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ABSTRACT. A covering of k-graphs (in the sense of Pask-Quigg-
Raeburn) induces an embedding of universal C*-algebras. We show
how to build a (k + 1)-graph whose universal algebra encodes this
embedding. More generally we show how to realise a direct limit
of k-graph algebras under embeddings induced from coverings as the
universal algebra of a (k4 1)-graph. Our main focus is on computing
the K-theory of the (k4 1)-graph algebra from that of the component
k-graph algebras.

Examples of our construction include a realisation of the Kirchberg
algebra P,, whose K-theory is opposite to that of O,,, and a class of
AT-algebras that can naturally be regarded as higher-rank Bunce-
Deddens algebras.
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1. INTRODUCTION

A directed graph E consists of a countable collection E° of vertices, a count-
able collection E' of edges, and maps r,s : E! — EY which give the edges
their direction; the edge e points from s(e) to r(e). Following the convention
established in [30], the associated graph algebra C*(E) is the universal C*-
algebra generated by partial isometries {s. : e € E'} together with mutually
orthogonal projections {p, : v € E°} such that py.) = sis. for all e € E',
and py, > Y cp Sest for all v € E° and finite F C v~ (v), with equality when
F = r~Y(v) is finite and nonempty.

Graph algebras, introduced in [13, 23], have been studied intensively in recent
years because much of the structure of C*(FE) can be deduced from elementary
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features of E. In particular, graph C*-algebras are an excellent class of models
for Kirchberg algebras, because it is easy to tell from the graph E whether
C*(E) is simple and purely infinite [22]. Indeed, a Kirchberg algebra can be
realised up to Morita equivalence as a graph C*-algebra if and only if its K-
group is torsion-free [39]. It is also true that every AF algebra can be realised
up to Morita equivalence as a graph algebra; the desired graph is a Bratteli
diagram for the AF algebra in question (see [11] or [40]). However, this is the
full extent to which graph algebras model simple classifiable C*-algebras due
to the following dichotomy: if E is a directed graph and C*(F) is simple, then
C*(E) is either AF or purely infinite (see [22, Corollary 3.10], [2, Remark 5.6]).
Higher-rank graphs, or k-graphs, and their C*-algebras were originally devel-
oped by the first two authors [20] to provide a graphical framework for the
higher-rank Cuntz-Krieger algebras of Robertson and Steger [35]. A k-graph A
is a kind of k-dimensional graph, which one can think of as consisting of ver-
tices A together with %k collections of edges A®', ..., A® which we think of as
lying in k different dimensions. As an aid to visualisation, we often distinguish
the different types of edges using k different colours.

Higher-rank graphs and their C*-algebras are generalisations of directed graphs
and their algebras. Given a directed graph F, its path category E* is a 1-graph,
and the 1-graph C*-algebra C*(E*) as defined in [20] is canonically isomorphic
to the graph algebra C*(F) as defined in [23]. Furthermore, every 1-graph
arises this way, so the class of graph algebras and the class of 1-graph algebras
are one and the same. For k£ > 2, there are many k-graph algebras which do
not arise as graph algebras. For example, the original work of Robertson and
Steger on higher-rank Cuntz-Krieger algebras describes numerous 2-graphs A
for which C*(A) is a Kirchberg algebra and K7(C*(A)) contains torsion.
Recent work of Pask, Raeburn, Rgrdam and Sims has shown that one can also
realise a substantial class of AT-algebras as 2-graph algebras, and that one can
tell from the 2-graph whether or not the resulting C'*-algebra is simple and
has real-rank zero [27]. The basic idea of the construction in [27] is as follows.
One takes a Bratteli diagram in which the edges are coloured red, and replaces
each vertex with a blue simple cycle (there are technical restrictions on the
relationship between the lengths of the blue cycles and the distribution of the
red edges joining them, but this is the gist of the construction). The resulting
2-graph is called a rank-2 Bratteli diagram. The associated C*-algebra is AT
because the C*-algebra of a simple cycle of length n is isomorphic to M, (C(T))
[17]. The results of [27] show how to read off from a rank-2 Bratteli diagram the
K-theory, simplicity or otherwise, and real-rank of the resulting AT algebra.
The construction explored in the current paper is motivated by the following
example of a rank-2 Bratteli diagram. For each n € N, let Lo» be the sim-
ple directed loop graph with 2™ vertices labelled 0,...,2" — 1 and 2" edges
fos--., fan—1, where f; is directed from the vertex labelled ¢ + 1 (mod 2™) to
the vertex labelled i. We specify a rank-2 Bratteli diagram A(2°°) as follows.
The n't level of A(2%°) consists of a single blue copy of Lon-1 (n = 1,2,---).
For 0 <¢ < 2™ — 1, there is a single red edge from the vertex labelled ¢ at the
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(n+1)% level to the vertex labelled i (mod 2") at the n*® level. The C*-algebra
of the resulting 2-graph is Morita equivalent to the Bunce-Deddens algebra of
type 2°°, and this was one of the first examples of a 2-graph algebra which is
simple but neither purely infinite nor AF (see [27, Example 6.7]).

The purpose of this paper is to explore the observation that the growing blue
cycles in A(2%°) can be thought of as a tower of coverings of 1-graphs (roughly
speaking, a covering is a locally bijective surjection — see Definition 2.1), where
the red edges connecting levels indicate the covering maps.

In Section 2, we describe how to construct (k + 1)-graphs from coverings. In
its simplest form, our construction takes k-graphs A and I" and a covering map
p: T — A, and produces a (k + 1)-graph AT in which each edge in the
(k+ 1) dimension points from a vertex v of I to the vertex p(v) of A which it
covers'. Building on this construction, we show how to take an infinite tower
of coverings p, : Apy1 — Ay, n = 1,2,... and construct from it an infinite
(k + 1)-graph lim(A,, p,) with a natural inductive structure (Corollary 2.11).
The next step,?chieved in Section 3, is to determine how the universal C*-
algebra of ALT relates to those of A and I. We show that C*(ALT) is
Morita equivalent to C*(T") and contains an isomorphic copy of C*(A) (Propo-
sition 3.2). We then show that given a system of coverings p, : Apy1 — Ay,
the C*-algebra C*(lim(A,,p,)) is Morita equivalent to a direct limit of the
C*(Ay,) (Theorem 33).

In Section 4, we use results of [34] to characterise simplicity of C*(lim(Ay,, pn)),
and we also give a sufficient condition for this C*-algebra to be pu\r—ely infinite.
In Section 5, we show how various existing methods of computing the K-theory
of the C*(A,,) can be used to compute the K-theory of C*(lim(A,,p,)). Our
results boil down to checking that each of the existing K -the\o—r‘y computations
for the C*(A,) is natural in the appropriate sense. Given that K-theory for
higher-rank graph C*-algebras has proven quite difficult to compute in general
(see [14]), our K-theory computations are an important outcome of the paper.
We conclude in Section 6 by exploring some detailed examples which illustrate
the covering-system construction, and show how to apply our K-theory calcula-
tions to the resulting higher-rank graph C*-algebras. For integers 3 < n < oo,
we obtain a 3-graph algebra realisation of Kirchberg algebra P,, whose K-theory
is opposite to that of O,, (see Section 6.3). We also obtain, using 3-graphs, a
class of simple AT-algebras with real-rank zero which cannot be obtained from
the rank-2 Bratteli diagram construction of [27] (see Section 6.4), and which
we can describe in a natural fashion as higher-rank analogues of the Bunce-
Deddens algebras. These are, to our knowledge, the first explicit computations
of K-theory for infinite classes of 3-graph algebras.

In its full generality, our construction is more complicated (see Proposition 2.14), enabling
us to recover the important example of the irrational rotation algebras discussed in [27]. To
keep technical detail in this introduction to a minimum, we discuss only the basic construction
here.
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2. COVERING SYSTEMS OF k-GRAPHS

For k-graphs we adopt the conventions of [20, 25, 31]; briefly, a k-graph is a
countable small category A equipped with a functor d : A — N satisfying the
factorisation property: for all A € A and m,n € N¥ such that d(\) = m +n
there exist unique p,v € A such that d(p) = m, d(v) = n, and A = pr. When
d(X\) = n we say A has degree n. By abuse of notation, we will use d to denote
the degree functor in every k-graph in this paper; the domain of d is always
clear from context.

The standard generators of N* are denoted e, ..., e, and for n € N* and
1 < i < k we write n; for the i*" coordinate of n.

If A is a k-graph, the vertices are the morphisms of degree 0. The factorisation
property implies that these are precisely the identity morphisms, and so can
be identified with the objects. For o € A, the source s(«) is the domain of «,
and the range r(«) is the codomain of « (strictly speaking, s(a) and r(«) are
the identity morphisms associated to the domain and codomain of «).

For n € N¥, we write A" for d~*(n). In particular, A is the vertex set. For
u,v € A’ and E C A, we write uE := ENr~(u) and Ev := ENs~!(v). For
n € N¥, we write

AS" = {X € A:d(\) < n,s(\)A% = ) whenever d(\) +e; < n}.

We say that A is connected if the equivalence relation on A® generated by
{(v,w) € A x A : vAw # (0} is the whole of A® x A°. A morphism between
k-graphs is a degree-preserving functor.

We say that A is row-finite if vA™ is finite for all v € A and n € N*¥. We
say that A is locally conver if whenever 1 <i < j <k, e € A%, f € A% and
r(e) = r(f), we can extend both e and f to paths ee’ and ff’ in A% T,

We next introduce the notion of a covering of one k-graph by another. For a
more detailed treatment of coverings of k-graphs, see [25].

DEFINITION 2.1. A covering of a k-graph A is a surjective k-graph morphism
p: T — A such that for all v € T'°, p maps I'v 1-1 onto Ap(v) and vI" 1-1 onto
p(v)A. A covering p: ' — A is connected if T', and hence also A, is connected.
A covering p: I’ — A is finite if p~1(v) is finite for all v € A°.

Remarks 2.2. (1) A covering p : I' — A has the unique path lifting property:
for every A € A and v € I'? with p(v) = s(\) there exists a unique v such
that p(y) = A and s() = v; likewise, if p(v) = r(A) there is a unique ¢ such
that p(¢) = A and r(¢) = v.

(2) If A is connected then surjectivity of p is implied by the unique path-lifting
property.
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(3) If there is a fixed integer n such that [p~1(v)| = n for allv € A%, p is said to
be an n-fold covering. If T' is connected, then p is automatically an n-fold
covering for some n.

Notation 2.3. For m € N\ {0}, we write Sy, for the group of permutations of
the set {1,...,m}. We denote both composition of permutations in S,,, and the
action of a permutation in Sy, on an element of {1,...,m} by juxtaposition;
so for ¢,y € S, ¢y € S, is the permutation ¢ o ¢, and for ¢ € S, and
je{l,...,m}, ¢j € {1,...,m} is the image of j under ¢. When convenient,
we regard Sy, as (the morphisms of) a category with a single object.

DEFINITION 2.4. Fix k,m € N\ {0}, and let A be a k-graph. A cocycle
s: A — S, is a functor A — s()) from the category A to the category S,.
That is, whenever «, § € A satisfy s(a) = () we have s(«a)s(8) = s(af).

We are now ready to describe the data needed for our construction.

DEFINITION 2.5. A covering system of k-graphs is a quintuple (A, T, p,m,s)
where A and T" are k-graphs, p: A — T' is a covering, m is a nonzero positive
integer, and s : I' — S, is a cocycle. We say that the covering system is row
finite if the covering map p is finite and both A and I' are row finite. When
m = 1 and s is the identity cocycle, we drop references to m and s altogether,
and say that (A,T',p) is a covering system of k-graphs.

Given a covering system (A,T',p,m,s) of k-graphs, we will define a (k + 1)-
graph AYT which encodes the covering map. Before the formal statement
of this construction, we give an intuitive description of AT, The idea is
that AZ°T" is a (k + 1)-graph containing disjoint copies #(A) and »(I') of the
k-graphs A and T in the first & dimensions. The image j(v) of a vertex v € T is
connected to the image «(p(v)) of the vertex it covers in A by m parallel edges
e(v,1),...,e(v,m) of degree ery1. Factorisations of paths in AYT involving
edges e(v,1) of degree er41 are determined by the unique path-lifting property
and the cocycle s.

It may be helpful on the first reading to consider the case where m = 1 so
that s is necessarily trivial. To state the result formally, we first establish some
notation.

Notation 2.6. Fix k > 0. For n € N* we denote by (n,01) the element
Zle nie; € NF*l and for m € N, we denote by (0x,m) the element
megr1 € NFHL We write (N*,0;) for {(n,01) : n € N*} and (0x, N) for
{(0g,m) : m € N}

Given a (k 4 1)-graph Z, we write ZN) for {¢ € Z: d(¢) € (0, N)}, and
we write 2N"01) for {¢€ € 2 :d(¢) € (N*,01)}. When convenient, we re-
gard 20 N) a5 a 1-graph and EN"01) 45 4 k-graph, ignoring the distinctions
between N and (0x, N) and between N* and (N¥,0,).

PROPOSITION 2.7. Let (A,T',p,m,s) be a covering system of k-graphs. There

is a unique (k4 1)-graph AT such that:
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(1) there are injective functors v : A — AT and 7 : T — AT such that
d((a)) = (d(a),01) and d(3(B8)) = (d(B),01) for allaw € A and B € T;

2) 1(A) N y(T) = 0 and u(A) U (D) = {r € AL : d(7)p41 = 0};

3) there is a bijection e : TO x {1,...,m} — (AZSD)er+1;

4) s(e(v,1)) = 3(v) and r(e(v,1)) = 2(p(v)) for allv € T° and 1 <1 < m; and

5) e(r(A),1)(\) = 1(p(A)e(s(N\),5(A\)7L) for all \ €T and 1 <1 < m.

If the covering system (A,T',p,m,s) is row finite, then AT s row finite.
Moreover, A is locally convez if and only if T is locally convez, and in this case
AT s also locally convex.

Notation 2.8. If m = 1 so that s is necessarily trivial, we drop all reference
to 5. We denote A2 by ALT, and write (ALL)*+1 = {e(v) : v € T°}. In
this case, the factorisation property is determined by the unique path-lifting
property alone.

The main ingredient in the proof of Proposition 2.7 is the following fact from
[15, Remark 2.3] (see also [31, Section 2]).

LEMMA 2.9. Let Ey,...,E; be 1-graphs with the same vertex set E°. For
distinct i,j € {1,...,k}, let B;ij = {(e,f) € Ef x Ej : s(e) = r(f)}, and
write v((e, f)) = r(e) and s((e, f)) = s(f). For distinct h,i,j € {1,...,k}, let
Enij={(e f,g9) € E} x B} x EJ1 (e, f) € B, (f,9) € Eijt}.

Suppose we have bijections 0, ; : E; ; — E;; such thatro6;; =r, s0b,; = s
and 0; ; 0 0;; = id, and such that

(2.1) (GM X ld)(ld Xeh,j)(eh,i X ld) = (ld X@h,i)(ehd‘ X ld)(ld ><9i7j)

as bijections from Ep; ; to Ej;p.

