorphic to

p−1
⊕

i=0

Z/pZ{i · pn−1
−1

p−1 }.

Such a motive is called a generalized Rost motive with Z/pZ-coefficients.

Definition 5.1. A motive with integral coefficients which specializes modulo
p into a generalized Rost motive and splits modulo q for every prime q different
from p will be called an integral generalized Rost motive and denoted by Rn,p.

Integral generalized Rost motives, hypothetically, should be parameterized not
by the pure cyclic subgroups of KM

n (F )/p, but by the pure symbols of KM
n (F )/p

up to a sign. The existence of integral generalized Rost motives is known for
n = 2 and arbitrary p, for p = 2 and arbitrary n, and for the pair n = 3, p = 3.
All these examples are essentially due to M. Rost.
As the first application of Theorem 4.1 we obtain the construction of the clas-
sical integral Rost motive corresponding to a Pfister form.

Corollary 5.2. (cf. [14, Theorem 17.(9) and Proposition 19]) Let X be a
hyperplane section of a n-fold Pfister quadric Y over a field F . Then M(Y ) ≃
M(X){1} ⊕Rn,2, where Rn,2 is an integral Rost motive.

Proof. In the proof we use several auxiliary facts concerning quadrics and their
motives which can be found in [5].
Let φX and φY be the quadratic forms which define X and Y . By definition
φX is a subform of codimension 1 of the Pfister form φY . According to [5,
Def.5.1.2 and Thm.5.3.4.(a)] Y becomes isotropic over K = F (X). This fact
together with [5, Prop.4.2.1] implies that both φX and φY become totally split
(hyperbolic) over K. Then by [5, E.10.8] the motives M(X)K and M(Y )K are
split over K.
Let Γe be the graph of the closed embedding e : X →֒ Y . The respective cor-
respondence cycle [Γe] ∈ CHdim X(X × Y ) induces the realization map R∗(Γe)
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which coincides with the pull-back e∗ : CH∗(Y ) → CH∗(X) (see §2.IV). It is
known that the Chow ring of a hyperbolic quadric is generated by two ele-
ments 〈h, l〉, where h is the class of a hyperplane section and l is the class of
a maximal totally isotropic subspace. In this notation the pull-back e∗K maps
hY 7→ hX and lY 7→ lX , i.e. maps the ring CH(YK) onto the ring CH(XK).
The latter means that R∗(Γe) and, therefore, the transposed correspondence
cycle [Γe]

t ∈ CHdim Y −1(Y ×X) have a section over K.
Take f = [Γe]

t : M(Y ) → M(X){1} and apply Theorem 1.2. We obtain the
decomposition M(Y ) = M(X){1} ⊕N , where N is such that

NK = Z⊕ Z{2n−1 − 1}.

Let E/F be a field extension. The Pfister quadric Y corresponds to some
pure symbol α ∈ KM

n (F )/2 (see [5, §9.4]) with the property that α|E = 0
if and only if YE has a rational point. Consider the specialization NE,Z/2

with Z/2-coefficients. We have the following chain of equivalences: NE,Z/2 is
decomposable ⇔ NE,Z/2 contains Z/2 as a direct summand ⇔ M(Y ; Z/2)E

contains Z/2 as a direct summand ⇔ (see [14, §1.4]) YE has a zero-cycle of
odd degree ⇔ (Springer Theorem) YE has a rational point. At the same time,
the specialization NZ/p is split for any odd prime p, since M(Y ; Z/p) is split.
Hence, N is an integral generalized Rost motive corresponding to the symbol
α.

To provide the next application we use several auxiliary facts concerning Albert
algebras and Cayley planes which can be found in [4], [8], [11], [12]. We use
the notation of [12, §3].
Consider an Albert algebra J defined by means of the first Tits construction.
Let F4(J) and E6(J) denote the respective simple groups of types F4 and E6.
Let X be the variety of maximal parabolic subgroups of F4(J) of type P4. Let
Y be the variety of maximal parabolic subgroups of E6(J) of type P1 Here Pi

corresponds to a standard parabolic subgroup generated by the Borel subgroup
and all unipotent subgroups corresponding to linear spans of all simple roots
with no i-th terms (our enumeration of roots follows Bourbaki). The variety
Y is called a (twisted) Cayley plane.
Observe that there is a closed embedding e : X →֒ Y such that over the splitting
field K of J the class [XK ] ∈ PicYK generates the Picard group of YK . In other
words, XK is a hyperplane section of YK (see [8, 6.3]).

