DOCUMENTA MATH. 365

ScHUR CLASS OPERATOR FUNCTIONS

AND AUTOMORPHISMS OF HARDY ALGEBRAS

PAuL S. MUHLY'AND BARUCH SOLEL2

Received: June 12, 2007

Communicated by Joachim Cuntz

ABSTRACT. Let E be a W*-correspondence over a von Neumann alge-
bra M and let H*°(F) be the associated Hardy algebra. If o is a faith-
ful normal representation of M on a Hilbert space H, then one may
form the dual correspondence E° and represent elements in H>(E)
as B(H)-valued functions on the unit ball D(E?)*. The functions that
one obtains are called Schur class functions and may be characterized
in terms of certain Pick-like kernels. We study these functions and
relate them to system matrices and transfer functions from systems
theory. We use the information gained to describe the automorphism
group of H*°(E) in terms of special Mobius transformations on D(E7).
Particular attention is devoted to the H>°-algebras that are associated
to graphs.

2000 Mathematics Subject Classification: 46E22, 46E50, 46G20,
46H15, 46H25, 46K50, 46108, 461.89,

Keywords and Phrases: Hardy Algebras, Tensor Algebras, Schur
class functions, W*-correspondence, noncommutative realization the-
ory, Md&bius transformations, free semigroup algebras, graph algebras,
Nevanlinna-Pick interpolation

ISupported in part by grants from the National Science Foundation and from the U.S.-
Israel Binational Science Foundation.

2Supported in part by the U.S.-Israel Binational Science Foundation and by the Fund for
the Promotion of Research at the Technion.

DOCUMENTA MATHEMATICA 13 (2008) 365-411



366 PaurL S. MUHLY AND BARUCH SOLEL
1 INTRODUCTION

Let M be a W*-algebra and let E be a W*-correspondence over M. In [31] we
built an operator algebra from this data that we called the Hardy algebra of F
and which we denoted H*®(E). If M = E = C - the complex numbers, then
H*(E) is the classical Hardy algebra consisting of all bounded analytic func-
tions on the open unit disc, D (see Example 2.4 below.) If M = C again, but
E = C", then H*(E) is the free semigroup algebra £,, studied by Davidson
and Pitts [17], Popescu [32] and others (see Example 2.5.) One of the principal
discoveries made in [31], and the source of inspiration for the present paper, is
that attached to each faithful normal representation o of M there is a dual cor-
respondence E°, which is a W*-correspondence over the commutant of (M),
o(M)’, and the elements of H>°(E) define functions on the open unit ball of
E°,D(E?). Further, the value distribution theory of these functions turns out
to be linked through our generalization of the Nevanlinna-Pick interpolation
theorem [31, Theorem 5.3] with the positivity properties of certain Pick-like
kernels of mappings between operator spaces.

In the setting where M = E = C and o is the 1-dimensional representation of
C on itself, then E“ is C again. The representation of H*°(E) in terms of func-
tions on D(E) = D is just the usual way we think of H>°(FE). In this setting,
our Nevanlinna-Pick theorem is exactly the classical theorem. If, however, o
is a representation of C on a Hilbert space H, dim(H) > 1, then E° may be
identified with B(H) and then D(E?) becomes the space of strict contractions
on H, i.e., all those operators of norm strictly less than 1. In this case, the
value of an f € H>®(E) at a T € D(E’) is simply f(T), defined through the
usual holomorphic functional calculus. Our Nevanlinna-Pick theorem gives a
solution to problems such as this: given k operators 17,75, ..., Tk all of norm
less than 1 and k operators, Ay, As, ..., Ag, determine the circumstances under
which one can find a bounded analytic function f on the open unit disc of sup
norm at most 1 such that f(7;) = A;, ¢ = 1,2,...,k (See [31, Theorem 6.1].)
On the other hand, when M = C, F = C", and o is one dimensional, the
space E7 is C™ and D(E?) is the unit ball B”. Elements in H*(E) = L,
are realized as holomorphic functions on B™ that lie in a multiplier space stud-
ied in detail by Arveson [5]. More accurately, the functional representation of
H®(E) = L, in terms of these functions expresses this space as a quotient of
H*>(FE) = L. The Nevanlinna-Pick theorem of [31] contains those of David-
son and Pitts [18], Popescu [34], and Arias and Popescu [4], which deal with
interpolation problems for these spaces of functions (possibly tensored with the
bounded operators on an auxiliary Hilbert space). It also contains some of the
results of Constaninescu and Johnson in [16] which treats elements of £, as
functions on the ball of strict row contractions with values in the operators on
a Hilbert space. (See their Theorem 3.4 in particular.) This situation arises
when one takes M = C and E = C”, but takes o to be scalar multiplication
on an auxiliary Hilbert space.

Our objective in the present note is basically two fold. First, we wish to identify
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those functions on D(E?) that arise from evaluating elements of H>°(E). For
this purpose, we introduce a family of functions on D(E?) that we call Schur
class operator functions (see Definition 3.1). Roughly speaking, these functions
are defined so that a Pick-like kernel that one may attach to each one is com-
pletely positive definite in the sense of Barreto, Bhat, Liebscher and Skeide
[14]. In Theorem 3.3 we use their Theorem 3.2.3 to give a Kolmogorov-type
representation of the kernel, from which we derive an analogue of a unitary

. A B .
system matrix ( c D ) whose transfer function

A+B(I-L,D)"'L,C

turns out to be the given Schur class operator function. We then prove in
Theorem 3.6 that each such transfer function arises by evaluating an element
in H*(E) at points of D(E“) and conversely, each function in H*°(FE) has a
representation in terms of a transfer function. The meaning of the notation will
be made precise below, but we use it here to highlight the connection between
our analysis and realization theory as it comes from mathematical systems
theory. The point to keep in mind is that functions on D(E?) that come from
elements of H>°(E) are not, a priori, analytic in any ordinary sense and it is
not at all clear what analytic features they have. Our Theorems 3.1 and 3.6
together with [31, Theorem 5.3] show that the Schur class operator functions
are precisely the functions one obtains when evaluating functions in H*°(E)
(of norm at most 1) at points of D(E7). The fact that each such function may
be realized as a transfer function exhibits a surprising level of analyticity that
is not evident in the definition of H>(E).

Our second objective is to connect the usual holomorphic properties of D(E?)
with the automorphisms of H*°(E). As a space, D(E?) is the unit ball of a
J*-triple system. Consequently, every holomorphic automorphism of D(E7) is
the composition of a Mdbius transformation and a linear isometry [20]. Each
of these implements an automorphism of the algebra of all bounded, complez-
valued analytic functions on D(E?), but in our setting only certain of them
implement automorphisms of H*(FE) - those for which the M&bius part is
determined by a “central” element of E? (see Theorem 4.21). Our proof requires
the fact that the evaluation of functions in H>°(E) (of norm at most 1) at points
of D(E?) are precisely the Schur class operator functions on D(E?). Indeed, the
whole analysis is an intricate “point - counterpoint” interplay among elements
of H*(E), Schur class functions, transfer functions and “classical” function
theory on D(E?). In the last section, we apply our general analysis of the
automorphisms of H*(FE) to the special case of H®-algebras coming from
directed graphs.

In concluding this introduction, we want to note that a preprint of the present
paper was posted on the arXiv on June 27, 2006. Recently, inspired in part
by our preprint, Ball, Biswas, Fang and ter Horst [8] were able to realize the
Fock space that we describe here in terms of the theory of completely positive
definite kernels advanced by Barreto, Bhat, Liebscher and Skeide [14] that we
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also use (See Section 3 and, in particular, the proof of Theorem 3.3.) The
analysis of Ball et al. makes additional ties between the theory of abstract
Hardy algebras that we develop here and classical function theory on the unit
disc.

2 PRELIMINARIES

We start by introducing the basic definitions and constructions. We shall follow
Lance [24] for the general theory of Hilbert C*-modules that we shall use. Let
A be a C*-algebra and FE be a right module over A endowed with a bi-additive
map (-,-) : B x E — A (referred to as an A-valued inner product) such that,
for ,m € F and a € A, ({,na) = (£,n)a, (£,n)* = (n,£), and (£,£) > 0, with
(£,€) = 0 only when & = 0. Also, F is assumed to be complete in the norm
€]l == [1(€, €)]|*/2. We write L£(FE) for the space of continuous, adjointable,
A-module maps on E. It is known to be a C*-algebra. If M is a von Neumann
algebra and if F is a Hilbert C*-module over M, then F is said to be self-dual in
case every continuous M-module map from F to M is given by an inner product
with an element of E. Let A and B be C*-algebras. A C*-correspondence from
A to B is a Hilbert C*-module E over B endowed with a structure of a left
module over A via a nondegenerate *-homomorphism ¢ : A — L(E).

When dealing with a specific C*-correspondence, F, from a C*-algebra A to a
C*-algebra B, it will be convenient sometimes to suppress the ¢ in formulas
involving the left action and simply write af or a - £ for ¢(a)¢. This should
cause no confusion in context.

If E is a C*-correspondence from A to B and if F is a correspondence from
B to C, then the balanced tensor product, E ®p F' is an A, C-bimodule that
carries the inner product defined by the formula

(G1@m, & @m)egsr = (M, 0((&1,82)E)N2) F

The Hausdorff completion of this bimodule is again denoted by F ®p F.

In this paper we deal mostly with correspondences over von Neumann algebras
that satisfy some natural additional properties as indicated in the following
definition. (For examples and more details see [31]).

DEFINITION 2.1 Let M and N be von Neumann algebras and let E be a Hilbert
C*-module over N. Then FE is called a Hilbert W*-module over N in case F is
self-dual. The module E is called a W*-correspondence from M to N in case E
is a self-dual C*-correspondence from M to N such that the x-homomorphism
v : M — L(E), giving the left module structure on E, is normal. If M = N
we shall say that E is a W*-correspondence over M.

We note that if F is a Hilbert W*-module over a von Neumann algebra, then

L(E) is not only a C*-algebra, but is also a W*-algebra. Thus it makes sense
to talk about normal homomorphisms into L(E).
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DEFINITION 2.2 An isomorphism of a W*-correspondence E1 over M; and
a W*-correspondence Ey over Ms is a pair (o,V) where o : My — M is
an isomorphism of von Neumann algebras, ¥ : E; — FE5 is a vector space
isomorphism preserving the o-topology and for e, f € Ey and a,b € My, we
have U (aeb) = o(a)¥(e)o(b) and (V(e), U(f)) =a({e, f)).

When considering the tensor product F ®); F' of two W*-correspondences,
one needs to take the closure of the C*-tensor product in the o-topology of
[6] in order to get a W*-correspondence. However, we will not distinguish
notationally between the C*-tensor product and the W*-tensor product. Note
also that given a W*-correspondence F over M and a Hilbert space H equipped
with a normal representation o of M, we can form the Hilbert space F ®, H
by defining ({1 ® h1,& ® ha) = (h1,0({£1,&2))he). Thus, H is viewed as a
correspondence from M to C via o and E ®, H is just the tensor product of
FE and H as W*-correspondences.

Note also that, given an operator X € L(E) and an operator S € o(M)’, the
map £ ® h — X& ® Sh defines a bounded operator on E ®, H denoted by
X ® S. The representation of L(E) that results when one lets S = I, is called
the representation of £(E) induced by o and is often denoted by o¥. The
composition, o o ¢ is a representation of M which we shall also say is induced
by o, but we shall usually denote it by ¢(-) ® I.

Observe that if £ is a W*-correspondence over a von Neumann algebra M,
then we may form the tensor powers E®", n > 0, where E®° is simply M
viewed as the identity correspondence over M, and we may form the W*-
direct sum of the tensor powers, F(E) := E¥° @ E®!' @ E®2 @ ... to obtain
a W*-correspondence over M called the (full) Fock space over E. The actions
of M on the left and right of F(E) are the diagonal actions and, when it is
convenient to do so, we make explicit the left action by writing ¢ for it.
That is, for a € M, pu(a) := diag{a,p(a), 9®(a), ¢ (a), -}, where for all
n, oM @) (& ®&E®R &) = (p(a)é) @& @ bny, G RER &, € EOM.
The tensor algebra over E, denoted 7, (F), is defined to be the norm-closed
subalgebra of L(F(E)) generated by ¢oo(M) and the creation operators Tg,
& € E, defined by the formula Tenp = € @ n, n € F(E). We refer the reader to
[28] for the basic facts about 7, (F).

DEFINITION 2.3 ([31]) Given a W*-correspondence E over the von Neumann
algebra M, the ultraweak closure of the tensor algebra of E, T, (E), in L(F(E)),
is called the Hardy Algebra of E, and is denoted H*(E).

EXAMPLE 2.4 If M = E = C, then F(E) can be identified with ¢*(Z.) or,
through the Fourier transform, H?(T). The tensor algebra then is isomorphic
to the disc algebra A(D) viewed as multiplication operators on H?(T) and the
Hardy algebra is realized as the classical Hardy algebra H>(T).

ExXAMPLE 2.5 If M = C and E = C", then F(E) can be identified with the
space lo(F), where Tl is the free semigroup on n generators. The tensor

DOCUMENTA MATHEMATICA 13 (2008) 365-411
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algebra then is what Popescu refers to as the “non commutative disc algebra”
A, and the Hardy algebra is its w*-closure. It was studied by Popescu [32] and
by Davidson and Pitts who denoted it by L, [17].

We need to review some basic facts about the representation theory of H>°(E)
and of 7, (F). See [28, 31] for more details.

DEFINITION 2.6 Let E be a W*-correspondence over a von Neumann algebra
M. Then:

1. A completely contractive covariant representation of E' on a Hilbert space
H is a pair (T, o), where

(a) o is a normal x-representation of M in B(H).

(b) T is a linear, completely contractive map from E to B(H) that is
continuous in the o-topology of [6] on E and the ultraweak topology
on B(H).

(¢c) T is a bimodule map in the sense that T(SER) = o(S)T(§)o(R),
E€E,and S, Re M.