Then there is a unique k-graph A such that A° = E°, A% = E} for 1 <i <k,
and for distinct i,5 € {1,...,k} and (e, f) € E; ;, the pair (f',€') € E;; such
that (f',e') = 0; (e, f) satisfies ef = f'e’ as morphisms in A.

Remark 2.10. Every k-graph arises in this way: Given a k-graph A, let E0 :=
A% and E} := A% for 1 < i < k, and define r,s : E} — E° by restriction
of the range and source maps in A. Define bijections 0;; : E;; — FEj; via
the factorisation property: 6; ;(e, f) is equal to the unique pair (f’,¢') € E;;
such that ef = f’¢’ in A. Then condition (2.1) holds by the associativity of
the category A, and the uniqueness assertion of Lemma 2.9 implies that A is
isomorphic to the k-graph obtained from the F; and the 0; ; using Lemma 2.9.

Lemma 2.9 tells us how to describe a k-graph pictorially. As in [31, 27], the
skeleton of a k-graph A is the directed graph Ex with vertices ES = A°, edges
E} = Ule A°i range and source maps inherited from A, and edges of different
degrees in A distinguished using & different colours in F,: in this paper, we
will often refer to edges of degree e; as “blue” and edges of degree e, as “red.”
Lemma 2.9 implies that the skeleton Ej together with the factorisation rules
fg =g f where f, f' € A% and g,g’ € A% completely specify A. In practise,
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we draw F, using solid, dashed and dotted edges to distinguish the different
colours, and list the factorisation rules separately.

Proof of Proposition 2.7. The idea is to apply Lemma 2.9 to obtain the (k+1)-
graph AZT. We first define sets E° and Ez1 for 1 <i<k+1. As a set, E°
is a copy of the disjoint union A° LIT°?. We denote the copy of A in E° by
{1(v) : v € A°} and the copy of '’ in E? by {j(w) : w € T} where as yet the
1(v) and j(w) are purely formal symbols. So

E° = {u(v) v € A%} U {H(w) : w € T},
For 1 <i < k, we define, in a similar fashion,
Bf ={uf): feA“}U{(g) 1 g €T}

to be a copy of the disjoint union A% LI T¢. We define E1i+1 to be a copy
of I'Y x {1,...,m} which is disjoint from E® and each of the other E}, and
use formal symbols {e(v,l) : v € T° 1 < I < m} to denote its elements.
For 1 < i < k, define range and source maps r,s : E} — EY by r(u(f)) =
(), sG() = (s(), r((e) = 3(r(g)) and s((0) = s(s(g)). Define
r,s: Bl — E° as in Proposition 2.7(4).

For distinct ¢,5 € {1,...,k+ 1}, define E; ; as in Lemma 2.9. Define bijections
OW- : Ei,j — Ej,i as follows:

e For 1 < 4,5 < k and (e, f) € E;;, we must have either e = 2(a) and
f = 1(b) for some composable pair (a,b) € A% x o A%, or else e = j(a)
and f = 5(b) for some composable pair (a,b) € T’ xpo 3I'%. If e = 1(a)
and f = 1(b), the factorisation property in A yields a unique pair &’ € A%,
a’ € A% such that ab = b'a’, and we then define 0; ;(e, f) = (2(b'),1(a’)). If
e = j(a) and f = 5(b), we define 0; ;(e, f) similarly using the factorisation
property in I'.

e For 1 < i < k, and (e,f) € Eky14, we have f = 3(b) and e =
e(r(b),l) for some b € I' and 1 < | < m. Define Opy1(e, f) :=
((p(b)), e(s(f), s(£) 1))

e For 1 < i <k, to define 0; 41, first note that if (f’,e’) = Ox41,i(e, f), then
e/ = e(w,l) for some w € I'” and | € {1,...,m} such that p(w) = s(f’),
f is the unique lift of f’ such that s(f) = j(w), and e = e(r(f),s(f)]). It

follows that 641, is a bijection and we may define 0; ;41 := 91;4}1 i

Since A and I' are k-graphs, the maps 6;;, 1 < 4,5 < k are bijections with
0;: = 9;;, and we have 0; ;11 = 9,;_&171. by definition, so to invoke Lemma 2.9,
we just need to establish equation (2.1).

Equation (2.1) holds when h,i,j < k because A and I' are both k-graphs.
Suppose one of h,i,j = k+ 1. Fix edges f, € E}, fi € E} and f; € Ej. First
suppose that h = k + 1; so fi = e(r(f;),1) for some I, and f; and f; both
belong to j(T'). Apply the factorisation property for I' to obtain f; and f] such
that le € Ezl, f]/ S Ejl and fj/le = fzf] We then have 9i7j(fi,fj) = ( ]/,le)

If we write p for the map from {y(f): f € Ule e} to {o(f): f € Ule Aci}
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given by p(3(A)) := 1(p(N\)), then the properties of the covering map imply that
0i5(0(f:),p(f3)) = ((f}), (f:)). Now
(0,5 > id)(id XOp ;)(On.i < id)(fn, fi, f5)
= (0,5 x 1d)(id x ;) (B(fi), e(s(fi), 5(f:) 1), f)
= (05,5 x 1) (B(f), B(f;), e(s(f7),8(f) " (5(f:) D))
(2.2) = (B(f)), B(fD) e(s(f),s(fif)71D),
where, in the last equality, s(f;)"'s(fi)~* = s(fif;)~" by the cocycle property.
On the other hand,
(id x0h,i) (On,; x id)(id X ;) (fn, fi; f5)
= (id x0n,i)(On,; x id)(fn, £}, f)
= (id x0n,0) (B(f))s e(s(f5) 5(F)) 71D f7)
= (B(f))B(f))s e(s(fi),s(f)) " (s(£))710)))
= (B(f)).B(f7), e(s(fi), s(f1F)71D)).-
Since fif; = fifj, this establishes (2.1) when h = k + 1 and 1 < 4,5 < k.
Similar calculations establish (2.1) when ¢ = k + 1 and when j = k + 1.
By Lemma 2.9, there is a unique (k 4+ 1)-graph AT with (AYTD)? = E°,
(AZ’D)e = E! for all i and with commuting squares determined by the 6; ;.
Since the 0; ;, 1 <14, j < k agree with the factorisation properties in I' and A,

the uniqueness assertion of Lemma 2.9 applied to paths consisting of edges in
E{ U---U E} shows that ¢ and 7 extend uniquely to injective functors from A
and T to (AP%SF)(Nk*Ol) which satisfy Proposition 2.7(2). Assertions (3) and (4)
of Proposition 2.7 follow from the definition of E} , ;, and the last assertion (5)
is established by factorising A into edges from the E}, 1 < i < k and then
performing calculations like (2.2).

Now suppose that p is finite. Then I is row-finite if and only if A is, and in this
case, ARET is also row-finite because p is locally bijective and m < oo. That p
is locally bijective shows that A is locally convex if and only if T is. Suppose
that T is locally convex. Fix 1 <i < j <k+1,a € (AYT)% and b € (AZT)
with r(a) = 7(b). If j < k+ 1 then a and b can be extended to paths of degree
e; + e; because A and I' are locally convex. If j = k + 1, then b = e(v,1) for
some v € I'” and 1 <1 < m. Let @’ be the lift of a such that r(a’) = s(v), then
ae(s(a’),l) and ba’ extend a and b to paths of degree e; + e;. It follows that
ALY is locally convex. d

COROLLARY 2.11. Fiz N > 2 in NU{co}. Let (An,AnJrl,pn,mn,sn)g:_ll be a
sequence of covering systems of k-graphs. Then there is a unique (k+1)-graph A
such that A% = |_|7]j:1 A forl <i <k, A+ = ug;ll(/\np"ﬁ’s"/\wrl)ek“ , and
such that range, source and composition are all inherited from the Anp@n'AnJrl.
If each (A, Api1, Pr, M, Sn) is row-finite then A is row-finite. If each A, is
locally convex, so is A, and if each A, is connected, so is A.
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Proof. For the first part we just apply Lemma 2.9; the hypotheses follow
automatically from the observation that if h,i,j are distinct elements of
{1,...,k+ 1} then each path of degree e, + ¢; + ¢; lies in some Anp"és"AnH,
and these are all (k + 1)-graphs by Proposition 2.7.

The arguments for row-finiteness, local convexity and connectedness are the
same as those in Proposition 2.7. 0

Notation 2.12. When N is finite, the (k+1)-graph A of the previous lemma will

henceforth be denoted Alpﬁl .- -pN*léstlAN. If N = oo, we instead denote

A by lim(Ay; pn, 8n)-

2.1. MATRICES OF COVERING SYSTEMS. In this subsection, we generalise our
construction to allow for a different covering system (A;, T, p; j,mi j, 8 ;) for
each pair of connected components A; C A and I'; C I The objective is to
recover the example of the irrational rotation algebras [27, Example 6.5].

DEFINITION 2.13. Fix nonnegative integers cp,cr € N\ {0}. A matriz of

covering systems (A;,Ti,mi j,pij, i j); ;21 consists of:

(1) k-graphs A and T" which decompose into connected components A =
I_lj:I ..... ca A aqd I'= I-li:l er L'i;

(2) a matrix (m; ;);"5) € My cn (N) with no zero rows or columns; and

(3) for each 4, j such that m; ; # 0, a covering system (A;,T';, pi j, M j,8i,;) of

1,j=
k-graphs.

.....

PROPOSITION 2.14. Fiz nonnegative integers cp,cr € N\ {0} and a matriz of
covering systems (Aj,Ti,mi j,pij,5ij)i 21 Then there is a unique (k + 1)-
graph
s
(LAy)==(LT)
such that

((LA)E(LT)) ™ = Ly (0" e,

each ((|_|Aj)pﬁ’5(|_|Fi))el for 1 <1<k is equal to A UT® and the commuting
squares are inherited from the Ajpi'jési’jl"i.

If each (N;, T, pi 5, mij,5: ;) is row finite then ([_|Aj)pé5(|_]1}-) is Tow finite.
If A and T are locally convez, so is ([_|Aj)pé5(|_]1"i).

Proof. We apply Lemma 2.9; since the commuting squares are inherited from
the Ajpi'jési'jl"i, they satisfy the associativity condition (2.1) because each
Ajpi'jési’jl"i is a (k + 1)-graph. O

COROLLARY 2.15. Fiz N > 2 in NU{oo}. Let (c,)N_; € N\ {0} be a sequence
of positive integers. For 1 <n < N, let (Anﬁj,An+11i,p2j,mzj,ﬁzj)g‘jgl’c" be a
matriz of covering systems. Then there exists a unique (k + 1)-graph A such
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that
A =Un U AY S for 1<i <k,

. N— n e n
ACk+1 — Un:ll ((l_l§:1 An,j)p\j (U::Yl An+1,z‘))ek+1,
and the range, source and composition functions are all inherited from the

(k +1)-graphs (L5, A )2 (Lt Ansr)-

If each (Amj,AnH,i,p}fj,mﬁj,sﬁj) is row finite, then A is row finite. If each
A, is locally convex, so is A.

Ezample 2.16 (The Irrational Rotation algebras). Fix 6 € [0,1] \ Q. Let
[a1,az,...] be the simple continued fraction expansion of §. For each n, let
cn = 2, let ¢, = ("1" é), and let m™ := (m%)ijzl be the matrix product
GT(n+1)** OT(m)+1 where T(n) := n(n + 1)/2 is the n'™ triangular number.
Of all the integers m;'; obtained this way, only miQ is equal to zero, so the
matrices m™ have no zero rows or columns. Whenever mzj #£0, let 5% be the
permutation of the set {1,.. .,m?,j} given by 7,1 =1+ 1if 1 <1 <m7;, and
S0y = 1.

Let Ay, n € N\ {0}, ¢ = 1,2 be mutually disjoint copies of the 1-
graph 77 whose skeleton consists of a single vertex and a single directed
edge. For each n, let A, be the 1-graph A, ; U A, 2 so that for each n,

(Anjs Ang1,i, D7y, mit s, 875)7 =y is a matrix of covering systems.

~ 7/ % 7N 7 %
/ \ 7 \ \ 7

’
\

FIGURE 1. A tower of coverings with multiplicities

Modulo relabelling the generators of N2, the 2-graph hﬁm ([_|§":'1 Anji Dl 5?_0-)
obtained from this data as in Corollary 2.15 is precisely the rank-2 Bratteli
diagram of [27, Example 6.5] whose C*-algebra is Morita equivalent to the
irrational rotation algebra Ag. Figure 1 is an illustration of its skeleton (parallel
edges drawn as a single edge with a label indicating the multiplicity). The
factorisation rules are all of the form fg = o(g)f’ where f and f’ are the
dashed loops at either end of a solid edge in the diagram, and o is a transitive
permutation of the set of edges with the same range and source as g.

More generally, Section 7 of [27] considers in some detail the structure of the
C*-algebras associated to rank-2 Bratteli diagrams with length-1 cycles. All
such rank-2 Bratteli diagrams can be recovered as above from Corollary 2.15.
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3. C**-ALGEBRAS ASSOCIATED TO COVERING SYSTEMS OF k-GRAPHS

In this section, we describe how a covering system (A,T',p,m,s) induces an
inclusion of C*-algebras C*(A) — M,,(C*(T")) and hence a homomorphism of
K-groups K,(C*(A)) — K.(C*(T')). The main result of the section is The-
orem 3.8 which shows how to use these maps to compute the K-theory of
C*(im(Ay; pn,S,)) from the data in a sequence (Ap, Apt1,Pny M, $n)50, of
covemg systems.

The following definition of the Cuntz-Krieger algebra of a row-finite locally
convex k-graph A is taken from [31, Definition 3.3].

Given a row-finite, locally convex k-graph (A, d), a Cuntz-Krieger A-family is
a collection {t) : A € A} of partial isometries satisfying

(CK1) {t, : v € A%} is a collection of mutually orthogonal projections;

(CK2) tt, = ty, whenever s(\) = r(p);

(CK3) t;t,\ = ts(k) for all A € A; and

(CK4) ty, =Y \cpnzn tat} for all v € A” and n € N*.

The Cuntz-Krieger algebra C*(A) is the C*-algebra generated by a Cuntz-
Krieger A-family {s) : A € A} which is universal in the sense that for every
Cuntz-Krieger A-family {¢, : A € A} there is a unique homomorphism 7; of
C*(A) satisfying m:(sy) = ¢ for all A € A.

Remarks 3.1. If A has no sources (that is vA™ # () for all v € A and n € N¥),
then A is automatically locally convex, and the definition of C*(A) given above
reduces to the original definition [20, Definition 1.5].

By [31, Theorem 3.15] there is a Cuntz-Krieger A-family {¢x : A € A} such that
tx # 0 for all A € A. The universal property of C*(A) therefore implies that
the generating partial isometries {sy : A € A} C C*(A) are all nonzero.

Let = be a k-graph. The universal property of C*(E) gives rise to an action =
of T* on C*(Z), called the gauge-action (see, for example [31, §4.1]), such that
72 (s¢) = 24 s¢ for all z € T* and € € =.

