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C∗-Algebras Associated to Coverings of k-Graphs

Alex Kumjian, David Pask, Aidan Sims∗

Received: March 15, 2007

Revised: May 24, 2008

Communicated by Joachim Cuntz

Abstract. A covering of k-graphs (in the sense of Pask-Quigg-
Raeburn) induces an embedding of universal C∗-algebras. We show
how to build a (k + 1)-graph whose universal algebra encodes this
embedding. More generally we show how to realise a direct limit
of k-graph algebras under embeddings induced from coverings as the
universal algebra of a (k+ 1)-graph. Our main focus is on computing
the K-theory of the (k+1)-graph algebra from that of the component
k-graph algebras.

Examples of our construction include a realisation of the Kirchberg
algebra Pn whose K-theory is opposite to that of On, and a class of
AT-algebras that can naturally be regarded as higher-rank Bunce-
Deddens algebras.
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1. Introduction

A directed graph E consists of a countable collection E0 of vertices, a count-
able collection E1 of edges, and maps r, s : E1 → E0 which give the edges
their direction; the edge e points from s(e) to r(e). Following the convention
established in [30], the associated graph algebra C∗(E) is the universal C∗-
algebra generated by partial isometries {se : e ∈ E1} together with mutually
orthogonal projections {pv : v ∈ E0} such that ps(e) = s∗ese for all e ∈ E1,

and pv ≥
∑
e∈F ses

∗
e for all v ∈ E0 and finite F ⊂ r−1(v), with equality when

F = r−1(v) is finite and nonempty.
Graph algebras, introduced in [13, 23], have been studied intensively in recent
years because much of the structure of C∗(E) can be deduced from elementary
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features of E. In particular, graph C∗-algebras are an excellent class of models
for Kirchberg algebras, because it is easy to tell from the graph E whether
C∗(E) is simple and purely infinite [22]. Indeed, a Kirchberg algebra can be
realised up to Morita equivalence as a graph C∗-algebra if and only if its K1-
group is torsion-free [39]. It is also true that every AF algebra can be realised
up to Morita equivalence as a graph algebra; the desired graph is a Bratteli
diagram for the AF algebra in question (see [11] or [40]). However, this is the
full extent to which graph algebras model simple classifiable C∗-algebras due
to the following dichotomy: if E is a directed graph and C∗(E) is simple, then
C∗(E) is either AF or purely infinite (see [22, Corollary 3.10], [2, Remark 5.6]).
Higher-rank graphs, or k-graphs, and their C∗-algebras were originally devel-
oped by the first two authors [20] to provide a graphical framework for the
higher-rank Cuntz-Krieger algebras of Robertson and Steger [35]. A k-graph Λ
is a kind of k-dimensional graph, which one can think of as consisting of ver-
tices Λ0 together with k collections of edges Λe1 , . . . ,Λek which we think of as
lying in k different dimensions. As an aid to visualisation, we often distinguish
the different types of edges using k different colours.
Higher-rank graphs and their C∗-algebras are generalisations of directed graphs
and their algebras. Given a directed graph E, its path category E∗ is a 1-graph,
and the 1-graph C∗-algebra C∗(E∗) as defined in [20] is canonically isomorphic
to the graph algebra C∗(E) as defined in [23]. Furthermore, every 1-graph
arises this way, so the class of graph algebras and the class of 1-graph algebras
are one and the same. For k ≥ 2, there are many k-graph algebras which do
not arise as graph algebras. For example, the original work of Robertson and
Steger on higher-rank Cuntz-Krieger algebras describes numerous 2-graphs Λ
for which C∗(Λ) is a Kirchberg algebra and K1(C

∗(Λ)) contains torsion.
Recent work of Pask, Raeburn, Rørdam and Sims has shown that one can also
realise a substantial class of AT-algebras as 2-graph algebras, and that one can
tell from the 2-graph whether or not the resulting C∗-algebra is simple and
has real-rank zero [27]. The basic idea of the construction in [27] is as follows.
One takes a Bratteli diagram in which the edges are coloured red, and replaces
each vertex with a blue simple cycle (there are technical restrictions on the
relationship between the lengths of the blue cycles and the distribution of the
red edges joining them, but this is the gist of the construction). The resulting
2-graph is called a rank-2 Bratteli diagram. The associated C∗-algebra is AT

because the C∗-algebra of a simple cycle of length n is isomorphic to Mn(C(T))
[17]. The results of [27] show how to read off from a rank-2 Bratteli diagram the
K-theory, simplicity or otherwise, and real-rank of the resulting AT algebra.
The construction explored in the current paper is motivated by the following
example of a rank-2 Bratteli diagram. For each n ∈ N, let L2n be the sim-
ple directed loop graph with 2n vertices labelled 0, . . . , 2n − 1 and 2n edges
f0, . . . , f2n−1, where fi is directed from the vertex labelled i + 1 (mod 2n) to
the vertex labelled i. We specify a rank-2 Bratteli diagram Λ(2∞) as follows.
The nth level of Λ(2∞) consists of a single blue copy of L2n−1 (n = 1, 2, · · · ).
For 0 ≤ i ≤ 2n − 1, there is a single red edge from the vertex labelled i at the

Documenta Mathematica 13 (2008) 161–205



C∗-Algebras Associated to Coverings of k-Graphs 163

(n+1)st level to the vertex labelled i (mod 2n) at the nth level. The C∗-algebra
of the resulting 2-graph is Morita equivalent to the Bunce-Deddens algebra of
type 2∞, and this was one of the first examples of a 2-graph algebra which is
simple but neither purely infinite nor AF (see [27, Example 6.7]).

The purpose of this paper is to explore the observation that the growing blue
cycles in Λ(2∞) can be thought of as a tower of coverings of 1-graphs (roughly
speaking, a covering is a locally bijective surjection — see Definition 2.1), where
the red edges connecting levels indicate the covering maps.
In Section 2, we describe how to construct (k + 1)-graphs from coverings. In
its simplest form, our construction takes k-graphs Λ and Γ and a covering map

p : Γ → Λ, and produces a (k + 1)-graph Λ
p
↽Γ in which each edge in the

(k+1)st dimension points from a vertex v of Γ to the vertex p(v) of Λ which it
covers†. Building on this construction, we show how to take an infinite tower
of coverings pn : Λn+1 → Λn, n = 1, 2, . . . and construct from it an infinite
(k + 1)-graph lim

↽−
(Λn, pn) with a natural inductive structure (Corollary 2.11).

The next step, achieved in Section 3, is to determine how the universal C∗-

algebra of Λ
p
↽Γ relates to those of Λ and Γ. We show that C∗(Λ

p
↽Γ) is

Morita equivalent to C∗(Γ) and contains an isomorphic copy of C∗(Λ) (Propo-
sition 3.2). We then show that given a system of coverings pn : Λn+1 → Λn,
the C∗-algebra C∗(lim

↽−
(Λn, pn)) is Morita equivalent to a direct limit of the

C∗(Λn) (Theorem 3.8).
In Section 4, we use results of [34] to characterise simplicity of C∗(lim

↽−
(Λn, pn)),

and we also give a sufficient condition for this C∗-algebra to be purely infinite.
In Section 5, we show how various existing methods of computing the K-theory
of the C∗(Λn) can be used to compute the K-theory of C∗(lim

↽−
(Λn, pn)). Our

results boil down to checking that each of the existing K-theory computations
for the C∗(Λn) is natural in the appropriate sense. Given that K-theory for
higher-rank graph C∗-algebras has proven quite difficult to compute in general
(see [14]), our K-theory computations are an important outcome of the paper.
We conclude in Section 6 by exploring some detailed examples which illustrate
the covering-system construction, and show how to apply ourK-theory calcula-
tions to the resulting higher-rank graph C∗-algebras. For integers 3 ≤ n <∞,
we obtain a 3-graph algebra realisation of Kirchberg algebra Pn whoseK-theory
is opposite to that of On (see Section 6.3). We also obtain, using 3-graphs, a
class of simple AT-algebras with real-rank zero which cannot be obtained from
the rank-2 Bratteli diagram construction of [27] (see Section 6.4), and which
we can describe in a natural fashion as higher-rank analogues of the Bunce-
Deddens algebras. These are, to our knowledge, the first explicit computations
of K-theory for infinite classes of 3-graph algebras.

†In its full generality, our construction is more complicated (see Proposition 2.14), enabling
us to recover the important example of the irrational rotation algebras discussed in [27]. To
keep technical detail in this introduction to a minimum, we discuss only the basic construction
here.
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2. Covering systems of k-graphs

For k-graphs we adopt the conventions of [20, 25, 31]; briefly, a k-graph is a
countable small category Λ equipped with a functor d : Λ→ Nk satisfying the
factorisation property: for all λ ∈ Λ and m,n ∈ Nk such that d(λ) = m + n
there exist unique µ, ν ∈ Λ such that d(µ) = m, d(ν) = n, and λ = µν. When
d(λ) = n we say λ has degree n. By abuse of notation, we will use d to denote
the degree functor in every k-graph in this paper; the domain of d is always
clear from context.
The standard generators of Nk are denoted e1, . . . , ek, and for n ∈ Nk and
1 ≤ i ≤ k we write ni for the ith coordinate of n.
If Λ is a k-graph, the vertices are the morphisms of degree 0. The factorisation
property implies that these are precisely the identity morphisms, and so can
be identified with the objects. For α ∈ Λ, the source s(α) is the domain of α,
and the range r(α) is the codomain of α (strictly speaking, s(α) and r(α) are
the identity morphisms associated to the domain and codomain of α).
For n ∈ Nk, we write Λn for d−1(n). In particular, Λ0 is the vertex set. For
u, v ∈ Λ0 and E ⊂ Λ, we write uE := E ∩ r−1(u) and Ev := E ∩ s−1(v). For
n ∈ Nk, we write

Λ≤n := {λ ∈ Λ : d(λ) ≤ n, s(λ)Λei = ∅ whenever d(λ) + ei ≤ n}.

We say that Λ is connected if the equivalence relation on Λ0 generated by
{(v, w) ∈ Λ0 × Λ0 : vΛw 6= ∅} is the whole of Λ0 × Λ0. A morphism between
k-graphs is a degree-preserving functor.
We say that Λ is row-finite if vΛn is finite for all v ∈ Λ0 and n ∈ Nk. We
say that Λ is locally convex if whenever 1 ≤ i < j ≤ k, e ∈ Λei , f ∈ Λej and
r(e) = r(f), we can extend both e and f to paths ee′ and ff ′ in Λei+ej .
We next introduce the notion of a covering of one k-graph by another. For a
more detailed treatment of coverings of k-graphs, see [25].

Definition 2.1. A covering of a k-graph Λ is a surjective k-graph morphism
p : Γ→ Λ such that for all v ∈ Γ0, p maps Γv 1-1 onto Λp(v) and vΓ 1-1 onto
p(v)Λ. A covering p : Γ→ Λ is connected if Γ, and hence also Λ, is connected.
A covering p : Γ→ Λ is finite if p−1(v) is finite for all v ∈ Λ0.

Remarks 2.2. (1) A covering p : Γ → Λ has the unique path lifting property:
for every λ ∈ Λ and v ∈ Γ0 with p(v) = s(λ) there exists a unique γ such
that p(γ) = λ and s(γ) = v; likewise, if p(v) = r(λ) there is a unique ζ such
that p(ζ) = λ and r(ζ) = v.

(2) If Λ is connected then surjectivity of p is implied by the unique path-lifting
property.
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(3) If there is a fixed integer n such that |p−1(v)| = n for all v ∈ Λ0, p is said to
be an n-fold covering. If Γ is connected, then p is automatically an n-fold
covering for some n.

Notation 2.3. For m ∈ N \ {0}, we write Sm for the group of permutations of
the set {1, . . . ,m}. We denote both composition of permutations in Sm, and the
action of a permutation in Sm on an element of {1, . . . ,m} by juxtaposition;
so for φ, ψ ∈ Sm, φψ ∈ Sm is the permutation φ ◦ ψ, and for φ ∈ Sm and
j ∈ {1, . . . ,m}, φj ∈ {1, . . . ,m} is the image of j under φ. When convenient,
we regard Sm as (the morphisms of) a category with a single object.

Definition 2.4. Fix k,m ∈ N \ {0}, and let Λ be a k-graph. A cocycle
s : Λ → Sm is a functor λ 7→ s(λ) from the category Λ to the category Sm.
That is, whenever α, β ∈ Λ satisfy s(α) = r(β) we have s(α)s(β) = s(αβ).

We are now ready to describe the data needed for our construction.

Definition 2.5. A covering system of k-graphs is a quintuple (Λ,Γ, p,m, s)
where Λ and Γ are k-graphs, p : Λ → Γ is a covering, m is a nonzero positive
integer, and s : Γ → Sm is a cocycle. We say that the covering system is row
finite if the covering map p is finite and both Λ and Γ are row finite. When
m = 1 and s is the identity cocycle, we drop references to m and s altogether,
and say that (Λ,Γ, p) is a covering system of k-graphs.

Given a covering system (Λ,Γ, p,m, s) of k-graphs, we will define a (k + 1)-

graph Λ
p,s
↽Γ which encodes the covering map. Before the formal statement

of this construction, we give an intuitive description of Λ
p,s
↽Γ. The idea is

that Λ
p,s
↽Γ is a (k + 1)-graph containing disjoint copies ı(Λ) and (Γ) of the

k-graphs Λ and Γ in the first k dimensions. The image (v) of a vertex v ∈ Γ is
connected to the image ı(p(v)) of the vertex it covers in Λ by m parallel edges

e(v, 1), . . . , e(v,m) of degree ek+1. Factorisations of paths in Λ
p,s
↽Γ involving

edges e(v, l) of degree ek+1 are determined by the unique path-lifting property
and the cocycle s.
It may be helpful on the first reading to consider the case where m = 1 so
that s is necessarily trivial. To state the result formally, we first establish some
notation.

Notation 2.6. Fix k > 0. For n ∈ Nk we denote by (n, 01) the element∑k
i=1 niei ∈ Nk+1 and for m ∈ N, we denote by (0k,m) the element

mek+1 ∈ Nk+1. We write (Nk, 01) for {(n, 01) : n ∈ Nk} and (0k,N) for
{(0k,m) : m ∈ N}.
Given a (k + 1)-graph Ξ, we write Ξ(0k,N) for {ξ ∈ Ξ : d(ξ) ∈ (0k,N)}, and

we write Ξ(Nk,01) for {ξ ∈ Ξ : d(ξ) ∈ (Nk, 01)}. When convenient, we re-

gard Ξ(0k,N) as a 1-graph and Ξ(Nk,01) as a k-graph, ignoring the distinctions
between N and (0k,N) and between Nk and (Nk, 01).

Proposition 2.7. Let (Λ,Γ, p,m, s) be a covering system of k-graphs. There

is a unique (k + 1)-graph Λ
p,s
↽Γ such that:
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(1) there are injective functors ı : Λ → Λ
p,s
↽Γ and  : Γ → Λ

p,s
↽Γ such that

d(ı(α)) = (d(α), 01) and d((β)) = (d(β), 01) for all α ∈ Λ and β ∈ Γ;

(2) ı(Λ) ∩ (Γ) = ∅ and ı(Λ) ∪ (Γ) = {τ ∈ Λ
p,s
↽Γ : d(τ)k+1 = 0};

(3) there is a bijection e : Γ0 × {1, . . . ,m} → (Λ
p,s
↽Γ)ek+1 ;

(4) s(e(v, l)) = (v) and r(e(v, l)) = ı(p(v)) for all v ∈ Γ0 and 1 ≤ l ≤ m; and
(5) e(r(λ), l)(λ) = ı(p(λ))e(s(λ), s(λ)−1l) for all λ ∈ Γ and 1 ≤ l ≤ m.

If the covering system (Λ,Γ, p,m, s) is row finite, then Λ
p,s
↽Γ is row finite.

Moreover, Λ is locally convex if and only if Γ is locally convex, and in this case

Λ
p,s
↽Γ is also locally convex.

Notation 2.8. If m = 1 so that s is necessarily trivial, we drop all reference

to s. We denote Λ
p,s
↽Γ by Λ

p
↽Γ, and write (Λ

p
↽Γ)ek+1 = {e(v) : v ∈ Γ0}. In

this case, the factorisation property is determined by the unique path-lifting
property alone.

The main ingredient in the proof of Proposition 2.7 is the following fact from
[15, Remark 2.3] (see also [31, Section 2]).

Lemma 2.9. Let E1, . . . , Ek be 1-graphs with the same vertex set E0. For
distinct i, j ∈ {1, . . . , k}, let Ei,j := {(e, f) ∈ E1

i × E
1
j : s(e) = r(f)}, and

write r
(
(e, f)

)
= r(e) and s

(
(e, f)

)
= s(f). For distinct h, i, j ∈ {1, . . . , k}, let

Eh,i,j := {(e, f, g) ∈ E1
h × E

1
i × E

1
j : (e, f) ∈ Eh,i, (f, g) ∈ Ei,j}.

Suppose we have bijections θi,j : Ei,j → Ej,i such that r ◦ θi,j = r, s ◦ θi,j = s
and θi,j ◦ θj,i = id, and such that

(2.1) (θi,j × id)(id×θh,j)(θh,i × id) = (id×θh,i)(θh,j × id)(id×θi,j)

as bijections from Eh,i,j to Ej,i,h.
Then there is a unique k-graph Λ such that Λ0 = E0, Λei = E1

i for 1 ≤ i ≤ k,
and for distinct i, j ∈ {1, . . . , k} and (e, f) ∈ Ei,j , the pair (f ′, e′) ∈ Ej,i such
that (f ′, e′) = θi,j(e, f) satisfies ef = f ′e′ as morphisms in Λ.

Remark 2.10. Every k-graph arises in this way: Given a k-graph Λ, let E0 :=
Λ0, and E1

i := Λei for 1 ≤ i ≤ k, and define r, s : E1
i → E0 by restriction

of the range and source maps in Λ. Define bijections θi,j : Ei,j → Ej,i via
the factorisation property: θi,j(e, f) is equal to the unique pair (f ′, e′) ∈ Ej,i
such that ef = f ′e′ in Λ. Then condition (2.1) holds by the associativity of
the category Λ, and the uniqueness assertion of Lemma 2.9 implies that Λ is
isomorphic to the k-graph obtained from the Ei and the θi,j using Lemma 2.9.

Lemma 2.9 tells us how to describe a k-graph pictorially. As in [31, 27], the
skeleton of a k-graph Λ is the directed graph EΛ with vertices E0

Λ = Λ0, edges

E1
Λ =

⋃k
i=1 Λei , range and source maps inherited from Λ, and edges of different

degrees in Λ distinguished using k different colours in EΛ: in this paper, we
will often refer to edges of degree e1 as “blue” and edges of degree e2 as “red.”
Lemma 2.9 implies that the skeleton EΛ together with the factorisation rules
fg = g′f ′ where f, f ′ ∈ Λei and g, g′ ∈ Λej completely specify Λ. In practise,
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we draw EΛ using solid, dashed and dotted edges to distinguish the different
colours, and list the factorisation rules separately.