2. A completely contractive covariant representation (T,0) of E in B(H) is
called isometric in case

T(€)*T(n) =a((&m) (1)

forallé,ne E.

It should be noted that the operator space structure on E to which Definition
2.6 refers is that which E inherits when viewed as a subspace of its linking
algebra.

As we showed in [28, Lemmas 3.4-3.6] and in [31], if a completely contractive
covariant representation, (T, 0), of E in B(H) is given, then it determines a
contraction T : E ®, H — H defined by the formula T(n ® h) := T(n)h,
n®h e E®, H. The operator T intertwines the representation o on H and
the induced representation o o o = () ® Iy on E ®, H; i.e.

T(p() @ 1) =o(-)T. (2)
In fact we have the following lemma from [31, Lemma 2.16].

LEMMA 2.7 The map (T,0) — T isa bijection between all completely contrac-
tive covariant representations (T, o) of E on the Hilbert space H and contractive
operators T : E®q, H — H that satisfy equation (2). Given such a T satisfying
this equation, T, defined by the formula T(&)h := T(¢£ ® h), together with o is
a completely contractive covariant representation of E on H. Further, (T, o)
is isometric if and only if T is an isometry.
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The importance of the completely contractive covariant representations of F
(or, equivalently, the intertwining contractions T as above) is that they yield
all completely contractive representations of the tensor algebra. More precisely,
we have the following.

THEOREM 2.8 Let E be a W*-correspondence over a von Neumann algebra M.
To every completely contractive covariant representation, (T,0), of E there is
a unique completely contractive representation p of the tensor algebra T, (F)
that satisfies

p(Te) =T() E€E
and
plex(a)) =o(a) a€ M.

The map (T,0) — p is a bijection between the set of all completely contractive
covariant representations of E and all completely contractive (algebra) repre-
sentations of Ty (E) whose restrictions to poo(M) are continuous with respect
to the ultraweak topology on L(F(E)).

DEFINITION 2.9 If (T,0) is a completely contractive covariant representation
of a W*-correspondence E over a von Neumann algebra M, we call the repre-
sentation p of T (E) described in Theorem 2.8 the integrated form of (T,0)
and write p =0 X T.

REMARK 2.10 One of the principal difficulties one faces in dealing with T, (E)
and H*®(E) is to decide when the integrated form, o x T, of a completely con-
tractive covariant representation (T, 0) extends from T (E) to H*®(E). This
problem arises already in the simplest situation, vis. when M = C = E. In this
setting, T is given by a single contraction operator on a Hilbert space, T, (E)
“is” the disc algebra and H>®(E) “is” the space of bounded analytic functions
on the disc. The representation o X T' extends from the disc algebra to H*(E)
precisely when there is no singular part to the spectral measure of the minimal
unitary dilation of T. We are not aware of a comparable result in our general
context but we have some sufficient conditions. Omne of them is given in the
following lemma. It is not a necessary condition in general.

LEMMA 2.11 [81, Corollary 2.14] If |T|| < 1 then o x T extends to a ultra-
weakly continuous representation of H>(E).

In [31] we introduced and studied the concepts of duality and of point evaluation
(for elements of H>°(E)). These play a central role in our analysis here.

DEFINITION 2.12 Let E be a W*-correspondence over a von Neumann algebra
M andlet o : M — B(H) be a faithful normal representation of M on a Hilbert
space H. Then the o-dual of E, denoted E?, is defined to be

{n€ B(H,E®, H) | no(a) = (p(a) @ I)n, a € M}.
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An important feature of the dual E° is that it is a W*-correspondence, but
over the commutant of o(M), o(M)'.

PROPOSITION 2.13 With respect to the action of o(M)' and the o(M)'-valued
inner product defined as follows, E° becomes a W*-correspondence over o(M)’ :
ForY and X ino(M)', andn € E°, X-n-Y := (I®X)nY, and forn,n2 € E°,
(M1, m2) o (ary = MiM2-

In the following remark we explain what we mean by “evaluating an element of
H®°(E) at a point in the open unit ball of the dual”.

REMARK 2.14 The importance of this dual space, E°, is that it is closely re-
lated to the representations of E. In fact, the operators in E° whose norm does
not exceed 1 are precisely the adjoints of the operators of the form T for a co-
variant pair (T, o). In particular, every n in the open unit ball of E° (written
D(E?)) gives rise to a covariant pair (T,0) (with n = T*) such that o x T
extends to a representation of H*(E).

Given X € H*®(FE) we can apply the representation associated to n to it. The
resulting operator in B(H) will be denoted by X (n*). Thus

X(n") = (o xn")(X).

In this way, we view every element in the Hardy algebra as a B(H)-valued
function N

X :D(E?)* — B(H)
on the open unit ball of (E°)*. One of our primary objectives is to understand
the range of the transform X — X, X € H*(E).

EXAMPLE 2.15 Suppose M = E = C and o the representation of C on some
Hilbert space H. Then it is easy to check that E is isomorphic to B(H). Fiz an
X € H*(E). As we mentioned above, this Hardy algebra is the classical H*>(T)
and we can identify X with a function f € H*(T). Given S € D(E?) = B(H),
it is not hard to check that )?(S*), as defined above, is the operator f(S*)
defined through the usual holomorphic functional calculus.

EXAMPLE 2.16 In [17] Davidson and Pitts associate to every element of the
free semigroup algebra L, (see Example 2.5) a function on the open unit ball of
C™. This is a special case of our analysis when M = C, E = C" and o is a one
dimensional representation of C. In this case o(M)' = C and E° = C™. Note,
however, that our definition allows us to take o to be the representation of C on
an arbitrary Hilbert space H. If we do so, then E° is isomorphic to B(H)(”),
the nth column space over B(H), and elements of L, define functions on the
open unit ball of this space viewed as a correspondence over B(H) with values
in B(H). This is the perspective adopted by Constantinescu and Johnson in
[16]. In the analysis of [17] it is possible that a non zero element of L, will
give rise to the zero function. We shall show in Lemma 3.8 that, by choosing
an appropriate H we can insure that this does not happen.
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EXAMPLE 2.17 Part of the recent work of Popescu in [35] may be cast in our
framework. We will follow his notation. Fiz a Hilbert space K, and let E be
the column space B(K)"™. Take, also, a Hilbert space H and let o : B(K) —
B(K ® H) be the representation which sends a € B(K) to a ® Iy. Then,
since the commutant of o(B(K)) is naturally isomorphic to B(H), it is easy to
see that E° is the column space over B(H), B(H)™. It follows that D(E?) is
the open unit ball in B(H)™. A free formal power series with coefficients from
B(K) is a formal series F' =" p+ Aq ® Zo where F}7 is the free semigroup
on n generators, the A, are elements of B(K) and where Z, is the monomial
in noncommuting indeterminates Z1, Zs, ..., Z, determined by . If F' has
radius of convergence equal to 1, then one may evaluate F at points of D(E?)*
to get a function on D(E?)* with values in B(K®H), vis., F'((S1,S2, - Sn))
> oert Aa ® Sa. See [35, Theorem 1.1]. In fact, under additional restrictions
on the coefficients A,, F may be viewed as a function X in H>(B(K)™) in such
a way that F((S1, Sa, -+ S,)) = X (S, Sa, - -+ Sy,) in the sense defined in [31, p.
384] and discussed above in Remark 2.14. The space that Popescu denotes by
H*>(B(X)}) arises when K = C, and is naturally isometrically isomorphic to
Ly, [35, Theorem 3.1]. We noted in the preceding example that L, is H>*(C").
The point of [35], at least in part, is to study H®(B(X)]) ~ L, = H*(C")
through all the representations o of C on Hilbert spaces H, that is, through
evaluating functions in H®(B(X)}) at points the unit ball of B(H)" for all
possible H’s. The space B(K )™ is Morita equivalent to C™ in the sense of [30],
at least when dim(K) < oo, and, in that case the tensor algebras T (B(K)™)
and T, (C™) are Morita equivalent in the sense described by [15]. The tensor
algebra T, (C™), in turn, is naturally isometrically isomorphic to Popescu’s
noncommutative disc algebra A, [33]. The analysis in [15] suggests a sense
in which C" and B(K)™ are Morita equivalent even when dim(K) = oo, and
that together with [30] suggests that H> (B(K)™) should be Morita equivalent to
H>(B(X)}) ~ H>*(C™). This would suggest an even closer connection between
Popescu’s free power series, and all that goes with them, and the perspective
we have taken in this paper, which, as we shall see, involves generalized Schur
functions and transfer functions. The connection seems like a promising avenue
to explore.

In [31] we exploited the perspective of viewing elements of the Hardy algebra
as B(H)-valued functions on the open unit ball of the dual correspondence
to prove a Nevanlinna-Pick type interpolation theorem. In order to state it
we introduce some notation: For operators B; and By in B(H), we write
Ad(Bs, Bs) for the map from B(H) to itself that sends S to B1.SBj;. Also, given
elements 71,7, in D(E7), we let 6, ,, denote the map, from o(M)’ to itself
that sends a to (1, anq). That is, 6,, ,,(a) := (1, an2) = nians, a € o(M)'.

THEOREM 2.18 ([31, Theorem 5.3]) Let E be a W*-correspondence over a von
Neumann algebra M and let o : M — B(H) be a faithful normal representation
of M on a Hilbert space H. Fiz k points n1,...nx in the disk D(E?) and choose
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2k operators By, ... By, Cy,...Cy in B(H). Then there ezists an X in H>(E)
such that | X|| <1 and

BJA((m*) =C;

for i = 1,2,... k, if and only if the map from My(oc(M)") into My(B(H))
defined by the k x k matriz

((Ad(Bi, Bj) — Ad(C;,Cy)) 0 (id — Oy, ;) ™) (3)
is completely positive.
That is, the map T, say, given by the matrix (3) is computed by the formula
T((aij)) = (biz),
where
bij = Bi((id — O, ;)" (aij) B — Ci((id — Oy, ;) (aig)Cf
and

(id — Oy, )" (aij) = aij + O, ., (i) + Oy (O, (aig)) + - -

We close this section with two technical lemmas that will be needed in our
analysis. Let M and N be W*-algebras and let £ be a W*-correspondence
from M to N. Given a o-closed subcorrespondence Ey of E we know that
the orthogonal projection P of E onto Ey is a right module map. (See [6,
Consequences 1.8 (ii)]). In the following lemma we show that P also preserves
the left action.

LEMMA 2.19 Let E be a W*-correspondence from the von Neumann algebra
M to the von Neumann algebra N, and let Ey be a sub W*-correspondence
Ey of E that is closed in the o-topology of [6, Consequences 1.8 (ii)]. If P
is the orthogonal projection from E onto Ey, then P is a bimodule map; i.e.,
P(atb) = aP(&)b for alla € M and b € N.

PRrROOF. Tt suffices to check that P(e€) = eP(§) for all £ € E and projections
ee€ M. For £, € E and a projection e € M, we have

lle€ + fall* = lle€, e&) + (fn. fa)ll < [IKe&, el + [{fn, fm)ll = lle€]|* + | full?,
where f =1 — e. So, for every A € R we have
A+ D2IfPEO))? = [IfP(e6 + AfP(e)* < lle¢ + AfP(e)||?

< [le€ll* + N2 fP(e€)]I”.
Hence, for every A\ € R,

@A+ DI fP(eg)|* < [leg]?
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and, thus,
(I = )P(e€) = fP(e€) = 0.
Replacing e by f =1 — e we get eP((I — e)£) = 0 and, therefore,

P(e€) = eP(e€) = eP(9).
Since M is spanned by its projections, we are done. [J

LEMMA 2.20 Let E be a W*-correspondence over M, let o be a faithful normal
representation of M on the Hilbert space £, and let E° be the o-dual correspon-
dence over N := o(M)'. Then

(i) The left action of N on E° is faithful if and only if E is full (i.e. if
and only if the ultraweakly closed ideal generated by the inner products
(€1,62), §1,&2 € E, is all of M).

(i) The left action of M on E is faithful if and only if E° is full.

PrROOF.  We shall prove (i). Part (ii) then follows by duality (using [31,
Theorem 3.6]). Given S € N, Sy = 0 for every n € E? if and only if for
allp € E? and g € &€, (I ® S)n(g) = 0. Since the closed subspace spanned
by the ranges of all n € E“ is all of FE ®j; € ([31]), this is equivalent to the
equation £ ® Sg = 0 holding for all g € £ and £ € E. Since (( ® S¢,£ ® Sg) =
(g9,5*(£,€)Sg), we find that SE? = 0 if and only if o((E, E))S = 0, where
(E, E) is the ultraweakly closed ideal generated by all inner products. If this
ideal is all of M we find that the equation SE° = 0 implies that S = 0. In the
other direction, if this is not the case, then this ideal is of the form (I — q)M
for some central nonzero projection ¢ and then S = o(q) is different from 0 but
vanishes on E7. [J

3 SCHUR CLASS OPERATOR FUNCTIONS AND REALIZATION

Throughout this section, F will be a fixed W*-correspondence over the von
Neumann algebra M and o will be a faithful representation of M on a Hilbert
space £. We then form the o-dual of E, E, which is a correspondence over
N = o(M)’, and we write D(E?) for its open unit ball. Further, we write
D(E*)* for {n" | n € D(E")}.

The following definition is clearly motivated by the condition appearing in
Theorem 2.18 and Schur’s theorem from classical function theory.