PROPOSITION 3.2. Let (A,T',p,m,s) be a row-finite covering system of locally
conver k-graphs. Let vy and yr denote the gauge actions of TF on C*(A) and

C*(T'), and let y denote the gauge action of T*T! on C*(Apﬁ’sf).
(1) The inclusions 1 : A — AZT and 5 : T — AZT induce embeddings of C*(A)
and C*(T) in C*(ARST) characterised by
14(5a) = Sy(a) and 3«(sg) = 5,3y fora€ A and B eT.
(2) The sum ZUGJ(FO) s, converges in the strict topology to a full projection
Q € M(C*(AYE)), and the range of 7. is QC*(AZT)Q.

(3) For 1 <i<m, the sum Zverg Se(v,) converges strictly to a partial isome-
try V; € M(C*(AYET)). The sum D veu(a0) Svs converges strictly to the full
projection P := S\, V;Vi* € M(C*(AYT)). Moreover, 1. is a nondegen-
erate homomorphism into PC* (Apf’sl")P.
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(4) There is an isomorphism ¢ : M,,(C*(T)) — PC*(AYT)P such that

m

¢((alj i,j= 1 Z Vig« az]

(5) There is an embedding i, s : C*(A) — My, (C*(T)) such that ¢ o iy s = 1.
The embedding i, s is equivariant in yn and the action id,, @yr of TF on
M, (C*(T)) by coordinate-wise application of yr.

(6) If we identify K.(C*(T)) with K.(M,(C*(T))), then the induced homo-
morphism (ip.s)« may be viewed as a map from K.(C*(A)) — K.(C*(T)).
When applied to Ky-classes of vertex projections, this map satisfies

(tpo)e([s0]) = D m - [su] € Ko(C™(T)).
p(u)=v
The proofs of the last three statements require the following general Lemma.
This is surely well-known but we include it for completeness.

LEMMA 3.3. Let A be a C*-algebra, let ¢ € M(A) be a projection, and suppose
that v1,...,v, € M(A) satisfy viv; = 0;;q for 1 < i,5 < n. Then p =
Sor vivf is a projection and pAp = M, (qAq).

Proof. That viv; = §; jq implies that the v; are partial isometries with mutually
orthogonal range projections v;vf. Hence p is a projection in M(A). Define
a map ¢ from pAp to M, (qAq) as follows: for a € pAp and 1 < i,57 < n, let
a; j = v;avj, and define ¢(a) to be the matrix ¢(a) = (ai )} ;—;-

It is straightforward to check using the properties of the v; that ¢ is a
C*-homomorphism. It is an isomorphism because the homomorphism 1 :

M, (gAq) — pAp defined by

’L/J((ai,j)zjzl) = Z viaijv; S qu
i,j=1
is an inverse for ¢. O
Proof of Proposition 3.2. (1) The collection {s,(yy : A € A} forms a Cuntz-
Krieger A-family in C*(A%T), and so by the universal property of C*(A) in-
duces a homomorphism ¢, : C*(A) — C*(AYET). For z € TF, write (z,1) for
the element (z1,..., 2z, 1) € TF¥*1. Recall that v denotes the gauge action of
T+ on C*(AYT). Then the action z — (. 1) of T® on C*(ART) satisfies

we((a)=(a)) = (=) (1(a)

for all @ € C*(A) and z € T*. Since 1.(sy) = 8,4y # 0 for all v € A it
follows from the gauge-invariant uniqueness theorem [20, Theorem 2.1] that 2,
is injective. A similar argument applies to j..

(2) As the projections s, v € 3(T'°) are mutually orthogonal, a standard argu-
ment shows that the sum Z'UE](FO) Sy converges to a projection @ in the mul-

tiplier algebra (see [30, Lemma 2.1]). The range of j, is equal to QC*(AYT)Q
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because J(D0)(ARD)(I9) = 4(I'). To see that Q is full, it suffices to show
that every generator of C*(A%ST) belongs to the ideal I(Q) generated by Q.
So let o € AR, Either s(a) € 3(I'°) or s(a) € «(A°). If s(a) € 3(I'°), then
50 = 8aQ € I(Q). On the other hand, if s(a) € 2(A°), the Cuntz-Krieger
relation ensures that

Sa = Zp(w):s(a) Z:’;l SaSe(w,i) QSZ(w,i)’

which also belongs to I(Q).

(3) For fixed 4, the partial isometries s(, ;) have mutually orthogonal range
projections and mutually orthogonal source projections. Hence an argument
similar that of [30, Lemma 2.1] shows that ) o Se(v,i) converges strictly to a
multiplier V; € M(C*(A%°T)). A simple calculation shows that V;*V; = &; ;Q
for all 4, j. Hence each V; is a partial isometry, and P is full because @ is full.
The homomorphism ¢, is nondegenerate because the net

(Z* ( ZUGF SU))

converges strictly to P € M(C*(AY2T)).

(4) This follows directly from Part (3) and Lemma 3.3.

(5) We define ¢, 5 := ¢~ o1.. For the gauge-equivariance, recall that 1, (respec-
tively 7.) are equivariant in | 1) and vz (respectively yr). By definition, ¢
is equivariant in (id ®7) and y(» 1) © J«. The equivariance of ¢, s follows.

(6) By (CK4), for v € A” we have s,(,) = Zfev(/\pir)ekﬂ 575}, so the Ko-

We can write v(AZST)+1 as the

FCADO finite

class [s,()] is equal to Zer(AEF)eHI [sfs7]-
disjoint union
v(AZED)er+t = |_| {e(u,i) : 1 < i< m}.
p(u)=v
In Ko(C*(A™T)), we have [sea,ist,n] = [5iSei] = [5)w)]s and the
result follows. 0

Notation 3.4. As in Notation 2.8, when m = 1 so that s is trivial, we continue
to drop references to s at the level of C*-algebras. So Proposition 3.2(5) gives
an inclusion ¢, : C*(A) — C*(I') and the induced homomorphism of K-groups
obtained from Proposition 3.2(6) is denoted (¢p)« : K. (C*(A)) — K. (C*(I)).
This homomorphism satisfies

(tp)e([su]) = > [sul.
p(u)=v

When no confusion is likely to occur, we will suppress the maps ¢, 7, 2. and ),
and regard A and I as subsets of A% and C*(A) and C*(T") as C*-subalgebras
of C*(ALET).

Remark 3.5. (1) The isomorphism ¢ of Proposition 3.2(4) extends to an iso-
morphism ¢ : M, 1(C*(T')) — C*(AYT) which takes the block diagonal
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Omxm Omx1
01 xm a

matrix ( ) to g«(a). To see this, let V..., V,, be as in Proposi-

tion 2.7(3), let V41 = @, and apply Lemma 3.3.
(2) If m = 1 then ¢ is an isomorphism of C*(T') onto PC*(ALT)P, and ¢, :
C*(A) — C*(T") satisfies

tp(sx) = ZP(X):,\ SX-

Fix N > 2 in N. Let (An,AnH,pn,mn,sn)ﬁ;—f be a sequence of row-finite
covering systems of locally convex k-graphs. Recall that in Corollary 2.11 we
obtained from such data a (k 4+ 1)-graph A;"2" - PY 22V TA L which for
convenience we will denote A (the subscript is unnecessary here, but will be
needed in Proposition 3.7). We now examine the structure of C*(Ay) using
Proposition 3.2.

PRrOPOSITION 3.6. Continue with the notation established in the previous para-
graph. For each v € A%, list A%ek“v as {afv,3) : 1 < i < M} where
M = mimo---MN—-1.

(1) For 1 <n < N, the sum ), xo 5o converges strictly to a full projection
P, € M(C*(An)). '

(2) For1<i< M, the sum ZUGA?\, Sa(v,i) converges strictly to a partial isom-
etry V; € M(C*(An)) such that V;*V; = Py.

(3) We have Zi\il ViV* = P1, and there is an isomorphism

d) . M]\/[(C*(AN)) — PlC*(AN)Pl

M *
such that ¢((ai,j)%:1) = Zi,j:l Viai Vi
Proof. Calculations like those in parts (2) and (3) of Proposition 3.2 show
that the sums defining the P,, and the V; converge in the multiplier algebra of
C*(An) and that each P, is full.

€k+1

Since distinct paths in A]]:,[ have orthogonal range projections and since

paths in A%ek“ with distinct sources have orthogonal source projections, each
Vi Vi = Py, and M ViV = Py

One checks as in Proposition 3.2(1) that the inclusions ¢, : A, — Ay induce
inclusions (¢,)« : C*(A,) — P,C*(An)P,, and in particular that (¢n)s :
C*(An) — PyC*(An)Pn is an isomorphism. The final statement follows
from Lemma 3.3. O

We now describe the inclusions of the corners determined by P; as N increases.
To do this, we first need some notation. Given a C*-algebra A, and positive
integers m, n, we denote by T, ®1ida : My, (Mp(A)) — Mpn(A) the canonical

m

isomorphism which takes the matrix a = ((ai i)} ;—1),

., to the matrix
1,0/ =1

7(a) satisfying

(@) jtn(i-1),j'4n@—1) = Gijgre  for 1 <d,i" <m, 1<j,j" <n.
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Given C*-algebras A and B, a positive integer m, and a C*-homomorphism
¥ A — B, we write idy, ® : My, (A) — M,,(B) for the C*-homomorphism

(idm @) ((ai,4)7%=1) = (w(aivj)):szl'

Finally, given a matrix algebra M,,(A) over a C*-algebra A, and given 1 <
i, <m and a € A, we write 6, a for the matrix

(9 ) a ifj=idiandj =17
Q) g o5 =
BT 0 otherwise.

PROPOSITION 3.7. Fiz N > 2 in N. Let (A, Ans1,Pn,Mn,50)N 1 be
a sequence of row-finite covering systems of locally convex k-graphs. We
view the (k + 1)-graph Ay = APEE PNV TN G as a subcategory of
Aniy = AP ~p1\§NAN+1 and likewise regard C*(An) as a C*-subalgebra
of C*(AN4+1). In particular, we view Py = ZveA? S, as a projection in both
M(C*(AN)) and M(C*(An+1)).

Let M := mimsa... mnN—1, and let ¢N : MM(C*(AN)) — Pl(C*(AN)Pl and
ON+1 2 Mpapmy (C*(An+1)) — PiC*(An41)P1 be the isomorphisms obtained
from Proposition 3.6. Then the following diagram commutes.

C
PIC*(AN)PI C — Plc*(AN+1)P1
N ON+1
(MM my @ 1dox Ay, ) © (idar Rtpysn)
Mar(C*(Ay)) 2 — ) PN Mt (C* (A1)
Proof. As in Proposition 3.6, write A%e’““ = {a(v,i) : v € A},i €

{1,---,M}}. Fori=1,...,M, let V; := ZveA(],\]sa(v,i). For j = 1,...,mp,
let

M
Wj = Z Zsam(w),wse(wa)-

weAY,, =1

For (i, j) in the cartesian product {1,..., M} x{1,...,mn}, let Uj i, (i—1) =
ZueA‘g,H Sa(pn (u),i)e(u,j)- N what follows, we suppress canonical inclusion
maps, and regard C*(Ay) as a subalgebra of C*(Axy), and both C*(Ay) and
C*(An+1) as subalgebras of C*(An41). The corner PiC*(AN)P; is equal
to the closed span of elements of the form V;aV;} where a € C*(An) and
i,i’ € {1,..., M}, and PLC*(An41)P; is equal to the closed span of elements
of the form U;bU}; where b € C*(Any1), 1,1 € {1,...,Mmny}.

We have ¢N((ai7¢/)%,:1) = Z%,:l Via; i V5 by definition. The isomorphism
ON+1 from Mg (C*(An+1)) to PLC*(AN41)P1 described in Proposition 3.6

satisfies

on 1 (S0 UbieUr) = (b))
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The Cuntz-Krieger relations show that

VﬁVZTWJW; = Uj-i-mN(i—l)U;’—i-mN(i/—l) = WJW;V%VZT
for 1 <4,/ <M, 1<j,7 <mpy, and this decomposition of the matrix units
U,Uy; implements 7oz my . Hence o110 (Tarmy ® ide«(ay,,)) satisfies

ON+1 0 (TMmu @ idC*(AJ\Hl))(((bi,j,j’,i’);ilﬂzl)ﬁ/:l)

= Zz’,i/:l Zj,j/:1 Uj+mN(’L'*l)blvjdlﬂlUj/+mN(i/71)'

The Cuntz-Krieger relations also show that V; = Z;n:Nl W;W:V; for all i, and
hence ViaV,; = Zj UjerN(i,l)WjaWjU;‘erN(i,fl) for all a € PLC*(AN)P;.

One now checks that for A € Ay, we have

(3.1)

WisaW; = ZPN(X):)\ SZ(T(Af),j)Se(r(A),sN(A’)j)SNv

and hence that V;s\Vj =3, ZpN(A’):A Usn)jtmn =) SN U (i 1y Re-
call that 0; sy € My (C*(An)) denotes the matrix

(9 ) sy ifj=iandj =17
P S
BN D 0 otherwise.

Then Vs V) = ¢n (QiﬁirsA) by definition of ¢, so
O Giir52) = 325 D (vy=r Usw 0)jtman (=1 5N Uy (511
Since (idasr @tpy sy )(0i,i02) = Oiir 32, (3vy=x Sx', we may therefore apply (3.1)
to see that
¢N(9i,i’SA) = ¢N+1 o (ﬂ-M7mN & idc*(AN+1)) [¢] (idM ®LPN75N)(9i,i/SA)'
Since elements of the form 6; ;s generate My (C*(An)) this proves the result.

|

THEOREM 3.8. Let (An, Ant1,Pn, Mn,5n)52, be a sequence of row-finite cov-

erings of locally convex k-graphs. For each n, let A, := AP ~pn7£n71An,

identify A, with the corresponding subset of Um(Ay; pp, $,), and likewise iden-
tify C*(A,,) with the corresponding C*-subalgebra of C*(@(An;pn,sn)). Then

(3:2) O (lim(Ans pus5u)) = Uncy O (An).

n=1
Let Py := ZUeA? Sy, and for each n, let My, := mimo---my,_1. Then P is a
full projection in each M(C*(Ay,)), and we have

(33) Plc* (@(A"“pn"sn))Pl % hi>n (MMTI (C* (An))’ id]\/jn ®Lpn75n)'
In particular,

K (C*(im(An; pn, 5n)))

K. (PLC*(lim(An; pny 50)) P1)
= hm(K* (C* (An))a (Lpn15n)*)'

—
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Proof. For the duration of the proof, let A := lim(A,;pn,s,). We have
C*(A) = span{s,s; : p,v € A}, so for the first statement, we need only
show that
span{s,ss : p,v € A} C Ur—; C*(Ay).

To see this we simply note that for any finite ' C A, the integer N := max{n €
N :s(F)NAY # 0} satisfies F C Ay.

Since P is full in each C*(A,,) by Proposition 3.2(3), it is full in C*(A) by (3.2).
Equation 3.3 follows from Proposition 3.7. The final statement then follows
from continuity of the K-functor. O

Remark 3.9. Note that if we let v denote the restriction of the gauge action to
Plc*(@(An;pn,sn))Pl then v(;,... 1) is trivial for all z € T. Indeed, if s,s;
is a nonzero element PyC*(lim(A,;pn,5,))P1, then d(p)nr1 = d(V)pt1. So v
may be regarded as an actiorTby T* rather than TF+1,

We can extend Theorem 3.8 to the situation of matrices of covering systems as
discussed in Section 2.1 as follows.