Proof of Proposition 2.7. The idea is to apply Lemma 2.9 to obtain the (k+1)-

graph Λ
p,s
↽Γ. We first define sets E0 and E1

i for 1 ≤ i ≤ k + 1. As a set, E0

is a copy of the disjoint union Λ0 ⊔ Γ0. We denote the copy of Λ0 in E0 by
{ı(v) : v ∈ Λ0} and the copy of Γ0 in E0 by {(w) : w ∈ Γ0} where as yet the
ı(v) and (w) are purely formal symbols. So

E0 = {ı(v) : v ∈ Λ0} ⊔ {(w) : w ∈ Γ0}.

For 1 ≤ i ≤ k, we define, in a similar fashion,

E1
i := {ı(f) : f ∈ Λei} ⊔ {(g) : g ∈ Γei}

to be a copy of the disjoint union Λei ⊔ Γei . We define E1
k+1 to be a copy

of Γ0 × {1, . . . ,m} which is disjoint from E0 and each of the other E1
i , and

use formal symbols {e(v, l) : v ∈ Γ0, 1 ≤ l ≤ m} to denote its elements.
For 1 ≤ i ≤ k, define range and source maps r, s : E1

i → E0 by r(ı(f)) :=
ı(r(f)), s(ı(f)) := ı(s(f)), r((g)) := (r(g)) and s((g)) := (s(g)). Define
r, s : E1

k+1 → E0 as in Proposition 2.7(4).
For distinct i, j ∈ {1, . . . , k+1}, define Ei,j as in Lemma 2.9. Define bijections
θi,j : Ei,j → Ej,i as follows:

• For 1 ≤ i, j ≤ k and (e, f) ∈ Ei,j , we must have either e = ı(a) and
f = ı(b) for some composable pair (a, b) ∈ Λei ×Λ0 Λej , or else e = (a)
and f = (b) for some composable pair (a, b) ∈ Γei ×Γ0 3Γej . If e = ı(a)
and f = ı(b), the factorisation property in Λ yields a unique pair b′ ∈ Λej ,
a′ ∈ Λei such that ab = b′a′, and we then define θi,j(e, f) = (ı(b′), ı(a′)). If
e = (a) and f = (b), we define θi,j(e, f) similarly using the factorisation
property in Γ.
• For 1 ≤ i ≤ k, and (e, f) ∈ Ek+1,i, we have f = (b) and e =
e(r(b), l) for some b ∈ Γei and 1 ≤ l ≤ m. Define θk+1,i(e, f) :=
(ı(p(b)), e(s(f), s(f)−1l)).
• For 1 ≤ i ≤ k, to define θi,k+1, first note that if (f ′, e′) = θk+1,i(e, f), then
e′ = e(w, l) for some w ∈ Γ0 and l ∈ {1, . . . ,m} such that p(w) = s(f ′),
f is the unique lift of f ′ such that s(f) = (w), and e = e(r(f), s(f)l). It
follows that θk+1,i is a bijection and we may define θi,k+1 := θ−1

k+1,i.

Since Λ and Γ are k-graphs, the maps θi,j , 1 ≤ i, j ≤ k are bijections with

θj,i = θ−1
i,j , and we have θi,k+1 = θ−1

k+1,i by definition, so to invoke Lemma 2.9,

we just need to establish equation (2.1).
Equation (2.1) holds when h, i, j ≤ k because Λ and Γ are both k-graphs.
Suppose one of h, i, j = k + 1. Fix edges fh ∈ E1

h, fi ∈ E
1
i and fj ∈ E1

j . First
suppose that h = k + 1; so fh = e(r(fi), l) for some l, and fi and fj both
belong to (Γ). Apply the factorisation property for Γ to obtain f ′

j and f ′
i such

that f ′
i ∈ E

1
i , f

′
j ∈ E

1
j and f ′

jf
′
i = fifj . We then have θi,j(fi, fj) = (f ′

j , f
′
i).

If we write p̃ for the map from {(f) : f ∈
⋃k
i=1 Γei} to {ı(f) : f ∈

⋃k
i=1 Λei}
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given by p̃((λ)) := ı(p(λ)), then the properties of the covering map imply that
θi,j(p̃(fi), p̃(fj)) = (p̃(f ′

j), p̃(fi)
′). Now

(θi,j × id)(id×θh,j)(θh,i × id)(fh, fi, fj)

= (θi,j × id)(id×θh,j)(p̃(fi), e(s(fi), s(fi)
−1l), fj)

= (θi,j × id)(p̃(fi), p̃(fj), e(s(fj), s(fj)
−1(s(fi)

−1)l))

= (p̃(f ′
j), p̃(f

′
i), e(s(fj), s(fifj)

−1l),(2.2)

where, in the last equality, s(fj)
−1

s(fi)
−1 = s(fifj)

−1 by the cocycle property.
On the other hand,

(id×θh,i)(θh,j × id)(id×θi,j)(fh, fi, fj)

= (id×θh,i)(θh,j × id)(fh, f
′
j, f

′
i)

= (id×θh,i)(p̃(f
′
j), e(s(fj), s(f

′
j)

−1l), f ′
i)

=
(
p̃(f ′

j), p̃(f
′
i), e(s(fi), s(f

′
i)

−1(s(f ′
j)

−1l))
)

=
(
p̃(f ′

j), p̃(f
′
i), e(s(fi), s(f

′
jf

′
i)

−1l)
)
.

Since f ′
jf

′
i = fifj, this establishes (2.1) when h = k + 1 and 1 ≤ i, j ≤ k.

Similar calculations establish (2.1) when i = k + 1 and when j = k + 1.

By Lemma 2.9, there is a unique (k + 1)-graph Λ
p,s
↽Γ with (Λ

p,s
↽Γ)0 = E0,

(Λ
p,s
↽Γ)ei = E1

i for all i and with commuting squares determined by the θi,j .
Since the θi,j , 1 ≤ i, j ≤ k agree with the factorisation properties in Γ and Λ,
the uniqueness assertion of Lemma 2.9 applied to paths consisting of edges in
E1

1 ∪ · · · ∪ E
1
k shows that ı and  extend uniquely to injective functors from Λ

and Γ to (Λ
p,s
↽Γ)(N

k,01) which satisfy Proposition 2.7(2). Assertions (3) and (4)
of Proposition 2.7 follow from the definition of E1

k+1, and the last assertion (5)

is established by factorising λ into edges from the E1
i , 1 ≤ i ≤ k and then

performing calculations like (2.2).
Now suppose that p is finite. Then Γ is row-finite if and only if Λ is, and in this

case, Λ
p,s
↽Γ is also row-finite because p is locally bijective and m <∞. That p

is locally bijective shows that Λ is locally convex if and only if Γ is. Suppose

that Γ is locally convex. Fix 1 ≤ i < j ≤ k+ 1, a ∈ (Λ
p,s
↽Γ)ei and b ∈ (Λ

p,s
↽Γ)ej

with r(a) = r(b). If j < k+ 1 then a and b can be extended to paths of degree
ei + ej because Λ and Γ are locally convex. If j = k + 1, then b = e(v, l) for
some v ∈ Γ0 and 1 ≤ l ≤ m. Let a′ be the lift of a such that r(a′) = s(v), then
ae(s(a′), l) and ba′ extend a and b to paths of degree ei + ej . It follows that

Λ
p
↽Γ is locally convex. �

Corollary 2.11. Fix N ≥ 2 in N∪ {∞}. Let (Λn,Λn+1, pn,mn, sn)
N−1
n=1 be a

sequence of covering systems of k-graphs. Then there is a unique (k+1)-graph Λ

such that Λei =
⊔N
n=1 Λei

n for 1 ≤ i ≤ k, Λek+1 =
⊔N−1
n=1 (Λn

pn,sn
↽ Λn+1)

ek+1 , and

such that range, source and composition are all inherited from the Λn
pn,sn
↽ Λn+1.

If each (Λn,Λn+1, pn,mn, sn) is row-finite then Λ is row-finite. If each Λn is
locally convex, so is Λ, and if each Λn is connected, so is Λ.
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Proof. For the first part we just apply Lemma 2.9; the hypotheses follow
automatically from the observation that if h, i, j are distinct elements of

{1, . . . , k + 1} then each path of degree eh + ei + ej lies in some Λn
pn,sn
↽ Λn+1,

and these are all (k + 1)-graphs by Proposition 2.7.
The arguments for row-finiteness, local convexity and connectedness are the
same as those in Proposition 2.7. �

Notation 2.12. When N is finite, the (k+1)-graph Λ of the previous lemma will

henceforth be denoted Λ1
p1,s1
↽ · · ·

pN−1,sN−1
↽ ΛN . If N = ∞, we instead denote

Λ by lim
↽−

(Λn; pn, sn).

2.1. Matrices of covering systems. In this subsection, we generalise our
construction to allow for a different covering system (Λj ,Γi, pi,j ,mi,j , si,j) for
each pair of connected components Λj ⊂ Λ and Γi ⊂ Γ. The objective is to
recover the example of the irrational rotation algebras [27, Example 6.5].

Definition 2.13. Fix nonnegative integers cΛ, cΓ ∈ N \ {0}. A matrix of
covering systems (Λj ,Γi,mi,j , pi,j, si,j)

cΓ,cΛ
i,j=1 consists of:

(1) k-graphs Λ and Γ which decompose into connected components Λ =⊔
j=1,...,cΛ

Λj and Γ =
⊔
i=1,...,cΓ

Γi;

(2) a matrix (mi,j)
cΓ,cΛ
i,j=1 ∈McΓ,cΛ(N) with no zero rows or columns; and

(3) for each i, j such that mi,j 6= 0, a covering system (Λi,Γj , pi,j ,mi,j , si,j) of
k-graphs.

Proposition 2.14. Fix nonnegative integers cΛ, cΓ ∈ N \ {0} and a matrix of
covering systems (Λj ,Γi,mi,j , pi,j , si,j)

cΓ,cΛ
i,j=1. Then there is a unique (k + 1)-

graph
( ⊔

Λj
)p,s
↽

( ⊔
Γi

)

such that (( ⊔
Λj

)p,s
↽

( ⊔
Γi

))ek+1

=
⊔
i,j(Λj

pi,j ,si,j

↽ Γi)
ek+1 ,

each
(( ⊔

Λj
)p,s
↽

( ⊔
Γi

))el for 1 ≤ l ≤ k is equal to Λel ⊔Γel and the commuting

squares are inherited from the Λj
pi,j ,si,j

↽ Γi.

If each (Λi,Γj, pi,j ,mi,j , si,j) is row finite then
( ⊔

Λj
)p,s
↽

( ⊔
Γi

)
is row finite.

If Λ and Γ are locally convex, so is
( ⊔

Λj
)p,s
↽

( ⊔
Γi

)
.

Proof. We apply Lemma 2.9; since the commuting squares are inherited from

the Λj
pi,j ,si,j

↽ Γi, they satisfy the associativity condition (2.1) because each

Λj
pi,j ,si,j

↽ Γi is a (k + 1)-graph. �

Corollary 2.15. Fix N ≥ 2 in N∪{∞}. Let (cn)Nn=1 ⊂ N\{0} be a sequence
of positive integers. For 1 ≤ n < N , let (Λn,j,Λn+1,i, p

n
i,j ,m

n
i,j , s

n
i,j)

cn+1,cn

i,j=1 be a

matrix of covering systems. Then there exists a unique (k + 1)-graph Λ such

Documenta Mathematica 13 (2008) 161–205



170 Alex Kumjian, David Pask, Aidan Sims

that

Λei =
⋃N
n=1

⋃cn

j=1 Λei

n,j for 1 ≤ i ≤ k,

Λek+1 =
⋃N−1
n=1

(( ⊔cn

j=1 Λn,j
)pn,sn

↽
( ⊔cn+1

i=1 Λn+1,i

))ek+1 ,

and the range, source and composition functions are all inherited from the

(k + 1)-graphs
( ⊔cn

j=1 Λn,j
)pn,sn

↽
( ⊔cn+1

i=1 Λn+1,i

)
.

If each (Λn,j ,Λn+1,i, p
n
i,j,m

n
i,j , s

n
i,j) is row finite, then Λ is row finite. If each

Λn is locally convex, so is Λ.

Example 2.16 (The Irrational Rotation algebras). Fix θ ∈ [0, 1] \ Q. Let
[a1, a2, . . . ] be the simple continued fraction expansion of θ. For each n, let
cn = 2, let φn :=

(
an 1
1 0

)
, and let mn := (mn

i,j)
2
i,j=1 be the matrix product

φT (n+1) · · ·φT (n)+1 where T (n) := n(n + 1)/2 is the nth triangular number.

Of all the integers mn
i,j obtained this way, only m1

1,2 is equal to zero, so the
matrices mn have no zero rows or columns. Whenever mn

i,j 6= 0, let s
n
i,j be the

permutation of the set {1, . . . ,mn
i,j} given by s

n
i,j l = l + 1 if 1 ≤ l < mn

i,j , and
s
n
i,jm

n
i,j = 1.

Let Λn,i, n ∈ N \ {0}, i = 1, 2 be mutually disjoint copies of the 1-
graph T1 whose skeleton consists of a single vertex and a single directed
edge. For each n, let Λn be the 1-graph Λn,1 ⊔ Λn,2 so that for each n,
(Λn,j ,Λn+1,i, p

n
i,j ,m

n
i,j , s

n
i,j)

2
i,j=1 is a matrix of covering systems.
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Figure 1. A tower of coverings with multiplicities

Modulo relabelling the generators of N2, the 2-graph lim
↽−

(⊔cn

j=1 Λn,j ; p
n
i,j, s

n
i,j

)

obtained from this data as in Corollary 2.15 is precisely the rank-2 Bratteli
diagram of [27, Example 6.5] whose C∗-algebra is Morita equivalent to the
irrational rotation algebraAθ. Figure 1 is an illustration of its skeleton (parallel
edges drawn as a single edge with a label indicating the multiplicity). The
factorisation rules are all of the form fg = σ(g)f ′ where f and f ′ are the
dashed loops at either end of a solid edge in the diagram, and σ is a transitive
permutation of the set of edges with the same range and source as g.
More generally, Section 7 of [27] considers in some detail the structure of the
C∗-algebras associated to rank-2 Bratteli diagrams with length-1 cycles. All
such rank-2 Bratteli diagrams can be recovered as above from Corollary 2.15.
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3. C∗-algebras associated to covering systems of k-graphs

In this section, we describe how a covering system (Λ,Γ, p,m, s) induces an
inclusion of C∗-algebras C∗(Λ) →֒Mm(C∗(Γ)) and hence a homomorphism of
K-groups K∗(C

∗(Λ)) → K∗(C
∗(Γ)). The main result of the section is The-

orem 3.8 which shows how to use these maps to compute the K-theory of
C∗(lim

↽−
(Λn; pn, sn)) from the data in a sequence (Λn,Λn+1, pn,mn, sn)

∞
n=1 of

covering systems.
The following definition of the Cuntz-Krieger algebra of a row-finite locally
convex k-graph Λ is taken from [31, Definition 3.3].
Given a row-finite, locally convex k-graph (Λ, d), a Cuntz-Krieger Λ-family is
a collection {tλ : λ ∈ Λ} of partial isometries satisfying

(CK1) {tv : v ∈ Λ0} is a collection of mutually orthogonal projections;
(CK2) tλtµ = tλµ whenever s(λ) = r(µ);
(CK3) t∗λtλ = ts(λ) for all λ ∈ Λ; and

(CK4) tv =
∑

λ∈vΛ≤n tλt
∗
λ for all v ∈ Λ0 and n ∈ Nk.

The Cuntz-Krieger algebra C∗(Λ) is the C∗-algebra generated by a Cuntz-
Krieger Λ-family {sλ : λ ∈ Λ} which is universal in the sense that for every
Cuntz-Krieger Λ-family {tλ : λ ∈ Λ} there is a unique homomorphism πt of
C∗(Λ) satisfying πt(sλ) = tλ for all λ ∈ Λ.

Remarks 3.1. If Λ has no sources (that is vΛn 6= ∅ for all v ∈ Λ0 and n ∈ Nk),
then Λ is automatically locally convex, and the definition of C∗(Λ) given above
reduces to the original definition [20, Definition 1.5].
By [31, Theorem 3.15] there is a Cuntz-Krieger Λ-family {tλ : λ ∈ Λ} such that
tλ 6= 0 for all λ ∈ Λ. The universal property of C∗(Λ) therefore implies that
the generating partial isometries {sλ : λ ∈ Λ} ⊂ C∗(Λ) are all nonzero.

Let Ξ be a k-graph. The universal property of C∗(Ξ) gives rise to an action γ
of Tk on C∗(Ξ), called the gauge-action (see, for example [31, §4.1]), such that
γz(sξ) = zd(ξ)sξ for all z ∈ Tk and ξ ∈ Ξ.

Proposition 3.2. Let (Λ,Γ, p,m, s) be a row-finite covering system of locally
convex k-graphs. Let γΛ and γΓ denote the gauge actions of Tk on C∗(Λ) and

C∗(Γ), and let γ denote the gauge action of Tk+1 on C∗(Λ
p,s
↽Γ).

(1) The inclusions ı : Λ→ Λ
p,s
↽Γ and  : Γ→ Λ

p,s
↽Γ induce embeddings of C∗(Λ)

and C∗(Γ) in C∗(Λ
p,s
↽Γ) characterised by

ı∗(sα) = sı(α) and ∗(sβ) = s(β) for α ∈ Λ and β ∈ Γ.

(2) The sum
∑

v∈(Γ0) sv converges in the strict topology to a full projection

Q ∈ M(C∗(Λ
p,s
↽Γ)), and the range of ∗ is QC∗(Λ

p,s
↽Γ)Q.

(3) For 1 ≤ i ≤ m, the sum
∑
v∈Γ0 se(v,i) converges strictly to a partial isome-

try Vi ∈ M(C∗(Λ
p,s
↽Γ)). The sum

∑
v∈ı(Λ0) sv, converges strictly to the full

projection P :=
∑m

i=1 ViV
∗
i ∈ M(C∗(Λ

p,s
↽Γ)). Moreover, ı∗ is a nondegen-

erate homomorphism into PC∗(Λ
p,s
↽Γ)P .
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(4) There is an isomorphism φ : Mm(C∗(Γ))→ PC∗(Λ
p,s
↽Γ)P such that

φ
(
(ai,j)

m
i,j=1

)
=

m∑

i,j=1

Vi∗(ai,j)V
∗
j .

(5) There is an embedding ιp,s : C∗(Λ) → Mm(C∗(Γ)) such that φ ◦ ιp,s = ı∗.
The embedding ιp,s is equivariant in γΛ and the action idm⊗γΓ of Tk on
Mm(C∗(Γ)) by coordinate-wise application of γΓ.