Corollary 5.3. Let X and Y be as above. Then M(Y ) ≃ M(X){1} ⊕ R3,3,
where R3,3 is an integral generalized Rost motive corresponding to the Serre-
Rost invariant g3(J) in KM

3 (F )/3.

Proof. We follow the previous proof step by step.
Let K denote the function field of X . Analyzing the Tits indices of F4(J)
we conclude that J becomes reduced over K. Moreover, since J is defined by
means of the first Tits construction, J becomes split over K. By definition it
implies that both groups and varieties become split over K.
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Consider now the graph Γe of the closed embedding e : X →֒ Y . As before,
the respective correspondence cycle [Γe] induces the realization map R∗(Γe)
which coincides with the pull-back e∗. The Chow rings CH(XK) and CH(YK)
are generated by 〈h, g4

1〉 (see [10, 4.10]) and 〈H,σ′
4, σ8〉 (see [4, 5.1]). By the

Lefschetz hyperplane theorem the pull-back e∗ has to be an isomorphisms on
all graded components of codimensions ≤ 7. This immediately implies that e∗

maps H 7→ h and σ′
4 7→ g4

1, i.e. maps the ring CH(YK) onto the ring CH(XK).
So R∗(Γe) and, therefore, the transposed cycle [Γe]

t have a section over K.
Take f = [Γe]

t : M(Y ) → M(X){1} and apply Theorem 1.2. We obtain the
decomposition M(Y ) = M(X){1} ⊕N , where the motive N is such that

NK = Z⊕ Z{4} ⊕ Z{8}.

Let E/F be a field extension. Let α = g3(J) ∈ KM
3 (F )/3 be the Serre-Rost

invariant of the Jordan algebra J (see [13]). Analyzing the Tits indices of E6(J)
we see that α|E = 0 if and only if YE has a zero-cycle of degree coprime to 3.
Consider the specializationNE,Z/3 with Z/3-coefficients. Similar to the quadric
case there is a chain of equivalences which says that NE,Z/3 is decomposable⇔
YE has a zero-cycle of degree coprime to 3. At the same time, the specialization
NZ/p is split for any prime p 6= 3, since M(Y ; Z/p) is split. Therefore, N is an
integral generalized Rost motive corresponding to the symbol α.

Remark 1. Observe that in view of the main result of [10] we obtain the
following decomposition

M(Y ) ≃
8

⊕

i=0

R3,3{i}.

So from the motivic point of view the variety Y is a 3-analog of a Pfister
quadric.

Projective homogeneous varieties of type F4. As before let J be an
Albert algebra defined by means of the first Tits construction. Let F4(J) be
the respective group of type F4. Let X be the same as before, i.e. the variety
of maximal parabolic subgroups of type P4 of F4(J). Let Y be the variety
of maximal parabolic subgroups of type P3 of F4(J). Observe that Y has
dimension 20.

Corollary 5.4. Let X and Y be as above. Then the motive M(X ; Z) is
isomorphic to a direct summand of the motive M(Y ; Z).

Proof. Since the Albert algebra J splits over the function field K of X , the
motives M(X) and M(Y ) become split over K as well. By the main result of
[10] M(X) splits as

M(X) ≃
7

⊕

i=0

R3,3{i},
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where R3,3 is the integral generalized Rost motive corresponding to g3(J).
Let Z be the variety of parabolic subgroups of type P3,4 of F4(J). Observe that
Z has dimension 21 and there is a map prXY = (prX , prX) : Z → X×Y , where
prX , prY are the quotient maps. For each i = 0 . . . 7 consider the composite

fαi : M(Y )
prXY ∗(αi)
−−−−−−−→M(X)→R3,3{i}, where αi ∈ PicZ.