PROPOSITION 3.10. Resume the notation of Corollary 2.15. Fach C*(Ay) is
canonically isomorphic to @‘;;1 C*(An,j). There are homomorphisms (in)x
K. (C*(Ay)) — K (C*(Apnt1)) such that the partial homomorphism which maps
the j*® summand in K.(C*(Ay,)) to the it summand in K.(C*(A,11)) is equal
to 0 if mi; = 0, and is equal to (tpy sn )« otherwise. The sum ZveA‘l’ Sy
converges strictly to a full projection Py € M(C*(A)). Furthermore,

K.(RC ()P 2 lim (D K€ (Ay)), (). ).

Proof. For each A € A, = |_|;":'1 A, j, define a partial isometry t) €
@‘;;1 C*(Ay,j) by ty := (0,...,0,5x,0,...,0) (the nonzero term is in the ;0
coordinate when A € A, ;). These nonzero partial isometries form a Cuntz-
Krieger A, -family consisting of nonzero partial isometries. The universal prop-
erty of C*(Ay) gives a homomorphism 77" : C*(A,) — @), C* (A, ;) which
intertwines the direct sum of the gauge actions on the C*(A,, ;) and the gauge
action on C*(A,). The gauge-invariant uniqueness theorem [20, Theorem 3.4],
and the observation that each generator of each summand in @‘;;1 C*(An ;) is
nonzero and belongs to the image of 7j* therefore shows that 7} is an isomor-
phism.

The individual covering systems (A, ;, Ant1,i,p", m"™, ") induce inclusions
tpr st CF(Ap ) — M (C*(Ansa,i)) as in Proposition 3.2(5). We therefore
obtain homomorphisms (tpy sn )i @ Ku(C*(Apj)) — Ku(C*(Apg,i)). The
statement about the partial homomorphisms of K-groups then follows from
the properties of the isomorphism K, (€D, Ai) = @, K.(A;) for C*-algebras
A;.

The final statement can then be deduced from arguments similar to those of
Theorem 3.8. 0
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4. SIMPLICITY AND PURE INFINITENESS

Theorem 3.1 of [34] gives a necessary and sufficient condition for simplicity of
the C*-algebra of a row-finite k-graph with no sources. Specifically, C*(A) is
simple if and only if A is cofinal and every vertex of A receives an aperiodic
infinite path (see below for the definitions of cofinality and aperiodicity). In
this section we present some means of deciding whether lim(A,,; p,,, 6,) is cofi-
nal (Lemma 4.7), and whether an infinite path in lim(A:pn,sn) is aperiodic
(Lemma 4.3). We also present a condition under which C* (Um(Ap; pr,5p)) 18
purely infinite (Proposition 4.8). T

We begin by recalling the notation and definitions required to make sense of
the hypotheses of [34, Theorem 3.1]. For more detail, see Section 2 of [31].

Notation 4.1. We write €y, for the k-graph such that QF := {(m,n) € N*x Nk .
n —m = q} for each ¢ € N¥, with r(m,n) = (m,m) and s(m,n) = (n,n). We
identify Q) = {(m,m) : m € N*} with N*. An infinite path in a k-graph =
is a graph morphism z : ; — Z, and we denote the image x(0) of the vertex
0 € Q) by r(z). We write = for the collection of all infinite paths in =,
and for v € 2% we denote by v=>° the collection {z € 2% : r(z) = v}. For
r € = and ¢ € N*, there is a unique infinite path ¢%(z) € = such that
o9(x)(m,n) = x(m +q,n + q) for all m < n € N*.

DEFINITION 4.2. We say that a row-finite k-graph = with no sources is aperiodic
if for each vertex v € Z° there is an infinite path x € v=*° such that o9(z) #
o (z) for all ¢ # ¢’ € N*. We say that Z is cofinal if for each v € Z° and
x € E* there exists m € N* such that vZEx(m) # (.

We continue to make use in the following of the notation established earlier
(see Notation 2.6) for the embeddings of N* and of N in N*+1.

If y is an infinite path in the (k+1)-graph =, we write o, for the infinite path in
20N defined by ay(p, q) := y((Ok,p), (0k, q)) for p < g € N, and we write z,
for the infinite path in ZN":01) defined by xy(p, q) :== y((p,01), (¢,01)) where
p<qeN-~

PROPOSITION 4.3. Let (An, Apt1,Pn,Mn,5n)22, be a sequence of row-finite
covering systems of k-graphs with no sources. For a,b € N*¥t1 an infinite path
y € (Hém(/\n;pn,sn))Oo satisfies o%(y) = o”(y) if and only if Tya(y)y = Tob(y)
and Qga(y) = Qgb(y)-
Proof. The “only if” implication is trivial. For the “if” implication, note that
the factorisation property implies that an infinite path z of im(A,; pn,s,) is
uniquely determined by z, and the paths Qgn01)(z)s M € N\? So it suffices
to show that each Q(n,01) () is uniquely determined by z,(0;,n) and a,. Fix
n € N¥ and let A := x,(0x,n) = 2(0g+1, (n,01)). Fix i € N. We will show that
Q.01 () (01, 1) is uniquely determined by c.(01,4) and A. Let v = r(z), and let
N € N be the element such that v € A} For 1 <j <i,let w; = a. (i) € A%,
and let 1 <1; < mp4,—1 be the integer such that a,(j — 1,5) = e(w;, ;). We
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have py(w1) = v, and py4j—1(w;) = wj—q for 2 < j <4. For each j, let \; be
the unique lift of A such that 7(\;) = w;. By definition of the (k + 1)-graph
@(An;pn,sn), the path

)\e(s()\l),5()\1)7111)6(5(/\2),5(/\2)71l2) ce 6(8()\1'),5()\1')7111') = OAZ(Ol,i)Ai

is the unique minimal common extension of A\ and «(01,4) in Um(Ay; pp, $,).
N
Hence

Oéa(n,ol)(z)(ol,i) = 6(8()\1),E(Al)illl)e(S(Ag),5(/\2)7112) . B(S(AZ),ﬁ(AJillZ)
which is uniquely determined by A and «,(01,). (|

COROLLARY 4.4. Let (Ap, Apt1,Dn,Mn, 51)5% 1 be a sequence of row-finite cov-
ering systems of k-graphs with no sources. Suppose that A, is aperiodic for
some n. Then so is im(Ay; pn,Sn).

Proof. Since each vertex in A,, receives an aperiodic path in A,,, Proposition 4.3,
guarantees that each vertex in A,, receives an aperiodic path in im(A,; p,, $,).
Since the p,, are coverings, it follows that every vertex of lim(An;pT, §, ) Teceives
an infinite path of the form Ay or of the form o?(y) where y is an aperiodic
path with range in A,,. If y is aperiodic, then Ay is aperiodic for any A and
0%(y) is aperiodic for any a and the result follows. O

LEMMA 4.5. Let (A, A1, Dn,y Mn, 5,)52 1 be a sequence of row-finite covering
systems of k-graphs with no sources. Fixz y € (@(An;pn,ﬁn))w, with y(0) €
A, and a,b € N¥*t1, Let @ and b denote the elements of N* determined by the
first k coordinates of a and b. For each m > n, let vy, and i, be the unique
pair such that o, (m,m + 1) = e(Um,im). For each m > n, let p,, and vy, be
the unique lifts of x,(0,a) and x,(0,b) such that () = r(Vm) = vm. Then
Qga(y) = Qgb(y) if and only if the following three conditions hold:

(1) akt+1 = bry;

(2) s(pm) = s(vm) for allm > n; and

(3) Sm(tm)im = Sm(Vm)im for allm >n.

Proof. We have aa(yy(m,m+1) = e(s(tmtagsy)s Sm(mtapis)imta,,,) for all
m, and likewise for b and v. O

Remark 4.6. Lemma 5.4 of [27] implies that an infinite path in a rank-2 Bratteli
diagram A is aperiodic if and only if the factorisation permutations of its red
coordinate-paths are of unbounded order. Lemma 4.5 is the analogue of this
result for general systems of coverings. To see the analogy, note that in a rank-2
Bratteli diagram, every z, is of the form AAX ... for some blue cycle A, so that
condition (3) fails for all a # b precisely when the orders of the permutations
Sm(14m) grow arbitrarily large with m.

LEMMA 4.7. Let (An, A1, Pr, Min, 5n)52 1 be a sequence of row-finite coverings
of k-graphs with no sources. If infinitely many of the A, are cofinal, then
Um(Ay; P, Sn) is also cofinal.
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Proof. Fix a vertex v and an infinite path z € (im(Ay,; pn,5,))>°. Let ni,ng €
N be the elements such that v € A and r(zTE AY . Choose N > nqy,no
such that Ay is cofinal. Fix w € A?V such that p, o ppy10---0opy_1(w) = v;
SO v(yLn(An;pn,sn))w # . We have Ty N-n2)(3) € A%, and since Ay is
cofinal, it follows that WANT, ..~ -2 (,)(q) # O for some ¢ € NF.  Since
za(ok,anQ)(z)(q) = z(¢q, N — n2), this completes the proof. O

As in [38], we say that a path A in a k-graph A is a cycle with an entrance if
s(A) = r(A), and there exists u € r(A)A with d(p) < d(X\) and A(0,d(u)) # p.

PROPOSITION 4.8. Let (An, Apt1,PnsMin, 5n)52, be a sequence of row-finite
coverings of k-graphs with no sources. There exists n such that A,, contains a
cycle with an entrance if and only if every A, contains a cycle with an entrance.
Moreover, if C*(lim(Ay;pn,sn)) is simple and Ay contains a cycle with an
entrance, then C’*\(TX) is purely infinite.

Proof. That the presence of a cycle with an entrance in A; is equivalent to the
presence of a cycle with an entrance in every A,, follows from the properties of
covering maps. Now the result follows from [38, Proposition 8.8] O

5. K-THEORY

In this section, we consider the K-theory of C* (AP%SF). Specifically, we show
how the homomorphism from K, (C*(A)) to K.(C*(I")) obtained from Propo-
sition 3.2 behaves with respect to existing calculations of K-theory for various
classes of higher-rank graph C*-algebras. We will use these results later to com-
pute the K-theory of C*(lim(A,; pn, sy)) for a number of sequences of covering
systems. T

Throughout this section, given a k-graph A, we view the ring ZA° as the
collection of finitely supported functions f : A — Z. For v € A°, we denote
the point-mass at v by J,. Given a finite covering p : I' — A of row-finite
k-graphs, we define p* : ZA® — ZI'Y by p*(d,) = 3. dw; equivalently,

p*(N)w) = f(p(w)).

5.1. COVERINGS OF 1-GRAPHS AND THE PIMSNER-VOICULESCU EXACT SE-
QUENCE. It is shown in [26, 32] how to compute the K-theory of a graph
C*-algebra using the Pimsner-Voiculescu exact sequence. In this subsection,
we show how this calculation interacts with the inclusion of C*-algebras arising
from a covering of 1-graphs.

The K-theory computations for arbitrary graph C*-algebras [12, 1] are some-
what more complicated than for the C*-algebras of row-finite graphs with no
sources. Moreover, every graph C*-algebra is Morita equivalent to the C*-
algebra of a row-finite graph with no sources [12]. We therefore restrict out
attention here to the simpler setting.

p(u)=v

THEOREM 5.1. Let (E*, F*,p,m,s) be a row-finite covering system of 1-graphs
with no sources. Let A, B be the vertex connectivity matrices of the underlying
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graphs E and I respectively. Then the diagram

0 —=IKi(C"(E7)) ZE° ZE° Ko(C*(E"))—= 0

(51) J (tp,s)« lm»p* Jm‘p* J (tp,s)=

0 —= K (C*(F*)) ZFO ZF° Ko(C*(F*))—=— 0

commutes and the rows are exact.

The proof of this theorem occupies the remainder of Section 5.1. We fix, for the
duration, a finite covering p : F* — E* of row-finite 1-graphs with no sources,
a multiplicity m and a cocycle s : F* — S,,.

It is relatively straightforward to prove that the right-hand two squares of (5.1)
commute and that the rows are exact.

LEMMA 5.2. Resume the notation of Theorem 5.1. We have (1 — B')p* =
p*(1 — AY), the right-hand two squares of (5.1) commute, and the Tows are
exact.

Proof. For the first statement, consider a generator d, € ZEY. We have

(p* o (1—AN)(6,) = p* (5, — Z Ss(e) = Z 8y — Z Z Ss(5)-

ecvEl p(u)=v e€vE! p(f)=e

On the other hand,

(1-BYop)6,)=(1-B) S 6.= Y (@ﬁ 3 5s(f)).

p(u)=v p(u)=v feuFr?

Since p is a covering the double-sums occurring in these two equations each
contain exactly one term for each edge f € F! such that p(r(f)) = v, and it
follows that the two are equal.

Multiplying by m throughout the above calculation shows that the middle
square of (5.1) commutes.

The identification of Ko(C*(E*)) with coker(l — A?) takes the class of the
projection s, € C*(E*) to the class of the corresponding generator &, € ZE°
(see [30]). That the right-hand square commutes then follows from Proposi-

tion 3.2(6).
Exactness of the rows is precisely the computation of K-theory for 1-graph
C*-algebras [8, 26, 32]. O

It remains to prove that the left-hand square of (5.1) commutes. The strategy
is to assemble the eight-term commuting diagrams which describe the K-theory
of each of C*(E*) and C*(F*) (see equation (5.3) below) into a sixteen-term
diagram, one face of which is the left-hand square of (5.1). We then focus on
the cube in the sixteen-term diagram which contains left-hand square of (5.1)
as one of its faces, and show that the remaining five faces of this cube commute.
A diagram-chase then establishes that the sixth face commutes as well. The
majority of the work involved goes into defining the connecting maps needed
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to write down the sixteen-term diagram in the first place. The proof that the
various squares in it commute is then relatively straightforward.

To begin, we recall how one shows that the rows of (5.1) are exact. Let E* x4Z
be the skew-product of E* by the length functor d (see [20, Section 5]). Let « be
the gauge action of T on C*(E*) satisfying v, (s.) = zs. for e € E! and z € T.
Let (iT,ic+(g+)) be the universal covariant representation of (C*(£*),T,~) in
the crossed product C*(E*) x,T. By [32, Lemma 3.1], there is an isomorphism

(5.2) Yp : C*(E* xqZ) — C*(E*) x, T

satisfying ¥ (s(an)) = i1(2)" icx (g (51).

The C*-algebra C*(E* x4 Z) is AF with Ky-group lii>n(ZE0, A) (see [26, 32]).
Hence one may apply the dual Pimsner-Voiculescu sequence [4, Section 10.6]
to the crossed product algebra C*(E*) x., T to show that the top row of (5.1)
is exact (the bottom row is the same after replacing E with F').

From the point of view of coverings, the skew-product graph E* x 4Z and its C*-
algebra are more natural to work with than the crossed product C*(E*) x, T.
Before proving that the final square of (5.1) commutes, we therefore detail first
how coverings p : F* — E* interact with the isomorphisms ¢ g : C*(E* x4Z) —
C*(E*) x4 T.