(6) If we identify K∗(C
∗(Γ)) with K∗(Mm(C∗(Γ))), then the induced homo-

morphism (ιp,s)∗ may be viewed as a map from K∗(C
∗(Λ)) → K∗(C

∗(Γ)).
When applied to K0-classes of vertex projections, this map satisfies

(ιp,s)∗([sv]) =
∑

p(u)=v

m · [su] ∈ K0(C
∗(Γ)).

The proofs of the last three statements require the following general Lemma.
This is surely well-known but we include it for completeness.

Lemma 3.3. Let A be a C∗-algebra, let q ∈M(A) be a projection, and suppose
that v1, . . . , vn ∈ M(A) satisfy v∗i vj = δi,jq for 1 ≤ i, j ≤ n. Then p =∑n

i=1 viv
∗
i is a projection and pAp ∼= Mn(qAq).

Proof. That v∗i vj = δi,jq implies that the vi are partial isometries with mutually
orthogonal range projections viv

∗
i . Hence p is a projection in M(A). Define

a map φ from pAp to Mn(qAq) as follows: for a ∈ pAp and 1 ≤ i, j ≤ n, let
ai,j := v∗i avj , and define φ(a) to be the matrix φ(a) = (ai,j)

n
i,j=1.

It is straightforward to check using the properties of the vi that φ is a
C∗-homomorphism. It is an isomorphism because the homomorphism ψ :
Mn(qAq)→ pAp defined by

ψ
(
(ai,j)

n
i,j=1

)
:=

n∑

i,j=1

viaijv
∗
j ∈ qAq

is an inverse for φ. �

Proof of Proposition 3.2. (1) The collection {sı(λ) : λ ∈ Λ} forms a Cuntz-

Krieger Λ-family in C∗(Λ
p,s
↽Γ), and so by the universal property of C∗(Λ) in-

duces a homomorphism ı∗ : C∗(Λ) → C∗(Λ
p,s
↽Γ). For z ∈ Tk, write (z, 1) for

the element (z1, . . . , zk, 1) ∈ Tk+1. Recall that γ denotes the gauge action of

Tk+1 on C∗(Λ
p,s
↽Γ). Then the action z 7→ γ(z,1) of Tk on C∗(Λ

p,s
↽Γ) satisfies

ı∗((γΛ)z(a)) = γ(z,1)(ı∗(a))

for all a ∈ C∗(Λ) and z ∈ Tk. Since ı∗(sv) = sı(v) 6= 0 for all v ∈ Λ0 it
follows from the gauge-invariant uniqueness theorem [20, Theorem 2.1] that ı∗
is injective. A similar argument applies to ∗.
(2) As the projections sv, v ∈ (Γ0) are mutually orthogonal, a standard argu-
ment shows that the sum

∑
v∈(Γ0) sv converges to a projection Q in the mul-

tiplier algebra (see [30, Lemma 2.1]). The range of ∗ is equal to QC∗(Λ
p,s
↽Γ)Q
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because (Γ0)(Λ
p,s
↽Γ)(Γ0) = (Γ). To see that Q is full, it suffices to show

that every generator of C∗(Λ
p,s
↽Γ) belongs to the ideal I(Q) generated by Q.

So let α ∈ Λ
p,s
↽Γ. Either s(α) ∈ (Γ0) or s(α) ∈ ı(Λ0). If s(α) ∈ (Γ0), then

sα = sαQ ∈ I(Q). On the other hand, if s(α) ∈ ı(Λ0), the Cuntz-Krieger
relation ensures that

sα =
∑

p(w)=s(α)

∑m
i=1 sαse(w,i)Qs

∗
e(w,i),

which also belongs to I(Q).
(3) For fixed i, the partial isometries se(v,i) have mutually orthogonal range
projections and mutually orthogonal source projections. Hence an argument
similar that of [30, Lemma 2.1] shows that

∑
v∈Γ0 se(v,i) converges strictly to a

multiplier Vi ∈ M(C∗(Λ
p,s
↽Γ)). A simple calculation shows that V ∗

i Vj = δi,jQ
for all i, j. Hence each Vi is a partial isometry, and P is full because Q is full.
The homomorphism ı∗ is nondegenerate because the net

(
ı∗

(∑
v∈F sv

))
F⊂Λ0 finite

converges strictly to P ∈M(C∗(Λ
p,s
↽Γ)).

(4) This follows directly from Part (3) and Lemma 3.3.
(5) We define ιp,s := φ−1◦ı∗. For the gauge-equivariance, recall that ı∗ (respec-
tively ∗) are equivariant in γ|(Tk,1) and γΛ (respectively γΓ). By definition, φ
is equivariant in (id⊗γ) and γ(Tk,1) ◦ ∗. The equivariance of ιp,s follows.

(6) By (CK4), for v ∈ Λ0 we have sı(v) =
∑

f∈v(Λ
p,s
↽Γ)ek+1

sfs
∗
f , so the K0-

class [sı(v)] is equal to
∑
f∈v(Λ

p,s
↽Γ)ek+1

[sfs
∗
f ]. We can write v(Λ

p,s
↽Γ)ek+1 as the

disjoint union

v(Λ
p,s
↽Γ)ek+1 =

⊔

p(u)=v

{e(u, i) : 1 ≤ i ≤ m}.

In K0(C
∗(Λ

p,s
↽Γ)), we have [se(u,i)s

∗
e(u,i)] = [s∗e(u,i)se(u,i)] = [s(u)], and the

result follows. �

Notation 3.4. As in Notation 2.8, when m = 1 so that s is trivial, we continue
to drop references to s at the level of C∗-algebras. So Proposition 3.2(5) gives
an inclusion ιp : C∗(Λ)→ C∗(Γ) and the induced homomorphism of K-groups
obtained from Proposition 3.2(6) is denoted (ιp)∗ : K∗(C

∗(Λ)) → K∗(C
∗(Γ)).

This homomorphism satisfies

(ιp)∗([sv]) =
∑

p(u)=v

[su].

When no confusion is likely to occur, we will suppress the maps ı, , ı∗ and ∗
and regard Λ and Γ as subsets of Λ

p,s
↽Γ and C∗(Λ) and C∗(Γ) as C∗-subalgebras

of C∗(Λ
p,s
↽Γ).

Remark 3.5. (1) The isomorphism φ of Proposition 3.2(4) extends to an iso-

morphism φ̃ : Mm+1(C
∗(Γ)) → C∗(Λ

p,s
↽Γ) which takes the block diagonal
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matrix
(

0m×m 0m×1

01×m a

)
to ∗(a). To see this, let V, . . . , Vm be as in Proposi-

tion 2.7(3), let Vm+1 = Q, and apply Lemma 3.3.

(2) If m = 1 then φ is an isomorphism of C∗(Γ) onto PC∗(Λ
p
↽Γ)P , and ιp :

C∗(Λ) →֒ C∗(Γ) satisfies

ιp(sλ) =
∑
p(λ̃)=λ sλ̃.

Fix N ≥ 2 in N. Let (Λn,Λn+1, pn,mn, sn)
N−1
n=1 be a sequence of row-finite

covering systems of locally convex k-graphs. Recall that in Corollary 2.11 we

obtained from such data a (k + 1)-graph Λ1
p1,s1
↽ · · ·

pN−1,sN−1
↽ ΛN , which for

convenience we will denote ΛN (the subscript is unnecessary here, but will be
needed in Proposition 3.7). We now examine the structure of C∗(ΛN ) using
Proposition 3.2.

Proposition 3.6. Continue with the notation established in the previous para-

graph. For each v ∈ Λ0
N , list Λ

Nek+1

N v as {α(v, i) : 1 ≤ i ≤ M} where
M = m1m2 · · ·mN−1.

(1) For 1 ≤ n ≤ N , the sum
∑
v∈Λ0

n
sv converges strictly to a full projection

Pn ∈M(C∗(ΛN )).
(2) For 1 ≤ i ≤M , the sum

∑
v∈Λ0

N
sα(v,i) converges strictly to a partial isom-

etry Vi ∈ M(C∗(ΛN )) such that V ∗
i Vi = PN .

(3) We have
∑M

i=1 ViV
∗
i = P1, and there is an isomorphism

φ : MM (C∗(ΛN ))→ P1C
∗(ΛN )P1

such that φ((ai,j)
M
i,j=1) =

∑M
i,j=1 Viai,jV

∗
j .

Proof. Calculations like those in parts (2) and (3) of Proposition 3.2 show
that the sums defining the Pn and the Vi converge in the multiplier algebra of
C∗(ΛN ) and that each Pn is full.

Since distinct paths in Λ
Nek+1

N have orthogonal range projections and since

paths in Λ
Nek+1

N with distinct sources have orthogonal source projections, each

V ∗
i Vi = PN , and

∑M
i=1 ViV

∗
i = P1.

One checks as in Proposition 3.2(1) that the inclusions ın : Λn →֒ ΛN induce
inclusions (ın)∗ : C∗(Λn) →֒ PnC

∗(ΛN )Pn, and in particular that (ıN )∗ :
C∗(ΛN ) → PNC

∗(ΛN )PN is an isomorphism. The final statement follows
from Lemma 3.3. �

We now describe the inclusions of the corners determined by P1 as N increases.
To do this, we first need some notation. Given a C∗-algebra A, and positive
integers m,n, we denote by πm,n⊗ idA : Mm(Mn(A))→Mmn(A) the canonical

isomorphism which takes the matrix a =
(
(ai,j,j′,i′)

n
j,j′=1

)m
i,i′=1

to the matrix

π(a) satisfying

π(a)j+n(i−1),j′+n(i′−1) = ai,j,j′,i′ for 1 ≤ i, i′ ≤ m, 1 ≤ j, j′ ≤ n.
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Given C∗-algebras A and B, a positive integer m, and a C∗-homomorphism
ψ : A→ B, we write idm⊗ψ : Mm(A)→Mm(B) for the C∗-homomorphism

(idm⊗ψ)
(
(ai,j)

m
i,j=1

)
=

(
ψ(ai,j)

)m
i,j=1

.

Finally, given a matrix algebra Mm(A) over a C∗-algebra A, and given 1 ≤
i, i′ ≤ m and a ∈ A, we write θi,i′a for the matrix

(
θi,i′a)j,j′ =

{
a if j = i and j′ = i′

0 otherwise.

Proposition 3.7. Fix N ≥ 2 in N. Let (Λn,Λn+1, pn,mn, sn)
N
n=1 be

a sequence of row-finite covering systems of locally convex k-graphs. We

view the (k + 1)-graph ΛN := Λ1
p1,s1
↽ · · ·

pN−1,sN−1
↽ ΛN as a subcategory of

ΛN+1 := Λ1
p1,s1
↽ · · ·

pN ,sN
↽ ΛN+1 and likewise regard C∗(ΛN ) as a C∗-subalgebra

of C∗(ΛN+1). In particular, we view P1 =
∑

v∈Λ0
1
sv as a projection in both

M(C∗(ΛN )) and M(C∗(ΛN+1)).
Let M := m1m2 . . .mN−1, and let φN : MM (C∗(ΛN )) → P1(C

∗(ΛN )P1 and
φN+1 : MMmN

(C∗(ΛN+1)) → P1C
∗(ΛN+1)P1 be the isomorphisms obtained

from Proposition 3.6. Then the following diagram commutes.

P1C
∗(ΛN )P1 P1C

∗(ΛN+1)P1

MM (C∗(ΛN )) MMmN
(C∗(ΛN+1))

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................

................

φN

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

.......

....................

................

φN+1

................................................................................................................................................................................................................................................................................................................................................................................................................................................................................ ..........................
.........
.. ⊆

................................................................................................................................................................................................................................................................................................................................................................................................................................................................... ................
(πM,mN

⊗ idC∗(ΛN+1)) ◦ (idM ⊗ιpN ,sN
)

Proof. As in Proposition 3.6, write Λ
Nek+1

N = {α(v, i) : v ∈ Λ0
N , i ∈

{1, · · · ,M}}. For i = 1, . . . ,M , let Vi :=
∑

v∈Λ0
N
sα(v,i). For j = 1, . . . ,mN ,

let

Wj :=
∑

w∈Λ0
N+1

M∑

i=1

sα(pN (w),i)se(w,j).

For (i, j) in the cartesian product {1, . . . ,M}×{1, . . . ,mN}, let Uj+mN (i−1) :=∑
u∈Λ0

N+1
sα(pN (u),i)e(u,j). In what follows, we suppress canonical inclusion

maps, and regard C∗(ΛN ) as a subalgebra of C∗(ΛN ), and both C∗(ΛN ) and
C∗(ΛN+1) as subalgebras of C∗(ΛN+1). The corner P1C

∗(ΛN )P1 is equal
to the closed span of elements of the form ViaV

∗
i′ where a ∈ C∗(ΛN ) and

i, i′ ∈ {1, . . . ,M}, and P1C
∗(ΛN+1)P1 is equal to the closed span of elements

of the form UlbU
∗
l′ where b ∈ C∗(ΛN+1), l, l

′ ∈ {1, . . . ,MmN}.

We have φN
(
(ai,i′ )

M
i,i′=1

)
=

∑M
i,i′=1 Viai,i′V

∗
i′ by definition. The isomorphism

φN+1 from MMmN
(C∗(ΛN+1)) to P1C

∗(ΛN+1)P1 described in Proposition 3.6
satisfies

φN+1

( ∑MmN

l,l′=1 Ulbl,l′U
∗
l′

)
=

(
bl,l′

)MmN

l,l′=1
.
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The Cuntz-Krieger relations show that

ViV
∗
i′WjW

∗
j′ = Uj+mN (i−1)U

∗
j′+mN (i′−1) = WjW

∗
j′ViV

∗
i′

for 1 ≤ i, i′ ≤ M , 1 ≤ j, j′ ≤ mN , and this decomposition of the matrix units
UlU

∗
l′ implements πM,mN

. Hence φN+1 ◦ (πM,mN
⊗ idC∗(ΛN+1)) satisfies

φN+1 ◦ (πM,mN
⊗ idC∗(ΛN+1))

(((
bi,j,j′,i′

)mN

j,j′=1

)M
i,i′=1

)

=
∑M

i,i′=1

∑mN

j,j′=1 Uj+mN (i−1)bi,j,j′,i′U
∗
j′+mN (i′−1).

(3.1)

The Cuntz-Krieger relations also show that Vi =
∑mN

j=1WjW
∗
j Vi for all i, and

hence ViaV
∗
i′ =

∑
j Uj+mN (i−1)W

∗
j aWjU

∗
j+mN (i′−1) for all a ∈ P1C

∗(ΛN )P1.

One now checks that for λ ∈ ΛN , we have

W ∗
j sλWj =

∑
pN (λ′)=λ s

∗
e(r(λ′),j)se(r(λ),sN (λ′)j)sλ′ ,

and hence that VisλV
∗
i′ =

∑
j

∑
pN (λ′)=λ UsN (λ′)j+mN (i−1)sλ′U∗

j+mN (i′−1). Re-

call that θi,i′sλ ∈MM (C∗(ΛN )) denotes the matrix

(
θi,i′sλ)j,j′ =

{
sλ if j = i and j′ = i′

0 otherwise.

Then VisλV
∗
i′ = φN

(
θi,i′sλ) by definition of φN , so

φN (θi,i′sλ) =
∑

j

∑
pN (λ′)=λ UsN (λ′)j+mN (i−1)sλ′U∗

j+mN (i′−1).

Since (idM ⊗ιpN ,sN
)(θi,i′sλ) = θi,i′

∑
pN (λ′)=λ sλ′ , we may therefore apply (3.1)

to see that

φN (θi,i′sλ) = φN+1 ◦ (πM,mN
⊗ idC∗(ΛN+1)) ◦ (idM ⊗ιpN ,sN

)(θi,i′sλ).

Since elements of the form θi,i′sλ generate MM (C∗(ΛN )) this proves the result.
�

Theorem 3.8. Let (Λn,Λn+1, pn,mn, sn)
∞
n=1 be a sequence of row-finite cov-

erings of locally convex k-graphs. For each n, let Λn := Λ1
p1,s1
↽ · · ·

pn−1,sn−1
↽ Λn,

identify Λn with the corresponding subset of lim
↽−

(Λn; pn, sn), and likewise iden-

tify C∗(Λn) with the corresponding C∗-subalgebra of C∗(lim
↽−

(Λn; pn, sn)). Then

(3.2) C∗(lim
↽−

(Λn; pn, sn)) =
⋃∞
n=1 C

∗(Λn).

Let P1 :=
∑

v∈Λ0
1
sv, and for each n, let Mn := m1m2 · · ·mn−1. Then P1 is a

full projection in each M(C∗(Λn)), and we have

(3.3) P1C
∗(lim
↽−

(Λn; pn, sn))P1
∼= lim
−→

(
MMn

(C∗(Λn)), idMn
⊗ιpn,sn

)
.

In particular,

K∗(C
∗(lim
↽−(Λn; pn, sn))) = K∗(P1C

∗(lim
↽−(Λn; pn, sn))P1)

∼= lim
−→

(K∗(C
∗(Λn)), (ιpn ,sn

)∗).
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Proof. For the duration of the proof, let Λ := lim
↽−

(Λn; pn, sn). We have

C∗(Λ) = span{sµs∗ν : µ, ν ∈ Λ}, so for the first statement, we need only
show that

span{sµs∗ν : µ, ν ∈ Λ} ⊂
⋃∞
n=1 C

∗(Λn).

To see this we simply note that for any finite F ⊂ Λ, the integer N := max{n ∈
N : s(F ) ∩ Λ0

n 6= ∅} satisfies F ⊂ ΛN .
Since P1 is full in eachC∗(Λn) by Proposition 3.2(3), it is full in C∗(Λ) by (3.2).
Equation 3.3 follows from Proposition 3.7. The final statement then follows
from continuity of the K-functor. �

Remark 3.9. Note that if we let γ denote the restriction of the gauge action to
P1C

∗(lim
↽−

(Λn; pn, sn))P1 then γ(1,··· ,1,z) is trivial for all z ∈ T. Indeed, if sµs
∗
ν

is a nonzero element P1C
∗(lim
↽−

(Λn; pn, sn))P1, then d(µ)n+1 = d(ν)n+1. So γ

may be regarded as an action by Tk rather than Tk+1.

We can extend Theorem 3.8 to the situation of matrices of covering systems as
discussed in Section 2.1 as follows.

Proposition 3.10. Resume the notation of Corollary 2.15. Each C∗(Λn) is
canonically isomorphic to

⊕cn

j=1 C
∗(Λn,j). There are homomorphisms (ιn)∗ :

K∗(C
∗(Λn))→ K∗(C

∗(Λn+1)) such that the partial homomorphism which maps
the jth summand in K∗(C

∗(Λn)) to the ith summand in K∗(C
∗(Λn+1)) is equal

to 0 if mn
i,j = 0, and is equal to (ιpn

i,j
,sn

i,j
)∗ otherwise. The sum

∑
v∈Λ0

1
sv

converges strictly to a full projection P1 ∈ M(C∗(Λ)). Furthermore,

K∗(P1C
∗(Λ)P1) ∼= lim

−→

( cn⊕

j=1

K∗(C
∗(Λn,j)), (ιn)∗

)
.