Set f =
⊕7

i=0 fαi : M(Y ) → M(X). Assume that we can choose αi ∈ PicZ
in such a way that the realization map R∗(f) becomes split injective over K.
Then by Theorem 1.2 applied f , the motive M(X) is isomorphic to a direct
summand of M(Y ).
So to prove the corollary it is enough to find αi ∈ PicZ, i = 0 . . . 7, such that
R∗(f) is split injective over K.
Observe that the restriction map resK/F : PicZ → PicZK is an isomorphism
(see [10, Lemma 4.3]). Therefore, we may assume that αi ∈ PicZK . Observe
also that the ring structures of CH(XK), CH(YK) and CH(ZK) are known.
We have R∗(fαi)K = R∗(αi)K ◦ R∗(ρi)K , where ρi is an idempotent defin-
ing R3,3{i}. Both realizations R∗(ρi)K and R∗(αi)K can be described explic-
itly on generators. Indeed, the realization R∗(αi)K is given by the composite

CH(XK)
pr∗X−−→ CH(ZK)

·αi−−→ CH(ZK)
prY ∗−−−→ CH(YK), where the maps pr∗X and

prY ∗ can be described using [10, §3]. The explicit description of the cycles
(ρi)K is provided in [10, 5.5].
Let {αi = c1ig1+c2ig2}i=0...7, c1i, c2i ∈ Z, be the presentation of the cycles αi in
terms of a fixed Z-basis 〈g1, g2〉 of PicZK . Since all realization maps R∗(αi)K ,
R∗(ρi)K are Z-linear, the question of split injectivity of R∗(f)K translates
into the problem of solving certain system of Z-linear equations in 16 variables
{c1i, c2i}i=0...7. Direct computations show that this system has a solution. This
finishes the proof of the corollary.

Twisted forms of Grassmannians. Consider a Grassmannian G(d, n) of
d-dimensional planes in a n-dimensional affine space. Its twisted form is called
a generalized Severi-Brauer variety and denoted by SBd(A), where A is the
respective central simple algebra of degree n (see [7, §1.C]). The next corollary
relates the motive of a generalized Severi-Brauer variety with the motive of
usual Severi-Brauer variety.

Corollary 5.5. Let A and B be two central division algebras of degree n with
[A] = ±d[B] in the Brauer group Br(F ), where d and n are coprime. Then the
motive of the Severi-Brauer variety SB(A) is a direct summand in the motive
of the generalized Severi-Brauer variety SBd(B).

Proof. We construct the morphism f : M(SBd(B)) → M(SB(A)) as follows.
Consider the Plücker embedding pl : SBd(B) → SB(ΛdB). It induces the
morphism M(SBd(B))→M(SB(ΛdB)), where ΛdB is the d-th lambda power
of B (see [7, II.10.A]). By [6, Cor. 1.3.2] the motive M(SB(ΛdB)) splits as a
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direct sum of shifted copies ofM(SB(A)), where [A] = d[B] in Br(F ). Take f to
be the composite of the Plücker embedding and the projection M(SB(ΛdB))→
M(SB(A)).
We claim that f has a section (splits) over the generic point of SB(A). Indeed,
it is equivalent to the fact that for each m = 0, . . . , n− 1

g.c.d.
i

(c
(m)
i ) = 1

where c
(m)
i are degrees of the Schubert varieties generating CHm(G(d, n)). The

latter can be computed using explicit formulas for degrees of Schubert varieties
provided for instance in [3, Ch. 14, Ex. 14.7.11.(ii)].
Then by Theorem 1.2 the motive M(SB(A)) is a direct summand in
M(SBd(B)). Observe that the motives M(SB(A)) and M(SB(Aop)) are iso-
morphic. So replacing [A] by [Aop] = −[A] doesn’t change anything.

Compactifications of a Merkurjev-Suslin variety. Here we follow
definitions and notation of [16]. Let A be a cubic division algebra over F . Re-
call that a smooth compactification D of a Merkurjev-Suslin varietyMS(A, c)
can be identified with the smooth hyperplane section of the twisted form
X = SB3(M2(A)) of Grassmannian G(3, 6). Using Theorem 1.2 one obtains a
shortened proof of the main result of [16]

Corollary 5.6. Let D be the smooth projective variety introduced above. Then

M(D) ≃
5

⊕

i=1

M(SB(A)){i} ⊕R3,3,

where R3,3 is an integral generalized Rost motive. In other words, from the
motivic point of view the variety D can be viewed as a 3-analog of a Norm
quadric.