DEFINITION 3.1 Let Q be a subset of D(E?) and let Q* = {w* |w € Q}. 4
function Z : Q* — B(E) will be called a Schur class operator function (with
values in B(E)) if, for every k and every choice of elements ny,n2, ..., n; in Q,
the map from Mi(N) to My (B(E)) defined by the k x k matriz of maps,

((id — Ad(Z(n7), Z(n}))) © (id — O, 0,) ™),

is completely positive.
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Note that, when M = E = B(€) and o is the identity representation of B(E)
on &, o(M)" is Clg, E° is isomorphic to C and D(E?)* can be identified with
the open unit disc D of C. In this case our definition recovers the classical
Schur class functions. More precisely, these functions are usually defined as
analytic functions Z from an open subset 2 of D into the closed unit ball of
B(€) but it is known that such functions are precisely those for which the Pick
kernel kz(z,w) = (I — Z(2)Z(w)*)(1 — zw)~! is positive semi-definite on .
The argument of [31, Remark 5.4] shows that the positivity of this kernel is
equivalent, in our case, to the condition of Definition 3.1. This condition, in
turn, is the same as asserting that the kernel

kz(C*,w") = (id — Ad(Z(C), Z(w")) o (id — ¢.) ™" (4)

is a completely positive definite kernel on Q* in the sense of Definition 3.2.2 of
[14].

For the sake of completeness, we record the fact that every element of H>°(E)
of norm at most one gives rise to a Schur class operator function.

THEOREM 3.2 Let E be a W*-correspondence over a von Neumann algebra M
and let o be a faithful normal representation of M in B(H) for some Hilbert
space H. If X is an element of H™(E) of norm at most one, then the function

Nt — )?(77*) defined in Remark 2.14 is a Schur class operator function on
D((E“))* with values in B(H).

PROOF. One simply takes B; = I for all ¢ and C; = )A((nz*) in Theorem 2.18.
|

THEOREM 3.3 Let E be a W*-correspondence over a von Neumann algebra M .
Suppose also that o a faithful normal representation of M on a Hilbert space
& and that q1 and g2 are projections in o(M). Finally, suppose that Q is a
subset of D((E?)) and that Z is a Schur class operator function on Q* with
values in 2 B(E)q1. Then there is a Hilbert space H, a normal representation
T of N := o(M) on H and operators A, B,C and D fulfilling the following
conditions:

(i) The operator A lies in qa0(M)q;.

(i) The operators C, B, and D, are in the spaces B(E1, E° ®, H), B(H, &s),
and B(H, E° ®. H), respectively, and each intertwines the representations
of N = o(M)" on the relevant spaces (i.e. , for every S € N, CS =
(S®Iy)C, Br(S) =SB and Dr(S) = (S® Iy)D).

-(43)

viewed as an operator from E1 ® H to E2 ® (E° ®; H), is a coisometry,
which is unitary if E is full.

(iii) The operator matriz

DOCUMENTA MATHEMATICA 13 (2008) 365-411



ScHUR CLASS OPERATOR FUNCTIONS ... 377

(iv) For every n* in QF,
Zn*)=A+B(I-L,D)"'L;C (6)

where L, : H — E° ® H is defined by the formula Lyh = n® h (so
Ly (0 @ h) =7((n,0))h)-

REMARK 3.4 Before giving the proof of Theorem 3.3, we want to note that the
result bears a strong resemblance to standard results in the literature. We call
special attention to [1, 2, 7, 9, 10, 11, 12, 13]. Indeed, we recommend [7],
which is a survey that explains the general strategqy for proving the theorem.
What is novel in our approach is the adaptation of the results in the literature
to accommodate completely positive definite kernels.

Since the matrix in equation (5) and the function in equation (6) are familiar
constructs in mathematical systems theory, more particularly from H°°-control
theory (see, e.g., [38]), we adopt the following terminology.

DEFINITION 3.5 Let E be a W*-correspondence over a von Neumann algebra
M. Suppose that o is a faithful normal representation of M on a Hilbert space
& and that g1 and qo are projections in o(M). Then an operator matriz V =
< é‘ g ), where the entries A, B, C, and D, satisfy conditions (i) and (i1)
of Theorem 3.3 for some normal representation 7 of o(M)" on a Hilbert space
H, is called a system matrix provided V is a coisometry (that is unitary, if E
is full). If V is a system matriz, then the function A + B(I — L;D)_lLfIC,
n* € D(E?)* is called the transfer function determined by V.

!

PROOF. As we just remarked, the hypothesis that Z is a Schur class function
on * means that the kernel k7 in equation (4) is completely positive definite
in the sense of [14]. Consequently, we may apply Theorem 3.2.3 of [14], which is
a lovely extension of Kolmogorov’s representation theorem for positive definite
kernels, to find an N-B(E) W*-correspondence F' and a function ¢ from Q* to
F such that F is spanned by N¢(Q*)B(€) and such that for every 71 and 79 in
Q* and every a € N,

(id — Ad(Z(17), Z(n3))) © (id = On )~ (@) = (1(m), ar(n2)).-
It follows that for every b € N and every 7,792 in %,
b—Z(n)bZ(n3)" = (e(m), b)) — (e(m), (my, bpz)e(12))

= (e(m), be(m2)) — (m @ (), bz @ ¢(n2))-
Thus,

b+ (m @ u(m), bz @ t(n2)) = (e(m), be(n2)) + Z(n7)bZ (n3)". (7)
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Set

G1 =35pan{bZ(n")" T ® be(n)g2T | b€ N, n € Q°, T € B(E) }
and

Gy = 5pan{bg:T @ (bn @ 1(n)g2T) | be N, n € Q*, T € B(E) }.

Then G is a sub N-B(E) W*-correspondence of B(E) & F' (where we use
the assumption that ¢2Z(n*) = ¢Z(n*)q1) and G is a sub N-B(£) W*-
correspondence of B(E)®(E?®@nF) . (The closure in the definitions of Gy, G2 is
in the o-topology of [6]. It then follows that G; and G2 are W*-correspondences
[6, Consequences 1.8 (i)]). Define v : G; — G2 by the equation

v(bZ(0*)" 2T ® be(n)q2T') = bgoT ® (bn @ 1(n)g2T).

It follows from (7) that v is an isometry. It is also clear that it is a bimodule
map. We write P; for the orthogonal projection onto G, i = 1,2 and V for the
map

V= PP, : B(E) ®F — @B(E) ® (E @y F).

Then V is a partial isometry and, since Pp,v and P, are all bimodule maps
(see Lemma 2.19), so is V. We write V' matricially:

- a B
VZ(V 5)’

where a : 1 B(€) — @B(€), f: F — @B(€), v: @B() — E° ® F and
6 : F — E° ® F and all these maps are bimodule maps. Let Hy be the
Hilbert space F' ®p(gy £ and note that B(E) @p(g) € is isomorphic to £ (and
the isomorphism preserves the left N-action). Tensoring on the right by & (over
B(&)) we obtain a partial isometry

o (8 8)(5)~(o%)
"=\ ¢y Dy )\ Hy E°®Hy |-

Here Ay =a®1Ig, By =®Ig, Co =v® Ig and Dy = § ® I¢. These maps
are well defined because the maps «, 3,7 and ¢ are right B(£)-module maps.
Since these maps are also left N-module maps, so are Ay, By, Co and Dy.

By the definition of Vj, its initial space is G; ® £ and its final space is G2 ® £.
In fact, V) induces an equivalence of the representations of N on G; ® £ and
on Go ®E.

It will be convenient to use the notation K1 <y Ks if the Hilbert spaces K and
K5 are both left N-modules and the representation of IV on K is equivalent to a
subrepresentation of the representation of NV on K5. This means, of course, that
there is an isometry from K into K5 that intertwines the two representations.
If the two representations are equivalent we write Ky ~y Ks.
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Using this notation, we can write G1 ® £ ~ny G2 ® . Form My := (2B (E7 ®
Hp)) © (G2 ® €), which is a left N-module, and note that L := F(E) @ My
also is a left N-module, where the representation of N on L is the induced
representation. Since L = F(E7)@ Mz = @, ((E7)®" @ (M3)), it is evident
that (E° ® L) ® Ma ~x L. Indeed, the isomorphisms are just the natural ones
that give the associativity of the tensor products involved. Thus, & @ (E? ®
(HoBL)) = EB(E°QH))®(F°QL) = GaREBMBE QL ~n GoREDL ~n
G1REBL <N E @ (Hy® L). Consequently, we obtain a coisometric operator
V@ (Hy® L) — E @ E’®(Hy® L) that intertwines the representations
of N and extends Vj. Note that, if V) were known to be an isometry (so that
GoRE~N GL®E=E @ Hy ), then we would have equivalence above and V
can be chosen to be unitary.

Assume that E is full. We also write M; for (&1 ® Hyp) © G1 ® €. Since F is
full, the representation p of N on F? ®¢& is faithful (Lemma 2.20) and it follows
that every representation of IV is quasiequivalent to a subrepresentation of p.
Write £, for the direct sum of infinitely many copies of £. Then E? ® £, is the
direct sum of infinitely many copies of £ ® £ and, thus, every representation of
N is equivalent to a subrepresentation of the representation of N on E? @ E.
In particular, we can write M1 @ oo SN E7 ® Ex. Thus & @ (Hy ® Ex) =
(G1RE)OMIDE SN E2B(EQHp) D (B ®Ex) =E2@ (E7® (Ho®Ex)).
So, replacing Hy by Hy ® £, we can replace Vj by an isometry and, using the
argument just presented, we conclude that the resulting V' is a unitary operator
intertwining the representations of N and extending V;.

So we let V' be the coisometry just constructed (and treat it as unitary when
E is full). Writing H := Ho @ L, we can express V in the matricial form as in
part (iii) of the statement of the theorem. Conditions (i) and (ii) then follow
from the fact that V intertwines the indicated representations of N. It is left
to prove (iv).

Setting b = T = I in the definition of v above and writing v in a matricial form

we see that P .
( ) s > < L(g?))qqu ) - < 1 & n)as )

Tensoring by I¢ on the right and identifying B(E) ® p(g) € with £ as above, we

find that 1 B .
(& o) () =(euinen )

for g € &. Since A, B,C and D extend Ay, By, Cy and Dg respectively, we
can drop the subscript 0. We also use the fact that the matrix we obtain is a
coisometry, and thus its adjoint equals its inverse on its range. We conclude

that
<g* g*)(mu&mg))(i%ﬁ)- (8)

Thus «(n) ® g = B*g + D*(n @ («(n) ® g)) = B*g + D*Ly(1(n) ® g) and
un) ®g=(I—D*L,)""B*g.
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Combining this equality with the other equation that we get from (8), we have
Z(n*)'g=A"g+C"Ly(I - D"L,))"'B*g, ge€E.

Taking adjoints yields (iv). O

Thus, Theorem 3.3 asserts that every Schur class function determines a system
matrix whose transfer function represents the function. The system matrix is
not unique in general, but as the proof of Theorem 3.3 shows, it arises through
a series of natural choices. Of course, equation (6) suggests that every Schur
class function represents an element in H°°(F). This is indeed the case, as the
following converse shows.

THEOREM 3.6 Let E be a W*-correspondence over a W*-algebra M, and let
o be a faithful normal representation of M on a Hilbert space £. If V =

A . . . .
< C D ) is a system matriz determined by a normal representation T of

N := o(M)" on a Hilbert space H, then there is an X € H>®(E), | X| <
such that

—_

X(n*)=A+B(I-L;D)"'LiC,

for all n* € D(E?)* and, conversely, every X € H>®(E), | X| < 1, may be
represented in this fashion for a suitable system matrizc V = g IB; .
PRrOOF. For every n > 0 we define an operator K,, from & to (E7)®" ® £ as
follows. For n = 0, we set Ky = A - an operator in B(€). For n = 1, we define
K1, mapping £ to E? ® £, to be (I; ® B)C, where for all k > 1, I}, denotes the
identity operator on (E7)®*. For n > 2, we set

K, :=U,®B)I,-1®D)--- (I ® D)C.

Note, first, that it follows from the properties of A, B, C and D that, for every
n > 0 and every a € N, K,a = (¢n(a) ® Ig)K,, where ,, defines the left
multiplication on (E?)®". Thus, writing ¢ for the identity representation of N
on &, K, lies in the (-dual of (E?)®" which, by Theorem 3.6 and Lemma 3.7
of [31], is isomorphic to E®™. Hence, for every n > 0, K,, defines a unique
element &, in E®™.
For every n > 0 and n € E° we shall write L,(n) for the operator from
(E7)®" @ £ to (E7)®("+t1) @ £ given by tensoring on the left by 7. Also
note that, for £ > 1 and n > 0, Iy ® K,, is an operator from (E?)®* @ &
to (E)®(*+7) @ £, With this notation, it is easy to see that, for all k£ > 1 and
n >0,

(Ik+1 @ Ky) L () = Litn(n)(Ix @ Knp). 9)

Note, too, that we can write
FE)RE=ED(ERE @@ (E)P"RE) G-
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and every operator on F(E?)®¢& can be written in a matricial form with respect
to this decomposition (with indices starting at 0). For every m, 0 < m < oo,
we let S, be the operator defined by the matrix whose i, j entry is [; ® K;_;,
if 0 < j <i<m,and is 0 otherwise. (For m = oo, it is not clear yet that the
matrix so constructed represents a bounded operator, but this will be verified
later).