Proof. For each λ ∈ Λn =
⊔cn

j=1 Λn,j , define a partial isometry tλ ∈⊕cn

j=1 C
∗(Λn,j) by tλ := (0, . . . , 0, sλ, 0, . . . , 0) (the nonzero term is in the jth

coordinate when λ ∈ Λn,j). These nonzero partial isometries form a Cuntz-
Krieger Λn-family consisting of nonzero partial isometries. The universal prop-
erty of C∗(Λn) gives a homomorphism πnt : C∗(Λn) →

⊕cn

j=1 C
∗(Λn,j) which

intertwines the direct sum of the gauge actions on the C∗(Λn,j) and the gauge
action on C∗(Λn). The gauge-invariant uniqueness theorem [20, Theorem 3.4],
and the observation that each generator of each summand in

⊕cn

j=1 C
∗(Λn,j) is

nonzero and belongs to the image of πnt therefore shows that πnt is an isomor-
phism.
The individual covering systems (Λn,j ,Λn+1,i, p

n,mn, sn) induce inclusions
ιpn

i,j
,sn

i,j
: C∗(Λn,j)→Mmn

i,j
(C∗(Λn+1,i)) as in Proposition 3.2(5). We therefore

obtain homomorphisms (ιpn
i,j
,sn

i,j
)∗ : K∗(C

∗(Λn,j)) → K∗(C
∗(Λn+1,i)). The

statement about the partial homomorphisms of K-groups then follows from
the properties of the isomorphism K∗(

⊕
iAi)

∼=
⊕

iK∗(Ai) for C∗-algebras
Ai.
The final statement can then be deduced from arguments similar to those of
Theorem 3.8. �
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4. Simplicity and pure infiniteness

Theorem 3.1 of [34] gives a necessary and sufficient condition for simplicity of
the C∗-algebra of a row-finite k-graph with no sources. Specifically, C∗(Λ) is
simple if and only if Λ is cofinal and every vertex of Λ receives an aperiodic
infinite path (see below for the definitions of cofinality and aperiodicity). In
this section we present some means of deciding whether lim

↽−
(Λn; pn, sn) is cofi-

nal (Lemma 4.7), and whether an infinite path in lim
↽−

(Λn; pn, sn) is aperiodic

(Lemma 4.3). We also present a condition under which C∗(lim
↽−

(Λn; pn, sn)) is

purely infinite (Proposition 4.8).
We begin by recalling the notation and definitions required to make sense of
the hypotheses of [34, Theorem 3.1]. For more detail, see Section 2 of [31].

Notation 4.1. We write Ωk for the k-graph such that Ωqk := {(m,n) ∈ Nk×Nk :

n−m = q} for each q ∈ Nk, with r(m,n) = (m,m) and s(m,n) = (n, n). We
identify Ω0

k = {(m,m) : m ∈ Nk} with Nk. An infinite path in a k-graph Ξ
is a graph morphism x : Ωk → Ξ, and we denote the image x(0) of the vertex
0 ∈ Ω0

k by r(x). We write Ξ∞ for the collection of all infinite paths in Ξ,
and for v ∈ Ξ0 we denote by vΞ∞ the collection {x ∈ Ξ∞ : r(x) = v}. For
x ∈ Ξ∞ and q ∈ Nk, there is a unique infinite path σq(x) ∈ Ξ∞ such that
σq(x)(m,n) = x(m+ q, n+ q) for all m ≤ n ∈ Nk.

Definition 4.2. We say that a row-finite k-graph Ξ with no sources is aperiodic
if for each vertex v ∈ Ξ0 there is an infinite path x ∈ vΞ∞ such that σq(x) 6=

σq
′

(x) for all q 6= q′ ∈ Nk. We say that Ξ is cofinal if for each v ∈ Ξ0 and
x ∈ Ξ∞ there exists m ∈ Nk such that vΞx(m) 6= ∅.

We continue to make use in the following of the notation established earlier
(see Notation 2.6) for the embeddings of Nk and of N in Nk+1.
If y is an infinite path in the (k+1)-graph Ξ, we write αy for the infinite path in

Ξ(0k,N) defined by αy(p, q) := y((0k, p), (0k, q)) for p ≤ q ∈ N, and we write xy

for the infinite path in Ξ(Nk,01) defined by xy(p, q) := y((p, 01), (q, 01)) where
p ≤ q ∈ Nk.

Proposition 4.3. Let (Λn,Λn+1, pn,mn, sn)
∞
n=1 be a sequence of row-finite

covering systems of k-graphs with no sources. For a, b ∈ Nk+1, an infinite path
y ∈

(
lim
↽−(Λn; pn, sn)

)∞
satisfies σa(y) = σb(y) if and only if xσa(y) = xσb(y)

and ασa(y) = ασb(y).

Proof. The “only if” implication is trivial. For the “if” implication, note that
the factorisation property implies that an infinite path z of lim

↽−
(Λn; pn, sn) is

uniquely determined by xz and the paths ασ(n,01)(z), n ∈ Nk. So it suffices

to show that each ασ(n,01)(z) is uniquely determined by xz(0k, n) and αz . Fix

n ∈ Nk and let λ := xz(0k, n) = z(0k+1, (n, 01)). Fix i ∈ N. We will show that
ασ(n,01)(z)(01, i) is uniquely determined by αz(01, i) and λ. Let v = r(z), and let

N ∈ N be the element such that v ∈ Λ0
N . For 1 ≤ j ≤ i, let wj = αz(i) ∈ Λ0

N+j ,

and let 1 ≤ lj ≤ mN+j−1 be the integer such that αz(j − 1, j) = e(wi, lj). We
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have pN(w1) = v, and pN+j−1(wj) = wj−1 for 2 ≤ j ≤ i. For each j, let λj be
the unique lift of λ such that r(λj) = wj . By definition of the (k + 1)-graph
lim
↽−

(Λn; pn, sn), the path

λe(s(λ1), s(λ1)
−1l1)e(s(λ2), s(λ2)

−1l2) . . . e(s(λi), s(λi)
−1li) = αz(01, i)λi

is the unique minimal common extension of λ and αz(01, i) in lim
↽−

(Λn; pn, sn).
Hence

ασ(n,01)(z)(01, i) = e(s(λ1), s(λ1)
−1l1)e(s(λ2), s(λ2)

−1l2) . . . e(s(λi), s(λi)
−1li)

which is uniquely determined by λ and αz(01, i). �

Corollary 4.4. Let (Λn,Λn+1, pn,mn, sn)
∞
n=1 be a sequence of row-finite cov-

ering systems of k-graphs with no sources. Suppose that Λn is aperiodic for
some n. Then so is lim

↽−
(Λn; pn, sn).

Proof. Since each vertex in Λn receives an aperiodic path in Λn, Proposition 4.3,
guarantees that each vertex in Λn receives an aperiodic path in lim

↽−
(Λn; pn, sn).

Since the pn are coverings, it follows that every vertex of lim
↽−

(Λn; pn, sn) receives

an infinite path of the form λy or of the form σp(y) where y is an aperiodic
path with range in Λn. If y is aperiodic, then λy is aperiodic for any λ and
σa(y) is aperiodic for any a and the result follows. �

Lemma 4.5. Let (Λn,Λn+1, pn,mn, sn)
∞
n=1 be a sequence of row-finite covering

systems of k-graphs with no sources. Fix y ∈
(
lim
↽−(Λn; pn, sn)

)∞
, with y(0) ∈

Λn and a, b ∈ Nk+1. Let ã and b̃ denote the elements of Nk determined by the
first k coordinates of a and b. For each m ≥ n, let vm and im be the unique
pair such that αy(m,m + 1) = e(vm, im). For each m ≥ n, let µm and νm be

the unique lifts of xy(0, ã) and xy(0, b̃) such that r(µm) = r(νm) = vm. Then
ασa(y) = ασb(y) if and only if the following three conditions hold:

(1) ak+1 = bk+1;
(2) s(µm) = s(νm) for all m ≥ n; and
(3) sm(µm)im = sm(νm)im for all m ≥ n.

Proof. We have ασa(y)(m,m+1) = e(s(µm+ak+1
), sm(µm+ak+1

)im+ak+1
) for all

m, and likewise for b and ν. �

Remark 4.6. Lemma 5.4 of [27] implies that an infinite path in a rank-2 Bratteli
diagram Λ is aperiodic if and only if the factorisation permutations of its red
coordinate-paths are of unbounded order. Lemma 4.5 is the analogue of this
result for general systems of coverings. To see the analogy, note that in a rank-2
Bratteli diagram, every xy is of the form λλλ . . . for some blue cycle Λ, so that
condition (3) fails for all a 6= b precisely when the orders of the permutations
sm(µm) grow arbitrarily large with m.

Lemma 4.7. Let (Λn,Λn+1, pn,mn, sn)
∞
n=1 be a sequence of row-finite coverings

of k-graphs with no sources. If infinitely many of the Λn are cofinal, then
lim
↽−

(Λn; pn, sn) is also cofinal.
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Proof. Fix a vertex v and an infinite path z ∈ (lim
↽−

(Λn; pn, sn))
∞. Let n1, n2 ∈

N be the elements such that v ∈ Λ0
n1

and r(z) ∈ Λ0
n2

. Choose N ≥ n1, n2

such that ΛN is cofinal. Fix w ∈ Λ0
N such that pn ◦ pn+1 ◦ · · · ◦ pN−1(w) = v;

so v(lim
↽−

(Λn; pn, sn))w 6= ∅. We have xσ(0k,N−n2)(z) ∈ Λ∞
N , and since ΛN is

cofinal, it follows that wΛNxσ(0k,N−n2)(z)(q) 6= ∅ for some q ∈ Nk. Since

xσ(0k,N−n2)(z)(q) = z(q,N − n2), this completes the proof. �

As in [38], we say that a path λ in a k-graph Λ is a cycle with an entrance if
s(λ) = r(λ), and there exists µ ∈ r(λ)Λ with d(µ) ≤ d(λ) and λ(0, d(µ)) 6= µ.

Proposition 4.8. Let (Λn,Λn+1, pn,mn, sn)
∞
n=1 be a sequence of row-finite

coverings of k-graphs with no sources. There exists n such that Λn contains a
cycle with an entrance if and only if every Λn contains a cycle with an entrance.
Moreover, if C∗(lim

↽−
(Λn; pn, sn)) is simple and Λ1 contains a cycle with an

entrance, then C∗(Λ) is purely infinite.

Proof. That the presence of a cycle with an entrance in Λ1 is equivalent to the
presence of a cycle with an entrance in every Λn follows from the properties of
covering maps. Now the result follows from [38, Proposition 8.8] �

5. K-Theory

In this section, we consider the K-theory of C∗(Λ
p,s
↽Γ). Specifically, we show

how the homomorphism from K∗(C
∗(Λ)) to K∗(C

∗(Γ)) obtained from Propo-
sition 3.2 behaves with respect to existing calculations of K-theory for various
classes of higher-rank graph C∗-algebras. We will use these results later to com-
pute the K-theory of C∗(lim

↽−
(Λn; pn, sn)) for a number of sequences of covering

systems.
Throughout this section, given a k-graph Λ, we view the ring ZΛ0 as the
collection of finitely supported functions f : Λ0 → Z. For v ∈ Λ0, we denote
the point-mass at v by δv. Given a finite covering p : Γ → Λ of row-finite
k-graphs, we define p∗ : ZΛ0 → ZΓ0 by p∗(δv) =

∑
p(u)=v δw; equivalently,

p∗(f)(w) = f(p(w)).

5.1. Coverings of 1-graphs and the Pimsner-Voiculescu exact se-
quence. It is shown in [26, 32] how to compute the K-theory of a graph
C∗-algebra using the Pimsner-Voiculescu exact sequence. In this subsection,
we show how this calculation interacts with the inclusion of C∗-algebras arising
from a covering of 1-graphs.
The K-theory computations for arbitrary graph C∗-algebras [12, 1] are some-
what more complicated than for the C∗-algebras of row-finite graphs with no
sources. Moreover, every graph C∗-algebra is Morita equivalent to the C∗-
algebra of a row-finite graph with no sources [12]. We therefore restrict out
attention here to the simpler setting.

Theorem 5.1. Let (E∗, F ∗, p,m, s) be a row-finite covering system of 1-graphs
with no sources. Let A,B be the vertex connectivity matrices of the underlying
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graphs E and F respectively. Then the diagram

(5.1)

0 K1(C
∗(E∗)) ZE0 ZE0 K0(C

∗(E∗)) 0

0K0(C
∗(F ∗))ZF 0ZF 0K1(C

∗(F ∗))0

1−At

1−Bt

(ιp,s)∗ m·p∗ m·p∗ (ιp,s)∗





.......................................................................

.......

.....

.......

.......

.....

.......................................................................

.......

.....

.......

.......

.....

.......................................................................

.......

.....

.......

.......

.....

.......................................................................

.......

.....

.......

.......

.....

commutes and the rows are exact.

The proof of this theorem occupies the remainder of Section 5.1. We fix, for the
duration, a finite covering p : F ∗ → E∗ of row-finite 1-graphs with no sources,
a multiplicity m and a cocycle s : F ∗ → Sm.
It is relatively straightforward to prove that the right-hand two squares of (5.1)
commute and that the rows are exact.

Lemma 5.2. Resume the notation of Theorem 5.1. We have (1 − Bt)p∗ =
p∗(1 − At), the right-hand two squares of (5.1) commute, and the rows are
exact.

Proof. For the first statement, consider a generator δv ∈ ZE0. We have
(
p∗ ◦ (1−At)

)
(δv) = p∗(δv −

∑

e∈vE1

δs(e)) =
∑

p(u)=v

δu −
∑

e∈vE1

∑

p(f)=e

δs(f).

On the other hand,
(
(1−Bt) ◦ p∗

)
(δv) = (1−Bt)

∑

p(u)=v

δu =
∑

p(u)=v

(
δu −

∑

f∈uF 1

δs(f)

)
.

Since p is a covering the double-sums occurring in these two equations each
contain exactly one term for each edge f ∈ F 1 such that p(r(f)) = v, and it
follows that the two are equal.
Multiplying by m throughout the above calculation shows that the middle
square of (5.1) commutes.
The identification of K0(C

∗(E∗)) with coker(1 − At) takes the class of the
projection sv ∈ C∗(E∗) to the class of the corresponding generator δv ∈ ZE0

(see [30]). That the right-hand square commutes then follows from Proposi-
tion 3.2(6).
Exactness of the rows is precisely the computation of K-theory for 1-graph
C∗-algebras [8, 26, 32]. �

It remains to prove that the left-hand square of (5.1) commutes. The strategy
is to assemble the eight-term commuting diagrams which describe the K-theory
of each of C∗(E∗) and C∗(F ∗) (see equation (5.3) below) into a sixteen-term
diagram, one face of which is the left-hand square of (5.1). We then focus on
the cube in the sixteen-term diagram which contains left-hand square of (5.1)
as one of its faces, and show that the remaining five faces of this cube commute.
A diagram-chase then establishes that the sixth face commutes as well. The
majority of the work involved goes into defining the connecting maps needed
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to write down the sixteen-term diagram in the first place. The proof that the
various squares in it commute is then relatively straightforward.
To begin, we recall how one shows that the rows of (5.1) are exact. Let E∗×dZ
be the skew-product of E∗ by the length functor d (see [20, Section 5]). Let γ be
the gauge action of T on C∗(E∗) satisfying γz(se) = zse for e ∈ E1 and z ∈ T.
Let (iT, iC∗(E∗)) be the universal covariant representation of (C∗(E∗),T, γ) in
the crossed product C∗(E∗)×γT. By [32, Lemma 3.1], there is an isomorphism

(5.2) ψE : C∗(E∗ ×d Z)→ C∗(E∗)×γ T

satisfying ψE(s(λ,n)) = iT(z)niC∗(E∗)(sλ).

The C∗-algebra C∗(E∗ ×d Z) is AF with K0-group lim
−→

(ZE0, At) (see [26, 32]).

Hence one may apply the dual Pimsner-Voiculescu sequence [4, Section 10.6]
to the crossed product algebra C∗(E∗)×γ T to show that the top row of (5.1)
is exact (the bottom row is the same after replacing E with F ).
From the point of view of coverings, the skew-product graphE∗×dZ and its C∗-
algebra are more natural to work with than the crossed product C∗(E∗)×γ T.
Before proving that the final square of (5.1) commutes, we therefore detail first
how coverings p : F ∗ → E∗ interact with the isomorphisms ψE : C∗(E∗×dZ)→
C∗(E∗)×γ T.

Lemma 5.3. With the above notation, let E∗ ×d Z and F ∗ ×d Z be the skew-
product graphs by the length functors d, and let ψE and ψF be the isomorphisms
described in (5.2). Let γE and γF denote the gauge actions of T on C∗(E∗)
and C∗(F ∗).

(1) the formulae p̃(λ, n) := (p(λ), n) and s̃(λ, n) := s(λ) determine a covering
p̃ : F ∗ ×d Z→ E∗ ×d Z and a cocycle s̃ : F ∗ ×d Z→ Sm.

(2) the inclusion ιp,s : C∗(E∗) → Mm(C∗(F ∗)) is equivariant in the ac-
tions γE and idm⊗γF , and induces an inclusion ι̃p,s : C∗(E∗) ×γE

T →
Mm(C∗(F ∗))×idm ⊗γF

T.
(3) The following diagram commutes.

C∗(E∗ ×d Z) Mm(C∗(F ∗ ×d Z))

C∗(E∗)×γE
T Mm(C∗(F ∗))×idm ⊗γF

T

..............................................

.......

..
.......
.......
..ψE

..............................................

.......
..
.......
.......
..idm ⊗ψF

.......................................................................... ................

....................................................................................................................... ................
ιp̃,s̃

gιp,s

Proof. (1) It is straightforward to check that p̃ is a covering. To see that s̃

is a cocycle, note that (µ,m) and (ν, n) are composable in the skew-product
precisely when µ and ν are composable, and n = m−d(ν). So for i ∈ {1, . . . ,m}
we may calculate

s̃(µ,m)(s̃(ν,m− d(ν))i) = s(µ)(s(ν)i) = s(µν)i = s̃(µν,m− d(ν))i.

(2) That ιp,s is equivariant in γE and idm⊗γF follows from Proposition 3.2(5).
That it induces the desired inclusion ι̃p,s of crossed-products follows from the
universal properties of the crossed-product algebras.
(3) That the diagram commutes follows from a simple calculation using the
definitions of the maps involved. �
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Proof of Theorem 5.1. Lemma 5.2 establishes everything except that the left-
hand square in the diagram (5.1) commutes. To establish this last claim, recall
from [32, Theorem 3.2] (see also [26]) that there is a homomorphism φE :
ZE0 → K0(C

∗(E∗) ×γE
T) satisfying φE(δv) = [iT(1)iC∗(E∗)(sv)]. Moreover,

the rows of the following commutative diagram are exact and the left- and
right-most vertical maps are isomorphisms (see [30, Lemma 7.15], [26]).