LEMMA 5.3. With the above notation, let E* x4 7 and F* X4 Z be the skew-

product graphs by the length functors d, and let v g and Y be the isomorphisms

described in (5.2). Let yg and «yp denote the gauge actions of T on C*(E*)

and C*(F™).

(1) the formulae p(A,n) := (p(A),n) and 5(A,n) := s(X\) determine a covering
p:F*XqZ — E* xXqZ and a cocycle 5 : F* XqZ — S,,.

(2) the inclusion tps : C*(E*) — Mp(C*(F*)) is equivariant in the ac-
tions vg and idy, ®yp, and induces an inclusion tps : C*(E*) X4, T —
My (C*(F™)) Xid,, @7 T-

(3) The following diagram commutes.

'p,§

C*(E* x4 Z) M (C*(F* x4 Z))
uﬂ idy, ®wF¢

C*(E*) Xyg Ti;Mm(C*(F*)) Xidym @VF T

Proof. (1) Tt is straightforward to check that p is a covering. To see that &
is a cocycle, note that (u,m) and (v,n) are composable in the skew-product
precisely when p and v are composable, and n = m—d(v). Sofori € {1,...,m}
we may calculate

5(p, m)(8(v, m — d(v))i) = s(p)(s(v)i) = s(ur)i = &(ur, m — d(v))i.
(2) That ¢, is equivariant in vz and id,, ®~yp follows from Proposition 3.2(5).
That it induces the desired inclusion ¢, s of crossed-products follows from the
universal properties of the crossed-product algebras.
(3) That the diagram commutes follows from a simple calculation using the
definitions of the maps involved. O
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Proof of Theorem 5.1. Lemma 5.2 establishes everything except that the left-
hand square in the diagram (5.1) commutes. To establish this last claim, recall
from [32, Theorem 3.2] (see also [26]) that there is a homomorphism ¢g :
ZE° — Ko(C*(E*) x4, T) satisfying ¢g(d,) = [i1(1)ic«(g+)(sy)]. Moreover,
the rows of the following commutative diagram are exact and the left- and
right-most vertical maps are isomorphisms (see [30, Lemma 7.15], [26]).

1—At

O—>-ker(1 — At) ZE° Z.E° coker(1 — At)—>0
(5.3) L - LM L¢>E
0K (C*(E%)=Ko(C* (E") %, T) == Ko(C* (E%) 5 T) =Ko (C* (E*))—=0

IR

A similar commutative diagram holds for F™*, and using the standard isomor-
phism of K, (M,,(C*(F*))) with K,(C*(F*)), we may assemble these two di-
agrams can into a single three-dimensional diagram by connecting each term
in the diagram for E* to the corresponding term in the diagram for F* using
the appropriate maps induced from (p,s). The map connecting the Ky-groups
of the skew-product graph algebras is induced from the connecting map in
the bottom row of the commuting diagram in Lemma 5.3(3) by applying the
K-functor and using the canonical isomorphisms

K. (M (C*(F*) 5 T)) 2 KL (C*(F") ., T)  and
My (C*(F*) Xy T) = My, (C*(F™)) Xid,, @yr T-

Let n denote the unlabelled inclusion K1 (C*(F*)) — Ko(C*(F*) X, T)) in
the bottom row of the diagram of the form (5.3) for F*. Notice that injectivity
of the map m-p* : ZE® — ZF° together with the first statement of Lemma 5.2
ensures that m - p* restricts to a map from ker(1 — A?) to ker(1 — B?); abusing
notation, we denote this map m - p* too. With this notation the diagram (5.4)
below is the left-hand cube of the three-dimensional diagram described in the
previous paragraph.

ker(1 — A?) « ZEO
m-p* m-p*
= [935)
ker(1 — B?) «
(5.4) ]
) K1(C*(E")) Ko(C*(E*) %, T)
(Lp,f-)*
K1 (C*(F7)) . Ko(C*(F™) X, T)

We have shown the whole cube because we prove that the left-hand face —
which is none other than the left-hand square of (5.1) — commutes by showing
that the other five faces commute.

To see why this suffices, suppose that the other five faces do indeed commute.
Since 7 is an injection by the exactness of the rows of (5.3), we just need to
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show that the two maps from ker(1 — A?) into Ko(C*(F*) x, T)) obtained
from the maps in the left-hand face of the cube followed by 1 agree. A diagram
chase shows that this is the case.

It therefore remains only to show that the top, bottom, front, back and right-
hand faces of (5.4) commute. The top square commutes by definition. The
bottom square commutes by the naturality of the dual Pimsner-Voiculescu
exact sequence (see the argument at the beginning of [32, Section 3]). The
back and front faces commute because (5.3) commutes.

To see that the right-hand face commutes, recall that C*(E* x4 Z) is AF
with Ky-group h_H)l(ZEO, 1 — A'). Hence there is an inclusion ep : ZEY —
Ko(C*(E* x4Z)) which takes d, to the Ko-class of the vertex projection s(, ),
and likewise for F. Consider the map g defined in (5.2) and the map ¢g
appearing in (5.3). It is clear that ¢ = (¥g)« o g and similarly for F. So it
suffices to show that the following diagram commutes.

*
m-p

ZE° ZF°
(¢5,5)
(5.5) Ko(C*(E* x4 7)) Ko(C*(F* x4 7))
(VE)« (YF)«

(¢p,5)

KO(C*(E*) Xvp T) KO(C*(F*) Xyp T)

If one applies the K-functor to all terms and maps in the diagram of
Lemma 5.3(3), and then applies the natural isomorphism

Ko (M (CT(E™) X, T)) = K. (CT(E") X4, T)

to the terms on the right, one obtains precisely the bottom rectangle of (5.5).
The bottom rectangle of (5.5) therefore commutes by naturality of the K-
functor together with Lemma 5.3(3).

To see that the top rectangle of (5.5) commutes, recall that g takes the image
of the point-mass J,, in the direct limit lii>n(ZE0, A?) to the class of the projec-
tion s(,,0). The image of s(,, ) under the homomorphism ¢ 5 is the diagonal ma-
trix in My, (C* (F"* x 4 Z)) whose diagonal entries are all equal to 3, ,)_, 5(w,0)-
Under the standard isomorphism Ko (M., (C*(F* x4 Z))) = Ko(C*(F* xq Z)),
we therefore obtain the following equality in Ko(C*(F* x4 Z)):

55 (swa)l = D m [s00)] :m.( > [S(w,())])-
pw)=v plw)=v

Using once again the characterisation of the maps eg and £p, we see that this
is precisely the statement that the bottom rectangle of (5.5) commutes. (|

5.2. COVERINGS OF HIGHER-RANK GRAPHS AND KASPAROV’S SPECTRAL SE-
QUENCE THEOREM. We turn to the case where k > 1. We invoke the K-theory
computations of [14] which are based on Kasparov’s spectral sequence theorem
for the computation of the K-theory of crossed products by groups for which
the Baum-Connes conjecture holds (see [18, Theorem 6.10], [14, Lemma 3.3]
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and [35]). We are grateful to Gennadi Kasparov for pointing out that the
spectral sequence is natural.

The standard notation for spectral sequences is that a spectral sequence
(E",d") has terms £} , and differentials " : E} , — Ej_. .. | where r > 0
and p,q € Z. This however is problematic in the current situation because p
clashes with our notation for a covering map. To avoid this, we replace the
indexing variables p, ¢ in the spectral sequence with a,b. That is, our spectral
sequences have terms E;b and differentials d" : E;b — g—r,b-}-r—l where r > 0
and a,b € Z.

Since each higher rank graph C*-algebra C*(A) is Morita equivalent to a crossed
product by ZF [21, Theorem 5.6], Kasparov’s result applies to give a spectral
sequence which converges to K, (C*(A)) with E? terms given by the homology
of Z* with appropriately chosen coefficients. In [14] Evans computes these
homology groups using a resolution related to the Koszul complex. It follows
that the above spectral sequence may be extended so that the terms of the
resolution become the terms E;’b for b even.

The main result of this subsection is to show that given a finite covering p :
I' — A of row-finite k-graphs with no sources, a multiplicity m and a cocycle
s : ' — S,,, there is a natural morphism of spectral sequences defined on E!
terms using m - p* : ZA® — ZTI'° which is compatible (see [41, p.126]) with
(tp,s)« the induced map on K-theory. This result is specialised to the case
k = 2 with a view to applications in Section 6.

The following is an immediate Corollary of [18, Theorem 6.10] (see [14,
Lemma 3.3] and [35]). For more detail on spectral sequences used in this
context, see [35, 14].

PROPOSITION 5.4. Let F be a C*-algebra and let o : ZF — AutF be an
action of Z¥ on F. Then there is a spectral sequence (E",d") with dif-
ferentials d” : E, — EI__ .., which converges to K.(F Xo ZF) with
E?, = H,(Z*  Ky(F)). Moreover, the spectral sequence is natural with respect
to 7equivam'cmt maps of C*-algebras.

Proof. As noted in the proof of [14, Lemma 3.3] this follows immediately from
[18, Theorem 6.10] since Z* is amenable and the Baum-Connes conjecture
is known to hold for amenable groups [16, Theorem 1.1], so the v part of
K.(F x4 Z¥) exhausts. The naturality of the spectral sequence with respect
to equivariant maps follows from the construction in the proof of [18, Theorem
6.10], since every step is functorial. ([l

Naturality means that given ZF actions o; on F;, a ZF-equivariant map ¢ :
F1 — Fo induces a morphism of spectral sequences and this morphism is
compatible with

Bu : Ku(F1 Xy ZF) — Ko (Fa X o, ZF)

where @ : F| Xo, ZF — Fo X4, Z* is the natural map.
Evans applies this when F = F, is the crossed product C*(A) x., T* of C*(A)
by the gauge action, and « is the dual action 4 of Z*. Hence, by Takai duality
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we have K,(C*(A)) = K.(Fa X ZF). In this case we have more specific results
(see [14, Lemma 3.3]):

i {Ha(zk,Ko(]'—A)) if 0 <a<kandbis even,

@~ )0 otherwise.
In [14, Theorem 3.14]), Evans shows that these homology groups may be
computed as the homology of the complex D} = A"ZF ® ZA°. That is,
Dfl‘:/\aZk®ZAOforOﬁaﬁkandDé‘:Ofora>k. For 1 <j <klet M;
denote the vertex connectivity matrix of the coordinate graph (A% A% 7, s).
For 1 < a < k define the differential 9, : DA — D2 | by

aa(eh A /\eia ®ev) = Z(_l)j+1€i1 A /\/G\ZJ A /\Gia ® (1 — M;)ev

j=1

where €1, ..., €, constitute the canonical basis for ZF, 1 < i1 < -+ < iy < k
and v € A?. Tt is straightforward to verify that D? is a complex. The first part
of the following theorem is a restatement of [14, Theorem 3.15]).

THEOREM 5.5. Fiz k > 1. Let A be a row-finite k-graph with no sources.
With notation as above there is a spectral sequence (E",d") with differentials
d": By, — E} | which converges to K.(C*(A)) = K.(Fa xqo Z*) with

a—r,b+r—
El, =DM =N\ Z'©ZA°

if 0 < a <k and b is even, and 0 otherwise. The differential d* E;b — E;—l,b
is given by O, if b is even.

Let (A, T,p,m,s) be a row-finite covering system of k-graphs with no sources.
There is a morphism f of spectral sequences which is compatible with (tp )« :

K.(C*(A)) — K.(C*(T")) such that f': DX — DY is given by id @(m - p*).
Proof. Evans computes the homology groups using a Koszul complex (see [41,
§4.5]). Set G = ZF = (s1,...sx), R = ZG and let I be the ideal in R generated
by {1—s;':1<a<k}. Letey,...,e constitute the canonical basis for R*.
For each a, define 9, : A" RF — /\a*1 R as follows: for 1 < iy < -+ <i, <k
so that €;, A--- A, € \" R¥, define

Oaleiy Aov M) =D (1) (1= s, Neiy Ao AT Ao Aey,

j=1

where the symbol “ =7 denotes deletion of an element (note that 01(e;) =
1—s;h).
Then R/I = Z and the following sequence of R-modules is exact (see [41,
Corollary 4.5.5])

k
OH/\ Rkﬂ---ﬂ/\leH/\ORkHZHO.
Note that A’ R¥ = R and A" R¥ is a free R-module with basis

{61'1/\-"/\61'@:1§’L'1<"'<’L'a§k}.
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Hence, A" R¥ yields a projective resolution of Z. Thus, by [6, §II1.1] we have

H.(G, Ko(Fr)) = Hi(\ R* ®c Ko(F4)).

We follow Evans here but have adopted slightly different notation to make
naturality more apparent (see [14, Definition 3.11] and following). Under the
isomorphism A" RF @¢ Ko(Fa) = A" Z* @ Ko(Fa) (as abelian groups), the
boundary map 9, : A" Z*F @ Ko(Fa) — N~ ZF @ Ko(Fa) is given by
Oaleiy Ao Nei, @) =D (1) ey Ao NG A A, @ (1= s))x
j=1
where 1 <i; < -+ <i, <k and z € Ko(Fyp).
Let DA be given as above. There is a natural map &* : Co(A°) < Fa which
induces a map e : ZA® — Ko(Fa). Moreover (see [14, Theorem 3.14]) the
natural map
id e - /\ ZF @ ZA° — /\ ZF @ Ko(Fp)
is a map of complexes which induces an isomorphism on homology and hence
H.(G,Ko(Fa)) = /\ ZF @ ZAY).
Therefore, setting

. _{/\“zk®zz\0 if 0 <a<kandbis even,

b= .
@ 0 otherwise

and defining d' : E;’b — E;_l,b to be 9, if b is even (and 0 otherwise), yields

2 ~J
Ea,b =

H,(G,Ko(Fy)) if0<a<kandbis even,
0 otherwise.

It follows by [14, Lemma 3.3] that the spectral sequence converges to
K.(C*(N)) = K.(Fa xq ZF) as required.

For the second part of the theorem, fix (A,T',p,m,s). The embedding ¢, :
C*(A) — M, (C*(I')) induces an embedding ¢, s : Fo — My (Fr). Functorial-
ity yields a map of complexes

id®(tps)« /\ ZF @ Ko(Fp) — /\ Z" @ Ko(Fr).

Since group homology is a covariant functor of its coefficient module we obtain
the functorial maps for each n =0,1,...,k

H,((lpe)s) : Ho(Z*, Ko(Fp)) — Ho(ZF, Ko(Fr)).

Then arguing as in Lemma 5.2 with p* : ZA? — ZI'V defined as above we see
that

(1= (M7))(m-p*) = (m-p*)(1 = (M})")

forall j =1,...,k. It follows that the natural map
ide(m-p*): \ 2¢©2ZA° - N\ Z* @ 21"
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is a map of complexes.

Arguing as in the proof of Theorem 5.1, we see that (i)« 0l = el o (m - p*),
so the map on homology induced by id ®(m - p*) coincides with the functorial
map above (under the identifications of the homology groups induced by id @&
and id ®eL). This combined with the naturality of Proposition 5.4 yields a
morphism f of spectral sequences compatible with the map

(L,/p\;)* : K*(‘FA Xa Zk) - K*(‘FF Xa Zk)

such that f!: D& — DI is given by id®(m - p*). Under the identifications
K. (C*(A)) = Ku(FAxoZ") and K. (C*(T)) = K.(FrxoZ*), wehave (155), =
(tp,s)s- O

The following corollary is an immediate consequence of the above theorem
restricted to the case k = 2; for the first assertion see [14, Proposition 3.16]
and its proof (see also [35]).