So far we have not used the assumption that V' is a coisometry. But if we take
this into account, form the product VV™, and set it equal to Ieg(p-om), We
find that

Ic — AA* = BB* (10)
CC* = Igeg. g — DD* (11)
AC* = —BD* (12)

We claim that, for 1 < j <4 < m, the following equations hold,
(I —SmS:)ij = (I; ® B)(Ii_1 ® D)---DD*---(I;_, ® D*)(I; ® B*); (13)
that for 0 <i < m,
(I = SmSh)io = (I; ® B)(li-1 ® D) --- DB", (14)

and that for i = j =0,
(I — 5,5 )00=DBB". (15)

Equation (15) follows immediately from (10) since (Sy,)o,0 = A. For 0 <i <m
we compute (I — SmS,:;l)i,o = _(Sm)i,O(Sm)ao = _(Ii ® B)(Ii_l ® D) s (Il ®
D)CA* = (I; ® B)(I—1 ® D) --- (I ® D)DB* where, in the last equality we
used (12). It is left to prove (13). Let us write R; ; for the left hand side of
(13). (For j = 0 < i we have R;o = (I; ® B)(l;—1 ® D)---DB* and when
both are 0, Rog = BB*). We have KoKj = AA* = I — BB* = I — Ry R},
For 0 = j < i < m we have K;K§ = (I; ® B)(I;—1 ® D)---(I; ® D)CA* =
~(I;®@B)(Ii-1 ® D) -+ (I, © D)DB* = —Rig and for 0 < j <i < m, K;K} =
(Ii ® B)(Iifl ® D) cee (11 X D)CC*(Il ® D*) cee (ijl ® D*)(Ij X B*) = (Iz ®
B)(Ii 1@ D)+ (I @ D)(I — DD*)(Iy & D*) - (I; 1 ® D*)(I; ® B*) = (I; ®
B)(Ii-1®D)--- (L ® D)(I ® D*)--- (Ij71 ® D*)(Ij ®B*)— (I; @ B)(I;-1 ®
D)+ (I ® D)DD*(I; ® D*) -+ (I;_y ® D*)(I; ® B*) = I, ® Ri_1 j_1 — Ri ;.
We have

J J J

(Ser*n)i,j - Z(Sm)i,k(sm)j,k = ZIk & KzekK;Lk = ZIJ;Z ® KifjJrlKl*-
k=0 k=0 1=0

Using the computation above, we get, for i = j < m,

(SmSp)ii = Li@ (I — Roo R o) + Z(Ii—l-i-l Q@Ri_11-1—Li1®Ry;)=1—R;,

=1
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and, for j <i <m,

j
(SmSh)ij = *Ij®Ri7j,0+Z(ijl+1 QR jri—110-1—Li®Ri_jy11) = — R j.
=1

This completes the proof of the claim. If we let R be the operator whose matrix
is (R; ;) (letting R; ; = 0 if 4 or j is larger than m) then we get R = I —S,,,S},.
But it is easy to verify that R is a positive operator and, thus, ||S;,| < 1. This
holds for every m and, therefore, we can find a weak limit point of the sequence
{S;}. But this limit point it clearly equal to S, showing that S is indeed
a bounded operator, with norm at most 1.

Recall that the induced representation of H*(E) on F(F) Q. & is the repre-
sentation that maps X € H*(F) to 07 (#)(X) := X ® I¢. The representation
is faithful and is a homeomorphism with respect to the ultraweak topologies.
Its image is the ultraweakly closed subalgebra of B(F(F) ® £) generated by
the operators Tr ® Ig and ¢oo(a) ® I¢ for £ € E and a € M. Similarly one
defines the induced representation t*(¥”) of H*(E?) on F(E?) ® £ and its
image is generated by the operators T;, ® I and ¢ (b) ® I for n € E? and
b € N. Recall also, from [31, Theorem 3.9], that there is a unitary operator
U:F(E°)®E — F(E)® E such that

(T ENH®(B%))) = U o” BV (H>(E))U.

That is, U gives an explicit representation of H>(FE?) as the commutant of
the induced algebra o7 (F)(H*(E)). Thus, to show that S, = U*(X @ I)U
for an X € H*(F), we need only show that S, lies in the commutant of
T E)(H>®(E?)). And for this, we only have to show that it commutes with
the operators ¢ (b) ® I, b € N, and T,, ® I, n € E?. Note that, matricially,
Yoo (b) ® I is a diagonal operator whose 4,4 entry is ¢;(b). For So to commute
with it we should have, for all j <,

(L; ® Ki—j)(pj(b) ® I) = (pi(b) ® I)(1; ® Ki—j).
This equality is obvious for j > 0. For j = 0 it amounts to the equality
K;b= ((pi(b) ® Ig)K;

and, this, as was mentioned above, follows immediately from the properties
of A,B,C and D. To show that S, commutes with every T, ® I, n € E°,
note that, matricially, the 7, j entry of T, ® I vanishes unless ¢ = j + 1 and,
in this case the entry is L;(n). Equation (9) then ensures that So, and 7, ® I
commute.

Thus, by [31, Theorem 3.9], there is an element X € H*(FE) such that So =
US(X @ )U (= U*o¥F)(X)U). Since S, has norm at most one, so does X.
It remains to show that X is given by the transfer function built from V. To
this end, fix £ € E and recall that ¢ defines a map W(¢§) : € — E°® &
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via the formula W(£)*(n ® h) = Lgn(h), n® h € E7 ® £ (See [31, Theorem
3.6].), and that W maps E onto the (-dual of E°. The desired properties
follow easily from the definition of W. For every k > 0, I;, ® W(£)* is a map
from (E7)®F1 @ & into (E7)®* @ £. An easy computation shows that it is
equal to the restriction of U*(T} ® Ig)U to (E7)®*! @ £. (Recall from [31,
Lemma 3.8] that the restriction of U to (E?)®**1®¢€ is defined by the equation

Um @ - @M1 ®@h) =T @n1) - (11 @ i )nie+1(h).)
It then follows that the 4, j entry of the matrix associated with U*(T¢ @ I¢)U
vanishes unless i = j + 1 and

(U*(Tg X Ig)U)jJrLj = Ij ® W(é)

Similarly one can show that, for & € E®F, the i, j entry of the matrix associated
with U*(T¢ ® I¢)U vanishes unless ¢ = j + k and

(U (Te @ Ie)U) jyx g = I; @ W(E).

In the last equation, W (¢), &€ € E®*, is a map from & to (E7)®* @ &.
Recall that we defined &, to be the vectors in E®™ with W (&,,) = K,,. Thus
we see that the n'" lower diagonal in the matricial form of S, is the matricial
form of U* (Tgn 4 Ig)U
Recall from the discussion at the end of Section 2 in [31] that S is the ultra-
weak limit of the sequence ¥ where
k—1 j
Sp = 2(1 = DU (T, @ IU.
7=0
Hence X is the ultraweak limit of X where
k—1 j
Xp=) (1— )T,
3=0
and, for n € E7, X (n*) is the ultraweak limit of X (n*) = Z;:é(l - %)TZJ (n*).
Fix n € E? and k > 1. Then it is easy to check that, in the notation of the
theorem, L (Ix ® B) = (I—1 ® B)L; and L} (I ® D) = (I—1 ® D)Ly, all as
operators on (E?)®% @ H. Tt then follows that for n > 1,
(Ly)"W (&n) = (Ly)" Ky = B(LyD)" "' L,C
and
A+ B(I-LyD)'LiC=A+ > B(L;D)" 'L;C =Y (L;)"W (&)
n=1 n=0
(Note that the last series converges in norm). It follows from [31, Proposition
5.1] that T¢, (n*) = (Ly)"W (&) and, thus, we finally conclude that X (n*) =
A+B(I-L;D)"'L;C.

The ‘converse’ portion of the Theorem is immediate from Theorems 3.2 and
3.3. 0
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COROLLARY 3.7 Ewvery Schur class operator function defined on a subset Q*
of D(E?)* with values in some B(E) can be extended to a Schur class operator
function defined on all of D(E?)*.

ProOOF. Let Z be a Schur class function on 2* and apply Theorem 3.3 to
represent Z as the restriction to Q* of a transfer function. The result then
follows from the evident combination of Theorems 3.6 and 3.2. [J

Recall that every element X in H*°(E) with || X| < 1 defines a Schur class
operator function by evaluation at n* for n € D(E?) (where o is a suitable
prescribed faithful normal representation of M) . We usually suppress reference
to o and write ):( for this Schur class operator function. In general, however,
the map X — X is not one-to-one, and whether it is or not depends on the
choice of 0. Indeed, in the particular case when M = C and E = C", so
H>(E) is Ly, and when o is the identity representation of C, Davidson and
Pitts showed that the kernel of the map X — X is precisely the commutator
ideal in £,, [17]. We shall show in the next lemma that given E, if o is chosen to
be faithful and have infinite uniform multiplicity, meaning that o is an infinite
multiple of another faithful normal representation of M, then the map X — X
will be one-to-one. It will be convenient to write K (o) for the kernel of the
map determined by o, so that

K(o)={X e H(E): X(n*) =0, neD(E?)} (16)
={X e H®E):cxn(X)=0, neD(E’)}.

LEMMA 3.8 If 0 is a faithful normal representation of M on a Hilbert space H
of infinite multiplicity, then K (o) = 0. Moreover, if {Xg3} is a bounded net in
H>(E) and if there is an element X € H*(E) such that for everyn € D(E7),

)?5(77*) — )A((n*) in the weak operator topology, then Xz — X ultraweakly.

PROOF. It follows from the structure of isomorphisms of von Neumann
algebras that any two infinite multiples of faithful representations of a von
Neumann algebra are unitarily equivalent. It follows, therefore, that to prove
the lemma, we can pick a special representation with this property that is
convenient for our purposes. So let 7 be the representation of M on F(F)®, H
defined by m = ¢ ® Iy. We shall see that K(7) = {0}. For { € E'let V(§) =
Te ® Ig. Then (V, ) is a representation of E on F(F) ®, H. The integrated
form of this representation is the induced representation 77 (%) restricted to
H>(E). It is a faithful representation of H>*(E). For 0 < r < 1, (rV,m) is
also a representation of E. It follows from [31, Lemma 7.11] that, for every
X € H*(E), the limit in the strong operator topology of (m x rV)(X), as
r — 1,18 (m x V)(X). Thus, for X # 0in H*(E), thereisan r, 0 < r < 1,
such that (m x rV)(X) # 0. Since for such r the inequality ||rV|| < 1 holds,
and we conclude that K () = {0}.

For the second assertion of the lemma, suppose a bounded net {X3} in H*(E)

has the property that for every n € D(E™), )?5(77*) — 0. Since the net is

DOCUMENTA MATHEMATICA 13 (2008) 365-411



ScHUR CLASS OPERATOR FUNCTIONS ... 385

bounded, it has a ultraweak limit point Xy in H*°(FE). Since “evaluation at
n*” is the same as applying a ultraweakly continuous representation, we see
that Xg(n*) — Xo(n*) for every n € D(E™). But then, Xo(n*) = 0 for every
n € D(E™) and, consequently, Xy = 0 by the first assertion of the lemma. O

With this lemma in hand, we summarize the results of this section for future

reference in the following corollary.

COROLLARY 3.9 Let E be a W*-correspondence over the W*-algebra M, let
o be a faithful normal representation of M on the Hilbert space & and assume
that o has infinite multiplicity. Then the map X — X is a bijection from the
closed unit ball of H(E) onto the space of Schur class B(E)-valued functions
on D(E°)*. Further, for each X in the closed unit ball of H*(E), X is the
é,l IB; defined in
terms of a suitable auziliary normal representation T of o(M)" on a Hilbert
space H, and conversely, each such transfer function on D(E?)*,

transfer function associated with a system matriz V = (

n* — A+ B(I - L;D)"'L:C,

is of the form X for a uniquely determined X € H*(E): )?(77*) =A+B(I -
L;D)~'LyC for all n € D(E7).

PrOOF. The proof is just the evident combination of Lemma 3.8 and Theo-
rems 3.2, 3.3, and 3.6. O

REMARK 3.10 One may well wonder why not stipulate at the outset that all
o’s have uniform infinite multiplicity. It turns out that in many interesting ex-
amples, such as those coming from graphs, which we discuss in the last section,
the principal o’s one wants to consider fail to have this property.

4 APPLICATIONS TO AUTOMORPHISMS OF THE HARDY ALGEBRA

In this section we apply the analysis of Schur class functions to study au-
tomorphisms of H*(FE). Our first goal is to show that under very general
assumptions, the automorphisms are obtained by composition with (certain)
biholomorphic automorphisms of the open unit ball of the dual correspondence.
For the case were E = C", so that H>°(F) is the algebra £,, studied by David-
son and Pitts and by Popescu, this was shown for the dual correspondence
associated with the one dimensional representation o of C by Davidson and
Pitts in [17].

Throughout this section we will focus on automorphisms a of H*°(F) that are
completely isometric and w*-homeomorphisms. Also, we shall usually assume
that the restriction of o to ¢, (M) is the identity.

It is known that, in various settings, one can assume much less. In [17], the
authors begin by assuming that « is simply an algebraic automorphism but,
to get the one-to-one correspondence with automorphisms of the unit ball of
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the dual, they need to impose also the assumption that the automorphism is
contractive. It then follows from their results that it is, in fact, completely
isometric and a w*-homeomorphism. In [22], Katsoulis and Kribs show that
in the setting when F is determined by a directed graph, G say, so H*(E)
is the algebra they denote by L, an algebraic automorphism is always norm-
continuous and w*-continuous.

As for the assumption that the restriction of a to oo (M) is the identity, we
shall see that for many purposes this is no significant restriction. However,
in some situations, it can be a significant technical headache to sort out what
happens if we don’t impose the assumption. We will comment on this further,
as we proceed. (See, in particular, Remark 4.10).

So, for the remainder of this section, unless specified otherwise, F will be a fixed
W*-correspondence over a W*-algebra M and a will be a fixed automorphism
of H*(FE) that is completely isometric, w*-homeomorphic and fixes oo (M)
element-wise. Also, o will be a faithful normal *-representation of M on a
Hilbert space H.

We think about elements of H>°(F) as functions on D(E?)* via the functional
representation developed in the preceding section and we want to study the
transposed action of o on D(E?)*. For every n € D(E?), let 7(n) : H — E®, H
be defined by the equation

—

()" (€ @ h) = a(Te)(n")h (= (0 x 1" )((Te))h ), (17)

E®h € E®,H. (Observe that if « is the identity automorphism of H*(E), then
this equation implies that 7 is the identity map, as it should.) The next lemma
shows that 7(n) is well defined and is an element in the closed unit ball of E°.
Thus 7 is a map from D(E?) into D(E7). What we would really like to show,
however, is that 7 carries D(E?) into D(E?), not the closure. At this stage,
we can only arrange for this under special circumstances: Theorem 4.7 below.
The restriction on circumstances, however, is not so limiting as to eliminate
many interesting examples. We also want to show that 7 is holomorphic on
D(E?) in the usual sense of infinite dimensional holomorphy [21].

LEMMA 4.1 For each n € D(E?), 7(n) is well defined and lies in the closed
unit ball of E7.

