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Abstract. The aim of the paper is to calculate face numbers
of simple generalized permutohedra, and study their f -, h- and γ-
vectors. These polytopes include permutohedra, associahedra, graph-
associahedra, simple graphic zonotopes, nestohedra, and other inter-
esting polytopes.

We give several explicit formulas for h-vectors and γ-vectors involv-
ing descent statistics. This includes a combinatorial interpretation
for γ-vectors of a large class of generalized permutohedra which are
flag simple polytopes, and confirms for them Gal’s conjecture on the
nonnegativity of γ-vectors.

We calculate explicit generating functions and formulae for h-
polynomials of various families of graph-associahedra, including those
corresponding to all Dynkin diagrams of finite and affine types. We
also discuss relations with Narayana numbers and with Simon New-
comb’s problem.

We give (and conjecture) upper and lower bounds for f -, h-, and
γ-vectors within several classes of generalized permutohedra.

An appendix discusses the equivalence of various notions of deforma-
tions of simple polytopes.
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1 Introduction

Generalized permutohedra are a very well-behaved class of convex polytopes
studied in [Post’05], as generalizations of the classical permutohedra, associ-
ahedra, cyclohedra, etc. That work explored their wonderful properties from
the point of view of valuations such as volumes, mixed volumes, and number of
lattice points. This paper focuses on their further good behavior with respect
to face enumeration in the case when they are simple polytopes.
Simple generalized permutohedra include as an important subclass (the duals
of) the nested set complexes considered by DeConcini and Procesi in their
work on wonderful compactifications of hyperplane arrangements; see [DP’95,
FS’05]. In particular, when the arrangement comes from a Coxeter system, one
obtains interesting flag simple polytopes studied by Davis, Januszkiewicz, and
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Scott [DJS’03]. These polytopes can be combinatorially described in terms of
the corresponding Coxeter graph. Carr and Devadoss [CD’06] studied these
polytopes for arbitrary graphs and called them graph-associahedra.
We mention here two other recent papers in which generalized permutohedra
have appeared. Morton, Pachter, Shiu, Sturmfels, and Wienand [M–W’06]
considered generalized permutohedra from the point of view of rank tests on
ordinal data in statistics. The normal fans of generalized permutohedra are
what they called submodular rank tests. Agnarsson and Morris [AM’06] in-
vestigated closely the 1-skeleton (vertices and edges) in the special case where
generalized permutohedra are Minkowski sums of standard simplices.

Let us formulate several results of the present paper. A few definitions are
required. A connected building set B on [n] := {1, . . . , n} is a collection of
nonempty subsets in [n] such that

1. if I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B,

2. B contains all singletons {i} and the whole set [n];

see Definition 6.1. An interesting subclass of graphical building sets B(G) comes
from connected graphs G on [n]. The building set B(G) contains all nonempty
subsets of vertices I ⊆ [n] such that the induced graph G|I is connected.
The nestohedron PB is defined (see Definition 6.3) as the Minkowski sum

PB =
∑

I∈B
∆I

of the coordinate simplices ∆I := ConvexHull(ei | i ∈ I), where the ei are the
endpoints of the coordinate vectors in Rn. According to [Post’05, Theorem 7.4]
and [FS’05, Theorem 3.14] (see Theorem 6.5 below), the nestohedron PB is a
simple polytope which is dual to a simplicial nested set complex. For a graphical
building set B(G), the nestohedron PB(G) is called the graph-associahedron. In
the case when G is the n-path, PB(G) is the usual associahedron; and in the
case when G = Kn is the complete graph, PB(G) is the usual permutohedron.
Recall that the f -vector and the h-vector of a simple d-dimensional polytope P
are (f0, f1, . . . , fd) and (h0, h1, . . . , hd), where fi is the number of i-dimensional
faces of P and

∑
hi (t+1)i =

∑
fi t

i. It is known that the h-vector of a simple
polytope is positive and symmetric. Since the h-vector is symmetric, one can
define another vector called the γ-vector (γ1, γ2, . . . , γ⌊d/2⌋) by the relation

d∑

i=0

hi t
i =

⌊ d
2 ⌋∑

i=0

γi t
i(1 + t)d−2i.

A simplicial complex ∆ is called a flag complex (or a clique complex ) if its
simplices are cliques (i.e., subsets of vertices with complete induced subgraphs)
of some graph (1-skeleton of ∆). Say that a simple polytope is flag if its dual
simplicial complex is flag.
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Gal conjectured [Gal’05] that the γ-vector has nonnegative entries for any flag
simple polytope.
Let us that say a connected building set B is chordal if, for any of the sets
I = {i1 < · · · < ir} in B, all subsets {is, is+1, . . . , ir} also belong to B; see
Definition 9.2. By Proposition 9.4, graphical chordal building sets B(G) are
exactly building sets coming from chordal graphs. By Proposition 9.7, all
nestohedra PB for chordal building sets are flag simple polytopes. So Gal’s
conjecture applies to this class of chordal nestohedra, which include graph-
associahedra for chordal graphs and, in particular, for trees.
For a building set B on [n], define (see Definition 8.7) the set Sn(B) of B-
permutations as the set of permutations w of size n such that, for any i =
1, . . . , n, there exists I ∈ B such that I ⊆ {w(1), . . . , w(i)}, and I contains
both w(i) and max{w(1), w(2), . . . , w(i)}. It turns out that B-permutations
are in bijection with vertices of the nestohedron PB; see Proposition 8.10.
Let des(w) = #{i | w(i) > w(i + 1)} denote the number of descents in a

permutation w. Let Ŝn be the subset of permutations w of size n without two
consecutive descents and without final descent, i.e., there is no i ∈ [n− 1] such
that w(i) > w(i+ 1) > w(i+ 2), assuming that w(n+ 1) = 0.

Theorem 1.1. (Corollary 9.6 and Theorem 11.6) Let B be a connected chordal
building set on [n]. Then the h-vector of the nestohedron PB is given by

∑

i

hi t
i =

∑

w∈Sn(B)

tdes(w),

and the γ-vector of the nestohedron PB is given by
∑

i

γi t
i =

∑

w∈Sn(B)∩bSn

tdes(w).

This result shows that Gal’s conjecture is true for chordal nestohedra.

The paper is structured as follows. Sections 2, 3, and 4 give some background
on face numbers and general results about generalized permutohedra. More
specifically, Section 2 reviews polytopes, cones, fans, and gives basic terminol-
ogy of face enumeration for polytopes (f -vectors), simple polytopes (h-vectors),
and flag simple polytopes (γ-vectors).
Section 3 reviews the definition of generalized permutohedra, and recasts this
definition equivalently in terms of their normal fans. It then sets up the dic-
tionary between preposets, and cones and fans coming from the braid arrange-
ment. In particular, one finds that each vertex in a generalized associahedron
has associated to it a poset that describes its normal cone. This is used to
characterize when the polytope is simple, namely when the associated posets
have Hasse diagrams which are trees. In Section 4 this leads to a combinatorial
formula for the h-vector in terms of descent statistics on these tree-posets.
The remainder of the paper deals with subclasses of simple generalized permu-
tohedra. Section 5 dispenses quickly with the very restrictive class of simple
zonotopal generalized permutohedra, namely the simple graphic zonotopes.
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Sections 6 through 11 deal with the very interesting class of nestohedra, cul-
minating with a proof of Gal’s conjecture for chordal nestohedra. More specif-
ically, Section 6 discusses nestohedra PB coming from a building set B, where
the posets associated to each vertex are rooted trees. These include graph-
associahedra. Section 7 characterizes the flag nestohedra.

Section 8 discusses B-trees and B-permutations. These trees and permuta-
tions are in bijection with each other and with vertices of the nestohedron PB.
The h-polynomial of a nestohedron is the descent-generating function for B-
trees. Then Section 9 introduces the class of chordal building sets and shows
that h-polynomials of their nestohedra are descent-generating functions for B-
permutations.

Section 10 illustrates these formulas for h-polynomials by several examples: the
classical permutohedron and associahedron, the cyclohedron, the stellohedron
(the graph-associahedron for the star graph), and the Stanley-Pitman polytope.

Section 11 gives a combinatorial formula for the γ-vector of all chordal nestohe-
dra as a descent-generating function (or peak-generating function) for a subset
of B-permutations. This result implies Gal’s nonnegativity conjecture for this
class of polytopes. The warm-up example here is the classical permutohedron,
and the section concludes with the examples of the associahedron and cyclohe-
dron.

Sections 12 through 14 give some graph-associahedra calculations as well as
conjectures. Specifically, Section 12 calculates the generating functions for f -
polynomials of the graph-associahedra for all trees with one branching point
and discusses a relation with Simon Newcomb’s problem. Section 13 deals
with graphs that are formed by a path with two small fixed graphs attached to
the ends. It turns out that the h-vectors of graph-associahedra for such path-
like graphs can be expressed in terms of h-vectors of classical associahedra.
The section includes explicit formulas for graph-associahedra for the Dynkin
diagrams of all finite and affine Coxeter groups. Section 14 gives some bounds
and monotonicity conjectures for face numbers of generalized permutohedra.

The paper ends with an Appendix which clarifies the equivalence between var-
ious kinds of deformations of a simple polytope.

Acknowledgments: The authors thank Federico Ardila, Richard Ehren-
borg, Ira Gessel, Sangwook Kim, Jason Morton, Margaret Readdy, Anne Shiu,
Richard Stanley, John Stembridge, Bernd Sturmfels, Oliver Wienand, and An-
drei Zelevinsky for helpful conversations.

2 Face numbers

This section recalls some standard definitions from the theory of convex poly-
topes and formulates Gal’s extension of the Charney-Davis conjecture.
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2.1 Polytopes, cones, and fans

A convex polytope P is the convex hull of a finite collection of points in Rn.
The dimension of a polytope (or any other subset in R

n) is the dimension of
its affine span.
A polyhedral cone in Rn is a subset defined by a conjunction of weak inequalities
of the form λ(x) ≥ 0 for linear forms λ ∈ (Rn)∗. A face of a polyhedral cone
is a subset of the cone given by replacing some of the inequalities λ(x) ≥ 0 by
the equalities λ(x) = 0.
Two polyhedral cones σ1, σ2 intersect properly if their intersection is a face of
each. A complete fan of cones F in Rn is a collection of distinct nonempty
polyhedral cones covering Rn such that (1) every nonempty face of a cone in
F is also a cone in F , and (2) any two cones in F intersect properly. Cones in
a fan F are also called faces of F .
Note that fans can be alternatively defined only in terms of their top di-
mensional faces, as collections of distinct pairwise properly intersecting n-
dimensional cones covering Rn.
A face F of a convex polytope P is the set of points in P where some linear
functional λ ∈ (Rn)∗ achieves its maximum on P , i.e.,

F = {x ∈ P | λ(x) = max{λ(y) | y ∈ P}}.

Faces that consist of a single point are called vertices and 1-dimensional faces
are called edges of P .
Given any convex polytope P in Rn and a face F of P , the normal cone to
P at F , denoted NF (P ), is the subset of linear functionals λ ∈ (Rn)∗ whose
maximum on P is achieved on all of the points in the face F , i.e.,

NF (P ) := {λ ∈ (Rn)∗ | λ(x) = max{λ(y) | y ∈ P} for all x ∈ F}.

Then NF (P ) is a polyhedral cone in (Rn)∗, and the collection of all such cones
NF (P ) as one ranges through all faces F of P gives a complete fan in (Rn)∗

called the normal fan N (P ). A fan of the form N (P ) for some polytope P is
called a polytopal fan.
The combinatorial structure of faces of P can be encoded by the lattice of faces
of P ordered via inclusion. This structure is also encoded by the normal fan
N (P ). Indeed, the map F 7→ NF (P ) is an inclusion-reversing bijection between
the faces of P and the faces of N (P ).
A cone is called pointed if it contains no lines (1-dimensional linear subspaces),
or equivalently, if it can be defined by a conjunction of inequalities λi(x) ≥ 0
in which the λi span (Rn)∗. A fan is called pointed if all its faces are pointed.
If the polytope P ⊂ Rn is full-dimensional, that is dimP = n, then the normal
fan N (P ) is pointed. For polytopes P of lower dimension d, define the (n− d)-
dimensional subspace P⊥ ⊂ (Rn)∗ of linear functionals that are constant on P .
Then all cones in the normal fan N (P ) contain the subspace P⊥. Thus N (P )
can be reduced to a pointed fan in the space (Rn)∗/P⊥.
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A polytope P is called simple if any vertex of P is incident to exactly d = dimP
edges. A cone is called simplicial if it can be given by a conjunction of linear
inequalities λi(x) ≥ 0 and linear equations µj(x) = 0 where the covectors λi

and µj form a basis in (Rn)∗. A fan is called simplicial if all its faces are
simplicial. Clearly, simplicial cones and fans are pointed. A convex polytope
P ⊂ Rn is simple if and only if its (reduced) normal fan N (P )/P⊥ is simplicial.
The dual simplicial complex ∆P of a simple polytope P is the simplicial complex
obtained by intersecting the (reduced) normal fan N (P )/P⊥ with the unit
sphere. Note that i-simplices of ∆P correspond to faces of P of codimension
i+ 1.

2.2 f-vectors and h-vectors

For a d-dimensional polytope P , the face number fi(P ) is the number of i-
dimensional faces of P . The vector (f0(P ), . . . , fd(P )) is called the f -vector ,

and the polynomial fP (t) =
∑d

i=0 fi(P ) ti is called the f -polynomial of P .
Similarly, for a d-dimensional fan F , fi(F) is the number of i-dimensional faces

of F , and fF(t) =
∑d

i=0 fi(F) ti. Note that face numbers of a polytope P and
its (reduced) normal cone F = N (P )/P⊥ are related as fi(P ) = fd−i(F), or
equivalently, fP (t) = td fF (t−1).
We will most often deal with the case where P is a simple polytope, or equiv-
alently, when F is a simplicial fan. In these situations, there is a more
compact encoding of the face numbers fi(P ) or fi(F) by smaller nonnega-
tive integers. One defines the h-vector (h0(P ), . . . , hd(P )) and h-polynomial

hP (t) =
∑d

i=0 hi(P ) ti uniquely by the relation

fP (t) = hP (t+ 1), or equivalently, fj(P ) =
∑

i

(
i

j

)
hi(P ), j = 0, . . . , d.

(1)
For a simplicial fan F , the h-vector (h0(F), . . . , hd(F)) and the h-polynomial

hF (t) =
∑d

i=0 hi(F) ti are defined by the relation td fF(t−1) = hF(t + 1), or

equivalently, fj(F) =
∑

i

(
i

d−j

)
hi(F), for j = 0, . . . , d. Thus the h-vector of a

simple polytope coincides with the h-vector of its normal fan.
The nonnegativity of hi(P ) for a simple polytope P comes from its well-known
combinatorial interpretation [Zieg’94, §8.2] in terms of the 1-skeleton of the
simple polytope P . Let us extend this interpretation to arbitrary complete
simplicial fans.
For a simplicial fan F in Rd, construct the graph GF with vertices correspond-
ing to d-dimensional cones and edges corresponding to (d−1)-dimensional cones
of F , where two vertices of GF are connected by an edge whenever the cor-
responding cones share a (d − 1)-dimensional face. Pick a vector g ∈ Rd that
does not belong to any (d − 1)-dimensional face of F and orient edges of GF ,
as follows. Orient an edge {σ1, σ2} corresponding to two cones σ1 and σ2 in F
as (σ1, σ2) if the vector g points from σ1 to σ2 (in a small neighborhood of the
common face of these cones).
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Proposition 2.1. For a simplicial fan F , the ith entry hi(F) of its h-vector
equals the number of vertices with outdegree i in the oriented graph GF . These
numbers satisfy the Dehn-Sommerville symmetry: hi(F) = hd−i(F).

Corollary 2.2. (cf. [Zieg’94, §8.2]) Let P ∈ R
n be a simple polytope. Pick

a generic linear form λ ∈ (Rn)∗. Let GP be the 1-skeleton of P with edges
directed so that λ increases on each edge. Then hi(P ) is the number of vertices
in GP of outdegree i.

Proof of Proposition 2.1. The graph GF has a unique vertex of outdegree 0.
Indeed, this is the vertex corresponding to the cone in F containing the vector
g. For any face F of F (of an arbitrary dimension), let GF (F ) be the induced
subgraph on the set of d-dimensional cones of F containing F as a face. Then
GF (F ) ≃ GF ′ , where F ′ is the link of the face F in the fan F , which is also a
simplicial fan of smaller dimension. Thus the subgraph GF (F ) also contains a
unique vertex of outdegree 0 (in this subgraph).
There is a surjective map φ : F 7→ σ from all faces of F to vertices of GF (i.e.,
d-dimensional faces of F) that sends a face F to the vertex σ of outdegree 0 in
the subgraph GF (F ). Now, for a vertex σ of GF of outdegree i, the preimage
φ−1(σ) contains exactly

(
d−i
d−j

)
faces of dimension j. Indeed, φ−1(σ) is formed by

taking all possible intersections of σ with some subset of its (d−1)-dimensional
faces {F1, . . . , Fd−i} on which the vector g is directed towards the interior of σ;
there are exactly d− i such faces because σ has indegree i in GF . Thus a face
of dimension j in φ−1(σ) has the form Fi1 ∩ · · · ∩ Fid−j

for a (d − j)-element
subset {i1, . . . , id−j} ⊆ [d− i].

Let h̃i be the number of vertices of GF of outdegree i. Counting j-dimensional
faces in preimages φ−1(σ) one obtains the relation fj(F) =

∑
i

(
d−i
d−j

)
h̃i. Com-

paring this with the definition of hi(F), one deduces that hi(F) = h̃d−i.
Note that the numbers hi(F) do not depend upon the choice of the vector g.
It follows that the numbers h̃i of vertices with given outdegrees also do not
depend on g. Replacing the vector g with −g reverses the orientation of all
edges in the d-regular graph GF , implying the the symmetry h̃i = h̃d−i.

The Dehn-Sommerville symmetry means that h-polynomials are palindromic
polynomials: td hF (1

t ) = hF (t). In this sense the h-vector encoding is
more compact, since it is determined by roughly half of its entries, namely
h0, h1, . . . , h⌊ d

2 ⌋.
Whenever possible, we will try to either give further explicit combinatorial
interpretations or generating functions for the f - and h-polynomials of simple
generalized permutohedra.

2.3 Flag simple polytopes and γ-vectors

A simplicial complex ∆ is called a flag simplicial complex or clique complex if
it has the following property: a collection C of vertices of ∆ forms a simplex
in ∆ if and only if there is an edge in the 1-skeleton of ∆ between any two
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vertices in C. Thus flag simplicial complexes can be uniquely recovered from
their 1-skeleta.
We call a simple polytope P is a flag polytope if its dual simplicial complex ∆P

is a flag simplicial complex.
We next discuss γ-vectors of flag simple polytopes, as introduced by Gal
[Gal’05] and independently in a slightly different context by Bränden [Brä’04,
Brä’06]; see also the discussion in [Stem’07, §1D]. A conjecture of Charney and
Davis [ChD’95] led Gal [Gal’05] to define the following equivalent encoding of
the f -vector or h-vector of a simple polytope P , in terms of smaller integers,
which are conjecturally nonnegative when P is flag. Every palindromic poly-
nomial h(t) of degree d has a unique expansion in terms of centered binomials
ti(1+ t)d−2i for 0 ≤ i ≤ d/2, and so one can define the entries γi = γi(P ) of the

γ-vector (γ0, γ1, . . . , γ⌊ d
2 ⌋) and the γ-polynomial γP (t) :=

∑⌊ d
2 ⌋

i=0 γit
i uniquely

by

hP (t) =

⌊ d
2 ⌋∑

i=0

γi t
i(1 + t)d−2i = (1 + t)dγP

(
t

(1 + t)2

)
.

Conjecture 2.3. [Gal’05] The γ-vector has nonnegative entries for any flag
simple polytope. More generally, the nonnegativity of the γ-vector holds for
every flag simplicial homology sphere.

Thus we will try to give explicit combinatorial interpretations, where possible,
for the γ-vectors of flag simple generalized permutohedra. As will be seen in
Section 7.1, any graph-associahedron is a flag simple polytope.

3 Generalized permutohedra and the cone-preposet dictionary

This section reviews the definition of generalized permutohedra from [Post’05].
It then records some observations about the relation between cones and fans
coming from the braid arrangement and preposets. (Normal fans of generalized
permutohedra are examples of such fans.) This leads to a characterization for
when generalized permutohedra are simple, an interpretation for their h-vector
in this situation, and a corollary about when the associated toric variety is
smooth.
The material in this section and in the Appendix (Section 15) has substantial
overlap with recent work on rank tests of non-parametric statistics [M–W’06].
We have tried to indicate in places the corresponding terminology used in that
paper.