Given a 2-graph A, recall that M; and M, denote the vertex connectivity
matrices of the coordinate graphs (A, A¢t, r,s) and (A%, A2, r,s).

COROLLARY 5.6. Suppose that (A,T',p,m,s) is a row-finite covering system
of 2-graphs with no sources. With the notation of Theorem 5.5, the complex
DA = \"Z2 @ ZA® may be written as follows:

(5.6) 0 ZA® 2L ZAO g ZA® 2 ZA0 — 0

ML—1

where 1 = (1 — M{,1 — M3) and 9, = (1 — M}

) . We have Eg_’b = Eg5,, and

Ko(C*(A)) = coker 91 @ ker 0,

(5.7) K1(C*(A)) = ker 81/ Im 9 2 Hy (Z*, Ko(F4)).

Moreover, the following diagram commutes

o5

0 ZA° ZA? ® ZA® 22— ZA® ——— 0
(5.8) lm.p* lm.mm.p* lm.p*

N
ZMOozr® 2 zro .

of

o

0 Zre
and by naturality induces (tp.s)s : Ki(C*(A)) — K, (C*(I)).

The inclusion of coker 9y into Ko(C*(A)) obtained from (5.7) takes the equiva-
lence class (in the quotient group coker &, = ZA°/Im(9;)) of the generator 4,
of ZA® to the Ko-class of the vertex projection [s,] in C*(A). The proof of this
fact can be obtained from the proof of [14, Proposition 4.4]. We thank Gwion
Evans for pointing this out to us.
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5.3. PRODUCT COVERINGS AND THE KUNNETH FORMULA. In this section we
consider covering systems (A,,,p,) in which each k-graph A, is a cartesian
product of two lower-dimensional graphs, and the covering maps p, respect
the product decomposition.

Recall from [20, Proposition 1.8] that given a k-graph (A,d) and a k-
graph (A’,d’), the cartesian-product category A x A’ becomes a (k + k')-
graph when we endow it with the degree functor d x d' : (\,XN) —
(dN)1y s dN iy N1y, d (V).

PROPOSITION 5.7. Fiz k, k' € N\ {0}. Let (A,T,p,m,s) and (A, T, p',m’,s")
be row-finite covering systems of k- and k'-graphs with no sources. Then

pxp :I'xIV — AxA

is a finite covering of row-finite (k + k')-graphs with no sources. Let [ :
{1,....m} x {1...,m'} — {1,...,mm'} denote the bijection f(j,j') :=
Jj+ (' = 1)ym. There is a cocycle s x s’ : ' x IV — Sy, determined by
((5 X 5’)(a,a’))f(j,j’) = f(ﬁ(a)j,s’(a’)j’). Moreover, the following diagram
commautes.

s

C*(A x A') C*(A) ® C*(M')

leXp/,ﬁxﬁ’ lLPy5®Lp/,5/

Moy (C*(D X T')) —=— My (C*(T')) @ My (C*(I))

Suppose that at least one of K.(C*(A)), K.(C*(A')) and at least one of
K.(C*(T)), K.(C*(T")) are torsion-free. Then the following diagram com-
mutes and the horizontal connecting maps are zero-graded isomorphisms:

K.(C*(A) ® K. (C*(A)) —— K.(C*(AxA"))
lup,.q)*@(bpum* l()
K.(C*(1) @ Ko (C*(I")) —— K.(C*(I xI"))

IfT° and (I")° (and hence also A° and (A')°) are finite then the C*-algebras
are unital, and the horizontal isomorphisms take [1] ® [1] to [1].

Proof. 1t is straightforward to check that px p’ is a covering using the properties
of the covering maps p and p’ and the definition of the cartesian-product graph.
A simple calculation shows that s x ¢’ defines a cocycle.

Theorem 5.5 of [20] shows that C*(A), C*(A’), C*(T") and C*(I") are nuclear,
and so there is just one tensor-product C*-algebra C*(A) ® C*(A’). Corol-
lary 3.5(iv) of [20] shows that the map sy ,) = sx ® s, is an isomorphism of
C*(Ax A) onto C*(A)® C*(A’), and similarly for C*(T') and C*(I'). It is easy
to check using the formulae for the maps ¢ps,tp 57, and tpxp sxs and using
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the chain of isomorphisms
My (C* (T x T')) 2 My (C) @ C*(T' x T)
~ M, (C) ® C*(T') ® M, (C) @ C*(I)
= M (C*(T)) ® My (C*(I))

that the first diagram commutes.
In the presence of the additional hypothesis concerning torsion-free K-groups,
the Kiinneth Theorem of [37] (see also Theorem 23.1.3 of [4]) implies: (1) that

K. (C*(A) ® K.(C7()) = K.(C™(A) ® C7(A))

and similarly for T',T”; (2) that these isomorphisms are natural and are zero-
graded; and (3) that these isomorphisms take [1]®[1] to [1]. The result therefore
follows from the naturality of the K-functor. O

Note that in general when no assumption is made about torsion, the Kiinneth
Theorem of [37] gives a short exact sequence which is still natural. The ana-
logue of Proposition 5.7 still holds and gives a (fairly complicated) commuting
diagram in which the rows are short exact sequences.

6. EXAMPLES

In this section we discuss a number of examples. A recurring theme will be
supernatural numbers and the associated dimension groups, so we pause here
to establish some notation.

We will think of a supernatural number as an infinite product o = [ ;
where each «,, is an integer greater than 1. Any two such expressions in which
the same prime factors occur with the same cardinality correspond to the same
supernatural number. Given supernatural numbers «, 8, we will abuse notation
and write a8 for the supernatural number [[°; @, 8,. We write a[l,n] for
the product [];_, a; of the first n terms in a.

For z1,...,2, € C, we write Z[z1,..., z,] for the ring obtained by adjoining
Z1y...,2n to Z; we regard Z[z1,...,2,] as a group under addition. Abusing
notation, for a supernatural number «, we write Z [ﬂ for the dimension group
li_H)l(Z, Xy, ) which we identify with the group

glz[a[ll, n]} cQ

consisting of all fractions p/q where p, ¢ € Z, and ¢ is a divisor of some a[1, n].

6.1. RANK-2 BRATTELI DIAGRAMS. A rank-2 Bratteli diagram is a 2-graph
in which the blue edges form a Bratteli diagram and the red edges determine
simple cycles so that every vertex lies on precisely one red cycle, and all vertices
on a given red cycle are at the same level in the blue Bratteli diagram.

The C*-algebras of these 2-graphs were studied in [27] and provided the initial
motivation for the covering construction. A rank-2 Bratteli diagram A can be
constructed using Proposition 2.14 and Corollary 2.15 precisely when the length
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of each red cycle at level n of A is divisible by the lengths of all the cycles at
level n — 1 to which it connects. In particular, the 2-graphs whose C*-algebras
are Morita equivalent to the Bunce-Deddens algebras [27, Example 6.7] and
the irrational rotation algebras [27, Example 6.5] arise in this fashion.

6.2. COVERINGS OF DIHEDRAL GRAPHS D,,. For n € N\ {0}, let D,, be the
directed graph with n vertices {vo,...,v,—1} and edges {z;,y; : 0 <i<n—1}
where r(x;) = v; = s(y;) and s(x;) = vi41 = r(y;) (throughout this section,
addition in the subscripts is understood to be evaluated modulo n). More
descriptively, D,, is a ring of n vertices, each of which connects to both of its
neighbours (see Figure 2). Let DX be the path-category of D,,, regarded as a
1-graph. Note that for n € N\ {0}, the graph Ds,, is the Cayley graph for the

U3

V2

Un—1
U1
Vo

FI1GURE 2. The 1-graph D,

dihedral group with 2n elements.

Ezample 6.1. For n,m > 1 there are m-fold covering maps py, mn : D}

as follows: for 0 <i < mn —1let ¢/ =¢ mod n and define

pn,mn(vi) = Uy, pn,mn(xz) =Ty and pn,mn(yz) =Y.

Hence for each pair of positive integers n,m, we obtain a row-finite covering
system (D, D5,.., Pn,mn) of 1-graphs with no sources (see Notation 2.8).

Fix an infinite supernatural number o = []°; a;. Consider the sequence of
covering systems (Dga[l,n]’Dga[l,n-i-l]7p60¢[17"]760¢[17"+1])$lo:1 as in Notation 2.8.
Applying Corollary 2.11, we obtain a 2-graph

D .= Hén(DéaD’M;p6a[1,n],6a[1,n+1])'

PROPOSITION 6.2. Consider the situation discussed in Example 6.1. We have
Ko(C*(D)) = Z[3] @ Z[}] and K1(C*(D)) = Z® Z. Let Pr := 3, po So-
Then [Py] is the 0 element of Ko(P,C*(D)Py). Moreover, C*(D) is simple
and purely infinite.

Before proving the proposition, we describe the K-theory of C*(D}) in general.

LEMMA 6.3. (1) Ko(C*(Dy)) is generated by [sy,] and [s.,], and for each i, we
have [Svl] = 7[8'01'4»3] in KO(C*(D:L))
(2) K1 (C*(Dy)) =A{(a1,...,an) € Z" : aj12 = a;j41 — a; for all i}.
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(3) the following table describes the K -theory of each C*(D}).

n mod 6 | Ko(C*(D})) | Ki(C*(D}))

0 Z? Z?

1 0 0

2 7./3Z 0

3 | z/2202Z/2Z 0

4 Z/3Z 0

5 0 0
Proof. (1) The K, group is generated by the classes [s,,],- .., [y, _,] subject to
the relations [s,,] = [Sv,,,]+[Sv;_,]. This relation forces [sy,,,] = [Sv,,,] — [Sv.]s

from which we conclude first that K is generated by [s,,] and [s,,] and second
that
[Svi+3] = [S'Ui+2] - [Svi+1] = ([Svi+1] - [Svl]) - [Svi+1] = 7[5711']'

(2) Let A, denote the vertex connectivity matrix of D,; so A,(i,j) = 1
when ¢ = j £ 1 (mod n) and zero otherwise. As in Theorem 5.1, we have
Kl(C’* (D;;)) = ker(l — A;) For m € Zn, ((1 - AZ)m)z = —M;_1+mM; — mi+1
by definition of A,,, and this establishes (2).

(3) If E is a finite 1-graph with no sinks or sources, then C*(E) is isomorphic to
the Cuntz-Krieger algebra of the adjacency matrix Ag of F [23]. In particular,
K1(C*(E)) is torsion-free and has the same rank as Ko(C*(E)) [9]. Hence it
suffices to verify that the first column of the table is correct. To calculate Ky,
we use (1) to check by hand that the cases n = 1,2,...6 are as claimed. If
n > 6, then applying the relations we find that [s,, ;] = [s,,] for all 4 which
accounts for all remaining cases. (|

Proof of Proposition 6.2. Lemma 6.3(1) shows that Ko(C*(Dg, ,,;) is gener-
ated by [syp] and [syp] where the v are the vertices of Dg,, . Fixi € {1,2}.
We have

(6.1) (tp,)x[son] = [SUZLH] +[syne1 ] A [synt

i+6a[1,n] i+6(0, 41 —1)a[l,n] ’

By Lemma 6.3(1), each [s,n+1,6;] = [s,n11] in Ko(C*(Dgypy pyry))s s0 (6.1)

2 — Z? is multiplication

implies (tp,, )«[Sor] = an - [s,n+1]. Hence Ko(p,) : Z
by a,. '

Fix m € N\ {0}. By Lemma 6.3(2), K;(C*(D{,,)) is identified with the
set of sequences (a1, ...,agn) which satisfy a;1o = a;41 — a; for all i. By
Lemma 6.3(2), this forces a;12 = a;41 — a; for all i. Consequently, the map
a=(a1,...,a6m) — (a1,az) yields an isomorphism (,, : K1(C*(Dj,,)) — Z°.
As Caftnt1] © K1(bpgapmioapiniy) = Calton), it follows that Ki(cp, ) : Z* — Z7
is the identity map.

Recall that D denotes @(D;a[17n],p6a[1,n],6a[1,n+1]). By Theorem 5.1 the K-
groups of C*(D) are as claimed. To compute the class of the identity, let
P, € C*(D) be the sum of the six vertex projections in the bottom level. The
final statement of Lemma 6.3(1) shows that the classes of the vertex projections
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in Ko(C*(D{)) cancel, so that the class of the identity in Ko(C*(D)) is the
zero element. It follows that the class of the identity P; in Ko(P,C*(D)FP;) is
also the zero element.

Each D} is aperiodic and cofinal (see Definition 4.2), so we may conclude
from Corollary 4.4 and Lemma 4.7 that D is aperiodic and cofinal. Hence
Proposition 4.8 of [20] implies that C*(D) is simple. The path x1y; is a cycle
with an entrance (namely yo) in D}. Proposition 4.8 now shows that C*(D) is
purely infinite. O

6.3. DIRECT LIMITS OF O,, ® C(T).

Ezxample 6.4. Fix n > 3, and let B,, be the bouquet of n loops. For m > 1,
let L., denote the loop with m vertices, and let A,, be the cartesian-product
2-graph A,,, = L x By, obtained from the path categories of L(,_1y» and

(n—1)™
B,.
For each m, Let p,, denote the obvious (n — 1)-fold covering of LGfl)m by
L*

(n—1)ym+1> and let p’ be the identity covering of B, by B,.

PROPOSITION 6.5. Consider the situation of Example 6.4. Let v be a vertex of
A1. Then s,C*(Um(A,,, pm X P'))sy is isomorphic to the Kirchberg algebra Py,
(see [5]) whose K -theory is opposite to that of O,,.

Proof. Since C*(B,,) is generated by n isometries whose range projections sum
to the identity, C*(B,,) is canonically isomorphic to O, [7]. Hence

O (Am) & C* (L, 1yn) ® On

by [20, Corollary 3.5(iv)]. As in [17, Lemma 2.4], there is an isomor-
phism C*(Lz‘n_l)m) 2 M(;,—1)=(C(T)) for each m, and in particular we have
K. (C*(L{,_1ym)) = (2,Z). Since K.(On) = (Z/(n —1)Z,0) [9], the Kiinneth
theorem implies that K,(C*(An,)) =2 (Z/(n —1)Z,Z/(n — 1)Z).

A special case of [27, Equation (4.7)] implies that the covering map p,, induces
multiplication by n —1 from Ko(C*(L{,,_1)m)) to Ko(C* (Lz‘n_l)mﬂ)), and the
identity homomorphism from K1 (C*(L{,, _y.)) to K1(C” (chnfl)m*l )). Clearly
p’ induces the identity map on K,(O,,).

Let A = @(Am,pm x p'). Theorem 3.8 and Proposition 5.7 combine to show

that
K.(C*(A)) = h_H)l((Z/(?’L —1Z,Z/(n —1)Z),(x(n—1),id)).

Since multiplication by n — 1 is the 0 homomorphism from Z/(n — 1)Z to
Z/(n —1)Z, it follows that K,.(C*(A)) = (0,Z/(n — 1)Z).