PRrOOF. For ¢ € E, let S(&) = (0 x n*)(a(T¢)). For every a,b € M,
S5(agb) = (oxn*)(a(Tagy)) = (ox0")(a(Poo (@) Tepoo (b)) = (Toa)(poo(a))(ox
7*)((Te)) (0 0 @) (poo (b)). By our assumption, o o a0 o, = 0 0 s and, thus,
(S,0) is a covariant pair. Also, S is a completely contractive map of F into
B(H) as a composition of three completely contractive maps. Thus S* = 7(n)
lies in the closed unit ball of E7. O

To determine circumstances under which 7 maps D(E?) into D(E?), we fix
7 € D(E7) and determine circumstances under which 7(zn) € D(E?), for every
z€D:={zeC||z| < 1}. This will prove that 7 maps D(E?) into itself.
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So for z € D, we define

F(z):=71(zn)". (18)
Thus, F(2)(§ ® h) = (0 x zn*)(a(Te))h for € € E and h € H.
LEMMA 4.2 F is an analytic function from D into B(E ® H, H).

Proor. Fix {®h € E® H with ||| < 1 and k& € H, and consider the
expression

(F(2)( @h), k) = (a(Te)(zn")h, k).
Since a(T¢) € H*(E) and ||a(T¢)|| < 1, we know from Theorem 3.6 that we

L —

can write o(T¢)(2n*) = A+ B(I — zL;D)"'2L;C for some system matrix.
Thus

@(zzn*) =A+2zBL;C + Z sz(L;;)k_lL;C.
k=2

Hence, for every £ @ h € E® H (even when ||£|| > 1) and k € H, the function
z— (F(2)(€®h), k) is analytic. Since ||F(z)]| < 1 by Lemma 4.1, [{F(2)g, k)| <
llgll|%|| for every g € E® H and k € H and it follows that, for each such g, k,
the function f, 1(z) := (F(2)g, k) is analytic in D and |fy.x(2)| < ||g]/|k]]. We
can then write fy, as a convergent power series fqx(z) = D07 an(g,k)z"
and, for every n > 0, |an(g, k)| < ||lg|l||%]|. But then there are operators A, €
B(E ® H,H) with ||4,|| < 1 such that a,(g,k) = (A,9,k) for g € E® H
and k € H. Hence F(z) = > 7, 2" A, where the sum converges in the weak
operator topology. Since |z| < 1 and the norms of {4,,} are bounded by 1, the
series converges to F'(z), for z € D, in the norm topology. We conclude that
F(z) is analytic. O

If we were dealing with scalar-valued functions, we would be able to assert that
|F(2)] < 1 for all z € D, unless F' is constant, by the maximum modulus the-
orem. Unfortunately, an unalloyed version of the maximum modulus theorem
does not hold in our setting. This is what leads to the special hypotheses
on 7 in Theorem 4.7. The next few results, then, which lead up to Theorem
4.7 come out of our efforts to find a serviceable replacement for the maximum
modulus theorem. Our first theorem in this direction, Theorem 4.4, is closely
related to [36, Proposition V.2.1]. It does not seem to follow directly from this
result, however. Instead, we appeal to the following lemma, which in turn is
an immediate application of an operator form of the classical Pick criterion
for interpolating operators at pre-assigned points by operator-valued analytic
functions. As such, it may be traced back to Sz.-Nagy and Koranyi’s influential
paper [37]. It also is a consequence of Theorem 6.2 in [31], where it is presented
as a corollary of our Nevanlinna-Pick Theorem.

LEmMA 4.3 If K, H are Hilbert spaces and if F : D — B(K, H) is an analytic
function satisfying |F(2)|| < 1 for all z € D, then, for every z1,zo € D, the
matriz

17|21|2 1—2z122
Ig—F(z2)F(z1)" Ig—F(22)F(22)"
1—2927 17|22|2

( IHfF(Zl)F(Zl)* IHfF(Zl)F(ZQ)* >
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is positive. In particular (setting z1 = z and zo = 0), for every z € D,
In—F(2)F(2)" _ *
S - IS PO (19)
Iy — F(0)F(2)" I — F(0)F(0)"

THEOREM 4.4 Suppose H and K are Hilbert spaces and suppose F' : D —
B(K, H) is an analytic function that satisfies the following conditions:

(1) |F(2)|| <1 for all z € D.

(2) There are projections Py, Py in B(H) that sum to Iy and projections
@1,Q2 in B(K) that sum to Ix and satisfy:

(Z) PlF(O)QQ =0 and P2 (O)Ql =0.
(ii) PLF(0)F(0)*
(iii) PQF(O)F(O P2 < T'P2 for some 0 <r < 1.

Then, for every z € D,

(8) There is a function qo(z) on D, such that 0 < qo(z) < 1 for all z € D,
and such that PoF(2)F(2)*Py < qo(z)Pa.

Proor. It will be convenient to use the projections P;, P, and Q1,Q2 to
write F(z) matricially as
_( A(z) B(2)
ro=( o) b

so that, by assumption,

ror= (4 o)

where A(0)A(0)* = P, and D(0)D(0)* < rPs.

Since F' satisfies the conditions of Lemma 4.3, Equation 19 holds for all z € D.
Compressing each entry of the matrix in (19) to the range of P, and using the
fact that A(0)A(0)* = P; and that P,F(0)Q2 = 0, we get

—Pl_Plf,(Tz)f;(z)*Pl P — PF(z)Q1A(0)* >0. (20)
— A(0)Q1F(2)* P 0
It follows that P = PiF(2)Q1A4(0)". Thus 0 < (PF(2)Q1 —
A0)(@F(z)"Pr — A(0)) = PF(E)QF(E)"P + A0)A0)" -
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P F(2)Q1A(0)* — A(0)Q1F(2)*P, < 0. Consequently, A(0) = P1F(2)Q;
(for every z € D).

But then Py F(2)Q1F(2)*P, = Py and, since Py F(2)F(2)*P; <

Py, PiF(2)Q2 = 0. This proves (1) and (2).

Compress each entry of (19) to the range of P, to get

—P27P2f7_("2§(z)*132 Py, — PyF(2)Q2D(0)* > 0. (21)
P2 - D(O)QQF(Z)*PQ P2 - D(O)D(O)* o

Write A for the positive square root of P, — D(0)D(0)* and note that A is
invertible as an operator on the range of P». Equation (21) implies that

P2 - PQF(Z)F(Z)*PQ

(P = D(O)D()")A™* (P, = D(2)D(0)") < (7 !

Since D(0)D(z)* lies in B(P>(H)) and has norm strictly less than 1 (as
ID(0)] < 1), P, — D(0)D(z)* is invertible in B(P2(H)) and so, therefore, is
(Po—D(0)D(2)*)A™2(Py—D(2)D(0)*). Hence, for each z € D there is a g(z) >
0, such that Z=P2fEEE > (P — D(0)D(2)*)A2(P, — D(2)D(0)*) >
q(2)Py. Thus,

Py — P F(2)F(2)* Py > (1 — |2*)q(2) Py,
which yields PoF(2)F(2)*Py < (1 — q(2)(1 — |2]?))Ps. So, if we set qo(z) =
(1 —q(2)(1 — |z|?)), we obtain a function with the desired properties. [J
We return to our analysis of the special function F': D — B(E®, H, H) defined
in equation (18).

LEMMA 4.5 The function F defined by equation (18) satisfies:

(1) For every z € D and a € M, F(2)(¢p(a) @ Iy) = o(a)F(z) and
F(2)F(2)* commutes with o(M).

(2) For every b€ o(M)', bF(0) = F(0)(Ig ® b) and F(0)F(0)* € 3(c(M)).
PROOF. Since F(z)* € E? by Lemma 4.1, (1) holds. For (2), simply note that

bF(0)(§®h) = ba(Te)(0)h = a(Te)(0)bh = F(0)(§ @bh) = F(0)(Ir @b)(§ @ h),
where we used the fact that for every X € H*(E), X(0) € o(M). O

DEFINITION 4.6 Let T be the map defined by equation (17). We say that 7(0)
splits if there are projections Py, Py in o(M)" such that

(i) P+ P, =1,
(ii) Py7(0)*7(0)P, = P, and

(i1i) Por(0)*7(0)Py < rPy for some r < 1.
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Note that 7(0) = F(0)* so that, although F' depends on a choice of n € D(E7),
F(0) does not. It follows from Lemma 4.5, therefore, that 7(0)*7(0) lies in the
center of (M), 3(c(M)) = o(3(M)).

Note also that, if the center of M, 3(M), is an atomic abelian von Neumann
algebra, then 7(0) always splits. This is the case, in particular, if M is a factor
or if M = C". It is also the case, therefore, when FE is the correspondence
associated with a (countable) directed graph.

When 7(0) splits we have the following.

THEOREM 4.7 Assume that the left action map of M on E, g, is injective
and that 7(0) splits. Then the map T defined in equation (17)) maps D(E7)
into itself and satisfies the following equation

—

(X)) = X(r(m)"),
for every X € H*®(E) and n € D(E7).

ProOOF. Fix n € D(E7) and let F' be the map defined in (18). Since 7(0) =
F(0)* splits, there are projections P;, P, as in Definition 4.6. Using Lemma 4.5,
we see that the conditions of Theorem 4.4 are satisfied with K = F ® H and
Q;=Ig® P;,1=1,2. Thus,

for all z € D. Consequently, for all £ € E, Pi(0 x zn*)(a(T¢)) = Pio(a(Tt)o)
where, for X € H*(E), X, is the image of X under the conditional expectation
onto Yoo (M). Since the representation o x zn* is w*-continuous and « is
surjective, we have for all X € H*(E),

Pi(o x zn*)(X) = Pro(Xop).

In particular, letting X = T¢, we see that Py(o x zn*)(T¢) = 0. Since, for
h € H, (o x zn*)(Te)h = Pin*(§ ® h) = 0 we have nP; = 0. (Recall that
P, € o(M)' and, thus, nP; is well defined since E“ is a right module over
o(M)").

Since 7 is arbitrary in D(E?), E°P, = 0. If P; # 0, it follows that E“ is not
full and, using Lemma 2.20, the map g is not injective, contradicting our
assumption. Thus P; = 0 and it follows from Theorem 4.4 that |F(2)| < 1
for every z. since this holds for all n € D(E7), the conclusion of the theorem
follows. [

Next we show that the map 7 is holomorphic on D(E?). We view it as a
map into B(H,E ® H). To be holomorphic is the same as being Frechet-
differentiable. If we use [21, Theorem 3.17.1] and the fact, proved in Lemma 4.1,
that 7 is bounded, it suffices to show that 7 is (G)-differentiable in the sense of
[21, Definition 3.16.2]. But if we apply [21, Theorem 3.16.1], this means that
we have to show that for every ng,n € D(E?), the function G(z) := 7(no + 21),
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defined on D(n,n0) := {z € C||z| < (1—|In0ll)/lInll} is holomorphic in the sense
of [21, Definition 3.10.1].

Since the set of all functionals on B(H, F ® H) that are w*-continuous is a
determining manifold for B(H, E ® H) in the sense of [21, Definition 2.8.2],
it suffices to show that for every w*-continuous functional w, the map z —
w(T(no + 2n)) is holomorphic on D(n,n9). It is enough, in fact, to consider all
functionals of the form T — (Th,§ ® k) for h,k € H and ¢ in the unit ball of
E.

So we fix ng,n € E?, h,k € H and £ € E with ||¢]] < 1 and write f(z) =
(T(no + zn)h,E @ k) for z € D(n,no). We have

-

f(z) = (h,7(no + zn)" (§ @ k) = (h, a(Te) (g + 207 k).

Note that by Theorem 3.6, we can write
a(Te)(ms +2n°) = A+ Y B((Ly, +ZL;) D)™ (L;, + ZL;)C
m=1

where A, B, C, D are from some system matrix and the sum converges in norm.
Thus

F2) = (A% k) S (O (L + L) (D" (L + 2L))™ B, K)

m=1

and this function is clearly holomorphic.
We can conclude:

COROLLARY 4.8 The function 7 is a holomorphic map from D(E?) to its clo-
sure.

THEOREM 4.9 Let E be a faithful W*-correspondence over M, let o be an
automorphism of H>®(E) that is completely isometric, is a w*-homeomorphism
and leaves poo (M) elementwise fized, and let o be a faithful representation
of M. Write T for the transpose of « defined in equation (17) and write 6
for the map associated similarly with o=t. If both 7(0) and 6(0) split (as in
Definition 4.6) then 7 is a biholomorphic map of the open unit ball of E°,
7=t =0, and, for every X € H*®(E),

(@(X))(n*) = X(r(n)") , n € D(E). (22)

Proor. We already know that, under the conditions of the theorem, both
7 and @ are holomorphic maps of the open unit ball. It follows from equation

(17) that, for every £ € E, h € H and n € D(E°), @(n*) =7(n)*(€ ® h).
But 7(n)*(§ ® h) = Te(7(n)*), so that equation (22) holds for T. It also holds
for poo(a), a € M, since a(psc(a)) = @oo(a). Therefore it holds for every X

in a w*-dense subalgebra of H>°(FE). By the w*-continuity of «, equation (22)
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holds for every X € H*(E). Since a similar claim holds for a=! and 6, we
conclude that for all X € H®(E), X(1*) = a~(a(X))(n*) = a(X)(0(n)*) =
X(r(0(n))*). Thus 71 =6. O

A biholomorphic map 7 is said to implement « if equation (22) holds.

REMARK 4.10 If « is implemented by T in the sense of equation (22), then,
writing this equation when X = po(a), a € M, shows that a leaves poo (M)
elementwise fixed. Also, inspecting the proof of Lemma 4.1, one sees that, if «
does not have this property, the map 7, defined in equation (17) would map the
unit ball of E° into the unit ball of E™ where m = 00 p3 !l oo ps. One can
study such automorphisms by studying these maps but the situation becomes
quite complicated, unless one makes a global assumption to begin with, vis.,
that o has uniform infinite multiplicity. In that event, by properties of normal
representations of von Neumann algebras, o and 7 are unitarily equivalent. Say
7(+) = uo(-)u* for some Hilbert space isomorphism from the Hilbert space of o
to the Hilbert space of w. Then it is a straightforward calculation to see that
E™ = (I @ u)E°u*. It is then a straightforward matter to incorporate u into
our formulas.