(5.3)

0.................................... ............... ker(1 − A
t)................................................................................................... ............... ZE

0......................................................................................................................................................................................................... ...............
1−At

ZE
0..................................................................................... ............... coker(1 − A

t).................................. ............... 0

0.................................. ............... K1(C
∗(E∗))................................ ............... K0(C

∗(E∗)×γE
T) .............................................................. ...............

1−γ̂−1
∗

K0(C
∗(E∗)×γE

T) ................................ ............... K0(C
∗(E∗)).............................................. ............... 0

...............................................................

.......
.
.......
.......
.
∼=

...............................................................

.......
.
.......
.......
.
φE

...............................................................

.......
.
.......
.......
.
φE

...............................................................

.......
.
.......
.......
.
∼=

A similar commutative diagram holds for F ∗, and using the standard isomor-
phism of K∗(Mm(C∗(F ∗))) with K∗(C

∗(F ∗)), we may assemble these two di-
agrams can into a single three-dimensional diagram by connecting each term
in the diagram for E∗ to the corresponding term in the diagram for F ∗ using
the appropriate maps induced from (p, s). The map connecting the K0-groups
of the skew-product graph algebras is induced from the connecting map in
the bottom row of the commuting diagram in Lemma 5.3(3) by applying the
K-functor and using the canonical isomorphisms

K∗(Mm(C∗(F ∗)×γF
T)) ∼= K∗(C

∗(F ∗)×γF
T) and

Mm(C∗(F ∗)×γF
T) ∼= Mm(C∗(F ∗))×idm ⊗γF

T.

Let η denote the unlabelled inclusion K1(C
∗(F ∗)) →֒ K0(C

∗(F ∗) ×γF
T)) in

the bottom row of the diagram of the form (5.3) for F ∗. Notice that injectivity
of the map m ·p∗ : ZE0 → ZF 0 together with the first statement of Lemma 5.2
ensures that m · p∗ restricts to a map from ker(1−At) to ker(1−Bt); abusing
notation, we denote this map m · p∗ too. With this notation the diagram (5.4)
below is the left-hand cube of the three-dimensional diagram described in the
previous paragraph.

(5.4)

ker(1−At)
........................................................................................................................................................

....
................

m·p∗

ker(1−Bt)

K1(C
∗(E∗))

........................................................................................................................................................
....

................

(ιp,s)∗

K1(C
∗(F ∗))

....................................................................................................................................................................

.......
..
.......
.......
..

∼=

....................................................................................................................................................................

.......

..
.......
.......
..

∼=

............................................................................................................................................................................................................................... ..........................

............................................................................................................................................................................. ................

............................................................................................................................................................................................................................... .........................

.

............................................................................................................................................................................. ................
η

ZE0
........................................................................................................................................................

....
................

m·p∗

ZF 0

K0(C
∗(E∗)×γE

T)
........................................................................................................................................................

....
................

(gιp,s)∗

K0(C
∗(F ∗)×γF

T)

....................................................................................................................................................................

.......

..
.......
.......
..

φE

....................................................................................................................................................................

.......
..
.......
.......
..

φE

We have shown the whole cube because we prove that the left-hand face —
which is none other than the left-hand square of (5.1) — commutes by showing
that the other five faces commute.
To see why this suffices, suppose that the other five faces do indeed commute.
Since η is an injection by the exactness of the rows of (5.3), we just need to
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show that the two maps from ker(1 − At) into K0(C
∗(F ∗) ×γ T)) obtained

from the maps in the left-hand face of the cube followed by η agree. A diagram
chase shows that this is the case.
It therefore remains only to show that the top, bottom, front, back and right-
hand faces of (5.4) commute. The top square commutes by definition. The
bottom square commutes by the naturality of the dual Pimsner-Voiculescu
exact sequence (see the argument at the beginning of [32, Section 3]). The
back and front faces commute because (5.3) commutes.
To see that the right-hand face commutes, recall that C∗(E∗ ×d Z) is AF
with K0-group lim

−→
(ZE0, 1 − At). Hence there is an inclusion εE : ZE0 →

K0(C
∗(E∗×dZ)) which takes δv to the K0-class of the vertex projection s(v,0),

and likewise for F . Consider the map ψE defined in (5.2) and the map φE
appearing in (5.3). It is clear that φE = (ψE)∗ ◦ εE and similarly for F . So it
suffices to show that the following diagram commutes.

(5.5)

ZE0 ZF 0

K0(C
∗(E∗ ×d Z)) K0(C

∗(F ∗ ×d Z))

K0(C
∗(E∗)×γE

T) K0(C
∗(F ∗)×γF

T)

..........................................................

.......

..
.......
.......
..

εE

..........................................................

.......

..
.......
.......
..

εF

..........................................................

.......

..
.......
.......
..

(ψE)∗

...................................................

.......

..
.......
.......
..(ψF )∗

.................................................................................................................................................................................................................................................................................................... ................
m·p∗

.................................................................................................................................................... ................
(ιp̃,s̃)∗

.............................................................................................................................................. ................
(gιp,s)∗

If one applies the K-functor to all terms and maps in the diagram of
Lemma 5.3(3), and then applies the natural isomorphism

K∗(Mm(C∗(E∗)×γE
T)) ∼= K∗(C

∗(E∗)×γE
T)

to the terms on the right, one obtains precisely the bottom rectangle of (5.5).
The bottom rectangle of (5.5) therefore commutes by naturality of the K-
functor together with Lemma 5.3(3).
To see that the top rectangle of (5.5) commutes, recall that εE takes the image
of the point-mass δv in the direct limit lim

−→
(ZE0, At) to the class of the projec-

tion s(v,0). The image of s(v,0) under the homomorphism ιp̃,s̃ is the diagonal ma-
trix in Mm(C∗(F ∗×dZ)) whose diagonal entries are all equal to

∑
p(w)=v s(w,0).

Under the standard isomorphism K0(Mm(C∗(F ∗ ×d Z))) ∼= K0(C
∗(F ∗ ×d Z)),

we therefore obtain the following equality in K0(C
∗(F ∗ ×d Z)):

[ιp̃,s̃(s(v,0))] =
∑

p(w)=v

m · [s(w,0)] = m ·
( ∑

p(w)=v

[s(w,0)]
)
.

Using once again the characterisation of the maps εE and εF , we see that this
is precisely the statement that the bottom rectangle of (5.5) commutes. �

5.2. Coverings of higher-rank graphs and Kasparov’s spectral se-
quence theorem. We turn to the case where k > 1. We invoke the K-theory
computations of [14] which are based on Kasparov’s spectral sequence theorem
for the computation of the K-theory of crossed products by groups for which
the Baum-Connes conjecture holds (see [18, Theorem 6.10], [14, Lemma 3.3]
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and [35]). We are grateful to Gennadi Kasparov for pointing out that the
spectral sequence is natural.
The standard notation for spectral sequences is that a spectral sequence
(Er, dr) has terms Erp,q and differentials dr : Erp,q → Erp−r,q+r−1 where r > 0
and p, q ∈ Z. This however is problematic in the current situation because p
clashes with our notation for a covering map. To avoid this, we replace the
indexing variables p, q in the spectral sequence with a, b. That is, our spectral
sequences have terms Era,b and differentials dr : Era,b → Era−r,b+r−1 where r > 0
and a, b ∈ Z.
Since each higher rank graphC∗-algebraC∗(Λ) is Morita equivalent to a crossed
product by Zk [21, Theorem 5.6], Kasparov’s result applies to give a spectral
sequence which converges to K∗(C

∗(Λ)) with E2 terms given by the homology
of Zk with appropriately chosen coefficients. In [14] Evans computes these
homology groups using a resolution related to the Koszul complex. It follows
that the above spectral sequence may be extended so that the terms of the
resolution become the terms E1

a,b for b even.
The main result of this subsection is to show that given a finite covering p :
Γ → Λ of row-finite k-graphs with no sources, a multiplicity m and a cocycle
s : Γ → Sm, there is a natural morphism of spectral sequences defined on E1

terms using m · p∗ : ZΛ0 → ZΓ0 which is compatible (see [41, p. 126]) with
(ιp,s)∗ the induced map on K-theory. This result is specialised to the case
k = 2 with a view to applications in Section 6.
The following is an immediate Corollary of [18, Theorem 6.10] (see [14,
Lemma 3.3] and [35]). For more detail on spectral sequences used in this
context, see [35, 14].

Proposition 5.4. Let F be a C∗-algebra and let α : Zk → AutF be an
action of Zk on F . Then there is a spectral sequence (Er , dr) with dif-
ferentials dr : Era,b → Era−r,b+r−1 which converges to K∗(F ×α Zk) with

E2
a,b = Ha(Z

k,Kb(F)). Moreover, the spectral sequence is natural with respect
to equivariant maps of C∗-algebras.

Proof. As noted in the proof of [14, Lemma 3.3] this follows immediately from
[18, Theorem 6.10] since Zk is amenable and the Baum-Connes conjecture
is known to hold for amenable groups [16, Theorem 1.1], so the γ part of
K∗(F ×α Zk) exhausts. The naturality of the spectral sequence with respect
to equivariant maps follows from the construction in the proof of [18, Theorem
6.10], since every step is functorial. �

Naturality means that given Zk actions αi on Fi, a Zk-equivariant map ϕ :
F1 → F2 induces a morphism of spectral sequences and this morphism is
compatible with

ϕ̂∗ : K∗(F1 ×α1 Zk)→ K∗(F2 ×α2 Zk)

where ϕ̂ : F1 ×α1 Zk → F2 ×α2 Zk is the natural map.
Evans applies this when F = FΛ is the crossed product C∗(Λ)×γ Tk of C∗(Λ)
by the gauge action, and α is the dual action γ̂ of Zk. Hence, by Takai duality
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we have K∗(C
∗(Λ)) = K∗(FΛ×αZk). In this case we have more specific results

(see [14, Lemma 3.3]):

E2
a,b =

{
Ha(Z

k,K0(FΛ)) if 0 ≤ a ≤ k and b is even,

0 otherwise.

In [14, Theorem 3.14]), Evans shows that these homology groups may be
computed as the homology of the complex DΛ

∗ =
∧∗

Zk ⊗ ZΛ0. That is,
DΛ
a =

∧a
Zk ⊗ZΛ0 for 0 ≤ a ≤ k and DΛ

a = 0 for a > k. For 1 ≤ j ≤ k let Mj

denote the vertex connectivity matrix of the coordinate graph (Λ0,Λej , r, s).
For 1 ≤ a ≤ k define the differential ∂a : DΛ

a → DΛ
a−1 by

∂a(ǫi1 ∧ · · · ∧ ǫia ⊗ ev) =

a∑

j=1

(−1)j+1ǫi1 ∧ · · · ∧ ǫ̂ij ∧ · · · ∧ ǫia ⊗ (1−M t
j )ev

where ǫ1, . . . , ǫk constitute the canonical basis for Zk, 1 ≤ i1 < · · · < ia ≤ k
and v ∈ Λ0. It is straightforward to verify that DΛ

∗ is a complex. The first part
of the following theorem is a restatement of [14, Theorem 3.15]).

Theorem 5.5. Fix k > 1. Let Λ be a row-finite k-graph with no sources.
With notation as above there is a spectral sequence (Er, dr) with differentials
dr : Era,b → Era−r,b+r−1 which converges to K∗(C

∗(Λ)) = K∗(FΛ ×α Zk) with

E1
a,b = DΛ

a :=
∧a

Zk ⊗ ZΛ0,

if 0 ≤ a ≤ k and b is even, and 0 otherwise. The differential d1 : E1
a,b → E1

a−1,b

is given by ∂a if b is even.
Let (Λ,Γ, p,m, s) be a row-finite covering system of k-graphs with no sources.
There is a morphism f of spectral sequences which is compatible with (ιp,s)∗ :
K∗(C

∗(Λ))→ K∗(C
∗(Γ)) such that f1 : DΛ

a → DΓ
a is given by id⊗(m · p∗).

Proof. Evans computes the homology groups using a Koszul complex (see [41,
§4.5]). Set G = Zk = 〈s1, . . . sk〉, R = ZG and let I be the ideal in R generated
by {1− s−1

a : 1 ≤ a ≤ k}. Let ǫ1, . . . , ǫk constitute the canonical basis for Rk.

For each a, define ∂a :
∧aRk → ∧a−1Rk as follows: for 1 ≤ i1 < · · · < ia ≤ k

so that ǫi1 ∧ · · · ∧ ǫia ∈
∧a

Rk, define

∂a(ǫi1 ∧ · · · ∧ ǫia) =
a∑

j=1

(−1)j+1(1− sj
−1)ǫi1 ∧ · · · ∧ ǫ̂ij ∧ · · · ∧ ǫia

where the symbol “ ·̂ ” denotes deletion of an element (note that ∂1(ǫi) =
1− s−1

i ).
Then R/I ∼= Z and the following sequence of R-modules is exact (see [41,
Corollary 4.5.5])

0→
∧k

Rk → · · · →
∧1

Rk →
∧0

Rk → Z→ 0.

Note that
∧0

Rk = R and
∧a

Rk is a free R-module with basis

{ǫi1 ∧ · · · ∧ ǫia : 1 ≤ i1 < · · · < ia ≤ k}.
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Hence,
∧∗

Rk yields a projective resolution of Z. Thus, by [6, §III.1] we have

H∗(G,K0(FΛ)) ∼= H∗(
∧∗

Rk ⊗G K0(FΛ)).

We follow Evans here but have adopted slightly different notation to make
naturality more apparent (see [14, Definition 3.11] and following). Under the
isomorphism

∧aRk ⊗G K0(FΛ) ∼=
∧a

Zk ⊗ K0(FΛ) (as abelian groups), the

boundary map ∂a :
∧a

Zk ⊗K0(FΛ)→
∧a−1

Zk ⊗K0(FΛ) is given by

∂a(ǫi1 ∧ · · · ∧ ǫia ⊗ x) =

a∑

j=1

(−1)a+1ǫi1 ∧ · · · ∧ ǫ̂ij ∧ · · · ∧ ǫia ⊗ (1− sj)x

where 1 ≤ i1 < · · · < ia ≤ k and x ∈ K0(FΛ).
Let DΛ

a be given as above. There is a natural map εΛ : C0(Λ
0) →֒ FΛ which

induces a map εΛ∗ : ZΛ0 → K0(FΛ). Moreover (see [14, Theorem 3.14]) the
natural map

id⊗εΛ∗ :
∧∗

Zk ⊗ ZΛ0 →
∧∗

Zk ⊗K0(FΛ)

is a map of complexes which induces an isomorphism on homology and hence

H∗(G,K0(FΛ)) ∼= H∗(
∧∗

Zk ⊗ ZΛ0).

Therefore, setting

E1
a,b =

{∧a
Zk ⊗ ZΛ0 if 0 ≤ a ≤ k and b is even,

0 otherwise

and defining d1 : E1
a,b → E1

a−1,b to be ∂a if b is even (and 0 otherwise), yields

E2
a,b
∼=

{
Hp(G,K0(FΛ)) if 0 ≤ a ≤ k and b is even,

0 otherwise.

It follows by [14, Lemma 3.3] that the spectral sequence converges to
K∗(C

∗(Λ)) = K∗(FΛ ×α Zk) as required.
For the second part of the theorem, fix (Λ,Γ, p,m, s). The embedding ιp,s :
C∗(Λ)→Mm(C∗(Γ)) induces an embedding ι̃p,s : FΛ →Mm(FΓ). Functorial-
ity yields a map of complexes

id⊗(ι̃p,s)∗ :
∧∗

Zk ⊗K0(FΛ)→
∧∗

Zk ⊗K0(FΓ).

Since group homology is a covariant functor of its coefficient module we obtain
the functorial maps for each n = 0, 1, . . . , k

Hn((ι̃p,s)∗) : Hn(Z
k,K0(FΛ))→ Hn(Zk,K0(FΓ)).

Then arguing as in Lemma 5.2 with p∗ : ZΛ0 → ZΓ0 defined as above we see
that

(1 − (MΓ
j )t)(m · p∗) = (m · p∗)(1− (MΛ

j )t)

for all j = 1, . . . , k. It follows that the natural map

id⊗(m · p∗) :
∧∗

Zk ⊗ ZΛ0 →
∧∗

Zk ⊗ ZΓ0
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is a map of complexes.
Arguing as in the proof of Theorem 5.1, we see that (ι̃p,s)∗ ◦ εΛ∗ = εΓ∗ ◦ (m · p∗),
so the map on homology induced by id⊗(m · p∗) coincides with the functorial
map above (under the identifications of the homology groups induced by id⊗εΛ∗
and id⊗εΓ∗ ). This combined with the naturality of Proposition 5.4 yields a
morphism f of spectral sequences compatible with the map

( ̂̃ιp,s
)
∗

: K∗(FΛ ×α Zk)→ K∗(FΓ ×α Zk)

such that f1 : DΛ
a → DΓ

a is given by id⊗(m · p∗). Under the identifications

K∗(C
∗(Λ)) = K∗(FΛ×αZk) andK∗(C

∗(Γ)) = K∗(FΓ×αZk), we have
( ̂̃ιp,s

)
∗

=

(ιp,s)∗. �

The following corollary is an immediate consequence of the above theorem
restricted to the case k = 2; for the first assertion see [14, Proposition 3.16]
and its proof (see also [35]).
Given a 2-graph Λ, recall that M1 and M2 denote the vertex connectivity
matrices of the coordinate graphs (Λ0,Λe1 , r, s) and (Λ0,Λe2 , r, s).

Corollary 5.6. Suppose that (Λ,Γ, p,m, s) is a row-finite covering system
of 2-graphs with no sources. With the notation of Theorem 5.5, the complex
DΛ
a =

∧a
Z2 ⊗ ZΛ0 may be written as follows:

(5.6) 0← ZΛ0 ∂1←− ZΛ0 ⊕ ZΛ0 ∂2←− ZΛ0 ← 0

where ∂1 = (1−M t
1, 1−M

t
2) and ∂2 =

(
M t

2 − 1
1−M t

1

)
. We have E2

a,b = E∞
a,b, and

K0(C
∗(Λ)) ∼= coker∂1 ⊕ ker ∂2

K1(C
∗(Λ)) ∼= ker ∂1/ Im∂2

∼= H1(Z
k,K0(FΛ)).

(5.7)

Moreover, the following diagram commutes

(5.8)

0 ←−−−− ZΛ0 ∂Λ
1←−−−− ZΛ0 ⊕ ZΛ0 ∂Λ

2←−−−− ZΛ0 ←−−−− 0
ym·p∗

ym·p∗⊕m·p∗
ym·p∗

0 ←−−−− ZΓ0 ∂Γ
1←−−−− ZΓ0 ⊕ ZΓ0 ∂Γ

2←−−−− ZΓ0 ←−−−− 0

and by naturality induces (ιp,s)∗ : K∗(C
∗(Λ))→ K∗(C

∗(Γ)).