Lemma 4.7 proves that A is cofinal. For an infinite path y € A°°, Lemma 4.5
combined with the observation that the cycles in the LG—l)m grow with m
shows that if a,b € N? and 0%(y) = o®(y), then a and b differ only in their
first coordinates. It follows from Proposition 4.3 that the aperiodicity of A
is implied by the well-known aperiodicity of B,,. Hence C*(A) is simple by
[20, Proposition 4.8]. Moreover, since every vertex of A hosts a cycle with an
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entrance, C*(A) is also purely infinite (see [20, Proposition 4.9], [38, Proposi-
tion 8.8]). The result therefore follows from the Kirchberg-Phillips classification
theorem [28]. O

6.4. HIGHER-RANK BUNCE-DEDDENS ALGEBRAS. In this subsection we de-
scribe a class of simple AT algebras with real-rank 0 which arise from sequences
of covering systems of 2-graphs and which cannot in general be obtained from
the construction of [27] (see Example 6.6 and Theorem 6.7). We indicate in
Remark 6.12 why we think of these algebras as higher-rank analogues of the
Bunce-Deddens algebras.

For k > 1, let A, be the k-graph with vertices Z*, morphisms {(m,n) €
ZF x ZF : m < n} where r(m,n) = m, s(m,n) = n and d(m,n) = n—m. There
is a free action of Z* on Ay, given by translation; that is m-(p, ¢) = (p+m, g+m)
for m € Z* and (p,q) € Ay.

Given a finite-index subgroup H of Z*, we denote by Ax/H the quotient of Ay
by the action of H. That is, for ¢ € N*, (Ax/H)? = {[g,9+ q] : g € Z*}; in
particular, (Ay/H)® = {[g,9] : g € Z*}, and we henceforth identify (A /H)°
with Z*/H via the map [g, g] — [g] where [g] denotes the class g + H of g in
Z*/H. The range and source maps in A /H are then given by ([g, g+q]) = [g]
and s([g,9+¢]) = [g+¢|. If H C H is a finite-index subgroup of H, then it
also has finite index in Z*, and there is a natural surjection p : Z¥/H' — ZF/H
which induces a finite covering map, also denoted p of Ay/H by Ay/H'.
Most of the remainder of this section is concerned with the following example
of a sequence of covering systems.

Ezample 6.6. Let Hi D Hy D Hs D ... be a chain of finite-index sub-
groups of Z2. For each n, let p, : Ay/H,y1 — Ag/H, be the canonical
covering induced by the quotient maps described above, let m,, = 1, and let
Sp @ Ag/H,i1 — S1 be the trivial cocycle. This data specifies a sequence
(Ag/Hy, As/Hpt1,pn)22, of row-finite covering systems of 2-graphs with no
sources. Applying Corollary 2.11, we obtain a 3-graph lim(As/H,,;py)). As

always, Py denotes },c(n, /p,)0 Sv € C*(A2/Hy) C C*( ;(Ag/Hn;pn)).

lim
THEOREM 6.7. Consider the situation of Fxample 6.6.
(1) We have
Ko(PiC* (i (A / Hi pa)) Pr) = lin(Z, X [H, < Ho)) €12,
and this isomorphism takes [Pi] to (g,0) where g is the image of [Z* : Hi|
in the direct limit im(Z, x[Hy, : Hp1]).
(2) For each n the homomorphism from Z? to Z* determined by coordinate-

wise multiplication by the integer [Hy, : Hy1] restricts to a homomorphism
MH, Hyq - H, — Hn+1. Moreover,

Ky(P O (im(Az/ Hy; pn)) 1) = im(Hy, mo,, 1,4, )-
(3) C*(im(As/Hy; py)) is simple if and only if (), Hn = {0}, and is an AT

alge% with real-rank 0 when it is simple.
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The proof of this result will occupy the bulk of this section. Before presenting
it, we state a Corollary and use it to formulate some concrete examples.

COROLLARY 6.8. Consider the situation of Example 6.6. There are sequences
(W), and (h$)22, in Z? such that: (1) for each n, the elements h} and

h% generate H,; and (2) the matriz M, = (m1,1 m“) satisfying h Tt =

h72’+1 = mj5 hT + m5 hy has positive determinant for

my  hY + mi o hy and s pos
all n. Moreover, if M:* denotes the classical adjoint (7”:7;2751 ;:?12) of My, for
each n, and if we regard these matrices as homomorphisms of Z?, then

(6.2) K1(PiC*(im(Az/ Hyi pp)) Pr) 2 lim(Z%, My*).

Proof. That we can choose the h} so that the matrices M,, all have positive
determinant follows from an inductive argument based on the observation that
replacing " with —h?*! reverses the sign of det(M,,).

For each n, let v, be the isomorphism of Z? onto H,, satisfying 1, (e;) = h?,
and let mpy, m,., : Hy — Hyy1 be the homomorphism described in Theo-
rem 6.7(2). We claim that 9,41 0 M5* = mpy, m,., ©¥n.

To see this, observe that mg,, g, ,, is multiplication by the determinant of M, .

. . -1 ca __ -1 3
Hence, as rational transformations, My o o My* = M, *. Since mu, H,+1

n+1
commutes with 41, the desired equality ¥, 1 0o M;* = mpu, H,,, © Vs is
therefore equivalent to v,411 = 9, o M,,, which follows from the definitions of
the maps involved. This establishes the claim.

The claim guarantees that lim(H,,, mu, m,,,) = lim(Z*, M;?), and (6.2) then

follows from Theorem 6.7(2). O

Ezamples 6.9. (1) Let « and 8 be supernatural numbers. For n € N \ {0},
let ¢, be the homomorphism of Z? determined by the diagonal matrix
My = (G 5,)

For each n, let
H, :=a[l,n)Z x B[1,n])Z = ¢,(Z*) C Z>.
We deduce from Theorem 6.7 that
K.(PiC* (lim(Ae/ Has pa)) P1) = (2[5] © 2, Z[L] 0 2[3]),

that the position of the unit in K corresponds to the element (aq,0), and
that PyC*(lim(Az/H,;pn)) P is a simple AT algebra of real-rank 0.

We claim that this is an example of an AT algebra which cannot be
realised using a rank-2 Bratteli diagram as in [27]. To see this, suppose

otherwise. Then [27, Theorem 6.1] implies that there exists an injective
homomorphism ¢ : Z[ﬂ &) Z[%} — Z[—ﬁ] @ Z such that each element of

1
coker(¢) has finite order. Hence there exists (z,y) € Z[1]| & Z [%] such that
¢(x,y) = (z,m) with m # 0. Since Z[1]BZ [%] is generated by elements of
the form (z,0) and (0, y), we may in fact assume without loss of generality
that there is an element x € Z[1] such that ¢(z,0) = (z,m). Since « is
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infinite, there exist n > m and 2’ € Z[é] such that n - 2’ = z, and this
forces n - ¢(a’,0) = (2, m) which is impossible by our choice of n.

Since each Ay /H,, & LZ[Ln] X LE[l,n]’ the K-theory calculations for this

example can also be verified using the Kiinneth formula (Theorem 3.8 and
Proposition 5.7).
Let ¢ be the homomorphism of Z? determined by the integer matrix M :=
(‘Z fl). Suppose that M is diagonalisable as a real 2 x 2 matrix, and that
its eigenvalues are greater than 1 in modulus. Let D := ad — bc be the
determinant of M. For n > 1, let H, := M"Z? and A,, := Ay/H,. Our
assumption regarding the eigenvalues of M ensures that (-, H, = {0}, so
Theorem 6.7 and Corollary 6.8 imply that C*(lim(Az/Hy; py)) is a simple
AT algebra of real rank zero with T

K.(P1C*(im(Az/ Hyipp)) Pr) = (Z[%} @2, lim (2%, (_172)) )

In particular, let M = (¢ %) with o® + b? > 1. We may identify Z* with
the group of Gaussian integers Z[i| by (m,n) — m+in, and then the group
homomorphism of Z2? obtained from multiplication by M coincides with
the group homomorphism of Z[i] obtained from multiplication by a + b.
Likewise M°* implements multiplication by the conjugate a — ib. With

D:=a*+b%and ( := = = a‘éﬁf;@, we have

K*(Plc*(@(AQ/Hn’pn))Pl) = (Z[%] D Z, Z[i’ %})

by Theorem 6.7.

More generally, a sequence of Gaussian integers (; := a; + b, with |(;| > 1
for all j gives rise to a natural notion of a Gaussian supernatural number
¢= H;’il ¢;. Generalising the construction of the latter part of example (2)

above, let H, := ([[}_, (;)Z[i] for each n, and identify Z[i] with Z? as a
group to obtain a decreasing chain of subgroups of H, of Z? with trivial
intersection.
Let a be the supernatural number a = [T72, |¢j]?. Then
KL (PO (lim(Ao/ Hyi pa))P) = (2] 02, 2[i, 1)
by Theorem 6.7 and Corollary 6.8.

now turn to the proof of Theorem 6.7; in particular, we adopt the notation

and conventions of Example 6.6. Our first step is to describe explicitly the
K-theory of C*(Ay/H,) for a fixed n € N\ {0}. We do this using the results
of Section 5.2.

For

q € ZF we write ¢ and ¢_ for the positive and negative parts of q. That

is to say that ¢4 and ¢_ are the unique elements of N* whose coordinate-wise
minimum g4 A g— is equal to 0, and which satisfy ¢ = ¢4 — q—.

For

q € ZF, a cycle of degree q in a k-graph A is a pair (u,v) where p € A%+

and v € A% such that r(u) = r(v) and s(u) = s(v). When ¢ € N¥, ¢ = ¢,
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and g = 0, so v is a vertex, and p is a cycle in the usual sense: a path whose
range and source coincide.

Let H C Z? be a finite-index subgroup of Z2. Let G = Z?/H. We view the
ring ZG as the collection of functions f : G — Z. For X C G we denote the
indicator function of X by 1x. We denote the point-mass at g € G by d,.

Let A := Ay/H. Let E be the skeleton of A. That is F is the directed graph
with the same vertices as A, and edges A° UA®?, with range and source inherited
from A. The degree map from A restricts to a map from E* to {ej,ea}. As in
[31, 27] we call edges in F blue when they are of degree ey in A, and red when
they are of degree es. We often blur the distinction between concatenation of
edges in E and the corresponding factorisation of a path in A.

Recall that we are identifying A? with G = Z?/H. Hence, given a path a =
apay - - - a, in E, we define functions f° and f7 in ZG by

folg) = #{0<j<n:r(a;)=g,d(a;) =er}
fo(h) = #{0<k<n:r(ag)=h,d(ar) = e2}.

The idea is that f2(g) counts the number of blue edges in o whose range is g,
and f7(g) does the same thing for red edges.

We define f, € ZG @ ZG by f, = f2 @ fI. For a vertex g € AY = G, we define
f;’ and f7 to be the zero element of ZG, and f, = f;’ @ f, is then the zero
element of ZG & ZG.

As A = Ay/H, for each g € A° = G there is a unique path [g,g + (1,1)] of
degree (1, 1) with range g. Using the factorisation property, we can express this
path as bgrgyje,] = rgbgyie,) Where 1y and b, denote the unique red and blue
edges in E with range g (for n € Z2, [n] denotes the class of n in the quotient
group G = Z?/H). We write z, for the function (8, (e, — 84) & (Jg — dgt(ey])
in ZG & ZG.

Given paths a = ag---a,, and 8 = by - - - b, in the skeleton E of A such that
r(ao) = r(bo) and s(am) = s(bn), let fop == fo — f3 € ZG ® ZG. Fix
generators hy, ho for H; so [h;] = [0] in G. By definition of A, there are unique
paths p € A+ and py € AP~ with r(,uli) = 0. Fix factorisations ali of
,u1i into edges from the skeleton E. Since

s(pf) = [(h1)+] = [(h1)-] = s(py)

in G, the pair (u],u]) is a cycle of degree hy in A with range [0]. The same
construction for hy gives a cycle (ug , 5 ) of degree hy with range [0] and fixed
factorisations o of p3 into edges from the skeleton E.

LEMMA 6.10. With the notation established in the preceding paragraphs, the
chain complex (5.6) can be described as follows:

(1) for each g € G, 01(0g ©0) = 0y — dgpfe,], O1(0 B y) = 0y — dgp[e,], and

02(dg) = (5g+[e2] —0g) @ (0g — 5g+[e1]) = Zg-

(2) coker(01) = Z is generated by 5o + Im(01);
(3) ker(02) = Z is generated by 1g;
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(4) For each h € G, the set {z,: g € G\ {h}} is a basis for Tm(8y) = ZIGI~1.

(5) Fiz any two factorisations « and B of a path p in A into edges from E.
Then fa — fﬁ S Im(ag), and 0 (fa) =0 (fg) = (Sr(a) — 5S(a).

(6) ker(01) is the subgroup of ZG & ZG generated by the elements fo 5 where
a and B are paths in the skeleton E with r(a) = r(8) and s(a) = s(B).

(7) There is an isomorphism ¢ of H onto ker(d1)/Im(02) which takes d(p) —
d(v) to fap +Im(0s) for each cycle (u,v) in A and pair of factorisations
a of w and B of v. In particular, for any basis B for Im(0s2), the set
BuU {faj,a;afa;,a;} is a basis for ker(d)) = ZIGIH1 (where o are the

zed factorisations of the paths p;- of degree (h;)+ described above).
fized factorisations of the paths pE of d hi)+ described ab

In particular, K.(C*(A)) = (Z2, H) where the class of the identity in Kq is
identified with the element (|G],0) of Z*.

Proof. (1) The adjacency matrix M; associated to (A%, A¢*,r, s) is the permu-
tation matrix determined by translation by [e1] in G and similarly for Ms. The
first statement then follows from the formulae for 07 and 9o in terms of My
and Mo.

(2) The formulae for d; (6, @0) and 91 (0© dy) show that oy +Im (1) = 0y (e, +
Im(9;) in coker(d;) for i = 1,2 and g € G. Since the action of Z? on G by
translation is transitive, this establishes (2).

(3) Using the formula for 02 established in (1), one can see that for f € ZG,
O (f) = f1 @ f2 where

filg) =—flg) + flg—Tler]) and  fa(g) = f(g) — f(g — [e2]))-

Hence f € ker(02) if and only if f(g) = f(g — [e1]) = f(g — [e2]) for all g € G,
and since the action of Z2 on G is transitive, this establishes (3).

(4) Part (1) establishes that Im(92) is generated by {z, : ¢ € G}. A simple
calculation shows that 37 2y = 0 in ZG & ZG, and it follows that for any
h € G, the set {2z, : g € G\ {h}} generates Im(J) = ZI¢I=1. Since ker(dz) has
rank 1, the rank of its image is |G| — 1, establishing (4).

(5) By part (4), the image of 0, is generated by elements of the form f, — fg
where o and § are the two possible factorisations of a path in AV, Since
foag = fo + f3 when a and § are paths in E which can be concatenated, this
establishes the first claim. The second statement follows from a straightforward
calculation using that

(6.3) O(f* @ f)(g) = f(9) = f'lg — [er]) + F7(9) — f7(g — [e2)).