3.1 Generalized permutohedra

Recall that a usual permutohedron in Rn is the convex hull of n! points obtained
by permuting the coordinates of any vector (a1, . . . , an) with strictly increasing
coordinates a1 < · · · < an. So the vertices of a usual permutohedron can be
labelled vw = (aw−1(1), . . . , aw−1(n)) by the permutations w in the symmetric
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group Sn. The edges of this permutohedron are [vw, vwsi
], where si = (i, i+1)

is an adjacent transposition. Then, for any w ∈ Sn and any si, one has

vw − vwsi
= kw,i(ew(i) − ew(i+1)) (2)

where the kw,i are some strictly positive real scalars, and e1, . . . , en are the
standard basis vectors in Rn.
Note that a usual permutohedron in Rn has dimension d = n− 1, because it is
contained in an affine hyperplane where the sum of coordinates x1 + · · · + xn

is constant.

Definition 3.1. [Post’05, Definition 6.1] A generalized permutohedron P is
the convex hull of n! points vw in Rn labelled by the permutations w in the
symmetric group Sn, such that for any w ∈ Sn and any adjacent transposition
si, one still has equation (2), but with kw,i assumed only to be nonnegative,
that is, kw,i can vanish.

The Appendix shows that all n! points vw in a generalized permutohedron P
are actually vertices of P (possibly with repetitions); see Theorem 15.3. Thus
a generalized permutohedron P comes naturally equipped with the surjective
map ΨP : Sn → Vertices(P ) given by ΨP : w 7→ vw, for w ∈ Sm.
Definition 3.1 says that a generalized permutohedron is obtained by moving the
vertices of the usual permutohedron in such a way that directions of edges are
preserved, but some edges (and higher dimensional faces) may degenerate. In
the Appendix such deformations of a simple polytope are shown to be equivalent
to various other notions of deformation; see Proposition 3.2 below and the more
general Theorem 15.3.

3.2 Braid arrangement

Let x1, . . . , xn be the usual coordinates in Rn. Let Rn/(1, . . . , 1)R ≃ Rn−1

denote the quotient space modulo the 1-dimensional subspace generated by
the vector (1, . . . , 1). The braid arrangement is the arrangement of hyperplanes
{xi−xj = 0}1≤i<j≤n in the space R

n/(1, . . . , 1)R. These hyperplanes subdivide
the space into the polyhedral cones

Cw := {xw(1) ≤ xw(2) ≤ · · · ≤ xw(n)}

labelled by permutations w ∈ Sn, called Weyl chambers (of type A). The
Weyl chambers and their lower dimensional faces form a complete simplicial
fan, sometimes called the braid arrangement fan.
Note that a usual permutohedron P has dimension d = n − 1, so one can
reduce its normal fan modulo the 1-dimensional subspace P⊥ = (1, . . . , 1)R.
The braid arrangement fan is exactly the (reduced) normal fan N (P )/P⊥ for a
usual permutohedron P ⊂ Rn. Indeed, the (reduced) normal cone Nvw

(P )/P⊥

of P at vertex vw is exactly the Weyl chamber Cw. (Here one identifies R
n

with (Rn)∗ via the standard inner product.)
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Recall that the Minkowski sum P + Q of two polytopes P,Q ⊂ Rn is the
polytope P +Q := {x+y | x ∈ P, y ∈ Q}. Say that P is a Minkowski summand
of R, if there is a polytope Q such that P +Q = R. Say that a fan F is refined
by a fan F ′ if any cone in F is a union of cones in F ′. The following proposition
is a special case of Theorem 15.3.

Proposition 3.2. A polytope P in Rn is a generalized permutohedron if and
only if its normal fan (reduced by (1, . . . , 1)R) is refined by the braid arrange-
ment fan.
Also, generalized permutohedra are exactly the polytopes arising as Minkowski
summands of usual permutohedra.

This proposition shows that generalized permutohedra lead to the study of
cones given by some inequalities of the form xi − xj ≥ 0 and fans formed by
such cones. Such cones are naturally related to posets and preposets.

3.3 Preposets, equivalence relations, and posets

Recall that a binary relation R on a set X is a subset of R ⊆ X×X . A preposet
is a reflexive and transitive binary relation R, that is (x, x) ∈ R for all x ∈ X ,
and whenever (x, y), (y, z) ∈ R one has (x, z) ∈ R. In this case we will often use
the notation x �R y instead of (x, y) ∈ R. Let us also write x ≺R y whenever
x �R y and x 6= y.
An equivalence relation ≡ is the special case of a preposet whose binary relation
is also symmetric. Every preposet Q gives rise to an equivalence relation ≡Q

defined by x ≡Q y if and only if both x �Q y and y �Q x. A poset is the
special case of a preposet Q whose associated equivalence relation ≡Q is the
trivial partition, having only singleton equivalence classes.
Every preposet Q gives rise to the poset Q/≡Q on the equivalence classes
X/≡Q. A preposet Q is uniquely determined by ≡Q and Q/≡Q, that is, a
preposet is just an equivalence relation together with a poset structure on the
equivalence classes.
A preposet Q on X is connected if the undirected graph having vertices X and
edges {x, y} for all x �Q y is connected.
A covering relation x⋖Q y in a poset Q is a pair of elements x ≺Q y such that
there is no z such that x ≺Q z ≺Q y. The Hasse diagram of a poset Q on X is
the directed graph on X with edges (x, y) for covering relations x⋖Q y.
We call a poset Q a tree-poset if its Hasse diagram is a spanning tree on X .
Thus tree-posets correspond to directed trees on the vertex set X .
A linear extension of a poset Q on X is a linear ordering (y1, . . . , yn) of all
elements in X such that y1 ≺Q y2 ≺Q · · · ≺Q yn. Let L(Q) denote the set of
all linear extensions of Q.
The union R1 ∪R2 of two binary relations R1, R2 on X is just their union as
two subsets of X × X . Given any reflexive binary relation Q, denote by Q
the preposet which is its transitive closure. Note that if Q1 and Q2 are two
preposets on the same set X , then the binary relation Q1∪Q2 is not necessarily
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a preposet. However, we can obtain a preposet by taking its transitive closure
Q1 ∪Q2.
Let R ⊆ Q denote containment of binary relations on the same set, meaning
containment as subsets of X×X . Also let Rop be the opposite binary relation,
that is (x, y) ∈ Rop if and only if (y, x) ∈ R.
For two preposets P and Q on the same set, let us say that Q is a contraction
of P if there is a binary relation R ⊆ P such that Q = P ∪Rop. In other words,
the equivalence classes of ≡Q are obtained by merging some equivalence classes
of ≡P along relations in P and the poset structure on equivalence classes of
≡Q is induced from the poset structure on classes of ≡P .
For example, the preposet 1 < {2, 3} < 4 (where {2, 3} is an equivalence class)
is a contraction of the poset P = (1 < 3, 2 < 3, 1 < 4, 2 < 4). However, the
preposet ({1, 2} < 3, {1, 2} < 4) is not a contraction of P because 1 and 2 are
incomparable in P .

Definition 3.3. We say that two preposets Q1 and Q2 on the same set intersect
properly if the preposet Q1 ∪Q2 is both a contraction of Q1 and of Q2. A
complete fan of posets4 on X is a collection of distinct posets on X which
pairwise intersect properly, and whose linear extensions (disjointly) cover all
linear orders on X.

Compare Definition 3.3 to the definitions of properly intersecting cones and
complete fans of cones in Section 2.1. Proposition 3.5 will elucidate this con-
nection.

Example 3.4. The two posets P1 := 1 < 2 and P2 := 2 < 1 on the set {1, 2}
intersect properly. Here P1 ∪ P2 is equal to {1 < 2, 2 < 1}. These P1 and
P2 form a complete fan of posets. However, the two posets Q1 := 2 < 3 and
Q2 := 1 < 2 < 3 on the set {1, 2, 3} do not intersect properly. In this case
Q1 ∪Q2 = Q2, which is not a contraction of Q1.

3.4 The dictionary

Let us say that a braid cone is a polyhedral cone in the space Rn/(1, . . . , 1)R ≃
Rn−1 given by a conjunction of inequalities of the form xi − xj ≥ 0. In other
words, braid cones are polyhedral cones formed by unions of Weyl chambers or
their lower dimensional faces.
There is an obvious bijection between preposets and braid cones. For a preposet
Q on the set [n], let σQ be the braid cone in the space R

n/(1, . . . , 1)R defined
by the conjunction of the inequalities xi ≤ xj for all i �Q j. Conversely, one
can always reconstruct the preposet Q from the cone σQ by saying that i �Q j
whenever xi ≤ xj for all points in σQ.

Proposition 3.5. Let the cones σ, σ′ correspond to the preposets Q,Q′ under
the above bijection. Then

4In [M–W’06], this is called a convex rank test.
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(1) The preposet Q ∪Q′ corresponds to the cone σ ∩ σ′.

(2) The preposet Q is a contraction of Q′ if and only if the cone σ is a face
σ′.

(3) The preposets Q,Q′ intersect properly if and only if the cones σ, σ′ do.

(4) Q is a poset if and only if σ is a full-dimensional cone, i.e., dimσ = n−1.

(5) The equivalence relation ≡Q corresponds to the linear span Span(σ) of σ.

(6) The poset Q/≡Q corresponds to a full-dimensional cone inside Span(σQ).

(7) The preposet Q is connected if and only if the cone σ is pointed.

(8) If Q is a poset, then the minimal set of inequalities describing the cone
σ is {xi ≤ xj | i ⋖Q j}. (These inequalities associated with covering
relations in Q are exactly the facet inequalities for σ.)

(9) Q is a tree-poset if and only if σ is a full-dimensional simplicial cone.

(10) For w ∈ Sn, the cone σ contains the Weyl chamber Cw if and only if Q
is a poset and w is its linear extension, that is w(1) ≺Q w(2) ≺Q · · · ≺Q

w(n).

Proof. (1) The cone σ ∩ σ′ is given by conjunction of all inequalities for σ
and σ′. The corresponding preposet is obtained by adding all inequalities that
follow from these, i.e., by taking the transitive closure of Q ∪Q′.
(2) Faces of σ′ are obtained by replacing some inequalities xi ≤ xj defining
σ′ with equalities xi = xj , or equivalently, by adding the opposite inequalities
xi ≥ xj .
(3) follows from (1) and (2).
(4) σ is full-dimensional if its defining relations do not include any equalities
xi = xj , that is ≡Q has only singleton equivalence classes.
(5) The cone associated with the equivalence relation ≡Q is given by the equa-
tions xi = xj for i ≡Q j, which is exactly Span(σ).
(6) Follows from (4) and (5).
(7) The maximal subspace contained in the half-space {xi ≤ xj} is given by
xi = xj . Thus the maximal subspace contained in the cone σ is given by the
conjunction of equations xi = xj for i ≤Q j. If Q is disconnected then this
subspace has a positive dimension. If Q is connected then this subspace is given
by x1 = · · · = xn, which is just the origin in the space Rn/(1, . . . , 1)R.
(8) The inequalities for the covering relations i⋖Q j imply all other inequalities
for σ and they cannot be reduced to a smaller set of inequalities.
(9) By (4) and (7) full-dimensional pointed cones correspond to connected
posets. These cones will be simplicial if they are given by exactly n − 1 in-
equalities. By (8) this means that the corresponding poset should have exactly
n− 1 covering relations, i.e., it is a tree-poset.
(10) Follows from (4) and definitions.
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According to Proposition 3.5, a full-dimensional braid cone σ associated with
a poset Q can be described in three different ways (via all relations in Q, via
covering relations in Q, and via linear extensions L(Q) of Q) as

σ = {xi ≤ xj | i �Q j} = {xi ≤ xj | i⋖Q j} =
⋃

w∈L(Q)

Cw.

Let F be a family of d-cones in Rd which intersect properly. Since they have
disjoint interiors, they will correspond to a complete fan if and only if their
closures cover Rd, or equivalently, their spherical volumes sum to the volume
of the full (d− 1)-sphere.
A braid cone corresponding to a poset Q is the union of the Weyl chambers
Cw for all linear extensions w ∈ L(Q), and every Weyl chamber has the same
spherical volume ( 1

n! of the sphere) due to the transitive Weyl group action.
Therefore, a collection of properly intersecting posets {Q1, . . . , Qt} on [n] cor-
respond to a complete fan on braid cones if and only if

t⋃

i=1

L(Qi) = Sn(disjoint union), or equivalently, if and only if

t∑

i=1

|L(Qi)| = n!,

cf. Definition 3.3.

Corollary 3.6. A complete fan of braid cones (resp., pointed braid cones, sim-
plicial braid cones) in Rn/(1, . . . , 1)R corresponds to a complete fan of posets
(resp., connected posets, tree-posets) on [n].

Using Proposition 3.2, we can relate Proposition 3.5 and Corollary 3.6 to gen-
eralized permutohedra. Indeed, normal cones of a generalized permutohedron
(reduced modulo (1, . . . , 1)R) are braid cones.
For a generalized permutohedron P , define the vertex poset Qv at a ver-
tex v ∈ Vertices(P ) as the poset on [n] associated with the normal cone
Nv(P )/(1, . . . , 1)R at the vertex v, as above.

Corollary 3.7. For a generalized permutohedron (resp., simple generalized
permutohedron) P , the collection of vertex posets {Qv | v ∈ Vertices(P )} is a
complete fan of posets (resp., tree-posets).

Thus normal fans of generalized permutohedra correspond to certain complete
fans of posets, which we call polytopal. In [M–W’06], the authors call such fans
submodular rank tests, since they are in bijection with the faces of the cone of
submodular functions. That cone is precisely the deformation cone we discuss
in the Appendix.

Example 3.8. In [M–W’06], the authors modify an example of Studený
[Stud’05] to exhibit a non-polytopal complete fan of posets. They also kindly
provided us with the following further nonpolytopal example, having 16 posets
Qv, all of them tree-posets: (1, 2 < 3 < 4) (which means that 1 < 3 and
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2 < 3), (1, 2 < 4 < 3), (3, 4 < 1 < 2), (3, 4 < 2 < 1), (1 < 4 < 2, 3),
(4 < 1 < 2, 3), (2 < 3 < 1, 4), (3 < 2 < 1, 4), (1 < 3 < 2 < 4), (1 < 3 < 4 < 2),
(3 < 1 < 2 < 4), (3 < 1 < 4 < 2), (2 < 4 < 1 < 3), (2 < 4 < 3 < 1),
(4 < 2 < 1 < 3), (4 < 2 < 3 < 1). This gives a complete fan of simplicial
cones, but does not correspond to a (simple) generalized permutohedron.

Recall that ΨP : Sn → Vertices(P ) is the surjective map ΨP : w 7→ vw;
see Definition 3.1. The previous discussion immediately implies the following
corollary.

Corollary 3.9. Let P be a generalized permutohedron in Rn, and v ∈
Vertices(P ) be a vertex. For w ∈ Sn, one has ΨP (w) = v whenever the normal
cone Nv(P ) contains the Weyl chamber Cw. The preimage Ψ−1

P (v) ⊆ Sn of a
vertex v ∈ Vertices(P ) is the set L(Qv) of all linear extensions of the vertex
poset Qv.

We remark on the significance of this cone-preposet dictionary for toric varieties
associated to generalized permutohedra or their normal fans; see Fulton [Ful’93]
for further background.
A complete fan F of polyhedral cones in Rd whose cones are rational with
respect to Zd gives rise to a toric variety XF , which is normal, complete and
of complex dimension d.
This toric variety is projective if and only if F is the normal fan N (P ) for some
polytope P , in which case one also denotes XF by XP .
The toric varietyXF is quasi-smooth or orbifold if and only if F is a complete fan
of simplicial cones; in the projective case, where F = N (P ), this corresponds
to P being a simple polytope.
In this situation, the h-numbers of F (or of P ) have the auxiliary geometric
meaning as the (singular cohomology) Betti numbers hi = dimHi(XF ,C). The
symmetry hi = hd−i reflects Poincaré duality for this quasi-smooth variety.
The toric varietyXF is smooth exactly when every top-dimensional cone of F is
not only simplicial but unimodular, that is, the primitive vectors on its extreme
rays form a Z-basis for Z

d. Equivalently, the facet inequalities ℓ1, . . . , ℓd can
be chosen to form a Z-basis for (Zd)∗ = Hom(Zd,Z) inside (Rd)∗. One has XF
both smooth and projective if and only if F = N (P ) for a Delzant polytope P ,
that is, one which is simple and has every vertex normal cone unimodular.

Corollary 3.10. (cf. [Zel’06, §5]) A complete fan F of posets gives rise to a
complete toric variety XF , which will be projective if and only if F is associated
with the normal fan N (P ) for a generalized permutohedron.
A complete fan F of tree-posets gives rise to a (smooth, not just orbifold)
toric variety XF , which will be projective if and only F is associated with
the normal fan N (P ) of a simple generalized permutohedron. In other words,
simple generalized permutohedra are always Delzant.

Proof. All the assertions should be clear from the above discussion, except for
the last one about simple generalized permutohedra being Delzant. However, a
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tree-poset Q corresponds to a set of functionals xi −xj for the edges {i, j} of a
tree, which are well-known to give a Z-basis for (Zd)∗, cf. [Post’05, Proposition
7.10].

4 Simple generalized permutohedra

The goal of this section is to combinatorially interpret the h-vector of any
simple generalized permutohedron.

4.1 Descents of tree-posets and h-vectors

Definition 4.1. Given a poset Q on [n], define the descent set Des(Q) to be
the set of ordered pairs (i, j) for which i⋖Q j is a covering relation in Q with
i >Z j, and define the statistic number of descents des(Q) := |Des(Q)|.

Theorem 4.2. Let P be a simple generalized permutohedron, with vertex posets
{Qv}v∈Vertices(P ). Then one has the following expression for its h-polynomial:

hP (t) =
∑

v∈Vertices(P )

tdes(Qv). (3)

More generally, for a complete fan F = {Qv} of tree-posets (see Definition 3.3),
one also has hF (t) =

∑
v t

des(Qv).

Proof. (cf. proof of Proposition 7.10 in [Post’05]) Let us prove the more general
claim about fans of tree-posets, that is, simplicial fans coarsening the braid
arrangement fan.
Pick a generic vector g = (g1, . . . , gn) ∈ Rn such that g1 < · · · < gn and
construct the directed graph GF , as in Proposition 2.1. Let σ = {xi ≤ xj |
i⋖Qv

j} be the cone of F associated with poset Qv; see Proposition 3.5(8). Let
σ′ be an adjacent cone separated from σ by the facet xi = xj , i ⋖Qv

j. The
vector g points from σ to σ′ if and only if gi >R gj, or equivalently, i >Z j.
Thus the outdegree of σ in the graph GF is exactly the descent number des(Q).
The claim now follows from Proposition 2.1.

For a usual permutohedron P in Rn, the vertex posets Qv are just all linear
orders on [n]. So hP (t) is the classical Eulerian polynomial5

An(t) :=
∑

w∈Sn

tdes(w), (4)

where des(w) := #{i | w(i) > w(i+1)} is the descent number of a permutation
w.
Any element w in the Weyl group Sn sends a complete fan F = {Qi} of tree-
posets to another such complete fan wF = {wQi}, by relabelling all of the
posets. Since wF is an isomorphic simplicial complex, with the same h-vector,
this leads to a curious corollary.

5Note that a more standard convention is to call tAn(t) the Eulerian polynomial.
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Definition 4.3. Given a tree-poset Q on [n], define its generalized Eulerian
polynomial

AQ(t) :=
∑

w∈Sn

tdes(wQ).

Note that AQ depends upon Q only as an unlabelled poset.

When Q is a linear order, AQ(t) is the usual Eulerian polynomial An(t).

Corollary 4.4. The h-polynomial hP (t) of a simple generalized permutohe-
dron P is the “average” of the generalized Eulerian polynomials of its vertex
tree-posets Qv:

hP (t) =
1

n!

∑

v∈Vertices(P )

AQv
(t).

See Example 5.5 below for an illustration of Theorem 4.2 and Corollary 4.4.

4.2 Bounds on the h-vector and monotonicity

It is natural to ask for upper and lower bounds on the h-vectors of simple
generalized permutohedra. Some of these follow immediately from an h-vector
monotonicity result of Stanley [Stan’92] that applies to complete simplicial
fans.

Definition 4.5. A simplicial complex ∆′ is a geometric subdivision of a sim-
plicial complex ∆ if they have geometric realizations that are topological spaces
on the same underlying set, and every face of ∆′ is contained in a single face
of ∆.