The inclusion of coker∂1 into K0(C
∗(Λ)) obtained from (5.7) takes the equiva-

lence class (in the quotient group coker∂1 = ZΛ0/ Im(∂1)) of the generator δv
of ZΛ0 to the K0-class of the vertex projection [sv] in C∗(Λ). The proof of this
fact can be obtained from the proof of [14, Proposition 4.4]. We thank Gwion
Evans for pointing this out to us.
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5.3. Product coverings and the Künneth formula. In this section we
consider covering systems (Λn, pn) in which each k-graph Λn is a cartesian
product of two lower-dimensional graphs, and the covering maps pn respect
the product decomposition.
Recall from [20, Proposition 1.8] that given a k-graph (Λ, d) and a k′-
graph (Λ′, d′), the cartesian-product category Λ × Λ′ becomes a (k + k′)-
graph when we endow it with the degree functor d × d′ : (λ, λ′) 7→
(d(λ)1, . . . , d(λ)k, d

′(λ′)1, . . . , d
′(λ′)k′ ).

Proposition 5.7. Fix k, k′ ∈ N \ {0}. Let (Λ,Γ, p,m, s) and (Λ′,Γ′, p′,m′, s′)
be row-finite covering systems of k- and k′-graphs with no sources. Then

p× p′ : Γ× Γ′ → Λ× Λ′

is a finite covering of row-finite (k + k′)-graphs with no sources. Let f :
{1, . . . ,m} × {1 . . . ,m′} → {1, . . . ,mm′} denote the bijection f(j, j′) :=
j + (j′ − 1)m. There is a cocycle s × s

′ : Γ × Γ′ → Smm′ determined by(
(s × s

′)(α, α′)
)
f(j, j′) := f

(
s(α)j, s′(α′)j′

)
. Moreover, the following diagram

commutes.

C∗(Λ× Λ′)
∼=

−−−−→ C∗(Λ)⊗ C∗(Λ′)
yιp×p′,s×s

′

yιp,s⊗ιp′,s′

Mmm′(C∗(Γ× Γ′))
∼=−−−−→ Mm(C∗(Γ))⊗Mm′(C∗(Γ′))

Suppose that at least one of K∗(C
∗(Λ)), K∗(C

∗(Λ′)) and at least one of
K∗(C

∗(Γ)), K∗(C
∗(Γ′)) are torsion-free. Then the following diagram com-

mutes and the horizontal connecting maps are zero-graded isomorphisms:

K∗(C
∗(Λ))⊗K∗(C

∗(Λ′))
∼=

−−−−→ K∗(C
∗(Λ× Λ′))

y(ιp,s)∗⊗(ιp′,s′ )∗

y(ιp×p′,s×s
′ )∗

K∗(C
∗(Γ))⊗K∗(C

∗(Γ′))
∼=

−−−−→ K∗(C
∗(Γ× Γ′))

If Γ0 and (Γ′)0 (and hence also Λ0 and (Λ′)0) are finite then the C∗-algebras
are unital, and the horizontal isomorphisms take [1]⊗ [1] to [1].

Proof. It is straightforward to check that p×p′ is a covering using the properties
of the covering maps p and p′ and the definition of the cartesian-product graph.
A simple calculation shows that s× s

′ defines a cocycle.
Theorem 5.5 of [20] shows that C∗(Λ), C∗(Λ′), C∗(Γ) and C∗(Γ′) are nuclear,
and so there is just one tensor-product C∗-algebra C∗(Λ) ⊗ C∗(Λ′). Corol-
lary 3.5(iv) of [20] shows that the map s(λ,µ) 7→ sλ ⊗ sµ is an isomorphism of
C∗(Λ×Λ′) onto C∗(Λ)⊗C∗(Λ′), and similarly for C∗(Γ) and C∗(Γ′). It is easy
to check using the formulae for the maps ιp,s, ιp′,s′ , and ιp×p′,s×s

′ and using
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the chain of isomorphisms

Mmm′(C∗(Γ× Γ′)) ∼= Mmm′(C)⊗ C∗(Γ× Γ′)

∼= Mm(C)⊗ C∗(Γ)⊗Mm′(C)⊗ C∗(Γ′)

∼= Mm(C∗(Γ))⊗Mm′(C∗(Γ′))

that the first diagram commutes.
In the presence of the additional hypothesis concerning torsion-free K-groups,
the Künneth Theorem of [37] (see also Theorem 23.1.3 of [4]) implies: (1) that

K∗(C
∗(Λ))⊗K∗(C

∗(Λ′)) ∼= K∗(C
∗(Λ)⊗ C∗(Λ′))

and similarly for Γ,Γ′; (2) that these isomorphisms are natural and are zero-
graded; and (3) that these isomorphisms take [1]⊗[1] to [1]. The result therefore
follows from the naturality of the K-functor. �

Note that in general when no assumption is made about torsion, the Künneth
Theorem of [37] gives a short exact sequence which is still natural. The ana-
logue of Proposition 5.7 still holds and gives a (fairly complicated) commuting
diagram in which the rows are short exact sequences.

6. Examples

In this section we discuss a number of examples. A recurring theme will be
supernatural numbers and the associated dimension groups, so we pause here
to establish some notation.
We will think of a supernatural number as an infinite product α =

∏∞
n=1 αn

where each αn is an integer greater than 1. Any two such expressions in which
the same prime factors occur with the same cardinality correspond to the same
supernatural number. Given supernatural numbers α, β, we will abuse notation
and write αβ for the supernatural number

∏∞
n=1 αnβn. We write α[1, n] for

the product
∏n
i=1 αi of the first n terms in α.

For z1, . . . , zn ∈ C, we write Z[z1, . . . , zn] for the ring obtained by adjoining
z1, . . . , zn to Z; we regard Z[z1, . . . , zn] as a group under addition. Abusing
notation, for a supernatural number α, we write Z

[
1
α

]
for the dimension group

lim
−→

(Z,×αn) which we identify with the group

∞⋃

n=1

Z
[ 1

α[1, n]

]
⊂ Q

consisting of all fractions p/q where p, q ∈ Z, and q is a divisor of some α[1, n].

6.1. Rank-2 Bratteli diagrams. A rank-2 Bratteli diagram is a 2-graph
in which the blue edges form a Bratteli diagram and the red edges determine
simple cycles so that every vertex lies on precisely one red cycle, and all vertices
on a given red cycle are at the same level in the blue Bratteli diagram.
The C∗-algebras of these 2-graphs were studied in [27] and provided the initial
motivation for the covering construction. A rank-2 Bratteli diagram Λ can be
constructed using Proposition 2.14 and Corollary 2.15 precisely when the length
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of each red cycle at level n of Λ is divisible by the lengths of all the cycles at
level n− 1 to which it connects. In particular, the 2-graphs whose C∗-algebras
are Morita equivalent to the Bunce-Deddens algebras [27, Example 6.7] and
the irrational rotation algebras [27, Example 6.5] arise in this fashion.

6.2. Coverings of dihedral graphs Dn. For n ∈ N \ {0}, let Dn be the
directed graph with n vertices {v0, . . . , vn−1} and edges {xi, yi : 0 ≤ i ≤ n− 1}
where r(xi) = vi = s(yi) and s(xi) = vi+1 = r(yi) (throughout this section,
addition in the subscripts is understood to be evaluated modulo n). More
descriptively, Dn is a ring of n vertices, each of which connects to both of its
neighbours (see Figure 2). Let D∗

n be the path-category of Dn, regarded as a
1-graph. Note that for n ∈ N \ {0}, the graph D2n is the Cayley graph for the
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•
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Figure 2. The 1-graph Dn

dihedral group with 2n elements.

Example 6.1. For n,m ≥ 1 there are m-fold covering maps pn,mn : D∗
mn → D∗

n

as follows: for 0 ≤ i ≤ mn− 1 let i′ = i mod n and define

pn,mn(vi) := vi′ , pn,mn(xi) := xi′ and pn,mn(yi) := yi′ .

Hence for each pair of positive integers n,m, we obtain a row-finite covering
system (D∗

n, D
∗
mn, pn,mn) of 1-graphs with no sources (see Notation 2.8).

Fix an infinite supernatural number α =
∏∞
i=1 αi. Consider the sequence of

covering systems (D∗
6α[1,n], D

∗
6α[1,n+1], p6α[1,n],6α[1,n+1])

∞
n=1 as in Notation 2.8.

Applying Corollary 2.11, we obtain a 2-graph

D := lim
↽−(D∗

6α[1,n], p6α[1,n],6α[1,n+1]).

Proposition 6.2. Consider the situation discussed in Example 6.1. We have
K0(C

∗(D)) = Z[ 1
α ] ⊕ Z[ 1

α ] and K1(C
∗(D)) = Z ⊕ Z. Let P1 :=

∑
v∈D0

6
sv.

Then [P1] is the 0 element of K0(P1C
∗(D)P1). Moreover, C∗(D) is simple

and purely infinite.

Before proving the proposition, we describe the K-theory of C∗(D∗
n) in general.

Lemma 6.3. (1) K0(C
∗(D∗

n)) is generated by [sv0 ] and [sv1 ], and for each i, we
have [svi

] = −[svi+3 ] in K0(C
∗(D∗

n)).
(2) K1(C

∗(D∗
n))
∼= {(a1, . . . , an) ∈ Zn : ai+2 = ai+1 − ai for all i}.
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(3) the following table describes the K-theory of each C∗(D∗
n).

n mod 6 K0(C
∗(D∗

n)) K1(C
∗(D∗

n))

0 Z2 Z2

1 0 0
2 Z/3Z 0
3 Z/2Z⊕ Z/2Z 0
4 Z/3Z 0
5 0 0

Proof. (1) The K0 group is generated by the classes [sv0 ], . . . , [svn−1 ] subject to
the relations [svi

] = [svi+1 ]+ [svi−1]. This relation forces [svi+2 ] = [svi+1 ]− [svi
],

from which we conclude first that K0 is generated by [sv0 ] and [sv1 ] and second
that

[svi+3 ] = [svi+2 ]− [svi+1 ] = ([svi+1 ]− [svi
])− [svi+1 ] = −[svi

].

(2) Let An denote the vertex connectivity matrix of Dn; so An(i, j) = 1
when i = j ± 1 (mod n) and zero otherwise. As in Theorem 5.1, we have
K1(C

∗(D∗
n))
∼= ker(1−Atn). For m ∈ Zn, ((1−Atn)m)i = −mi−1 +mi −mi+1

by definition of An, and this establishes (2).
(3) If E is a finite 1-graph with no sinks or sources, then C∗(E) is isomorphic to
the Cuntz-Krieger algebra of the adjacency matrix AE of E [23]. In particular,
K1(C

∗(E)) is torsion-free and has the same rank as K0(C
∗(E)) [9]. Hence it

suffices to verify that the first column of the table is correct. To calculate K0,
we use (1) to check by hand that the cases n = 1, 2, . . . 6 are as claimed. If
n > 6, then applying the relations we find that [svi+6 ] = [svi

] for all i which
accounts for all remaining cases. �

Proof of Proposition 6.2. Lemma 6.3(1) shows that K0(C
∗(D∗

6α[1,n]) is gener-

ated by [svn
0
] and [svn

1
] where the vni are the vertices of D∗

6α[1,n]. Fix i ∈ {1, 2}.

We have

(6.1) (ιpn
)∗[svn

i
] = [svn+1

i
] + [svn+1

i+6α[1,n]
] + · · ·+ [svn+1

i+6(αn+1−1)α[1,n]
].

By Lemma 6.3(1), each [svn+1
i

+6k] = [svn+1
i

] in K0(C
∗(D∗

6α[1,n+1])), so (6.1)

implies (ιpn
)∗[svn

i
] = αn · [svn+1

i
]. Hence K0(ιpn

) : Z2 → Z2 is multiplication

by αn.
Fix m ∈ N \ {0}. By Lemma 6.3(2), K1(C

∗(D∗
6m)) is identified with the

set of sequences (a1, . . . , a6m) which satisfy ai+2 = ai+1 − ai for all i. By
Lemma 6.3(2), this forces ai+2 = ai+1 − ai for all i. Consequently, the map
a = (a1, . . . , a6m) 7→ (a1, a2) yields an isomorphism ζm : K1(C

∗(D∗
6m)) → Z2.

As ζα[1,n+1] ◦K1(ιp6α[1,n],6α[1,n+1]
) = ζα[1,n], it follows that K1(ιpn

) : Z2 → Z2

is the identity map.
Recall that D denotes lim

↽−
(D∗

6α[1,n], p6α[1,n],6α[1,n+1]). By Theorem 5.1 the K-

groups of C∗(D) are as claimed. To compute the class of the identity, let
P1 ∈ C

∗(D) be the sum of the six vertex projections in the bottom level. The
final statement of Lemma 6.3(1) shows that the classes of the vertex projections
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in K0(C
∗(D∗

6)) cancel, so that the class of the identity in K0(C
∗(D∗

6)) is the
zero element. It follows that the class of the identity P1 in K0(P1C

∗(D)P1) is
also the zero element.
Each D∗

n is aperiodic and cofinal (see Definition 4.2), so we may conclude
from Corollary 4.4 and Lemma 4.7 that D is aperiodic and cofinal. Hence
Proposition 4.8 of [20] implies that C∗(D) is simple. The path x1y1 is a cycle
with an entrance (namely y0) in D∗

1 . Proposition 4.8 now shows that C∗(D) is
purely infinite. �

6.3. Direct limits of On ⊗ C(T).

Example 6.4. Fix n ≥ 3, and let Bn be the bouquet of n loops. For m ≥ 1,
let Lm denote the loop with m vertices, and let Λm be the cartesian-product
2-graph Λm = L∗

(n−1)m ×B∗
n obtained from the path categories of L(n−1)m and

Bn.
For each m, Let pm denote the obvious (n − 1)-fold covering of L∗

(n−1)m by

L∗
(n−1)m+1 , and let p′ be the identity covering of Bn by Bn.

Proposition 6.5. Consider the situation of Example 6.4. Let v be a vertex of
Λ1. Then svC

∗(lim
↽−

(Λm, pm × p′))sv is isomorphic to the Kirchberg algebra Pn
(see [5]) whose K-theory is opposite to that of On.

Proof. Since C∗(Bn) is generated by n isometries whose range projections sum
to the identity, C∗(Bn) is canonically isomorphic to On [7]. Hence

C∗(Λm) ∼= C∗(L∗
(n−1)m)⊗On

by [20, Corollary 3.5(iv)]. As in [17, Lemma 2.4], there is an isomor-
phism C∗(L∗

(n−1)m) ∼= M(n−1)m(C(T)) for each m, and in particular we have

K∗(C
∗(L∗

(n−1)m)) ∼= (Z,Z). Since K∗(On) = (Z/(n− 1)Z, 0) [9], the Künneth

theorem implies that K∗(C
∗(Λm)) ∼= (Z/(n− 1)Z,Z/(n− 1)Z).

A special case of [27, Equation (4.7)] implies that the covering map pm induces
multiplication by n− 1 from K0(C

∗(L∗
(n−1)m)) to K0(C

∗(L∗
(n−1)m+1)), and the

identity homomorphism fromK1(C
∗(L∗

(n−1)m)) toK1(C
∗(L∗

(n−1)m+1)). Clearly

p′ induces the identity map on K∗(On).
Let Λ = lim

↽−
(Λm, pm × p′). Theorem 3.8 and Proposition 5.7 combine to show

that

K∗(C
∗(Λ)) ∼= lim

−→
((Z/(n− 1)Z,Z/(n− 1)Z), (×(n− 1), id)).

Since multiplication by n − 1 is the 0 homomorphism from Z/(n − 1)Z to
Z/(n− 1)Z, it follows that K∗(C

∗(Λ)) ∼= (0,Z/(n− 1)Z).
Lemma 4.7 proves that Λ is cofinal. For an infinite path y ∈ Λ∞, Lemma 4.5
combined with the observation that the cycles in the L∗

(n−1)m grow with m

shows that if a, b ∈ N3 and σa(y) = σb(y), then a and b differ only in their
first coordinates. It follows from Proposition 4.3 that the aperiodicity of Λ
is implied by the well-known aperiodicity of Bn. Hence C∗(Λ) is simple by
[20, Proposition 4.8]. Moreover, since every vertex of Λ hosts a cycle with an
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entrance, C∗(Λ) is also purely infinite (see [20, Proposition 4.9], [38, Proposi-
tion 8.8]). The result therefore follows from the Kirchberg-Phillips classification
theorem [28]. �

6.4. Higher-rank Bunce-Deddens algebras. In this subsection we de-
scribe a class of simple AT algebras with real-rank 0 which arise from sequences
of covering systems of 2-graphs and which cannot in general be obtained from
the construction of [27] (see Example 6.6 and Theorem 6.7). We indicate in
Remark 6.12 why we think of these algebras as higher-rank analogues of the
Bunce-Deddens algebras.
For k ≥ 1, let ∆k be the k-graph with vertices Zk, morphisms {(m,n) ∈
Zk×Zk : m ≤ n} where r(m,n) = m, s(m,n) = n and d(m,n) = n−m. There
is a free action of Zk on ∆k given by translation; that ism·(p, q) = (p+m, q+m)
for m ∈ Zk and (p, q) ∈ ∆k.
Given a finite-index subgroup H of Zk, we denote by ∆k/H the quotient of ∆k

by the action of H . That is, for q ∈ Nk, (∆k/H)q = {[g, g + q] : g ∈ Zk}; in
particular, (∆k/H)0 = {[g, g] : g ∈ Zk}, and we henceforth identify (∆k/H)0

with Zk/H via the map [g, g] 7→ [g] where [g] denotes the class g +H of g in
Zk/H . The range and source maps in ∆k/H are then given by r([g, g+q]) = [g]
and s([g, g + q]) = [g + q]. If H ′ ⊂ H is a finite-index subgroup of H , then it
also has finite index in Zk, and there is a natural surjection p : Zk/H ′ → Zk/H
which induces a finite covering map, also denoted p of ∆k/H by ∆k/H

′.
Most of the remainder of this section is concerned with the following example
of a sequence of covering systems.

Example 6.6. Let H1 ⊃ H2 ⊃ H3 ⊃ . . . be a chain of finite-index sub-
groups of Z2. For each n, let pn : ∆2/Hn+1 → ∆2/Hn be the canonical
covering induced by the quotient maps described above, let mn = 1, and let
sn : ∆2/Hn+1 → S1 be the trivial cocycle. This data specifies a sequence
(∆2/Hn,∆2/Hn+1, pn)

∞
n=1 of row-finite covering systems of 2-graphs with no

sources. Applying Corollary 2.11, we obtain a 3-graph lim
↽−

(∆2/Hn; pn)). As

always, P1 denotes
∑

v∈(∆2/H1)0 sv ∈ C
∗(∆2/H1) ⊂ C

∗(lim
↽−(∆2/Hn; pn)).