As we have remarked before, D(E?) is the unit ball of a J*-triple system. It
results, therefore, from well-known theory [20] that the biholomorphic maps
of D(E?) are determined by Mdbius transformations (and “isometric multipli-
ers”). As we shall, however, the Mdbius transformations of D(E?) that im-
plement automorphisms of H°(FE) have to have a special form: They must
be parametrized by “central” elements of D(E?) in the sense of the following
definition. (See also Remark 2.1.3 of [14]).

DEFINITION 4.11 Let E be a W*-correspondence over a W*-algebra M. The
center of F, denoted 3(F), is the set of £ € E such that a& = a for alla € M.

LEMMA 4.12 (1) The center 3(E) of a W*-correspondence E over M is a
W*-correspondence over the center 3(M) of M.

(2) Let o be a faithful normal representation of M on the Hilbert space £, and
for & € E, define ®(§) := L¢ where Le maps € to E ® & via the formula
L¢(h) = E@h. Then the pair (o, ®) defines an isomorphism of 3(E) onto
3(E?) in the sense of Definition 2.2. (Here, 3(F) is a correspondence
over 3(M) and 3(E?) is a correspondence over 3(c(M)") = 3(c(M)) =
o(3(1))).

(8) Given a faithful representation o of M on the Hilbert space £ and v €
D(E?), then ~ lies in the center of E° if and only if the representation
o X v* maps H*(E) into o(M).

PRrROOF. It is clear that 3(FE) is a bimodule over 3(M) and, to prove (1), we
need only show that the inner product of two elements in 3(E) lies in 3(M).
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For a € M, &1,& € 3(E) we have

al{€1,&2) = (&1a", &) = (a"&1,&2) = (€1, a&2) = (&1, &a) = (£1,&2)a.

Hence the inner product lies in the center of M, proving (1). We fix a faithful
representation o of M on £. For £ € 3(E), a € M and h € £ we have
Leo(a)h = €@ 0(a)h =8a®@h =af®h = (a®I)L¢h. Hence, Le € E7. Given
beo(M) and h € £ we have L¢bh = £ ® bh = (Ig ® b)L¢h. Thus Le lies in
3(E9).

For £ € 3(E), a,b € 3(M), and h € €, Loapth = aéb®@ h = €ab®@ h = £ ®
o(a)o(b)h = (I ® o(a))Leo(b)h hence

B(agh) = o(a)(€)o (b).

For &,&; € 3(E) we have L L¢, = 0((&1,82)). Therefore the pair (o, ®) is an
isomorphism of 3(E) into 3(E°).
To prove that the map @ is onto, fix an n € 3(E7). Then, n is a map from &
to ' ®, & satisfying
no(a) = (a® I)n (23)
and
nb = (I ®b)n, (24)

for a € M and b € o(M)'. Define the map ¢ : E — B(E) by ¥({) = n*L¢
and note that for b € o(M)" and h € &, n*L:bh = n*(( ® bh) = n*(I ® b)L¢h.
Using (24) the latter is equal to bn*L¢ch. Hence ¢(¢) lies in o(M). Also
¥(Ca) = ¥(¢)o(a) for all @ € M and it then follows from the self duality
of E that there is an £ € F with (£,¢) = 071 (¢(¢)). Thus, for all ¢ € E,
LiLe = 0((&, () = n"L¢ and we conclude that 1 = L.

It follows from (23) that, for all a € M, L¢, = no(a) = (a®I)n = Lge, showing
that ¢ lies in 3(E).

Finally, to prove (3), fix an n € D(E?) and write (T, o) for the covariant pair
associated with o xn* (so that, T = n*). Then the representation maps H> (E)
into o(M) if and only if, for each € € E, T'(§) € o(M). This holds iff, for all
bea(M), € Eandhe& T(le®b)(§®h) =T(&)bh =bT(&)h = bT (£ ® h);
that is, if and only if T'(I¢ ®b) = bT for every b € o(M)'. But the last statement
says that n lies in the center of E7. [J

The following example may help to show that the center of a correspondence
is much less “inert” than the center of a von Neumann algebra.

EXAMPLE 4.13 Let M be a von Neumann algebra and let o be an endomor-
phism of M. Then we obtain a W*-correspondence over M, denoted oM, by
taking M with its usual right action and inner product give by the formula,
(&,n) = &*n and by letting o implement the left action. Then an element & in
oM lies in the center of oM if and only if & intertwines o and the identity en-
domorphism; i.e., £ € 3(oM) if and only if a(a)§ = Ea for alla € M. 3( M)
is a much studied object in the literature and the preceding lemma spells out
some of its important elementary properties.
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Our goal now is to develop the properties of Mobius transformations of D(E?)
and to identify those that implement automorphisms of H*°(F). To this end,
fix a faithful representation o of M on a Hilbert space £. Set N = o(M)’,
write K = £ @ (F ®, £), and define the (necessarily faithful) representation p
of N on K by the formula

S 0
p(S):<O I®S>’ S eN.

For v € D(E°) we set A, := (Ig —v*y)}/? - an element in B(E) - and A, :=
(Ipge — yv*)Y/? - an element in B(E ® £). When 7 is understood, then we
shall simply write A for A, and A, for A,-. Given v € D(E?) we define the
map g, on D(E?)* by the formula,

g’y(Z*) = A'y(l - 2*7)71(7* - Z*)A;*la (25)

z € D(E?). Then g, is a biholomorphic automorphism of D(£7)* that maps 0
to v* and v* to 0. Further, g% = id, and every biholomorphic map g of D(E?)*
is of the form

g=wo gy
where w is an isometry on (E°)* and v* = w™!g(0) [20]. When 7 lies in the
center of £, we see that g, maps the center onto itself and it follows that every
biholomorphic automorphism of the open unit ball of (E?)* that preserves the
center is of the form

g=wo gy

where ~ lies in the center and w is an isometry on (E?)* that preserves the
center.

If = € D(E”), then the series Y - ,(z*y)" converges in norm to the operator
in N, (I —2z*y)"t =57 (2*y)™. One easily calculates, then, that

g,(2%) = Ay AT = AT — 2%) 1AL

Recall that the equation U(z ® h) = z(h) defines a Hilbert space isomorphism
U:E°®€&— E®E [31, p. 369]. Consequently, as maps on &, UL, = z and
z* = L3U*. Thus we may write

9,(") = Ay AT — AL - L1U*) " LIU*A..

We write K1 = E ®,, £ for the second summand in K =€ & (F ®, £) and we
let ¢; denote the projection from K onto K;. Likewise, we set Ko = & with
projection ¢y. Corresponding to the direct sum decomposition, we define V' by
the formula

. A’Y*A*_l -A . K K
v.( i UW).((?)H(EUM | (26)
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If we calculate VV*, we find that the off diagonal terms vanish and the terms on
the diagonal are Ay*A72yA+A? and U*(A2+~y*)U. Since A2 +yv* = Ipge,
the latter expression is U*U = Igoge = go. For the first expression, we note
that y*A?y = y* (I —97") 'y = (I —7*y) 7! =1 and Ay AP 9A + A% =
A((I —~*y)~! —I)A + A? = I¢. This shows that V is a coisometry. Similar
computations show that it is, in fact, a unitary operator. Thus V is a transfer
operator. N

We want to apply Theorem 3.6 to obtain an element X € H*(E) with X (n*) =
g(n*), for n € D(E). To do this, we first let F' be the correspondence E7
and then F? is a correspondence over p(N)’. In order to apply Theorem 3.6
we let M, in that theorem, be the von Neumann algebra p(N)" and let o there
be the identity representation of p(N)" on K (so that £ there is K). E in that
theorem will be F? and N there (the commutant of o(M)) will be p(N). The
representation 7 of N then will be the map p~! of p(N) on & (so that &£ will
play the role of H there). Also, q; will be as above. We set A = Ay*A; 1L,
B =-A,C =U*A, and D = U*y. These A, B,C and D give rise to the
matricial operator V' of equation (26). In order to show that the assumptions
of Theorem 3.6 are satisfied, we have to show that these operators (A, B, C' and
D) all have the required intertwining properties. (Note that we have already
checked that V' is a unitary operator).

The required intertwining properties are:

a) A= Ay*A;! lies in gap(N)'q1.
b) B = —A lies in N'.

(c
(d) For every S € N, U*yS = (Ig ® S)U*y on €.

(a)
(b)
) Forevery S e N, U*A,(Ig®S)=(S®@Ic)U*A, on E®QE.

)

Indeed, recall that v lies in the center of E” and, thus, for S € N, vS = (I®5)y.
Therefore A commutes with N and A, commutes with I ® S for S € N.
This implies (a) and (b). Recall that, for h € £, U*yh = v ® h and, thus,
U*vSh =~v® Sh = (I ® 8S)(y® h) = (I ® S)U*yh proving (d). For (c), it
suffices to note that U(S ® I)U* =1 ® S and A, commutes with I @ S for all
SeN.

We can now apply Theorem 3.6. Since F” plays the role of F in that theorem
and the identity representation of p(N)’, id, plays the role of o, E° in that

theorem is replaced by (F7)% which, by the duality theorem [31, Theorem 3.6
| is isomorphic to F' = E°. We therefore conclude:

LEMMA 4.14 For every v € D(3(E?)), there is an X in H®(F?) with || X|| <1
such that, for all z € D(E?), X(2*) = g4(2%).

Note that g,(z*) is an operator from F ® £ into £ and can be viewed as an
operator in B(K) which is where the values of X, as an element of H*(F”*),
lie.

We can now use [31, Theorem 5.3] to prove the following.
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COROLLARY 4.15 Fiz v € D(3(E?)) as above. Then, for every z1,za,..., 2k
in D(E?), the map on My(c(M)") defined by the k x k matriz

((ld - 99“/(‘2:)*79“/(‘2;)*) o (’Ld - ezi,zj)—l)
is completely positive.

ProOOF. Applying [31, Theorem 5.3] to X of Lemma 4.14, we get the complete
positivity of the map defined by the matrix

(I = Ad(g-(2]),9+(2;))) 0 (id = 0=,.2,) 7).

But note that, for every b € o(M)', Ad(g,(z)),9,(2]))(p(b)) =
g'y(zz*)p(b)g’v(z;)* = <g7(z;‘)*,bgv(z;)*> = ogw(z;‘)*,gw(z;‘)* (b) g

COROLLARY 4.16 Let Z : D(E?)* — B(E) be a Schur class operator function
and let v be in D(3(E?)). Then the function Z, : D((E?)*) — B(E) defined by

Zy(n") = Z(g+(n"))
is also a Schur class operator function.

PROOF. For every n;,7; in D(E?) we have (id — Ad(Z(g~(n})), Z(9+(n})))) ©
(id - em,m)_l = ((ld - Ad(Z(gv(n;))a Z(g’y(n;)))) © (id - Hgv(n{)*,ga,(n;)*)_l) ©
(id — 99’7("7:)*197(77;)*) o (id — 0y, 5,)""). Hence the map associated with Z is
a composition of two completely positive maps and is, therefore, completely
positive. [

For the statement of the next lemma, recall from [31, end of Section 2] that
every X € H®(F) has a “Fourier series" expansion given by a sequence of
“Fourier coefficient operators" {E;}. (In [31] we wrote {®;} for this sequence).
Each map E; is completely contractive, w*-continuous and E; (T¢, Te, - - - T, ) =
Te, Tg, - - T¢, if j = k and is zero otherwise. The Cesaro means of the “Fourier
series" of X converge to X in the w*-topology.

LEMMA 4.17 Let o be a normal, faithful, representation of M on a Hilbert
space H and let K (o) denote the kernel of the map X — X defined in equation

(16).
(i) K(o) C{X € H*(E) | Eo(X) = E1(X) = 0}.

(ii) If, for every k € N, V{(n®*)(H) | n € D(E?)} = E®* @ H, then K (o) =
{0}

(iii) Every completely isometric automorphism « of H*®(E) that is a w*-
homeomorphism and is implemented by a biholomorphic map of D(E?) in

the sense of (22) leaves K (o) invariant. In particular, K (o) is invariant
under the action of the gauge group and, thus, under the maps Eg, k > 0.
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Proor. Write C for {X € H*®(E) | Eo(X) = E;(X) = 0}. Then for every
X € H®(E), X = E¢(X) + E1(X) + X; where X; € Cy. Note that for every
n € D(E7), every 0 < t < 1 and every k > 0, Ex(X)((tn)*) = t*E(X)(n*).
Thus, for X € K(0), 0 = X((tn)*) = Eo(X)(n*) + tE1(X)(n*) + t2S where
S is some bounded operator on H. Since this holds for every 0 < ¢t < 1, we
have (by differentiation) Eo(X) = 0 and E{(X)(n*) = 0 for all n € D(E?).
Write Eq(X) = T¢ (for some & € E). Then, for all h € H and n € D(E?),
0 =E(X)n*)h = n*(€ ® h). Since V{n(H)| n € D(E?)} = E® H ([31,
Lemma 3.5]), we find that £ ® h = 0 for all h € H. Since E is faithful, this
implies that £ = 0, completing the proof of (i).

We can also write 0 = X ((tn)*) = Eo(X)(n*)+tE1 (X)(n*)+- - -+t Ex (X) (n*)+
k1S and conclude that E;(X)(n*) = 0 for all j < k. We can then continue
as above but to be able to conclude that E;(X) = 0 we need the condition in
part (ii) (to replace the use of [31, Lemma 3.5] in the argument above).