Proof. Let i : D →֒ X denote the closed embedding. It induces the map
Γi : M(D)→M(X). The variety X is a projective homogeneous PGL6-variety
corresponding to a maximal parabolic subgroup of type P3. According to the
Tits indices for the group PGLM2(A) the parabolic subgroup P3 is defined over
F and, hence, X is isotropic. By [2, Thm. 7.5] the motive of X splits as

M(X) = Z⊕Q{1} ⊕Q{4} ⊕ Z{9},

where Q = M(SB(A) × SB(Aop)) =
⊕2

i=0M(SB(A)){i} by the projective
bundle theorem. Hence, we obtain

M(X) = Z⊕
6

⊕

i=1

M(SB(A)){i} ⊕ Z{9}. (4)

We define f to be the composite of Γi and the canonical projection from M(X)

to the direct summand
⊕5

i=1M(SB(A)){i} of (4). Observe that the motive
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M(D) splits over the generic point of SB(A). The direct computations (using
multiplication tables provided in [16]) show that f has a section over F (SB(A)).
By Theorem 1.2 we conclude that

M(D) ≃
5

⊕

i=1

M(SB(A)){i} ⊕N

for some motive N which splits over F (SB(A)) as Z⊕ Z{4} ⊕ Z{8}.
Note that both D and the twisted form of F4/P4 (given by the first Tits con-
struction) split the same symbol g3 in KM

3 (F )/3. This implies that there is
a morphism f : NZ/3 → R3,3 of motives with Z/3-coefficients which becomes
an isomorphism over the separable closure of F , where R3,3 is a generalized
Rost motive corresponding to g3. Since N is split over the generic point of the
twisted form of F4/P4, R3,3 is a direct summand of NZ/3 which implies that
R3,3 ≃ NZ/3. Finally observe that NZ/p splits if p 6= 3.

6 Appendix

Proposition 6.1. Let X be a smooth quasi-projective variety, π : Y → X a
smooth morphism and i : Z →֒ X a closed embedding. Consider the Cartesian
square

YZ
i′ //

πZ

��

Y

π

��
Z

i // X

Then (im i′∗)
d = 0 for d = [ dim(X)

codimX (Z) ] + 1, where codimX(Z) is the minimum

of codimensions of irreducible components of Z.

It is sufficient to prove the following:

Lemma 6.2. Let π : Y → X be a smooth morphism, with X smooth quasi-
projective, and i1 : Z1 →֒ X, i2 : Z2 →֒ X closed embeddings.
Then there exists a closed embedding i3 : Z3 →֒ X such that

codim(Z3) ≥ codim(Z1) + codim(Z2) and im(i′1)∗ · im(i′2)∗ ⊂ im(i′3)∗,

where i′l : YZl
→֒ Y , l = 1, 2, 3 is obtained from the respective Cartesian square.

Proof. We have (i′1)∗(a) · (i
′
2)∗(b) = ∆∗

X((i′1 × i
′
2)∗(a × b)). The diagonal map

∆Y : Y → Y × Y is the composition Y
φ
−→ Y ×X Y

fW
−−→ Y × Y , where φ is the

relative diagonal and the second map is the natural embedding. By Lemma
6.3 applied to B = X ×X , V = X , f = ∆X , T = Z1×Z2 and W = Y × Y we
obtain a closed embedding h : Z →֒ X such that

codim(Z) ≥ codim(Z1) + codim(Z2) and im(f∗
W ◦ (i′1 × i

′
2)∗) ⊂ im(hW∗).

Documenta Mathematica 13 (2008) 81–96



94 A. Vishik, K. Zainoulline

Consider the Cartesian square

Y
φ // Y ×X Y

YZ
φZ //

h′

OO

(Y ×X Y )Z

hW

OO

By [3, Theorem 6.2(a)], φ∗ ◦hW∗ = h′∗◦φ
!. Hence, im(∆∗

X ◦(i1×i2)∗) ⊂ im(h′∗)
and the lemma is proven.