Theorem 4.6. (see [Stan’92, Theorem 4.1]) If ∆′ is a geometric subdivision of
a Cohen-Macaulay simplicial complex ∆, then the h-vector of ∆′ is componen-
twise weakly larger than that of ∆. In particular this holds when ∆,∆′ come
from two complete simplicial fans and ∆′ refines ∆, e.g., the normal fans of
two simple polytopes P, P ′ in which P is a Minkowski summand of P .

Corollary 4.7. A simple generalized permutohedron P in Rn has h-
polynomial coefficientwise smaller than that of the permutohedron, namely the
Eulerian polynomial An(t).

Proof. Proposition 3.2 tells us that the normal fan of P is refined by that of
the permutohedron, so the above theorem applies.

Question 4.8. Does the permutohedron also provide an upper bound for the
f -vectors, flag f - and flag h-vectors, generalized h-vectors, and cd-indices of
generalized permutohedra also in the non-simple case? Is there also a mono-
tonicity result for these other forms of face and flag number data when one
has two generalized permutohedra P, P ′ in which P is a Minkowski summand
of P ′?
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The answer is “Yes” for f -vectors and flag f -vectors, which clearly increase
under subdivision. The answer is also “Yes” for generalized h-vectors, which
Stanley also showed [Stan’92, Corollary 7.11] can only increase under geometric
subdivisions of rational convex polytopes. But for flag h-vectors and cd-indices,
this is not so clear.

Later on (Example 6.11, Section 7.2, and Section 14) we will say more about
lower bounds for h-vectors of simple generalized permutohedra within various
classes.

5 The case of zonotopes

This section illustrates some of the foregoing results in the case where the simple
generalized permutohedron is a zonotope; see also [Post’05, §8.6]. Zonotopal
generalized permutohedra are exactly the graphic zonotopes, and those that
are simple correspond to a very restrictive class of graphs that are easily dealt
with.
A zonotope is a convex polytope Z which is the Minkowski sum of one-
dimensional polytopes (line segments), or equivalently, a polytope whose nor-
mal fan N (Z) coincides with chambers and cones of a hyperplane arrangement.
Under this equivalence, the line segments which are the Minkowski summands
of Z lie in the directions of the normal vectors to the hyperplanes in the ar-
rangement. Given a graph G = (V,E) without loops or multiple edges, on node
set V = [n] and with edge set E, define the associated graphic zonotope ZG to
be the Minkowski sum of line segments in the directions {ei − ej}ij∈E .
Proposition 3.2 then immediately implies the following.

Proposition 5.1. The zonotopal generalized permutohedra are exactly the
graphic zonotopes ZG.

Simple zonotopes are very special among all zonotopes, and simple graphic
zonotopes have been observed [Kim’06] to correspond to a very restrictive class
of graphic zonotopes, namely those whose biconnected components are all com-
plete graphs.
Recall that for a graphG = (V,E), there is an equivalence relation on E defined
by saying e ∼ e′ if there is some circuit (i.e., cycle which is minimal with respect
to inclusion of edges) of G containing both e, e′. The ∼-equivalence classes are
then called biconnected components of G.

Proposition 5.2. [Kim’06, Remark 5.2] The graphic zonotope ZG correspond-
ing to a graph G = (V,E) is a simple polytope if and only if every biconnected
component of G is the set of edges of a complete subgraph some subset of the
vertices V .
In this case, if V1, . . . , Vr ⊆ V are the node sets for these complete subgraphs,
then ZG is isomorphic to the Cartesian product of usual permutohedra of di-
mensions |Vj | − 1 for j = 1, 2, . . . , r.
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Let us give another description for this class of graphs. For a graph F with n
edges e1, . . . , en, the line graph Line(F ) of F is the graph on the vertex set [n]
where {i, j} is an edge in Line(F ) if and only if the edges ei and ej of F have
a common vertex. The following claim is left as an exercise for the reader.

Remark 5.3. For a graph G, all biconnected components of G are edge sets
of complete graphs if and only if G is isomorphic to the line graph Line(F )
of some forest F . Biconnected components of Line(F ) correspond to non-leaf
vertices of F .

For the sake of completeness, we include a proof of Proposition 5.2.

Proof of Proposition 5.2. If the biconnected components ofG induce subgraphs
isomorphic to graphs G1, . . . , Gr then one can easily check that ZG is the
Cartesian product of the zonotopes ZGi

. Since a Cartesian product of polytopes
is simple if and only if each factor is simple, this reduces to the case where
r = 1. Also note that when r = 1 and G is a complete graph, then ZG is the
permutohedron, which is well-known to be simple.
For the reverse implication, assume G is biconnected but not a complete graph,
and it will suffice, by Proposition 3.5(9), to construct a vertex v of ZG whose
poset Qv is not a tree-poset. One uses the fact [GZ’83] that a vertex v in
the graphic zonotope ZG corresponds to an acyclic orientation of G, and the
associated poset Qv on V is simply the transitive closure of this orientation.
Thus it suffices to produce an acyclic orientation of G whose transitive closure
has Hasse diagram which is not a tree.
Since G is biconnected but not complete, there must be two vertices {x, y} that
do not span an edge in E, but which lie in some circuit C. Traverse this circuit
C in some cyclic order, starting at the node x, passing through some nonempty
set of vertices V1 before passing through y, and then through a nonempty set
of vertices V2 before returning to x. One can then choose arbitrarily a total
order on the node set V so that these sets appear as segments in this order:

V1, x, y, V2, V − (V1 ∪ V2 ∪ {x, y}).

It is then easily checked that if one orients the edges of G consistently with
this total order, then the associated poset has a non-tree Hasse diagram: for
any v1 ∈ V1 and v2 ∈ V2, one has v1 < x, y < v2 with x, y incomparable.

Corollary 5.4. Let ZG be a simple graphic zonotope, with notation as in
Proposition 5.2. Then ZG is flag, and its f -polynomial, h-polynomial, and
γ-polynomial are all equal to products for j = 1, 2, . . . , r of the f -, h-, or γ-
polynomials of (|Vj | − 1)-dimensional permutohedra.

Proof. Use Proposition 5.2 along with the fact that a Cartesian product of
simple polytopes is flag if and only if each factor is flag, and has f -, h- and
γ-polynomial equal to the product of the same polynomials for each factor.
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Example 5.5. Consider the graph G = (V,E) with V = [4] := {1, 2, 3, 4} and
E = {12, 13, 23, 14}, whose biconnected components are the triangle 123 and
the edge 14, which are both complete subgraphs on node sets V1 = {1, 2, 3} and
V2 = {1, 4}. Hence the graphic zonotope ZG is simple and flag, equal to the
Cartesian product of a hexagon with a line segment, that is, ZG is a hexagonal
prism.
Its f -, h- and γ-polynomials are

fZG
(t) = (2 + t)(6 + 6t+ t2) = 12 + 18t+ 8t2 + t3

hZG
(t) = A2(t)A3(t) = (1 + t)(1 + 4t+ t2) = 1 + 5t+ 5t2 + t3

γZG
(t) = (1)(1 + 2t) = 1 + 2t.

One can arrive at the same h-polynomial using Theorem 4.2. One lists the
tree-posets Qv for each of the 12 vertices v of the hexagonal prism ZG, coming
in 5 isomorphism types, along with the number of descents for each:

type poset Qv des

chain: 2 < 3 < 1 < 4 1
3 < 2 < 1 < 4 2
4 < 1 < 2 < 3 1
4 < 1 < 3 < 2 2

vee: 1 < 2 < 3 and 1 < 4 0
1 < 3 < 2 and 1 < 4 1

type poset Qv des

wedge: 2 < 3 < 1 and 4 < 1 2
3 < 2 < 1 and 4 < 1 3

wye: 2 < 1 < 3 and 1 < 4 1
3 < 1 < 2 and 1 < 4 1

lambda: 3 < 1 < 2 and 4 < 1 2
2 < 1 < 3 and 4 < 1 2

and finds that
∑

v t
des(Qv) = 1 + 5t+ 5t2 + t3.

Lastly one can get this h-polynomial from Corollary 4.4, by calculating directly
that

Achain(t) = 1 + 11t+ 11t2 + t3 = A4(t)

Avee(t) = 3 + 10t+ 8t2 + 3t3

Awedge(t) = 3 + 8t+ 10t2 + 3t3

Awye(t) = Alambda(t) = 2 + 10t+ 10t2 + 2t3

and then the h-polynomial is

1

4!
[4Achain(t) + 2Avee(t) + 2Awedge(t) + 2Awye(t) + 2Alambda(t)]

== 1 + 5t+ 5t2 + t3.

6 Building sets and nestohedra

This section reviews some results from [FS’05], [Post’05], and [Zel’06] regarding
the important special case of generalized permutohedra that arise from building
sets. These generalized permutohedra, which we call nestohedra, turn out to
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always be simple, and they include the graph-associahedra, which in turn gen-
eralize the associahedron, cyclohedron, and permutohedron; this will be fleshed
out in Section 10. Their dual simplicial complexes, the nested set complexes,
are defined, and several tools are given for calculating their f - and h-vectors.
The notion of nested sets goes back to work of Fulton and MacPherson [FM’94],
and DeConcini and Procesi [DP’95] defined building sets and nested set com-
plexes. However, our exposition mostly follows [Post’05] and [Zel’06].

6.1 Building sets, nestohedra, and nested set complexes

Definition 6.1. [Post’05, Definition 7.1] A collection B of nonempty subsets
of a finite set S is a building set if it satisfies the conditions:

(B1) If I, J ∈ B and I ∩ J 6= ∅, then I ∪ J ∈ B.

(B2) B contains all singletons {i}, for i ∈ S.

For a building set B on S and a subset I ⊆ S, define the restriction of B to
I as B|I := {J ∈ B | J ⊆ I}. Let Bmax ⊂ B denote the inclusion-maximal
subsets of a building B. Then elements of Bmax are pairwise disjoint subsets
that partition the set S. Call the restrictions B|I , for I ∈ Bmax, the connected
components of B. Say that a building set is connected if Bmax has only one
element: Bmax = {S}.

Example 6.2. Let G be a graph (with no loops nor multiple edges) on the node
set S. The graphical building B(G) is the set of nonempty subsets J ⊆ S such
that the induced graph G|J on node set J is connected. Then B(G) is a building
set.
The graphical building set B(G) is connected if and only if the graph G is con-
nected. The connected components of the graphical B(G) building set correspond
to connected components of the graph G. Also each restriction B(G)|I is the
graphical building set B(G|I) for the induced subgraph G|I .

Definition 6.3. Let B be a building set on [n] := {1, . . . , n}. Faces of the
standard coordinate simplex in Rn are the simplices ∆I := ConvexHull(ei | i ∈
I), for I ⊆ [n], where the ei are the endpoints of the coordinate vectors in Rn.
Define the nestohedron6 PB as the Minkowski sum of these simplices

PB :=
∑

I∈B
yI∆I , (5)

where yI are strictly positive real parameters; see [Post’05, Section 6].

Note that since each of the normal fans N (∆I) is refined by the braid arrange-
ment fan, the same holds for their Minkowski sum [Zieg’94, Prop. 7.12], and
hence the nestohedra PB are generalized permutohedra by Proposition 3.2.

6Called the nested set polytope in [Zel’06].
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It turns out that PB is always a simple polytope, whose poset of faces does
not depend upon the choice of the positive parameters yI . To describe this
combinatorial structure it is convenient to describe the dual simplicial complex
of PB.

Definition 6.4. [Post’05, Definition 7.3] For a building set B, let us say that
a subset N ⊆ B \ Bmax is a nested set if it satisfies the conditions:

(N1) For any I, J ∈ N one has either I ⊆ J , J ⊆ I, or I and J are disjoint.

(N2) For any collection of k ≥ 2 disjoint subsets J1, . . . , Jk ∈ N , their union
J1 ∪ · · · ∪ Jk is not in B.

Define the nested set complex ∆B as the collection of all nested sets for B.

It is immediate from the definition that the nested set complex ∆B is an ab-
stract simplicial complex on node set B. Note that this slightly modifies the
definition of a nested set from [Post’05], following [Zel’06], in that one does not
include elements of Bmax in nested sets.

Theorem 6.5. [Post’05, Theorem 7.4], [FS’05, Theorem 3.14] Let B be a
building set on [n]. The nestohedron PB is a simple polytope of dimension
n− |Bmax|. Its dual simplicial complex is isomorphic to the nested set complex
∆B.

An explicit correspondence between faces of PB and nested sets in ∆B is de-
scribed in [Post’05, Proposition 7.5]. The dimension of the face of PB associated
with a nested set N ∈ ∆B equals n − |N | − |Bmax|. Thus vertices of PB cor-
respond to inclusion-maximal nested sets in ∆B, and all maximal nested sets
contain exactly n− |Bmax| elements.

Remark 6.6. For a building set B on [n], it is known [FY’04, Theorem 4]
that one can obtain the nested set complex ∆B (resp., the nestohedron PB)
via the following stellar subdivision (resp., shaving) construction, a common
generalization of

• the barycentric subdivision of a simplex as the dual of the permutohedron,

• Lee’s construction of the associahedron [Lee’89, §3].

Start with an (n − 1)-simplex whose vertices (resp., facets) have been labelled
by the singletons i for i ∈ [n], which are all in B. Then proceed through each of
the non-singleton sets I in B, in any order that reverses inclusion (i.e., where
larger sets come before smaller sets), performing a stellar subdivision on the
face with vertices (resp., shave off the face which is the intersection of facets)
indexed by the singletons in I.

Remark 6.7. Note that if B1, . . . ,Bk are the connected components of a
building set B, then PB is isomorphic to the direct product of polytopes PB1 ×
· · · × PBk

. Thus it is enough to investigate generalized permutohedra PB and
nested set complexes ∆B only for connected buildings.
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Remark 6.8. The definition (5) of the nestohedron PB as a Minkowski sum
should make it clear that whenever one has two building sets B ⊆ B′, then PB
is a Minkowski summand of PB′ . Hence Theorem 4.6 implies the h-vector of
PB′ is componentwise weakly larger than that of PB.

Remark 6.9. Nestohedra PB(G) associated with graphical building sets B(G)
are called graph-associahedra, and have been studied in [CD’06, Post’05, Tol’05,
Zel’06]. In [CD’06], the sets in B(G) are called tubes, and the nested sets are
called tubings.
In particular, the h-vector monotonicity discussed in Remark 6.8 applies to
graph-associahedra PB(G), PB(G′) associated to graphs G,G′ where G is an edge-
subgraph of G′.

Example 6.10. (Upper bound for nestohedra: the permutohedron) see [Post’05,
Sect. 8.1] For the complete graph Kn, the building set B(Kn) = 2[n] \ {∅}
consists of all nonempty subsets in [n]. Let us call it the complete building set.
The corresponding nestohedron (the graph-associahedron of the complete graph)
is the usual (n−1)-dimensional permutohedron in Rn. The k-th component hk

of its h-vector is the Eulerian number, that is the number of permutations in
Sn with k descents; and its h-polynomial is the Eulerian polynomial An(t);
see (4).
This h-vector gives the componentwise upper bound on h-vectors for all (d−1)-
dimensional nestohedra. This also implies that the f -vector of the permutohe-
dron gives the componentwise upper bound on f -vectors of nestohedra.

Example 6.11. (Lower bound for nestohedra: the simplex) The smallest pos-
sible connected building set B = {{1}, {2}, . . . , {n}, [n]} gives rise to the nesto-
hedron PB which is the (n− 1)-simplex in Rn. In this case

f(t) =

n∑

i=1

(
n

i

)
ti−1 =

(1 + t)n − 1

t
and h(t) = 1 + t+ t2 + · · · + tn−1

give trivial componentwise lower bounds on the f -, h-vectors of nestohedra.

6.2 Two recurrences for f-polynomials of nestohedra

There are two useful recurrences for f -polynomials of nestohedra and nested
set complexes.
Let fB(t) be the f -polynomial of the nestohedron PB:

fB(t) :=
∑

fi t
i =

∑

N∈∆B

t|S|−|Bmax|−|N |,

where fi = fi(PB) is the number of i-dimensional faces of PB. As usual, it is
related to the h-polynomial as fB(t) = hB(t+ 1).

Theorem 6.12. [Post’05, Theorem 7.11] The f -polynomial fB(t) is determined
by the following recurrence relations:
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1. If B consists of a single singleton, then fB(t) = 1.

2. If B has connected components B1, . . . ,Bk, then

fB(t) = fB1(t) · · · fBk
(t).

3. If B is a connected building set on S, then

fB(t) =
∑

I(S

t|S|−|I|−1fB|I (t).

Another recurrence relation for f -polynomials was derived in [Zel’06], and will
be used in Section 12.4 below. It will be more convenient to work with the
f -polynomial of nested set complexes

f̃B(t) :=
∑

N∈∆B

t|N | = t|S|−|Bmax|fB(t−1),

where B is a building set on S.
For a building set B on S and a subset I ⊂ S, recall that the restriction of B
to I is defined as B|I = {J ∈ B | J ⊆ I}. Also define the contraction of I from
B as the building set on S \ I given by

B/I := {J ∈ S \ I | J ∈ B or J ∪ I ∈ B},

see [Zel’06, Definition 3.1]. A link decomposition of nested set complexes was
constructed in [Zel’06]. It implies the following recurrence relation for the
f -vector.

Theorem 6.13. [Zel’06, Proposition 4.7] For a building set B on a nonempty
set S, one has

d

dt
f̃B(t) =

∑

I∈B\Bmax

f̃B|I (t) · f̃B/I(t) and f̃B(0) = 1.

Let G be a simple graph on S and let I ∈ B(G), i.e., I is a connected subset
of nodes of G. It has already been mentioned that B(G)|I = B(G|I); see
Example 6.2. Let G/I be the graph on the node set S \ I such that two nodes
i, j ∈ S \ I are connected by an edge in G/I if and only if

1. i and j are connected by an edge in G, or

2. there are two edges (i, k) and (j, l) in G with k, l ∈ I.

Then the contraction of I from the graphical building set B(G) is the graphical
building set associated with the graph G/I, that is B(G)/I = B(G/I).
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7 Flag nestohedra

This section characterizes the flag nested set complexes and nestohedra, and
then identifies those which are “smallest”.

7.1 When is the nested set complex flag?

For a graphical building set B(G) it has been observed ([Post’05, §8,4], [Zel’06,
Corollary 7.4]) that one can replace condition (N2) in Definition 6.4 with a
weaker condition:

(N2’) For a disjoint pair of subsets I, J ∈ N , one has I ∪ J 6∈ B.

This implies that nested set complexes associated to graphical buildings are
flag complexes. More generally, one has the following characterization of the
nested set complexes which are flag.

Proposition 7.1. For a building set B, the following are equivalent.

(i) The nested set complex ∆B (or equivalently, the nestohedron PB) is flag.

(ii) The nested sets for B are the subsets N ⊆ B\Bmax which satisfy conditions
(N1) and (N2’).

(iii) If J1, . . . , Jℓ ∈ B with ℓ ≥ 2 are pairwise disjoint and their union J1 ∪
· · ·∪Jℓ is in B, then one can reindex so that for some k with 1 ≤ k ≤ ℓ−1
one has both J1 ∪ · · · ∪ Jk and Jk+1 ∪ · · · ∪ Jℓ in B.

Proof. The equivalence of (i) and (ii) essentially follows from the definitions.
We will show here the equivalence of (i) and (iii).
Assume that (iii) fails, and let J1, . . . , Jℓ provide such a failure with ℓ minimal.
Note that this means ℓ ≥ 3, and minimality of ℓ forces Jr ∪ Js 6∈ B for each
r 6= s; otherwise one could replace the two sets Jr, Js on the list with the set
Jr ∪ Js to obtain a counterexample of size ℓ − 1. Therefore all of the pairs
{Jr, Js} index edges of ∆B, although {J1, . . . , Jℓ} does not. Hence ∆B is not
flag, i.e., (i) fails.
Now assume (i) fails, i.e., ∆B is not flag. Let J1, . . . , Jℓ be subsets in B, for
which each pair {Jr, Js} with r 6= s is a nested set, but the whole collection
M := {J1, . . . , Jℓ} is not, and assume that this violation has ℓminimal. Because
{Jr, Js} are nested for r 6= s, it must be that M does satisfy condition (N1),
and so M must fail condition (N2). By minimality of ℓ, it must be that the
J1, . . . , Jℓ are pairwise disjoint and their union J1 ∪ · · · ∪ Jℓ is in B. Bearing
in mind that Jr ∪ Js 6∈ B for r 6= s, it must be that ℓ ≥ 3. But then M must
give a violation of property (iii), else one could use property (iii) to produce
a violation of (i) either of size k or of size ℓ − k, which are both smaller than
ℓ.