To prove (iii), note that the invariance of K (o) under an automorphism « as
in (iii) follows from (22). The invariance under the gauge group (and under
Ef) is then immediate. (]

The following proposition is obvious if K (o) = {0}. But, in fact, it holds for
every faithful, normal representation o. The argument uses an idea from [17,
Proof of Theorem 4.11].

PROPOSITION 4.18 Let o be a faithful, normal representation of M and let
a, B be two homomorphisms of H*(E) into itself such that 3 is completely iso-
metric, surjective and a w*-homeomorphism, while o is completely contractive
and w* -continuous. Suppose they satisfy the equation

a(X)(n*) = B(X)(n")
for all X € H*®(E) and n € D(E?). Then o = 3.
PrOOF. It is clearly enough to assume 3 = id and a/(})(n*) = X(n*). Note
that «, viewed as a representation of H*°(E) on F(E)®, H (whose restriction
10 Yoo (M) 1S Yoo () ® Igr), can be written as (Yoo(-) ® Ig) X ¢* for some ¢ in
the closed unit ball of the oo (-) ® Iy-dual of E. Thus, for k € F(F) ®, H,
o(Te)k = (C*)(€ ® k) and [|a(Te)k| < [l€ ® k| = | Tek]|
Fix h € H viewed as the zero*" summand of F(E)®, H. Then for every ¢ € E,

le(Te)hl| < [[Teh]].

By construction a(T¢) — Ty € K(o). But also, by Lemma 4.17(i), for every
X € K(o), Xh is orthogonal to T¢h. Thus

la(Te)hl|* = [[(lTe) = Te)hll* + | Tehl* > || Teh]*.

We conclude that for every h € H, (a(T¢)—T¢)h = 0. It follows that o(T¢) = T¢
for all £ € E. Since « is a w*-continuous homomorphism, a(X) = X for all
X € H*(E). O
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The following lemma will prove very useful when we deal with a representation
o for which K (o) # {0}. It relates the o-dual with the w-dual where 7 is the
representation defined in the proof of Lemma 3.8 (for which K (7) = {0}).

LEMMA 4.19 Let o be a faithful representation of M on H and 7w be the repre-
sentation Yoo @ Iy of M on K := F(E)® H. Let ¢ : o(M)" — (poo(M) @ I)’
be defined by 1 (b) = Ip®b and let U : E7 — E™ be defined by ¥(n) = Irg)®n.
Then we have the following.

(1) The pair (v, ) is an isomorphism of E° into (not necessarily onto) E™
satisfying
Y(n)Pu = Peen¥(n) =n, n€ E”

where Py is the projection from K to H (viewed as a subspace) and Ppg
is the projection of E @ K onto E® H.

(2) For every X € H®(FE) and ¢ € E™ that satisfies (Py = Preu(, we have
C|H € E° and the restriction of X ((*) to H (viewed as a summand of
FEYR H=H®EH®---)is X((C|H)*).

(3) There is an isomorphism ® of 3(E”) onto 3(E™) satisfying
()P = Peeu®(y) =7, v € 3(E7).
(4) For n € E° and v € 3(E7),
9o(v) (Y (1)) PEon = Paga) (¥(n)*) = g+(n").

ProoF. It is clear that 4 is indeed an isomorphism into (peo(M) ® Ix)'.
Note that it follows from the intertwining property of n € E? that ¥(n) is a
well defined bounded operator. To show that ¥ maps E° into E™, fix n € E7,
0®he F(E)®H and a € M and compute (I gy @n)7m(a)(0 @h) = (Irm)
1) (Poo (@) @ h) = poo(a)fd @ n(h), where we view F(E) ® E as the subspace of
F(E) consisting of all the positive tensor powers of E. But the last expression
is equal to (poo(a) ® Ir)(Irp) @ n)(0 @ h), showing that ¥(n) € E7™.

To show that the map is a bimodule map, fix n € E°, b,c € o(M) and
0 ®he F(E)®H. Then U(enb)(0 @ h) = 0 @ (enb)h = 0 ® (Ig ® ¢)nbh =
¥(c)(0 ® nbh) = Y(c)¥(n)(0 & bh) = ¥(c)¥(n)(b)(6 @ h), proving that the
image of ¥ lies in E™. Regarding the inner product, we have: (U(n;), ¥(1n2)) =
V() () = (Ire) @m)" (Urr) @) = (Ire) @nin2) = ¥({n1,n2)) for all
1m,n2 € E7. Thus (¢, ¥) is an isomorphism of E° into E™. The proof of the
equation U (n)Py = Preu¥(n) = n for n € E7 is easy. This proves (1).

To prove (2), let ¢ € E™ satisfy (Py = Pegu( and fixa € M and h € H. Then
(C[H)o(a)h = ((po(a) @ 1)k = (pp(a)® Ik )PrenCh = (¢p(a) ® In)(C|H)h.
Thus, ¢|H € E?. To prove that X ((¢|H)*) = X(¢*)|H, let, first, consider X =
@oo(a) for a € M. Then X (C*) = poo(a) @ Iy and X ((n|H)*) = o(a) and (2)
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holds in this case. Take X = T¢ for some £ € E. Then, forhe H C F(E)® H,
X(¢h = (€@ R) = (C|H)* (€ @ h) = X((¢|H)*)h. In particular, we see that
H is invariant for all X (¢*) where X runs over a set of generators. Thus, H
is invariant under )A((C*) for all X € H(E) and (2) holds for all X’s in a
w*-dense subalgebra of H>(F). Since the map X +— )A((C*) is w*-continuous,
we are done.

To prove (3), recall from Lemma 4.12 (2) that both 3(E?) and 3(E™) are
isomorphic to 3(F). Combining these two isomorphisms, we get ®. More
precisely, every n € 3(E?) is equal to L¢ for some £ € 3(E) (that is, n(h) =
E®h, h € H). Then we set ®(n)k =@k for k € K = F(E)® H. The
equation ®(y)Py = Pereu®(y) =7, v € 3(E7) follows easily.

Part (4) follows from (1) and (3). O

Fix X € H*(E) with || X|| <1, let 7 = 9o ® Iy, as in Lemma 3.8, and let y
be an element of D(3(E™)). Then if X is the Schur class operator function on
D((E™)*) determined by X then by Corollary 4.16, X o g4 also is a Schur class
operator function on D((E™)*). By Corollary 3.9 there is an element «.,(X) in

H>(E), whose norm does not exceed 1, such that m) = Xog,. Further, by
Lemma 3.8, this element is uniquely defined. We can, of course, extend this to
amap, a., from H*®(E) to itself such that, for X € H>*(E) and n € D((E™)*),

o — ~

ay(X)(n") = X(g4(n"))- (27)
LEMMA 4.20 Let o and w be as in Lemma 4.19. Then:

(i) For every~y € D(3(E™)), oy, defined by equation (27) is an automorphism
of the algebra H* (FE) that is completely isometric and is a homeomor-
phism with respect to the ultraweak topology.

(ii) For every v € D(3(E7)) let oy be defined to be ag(y) (with ® as in
Lemma 4.19). Then, for every X € H>®(E) and n € E°,

—

a,(X)(1*) = X (g4 (n")). (28)

Proor.  We first prove (i). Linearity and multiplicativity of c., are easy
to check. Since g2 = id, a, is invertible (with a;' = ). So it is an auto-
morphism. Since ., maps the closed unit ball of H>°(FE) into itself (as does
the inverse map), c, is isometric. It is, in fact, completely isometric. To
see this, consider, for n € N, the algebra H*°(M,(E)), associated with the
W*-correspondence M, (E) over the von Neumann algebra M, (M). The cor-
responding Fock space is M, (F(FE)) and the algebra can be identified with
M, (H*(FE)). The representation o of M gives rise to a representation o,, of
M, (M) on H™ = C"® H (with ¢,,(M,(M))" = Icn @ o(M)' = o(M)). One
can check that E7 & (M,,(E))°". Fory € 3(E?), write v’ for the corresponding
element of 3(M,,(E7)). Then o, acts on M, (H>(E)) by applying a, to each
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entry. Since we know that .,/ is an isometry, it follows that o, is a complete
isometry.

It is left to show that « is continuous with respect to the ultraweak topology.
For this, let {Xj3} be a net in the closed unit ball of H*°(E) that converges
ultraweakly to X. Since evaluating at n* (for 7 in the open unit ball) amounts
to applying a ultraweakly continuous representation , we have, for every such
n, Xg(n*) — X (n*) in the weak operator topology. Since this holds for g~ (n*)
in place of 7, we see that, for every n in the open unit ball of E?,

—_—

ay (Xp) (") = oy (X) (7).

Using Lemma 3.8, we find that o, (Xg) — a,(X) in the ultraweak topology.
This proves (i).
Part (ii) of the lemma results from the following computation

—_—

s (X) (%) = ) (X) (U (0)*) H = X (gae) (T (n)*))| H

= X (ga() (T())E @ H) = X(g,(n)"),

where we used equation (27) and Lemma 4.19. O

Note that we needed to use the representation 7 in order to define, for every
X € H*(E), the element o, (X) in H*(F) satisfying (27). That is, we used
the fact that K (7) = 0. Once we defined it, it may be more convenient to work
with the original representation ¢ (which can be chosen to be an arbitrary
faithful representation) and invoke (28). Note that, using Proposition 4.18, we
see that there is only one automorphism that satisfies (28).

THEOREM 4.21 Let E be a W*-correspondence over M and let o be a faithful
normal representation of M on a Hilbert space H. Let o be an isometric auto-
morphism of H®(FE) and assume that g : D(E?)* — D(E?)* is a biholomorphic
automorphism of D(E)* such that

— ~

a(X)(n*) = X(g9(n")),
for all X € H*®(E) and all n € E°. Then:
(1) g(D3((E7)7)) € D3((E7)").

(i) There is a v € D3((E?)) and a unitary operator u in L(E) such that
u(3(F)) = 3(E) and such that

9n") = gy(n") o (u® I¢)
(as a map from E @, H to H).

(iii) With w as in (ii), there is an automorphism o, of H*(E) such that
oy (Te) = Tye for every & € E.
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(iv) With u and ~ as in (ii),

o= 0y 0y

where ., is the automorphism defined in equation (27) (and satisfies

(28)).

(v) For every mi,ma,...,Nx in the open unit ball of E°, the map defined by
the k x k matriz

((id - eg(n;‘)*ﬁg(n;‘)*) o (id — 9771'177])_1)
is completely positive.

PRrOOF. Note first that, since « is an isometric automorphism, it maps e (M)
onto itself. R

Suppose 7 lies in D(3(E7)*). Then, by part (3) of Lemma 4.12, X (n*) € o(M)
for every X € H*®(E). But then, for every X, X(g(n*)) lies in (M), showing
that g(n*) € 3(E?). This proves (i).

The discussion following Lemma 4.12 shows that we can write g = w o g for
some 7y in D3((E7)) and an isometry w on (E?)* that preserves the center. Let
o, be the automorphism described in Lemma 4.20(ii) and write § = a; " o .

Then it follows that

BX) (%) = X(wn*)
for X € H*(E) and n € D(E7).
For n =0and Y € H*(FE) we have Y (0) = 0(Eo(Y)) where Eq is the condi-
tional expectation of H*°(E) onto M (where M is viewed as the “zeroth term”).

Thus, o(Eo(B(X))) = B(X)(0) = X(0) = o(Ee(X)) for every X € H®(E).
Since o is faithful, Eo(8(X)) = Eo(X). Thus, for every £ € E, Eo(5(T¢)) =0
and we can write

B(Te) =T +Y (29)

where Y lies in (Tg)?H*(E). Write C for (Tg)?H>(E). Since (29) holds for
all ¢ € E, 3(C) C C. We can apply the same arguments to 37!, in place of 3,
and find that 371(C) C C. Applying 37! to (29), we find that

ﬂil(Tg) =Te+7Z (30)

for some Z € C.

Arguing as in the proof of Proposition 4.18, we find that, for every h € H,
|B(Te)l| < | Teh] and B(T)|? = [ YAI? + |Tahl|? > |Toh|%. Thus |Teh| >
| Toh|. Applying the same arguments to S~! (using (30) in place of (29))

we find that ||Tph| > || Teh|| and, thus, ||Teh| = ||Toh|| and, consequently,
Yh =0for all h € H Thus Y = 0 and §(T¢) = Tp. Since [ is isometric,
I Te|| = ||T6]|- It follows that ||£|| = ||€]|. If we write 8 = u (and recall that

then B(T¢) = Tu¢) then w is a linear isometry. We also have, for a € M,
Tu(ga) = ﬁ(Tga) = B(Tga) = B(Tg)a = Tu(g)a = Tu({)a- Hence u is an isometric
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(right) module map and, therefore, u lies in £(E). Since § is an automorphism,
u is a unitary operator. We also have 3(T¢) = Ty¢, so 8 = a, (in the notation
of (iii)). This proves (iii) and (iv).

Recall that ﬁ/(\X)(n*) = X (wn*) and set X = Te to get i;(n*) = B/(@(n*) =
ﬁ(wn*) Hence n*Lye = (wn*)L¢. Applying this to h € £ we get n*(u @ h) =
(wn*)(§ @ h). Hence wn* = n* o (u® I), proving g(n*) = g,(n") o (u ® I¢).
To prove (ii) we need only to show that u preserves the center of E. So fix
§ € 3(F). By Lemma 4.12, L{ lies in the center of (E7)*. Thus wL} lies in
3((E°)"). But wLf = Lo (u® I) = Ly-g. Thus Ly« lies in 3((E7)*). Using
Lemma 4.12 again we get u*{ € 3(FE). This shows that «*3(F) C 3(F) and,
applying the same argument to 371, we complete the proof of (ii).

To prove (v), fix b € o(M)" and 7;,n; in D(E?) and compute (g(n;),b-g(n})) =
97 )Tz @ b)g(17)" = g(n7)(u @ Ie)(Ip @ b)(u* ® Ie)gy(n;)" = g5(n7)([E ©
b)gy(;)* = (g+(n}),b - g4(n;)). Thus (v) follows from Corollary 4.15. [J
Combining Theorem 4.21 with Theorem 4.9, we get the following.