Lemma 6.3. Let V
f
−→ B

g
← T be closed embeddings with regular f , and smooth

quasi-projective B. Let ε : W → B be a smooth morphism. Consider two
Cartesian diagrams:

WV
fW //

εV

��

W

ε

��

WT
gWoo

εT

��
V

f // B T
goo

and T
g // B

T̃
g̃ //

f̃

OO

V

f

OO

There exists a closed embedding h : Z →֒ V such that codim(h) ≥ codim(g) and
im(f∗

W ◦ gW∗) ⊂ im(hW∗).

Proof. Consider the Cartesian square

WT
gW // W

WT̃

g̃W //

f̃W

OO

WV

fW

OO

By [3, Theorem 6.2(a)], f∗
W ◦gW∗ = g̃W∗◦f !

W . The morphism f !
W : CH∗(WT )→

CH∗(WT̃ ) is given by the composition:

CH∗(WT )
σ
−→ CH∗(CW )

ρW∗
−−−→ CH∗(NW )

s∗

−→ CH∗(WT̃ ),

where σ is the specialization map from [3, §5.2], CW = CWT (WT̃ ) = CT (T̃ )×B

W is the normal cone of the morphism f̃W and NW = WT̃ ×WV NfW = (T̃ ×V

Nf ) ×B W is the total space of the vector bundle g̃∗W (NfW ) = (εT̃ ◦ g̃)
∗(Nf )

over WT̃ , ρW : CW →֒ NW is the closed embedding and s : WT̃ → NW is the
zero section.
Consider the Cartesian square of projective completions of CW and NW

P(CW ⊕O)
ρW // P(NW ⊕O)

CW
ρW //

eC

OO

NW

eN

OO
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By [3, Proposition 3.3] the morphism s∗ ◦ ρW∗
: CH∗(CW ) → CH∗(WT̃ ) is

given by s∗ ◦ ρW∗
(x) = πW∗

(cd(g̃
∗
WNfW ⊗ O(1)) · ρW∗

(y)), where e∗C(y) = x,
πW : P(NW ⊕O)→WT̃ is the projection and d = codim(fW ) = codim(f).
By Lemma 6.4, we can choose a cycle α representing cd(g̃

∗Nf ⊗O(1)) in such
a way that |α| ∩ P(C ⊕ O) has codimension d in P(C ⊕ O). Consider Z :=
π(|α| ∩ P(C ⊕ O)) and the closed embedding j : Z →֒ T̃ . Then for arbitrary
x ∈ CH∗(P(CW ⊕ O)) we have |πW∗

(ε∗
T̃
(α) · ρW∗

(x))| ⊂ ε−1(Z). This implies

that im(f !
W ) ⊂ im(jW∗

) and im(g̃W∗
◦ f !

W ) ⊂ im(hW∗
), where h = g̃ ◦ j. At the

same time, codim(h) ≥ codim(g), and the lemma is proven.

Lemma 6.4. Let X be a quasi-projective variety, and Zl, l = 1, . . . , n be closed
irreducible subvarieties of dimensions dl. Let V be a vector bundle over X.
Then there exists a representative αd of cd(V) such that |αd|∩Zl has dimension
≤ dl − d.

Proof. The total Chern class c•(V) is the inverse of the total Segre class s•(V),
and si(V) = π∗(c1(O(1))n−1+i), where π : PX(V) → X is the projection,
and n = dim(V). Thus, the general case of our statement follows by the
inductive application of the one with d = 1, and V - linear bundle. Indeed, since
cd([X ]) = −

∑d
j=1 π∗(c1(O(1))n−1+j(π−1(cd−j([X ])))), and αd−j can be chosen

with the needed property, it is sufficient to apply the above particular case to
the set of irreducible components of π−1(Zl ∩ |αd−j |), l = 1, . . . , n; j = 1, . . . , d
inside PX(V). Finally, the case d = 1 and linear V follows from the presentation
V = L1 ⊗ L

−1
2 , where Li have ”sufficiently many sections”, which is possible,

since X is quasi-projective.
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