Corollary 7.2. For graphical buildings B(G), the graph-associahedron PB(G)

and nested set complex ∆B(G) are flag.
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7.2 Stanley-Pitman polytopes and their relatives

One can now use Proposition 7.1 to characterize the inclusion-minimal con-
nected building sets B for which ∆B and PB are flag.
For any building set B on [n] with ∆B flag, one can apply Proposition 7.1(iii)
with {J1, . . . , Jℓ} equal to the collection of singletons {{1}, . . . , {n}}, since they
are disjoint and their union [n] is also in B. Thus after reindexing, some initial
segment [k] and some final segment [n] \ [k] must also be in B. Iterating this,
one can assume after reindexing that there is a plane binary tree τ with these
properties

• the singletons {{1}, . . . , {n}} label the leaves of τ ,

• each internal node of τ is labelled by the set I which is the union of the
singletons labelling the leaves of the subtree below it (so [n] labels the
root node), and

• the building set B contains of all of the sets labelling nodes in this tree.

It is not hard to see that these sets labelling the nodes of τ already comprise a
building set Bτ which satisfies Proposition 7.1(iii), and therefore give rise to a
nested set complex ∆Bτ

and nestohedron PBτ
which are flag. See Figure 1.

{1}

{4}

{3,4}

{2}

{3}

{1,2}

{1} {3}

{3,4}

{4}{2}

{1,2}

{1,2,3,4}

{2}

{3,4}{1,2}

{1} {3} {4}

Figure 1: A binary tree τ and building set Bτ , along with its complex of nested
sets ∆Bτ

, drawn first as in the construction of Remark 6.6, and then redrawn
as the boundary of an octahedron.

The previous discussion shows the following.

Proposition 7.3. The building sets Bτ parametrized by plane binary trees τ
are exactly the inclusion-minimal building sets among those which are connected
and have the nested set complex and nestohedron flag.
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As a special case, when τ is the plane binary tree having leaves labelled by the
singletons and internal nodes labelled by all initial segments [k], one obtains
the building set Bτ whose nestohedron PBτ

is the Stanley-Pitman polytope from
[StPi’02]; see [Post’05, §8.5]. The Stanley-Pitman polytope is shown there to be
combinatorially (but not affinely) isomorphic to an (n− 1)-cube; the argument
given there generalizes to prove the following.

Proposition 7.4. For any plane binary tree τ with n leaves, the nested set
complex ∆Bτ

is isomorphic to the boundary of a (n − 1)-dimensional cross-
polytope (hyperoctahedron), and PBτ

is combinatorially isomorphic to an (n−
1)-cube.

Proof. Note that the sets labelling the non-root nodes of τ can be grouped
into n − 1 pairs {I1, J1}, . . . , {In−1, Jn−1} of siblings, meaning that Ik, Jk are
nodes with a common parent in τ . One then checks that the nested sets for
Bτ are exactly the collections N containing at most one set from each pair
{Ik, Jk}. As a simplicial complex, this is the boundary complex of an (n− 1)-
dimensional cross-polytope in which each pair {Ik, Jk} indexes an antipodal
pair of vertices.

Note that in this case,

fBτ
(t) = (2+ t)n−1, hBτ

(t) = (1+ t)n−1, γBτ
(t) = 1 = 1+0 · t+0 · t2 + · · · .

which gives a lower bound for the f - and h-vectors of flag nestohedra by Re-
mark 6.8. If one assumes Conjecture 2.3, then it would also give a lower bound
for γ-vectors of flag nestohedra (and for flag simplicial polytopes in general).
Note that the permutohedron is a graph-associahedron (and hence a flag nesto-
hedra). Therefore, Corollary 4.7 implies that the permutohedron provides the
upper bound on the f - and h-vectors among the flag nestohedra.

8 B-trees and B-permutations

This section discusses B-trees and B-permutations, which are two types of
combinatorial objects associated with vertices of the nestohedron PB. The
h-polynomial of PB equals the descent-generating function for B-trees.

8.1 B-trees and h-polynomials

This section gives a combinatorial interpretation of the h-polynomials of nesto-
hedra. Since nestohedra PB are always simple, one should expect some descrip-
tion of their vertex tree-posets Qv (see Corollaries 3.7 and 3.9) in terms of the
building set B.
Recall that a rooted tree is a tree with a distinguished node, called its root. One
can view a rooted tree T as a partial order on its nodes in which i <T j if j lies
on the unique path from i to the root. One can also view it as a directed graph
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in which all edges are directed towards the root; we will use both viewpoints
here.
For a node i in a rooted tree T , let T≤i denote the set of all descendants of i,
that is j ∈ T≤i if there is a directed path from the node j to the node i. Note
that i ∈ T≤i. Nodes i and j in a rooted tree are called incomparable if neither
i is a descendant of j, nor j is a descendant of i.

Definition 8.1. [Post’05, Definition 7.7], cf. [FS’05] For a connected building
set B on [n], let us define a B-tree as a rooted tree T on the node set [n] such
that

(T1) For any i ∈ [n], one has T≤i ∈ B.

(T2) For k ≥ 2 incomparable nodes i1, . . . , ik ∈ [n], one has
⋃k

j=1 T≤ij
6∈ B.

Note that, when the nested set complex ∆B is flag, that is when B satisfies
any of the conditions of Proposition 7.1, one can define a B-tree by requiring
condition (T2) only for k = 2.

Proposition 8.2. [Post’05, Proposition 7.8], [FS’05, Proposition 3.17] For
a connected building set B, the map sending a rooted tree T to the collection
of sets {T≤i |i is a nonroot vertex} ⊂ B gives a bijection between B-trees and
maximal nested sets. (Recall that maximal nested sets correspond to the facets
of the nested set complex ∆B and to the vertices of the nestohedron PB.)
Furthermore, if the B-tree T corresponds to the vertex v of PB then T = Qv,
that is, T is the vertex tree-poset for v in the notation of Corollary 3.7.

Question 8.3. Does a simple (indecomposable) generalized permutohedron P
come from a (connected) building set if and only if every poset Qv is a rooted
tree, i.e. has a unique maximal element?

Proposition 8.2 and Theorem 4.2 yield the following corollary.

Corollary 8.4. For a connected building set B on [n], the h-polynomial of
the generalized permutohedron PB is given by

hB(t) =
∑

T

tdes(T ),

where the sum is over B-trees T .

The following description of B-trees is straightforward from the definition.

Proposition 8.5. [Post’05, Section 7] Let B be a connected building set on
S and let i ∈ S. Let B1, . . . ,Br be the connected components of the restriction
B|S\{i}. Then all B-trees with root at i are obtained by picking a Bj-tree Tj, for
each component Bj, j = 1, . . . , r, and connecting the roots of T1, . . . , Tr with
the node i by edges.
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In other words, each B-tree is obtained by picking a root i ∈ S, splitting
the restriction B|S\{i} into connected components, then picking nodes in all
connected components, splitting corresponding restrictions into components,
etc.
Recall Definition 3.1 of the surjection ΨB := ΨPB

ΨB : Sn −→ Vertices(PB) = {B-trees},

Here and below one identifies vertices of the nestohedron PB with B-trees via
Proposition 8.2. By Corollary 3.9, for a B-tree T , one has ΨB(w) = T if and
only if w is a linear extension of T .
Proposition 8.5 leads to an explicit recursive description of the surjection ΨB.

Proposition 8.6. Let B be a connected building set on [n]. Given a permuta-
tion w = (w(1), . . . , w(n)) ∈ Sn, one recursively constructs a B-tree T = T (w),
as follows.
The root of T is the node w(n). Let B1, . . . ,Br be the connected components of
the restriction B|{w(1),...,w(n−1)}. Restricting w to each of the sets Bi gives a
subword of w, to which one can recursively apply the construction and obtain
a Bi-tree Ti. Then attach these T1, . . . , Tr as subtrees of the root node w(n) in
T . This association w 7→ T (w) is the map ΨB.

8.2 B-permutations

It is natural to ask for a nice section of the surjection ΨB; these are the B-
permutations defined next.

Definition 8.7. Let B be a building set on [n]. Define the set Sn(B) ⊂ Sn

of B-permutations as the set of permutations w ∈ Sn such that for any i ∈
[n], the elements w(i) and max{w(1), w(2), . . . , w(i)} lie in the same connected
component of the restricted building set B|{w(1),...,w(i)}.

The following construction of B-permutations is immediate from the definition.

Lemma 8.8. A permutation w ∈ Sn is a B-permutation if and only if it can be
constructed via the following procedure.
Pick w(n) from the connected component of B that contains n; then pick
w(n− 1) from the connected component of B|[n]\{w(n)} that contains the maxi-
mal element of [n]\{w(n)}; then pick w(n−2) from the connected component of
B|[n]\{w(n),w(n−1)} that contains the maximal element of [n] \ {w(n), w(n− 1)},
etc. Continue in this manner until w(1) has been chosen.

Let T be a rooted tree on [n] viewed as a tree-poset where the root is the
unique maximal element. The lexicographically minimal linear extension of T
is the permutation w ∈ Sn such that w(1) is the minimal leaf of T (in the
usual order on Z), w(2) is the minimal leaf of T − {w(1)} (the tree T with the
vertex w(1) removed), w(3) is the minimal leaf of T −{w(1), w(2)}, etc. There
is the following alternative “backward” construction for the lexicographically
minimal linear extension of T .
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Lemma 8.9. Let w be the lexicographically minimal linear extension of a rooted
tree T on [n]. Then the permutation w can be constructed from T , as follows:
w(n) is the root of T ; w(n − 1) is the root of the connected component of
T − {w(n)} that contains the maximal vertex of this forest (in the usual order
on Z); w(n−2) is the root of the connected component of T −{w(n), w(n−1)}
that contains the maximal vertex of this forest, etc.

In general, w(i) is the root of the connected component of the forest

T − {w(n), . . . , w(i+ 1)}

that contains the vertex max(w(1), . . . , w(i)).

Proof. The proof is by induction on the number of vertices in T . Let T ′ be
the rooted tree obtained from T by removing the minimal leaf l. Then the
lexicographically minimal linear extension w of T is w = (l, w′), where w′ is the
lexicographically minimal linear extension of T ′, and both w and w′ are written
in list notation. By induction, w′ can be constructed from T ′ backwards. When
one performs the backward construction for T , the vertex l can never be the
root of the connected component of T − {w(n), . . . , w(i + 1)} containing the
maximal vertex, for i > 1. So the backward procedure for T produces the same
permutation w = (l, w′).

The next claim gives a correspondence between B-trees and B-permutations.

Proposition 8.10. Let B be a connected building set on [n]. The set Sn(B) of
B-permutations is exactly the set of lexicographically minimal linear extensions
of the B-trees. (Equivalently, Sn(B) is the set of lexicographically minimal
representatives of fibers of the map ΨB.)

In particular, the map ΨB induces a bijection between B-permutations and B-
trees, and Sn(B) is a section of the map ΨB.

Proof. Let w ∈ Sn be a permutation and let T = T (w) be the corresponding B-
tree constructed as in Proposition 8.6. Note that, for i = n−1, n−2, . . . , 1, the
connected components of the forest T |{w(1),...,w(i)} = T − {w(n), . . . , w(i+ 1)}
correspond to the connected components of the building set B|{w(1),...,w(i)}, and
corresponding components have the same vertex sets. According to Lemma 8.9,
the permutation w is the lexicographically minimal linear extension of T if and
only if w is a B-permutation as described in Lemma 8.8.

9 Chordal building sets and their nestohedra

This section describes an important class of building sets B, for which the de-
scent numbers of B-trees are equal to the descent numbers of B-permutations.
In this case, the h-polynomial of the nestohedron PB equals the descent-
generating function of the corresponding B-permutations.
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9.1 Descents in posets vs. descents in permutations

A descent of a permutation w ∈ Sn is a pair7 (w(i), w(i+1)) such that w(i) >
w(i+1). Let Des(w) be the set of all descents in w. Also recall that the descent
set Des(Q) of a poset Q is the set of pairs (a, b) such that a⋖Q b and a >Z b;
see Definition 4.1.

Lemma 9.1. Let Q be any poset on [n], and let w = w(Q) be the lexicographi-
cally minimal linear extension of Q. Then one has Des(w) ⊆ Des(Q).

Proof. One must show that any descent (a, b) (with a >Z b) in w must come
from a covering relation a ⋖Q b in the poset Q. Indeed, if a and b are incom-
parable in Q, then the permutation obtained from w by transposing a and b
would be a linear extension of P which is lexicographically smaller than w. On
the other hand, if a and b are comparable but not adjacent elements in Q, then
they can never be adjacent elements in a linear extension of Q.

In particular, this lemma implies that, for a B-tree T and the corresponding
B-permutation w (i.e., w is the lexicographically minimal linear extension of
T ), one has Des(w) ⊆ Des(T ). The rest of this section discusses a special class
of building sets for which one always has Des(w) = Des(T ).

9.2 Chordal building sets

Definition 9.2. A building set B on [n] is chordal if it satisfies the following
condition: for any I = {i1 < · · · < ir} ∈ B and s = 1, . . . , r, the subset
{is, is+1, . . . , ir} also belongs to B.

Recall that a graph is called chordal if it has no induced k-cycles for k ≥ 4. It
is well known [FG’65] that chordal graphs are exactly the graphs that admit a
perfect elimination ordering, which is an ordering of vertices such that, for each
vertex v, the neighbors of v that occur later than v in the order form a clique.
Equivalently, a graph G is chordal if its vertices can be labelled by numbers in
[n] so that G has no induced subgraph G|{i<j<k} with the edges (i, j), (i, k)
but without the edge (j, k). Let us call such graphs on [n] perfectly labelled
chordal graphs.8

Example 9.3. A tree on [n] is called decreasing if the labels decrease in the
shortest path from the vertex n (the root) to another vertex. It is easy to see
that decreasing trees are exactly the trees which are perfectly labelled chordal
graphs. Clearly, any unlabelled tree has such a decreasing labelling of vertices.

The following claim justifies the name “chordal building set.”

7A more standard convention is say that a descent is an index i such that w(i) > w(i+1).
8We can also call them 312-avoiding graphs because they are exactly the graphs that have

no induced 3-path a—b—c with the relative order of the vertices a, b, c as in the permutation
312. Note that, unlike the pattern avoidance in permutations, a 312-avoiding graph is the
same thing as a 213-avoiding graph.
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Proposition 9.4. A graphical building set B(G) is chordal if and only if G is
a perfectly labelled chordal graph.

Proof. Suppose that G contains an induced subgraph G|{i<j<k} with exactly
two edges (i, j), (i, k). Then {i, j, k} ∈ B(G) but {j, k} 6∈ B(G). Thus B(G) is
not a chordal building set.
On the other hand, suppose that B(G) is not chordal. Then one can find
an s and a connected subset I = {i1 < · · · < ir} of vertices in G such that
{is, is+1, . . . , ir} 6∈ B(G). In other words, the induced graph G′ = G|{is,...,ik}
is disconnected. Let us pick a shortest path P in G|{i1,...,ir} that connects two
different components of G′. Let i be the minimal vertex in P and let j and k
be the two vertices adjacent of i in the path P . Clearly, j > i and k > i. It
is also clear that (i, j) is not an edge of G. Otherwise there is a shorter path
obtained from P by replacing the edges (i, j) and (i, k) with the edge (j, k). So
one has found a forbidden induced subgraph G|{i,j,k}. Thus G is not a perfectly
labelled chordal graph.

Proposition 9.5. Let B be a connected chordal building set. Then, for any
B-tree T and the corresponding B-permutation w, one has Des(w) = Des(T ).

Proof. Let T be a B-tree and let w be the corresponding B-permutation, which
can be constructed backward from T as described in Lemma 8.9. Let us fix
i ∈ {n−1, n−2, . . . , 1}. Let T1, . . . , Tr, T

′
1, . . . , T

′
s be the connected components

of the forest T−{w(n), w(n−1), . . . , w(i+1)}, where T1, . . . , Tr are the subtrees
whose roots are the children of the vertex w(i + 1), and T ′

1, . . . , T
′
s are the

remaining subtrees. Let I = T≤w(i+1) ⊂ [n] be the set of all descendants of
w(i+ 1) in T . By Definition 8.1(T1), one has I ∈ B.
Suppose that the vertex m = max(w(1), . . . , w(i)) appears in one of the sub-
trees T1, . . . , Tr, say, in the tree T1. Then, by Lemma 8.9, w(i) should be the
root of T1. We claim that all vertices in T2, . . . , Tr are less than w(i + 1). In-
deed, this is clear if w(i + 1) is the maximal element in I. Otherwise, the set
I ′ = I ∩ {w(i+ 1) + 1, . . . , n− 1, n} is nonempty, I ′ ∈ B because B is chordal,
and I ′ contains the maximal vertex m. Since the vertex set J of T1 should be
an element of B, it follows that I ′ ⊆ J . So all vertices of T2, . . . , Tr are less
than w(i+ 1).
Thus none of the edges of T joining the vertex w(i + 1) with the roots of
T2, T3, . . . , Tr can be a descent edge. The only potential descent edge is the
edge (w(i), w(i+1)) that attaches the subtree T1 to w(i+1). This edge will be a
descent edge in T if and only if w(i) > w(i+1), i.e., exactly when (w(i), w(i+1))
is a descent in the permutation w.
Now suppose that the maximal vertex m = max(w(1), . . . , w(i)) appears in
one of the remaining subtrees T ′

1, . . . , T
′
s, which are not attached to the vertex

w(i+1), say, in T ′
1. In this casew(i+1) should be greater than all w(1), . . . , w(i).

(Otherwise, if w(i + 1) < m, then at the previous step of the backward con-
struction for w, T ′

1 is the connected component of T −{w(n), . . . , w(i+1)} that
contains the vertex max(w(1), . . . , w(i+1)) = m. So w(i+1) should have been
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the root of T ′
1.) In this case, none of the edges joining the vertex w(i+ 1) with

the components T1, . . . , Tr can be a descent edge and (w(i), w(i + 1)) cannot
be a descent in w.

This proves that descent edges of T are in bijection with descents in w.

Corollary 8.4 and Proposition 9.5 imply the following formula.

Corollary 9.6. For a connected chordal building set B, the h-polynomial of
the nestohedron PB equals

hB(t) =
∑

w∈Sn(B)

tdes(w),

where des(w) is the usual descent number of a permutation w ∈ Sn(B).

Let us give an additional nice property of nestohedra for chordal building sets.

Proposition 9.7. For a chordal building set B, the nestohedron PB is a flag
simple polytope.

Proof. Let us check that a chordal building set B satisfies the condition in
Proposition 7.1(iii). Using the notation of that proposition, let J1 ∪ · · · ∪ Jℓ =
{i1 < · · · < ir}. Let Us be the union of those subsets J1, ..., Jℓ that have
a nonempty intersection with {is, is+1, . . . , ir}. Since {is, is+1, . . . , in} is in B
(because B is chordal), the subset Us should also be in B (by Definition 6.1(B1)).
Clearly, U1 is the union of all Ji’s and Ur consists of a single Ji. It is also clear
that Uj+1 either equals Uj or is obtained from Uj by removing a single subset
Ji. It follows that there exists an index s such that Us = (J1 ∪ · · · ∪ Jℓ) \ Ji.
This gives an index i such that (J1 ∪ · · · ∪ Jℓ) \ Ji and Ji are both in B, as
needed.

10 Examples of nestohedra

Let us give several examples that illustrate Corollary 8.4 and Corollary 9.6. The
f - and h-numbers for the permutohedron and associahedron are well-known.