THEOREM 4.22 Let E be a faithful W*-correspondence over M where 3(M)
is atomic. Let o be an automorphism of H*(E) that is completely isometric
and a w*-homeomorphism and leaves v (M) elementwise fized and let o be a
faithful representation of M.

Then there is a v € D3((E?)) and a unitary operator u in L(E), satisfying
u(3(E)) = 3(F), such that

Q= 0ty O (i,

where o, is the automorphism defined in Lemma 4.20 and o, (T¢) = Tye for
every £ € E.

In particular, if 3(E) = {0}, every such automorphism is ., for some unitary
operator u € L(E).

Theorem 4.22 provides another perspective on the results from [26, 27]. The
analytic crossed products discussed there are of the form H*(E), where E
is the correspondence , M associated with a von Neumann algebra M and an
automorphism « that is properly outer. This means that 3(E) = {0}. Theorem
4.22 implies that all automorphisms of H* (E) are given by automorphisms of
M.

5 EXAMPLES : GRAPH ALGEBRAS

In this section we consider some examples that come from directed graphs.
We shall assume for simplicity that our graphs have finitely many vertices and
edges. We write Q both for the graph and for its set of edges. The space of
vertices will be denoted V. We shall write s and r for the source and range maps
on 9, mapping Q to V, and we shall think of an edge e in Q as “pointing” from
s(e) to r(e). For simplicity, we shall also assume that r is surjective, i.e., we
shall assume that Q is without sources. Write Q* for the set of all finite paths
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in Q, i.e., the path category generated by Q. An element in Q will be written
a =ejey- e, where s(e;) = r(ei+1). We set s(a) = s(eg), (o) = r(er), and
|a| = k, the length of . We will also view vertex v € V as a “path of length
0", and we extend r and s to V simply by setting r(v) = s(v) = v.

Let M be C(V), the set of complex-valued functions on V. Of course, M
is a finite dimensional commutative von Neumann algebra. Likewise, we let
E be C(Q), the set of complex-valued functions on Q. Then we define an
M-bimodule structure on F as follows: for f € E, ¥ € M and e € Q,

(fe)(e) == f(e)v(s(e)),

and
(f)(e) :=1p(r(e)) f(e).

Note that the “no sources" assumption implies that the left action of M is
faithful. An M-valued inner product on E will be given by the formula

(f9w) = > fle)le),
(

s(e)=v

for f,g € E and v € V. With these operations, F becomes a W*-
correspondence over M. The algebra H*°(E) in this case will be written
H>(Q). In the literature, H>°(Q) is sometimes denoted Lgo. It is the ul-
traweak closure of the tensor algebra 7, (E(Q)) acting on the Fock space of
F(E(Q)). For e € Q, let d. be the d-function at e, i.e., d.(e') =1 if e = € and
is zero otherwise. Then T}, is a partial isometry that we denote by S.. Also,
for v € V, P, is defined to be ¢ (d,). Then each P, is a projection and it is
an easy matter to see that the families {S. : e € Q} and {P, : v € V} form a
Cuntz-Toeplitz family in the sense that the following conditions are satisfied:

(i) PP, =0if u # v,

(ii

)
) SESp=0ife# f
(iii) S;Se = Py(e) and
(iv) X (e)ymp SeSe < Py forallv e V.

In fact, these particular families yield a faithful representation of the Cuntz-
Toeplitz algebra 7 (E(Q)) [19]. The algebra 7, (E(Q)) is the norm-closed (un-
starred) algebra that they generate inside 7 (E(Q)) and H*(Q) is the ultra-
weak closure of 7, (E(Q)). The algebra 7, (E(Q)) was first defined and studied
in [25], providing examples of the theory developed in [28]. Tt was called a quiver
algebra there because in pure algebra, graphs of the form Q are called quivers.
(Hence the notation we use here.) The properties of quiver algebras were fur-
ther developed in [29]. In [23], the focus was on H*°(Q) and the authors called
this algebra a free semigroupoid algebras. Both algebras are often represented
as algebras of operators on [5(Q*), and it will be helpful to understand how
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from the perspective of this note. Let Hy be a Hilbert space whose dimension
equals the number of vertices, let {e,| v € V'} be a fixed orthonormal basis for
Hj and let o be the diagonal representation of M = C'(V') on Hy. Then l3(Q*)
is isomorphic to F(E(Q))®,, Hyp where the isomorphism maps an element &, of
the standard orthonormal basis of I5(Q*) to do ® 4y (Where, for a = ey - - - eg,
0 = 0y @+ 0, € E®F). The partial isometries S, can then be viewed
as the shift operators Se&, = &eo. Thus, the representations of 7, (E(Q)) and
H*>(Q) on l5(Q*) are just the representations induced by oy.

Quite generally, a completely contractive covariant representation of F(Q) on
a Hilbert space H is given by a representation o of M = C(V) on H and by a
contractive map T : E ®, H — H satisfying equation (2). The representation
o is given by the projections Q, = o(8,) whose sum is I. Also, from T we may
define maps T'(e) € B(H) by the equation T'(e)h = T(5, @ h) and it is easy
to check that TT* = 3" T(e)T(e)* and T'(e) = Qre)T(e)Qs(e)- Thus to every
completely contractive representation of the quiver algebra 7 (E(Q)) we asso-
ciate a family {T'(e)|e € Q} of maps on H that satisfy > T'(e)T'(e)* < I and
T(e) = Qre)T(e)Qs(c)- Conversely, every such family defines a representation,
written o x T (or o x T), satisfying (¢ x T)(S.) = T'(e) and (o x T)(P,) = Q..
We fix o to be op and write H in place of Hy. So that, in this case, each
projection @, is one dimensional (with range equal to Ce,). Then obviously
a(M) = a(M). To describe the o-dual of E, write Q~! for the directed graph
obtained from Q by reversing all arrows, so that s(e™!) = r(e) and r(e™!) =
s(e). Sometimes Q! is denoted Q°P and is called the opposite graph. Note
that the Hilbert space E®, Hy is spanned by the orthonormal basis {d. ®eg(q)}-
Fix n € E? and note that its covariance property implies that, for every e € Q,
" (0e @ €s(e)) = 0" (0r(e)0e @ €s(e)) = Qr(e) (de ® €5(e)) = n(e~1)e, () for some
n(e~1) € C. The reason for the “strange" way of writing that scalar is that we
can view 71 as an element of E(Q~!) and the correspondence structure on E°,
as described in Proposition 2.13, fits the correspondence structure of E(Q™1).
Consequently, we can identify the two and write

E° =E(Q7h.

(See Example 4.3 in [31] for a description of the structure of the dual corre-
spondence for more general representations ¢ ). It will also be convenient to
write n matricially with respect to the orthonormal bases {4, | v € V'} of Hy
and {0, ® ey(e) feco of E® Hy as

(n)e,r(e) = 77(6_1)' (31)

Suppose n € D(E?). For every X € H*(Q), we have defined X (n*) as an
element of B(H) in Remark 2.14. For the generators of H>°(Q), the definition
yields the equations,

P,(n")=0yp0p,veEV (32)

and
Se(n*) = n(e_l)er(e),s(e) , €€ Q (33)
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where 0, ,, is the partial isometry operator on H that maps e, to e, and
vanishes on (e, )*. For a general X € H*(Q), X (n*) is obtained by using the
linearity, multiplicativity and w*-continuity of the map X — X (n*).

The proof of the next lemma is straightforward and is omitted.

LEMMA 5.1 The centers of the correspondences E(Q) and E(Q™!) are given
by the formulae

3(E(Q)) = span{d. | s(e) = r(e)}
and

3(B(Q7Y) = span{d.-1 | s(e) = r(e)}.
The following proposition is immediate from Theorem 4.22.

PROPOSITION 5.2 If there is no e € Q with s(e) = r(e), then every automor-
phism « of H>*(Q) that is completely isometric, w*-homeomorphic and leaves
0o (C(V)) elementwise fized (that is, does not permute the vertices) is of the
form «y for some unitary u € L(E(Q)). That is,

a(Se) = Z Uf7eSf
s(f)=s(e)

where the scalars uy.. are given by ug. = (u(de))(f). (Note that this is zero if
S(f) 7é 8(6), since U((Se) = u((se(ss(e)) = u((se)(ss(e))'

We note, as we did at the beginning of Section 4, that the assumptions made
on the automorphism can be weakened using arguments of [22] but we shall
not elaborate on this here.

EXAMPLE 5.3 Let Q be an n-cycle (for n > 1) ; that is V = {v1,v2,...,0,}
and Q = {ey,...,en} where e; is the arrow from vy to vi41 (or to vy when
i =n). Then, for every « as in Proposition 5.2, there are {\1, A2, ..., An} with
|Ai| =1, such that a(Se,) = XiSe, for all i.

The rest of this section will be devoted to the study of the following example,
which is very simple, yet provides a full array of the structures we have been
studying.

EXAMPLE 5.4 Let the vertex set of the graph have two elements: V = {v, w}.
Suppose the edge set consists of three elements Q = {e, f,g}, where e is the
arrow from v to w, so s(e) = v, r(e) =w; [ is an arrow from w to v; and g is
a loop based at w, s(g) = r(g) = w.

Then by Lemma 5.1, 3(E(Q)) = Cé,. We know from Theorem 4.22 that every
automorphism « is the composition of an automorphism, written «,, associated
with a unitary in £(E(Q)) that maps ¢4 into A3dy (with [A3z] = 1) and an
automorphism associated with a “Mo6bius transformation”.
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As noted in Proposition 5.2, (u(de))(f’) = 0 unless s(e’) = s(f’), so that
u(ée) € Cd. and u(df) € span{dys,d,}. Since u* is unitary, we have that
u(éf) = )\f(Sf. Thus

0 (Se) = AeSe, u(SF) = AsSy (34)

and
CVu(Sg) = AgSy

for A, Ay, Ay with absolute value 1.

It is left to analyze the Mobius transformations and the corresponding auto-
morphisms. Since the center of E? are scalar multiples of § -1, the Mdbius
transformations are associated with scalars A € D (in fact, with A\j,-1) and will
be denoted 7y, A € D. We have

Ta0") = Aa(I =" (A1) T (A1 — ) AT (35)

where Ay = (IH - ()\(Sg—l )* ()\(Sg—l ))1/2 and Ay, = (IE®H - ()\(ngl )()\(ngl )*)1/2.
It will be convenient to write 7, (n*) matricially as a map from F® H, with the
ordered orthonormal basis {de ® d,,f @ Oy, g ® by}, to H, with the ordered
orthonormal basis {d,, 0, }. Using the formula (31), we see that

0 nle)
n=1| n(f7") 0
0 ng™h
and
00
As,i=1{ 0 0
0 A

The computation of the expression in (35) yields

. _ 0 -~ 0
) = | —aeha-pe) 0 Ang) |-

1=An(g™) 1-An(g=—1)
Thus
) (e 1) = —n(e=D) (L — APV = —nleD)(1 — |\?)Y/? 3 \rTa=T)k
e = R = T
TA(U*>*(f71) = 777(f71>5
and

AT = % = G- S )
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This suggests setting

T(e) = —(1— A2 (ASy)*Se,
k=0
I(f)=—5¢

and

T(g9) = —(A\Py — Sg) Z()‘Sg)k-
k=0

Using (32), (33) and the fact that the map X — )A((n*) is a continuous homo-
morphism, we get

—

T(e)(n™) = ma(n*)* (e )b,

T(f) ") = () (f 1) 0w
and
T(g)(n") = ma(m*)*(g7")bw,w-

Using Theorem 4.9, Theorem 4.22, Equation (34) and Theorem 4.18, we con-
clude the following.

THEOREM 5.5 (1) For every A\ € D, there is a unique automorphism «y of
H>(Q) such that, for every ¢’ € {e, f,g}, ax(Se) —T(e') € K(0).

(2) Every completely isometric, w*-homeomorphic automorphism « of
H*>(Q) can be written
Q= Q 0y

where A € D and o, (Ser) = AerSer for every € € {e, f,g} (where A, As
and Ay are complex numbers of absolute value 1).

PrROOF.  The only thing that we need to clarify here is that, in part (2),
we do not have to require that « fixes P, and P,. Indeed, assume that
« satisfies (P,) = P, and «a(P,) = P,. Then «(S.) = P,a(S.)P, and,
thus, Eo(a(Se)) = 0 and E;(a(S.)) € CSy. Similarly, we get Eo(a(Sy)) =
Ei(a(Sy)) =0, E1(a(Sf)) € CS. and Eo(a(Sy)) € CP,. Thus, S, is not in the
range of «, contradicting the surjectivity of a. O

Finally, we note the following.

PROPOSITION 5.6 In this example, K (o) is the ideal generated by the commu-
tator [Sy, SeS¥].

PrOOF.  Since we shall not use this result, we only sketch the idea of the
proof. It follows from Lemma 4.17 that it suffices to analyze Ex(K(c)) for
a given k. Since K (o) is an ideal, it suffices to consider P, E (K (0))P,~ for
fixed v’,v"” € {v,w}. Evaluating an element of P,Ey(K(c))P,~ in n* yields a
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polynomial in three the variables z; = n(e=1), 22 = n(f~1) and 23 = n(f~1).
This polynomial is defined on a small enough neighborhood of 0 and, from the
definition of K (o), it vanishes there. It follows that its coefficients are all 0.
This shows that an element in P,/ E (K (0))P,~ is a linear combination of sums
of the form )" a;S,, (for some paths «;) where Y a; = 0 and for every 4, j,
the paths o; and a; satisfy s(a;) = s(a;) = v”, r(a;) = r(a;) = v’ and both
paths contain the same edges (with the same multiplicities) but in a different
order. A moment’s reflection shows that this can happen only if the two paths
are identical except that, at some points, one path travels along ¢ and then
along ef while the other path “chooses" to travel first along ef and then along
g. This shows that the element in P,/ Ey(K(0))P,~ lies in the ideal generated
by [Sg, SeSy]. O
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