Theorem 6.7. Consider the situation of Example 6.6.

(1) We have

K0(P1C
∗(lim
↽−

(∆2/Hn; pn))P1) ∼= lim
−→

(Z,×[Hn : Hn+1])⊕ Z,

and this isomorphism takes [P1] to (g, 0) where g is the image of [Z2 : H1]
in the direct limit lim−→(Z,×[Hn : Hn+1]).

(2) For each n the homomorphism from Z2 to Z2 determined by coordinate-
wise multiplication by the integer [Hn : Hn+1] restricts to a homomorphism
mHn,Hn+1 : Hn → Hn+1. Moreover,

K1(P1C
∗(lim
↽−

(∆2/Hn; pn))P1) ∼= lim
−→

(Hn,mHn,Hn+1).

(3) C∗(lim
↽−(∆2/Hn; pn)) is simple if and only if

⋂∞
n=1Hn = {0}, and is an AT

algebra with real-rank 0 when it is simple.
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The proof of this result will occupy the bulk of this section. Before presenting
it, we state a Corollary and use it to formulate some concrete examples.

Corollary 6.8. Consider the situation of Example 6.6. There are sequences
(hn1 )∞n=1 and (hn2 )∞n=1 in Z2 such that: (1) for each n, the elements hn1 and

hn2 generate Hn; and (2) the matrix Mn =
(
mn

1,1 m
n
1,2

mn
2,1 m

n
2,2

)
satisfying hn+1

1 =

mn
1,1h

n
1 + mn

1,2h
n
2 and hn+1

2 = mn
2,1h

n
1 + mn

2,2h
n
2 has positive determinant for

all n. Moreover, if M ca
n denotes the classical adjoint

(
mn

2,2 −mn
1,2

−mn
2,1 mn

1,1

)
of Mn for

each n, and if we regard these matrices as homomorphisms of Z2, then

(6.2) K1(P1C
∗(lim
↽−

(∆2/Hn; pn))P1) ∼= lim
−→

(Z2,M ca
n ).

Proof. That we can choose the hni so that the matrices Mn all have positive
determinant follows from an inductive argument based on the observation that
replacing hn+1

i with −hn+1
i reverses the sign of det(Mn).

For each n, let ψn be the isomorphism of Z2 onto Hn satisfying ψn(ei) = hni ,
and let mHn,Hn+1 : Hn → Hn+1 be the homomorphism described in Theo-
rem 6.7(2). We claim that ψn+1 ◦M ca

n = mHn,Hn+1 ◦ ψn.
To see this, observe that mHn,Hn+1 is multiplication by the determinant of Mn.

Hence, as rational transformations, m−1
Hn,Hn+1

◦M ca
n = M−1

n . Since mHn,Hn+1

commutes with ψn+1, the desired equality ψn+1 ◦ M ca
n = mHn,Hn+1 ◦ ψn is

therefore equivalent to ψn+1 = ψn ◦Mn, which follows from the definitions of
the maps involved. This establishes the claim.
The claim guarantees that lim

−→
(Hn,mHn,Hn+1)

∼= lim
−→

(Z2,M ca
n ), and (6.2) then

follows from Theorem 6.7(2). �

Examples 6.9. (1) Let α and β be supernatural numbers. For n ∈ N \ {0},
let φn be the homomorphism of Z2 determined by the diagonal matrix
Mn :=

( αn 0
0 βn

)
.

For each n, let

Hn := α[1, n]Z× β[1, n]Z = φn(Z
2) ⊂ Z2.

We deduce from Theorem 6.7 that

K∗(P1C
∗(lim
↽−

(∆2/Hn; pn))P1) =
(
Z

[
1
αβ

]
⊕ Z, Z

[
1
α

]
⊕ Z

[
1
β

])
,

that the position of the unit in K0 corresponds to the element (α1, 0), and
that P1C

∗(lim
↽−

(∆2/Hn; pn))P1 is a simple AT algebra of real-rank 0.
We claim that this is an example of an AT algebra which cannot be

realised using a rank-2 Bratteli diagram as in [27]. To see this, suppose
otherwise. Then [27, Theorem 6.1] implies that there exists an injective
homomorphism φ : Z

[
1
α

]
⊕ Z

[
1
β

]
→ Z

[
1
αβ

]
⊕ Z such that each element of

coker(φ) has finite order. Hence there exists (x, y) ∈ Z
[

1
α

]
⊕Z

[
1
β

]
such that

φ(x, y) = (z,m) with m 6= 0. Since Z
[

1
α

]
⊕Z

[
1
β

]
is generated by elements of

the form (x, 0) and (0, y), we may in fact assume without loss of generality
that there is an element x ∈ Z

[
1
α

]
such that φ(x, 0) = (z,m). Since α is
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infinite, there exist n > m and x′ ∈ Z
[

1
α

]
such that n · x′ = x, and this

forces n · φ(x′, 0) = (z,m) which is impossible by our choice of n.
Since each ∆2/Hn

∼= L∗
α[1,n] ×L

∗
β[1,n], the K-theory calculations for this

example can also be verified using the Künneth formula (Theorem 3.8 and
Proposition 5.7).

(2) Let φ be the homomorphism of Z2 determined by the integer matrix M :=(
a b
c d

)
. Suppose that M is diagonalisable as a real 2 × 2 matrix, and that

its eigenvalues are greater than 1 in modulus. Let D := ad − bc be the
determinant of M . For n ≥ 1, let Hn := MnZ2 and Λn := ∆2/Hn. Our
assumption regarding the eigenvalues of M ensures that

⋂∞
n=1Hn = {0}, so

Theorem 6.7 and Corollary 6.8 imply that C∗(lim
↽−

(∆2/Hn; pn)) is a simple
AT algebra of real rank zero with

K∗(P1C
∗(lim
↽−

(∆2/Hn; pn))P1) ∼=
(
Z

[
1
D

]
⊕ Z, lim

−→

(
Z2,

(
d −b

−c a

)) )
.

In particular, let M =
(
a −b
b a

)
with a2 + b2 > 1. We may identify Z2 with

the group of Gaussian integers Z[i] by (m,n) 7→ m+ in, and then the group
homomorphism of Z2 obtained from multiplication by M coincides with
the group homomorphism of Z[i] obtained from multiplication by a + ib.
Likewise M ca implements multiplication by the conjugate a − ib. With
D := a2 + b2 and ζ := 1

a−ib = a+ib
a2+b2 , we have

K∗(P1C
∗(lim
↽−(∆2/Hn; pn))P1) ∼=

(
Z
[

1
D

]
⊕ Z, Z

[
i, 1
ζ

])
.

by Theorem 6.7.
(3) More generally, a sequence of Gaussian integers ζj := aj + bji with |ζj | > 1

for all j gives rise to a natural notion of a Gaussian supernatural number
ζ =

∏∞
j=1 ζj . Generalising the construction of the latter part of example (2)

above, let Hn := (
∏n
j=1 ζj)Z[i] for each n, and identify Z[i] with Z2 as a

group to obtain a decreasing chain of subgroups of Hn of Z2 with trivial
intersection.

Let α be the supernatural number α =
∏∞
j=1 |ζj |

2. Then

K∗(P1C
∗(lim
↽−

(∆2/Hn; pn))P1) ∼=
(
Z
[

1
α

]
⊕ Z, Z

[
i, 1
ζ

])
.

by Theorem 6.7 and Corollary 6.8.

We now turn to the proof of Theorem 6.7; in particular, we adopt the notation
and conventions of Example 6.6. Our first step is to describe explicitly the
K-theory of C∗(∆2/Hn) for a fixed n ∈ N \ {0}. We do this using the results
of Section 5.2.
For q ∈ Zk we write q+ and q− for the positive and negative parts of q. That
is to say that q+ and q− are the unique elements of Nk whose coordinate-wise
minimum q+ ∧ q− is equal to 0, and which satisfy q = q+ − q−.
For q ∈ Zk, a cycle of degree q in a k-graph Λ is a pair (µ, ν) where µ ∈ Λq+

and ν ∈ Λq− such that r(µ) = r(ν) and s(µ) = s(ν). When q ∈ Nk, q = q+
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and q− = 0, so ν is a vertex, and µ is a cycle in the usual sense: a path whose
range and source coincide.
Let H ⊂ Z2 be a finite-index subgroup of Z2. Let G = Z2/H . We view the
ring ZG as the collection of functions f : G → Z. For X ⊆ G we denote the
indicator function of X by 1X . We denote the point-mass at g ∈ G by δg.
Let Λ := ∆2/H . Let E be the skeleton of Λ. That is E is the directed graph
with the same vertices as Λ, and edges Λe1∪Λe2 , with range and source inherited
from Λ. The degree map from Λ restricts to a map from E1 to {e1, e2}. As in
[31, 27] we call edges in E blue when they are of degree e1 in Λ, and red when
they are of degree e2. We often blur the distinction between concatenation of
edges in E and the corresponding factorisation of a path in Λ.
Recall that we are identifying Λ0 with G = Z2/H . Hence, given a path α =
a0a1 · · · an in E, we define functions f bα and f rα in ZG by

f bα(g) = #{0 ≤ j ≤ n : r(aj) = g, d(aj) = e1}

f rα(h) = #{0 ≤ k ≤ n : r(ak) = h, d(ak) = e2}.

The idea is that f bα(g) counts the number of blue edges in α whose range is g,
and f rα(g) does the same thing for red edges.
We define fα ∈ ZG⊕ZG by fα = f bα⊕ f

r
α. For a vertex g ∈ Λ0 = G, we define

f bg and f rg to be the zero element of ZG, and fg = f bg ⊕ f
r
g is then the zero

element of ZG ⊕ ZG.
As Λ = ∆2/H , for each g ∈ Λ0 = G there is a unique path [g, g + (1, 1)] of
degree (1, 1) with range g. Using the factorisation property, we can express this
path as bgrg+[e1] = rgbg+[e2] where rg and bg denote the unique red and blue

edges in E with range g (for n ∈ Z2, [n] denotes the class of n in the quotient
group G = Z2/H). We write zg for the function (δg+[e2] − δg) ⊕ (δg − δg+[e1])
in ZG⊕ ZG.
Given paths α = a0 · · · am and β = b0 · · · bn in the skeleton E of Λ such that
r(a0) = r(b0) and s(am) = s(bn), let fα,β := fα − fβ ∈ ZG ⊕ ZG. Fix
generators h1, h2 for H ; so [hi] = [0] in G. By definition of Λ, there are unique
paths µ+

1 ∈ Λ(h1)+ and µ−
1 ∈ Λ(h1)− with r(µ±

1 ) = 0. Fix factorisations α±
1 of

µ±
1 into edges from the skeleton E. Since

s(µ+
1 ) = [(h1)+] = [(h1)−] = s(µ−

1 )

in G, the pair (µ+
1 , µ

−
1 ) is a cycle of degree h1 in Λ with range [0]. The same

construction for h2 gives a cycle (µ+
2 , µ

−
2 ) of degree h2 with range [0] and fixed

factorisations α±
2 of µ±

2 into edges from the skeleton E.

Lemma 6.10. With the notation established in the preceding paragraphs, the
chain complex (5.6) can be described as follows:

(1) for each g ∈ G, ∂1(δg ⊕ 0) = δg − δg+[e1], ∂1(0⊕ δg) = δg − δg+[e2], and

∂2(δg) = (δg+[e2] − δg)⊕ (δg − δg+[e1]) = zg.

(2) coker(∂1) ∼= Z is generated by δ0 + Im(∂1);
(3) ker(∂2) ∼= Z is generated by 1G;
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(4) For each h ∈ G, the set {zg : g ∈ G \ {h}} is a basis for Im(∂2) ∼= Z|G|−1.
(5) Fix any two factorisations α and β of a path µ in Λ into edges from E.

Then fα − fβ ∈ Im(∂2), and ∂1(fα) = ∂1(fβ) = δr(α) − δs(α).
(6) ker(∂1) is the subgroup of ZG ⊕ ZG generated by the elements fα,β where

α and β are paths in the skeleton E with r(α) = r(β) and s(α) = s(β).
(7) There is an isomorphism ψ of H onto ker(∂1)/ Im(∂2) which takes d(µ) −

d(ν) to fα,β + Im(∂2) for each cycle (µ, ν) in Λ and pair of factorisations
α of µ and β of ν. In particular, for any basis B for Im(∂2), the set
B ∪ {fα+

1 ,α
−
1
, fα+

2 ,α
−
2
} is a basis for ker(∂1) ∼= Z|G|+1 (where α±

i are the

fixed factorisations of the paths µ±
i of degree (hi)± described above).

In particular, K∗(C
∗(Λ)) ∼= (Z2, H) where the class of the identity in K0 is

identified with the element (|G|, 0) of Z2.

Proof. (1) The adjacency matrix M1 associated to (Λ0,Λe1 , r, s) is the permu-
tation matrix determined by translation by [e1] in G and similarly for M2. The
first statement then follows from the formulae for ∂1 and ∂2 in terms of M1

and M2.
(2) The formulae for ∂1(δg⊕0) and ∂1(0⊕δg) show that δg+Im(∂1) = δg+[ei] +

Im(∂1) in coker(∂1) for i = 1, 2 and g ∈ G. Since the action of Z2 on G by
translation is transitive, this establishes (2).
(3) Using the formula for ∂2 established in (1), one can see that for f ∈ ZG,
∂2(f) = f1 ⊕ f2 where

f1(g) = −f(g) + f(g − [e1]) and f2(g) = f(g)− f(g − [e2])).

Hence f ∈ ker(∂2) if and only if f(g) = f(g − [e1]) = f(g − [e2]) for all g ∈ G,
and since the action of Z2 on G is transitive, this establishes (3).
(4) Part (1) establishes that Im(∂2) is generated by {zg : g ∈ G}. A simple
calculation shows that

∑
g∈G zg = 0 in ZG ⊕ ZG, and it follows that for any

h ∈ G, the set {zg : g ∈ G \ {h}} generates Im(∂2) ∼= Z|G|−1. Since ker(∂2) has
rank 1, the rank of its image is |G| − 1, establishing (4).
(5) By part (4), the image of ∂2 is generated by elements of the form fα − fβ
where α and β are the two possible factorisations of a path in Λ(1,1). Since
fαβ = fα + fβ when α and β are paths in E which can be concatenated, this
establishes the first claim. The second statement follows from a straightforward
calculation using that

(6.3) ∂1(f
b ⊕ f r)(g) = f b(g)− f b(g − [e1]) + f r(g)− f r(g − [e2]).

(6) If α, β are paths in the skeleton with r(α) = r(β) and s(α) = s(β) then
fα,β belongs to ker(∂1) by (5).
We must show that every f ∈ ker(∂1) can be written as a Z-linear combination
of elements of the form fα,β. First note that it suffices to treat the case where f
takes only nonnegative values (this is because 1G⊕1G can be so expressed). So
suppose that f takes nonnegative values, and write f = f b⊕f r. Let Ef be the
directed graph with vertices G and which contains f b(g) parallel copies of the
blue edge in E with range g and f r(g) copies of the red edge in E with range
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g. If Ef contains a terminal vertex g which receives at least one edge but emits
no edges at all, then f b(g) + f r(g) 6= 0, but f b(g − [e1]) = f r(g − [e2]) = 0,
and (6.3) shows that ∂1(f)(g) 6= 0. Hence Ef contains no such vertex, and
therefore must either contain a cycle α or contain no edges at all. In the latter
case, the claim is trivial, and in the former case, f ≥ fα, and removing the cycle
α from Ef produces the graph Ef−fα

for the function f − fα. After finitely
many such steps, we must obtain a forest with no terminal vertex. The only
such forest is the empty graph which corresponds to the function 0 ⊕ 0. That
is f −

∑
α∈L fα = 0⊕ 0 for some collection L of cycles, and this proves (6).

(7) Suppose that (µ, ν) is a cycle in Λ. Then

s(µ)− [d(µ)] = r(µ) = r(ν) = s(ν)− [d(ν)] = s(µ)− [d(ν)]

in G = Λ0 = Z2/H , so d(µ) − d(ν) ∈ H . It is clear from the definition of Λ
that each element of H arises as d(µ)− d(ν) for some cycle (µ, ν) in Λ.
To see that the assignment d(µ) − d(ν) 7→ fα,β + Im(∂2) is well defined, we
must show two things. First that for distinct factorisations α and α′ of µ and
distinct factorisations β and β′ of ν, the difference fα,β−fα′,β′ lies in the image
of ∂2. This follows from (5). Second, we must show that if (µ, ν) and (µ′, ν′) are
cycles in Λ with d(µ)−d(ν) = d(µ′)−d(ν′), then there exist factorisations α of
µ, β of ν, α′ of µ′, and β′ of ν′ such that fα,β − fα′,β′ is in Im(∂2). To see this,
first note that by factorising µ = µ′τ and ν = ν′τ where d(τ) = d(µ) ∧ d(ν),
we can reduce to the case where d(µ)∧d(ν) = 0. Next we claim that it suffices
to consider the case where r(µ) = r(ν) = r(µ′) = r(ν′) = [0]. To see this, fix
η in [0]Λr(µ) and note that the cycle (ηµ, ην) corresponds to the same class as
(µ, ν) in ker(∂1)/ Im(∂2). Factorise ηµ = ξρ and ην = ωσ where d(ξ) = d(µ),
d(ω) = d(ν) and d(ρ) = d(σ) = d(η). Since each gΛn is a singleton and
since Z2 acts on Λ by translation, (ξ, ω) is a cycle with range [0], and ρ = σ.
Hence the cycle (ξ, ω) corresponds to the same class in ker(∂1)/ Im(∂2) as (µ, ν).
After shifting (µ′, ν′) in a similar way we may assume that both cycles have
range [0]. We now have cycles (µ, ν) and (µ′, ν′) with range [0] and such that
d(µ)− d(ν) = d(µ′)− d(ν′) and d(µ) ∧ d(ν) = 0 = d(µ′) ∧ d(ν′). Since [0]Λn is
a singleton for any n ∈ Z2, this forces µ = µ′ and ν = ν′. This completes the
proof that d(µ)− d(ν) 7→ fα,β + Im(∂2) is well defined.
That fαβ = fα+fβ ensures that ψ(g+h) = ψ(g)+ψ(h), and that fβ,α = −fα,β
shows that ψ(−g) = −ψ(g). Hence ψ is a homomorphism. By part (6), to see
that ψ is surjective, we just need to show that each fα,β+Im(∂2) is in the range
of ψ. This is clear because fα,β + Im(∂2) is precisely ψ(d(µ) − d(ν)) where µ
factorises as α and ν factorises as β. Finally, to see that ψ is injective, note that
if fα,β ∈ Im(∂2), then d(µ) = d(ν) where µ factorises as α and ν factorises as
β. This completes the proof that ψ : H → ker(∂1)/ Im(∂2) is an isomorphism.
The remaining statement follows from (4) and that (µ+

1 , µ
−
1 ) and (µ+

2 , µ
−
2 ) are

cycles whose degrees form a basis for H . This proves (7).
The final statement of the Lemma follows from (5.7). �
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We now consider two consecutive graphs in the sequence of covering systems
described in Example 6.6, and describe the homomorphism of K-invariants
obtained from Proposition 3.2(6).