10.1 The permutohedron

For the complete building set B = B(Kn) the nestohedron PB is the usual
permutohedron; see Example 6.10 and [Post’05, Sect. 8.1]. In this case B-trees
are linear orders on [n] and B-permutations are all permutations Sn(B) = Sn.
Thus, as noted before in Example 6.10, the h-polynomial is the usual Eulerian
polynomial An(t), and the h-numbers are the Eulerian numbers hk(PB) =
A(n, k) := #{w ∈ Sn | des(w) = k}.
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10.2 The associahedron

Let G = Pathn denote the graph which is a path having n nodes labelled
consecutively 1, . . . , n. The graphical building set B = B(Pathn) consists of all
intervals [i, j], for 1 ≤ i ≤ j ≤ n. The corresponding nestohedron PB(Pathn) is
the usual Stasheff associahedron; see [CD’06, Post’05].
In this case, the B-trees correspond to unlabelled plane binary trees on n nodes,
as follows; see [Post’05, Sect. 8.2] for more details. A plane binary tree is
a rooted tree with two types of edges (left and right) such that every node
has at most one left and at most one right edge descending from it. From
Proposition 8.5, one can see that a B-tree is a binary tree with n nodes labelled
1, 2, . . . , n so that, for any node, all nodes in its left (resp., right) branch have
smaller (resp., bigger) labels. Conversely, given an unlabelled plane binary tree,
there is a unique way to label its nodes 1, 2, . . . , n to create a B-tree, namely
in the order of traversal of a depth-first search. Furthermore, note that descent
edges correspond to right edges.
It is well-known that the number of unlabelled binary trees on n nodes is equal
to the Catalan number Cn = 1

n+1

(
2n
n

)
, and the number of binary trees on n

nodes with k − 1 right edges is the Narayana number N(n, k) = 1
n

(
n
k

)(
n

k−1

)
;

see [Stan’99, Exer. 6.19c and Exer. 6.36]. Therefore, the h-numbers of the
associahedron PB(Pathn) are the Narayana numbers: hk(PB(Pathn

)) = N(n, k+
1), for k = 0, . . . , n− 1.
It is also well-known that the f -numbers of the associahedron are
fk(PB(Pathn

)) = 1
n+1

(
n−1

k

)(
2n−k

n

)
. This follows from a classical Kirkman-

Cayley formula [Cay’1890] for the number of ways to draw k noncrossing
diagonals in an n-gon.
In this case, the B-permutations are exactly 312-avoiding permutations w ∈ Sn.
Recall that a permutation w is 312-avoiding if there is no triple of indices
i < j < k such that w(j) < w(k) < w(i). Thus Corollary 9.6 says that the
h-polynomial of the associahedron PB(Pathn) is

∑
w t

des(w) where the sum runs
over all 312-avoiding permutations in Sn. This is consistent with the known
fact that the Narayana numbers count 312-avoiding permutations according
to their number of descents; see Simion [Sim’94, Theorem 5.4] for a stronger
statement.

10.3 The cyclohedron

If G = Cyclen is the n-cycle, then the nestohedron PB(Cyclen) is the cyclohe-
dron or Bott-Taubes polytope; see [CD’06, Post’05]. The h-polynomial of the
cyclohedron was computed by Simion [Sim’03, Corollary 1]:

hB(Cyclen)(t) =

n∑

k=0

(
n

k

)2

tk. (6)

Note that the n-cycle (for n > 3) is not a chordal graph, so Corollary 9.6 does
not apply to this case.
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10.4 The stellohedron

Let m = n−1. Let G = K1,m be the m-star graph with the central node m+1
connected to the nodes 1, . . . ,m. Let us call the associated polytope PB(K1,m)

the stellohedron.
From Proposition 8.5 one sees that B(K1,m)-trees are in bijection with partial
permutations of [m], which are ordered sequences u = (u1, . . . , ur) of distinct
numbers in [m], where r = 0, . . . ,m. The tree T associated to a partial permu-
tation u = (u1, . . . , ur) has the edges

(ur, ur−1), . . . , (u2, u1), (u1,m+ 1), (m+ 1, i1), . . . , (m+ 1, im−r)

where i1, . . . , im−r are the elements of [m] \ {u1, . . . , ur}. The root of T is ur

if r ≥ 1, or m+ 1 if r = 0. For r ≥ 1, one has des(T ) = des(u) + 1, where the
descent number of a partial permutation is

des(u) := #{i = 1, . . . , r − 1 | ui > ui+1}.

Also for the tree T associated with the empty partial permutation (for r = 0)
one has des(T ) = 0. Corollary 8.4 then says that

hB(K1,m)(t) = 1 +
∑

u

tdes(u)+1 = 1 +

m∑

r=1

(
m

r

) r∑

k=1

A(r, k) tk, (7)

where the first sum is over nonempty partial permutations w of [m]. In partic-
ular, the total number of vertices of the stellohedron PB(K1,m) equals

f0(PB(K1,m)) =

m∑

r=0

(
m

r

)
· r! =

m∑

r=0

m!

r!
.

This sequence appears in [Sloa] as A000522.
In this case, B(K1,m)-permutations are permutations w ∈ Sm+1 such that
m + 1 appears before the first descent. Such permutations w are in bijection
with partial permutations u of [m]. Indeed, u is the part of w after the entry
m + 1. Since our labelling of K1,m (with the central node labelled m + 1) is
decreasing (see Example 9.3), Corollary 9.6 implies that the h-polynomial of
the stellohedron PB(K1,m) is h(t) =

∑
w t

des(w), where the sum runs over all
such permutations w ∈ Sm+1. This agrees with the above expression in terms
of partial permutations.

10.5 The Stanley-Pitman polytope

Let BPS = {[i, n], {i} | i = 1, . . . , n}, the collection of all intervals [i, n] and sin-
gletons {i}. This (non-graphical) building set is chordal. According to [Post’05,
§8.5], the corresponding nestohedron PBPS is the Stanley-Pitman polytope from
[StPi’02].
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By Proposition 8.5, BPS-trees have the following form T (I). For an increasing
sequence I of positive integers i1 < i2 < · · · < ik = n, construct the tree T (I)
on [n] with the root at i1 and the chain of edges (i1, i2), (i2, i3), . . . , (ik−1, ik);
also, for each j ∈ [n]\I, one has the edge (il, j) where il is the minimal element
of I such that il > j.
In this case, BPS-permutations are permutations w ∈ Sn such that w(1) <
w(2) < · · · < w(k) > w(k + 1) > · · · > w(n), for some k = 1, . . . , n.
Using BPS-trees or BPS-permutations one can easily deduce that the h-
polynomial of the Stanley-Pitman polytope is hBPS(t) = (1+ t)n−1. This is not
surprising since PBPS is combinatorially isomorphic to the (n− 1)-dimensional
cube.

11 γ-vectors of nestohedra

Recall that the γ-vector (γ0, γ1, . . . , γ⌊d/2⌋) of a d-dimensional simple polytope

is defined via its h-polynomial as h(t) =
∑
γi t

i(1+t)d−2i; and the γ-polynomial
is γ(t) =

∑
γi t

i; see Section 2.3. The main result of this section is a formula
for the γ-polynomial of a chordal nestohedron as a descent-generating function
(or peak-generating function) for some set of permutations. This implies that
Gal’s conjecture (Conjecture 2.3) holds for this class of flag simple polytopes.
To prove this, we will employ a certain combinatorial approach that goes back
to work of Shapiro, Woan, and Getu [SWG’83], also used by Foata and Strehl,
and more recently by Bränden; see [Brä’06] for a thorough discussion.
Suppose P is a simple polytope and one has a combinatorial formula for the
h-polynomial hP (t) =

∑
a∈A t

f(a), where f(a) is some statistic on the set A.
Suppose further that one has a partition of A into f -symmetric Boolean classes,
i.e. such that the f -generating function for each class is tr(1 + t)2n−r for some

r. Let Â ⊂ A be the set of representatives of the classes where f(a) takes its
minimal value. Then the γ-polynomial equals γP (t) =

∑
a∈ bA t

f(a). Call f(a) a
“generalized descent-statistic.” Additionally, define

peak(a) = min{f(b) | a and b in the same class} + 1

and call it a “generalized peak statistic.”

11.1 A warm up: γ-vector for the permutohedron

We review here the beautiful construction of Shapiro, Woan, and Getu
[SWG’83] that leads to a nonnegative formula for the γ-vector of the usual
permutohedron. This subsection also serves as a warm-up for a more general
construction in the following subsection.
Some notation is necessary. Recall that a descent in a permutation w ∈ Sn is
a pair (w(i), w(i + 1)) such that w(i) > w(i + 1), where i ∈ [n − 1]. A final
descent is when w(n− 1) > w(n), and a double descent is a pair of consecutive
descents, i.e. a triple w(i) > w(i+ 1) > w(i+ 2).
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Additionally, define a peak of w to be an entry w(i) for 1 ≤ i ≤ n such that
w(i− 1) < w(i) > w(i+ 1). Here (and below) set w(0) = w(n+ 1) = 0 and so
a peak can occur in positions 1 or n. On the other hand, a valley of w is an
entry w(i) for 1 < i < n such that w(i− 1) > w(i) < w(i+ 1). The peak-valley
sequence of w is the subsequence in w formed by all peaks and valleys.
Let Ŝn denote the set of permutations in Sn which do not contain any final
descents or double descents. Let peak(w) denote the number of peaks in a

permutation w. It is clear that peak(w)−1 = des(w), for permutations w ∈ Ŝn

(and only for these permutations).

Theorem 11.1. (cf. [SWG’83, Proposition 4]) The γ-polynomial of the usual
permutohedron PB(Kn) is

∑

w∈bSn

tpeak(w)−1 =
∑

w∈bSn

tdes(w).

Example 11.2. Let us calculate the γ-polynomial of the two dimensional per-
mutohedron PB(K3). One has Ŝ3 = {(1, 2, 3), (2, 1, 3), (3, 1, 2)}. Of these,
(1, 2, 3) has one peak (and no descents), and (2, 1, 3) and (3, 1, 2) have two
peaks (and one descent). Therefore, the γ-polynomial is 1 + 2t.

Say that an entry w(i) of w is an intermediary entry if w(i) is not a peak or
a valley. Say that w(i) is an ascent-intermediary entry if w(i − 1) < w(i) <
w(i+1) and that it is a descent-intermediary entry if w(i−1) > w(i) > w(i+1).

(Here again one should assume that w(0) = w(n+1) = 0.) Note that the set Ŝn

is exactly the set of permutations in Sn without descent-intermediary entries.
It is convenient to graphically represent a permutation w ∈ Sn by a piece-
wise linear “mountain range” Mw obtained by connecting the points (x0, 0),
(x1, w(1)), (x2, w(2)), . . . , (xn, w(n)), (xn+1, 0) on R2 by straight line inter-
vals, for some x0 < x1 < · · · < xn+1; see Figure 2. Then peaks in w cor-
respond to local maxima of Mw, valleys correspond to local minima of Mw,
ascent-intermediary entries correspond to nodes on ascending slopes of Mw,
and descent-intermediary entries correspond to nodes on descending slopes of
Mw. For example, the permutation w = (6, 5, 4, 10, 8, 2, 1, 7, 9, 3) shown in Fig-
ure 2 has three peaks 6, 10, 9, two valleys 4, 1, one ascent-intermediary entry
7, and four descent-intermediary entries 5, 8, 2, 3. Its peak-valley sequence is
(6, 4, 10, 1, 9).
As noted in Section 4.1, the h-polynomial of the permutohedron is the descent-
generating function for permutations in Sn (the Eulerian polynomial). In
order to prove Theorem 11.1, one constructs an appropriate partitioning of Sn

into equivalence classes, where each class has exactly one element from Ŝn.
To describe the equivalence classes of permutations, one must introduce some
operations on permutations.

Definition 11.3. Let us define the leap operations La and L−1
a that act on

permutations. Informally, the permutation La(w) is obtained from w by moving

Documenta Mathematica 13 (2008) 207–273



244 Alex Postnikov, Victor Reiner, Lauren Williams

0
1

2

5

4

3

10

8

9

6

0

7

Figure 2: Mountain range Mw for w = (6, 5, 4, 10, 8, 2, 1, 7, 9, 3)

an intermediary node a on the mountain range Mw directly to the right until
it hits the next slope of Mw. The permutation L−1

a (w) is obtained from w by
moving a directly to the left until it hits the next slope of Mw.
More formally, for an intermediary entry a = w(i) in w, the permutation
La(w) is obtained from w by removing a from the i-th position and inserting a
in the position between w(j) and w(j + 1), where j is the minimal index such
that j > i and a is between w(j) and w(j + 1), i.e., w(j) < a < w(j + 1)
or w(j) > a > w(j + 1). The leap operation La is not defined if all entries
following a in w are less than a.
Similarly, the inverse operation L−1

a (w) is given by removing a from the i-
th position in w and inserting a between w(k) and w(k + 1), where k is the
maximum index such that k < i and a is between w(k) and w(k + 1). The
operation L−1

a is is not defined if all entries preceding a in w are less than a.

For example, for the permutation w shown on Figure 2, one has L2(w) =
(6, 5, 4, 10, 8, 1, 2, 7, 9, 3) and L−1

2 (w) = (2, 6, 5, 4, 10, 8, 1, 7, 9, 3).
Clearly, if a is an ascent-intermediary entry in w then a is a descent-
intermediary entry in L±1

a (w), and vice versa. Note that if a is an ascent-
intermediary entry in w, then La(w) is always defined, and if a is a decent-
intermediary entry, then L−1

a (w) is always defined.

Definition 11.4. Let us also define the hop operations Ha on permutations.
For an ascent-intermediary entry a in w, define Ha(w) = La(w); and, for a
descent-intermediary entry a in w, define Ha(w) = L−1

a (w).

For example, for the permutation w shown on Figure 2, the permuta-
tion H2(w) = (2, 6, 5, 4, 10, 8, 1, 7, 9, 3) is obtained by moving the descent-
intermediary entry 2 to the left to the first ascending slope, and H7(w) =
(6, 5, 4, 10, 8, 2, 1, 9, 7, 3) is obtained by moving the ascent-intermediary entry 7
to the right to the last descending slope.
Note that leaps and hops never change the shape of the mountain range Mw,
that is, they never change the peak-valley sequence of w. They just move
intermediary nodes from one slope of Mw to another. It is quite clear from the
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definition that all leap and hop operations pairwise commute with each other.
It is also clear that two hops Ha get us back to the original permutation.

Lemma 11.5. For intermediary entries a and b in w, one has (Ha)2(w) = w
and Ha(Hb(w)) = Hb(Ha(w)).

Thus the hop operations Ha generate the action of the group (Z/2Z)m on the
set of permutations with a given peak-valley sequence, where m is the number
of intermediary entries in such permutations.

We say that two permutations are hop-equivalent if they can be obtained from
each other by the hop operations Ha for various a’s. The partitioning of Sn

into hop-equivalence classes allows us to prove Theorem 11.1.

Proof of Theorem 11.1. The number des(w) of descents in w equals the num-
ber of peaks in w plus the number of descent-intermediary entries in w minus 1
(because the last entry is either a peak or a descent-intermediary entry, but it
does not contribute a descent). Notice that if a is an ascent-intermediary (resp.,
descent-intermediary) entry in w then the number of descent-intermediary en-
tries in Ha(w) increases (resp., decreases) by 1 and the number of peaks does
not change.

If w ∈ Sn has p = peak(w) peaks then it has p − 1 valleys and n − 2p + 1
intermediary entries. Lemma 11.5 implies that the hop-equivalence class C of
w involves 2n−2p+1 permutations. Moreover, the descent-generating function
for these permutations is

∑
u∈C t

des(u) = tp(t+1)n−2p+1. Each hop-equivalence
class has exactly one representative u without descent-intermediary entries,
that is u ∈ Ŝn. Thus, summing the contributions of hop-equivalence classes,
one can write the h-polynomial of the permutohedron as

h(t) =
∑

w∈Sn

tdes(w) =
∑

w∈bSn

tpeak(w)−1(t+ 1)n+1−2 peak(w).

Comparing this to the definition of the γ-polynomial, one derives the theorem.

11.2 γ-vectors of chordal nestohedra

According to Proposition 9.7, nestohedra for chordal building sets are flag
simple polytopes. Thus Gal’s conjecture (Conjecture 2.3) applies. This section
proves this conjecture and presents a nonnegative combinatorial formula for γ-
polynomials of such nestohedra as peak-generating functions for some subsets
of permutations.

Let B be a connected chordal building set on [n]. Recall that Sn(B) is the set

of B-permutations; see Definition 8.7. Let Ŝn(B) := Sn(B)∩ Ŝn be the subset
of B-permutations which have no final descent or double descent.

The following theorem is the main result of this section.
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Theorem 11.6. For a connected chordal building B on [n], the γ-polynomial
of the nestohedron PB is the peak-generating function for the permutations in
Ŝn(B):

γB(t) =
∑

w∈bSn(B)

tpeak(w)−1 =
∑

w∈bSn(B)

tdes(w).

As noted earlier, peak(w) − 1 = des(w) for w ∈ Ŝn.
The proof of Theorem 11.6 will be an extension of the proof given for the
γ-vector of the permutohedron in Section 11.1. Recall that Corollary 9.6
interprets the h-polynomial of PB as the descent-generating function for B-
permutations w ∈ Sn(B). Theorem 11.6 will be proven by constructing an
appropriate partitioning of the set Sn(B) into equivalence classes, where each

equivalence class has exactly one representative from Ŝn(B). As before, one
uses (suitably generalized) hop operations to describe equivalence classes of
elements of Sn(B).
One needs powers of the leap operations Lr

a := (La)r, for r ≥ 0, and Lr
a :=

(L−1
a )−r, for r ≤ 0; see Definition 11.3. In other words, for r > 0, Lr

a(w) is
obtained from w by moving the intermediary entry a to the right until it hits
the r-th slope from its original location; and, for r < 0, by moving a to the left
until it hits (−r)-th slope from its original location. Clearly, Lr

a(w) is defined
whenever r is in a certain integer interval r ∈ [rmin, rmax]. It is also clear that,
if a is an ascent-intermediary entry in w, then a is ascent-intermediary in Lr

a(w)
for even r and a is descent-intermediary in Lr

a(w) for odd r, and vice versa if
a is descent-intermediary in w.
Note that for a B-permutation w ∈ Sn(B), the permutations Lr

a(w) may no
longer be B-permutations. The next lemma ensures that at least some of them
will be B-permutations.

Lemma 11.7. Let B be a chordal building on [n]. Suppose that w ∈ Sn(B) is a
B-permutation.
(1) If a is an ascent-intermediary letter in w, then there exists an odd positive
integer r > 0 such that Lr

a(w) ∈ Sn(B) and Ls
a(w) 6∈ Sn(B), for all 0 < s < r.

(2) If a is a descent-intermediary letter in w, then there exists an odd negative
integer r < 0 such that Lr

a(w) ∈ Sn(B) and Ls
a(w) 6∈ Sn(B), for all 0 > s > r.

The proof of Lemma 11.7 will require some preparatory notation and observa-
tions.
For a permutation w ∈ Sn and a ∈ [n] such that w(i) = a, let

{wտa} := {w(j) | j ≤ i, w(j) ≥ a}

be the set of all entries in w which are located to the left of a and are greater
than or equal to a (including the entry a itself). The arrow in this notation
refers to our graphical representation of a permutation as a mountain range
Mw: the set {wտa} is the set of entries in w located to the North-West of the
entry a.
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According to Definition 8.7, the set Sn(B) is the set of permutations w
such that, for i = 1, . . . , n, there exists I ∈ B such that both w(i) and
max(w(1), . . . , w(i)) are in I and I ⊂ {w(1), . . . , w(i)}. If B is chordal, then
I ′ := I ∩ [w(i),∞] also belongs to B (see Definition 9.2) and satisfies the same
properties. Clearly max(w(1), . . . , w(i)) = max{wտw(i)}. Thus, for a chordal
building set, one can reformulate Definition 8.7 of B-permutations as follows.

Lemma 11.8. Let B be a chordal building set. Then Sn(B) is the set of permu-
tations w ∈ Sn such that for any a ∈ [n], the elements a and max{wտa} are
in the same connected component of B|{w տa}. Equivalently, there exists I ∈ B
such that a ∈ I, max{wտa} ∈ I, and I ⊂ {wտa}.

Let us now return to the setup of Lemma 11.7. There are 2 possible reasons
why the permutation u = Lr

a(w) may no longer be a B-permutation, that is,
fail to satisfy the conditions in Lemma 11.8:

(A) It is possible that the entry a and the entry max{uտa} are in different
connected components of B|{uտa}.

(B) It is also possible that another entry b 6= a in u and max{uտb} are in
different connected components of B|{uտb}.

Let us call these two types of failure A-failure and B-failure. The following
auxiliary result is needed.

Lemma 11.9. Let us use the notation of Lemma 11.7.
(1) For left leaps u = Lr

a(w), r < 0, one can never have a B-failure.
(2) For the maximal left leap u = Lrmin

a (w), where the entry a goes all the way
to the left, one cannot have an A-failure.
(3) For the maximal right leap u = Lrmax

a (w), where the entry a goes all the
way to the right, one cannot have an A-failure.
(4) Let u = Lr

a(w) and u′ = Lr+1
a (w), for r ∈ Z, be two adjacent leaps such

that a is descent-intermediary in u (and, thus, a is ascent-intermediary in u′).
Then there is an A-failure in u if and and only if there is an A-failure in u′.