(6) If «, 8 are paths in the skeleton with r(a) = r(8) and s(a) = s(8) then
fa,p belongs to ker(d1) by (5).

We must show that every f € ker(dr) can be written as a Z-linear combination
of elements of the form f, g. First note that it suffices to treat the case where f
takes only nonnegative values (this is because 1¢ @ 1¢ can be so expressed). So
suppose that f takes nonnegative values, and write f = @ f". Let E; be the
directed graph with vertices G and which contains f?(g) parallel copies of the
blue edge in E with range g and f(g) copies of the red edge in E with range
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g. If Ey contains a terminal vertex g which receives at least one edge but emits
no edges at all, then f°(g) + f"(g) # 0, but f°(g — [e1]) = f"(g — [e2]) = 0,
and (6.3) shows that 01(f)(g) # 0. Hence Ef contains no such vertex, and
therefore must either contain a cycle a or contain no edges at all. In the latter
case, the claim is trivial, and in the former case, f > f4, and removing the cycle
o from E¢ produces the graph Ey_f for the function f — f,. After finitely
many such steps, we must obtain a forest with no terminal vertex. The only
such forest is the empty graph which corresponds to the function 0 ¢ 0. That
is f = qcr fa = 0@ 0 for some collection L of cycles, and this proves (6).
(7) Suppose that (u,v) is a cycle in A. Then

in G =A% =2Z2/H, so d(u) —d(v) € H. Tt is clear from the definition of A
that each element of H arises as d(u) — d(v) for some cycle (u,v) in A.

To see that the assignment d(u) — d(v) — fa,g + Im(02) is well defined, we
must show two things. First that for distinct factorisations a and o/ of pu and
distinct factorisations 8 and ' of v, the difference fo g — for g lies in the image
of 5. This follows from (5). Second, we must show that if (u, v) and (¢, V') are
cycles in A with d(u) —d(v) = d(p') — d(v'), then there exist factorisations a of
w, Bofv,a of i/, and B’ of v/ such that fo g — for,g is in Im(dz). To see this,
first note that by factorising u = p/v and v = v'7 where d(7) = d(u) A d(v),
we can reduce to the case where d(u) Ad(v) = 0. Next we claim that it suffices
to consider the case where r(u) = r(v) = r(¢') = r(v') = [0]. To see this, fix
7 in [0]Ar(p) and note that the cycle (nu, nv) corresponds to the same class as
(u,v) in ker(dy)/Im(dz). Factorise nu = £p and nv = wo where d(§) = d(p),
d(w) = d(v) and d(p) = d(o) = d(n). Since each gA™ is a singleton and
since Z? acts on A by translation, (£,w) is a cycle with range [0], and p = o.
Hence the cycle (€, w) corresponds to the same class in ker(9;)/ Im(92) as (p, ).
After shifting (¢/,7') in a similar way we may assume that both cycles have
range [0]. We now have cycles (u,v) and (¢, ") with range [0] and such that
d(p) —d(v) =d(p') —d(@') and d(p) Ad(v) =0 =d(') Ad(v'). Since [0]JA™ is
a singleton for any n € Z2, this forces u = p/ and v = v/. This completes the
proof that d(u) — d(v) — fa.p + Im(92) is well defined.

That fog = fo+ f3 ensures that ¥(g+h) = ¢¥(g)+(h), and that fg.o = —fa
shows that ¥(—g) = —¢(g). Hence ¢ is a homomorphism. By part (6), to see
that ¢ is surjective, we just need to show that each f, g+Im(9:) is in the range
of 1. This is clear because fq g + Im(92) is precisely ¥ (d(u) — d(v)) where p
factorises as a and v factorises as 3. Finally, to see that 1) is injective, note that
if fo,3 € Im(02), then d(u) = d(v) where p factorises as o and v factorises as
B. This completes the proof that ¢ : H — ker(9;)/Im(92) is an isomorphism.
The remaining statement follows from (4) and that (u], uy) and (g, py ) are
cycles whose degrees form a basis for H. This proves (7).

The final statement of the Lemma follows from (5.7). O
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We now consider two consecutive graphs in the sequence of covering systems
described in Example 6.6, and describe the homomorphism of K-invariants
obtained from Proposition 3.2(6).

THEOREM 6.11. Consider the situation described in Example 6.6, and fix n €
N\ {0}. Fori = n,n+1, let A; := As/H;, and consider the commuting
diagram

ot oin
0 «—— ZA° : ZA° ® ZA° 2 ZN — 0
lpi, lpl@z’l lPZ
6An+1 6An+1
0 —— ZAY,, ———— ZAD B ZAY , &— ZA0 , —— 0

(1) The right-hand vertical map pj, : ZAY — ZAS_ | restricts to a homo-
morphism p:l|ker(6é\") : ker(95m) — ker([?;\"“) which is characterised by
p;|ker(6$")(1Gn,) =lg,.-

(2) The left-hand vertical map p}, : ZAY — ZA?H_1 induces a homomorphism

pi - coker(8™) — coker(@f““) characterised by
D3 (G0 + Tm(91™)) = [Hy, : Hya] - 0o + Im(9, ).

(3) The middle vertical map p}, ®p;, : ZA2 ®ZAY — ZAY | ®ZAY_ | induces a
homomorphism (p* @& p)™ : ker(82")/ Im(85") — ker(ai\"“)/ Im(@é\"“)
such that the following diagram commutes.

", - ker(92)/ Im(95™)
lmanHnﬂ l(PZ@PZ)N

Hopr 25 ker(97 )/ Im(9™+)

where ¥, and Pn4+1 are the isomorphisms obtained from Lemma 6.10(7),
a1 5 as in Theorem 6.7(2).

Under the isomorphism
K.(C*(A;)) 2 (coker(d{) @ ker(05"), ker(9;")/ Im(93"))
obtained from Corollary 5.6, the maps described in (1), (2) and (3) deter-

mine the map (tp, )« : Ki(C*(Ap)) — Ki(C*(Any1)) obtained from Proposi-
tion 3.2(6).

Proof. Lemma 6.10(3) ensures that 1, generates ker(957) for i = n,n-+1. The
formula for p; shows that p}(lqc,) = la,,,, which gives (1). Statement (2)
follows from the formula for p} combined with the observation that for i =
n,n + 1, the é,, g € G; are all equivalent modulo Im(d7).

It remains only to prove (3). We first consider the case where H, = Z?, so
G, = {0} and A,, is a copy of the 2-graph T = N? (as a category) with one
vertex and one morphism ), of each degree m € N2. In this case, 1, is just
the identity map from Z2 to Z®Z. Let hq, ho be a pair of generators for H,, 1.

and mmp, H
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Since H,,4+1 has finite index in Z?2, the assignments (1,0) — hy and (0,1) — hs
determine an endomorphism of H,, which is a rational isomorphism. Hence it
suffices to show that (pi ®p )~ o, (hi) = ¥ni1([Z? : Hyiq]-hi) fori =1,2. We
just argue that this happens for i = 1 (the case i = 2 follows from a symmetric
argument).

Writing hy = (x,y) where x,y € Z, the formula for p} ensures that (p} ® p})™~
takes ¥, (h1) to the class of zlg, ,, ® yla, ,. To see that this is ¢y,41([Z? :
Hyi1] - ha), let f == faj,a; = n+1(h1) be the function in ZG, 11 ® ZGry1
obtained from Lemma 6.10(7). By definition of f, we have f = f, ® f, where
the entries of f; sum to x and the entries of f, sum to y. For g € G, 41, let
g - fv be the function determined by g - fi(h) = fp(h — g), and similarly for f,.
Since Gy41 acts freely and transitively on A%, ; = G, 41, it follows that

(6.4) deGn+1 g-f= zla, ., ®yla, ., = (p:; @p:)N 0 Y (h1).

The proof of statement (7) in Lemma 6.10 shows that each g- f :=g- fo ®g- f»
represents the same class as f in ker(@{\"“)/ Im(@é\”“). Hence the left-hand
side of (6.4) has the same class in ker(@f"’“)/ Im(@é\"“) as Ynt1(|Gni1| - h1)
as required.

For the general case, first note that we may assume without loss of generality
that Hy = Z? so that Ay = T5. Let ppy ) := p1o--- 0 pp_1 and ppy ,4q) =
ppo---op, be the coverings of A; = T by A,, and A,,41 obtained by composing
the first n and n + 1 levels of the covering system; we may apply the argument
of the previous paragraph to these coverings. Then pp ,41] = P[1,n] © P, SO
Plintt) © Plingn = (pf‘lﬁn] @ pﬁ,n]) o (p: @ pk), and since these maps induce
homomorphisms between ker(972)/Im(832) and ker(@f"“) / Im((?;\ "*+) which
are rational isomorphisms, it follows that (pf @ p¥)~ behaves as claimed.

The final statement follows from Corollary 5.6. |

We are now ready to prove Theorem 6.7.

Proof of Theorem 6.7. Proposition 3.2 shows that P is full so that compression
by P, induces an isomorphism on K-theory. The formulae for the K-groups
in statements (1) and (2) follow from Lemma 6.10 and Theorem 6.11 and the
continuity of the K-functor.

Since v(Ay/Hyp)w # O for all n € N\ {0}, and v,w € AY/H,, the 3-graph
lim(As/H,, py) is cofinal. Moreover a given infinite path  in lim(Ay/H,,, py,) is
IE“iodic with period m € Z? if and only if every infinite path imm(Ag/Hn, Dn)
is periodic with period m, which in turn is equivalent to the condition that
m € (,—, Hy. It follows from Lemma 4.5 that im(As/H,,, p,) is simple if and
only if (| H,, = {0}; moreover, in this case, the \z;gument of the second part of
[27, Section 5] shows that C*(lim(As/Hy, py)) has unique trace.

We next claim that cach C*(Ay/H,,) = Mizz2.1,)(C(T?)). To verify this,
one first checks that h +— 5[(0,@)}5’{(0#7)] is a group isomorphism H, —
U(s10)C*(A2/Hy)sp) for each n. The standard argument used in [27,
Lemma 3.9] shows that each 5[(O,h+)]5>[k(07h7)] has full spectrum. One can
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then deduce that s;qC*(Ay/Hy)sie) = C*(H,) = C*(Z?) = C(T?). For
m € Z?/H,, define V,, := Slo,m) € C*(A3/H,). Applying Lemma 3.3
to these partial isometries with p = sio and ¢ = lgw(a,/m,)proves that
C*(Ay/Hy) = Mizz. i, (C(T?)).

It now follows from [3, Theorem 1.3] that C*(lim(As/Hy;pp)) has real-rank
0. The classification of such algebras of Didarlat-Elliott-Gong (see [36, Theo-
rem 3.3.1]), and the K-theory calculations above complete the proof. U

Remark 6.12. Higher-rank Bunce-Deddens algebras and generalised odometer
actions. We consider a slightly more general version of the situation described
in Example 6.6. Let H; D Hy D H3 D ... be a chain of finite-index sub-
groups of ZF such that N, Hn = {0}. For each n, let p, : Ap/Hpi1 — Ay/Hy
be the canonical covering induced by the quotient maps described above, let
my, = 1, and let s, : Ag/H,4+1 — S1 be the trivial cocycle. This data spec-
ifies a sequence (Ap/Hp,Ar/Hpi1,pn)5>; of row-finite covering systems of
k-graphs with no sources. Applying Corollary 2.11, we obtain a (k + 1)-graph
lm(Ag/Hyp; pn)-

We claim that the corner P,C* (im(Ag/Hy; pn))P1 can be thought of as a
higher-rank Bunce-Deddens algebrT%. We justify this by giving a description
of PC* QiLn(Ak/Hn;pn))Pl as a crossed product by a generalised odometer
action. We assume here that H; = Z* so that A;/H; is a copy of the k-graph
Ty, = N¥ (as a category) with one vertex and one morphism A, of each degree
m € NF,

One way to realise the Bunce-Deddens algebras is as crossed products of alge-
bras of continuous functions on Cantor sets by generalised odometer actions.
Given a supernatural number a = aqaz---, let G, := Z/a[l,n]Z for all n.
Then for each n, since a1, n+1]Z D a[l, n|Z, there is a natural surjective group
homomorphism from G,4+1 to G,. Hence, we may form the projective limit
group lim(Gy, pn). The automorphism 7(g1,92,...) = (g1 + [1], 92 + [1],...)
for (g1,92,...) € liLn(Gn,pn) can then naturally be regarded as an odometer
action on @(Gn,pn). The Bunce-Deddens algebra of type « is the crossed
product C(im(Gy,p,)) 7 Z where 7 is the automorphism of C(lim(Gn, pn))
induced by 7 (see [33, Examples 1(3)]).

There is an analogous realisation of PyC*(lim(Ay/Hy,py))P1 as follows. Let
A :=1im(Ag/Hp, pp). Let F' denote the fixed-point algebra of C*(A) for the
gauge action vy of T**1. Note that by Remark 3.9, the restriction of the gauge
action to PC*(A)Py is trivial on the last coordinate of T**1 and therefore
becomes an action by T* denoted 7. Recall that A denotes the collection
of infinite paths in A (see Notation 4.1). It is not hard to see that P, FP; is
canonically isomorphic to C(vA®) where v is the unique vertex of A /Hy =2 T,.
Let G, = Zk/Hn for each n, and let p, : Gn,+1 — G, be the induced map
pn(m+ Hpt1) := m—+ H,. Observe that G = @(Gn,pn) is a compact abelian
group. By functoriality of the projective limit the quotient maps Z*¥ — Z*/H,,
induce a homomorphism j : ZF — G; injectivity of j follows from the fact
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that (), H, = {0}. There is an action 7 of Z¥ on G given by 7,(g1,92,...) =
(g1 +[m],g2+[m],...), which generalises the odometer action discussed above.
Since there is just one infinite path in T}, the arguments of Section 4 show that
vA>® = G as a topological space. Note that for every m € N¥, the generator
Sx,, associated to the unique path A, € 17" is a unitary in P;C*(A)P; and
that under the identification of PyFP; with C(vA*) = C(G) conjugation by
Sx,, implements the automorphism induced by the homeomorphism 7, of G.
It follows that the reduction of the path groupoid (see [20, Section 2]) of A to
vA™> is isomorphic to the semidirect product groupoid G x, ZF. Therefore,
standard arguments show that

P,C*(A)P, =2 C(G) %z ZF
where 7 is the action induced by 7. Note that under this identification the

restricted gauge action ¥ coincides with the dual action of T* = 7",
The action of G on C(G) induced by translation in G yields an action of G on

C(G) x7 Z* which commutes with the dual action of T* = Z*. Thus we obtain
an action a by the compact abelian group G x T* with fixed point algebra
isomorphic to C. Hence, C(G) xz Z* (and thus P,C*(A)P;) admits an ergodic
action of a compact abelian group. Such ergodic actions have been classified in
[24, 4.5, 6.1]; the invariant is a symplectic bicharacter y, on G x Z* . the dual
of G x T*. This gives rise to an alternative description of the C*-algebra as a
twisted group C*-algebra with the group G x ZF and a 2-cocycle associated to
the bicharacter y, (only its cohomology class is determined by the bicharacter).
It follows that
C(G) %+ ZF = C(T*) x G

where the action of G on C(T*) arises by translation from the embedding
G — TF dual to j : ZF — G.
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