Theorem 6.11. Consider the situation described in Example 6.6, and fix n ∈
N \ {0}. For i = n, n + 1, let Λi := ∆2/Hi, and consider the commuting
diagram

0 ←−−−− ZΛ0
n

∂Λn
1←−−−− ZΛ0

n ⊕ ZΛ0
n

∂Λn
2←−−−− ZΛ0

n ←−−−− 0
yp∗n

yp∗n⊕p∗n

yp∗n

0 ←−−−− ZΛ0
n+1

∂
Λn+1
1←−−−− ZΛ0

n+1 ⊕ ZΛ0
n+1

∂
Λn+1
2←−−−− ZΛ0

n+1 ←−−−− 0

(1) The right-hand vertical map p∗n : ZΛ0
n → ZΛ0

n+1 restricts to a homo-

morphism p∗n|ker(∂Λn
2 ) : ker(∂Λn

2 ) → ker(∂
Λn+1

2 ) which is characterised by

p∗n|ker(∂Λn
2 )(1Gn

) = 1Gn+1.

(2) The left-hand vertical map p∗n : ZΛ0
n → ZΛ0

n+1 induces a homomorphism

p̃∗n : coker(∂Λn

1 )→ coker(∂
Λn+1

1 ) characterised by

p̃∗n(δ0 + Im(∂Λn

1 )) = [Hn : Hn+1] · δ0 + Im(∂
Λn+1

1 ).

(3) The middle vertical map p∗n⊕p
∗
n : ZΛ0

n⊕ZΛ0
n → ZΛ0

n+1⊕ZΛ0
n+1 induces a

homomorphism (p∗n ⊕ p
∗
n)

∼ : ker(∂Λn

1 )/ Im(∂Λn

2 ) → ker(∂
Λn+1

1 )/ Im(∂
Λn+1

2 )
such that the following diagram commutes.

Hn
ψn
−−−−→ ker(∂Λn

1 )/ Im(∂Λn

2 )
ymHn,Hn+1

y(p∗n⊕p∗n)∼

Hn+1
ψn+1
−−−−→ ker(∂

Λn+1

1 )/ Im(∂
Λn+1

2 )

where ψn and ψn+1 are the isomorphisms obtained from Lemma 6.10(7),
and mHn,Hn+1 is as in Theorem 6.7(2).

Under the isomorphism

K∗(C
∗(Λi)) ∼=

(
coker(∂Λi

1 )⊕ ker(∂Λi

2 ), ker(∂Λi

1 )/ Im(∂Λi

2 )
)

obtained from Corollary 5.6, the maps described in (1), (2) and (3) deter-
mine the map (ιpn

)∗ : K∗(C
∗(Λn)) → K∗(C

∗(Λn+1)) obtained from Proposi-
tion 3.2(6).

Proof. Lemma 6.10(3) ensures that 1Gi
generates ker(∂Λi

2 ) for i = n, n+1. The
formula for p∗n shows that p∗n(1Gn

) = 1Gn+1, which gives (1). Statement (2)
follows from the formula for p∗n combined with the observation that for i =

n, n+ 1, the δg, g ∈ Gi are all equivalent modulo Im(∂Λi

1 ).
It remains only to prove (3). We first consider the case where Hn = Z2, so
Gn = {0} and Λn is a copy of the 2-graph T2

∼= N2 (as a category) with one
vertex and one morphism λm of each degree m ∈ N2. In this case, ψn is just
the identity map from Z2 to Z⊕Z. Let h1, h2 be a pair of generators for Hn+1.
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Since Hn+1 has finite index in Z2, the assignments (1, 0) 7→ h1 and (0, 1) 7→ h2

determine an endomorphism of Hn which is a rational isomorphism. Hence it
suffices to show that (p∗n⊕p

∗
n)

∼◦ψn(hi) = ψn+1([Z
2 : Hn+1]·hi) for i = 1, 2. We

just argue that this happens for i = 1 (the case i = 2 follows from a symmetric
argument).
Writing h1 = (x, y) where x, y ∈ Z, the formula for p∗n ensures that (p∗n ⊕ p

∗
n)

∼

takes ψn(h1) to the class of x1Gn+1 ⊕ y1Gn+1. To see that this is ψn+1([Z
2 :

Hn+1] · h1), let f := fα+
1 ,α

−
1

= ψn+1(h1) be the function in ZGn+1 ⊕ ZGn+1

obtained from Lemma 6.10(7). By definition of f , we have f = fb ⊕ fr where
the entries of fb sum to x and the entries of fr sum to y. For g ∈ Gn+1, let
g · fb be the function determined by g · fb(h) = fb(h− g), and similarly for fr.
Since Gn+1 acts freely and transitively on Λ0

n+1 = Gn+1, it follows that

(6.4)
∑

g∈Gn+1
g · f = x1Gn+1 ⊕ y1Gn+1 = (p∗n ⊕ p

∗
n)

∼ ◦ ψn(h1).

The proof of statement (7) in Lemma 6.10 shows that each g ·f := g ·fb⊕ g ·fr
represents the same class as f in ker(∂

Λn+1

1 )/ Im(∂
Λn+1

2 ). Hence the left-hand

side of (6.4) has the same class in ker(∂
Λn+1

1 )/ Im(∂
Λn+1

2 ) as ψn+1(|Gn+1| · h1)
as required.
For the general case, first note that we may assume without loss of generality
that H1 = Z2 so that Λ1 = T2. Let p[1,n] := p1 ◦ · · · ◦ pn−1 and p[1,n+1] :=
p1 ◦· · ·◦pn be the coverings of Λ1 = T2 by Λn and Λn+1 obtained by composing
the first n and n+ 1 levels of the covering system; we may apply the argument
of the previous paragraph to these coverings. Then p[1,n+1] = p[1,n] ◦ pn, so
p∗[1,n+1] ⊕ p

∗
[1,n+1] = (p∗[1,n] ⊕ p

∗
[1,n]) ◦ (p∗n ⊕ p

∗
n), and since these maps induce

homomorphisms between ker(∂T2
1 )/ Im(∂T2

2 ) and ker(∂
Λn+1

1 )/ Im(∂
Λn+1

2 ) which
are rational isomorphisms, it follows that (p∗n ⊕ p

∗
n)

∼ behaves as claimed.
The final statement follows from Corollary 5.6. �

We are now ready to prove Theorem 6.7.

Proof of Theorem 6.7. Proposition 3.2 shows that P1 is full so that compression
by P1 induces an isomorphism on K-theory. The formulae for the K-groups
in statements (1) and (2) follow from Lemma 6.10 and Theorem 6.11 and the
continuity of the K-functor.
Since v(∆2/Hn)w 6= ∅ for all n ∈ N \ {0}, and v, w ∈ ∆0

2/Hn, the 3-graph
lim
↽−

(∆2/Hn, pn) is cofinal. Moreover a given infinite path x in lim
↽−

(∆2/Hn, pn) is

periodic with period m ∈ Z2 if and only if every infinite path in lim
↽−

(∆2/Hn, pn)
is periodic with period m, which in turn is equivalent to the condition that
m ∈

⋂∞
n=1Hn. It follows from Lemma 4.5 that lim

↽−
(∆2/Hn, pn) is simple if and

only if
⋂
Hn = {0}; moreover, in this case, the argument of the second part of

[27, Section 5] shows that C∗(lim
↽−

(∆2/Hn, pn)) has unique trace.

We next claim that each C∗(∆2/Hn) ∼= M[Z2:Hn](C(T2)). To verify this,
one first checks that h 7→ s[(0,h+)]s

∗
[(0,h−)] is a group isomorphism Hn →

U(s[0]C
∗(∆2/Hn)s[0]) for each n. The standard argument used in [27,

Lemma 3.9] shows that each s[(0,h+)]s
∗
[(0,h−)] has full spectrum. One can
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then deduce that s[0]C
∗(∆2/Hn)s[0] ∼= C∗(Hn) ∼= C∗(Z2) ∼= C(T2). For

m ∈ Z2/Hn, define Vm := s∗[0,m] ∈ C∗(∆2/Hn). Applying Lemma 3.3

to these partial isometries with p = s[0] and q = 1C∗(∆2/Hn)proves that

C∗(∆2/Hn) ∼= M[Z2:Hn](C(T2)).
It now follows from [3, Theorem 1.3] that C∗(lim

↽−
(∆2/Hn; pn)) has real-rank

0. The classification of such algebras of Dădărlat-Elliott-Gong (see [36, Theo-
rem 3.3.1]), and the K-theory calculations above complete the proof. �

Remark 6.12. Higher-rank Bunce-Deddens algebras and generalised odometer
actions. We consider a slightly more general version of the situation described
in Example 6.6. Let H1 ⊃ H2 ⊃ H3 ⊃ . . . be a chain of finite-index sub-
groups of Zk such that

⋂
nHn = {0}. For each n, let pn : ∆k/Hn+1 → ∆k/Hn

be the canonical covering induced by the quotient maps described above, let
mn = 1, and let sn : ∆k/Hn+1 → S1 be the trivial cocycle. This data spec-
ifies a sequence (∆k/Hn,∆k/Hn+1, pn)

∞
n=1 of row-finite covering systems of

k-graphs with no sources. Applying Corollary 2.11, we obtain a (k + 1)-graph
lim
↽−

(∆k/Hn; pn).

We claim that the corner P1C
∗(lim
↽−

(∆k/Hn; pn))P1 can be thought of as a
higher-rank Bunce-Deddens algebra. We justify this by giving a description
of P1C

∗(lim
↽−

(∆k/Hn; pn))P1 as a crossed product by a generalised odometer

action. We assume here that H1 = Zk so that ∆k/H1 is a copy of the k-graph
Tk ∼= Nk (as a category) with one vertex and one morphism λm of each degree
m ∈ Nk.
One way to realise the Bunce-Deddens algebras is as crossed products of alge-
bras of continuous functions on Cantor sets by generalised odometer actions.
Given a supernatural number α = α1α2 · · · , let Gn := Z/α[1, n]Z for all n.
Then for each n, since α[1, n+1]Z ⊃ α[1, n]Z, there is a natural surjective group
homomorphism from Gn+1 to Gn. Hence, we may form the projective limit
group lim←−(Gn, pn). The automorphism τ(g1, g2, . . . ) = (g1 + [1], g2 + [1], . . . )

for (g1, g2, . . . ) ∈ lim
←−

(Gn, pn) can then naturally be regarded as an odometer

action on lim
←−

(Gn, pn). The Bunce-Deddens algebra of type α is the crossed

product C(lim
←−

(Gn, pn)) ⋊τ̃ Z where τ̃ is the automorphism of C(lim
←−

(Gn, pn))

induced by τ (see [33, Examples 1(3)]).
There is an analogous realisation of P1C

∗(lim
↽−

(∆k/Hn, pn))P1 as follows. Let

Λ := lim
↽−

(∆k/Hn, pn). Let F denote the fixed-point algebra of C∗(Λ) for the

gauge action γ of Tk+1. Note that by Remark 3.9, the restriction of the gauge
action to P1C

∗(Λ)P1 is trivial on the last coordinate of Tk+1 and therefore
becomes an action by Tk denoted γ̃. Recall that Λ∞ denotes the collection
of infinite paths in Λ (see Notation 4.1). It is not hard to see that P1FP1 is
canonically isomorphic to C(vΛ∞) where v is the unique vertex of ∆k/H1

∼= Tk.
Let Gn := Zk/Hn for each n, and let pn : Gn+1 → Gn be the induced map
pn(m+Hn+1) := m+Hn. Observe that G = lim

←−
(Gn, pn) is a compact abelian

group. By functoriality of the projective limit the quotient maps Zk → Zk/Hn

induce a homomorphism j : Zk → G; injectivity of j follows from the fact
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that
⋂
nHn = {0}. There is an action τ of Zk on G given by τm(g1, g2, . . . ) =

(g1 +[m], g2 +[m], . . . ), which generalises the odometer action discussed above.
Since there is just one infinite path in Tk, the arguments of Section 4 show that
vΛ∞ ∼= G as a topological space. Note that for every m ∈ Nk, the generator
sλm

associated to the unique path λm ∈ T
m
k is a unitary in P1C

∗(Λ)P1 and
that under the identification of P1FP1 with C(vΛ∞) = C(G) conjugation by
sλm

implements the automorphism induced by the homeomorphism τm of G.
It follows that the reduction of the path groupoid (see [20, Section 2]) of Λ to
vΛ∞ is isomorphic to the semidirect product groupoid G ⋊τ Zk. Therefore,
standard arguments show that

P1C
∗(Λ)P1

∼= C(G) ⋊τ̃ Zk

where τ̃ is the action induced by τ . Note that under this identification the

restricted gauge action γ̃ coincides with the dual action of Tk = Ẑk.
The action of G on C(G) induced by translation in G yields an action of G on

C(G)⋊τ̃ Zk which commutes with the dual action of Tk = Ẑk. Thus we obtain
an action α by the compact abelian group G × Tk with fixed point algebra
isomorphic to C. Hence, C(G)⋊τ̃ Zk (and thus P1C

∗(Λ)P1) admits an ergodic
action of a compact abelian group. Such ergodic actions have been classified in

[24, 4.5, 6.1]; the invariant is a symplectic bicharacter χα on Ĝ×Zk, the dual
of G×Tk. This gives rise to an alternative description of the C∗-algebra as a

twisted group C∗-algebra with the group Ĝ×Zk and a 2-cocycle associated to
the bicharacter χα (only its cohomology class is determined by the bicharacter).
It follows that

C(G) ⋊τ̃ Zk ∼= C(Tk) ⋊ Ĝ

where the action of Ĝ on C(Tk) arises by translation from the embedding

Ĝ→ Tk dual to j : Zk → G.
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row-finite graphs, New York J. Math. 6 (2000), 307–324.

[3] B. Blackadar, O. Bratteli, G.A. Elliott and A. Kumjian, Reduction of real
rank in inductive limits of C∗-algebras, Math. Ann. 292 (1992), 111–126.

[4] B. Blackadar, K-theory for operator algebras. MSRI Publications vol. 5,
Cambridge University Press, 1998.

[5] B. Blackadar, Semiprojectivity in simple C∗-algebras, Operator algebras
and applications, 1–17, Adv. Stud. Pure Math., 38, Math. Soc. Japan,
Tokyo, 2004.

[6] K.S. Brown, Cohomology of groups. Graduate Texts in Mathematics, 87.
Springer-Verlag, New York, 1994.

[7] J. Cuntz, Simple C∗-algebras generated by isometries, Comm. Math. Phys.
57 (1977), 173–185.

Documenta Mathematica 13 (2008) 161–205



204 Alex Kumjian, David Pask, Aidan Sims

[8] J. Cuntz, A class of C∗-algebras and topological Markov chains II: Reducible
chains and the Ext-functor for C∗-algebras, Invent. Math. 63 (1981), 25–40.

[9] J. Cuntz, K-theory for certain C∗-algebras, Ann. Math. 113 (1981), 181–
197.

[10] J. Cuntz and W. Krieger, A class of C∗-algebras and topological Markov
chains, Invent. Math. 56 (1980), 251–268.

[11] D. Drinen, Viewing AF-algebras as graph algebras, Proc. Amer. Math. Soc.
128 (2000), 1991–2000.

[12] D. Drinen and M. Tomforde, The C∗-algebras of arbitrary graphs, Rocky
Mountain J. Math. 35 (2005), 105–135.

[13] M. Enomoto and Y. Watatani, A graph theory for C∗-algebras, Math.
Japon. 25 (1980), 435–442.

[14] D. Gwion Evans, On the K-theory of higher rank graph C∗-algebras, New
York J. Math. 14, 2008, 1–31.

[15] N.J. Fowler and A. Sims, Product systems over right-angled Artin semi-
groups, Trans. Amer. Math. Soc. 354 (2002), 1487–1509.

[16] N. Higson and G. Kasparov, E-theory and KK-theory for groups which
act properly and isometrically on Hilbert space, Invent. Math. 144 (2001),
23–74.

[17] A. an Huef and I. Raeburn, The ideal structure of Cuntz Krieger algebras,
Ergod. Th. & Dynam. Sys. 17 (1997), 611–624.

[18] G.G. Kasparov, Equivariant KK-theory and the Novikov conjecture, In-
vent. Math. 91 (1988), 147–201.

[19] A. Kumjian and D. Pask, C∗-algebras of directed graphs and group actions,
Ergod. Th. & Dynam. Sys. 19 (1999), 1503–1519.

[20] A. Kumjian and D. Pask, Higher rank graph C∗-algebras, New York J.
Math. 6 (2000), 1–20.

[21] A. Kumjian and D. Pask, Actions of Zk associated to higher-rank graphs,
Ergod. Th. & Dynam. Sys. 23 (2003), 1153–1172.

[22] A. Kumjian, D. Pask, and I. Raeburn, Cuntz-Krieger algebras of directed
graphs, Pacific J. Math. 184 (1998), 161–174.

[23] A. Kumjian, D. Pask, I. Raeburn, and J. Renault, Graphs, groupoids and
Cuntz-Krieger algebras, J. Funct. Anal. 144 (1997), 505–541.

[24] D. Olesen, G. Pedersen and M. Takesaki, Ergodic actions of compact
abelian groups, J. Operator Theory 3 (1980), 237–269.

[25] D. Pask, J. Quigg and I. Raeburn, Coverings of k-graphs, J. Algebra 289
(2005), 161–191.

[26] D. Pask and I. Raeburn, On the K-Theory of Cuntz-Krieger algebras, Publ.
rims Kyoto Univ. 32 (1996), 415–443.

[27] D. Pask, I. Raeburn, M. Rørdam and A. Sims, Rank-2 graphs whose C∗-
algebras are direct limits of circle algebras, J. Funct. Anal. 239 (2006),
137–178.

[28] N. C. Phillips, A classification theorem for nuclear purely infinite simple
C∗-algebras, Documenta Math. 5 (2000), 49–114.

Documenta Mathematica 13 (2008) 161–205



C∗-Algebras Associated to Coverings of k-Graphs 205

[29] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and Ext-
groups of certain cross-products of C∗-algebras, J. Operator Theory 4
(1980), 93–118.

[30] I. Raeburn, Graph algebras. CBMS Regional Conference Series in Mathe-
matics, Vol. 103, Amer. Math. Soc., 2005.

[31] I. Raeburn, A. Sims and T. Yeend, Higher rank graphs and their C∗-
algebras, Proc. Edinb. Math. Soc. 56, (2003), 99–115.
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