Proof. (1) Since w ∈ Sn(B), there is a subset I ∈ B that contains both b and
max{wտb} and such that I ⊂ {wտb}. The same subset I works for u because
{uտb} = {wտb} or {uտb} = {wտb} ∪ {a}.
(2) In this case, a is greater than all preceding entries in u, so a = max{uտa}.
(3) In this case, a is greater than all following entries in u. The interval I =
[a, n] contains both a and max{uտa}, I ⊂ {uտa}, and I ∈ B because B is
chordal.
(4) In this case, all entries between the position of a in u and the position of
a in u′ are less than a. Thus {uտa} = {u′տa}. So u has an A-failure if and
only if u′ has an A-failure.

Proof of Lemma 11.7. It is easier to prove the second part of the lemma.
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(2) By parts (1) and (2) of Lemma 11.9, there exists a negative r such that
Lr

a(w) ∈ Sn(B). Let us pick such an r with minimal possible absolute value.
Then r should be odd, by part (4) of Lemma 11.9, which proves (2).
(1) Suppose that there is an entry b 6= a in the permutation w such that b
and m = max{wտb} are in different connected components of B|{wտb}\{a}.
In this case, a ∈ {wտb}, that is b < a and b is located to the right of a in w.
(Otherwise, b and m are in different connected components of B|{wտb}, which
is impossible because w is a B-permutation.) Let us pick the leftmost entry
b in w that satisfies this condition. Then the permutation u = Lr

a(w) has a
B-failure if the letter a moves to the right of this entry b; and u has no B-failure
if a stays to the left of b. By our assumptions, a stays to the left of b in L1

a(w),
so such a u exists.
Let u = Lr

a(w) be the maximal right leap (i.e., with maximal r > 0) such that
the entry a stays to the left of b. Then all entries in u between the positions
of a and b should be less than a. Thus m = max{uտa} = max{wտb}. Since
w ∈ Sn(B), there is an I ∈ B such that b,m ∈ I and I ⊂ {wտb}. This
subset I should also contain the entry a. (Otherwise, b and m would be in the
same connected component B|{w տb}\{a}, contrary to our choice of b.) Thus
I ′ := I ∩ [a,+∞] ∈ B contains both a and m and I ′ ⊂ {uտa}. This means
that there is no A-failure in u. Thus u ∈ Sn(B).
If there is no entry b in w as above, then none of the permutations Lr

a(w) has
a B-failure. In this case Lrmax

a (w) ∈ Sn(B) by part (3) of Lemma 11.9.
In all cases, there exists a positive r such that Lr

a(w) ∈ Sn(B) and only A-
failures are possible in Ls

a(w), for 0 < s < r. Let us pick the minimal such r.
Then r should be odd by part (4) of Lemma 11.9, as needed.

Definition 11.10. Let us define the B-hop operations BHa. For a B-
permutation w with an ascent-intermediary (resp., descent-intermediary) entry
a, the permutation BHa(w) is the right leap u = Lr

a(w), r > 0 (resp., the left
leap u = Lr

a(w), r < 0) with minimal possible |r| such that u is a B-permutation.
Informally, BHa(w) is obtained from w by moving the node a on its mountain
range Mw directly to the right if a is ascent-intermediary in w, or directly left
if a is descent-intermediary in w (possibly passing through several slopes) until
one hits a slope and obtain a B-permutation.

Lemma 11.7 says that the B-hop BHa(w) is well-defined for any intermediary
entry a in w. It also says that if a is ascent-intermediary in w then a is descent-
intermediary in BHa(w), and vice versa. Moreover, according to that lemma,
(BHa)2(w) = w.

Example 11.11. Let G be the decreasing tree shown on Figure 3. Then the
graphical building B = B(G) is chordal; see Example 9.3. Figure 3 shows several
B-hops of the B-permutation w = (1, 10, 8, 3, 6, 9, 7, 4, 12, 11, 5, 2):

BH1(w) = L1(w) = (10, 8, 3, 6, 9, 7, 4, 12, 11, 5, 2, 1),
BH5(w) = (L5)

−5(w) = (1, 5, 10, 8, 3, 6, 9, 7, 4, 12, 11, 2),
BH6(w) = L6(w) = (1, 10, 8, 3, 9, 7, 6, 4, 12, 11, 5, 2).
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Figure 3: A B(G)-permutation w and some B-hops

Let us now show that the B-hop operations pairwise commute with each other.

Lemma 11.12. Let a and b be two intermediary entries in a B-permutation w.
Then BHa(BHb(w)) = BHb(BHa(w)).

Proof. Let us first assume that both a and b are descent-intermediary entries in
w. Without loss of generality assume that a > b. In this case BHa(w) = Lr

a(w)
and BHb(w) = Ls

b(w) for some negative odd r and s, that is the entries a and
b of w are moved to the left. According to Lemma 11.9(1), in this case one
does not need to worry about B-failures. In other words, BHa(w) is the first
left leap Lr

a(w) (i.e., with minimal −r > 0) that has no A-failure. Similarly,
BHb(w) is the first left leap Ls

b(w) without A-failures (where A-failures concern
the entry b).
Since A-failures for permutations u = Lt

a(w), t < 0, are described in terms of
the set {uտa} ⊂ [a,∞], moving the entry b < a in w will have no effect on these
A-failures. Thus, for the permutationw′ = BHb(w), one has BHa(w

′) = Lr
a(w

′)
with exactly the same r as in BHa(w) = Lr

a(w).
However, for permutations u = Lt

b(w), t < 0, the sets {uտb} might change
if one first performs the operation BHa to w. Namely, let w̃ = BHa(w) and
ũ = Lt

b(w̃) = Lt
b(L

r
a(w)). Then {ũտb} = {uտb} ∪ {a} if a is located to the

left of b in ũ and a is located to the right of b in u (and {ũտb} = {uտb}
otherwise). Notice that one always has m = max{uտb} = max{ũտb}, since
this maximum is the maximal peak preceding b in u (or in ũ), and leaps and
hops have no affect on the peaks.
If b and m are in the same connected component of B|{uտb} then they are also
in the same connected component of B|{ũտb}, that is if there is no A-failure
for u then there is no A-failure for ũ.
Suppose that there is no A-failure for ũ but there is an A-failure for u. Then
the sets {uտb} and {ũտb} have to be different. That means that a is located
to the left of b in ũ and a is located to the right of b in u. Let I be the element
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I ∈ B such that b,m ∈ I and I ⊂ {ũտb}. Then I should contain the entry a.
(Otherwise, I ⊂ {uտb} and there would be no A-failure for u.)

Let ŵ = Lt̂
a(w) be the left leap with maximal possible −t̂ ≥ 0 such that the

position of a in ŵ is located to the right of the position of b in ũ. Since
ũ = Lt

b(L
r
a(w)), it follows that |t̂| < |r|. In other words, if one starts moving

to the right from the node b along the mountain range Mũ, the (ascending)
slope that first crosses the level a is the place where the entry a is located in
ŵ. Note that t̂ is odd because a should be an ascent-intermediary entry in ŵ;
in particular t̂ < 0.
Since all entries in ŵ located between the position of b in ũ and the position
of a in ŵ are less than a, one deduces that {ũտb} ∩ [a,∞] = {ŵտa}. Thus
the subset Î = I ∩ [a,∞] has three important properties: it lies in B (because
B is chordal); it contains both a and m = max{ŵտa}; and it is a subset of
{ŵտa}. It follows that there is no A-failure in ŵ. This contradicts the fact

that Lr
a(w) 6= Lt̂

a(w) is the first left leap that has no A-failure.
Thus u has an A-failure if and only if ũ has an A-failure. It follows that
BHb(w̃) = Ls

b(w̃) with exactly the same s as in BHb(w) = Ls
b(w).

This proves that BHa(BHb(w)) = Lr
a(Ls

b(w)) = Ls
b(L

r
a(w)) = BHb(BHa(w)),

in the case when both a and b are descent-intermediary in w.
Let us now show that the general case easily follows. Suppose that, say, a
is ascent-intermediary and b is descent-intermediary in w. Then, for w′′ =
BHa(w) both a and b are descent-intermediary. One has BHa(BHb(w

′′)) =
BHb(BHa(w

′′)). Thus BHa(BHb(BHa(w))) = BHb(BHa(BHa(w))) =
BHb(w). Applying BHa to both sides, one deduces BHb(BHa(w)) =
BHa(BHb(w)). The other cases are similar.

Thus the B-hop operations BHa generate the action of the group (Z/2Z)m on
the set of B-permutations with a given peak-valley sequence, where m is the
number of intermediary entries in such permutations.
We say that two B-permutation are B-hop-equivalent if they can be obtained
from each other by the B-hop operations BHa for various a’s. This gives the
partitioning of the set of B-permutations into B-hop-equivalence classes.
One can now prove Theorem 11.6 by literally repeating the argument in the
proof of Theorem 11.1.

Proof of Theorem 11.6. For a B-permutation w ∈ Sn(B) with p = peak(w),
the descent-generating function of the B-hop-equivalence class C of w is∑

u∈C t
des(u) = tp(t+ 1)n−2p+1. Each B-hop-equivalence class has exactly one

representative without descent-intermediary entries, that is, in the set Ŝn(B).
Thus the h-polynomial of the nestohedron PB (see Corollary 9.6) is

hPB
(t) =

∑

w∈Sn(B)

tdes(w) =
∑

w∈bSn(B)

tpeak(w)−1(t+ 1)n+1−2 peak(w).

Comparing this to the definition of the γ-polynomial, one derives the theorem.
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Corollary 11.13. Gal’s conjecture holds for all graph-associahedra corre-
sponding to chordal graphs.

11.3 γ-vectors for the associahedron and cyclohedron

In Propositions 11.14 and 11.15 we give two explicit formulas which can be
derived from the expressions for the corresponding h-polynomials (see Sections
10.2 and 10.3) using standard quadratic transformations of hypergeometric
series; e.g., see [RSW’03, Lemma 4.1].

Proposition 11.14. The γ-polynomial of the associahedron PB(Pathn) is

γ(t) =

⌊n−1
2 ⌋∑

r=0

Cr

(
n− 1

2r

)
tr,

where Cr = 1
r+1

(
2r
r

)
is the r-th Catalan number.

Proposition 11.15. The γ-polynomial of the cyclohedron PB(Cyclen) is

γ(t) =

⌊n
2 ⌋∑

r=0

(
n

r, r, n− 2r

)
tr,

We now give three combinatorial proofs of Proposition 11.14 as an alternative
to using hypergeometric series.

First proof of Proposition 11.14. It is known that the Narayana polynomial
which is the h-polynomial of PB(Pathn) is also the rank generating function for
the well-studied lattice of noncrossing partitions NC(n). An explicit symmet-
ric chain decomposition for NC(n) was given by Simion and Ullman [SU’91],
who actually produced a much stronger decomposition of NC(n) into disjoint
Boolean intervals placed symmetrically about the middle rank(s) of NC(n).
Their decomposition contains exactly Cr

(
n−1
2r

)
such Boolean intervals of rank

n− (2r+ 1) for each r = 0, 1, . . . , n−1
2 , which immediately implies the formula

for the γ-polynomial; see [SU’91, Corollary 3.2].

Second proof of Proposition 11.14. By Section 10.2, the h-polynomial of
PB(Pathn) counts plane binary trees on n nodes according to their number of
right edges. There is a natural map from binary trees to full binary trees,
i.e., those in which each node has zero or two children: if a node has a unique
child, contract this edge from the node to its child. If the original binary tree
T has n nodes, then the resulting full binary tree T ′ will have 2r+ 1 nodes, 2r
edges and r right edges for some r = 0, 1, . . . , ⌊(n − 1)/2⌋. There are Cr such
full binary trees for each r. Given such a full binary tree T ′, one can produce
all of the binary trees in its preimage by inserting n − (2r + 1) more nodes
and deciding if they create left or right edges. One chooses the locations of
these nodes from 2r + 1 choices, either an edge of the full binary tree they

Documenta Mathematica 13 (2008) 207–273



252 Alex Postnikov, Victor Reiner, Lauren Williams

will subdivide or located above the root, giving
(n−(2r+1)+(2r+1)−1

n−(2r+1)

)
=

(
n−1
2r

)

possible locations. Thus the generating function with respect to the number
of right edges for the preimage of T ′ is

(
n−1
2r

)
tr(t+ 1)n−(2r+1), where the term

tr(t + 1)n−(2r+1) comes from choosing whether each of the new nodes creates
a left or a right edge. It follows that the generating function for all binary
trees on n nodes is hPathn

(t) =
∑

r Cr

(
n−1
2r

)
tr(t+1)n−(2r+1), where Cr counts

full binary trees. This implies the needed expression for the γ-vector of the
associahedron PB(Pathn).
Equivalently, one can describe the subdivision of all binary trees into classes
where two binary trees are in the same class if they can be obtained from
each other by switches of left and right edges coming from single child nodes.
Then one gets exactly Cr

(
n−1
2r

)
classes having tr(t+1)n−(2r+1) as its generating

function counting number of right edges, for each r = 0, 1, . . . , ⌊(n− 1)/2⌋.

Third proof of Proposition 11.14. This proof is based on our general approach
to γ-vectors of chordal nestohedra. According to Section 10.2, B-permutations
for the associahedron are 312-avoiding permutations and h-polynomial is equal
to the sum hPB(Pathn)

(t) =
∑

w q
peak(w)−1 over all 312-avoiding permutations

w ∈ Sn. By Theorem 11.6, γr(PB(Pathn)) equals the number of 312-avoiding
permutations with no descent-intermediary elements and r + 1 peaks. The
(flattenings of) peak-valley sequences of such permutations are exactly 312-
avoiding alternating permutations in S2r+1, that is 312-avoiding permutations
w′ such that w′

1 > w′
2 < w′

3 > · · · < w′
2r+1. It is known that the number of such

permutations equals the Catalan number Cr; see [Man’02, Theorem 2.2]. Then
there are

(
n−1
2r

)
ways to insert the remaining n− (2r+ 1) descent-intermediary

elements.

12 Graph-associahedra for single branched trees

Our goal in this section is to compute a generating function that computes the
h-polynomials of all graph-associahedra in which the graph is a tree having at
most one branched vertex (i.e., a vertex of valence 3 or more).

12.1 Associahedra and Narayana polynomials

First recall (see Section 10.2) that the h-numbers of the associahedron PB(Pathn)

are the Narayana numbers hk(PB(Pathn)) = N(n, k) := 1
n

(
n
k

)(
n

k−1

)
, and the h-

polynomial of the associahedron is the Narayana polynomial:

hB(Pathn)(t) = Cn(t) :=
n∑

k=1

N(n, k) tk−1. (8)

Recall the well-known recurrence and generating function for the Narayana
polynomials Cn(t). The recurrence in Theorem 6.12 for the f -polynomials
fB(Pathn)(t) = hB(Pathn)(t + 1) = Cn(t + 1) can be written as follows. When
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one removes k vertices from the n-path, it splits into k + 1 (possibly empty)
paths. So one obtains

Cn(t) =
∑

k≥1

(t− 1)k−1
∑

m1+···+mk+1=n−k

Cm1(t) · · ·Cmk+1
(t), for n ≥ 1, (9)

where the sum is over m1, . . . ,mk+1 ≥ 0 such that
∑
mi = n − k. Here one

assumes that C0(t) = 1.
Let C(t, x) be the generating function for the Narayana polynomials:

C(t, x) :=
∑

n≥1

Cn(t)xn = x+ (1 + t)x2 + (1 + 3t+ t2)x3 + · · · (10)

=
1 − x− tx−

√
(1 − x− tx)2 − 4tx2

2tx
.

The recurrence relation (9) is equivalent to the following well-known functional
equation:

C = txC2 + (1 + t)xC + x, (11)

see [Stan’99, Exer. 6.36b].

12.2 Generating function for single branched trees

Trees with at most one branched vertex have the following form. For
a1, . . . , ak ≥ 0, let Ta1,...,ak

be the graph obtained by attaching k chains of
lengths a1, . . . , ak to one central node. For example, T0,...,0 is the graph with a
single node and T1,...,1 is the k-star graph K1,k.

Theorem 12.1. One has the following generating function for the h-
polynomials of graph-associahedra PB(Ta1,...,ak

) for the graphs Ta1,...,ak
:

T (t, x1, . . . , xk) :=
∑

a1,...,ak≥0

hTa1,...,ak
(t)xa1+1

1 · · ·xak+1
k

=
(t− 1)φ1 · · ·φk

t−
∏k

i=1(1 + (t− 1)φi)

where φi = xi(1 + t C(t, xi)), and C(t, x) is the generating function for the
Narayana polynomials from (10).

This theorem immediately implies the following formula from [Post’05].

Corollary 12.2. [Post’05, Proposition 8.7] The generating function for the
number of vertices in the graph-associahedron PB(Ta1,...,ak

) is

∑

a1,...,ak

f0(PB(Ta1,...,ak
))x

a1
1 · · ·xak

k =
C̄(x1) · · · C̄(xk)

1 − x1 C̄(x1) − · · · − xk C̄(xk)
,

where C̄(x) =
∑

n≥0 Cn x
n = 1−

√
1−4x

2x is the generating function for the Cata-
lan numbers.
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Proof. The claim is obtained from Theorem 12.1 in the limit t → 1. Note
however that one needs to use l’Hôpital’s rule before plugging in t = 1.

The first proof of Theorem 12.1 is fairly direct, using Corollary 8.4 and the
solution to Simon Newcomb’s problem. The second uses Theorem 6.13 to
set up and then solve a system of PDE’s; it has the advantage of producing
a generating function for the h-polynomials of one further family of graph-
associahedra.

12.3 Theorem 12.1 via Simon Newcomb’s problem

Let us first review Simon Newcomb’s problem and its solution.
Let w = (w(1), . . . , wm) be a permutation of the multiset {1c1, . . . , kck}, that
is, each i appears in w exactly ci times, for i = 1, . . . , k. A descent in w is an
index i such that w(i) > w(i + 1). Let des(w) denote the number of descents
in w. Simon Newcomb’s Problem is the problem of counting permutations
of a multiset with a given number of descents, see [Mac’17, Sec. IV, Ch. IV]
and [GJ’83, Sec. 4.2.13]. Let us define the multiset Eulerian polynomial as

Ac1,...,ck
(t) :=

∑

w

tdes(w),

where the sum is over all permutations w of the multiset {1c1, . . . , kck}. By
convention, set A0,...,0(t) = 1.
In particular, the polynomial A1,...,1(t) is the usual Eulerian polynomial. It is
clear that Ac1,...,ck

(1) =
(

m
c1,...,ck

)
, the total number of multiset permutations.

A solution to Simon Newcomb’s problem can be expressed by the following
generating function for the Ac1,...,ck

(t).

Proposition 12.3. [GJ’83, Sec. 4.2.13] One has

∑

c1,...,ck≥0

Ac1,...,ck
(t) yc1

1 · · · yck

k =
t− 1

t−
∏k

i=1(1 + (t− 1) yi)
.

Theorem 12.1 then immediately follows from Proposition 12.3 and the following
proposition.

Proposition 12.4. The generating function for the h-polynomials of the poly-
topes PB(Ta1,...,ak

) equals

T (t, x1, . . . , xk) =
∑

c1,...,ck≥0

Ac1,...,ck
(t)φc1+1

1 · · ·φck+1
k .

Proof. Let us label nodes of the graph Ta1,...,ak
by integers in [n], where n =

a1 + · · · + ak + 1, so that the first chain is labelled by 1, . . . , a1, the second
chain is labelled by a1 + 1, . . . , a1 + a2, etc., with all labels increasing towards
the central node, and finally the central node has the maximal label n.
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Let T be a Ta1,...,ak
-tree. Suppose that the root r of T belongs to the w(1)-st

chain of the graph Ta1,...,ak
. If one removes the node r from the graph Ta1,...,ak

,
then the graph decomposes into 2 connected components, one of which is a chain
Pathb1 and the other is Ta1,...,a′

w(1)
,...,ak

, where a′w(1) = aw(1) − b1 − 1 and all

other indices are the same as before. (The first component is empty if b1 = 0.)
According to Proposition 8.5, the tree T is obtained by attaching a Pathb1 -tree
T1 and a Ta1,...,a′

w(1)
,...,ak

-tree T ′ to the root r. (Here one assumes that there is

one empty Path0-tree T1, for b1 = 0.) Let us repeat the same procedure with
the tree T ′. Assume that its root belongs to the w(2)-nd chain and split it into
a Pathb2 -tree T2 and a tree T ′′. Then repeat this procedure with T ′′, etc. Keep
on doing this until one gets a tree T

′···′ with the root at the central node n.
Finally, if one removes the central node n from T

′···′ , then it splits into k trees
T̃1, . . . , T̃k such that T̃j is a Pathdj

-tree, for j = 1, . . . , k.
So each Ta1,...,ak

-tree T gives us the following data:

1. a sequence (w(1), . . . , wm) ∈ [k]m;

2. a Pathbi
-tree Ti, for i = 1, . . . ,m;

3. a Pathdj
-tree T̃j, for j = 1, . . . , k.

This data satisfies the following conditions:

1. m, b1, . . . , bm, d1, . . . , dk ≥ 0, and

2. (b1 + 1)ew(1) + · · · + (bm + 1)ewm
+ (d1, . . . , dk) = (a1, . . . , ak),

where e1, . . . , ek are the standard basis vectors in Rk. Conversely, data of this
form gives us a unique Ta1,...,ak

-tree T . The number of descents in the tree T
is

des(T ) =

m∑

i=1

des(Ti) +

k∑

j=1

des(T̃j) + l + des(w),

where l is the number of nonempty trees among T1, . . . , Tm, T̃1, . . . , T̃k. Indeed,
all descents in trees Ti and T̃j correspond to descents in T , each nonempty tree

Ti or T̃j gives an additional descent for the edge that attaches this tree, and
descents in w correspond to descent edges that attach trees T ′, T ′′, . . . .
Let us fix a sequence w = w(1), . . . , w(m). For i ∈ [k], let ci be the num-
ber of times the integer i appears in w. In other words, w is a permuta-
tion of the multiset {1c1 , . . . , kck}. Then the total contribution to the gen-
erating function T (t, x1, . . . , xk) of trees T whose data involve w is equal to
tdes(w) φc1+1

1 · · ·φck+1
k . Indeed, the term 1 in φi = xi(1 + t · C(t, xi)) corre-

sponds to an empty tree, and the term t · C(t, xi) corresponds to nonempty
trees, which contribute one additional descent. The term φci

i comes from the
ci trees Tj1 , . . . , Tjci

, where wj1 , . . . , wjci
are all occurrences of i in w. Finally,

additional 1’s in the exponents of φi’s come from the trees T̃1, . . . , T̃k. Summing
this expression over all permutations w of the multiset {1c1 , . . . , kck} and then
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over all c1, . . . , ck ≥ 0, one obtains the needed expression for the generating
function T (t, x1, . . . , xk).

Remark 12.5. One can dualize all definitions, statements, and arguments in
this section, as follows. An equivalent dual formulation to Theorem 12.1 says

T (t, x1, . . . , xk) =
(1 − t)ψ1 · · ·ψk

1 − t
∏k

i=1(1 + (1 − t)ψi)

where ψi = xi(1 +C(t, xi)). The equivalence to Theorem 12.1 follows from the
relation φi · ψi = (t − 1)(φi − ψi), which is a reformulation of the functional
equation (11).
The dual multiset Eulerian polynomial is Āc1,...,ck

(t) :=
∑

w t
wdes(w)+1, where

the sum is over permutations w of the multiset M = {1c1 , . . . , kck}, m =
c1 + · · · + ck, and wdes(w) is the number of weak descents in the multiset
permutation w, that is, the number of indices i for which w(i) ≥ w(i+ 1). The
bijection which reverses the word w shows that Āc1,...,ck

(t) = tmAc1,...,ck
(t−1)

and consequently one has an equivalent formulation of the solution to Simon
Newcomb’s problem:

∑

c1,...,ck≥0

Āc1,...,ck
(t) yc1

1 · · · yck

k =
1 − t

1 − t
∏k

i=1(1 + (1 − t) yi)
.

Then one can modify the proof of Proposition 12.4, by switching the labels i
with n+ 1 − i in the graph Ta1,...,ak

, and applying a similar argument to show

T (t, x1, . . . , xk) =
∑

c1,...,ck≥0

Āc1,...,ck
(t)ψc1+1

1 · · ·ψck+1
k .

12.4 Proof of Theorem 12.1 via PDE

This section rederives Theorem 12.1 using Theorem 6.13. It also calculates the
generating function for f -polynomials of graph-associahedra corresponding to
another class of graphs, the hedgehog graphs defined below.
Recall that Pathn is the path with n nodes, and Ta1,...,ak

is the graph obtained
by attaching the paths Patha1 , . . . , Pathak

to a central node. Let us also
define the hedgehog graph Ha1,...,ak

as the graph obtained from the disjoint
union of the chains Patha1 , . . . , Pathak

by adding edges of the complete graph
between the first vertices of all chains. For example, H0,...,0 is the empty graph,
H1,...,1 = Kk, andH2,...,2 is a graph with 2k vertices obtained from the complete
graph Kk by adding a “leaf” edge hanging from each of the k original nodes.
By convention, for the empty graph, one has f̃H0,...,0(t) = 0.
Theorem 6.13 gives the following recurrence relation for f -polynomials of path
graphs:

d

dt
f̃Pathn

(t) =
n−1∑

r=1

(n− r + 1) · f̃Pathr
(t) · f̃Pathn−r

(t).
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Indeed, there are n − r + 1 connected r-element subsets I of nodes of Pathn,
the deletion Pathn|I is isomorphic to Pathr, and the contraction Pathn/I is
isomorphic to Pathn−r.

For graphs Ta1,...,ak
, Theorem 6.13 gives the following recurrence relation:

d

dt
f̃Ta1,...,ak

(t) =
k∑

i=1

ai∑

r=1

f̃Pathr
(t) · f̃Ta1,...,ai−r,...,ak

(t) · (ai − r + 1)

+
∑

f̃Tb1,...,bk
(t) · f̃Ha1−b1,...,ak−bk

(t),

where the second sum is over b1, . . . , bk such that 0 ≤ bi ≤ ai, for i = 1, . . . , k.
Indeed, a connected subset I of vertices of G = Ta1,...,ak

either belongs to one of
the chains Pathai

, or contains the central node. In the first case, the restriction
is G|I = Pathr and the contraction is G/I = Ta1,...,ai−r,...,ak

, where r = |I|. In
the second case, the restriction G|I has the form Tb1,...,bk

and the contraction
is G/I = Ha1−b1,...,ak−bk

. Similarly, for hedgehog graphs Ha1,...,ak
, one obtains

the recurrence relation

d

dt
f̃Ha1,...,ak

(t) =

k∑

i=1

ai∑

r=1

f̃Pathr
(t) · f̃Ha1,...,ai−r,...,ak

(t) · (ai − r)

+
∑

f̃Hb1,...,bk
(t) · f̃Ha1−b1,...,ak−bk

(t),

where the second sum is over b1, . . . , bk such that 0 ≤ bi ≤ ai, for i =
1, . . . , k. In all cases one has the initial conditions f̃Pathn

(0) = f̃Ta1,...,ak
(0) =

f̃Ha1,...,ak
(0) = 1, except f̃Path0(t) = f̃H0,...,0(t) = 0.

The above recurrence relations can be written in a more compact form using
these generating functions:

FA(t, x) :=
∑

n≥1

f̃Pathn
(t)xn+1 = x2 + (1 + 2t)x3 + (1 + 5t+ 5t2)x4 + · · · ,

FT (t, x1, . . . , xk) :=
∑

a1,...,ak≥0

f̃Ta1,...,ak
(t)xa1+1

1 · · ·xak+1
k ,

FH(t, x1, . . . , xk) :=
∑

a1,...,ak≥0

f̃Ha1,...,ak
(t)xa1

1 · · ·xak

k .

Note that FA and FT are related to generating functions from Section
12: FA(t, x) = t−1xC(t−1 + 1, tx), and FT (t, x1, . . . , xk) = t−k T (t−1 +
1, tx1, . . . , txk).

The above recurrence relations can be expressed as the following partial differ-
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ential equations with initial conditions at t = 0:

∂FA

∂t
= FA ·

∂FA

∂x
, FA|t=0 =

x2

1 − x
, (12)

∂FT

∂t
=

k∑

i=1

FA(t, xi)
∂FT

∂xi
+ FT · FH , FT |t=0 =

x1 · · ·xk∏k
i=1(1 − xi)

, (13)

∂FH

∂t
=

k∑

i=1

FA(t, xi)
∂FH

∂xi
+ (FH)2, FH |t=0 =

1 −
∏k

i=1(1 − xi)∏k
i=1(1 − xi)

.(14)

One can actually solve these partial differential equations for arbitrary initial
conditions, as follows.

Proposition 12.6. The solutions F (t, x), G(t, x1, . . . , xk), H(t, x1, . . . , xk),
and R(t, x1, . . . , xk) to the following system of partial differential equations with
initial conditions

∂F

∂t
= F ·

∂F

∂x
, F |t=0 = f0(x), (15)

∂G

∂t
=

k∑

i=1

F (t, xi)
∂G

∂xi
, G|t=0 = g0(x1, . . . , xk), (16)

∂H

∂t
=

k∑

i=1

F (t, xi)
∂H

∂xi
+H2, H |t=0 = h0(x1, . . . , xk), (17)

∂R

∂t
=

k∑

i=1

F (t, xi)
∂R

∂xi
+R ·H, R|t=0 = r0(x1, . . . , xk) (18)

are given by

f0(x+ t · F ) = F (implicit form)

G = g0(ξ1, . . . , ξk)

H = −(t+ (h0(ξ1, . . . , ξk))−1)−1

R = −r0(ξ1, . . . , ξk) · (1 + t · h0(ξ1, · · · , ξk))−1

where ξi = xi + t · F (t, xi), for i = 1, . . . , k.

Proof. Let us first solve (15). For a constant C, consider the function x(t) given
implicitly as F (t, x) = C, i.e., the graph of x(t) is a level curve for F (t, x). The
tangent vector to the graph of x(t) at some point (t0, x0) such that F (t0, x0) =

C is (1, dx(t0)
dt ). The derivative of the function F (t, x) at the point (t0, x0) in

the direction of this vector should be 0, i.e., 1 · ∂F (t0,x0)
∂t + dx(t0)

dt · ∂F (t0,x0)
∂x = 0.

This equation, together with the differential equation (15) for F , implies that
d
dt x(t) = −C. Solving this trivial differential equation for x(t) one deduces
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that x(t) = −C · t + B(C), where B is a function that depends only on the
constant C. Since C can be an arbitrary constant, one deduces that

x = −F (t, x) · t+B(F (t, x)), or, equivalently, B〈−1〉(x+ t · F (t, x)) = F (t, x).

Plugging the initial condition F |t=0 = f0(x) in the last expression, one gets

B〈−1〉(x) = f0(x).

Thus the solution F (t, x) is given by f0(x+ t · F ) = F , as needed.
Direct verification shows that the function G = R(F (t, x1), . . . , F (t, xk))
satisfies the differential equation (16), for an arbitrary R(y1, . . . , yk). The
initial condition for t = 0 gives R(f0(x1), . . . , f0(xk)) = g0(x1, . . . , xk).

Thus R(y1, . . . , yk) = g0(B(y1), . . . , B(yk)), where B = f
〈−1〉
0 , as

above. Since B(F (t, x)) = x + t · F (t, x), one deduces that G =
g0(B(F (t, x1)), . . . , B(F (t, xk))) = g0(ξ1, . . . , ξk), as needed.
Making the substitution H = −(t+G(t, x1, . . . , xk))−1 in differential equation
(17) for H , one obtains equation (17) for G with g0 = −(h0)

−1. By the
previous calculation, one has G = −(h0(ξ1, . . . , ξk))−1. Thus the solution for
(17) is H = −(t+ (h0(ξ1, . . . , ξk))−1)−1.
Making the substitution R = H · G in equation (17) for R, where H is the
solution to (17), one obtains equation (16) for G with g0 = r0/h0. By the
above calculation, one has G = r0(ξ1, . . . , xk)/h0(ξ1, . . . , ξk). Thus,

R = −
1

t+ (h0(ξ1, . . . , ξk))−1
·
r0(ξ1, . . . , xk)

h0(ξ1, . . . , ξk)
= −

r0(ξ1, . . . , xk)

1 + t · h0(ξ1, · · · , ξk)
,

as needed.

Applying Proposition 12.6 to differential equation (12) for FA(t, x), one obtains
the implicit solution:

(x+ t · FA)2

1 − x− t · FA
= FA.

This is equivalent to the quadratic equation (11) for C(t, x). Explicitly, one
gets

FA(t, x) =
(1 − x− 2tx) −

√
(1 − x− 2tx)2 − 4t(t+ 1)x2

2t(t+ 1)
. (19)

Applying Proposition 12.6 to differential equations (13) and (14) for the gen-
erating functions FT and FH , one obtains the following result.

Theorem 12.7. The generating functions FT (t, x1, . . . , xk) and
FH(t, x1, . . . , xk) are given by the following expressions

FT (t, x1, . . . , xk) =
ξ1 · · · ξn

(t+ 1)(1 − ξ1) · · · (1 − ξn) − t
,

FH(t, x1, . . . , xk) =
1 − (1 − ξ1) · · · (1 − ξk)

(t+ 1)(1 − ξ1) · · · (1 − ξn) − t
,

where ξi = xi + t · FA(t, xi) and FA is given by (19).
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Note that the above expression for FT is equivalent to Theorem 12.1, using (1).

13 Graph-associahedra for path-like graphs

The goal of this section is to use Theorem 6.12 to compute the h-polynomials
of the graph-associahedra of a fairly general infinite family of graphs, including
all Dynkin diagrams of finite and affine Coxeter groups.
Let A and B be two connected graphs with a marked vertex in each, and let
n0 be the total number of unmarked vertices in A and B. For n > n0, let
Gn = Gn(A,B) be the graph obtained by connecting the marked vertices in A
and B by the path Pathn−n0 so that the total number of vertices in Gn is n.
Call graphs of the form Gn path-like graphs because, for large n, they look like
paths with some “small” graphs attached to their ends.
The following claim shows that the h-polynomials of the graph-associahedra
PB(Gn) can be expressed as linear combinations (with polynomial coefficients)
of the h-polynomials Cn(t) of usual associahedra; see (8).

Theorem 13.1. There exist unique polynomials g0(t), g1(t), . . . , gn0(t) ∈ Z[t]
of degrees deg gi(t) ≤ i such that, for any n > n0 one has

hGn
(t) = g0(t)Cn(t) + g1(t)Cn−1(t) + · · · + gn0(t)Cn−n0 (t).

The polynomial gi(t) is a palindromic polynomial, that is gi(t) = ti gi(t
−1), for

i = 0, . . . , n0.

Similarly, one can express the f -polynomials of PB(Gn) as a linear combination
of the f -polynomials of usual associahedra, because fG(t) = hG(t+ 1).
One can rewrite this theorem in terms the generating function C(t, x) for the
Narayana numbers; see (10).

Corollary 13.2. There exists a unique polynomial g(t, x) ∈ Z[t, x] such that
for any n > n0, hGn

(t) is the coefficient of xn in g(t, x)C(t, x). The polynomial
g(t, x) has degree at most n0 with respect to x, and satisfies g(t, x) = g(t−1, tx).

Proof. This follows from Theorem 13.1, by setting g(t, x) = g0(t) + g1(t)x +
· · · + gn0(t)x

n0 .

Proof of Theorem 13.1. Let us first prove the existence of the linear expan-
sion. The recurrence from Theorem 6.12 will be used to prove this claim
by induction on the total number of vertices in A and B. Suppose that
A or B is disconnected, say, A is a disjoint union of graphs A1 and A2

where A1 contains the marked vertex. Let G̃n := Gn(A1, B) and let r
be the number of vertices in A2. Then hGn

(t) = hG̃n−r
(t)hA2(t), where

deg hA2(t) ≤ r − 1. By induction, hG̃n−r
(t) can be expressed as a linear

combination of Cn−r(t), Cn−r−1(t), . . . , Cn−n0(t), which produces the needed
expression for hGn

(t).
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Now assume that both A and B are connected graphs. Theorem 6.12(3)
gives the expression for the h-polynomial as the sum hGn

(t) =
∑

L(t −
1)|L|−1hGn\L(t) over nonempty subsets L of vertices of Gn, where Gn \ L de-
notes the graphGn with removed vertices in L. (Here one has shifted t by −1 to
transform f -polynomials into h-polynomials.) Let us write L as a disjoint union
L = I ∪ J ∪K, where I is a subset of unmarked vertices of A, J is a subset of
unmarked vertices of B, andK is a subset of vertices in the path connecting the
marked vertices. The contribution of the terms with K = ∅ to the above sum
is

∑
I,J(t−1)|I|+|J|−1hGn\(I∪J)(t). Note that Gn \(I∪J) = Gn−r(A\I, B \J),

where r = |I|+ |J |. By induction, one can express each term hGn\(I∪J)(t) as a
combination of Cn−r(t), . . . , Cn−n0(t).
The remaining terms involve a nonempty subset K of vertices in the path
Pathn−n0 . When one removes these k = |K| vertices from the path, it splits
into k + 1 smaller paths Pathm1 , . . . ,Pathmk+1

with mi ≥ 0; cf. paragraph
before (9). Thus the remaining contribution to hGn

(t) can be written as

∑

I,J

∑

m1,...,mk+1≥0

(t− 1)|I|+|J|+k−1 hGp(A\I,◦)(t)Cm2(t) · · ·Cmk
(t)hGq(◦,B\J)(t),

where ◦ is the graph with a single vertex,

p = m1 + |A \ I| − 1,

q = mk+1 + |B \ J | − 1, and

k +
∑

mi = n− n0.

By induction, one can express hGp(A\I,◦)(t) and hGq(◦,B\J)(t) as linear combi-
nations of the Cm′(t). So the remaining contribution to hGn

(t) can be written
as a sum of several expressions of the form

s(t)
∑

k≥1

∑

m′

1,m2,...,mk,m′

k+1

(t− 1)k−1Cm′

1
(t)Cm2(t) · · ·Cmk

(t)Cm′

k+1
(t),

where the sum is overm′
1,m2, . . . ,mk,m

′
k+1 such thatm′

1 ≥ a, m2, . . . ,mk ≥ 0,
m′

k+1 ≥ b, m′
1 +m2 + · · · +mk +m′

k+1 + k = n− c. This expression depends
on nonnegative integers a, b, c such that a + b + c = n0 and a polynomial s(t)
of degree deg s(t) ≤ c. If one extends the summation to all m′

1,m
′
k+1 ≥ 0,

one obtains the expansion (9) for Cn−c(t) times s(t). Applying the inclusion-
exclusion principle and equation (9), one deduces that the previous sum equals

s(t)



Cn−c(t) −
a−1∑

m′

1=0

t Cm′

1
(t)Cn−c−m′

1−1(t) − · · ·



 ,

which is a combination of Cn(t), . . . , Cn−n0(t) as needed.
It remains to show the uniqueness of the linear expansion and show that the
gi(t) are palindromic polynomials. (Here one assumes that the graphs A and
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B are connected.) According to Corollary 13.2, the polynomial H(t, x) :=∑
n>n0

hGn
(t)xn can be written as H(t, x) = g(t, x)C(t, x) + r(t, x), where

g(t, x), r(t, x) ∈ Z[t, x]. IfH(t, x) = g̃(t, x)C(t, x)+r̃(t, x) with g̃(t, x) 6= g(t, x),
then this would imply that C(t, x) is a rational function, which contradicts the
formula (10) involving a square root. This proves the uniqueness claim.
One has H(t, x) = H(t−1, tx)/t and C(t, x) = C(t−1, tx)/t because h-
polynomials are palindromic. Thus

H(t, x) = g(t, x)C(t, x) + r(t, x) = g(t−1, tx)C(t, x) +
1

t
r(t−1, tx).

This implies that g(t, x) = g(t−1, tx). Otherwise, C(t, x) would be a rational
function. The equation g(t, x) = g(t−1, tx) says that the coefficients gi(t) of
g(t, x) =

∑
i gi(t)x

i are palindromic.

Let us illustrate Theorem 13.1 by several examples. For a series of path-like
graphs Gn, let g{Gn} denote the polynomial g(t, x) that appears in the gen-
erating functions

∑
n≥n0

hGn
(t)xn = g(t, x)C(t, x) + r(t, x). For instance, the

expression g{Dn} = 2− (t+ 1)x− tx2 (see the example below) is equivalent to
the expression hDn

(t) = 2Cn(t) − (t+ 1)Cn−1(t) − t Cn−2(t), for n > 2.

Examples 13.3. Define daisy graphs as Daisyn,k := Tn−k−1,1k ; see Section 12.

(Here 1k means a sequence of k ones.) They include type D Dynkin diagrams
Dn := Daisyn,2. For fixed k, the Daisyn,k form the series of path-like graphs
for A = K1,k (the k-star with marked central vertex) and B = ◦ (the graph
with a single vertex). Also define kite graphs as Kiten,k := Hn−k+1,1k−1 ; see
Section 12.4. They are path-like graphs for A = Kk and B = ◦. The affine
Dynkin diagram of type D̃n−1 is the nth path-like graph in the case when both
A and B are 3-paths with marked central vertices.
Here are the polynomials g{Gn} for several series of such graphs:

g{Dn} = 2 − (t+ 1)x− t x2,

g{D̃n−1} = 4 − 4(t+ 1)x+ (t− 1)2 x2 + 2 t(t+ 1)x3 + t2 x4,

g{Kiten,3} = 2 − (t+ 1)x,

g{Daisyn,3} = 6 − 6(t+ 1)x+ (1 − 5 t+ t2)x2 − t(t+ 1)x3,

g{Daisyn,4} = 24 − 36(t+ 1)x+ (14 − 16 t+ 14 t2)x2 +

+ (−1 + 3 t+ 3 t2 − t3)x3 − (t+ t2 + t3)x4.

The formulas for Dn, Kiten,k, and Daisyn,k were derived from Theorems 12.1

and 12.7. The formula for the affine Dynkin diagram D̃n−1 was obtained using
the inductive procedure given in the proof of Theorem 13.1.

Remark 13.4. The induction from the proof of Theorem 13.1 is quite involved.
It is very difficult to calculate by hand other examples for bigger graphs A and
B. It would be interesting to find a simpler procedure for finding the polynomials
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g{Gn}. Also it would be interesting to find explicit formulas for the polynomials
g{Gn} for all daisy graphs, kite graphs, and other “natural” series of path-like
graphs.

14 Bounds and monotonicity for face numbers of graph-
associahedra

Section 7.2 showed that the f - and h-vectors of flag nestohedra coming from
connected building sets are bounded below by those of hypercubes and bounded
above by those of permutohedra. It is natural to ask for the bounds within the
subclass of graph-associahedra corresponding to connected graphs.
Permutohedra are graph-associahedra corresponding to complete graphs, and
so they still provide the upper bound for the f - and h-vectors. For lower
bounds on f - and h-vectors, the monotonicity discussed in Remark 6.9 implies
that the f - and h-vector of any graph-associahedron PB(G) for a connected
graph G is bounded below by the graph-associahedron for any spanning tree
inside G. Thus it is of interest to look at bounds for f -, h- and γ-vectors of
graph-associahedra for trees.
A glance at Figure 4 suggests that, roughly speaking, trees which are more
branched and forked (that is, farther from being a path) tend to have higher
entries componentwise in their γ-vectors, and hence also in their f - and h-
vectors. In fact, in that figure, which shows all trees on 7 vertices grouped by
their degree sequences, one sees several (perhaps misleading) features:

(i) The degree sequences are ordered linearly under the majorization (or
dominance) partial ordering on partitions of 2(n− 1) (= 2 · (7 − 1) = 12
here).

(ii) The γ-vectors of these trees are linearly ordered under the componentwise
partial order.

(iii) Trees whose degree sequence are lower in the majorization order have
componentwise smaller γ-vectors.

(iv) The trees are distinguished up to isomorphism by their γ-vectors.

Additionally, it seems that the Wiener index [Wie’47] for graphs has some
correlation with the γ-vector. The Wiener index W (G) of a graph G is defined
as the sum of distances d(i, j) over unordered pairs i, j of vertices in G, where
d(i, j) is the number of edges in the shortest path from i to j. The Wiener
index W (T ) of a tree is equal to the number of forbidden 312 patterns (see
the remarks following Definition 9.2) provided by the tree T (plus the constant(
n
2

)
). Thus, for two trees on n vertices, if one has W (T ) < W (T ′), then

roughly speaking one might expect that the generalized permutohedron PB(T )

has a larger gamma vector than PB(T ′).
This is exactly the case for trees on 7 vertices, as shown in Figure 4. It shows
that as the γ-vectors decrease, the Wiener indices (weakly) increase. Note that
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22222211

3222111

3321111

4221111

4311111

5211111

(1,15,30,5)

(1,19,44,8)
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(1,23,55,10)

(1,21,49,9)

6111111

degree sequence gamma−vector

(1,57,230,61) 36

40

42

44

46

46

48

48

50
52

56

Wiener indextree

Figure 4: The γ-vectors (γ0, γ1, γ2, γ3) for graph-associahedra of all trees on 7
vertices, grouped by degree sequence.

in this case, the Wiener index together with the degree sequence completely
distinguish all equivalence classes of trees.
For trees on n vertices, the maximum and minimum values of the Wiener index
are, respectively,

∑n−1
i=1 i(n−i) = n(n2−1)/6 for Pathn, and (n−1)2 forK1,n−1.

None of the properties (i)-(iv) persist for all trees. For example, when looking
at trees on n = 8 nodes, one finds that

(i) the degree sequences are only partially ordered by the majorization order
on partitions of 2(n− 1) = 14:

22222211 < 32222111

< 33221111 < 33311111, 42221111

< 43211111 < 44111111, 52211111

< 53111111 < 62111111 < 71111111

(ii) there are trees, such as the two shown in Figure 5(a) and (b), whose
γ-vectors are incomparable componentwise,

(iii) there are trees, such as the two shown in Figure 5(d) and (c), where
the degree sequence of one strictly majorizes that of the other, but its
γ-vector is strictly smaller, and

(iv) there are nonisomorphic trees, such as the two shown in Figure 5(d) and
(e), having the same γ-vector.
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32222111

(1,33,135,76)

33221111

(1,32,143,87)

(1,42,201,126)

33221111 42221111 33221111

(1,38,174,108)

(a) (b) (c) (d) (e)

Figure 5: The γ-vectors of the graph-associahedra of some trees on 8 nodes.

Nevertheless, we do make some monotonicity conjectures about the face num-
bers for graph-associahedra.

Conjecture 14.1. There exists a partial order ≺ on the set of (unlabelled,
isomorphism classes of) trees with n nodes, having these properties:

• Pathn is the unique ≺-minimum element,

• K1,n−1 is the unique ≺-maximum element, and

• T ≺ T ′ implies γPB(T )
≤ γPB(T ′)

componentwise.

We suspect that such a partial order ≺ can be defined so that T, T ′ will, in
particular, be comparable whenever T, T ′ are related by one of the flossing
moves considered in [BR’04, §4.2].
Assuming Conjecture 14.1, the γ-vectors (and hence also the f -, h-vectors) of
graph-associahedra for trees on n nodes would have the associahedron PB(Pathn)

and the stellohedron PB(K1,n−1) giving their lower and upper bounds. This
would also imply that the f -, h-vectors of graph-associahedra for connected
graphs on n nodes would have associahedra and permutohedra giving their
lower and upper bounds. To make a similar assertion for γ-vectors it would
be nice to have the following analogue of Stanley’s monotonicity result (Theo-
rem 4.6).

Conjecture 14.2. When ∆,∆′ are two flag simplicial complexes and ∆′ is a
geometric subdivision of ∆, the γ-vector of ∆′ is componentwise weakly larger
than that of ∆. In particular, when B,B′ are building sets giving rise to flag
nestohedra and B ⊂ B′, (such as graphical buildings B(G) ⊂ B(G′) for an edge-
subgraph G ⊂ G′) then the γ-vector of PB′ is componentwise weakly larger than
that of PB.

We close with a question suggested by the sets of permutations Sn(B) and

Ŝn(B) for a chordal building set B which appeared in Corollary 9.6 and The-
orem 11.6.

Question 14.3. Given a (non-chordal) building set B, is there a way to define

two sets of permutations S
′
n(B) and Ŝ

′
n(B) such that:

• the h-polynomial for the nestohedron PB is given by the descent generating
function for S

′
n(B), and
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• the γ-polynomial is given by the peak generating function for Ŝ
′
n(B)?

15 Appendix: Deformations of a simple polytope

The goal of this section is to clarify the equivalence between various definitions
of the deformations of a simple polytope, either by

• deforming vertex positions, keeping edges in the same parallelism class,
or

• deforming edge lengths, keeping them nonnegative, or

• altering level sets of facet inequalities, but not allowing facets to move
past any vertices.

There will be defined below three cones of such deformations which are all lin-
early isomorphic. This discussion is essentially implicit in [Post’05, Definition
6.1 and §19], but we hope the explication here clarifies this relationship.
Let P be a simple d-dimensional polytope in Rd. Let V be its set of vertices.
Let E ⊆

(
V
2

)
be its set of edge pairs. Let F be an indexing set for its facets, so

that P is defined by facet inequalities hf (x) ≤ αf for f ∈ F , in which each hf

is a linear functional in (Rd)∗, and (αf )f∈F ∈ RF .

Definition 15.1. (1) The vertex deformation cone DV
P of P is the set of points

(xv)v∈V ∈ (Rd)V such that

xu − xv ∈ R≥0(u− v), for every edge uv ∈ E. (20)

(2) The edge length deformation cone DE
P of P is the set of points (ye)e∈E ∈ R

E

such that all ye ≥ 0, and, for any 2-dimensional face of P with edges e1 = v1v2,
e2 = v2v3, . . . , ek−1 = vk−1vk, ek = vkv1, one has

ye1(v1 − v2) + ye2(v2 − v3) + · · · + yek
(vk − v1) = 0.

(3) For β = (βf )f∈F ∈ RF , let Pβ := {x ∈ Rd | hf (x) ≤ βf , for f ∈ F} be the
polytope obtained from P by parallel translations of the facets. In particular,
Pα = P . The open facet deformation cone9 DF,open

P for P is the set of β ∈ R
F

for which the polytopes Pβ and P have the same normal fan N (Pβ) = N (P ).
(Equivalently, Pβ and P have the same combinatorial structure.) The (closed)

facet deformation cone is the closure DF
P of DF,open

P inside RF .

It is clear that the definitions of DV
P and DE

P translate into linear equations
and weak linear inequalities. Thus DV

P and DE
P are (closed) polyhedral cones

in the spaces (Rd)V and RE , correspondingly. The following lemma shows that
DF

P is also a polyhedral cone.

9This is linearly isomorphic to the type-cone of P described by McMullen [McM’73, §2,
p. 88].
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Lemma 15.2. For a simple polytope P , the facet deformation cone DF,open
P is a

full |F |-dimensional open polyhedral cone inside RF , that is a nonempty subset
in RF given by strict linear inequalities. Thus DF

P is the closed polyhedral cone
in RF given by replacing the strict inequalities with the corresponding weak
inequalities.

Proof. Since every polytope Pβ has facet normals in directions which are a
subset of those for P , the rays (=1-dimensional normal cones) in N (Pβ) are a
subset of those in N (P ). Therefore, one will have N (Pβ) = N (P ) if and only if
Pβ , P have the same face lattices, or equivalently, the same collection of vertex-

facet incidences (v, f). This means that one can define the set DF,open
P inside

R
F by a collection of strict linear inequalities on the coordinates β = (βf )f∈F .

It is next explained how to produce one such inequality for each pair (v0, f0)
of a vertex v0 and facet f0 of P such that v0 6∈ f0.
If v0 lies on the d facets f1, . . . , fd in P , then v0 is the unique solution to
the linear system hfj

(x) = αfj
for j = 1, ..., d. Its corresponding vertex x0

in Pβ is then the unique solution to hfj
(x) = βfj

for j = 1, ..., d. Note that
this implies x0 has coordinates given by linear expressions in the coefficients β.
Then the inequality corresponding to the vertex-facet pair (v0, f0) asserts that
hf0(x0) < βf0 .
Lastly, note that this system of strict linear inequalities has at least one so-
lution, namely the α for which Pα = P . Hence this open polyhedral cone is
nonempty.

Theorem 15.3 gives several ways to describe deformations of a simple polytope.

Theorem 15.3. Let P be a d-dimensional simple polytope in Rd, with notation
as above. Then the following are equivalent for a polytope P ′ in Rd:

(i) The normal fan N (P ) refines the normal fan N (P ′).

(ii) The vertices of P ′ can be (possibly redundantly) labelled xv, v ∈ V , so
that (xv)v∈V is a point in the vertex deformation cone DV

P , i.e., the xv

satisfy conditions (20).

(iii) The polytope P ′ is the convex hull of points xv, v ∈ V , such that (xv)v∈V

is in the vertex deformation cone DV
P .

(iv) P ′ = Pβ for some β in the closed facet deformation cone DF
P .

(v) P ′ is a Minkowski summand of a dilated polytope rP , that is there exist
a polytope Q ⊂ Rd and a real number r > 0 such that P ′ +Q = rP .

Proof. One proceeds by proving the following implications (i) ⇒ (ii) ⇒ (iii) ⇒
(i) ⇒ (iv) ⇒ (iii), (iv) ⇒ (v) ⇒ (i).
(i) implies (ii). The refinement of normal fans gives rise to the redundant
labelling of vertices (xv)v∈P as follows: given a vertex x of P ′, label it by
xv for every vertex v in P having its normal cone Nv(P ) contained in the
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normal cone Nx(P ′). There are then two possibilities for an edge uv ∈ E of
P : either xu = xv, in which case (20) is trivially satisfied, or else xu 6= xv so
that Nu(P ),Nv(P ) lie in different normal cones Nxu

(P ′) 6= Nxv
(P ′). But then

since N (P ) refines N (P ′), these latter two cones must share a codimension one
subcone lying in the same hyperplane that separates Nu(P ) and Nv(P ). As
this hyperplane has normal vector u − v, this forces xu − xv to be a positive
multiple of this vector, as desired.

(ii) implies (iii). Trivial.

(iii) implies (i). Let P ′ be the convex hull of the points xv. Fix a vertex u ∈ V .
Let λ ∈ (Rd)∗ be a generic linear functional that belongs to the normal cone
Nu(P ) of P at the vertex u. Then the maximum of λ on P is achieved at the
point u and nowhere else. Let us orient the 1-skeleton of P so that λ increases
on each directed edge. This connected graph has a unique vertex of outdegree
0, namely the vertex u. Thus, for any other vertex v ∈ V , there is a directed
path (v1, . . . , vl) from v1 = v to vl = u in this directed graph. According to
the conditions of the lemma, one has have λ(xv1 ) ≤ λ(xv2 ) ≤ · · · ≤ λ(xvl

), so
λ(xv) ≤ λ(xu). Thus the maximum of λ on the polytope P ′ is achieved at the
point xu. This implies that xu is a vertex of P ′ and the normal cone Nxu

(P ′)
of P ′ at this point contains the normal cone Nu(P ) of P at u. Since the same
statement is true for any vertex of P , one deduces that N (P ) refines N (P ′).

(i) implies (iv). First, note that if N (P ′) = N (P ) then P ′ = Pβ for some

β in the open facet deformation cone DF,open
P . Indeed, the facets of P ′ are

orthogonal to the 1-dimensional cones in N (P ′), thus they should be parallel
to the corresponding facets of P .

Now assume that N (P ) refines N (P ′). Recall the standard fact [Zieg’94, Prop.
7.12] that the normal fan N (Q1 + Q2) of a Minkowski sum Q1 + Q2 is the
common refinement of the normal fans N (Q1) and N (Q2). Thus, for any ǫ > 0,
the normal fan of the Minkowski sum P ′ + ǫP coincides with N (P ). By the

previous observation, one should have P ′+ǫP = Pβ(ǫ) for some β(ǫ) ∈ DF,open
P .

Since all coordinates of β(ǫ) linearly depend on ǫ, one obtain P ′ = Pβ for
β = limǫ→0 β(ǫ) ∈ DF

P .

(iv) implies (iii). Given β ∈ DF
P , it is the limit point for some family

{β(ǫ)} ⊂ DF,open
P . One may assume that β(ǫ) linearly depends on ǫ > 0

and limǫ→0 β(ǫ) = β. Hence P ′ = Pβ is the limit of the polytopes Pβ(ǫ),
which each have N (Pβ(ǫ)) = N (P ). In particular, the vertices of Pβ(ǫ) can
be labelled by xv(ǫ), v ∈ V . These vertices linearly depend on ǫ and satisfy
xu(ǫ) − xv(ǫ) = R≥0(u − v) for any edge uv ∈ E. Taking the limit ǫ → 0, one
obtains that P ′ is the convex hull of points xv = limǫ→0 xv(ǫ) satisfying (20).

(iv) implies (v). Note that Pγ + Pδ = Pγ+δ, for γ, δ ∈ DF
P . Let P ′ = Pβ for

β ∈ DF
P . The point α (such that P = Pα) belongs to the open cone DF,open

P .
Thus, for sufficiently large r, the point γ = rα − β also belongs to the open
cone DF,open

P . Let Q = Pγ . Then one has P ′ +Q = Pβ + Prα−β = Prα = rP ,
as needed.

(v) implies (i). This follows from the standard fact [Zieg’94, Prop. 7.12] on
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normal fans of Minkowski sums mentioned above.

Remark 15.4. We are being somewhat careful here, since Theorem 15.3 can
fail when one allows a broader interpretation for a simple polytope P to deform
into a polytope P ′ by parallel translations of its facets, e.g. if one allows facets
to translate past vertices. For example, letting P ′ be a regular tetrahedron in
R3, and P the result of “shaving off an edge” from P ′ with a generically tilted
plane in R3, one finds that N (P ) does not refine N (P ′).

Let us now describe the relationship between the three deformation cones DV
P ,

DE
P , and DF

P . Let H be the linear subspace in (Rd)V given by

H := {(xv)v∈V ∈ (Rd)V | xu − xv ∈ R(u− v) for any edge uv ∈ E}.

Clearly, the cone DV
P belongs to the subspace H . Let us define two linear maps

φ : H → R
E and ψ : R

F → H.

The map φ sends (xv)v∈V ∈ H to (ye)e∈E ∈ RE , where xu−xv = ye(u−v), for
any edge e = uv ∈ E. The map ψ sends β = (βf )f∈F to (xv)v∈V , where, for
each vertex v of P given as the intersection of the facets of P indexed f1, . . . , fd,
the point xv ∈ Rd is the unique solution of the linear system {hfj

(x) = βfj
|

j = 1, . . . , d}. For β ∈ DF,open
P , ψ(β) = (xv)v∈V , where the xv are the vertices

of the polytope Pβ . One can easily check that ψ(β) ∈ H . Indeed, this is clear

for β ∈ DF,open
P and thus this extends to all β ∈ RF by linearity.

Note that the kernel of the map φ is the subspace ∆(Rd) ≃ Rd embedded
diagonally into (Rd)V . This comes from the fact that the 1-skeleton of P
is connected. The vertex deformation cone DV

P can be reduced modulo the
subspace ∆(Rd) of parallel translations of polytopes. Similarly, the facet defor-
mation cone can be reduced modulo the subspace ∆′(Rd) = ψ−1(∆(Rd)) ≃ R

d,
where ∆′(x) := (hf (x))f∈F for x ∈ Rd.

Theorem 15.5. The map ψ gives a linear isomorphism between the cones
DF

P and DV
P . The map φ induces a linear isomorphism between the cones

DV
P /∆(Rd) and DE

P . Thus one has

DE
P ≃ DV

P /∆(Rd) ≃ DF
P /∆

′(Rd).

In particular, dimDE
P = dimDV

P − d = dimDF
P − d = |F | − d.

Proof. The claim about the map ψ follows immediately from Theorem 15.3.
Let us prove the claim about φ. Note that, for (xv)v∈V ∈ DV

P , the point
(ye)e∈E = φ((xv)v∈V ) satisfies the condition of Definition 15.1(2) because

ye1(v1 − v2) + ye2(v2 − v3) + · · · + yek
(vk − v1)

= (xv1 − xv2 ) + (xv2 − xv3 ) + · · · + (xvk
− xv1)

= 0.
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It remains to show that for any (ye)e∈E ∈ DE
P there exists a unique (modulo

diagonal translations) element (xv)v∈V ∈ H such that xu − xv = ye(u − v)
for any edge e = uv ∈ E. Let us construct the points xv ∈ Rd, as follows.
Pick a vertex v0 ∈ V and pick any point xv0 ∈ Rd. For any other v ∈ V ,
find a path (v0, v1, . . . , vl) from v0 to vl = v in the 1-skeleton of P and define
xv = xv0 − yv0v1(v0 − v1)− yv1v2(v1 − v2)− · · · − yvl−1vl

(vl−1 − vl). This point
xv does not depend on a choice of path from v0 to v, because any other path
in the 1-skeleton can be obtained by switches along 2-dimensional faces of P .
These (xv)v∈V satisfy the needed conditions.
Finally, note that dimDF

P = |F | because DF
P is a full-dimensional cone.
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