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366 Paul S. Muhly and Baruch Solel

1 IntroductionLet M be a W ∗-algebra and let E be a W ∗-
orresponden
e overM . In [31℄ webuilt an operator algebra from this data that we 
alled the Hardy algebra of Eand whi
h we denoted H∞(E). If M = E = C - the 
omplex numbers, then
H∞(E) is the 
lassi
al Hardy algebra 
onsisting of all bounded analyti
 fun
-tions on the open unit dis
, D (see Example 2.4 below.) If M = C again, but
E = Cn, then H∞(E) is the free semigroup algebra Ln studied by Davidsonand Pitts [17℄, Popes
u [32℄ and others (see Example 2.5.) One of the prin
ipaldis
overies made in [31℄, and the sour
e of inspiration for the present paper, isthat atta
hed to ea
h faithful normal representation σ ofM there is a dual 
or-responden
e Eσ, whi
h is a W ∗-
orresponden
e over the 
ommutant of σ(M),
σ(M)′, and the elements of H∞(E) de�ne fun
tions on the open unit ball of
Eσ, D(Eσ). Further, the value distribution theory of these fun
tions turns outto be linked through our generalization of the Nevanlinna-Pi
k interpolationtheorem [31, Theorem 5.3℄ with the positivity properties of 
ertain Pi
k-likekernels of mappings between operator spa
es.In the setting where M = E = C and σ is the 1-dimensional representation of
C on itself, then Eσ is C again. The representation of H∞(E) in terms of fun
-tions on D(Eσ) = D is just the usual way we think of H∞(E). In this setting,our Nevanlinna-Pi
k theorem is exa
tly the 
lassi
al theorem. If, however, σis a representation of C on a Hilbert spa
e H , dim(H) > 1, then Eσ may beidenti�ed with B(H) and then D(Eσ) be
omes the spa
e of stri
t 
ontra
tionson H , i.e., all those operators of norm stri
tly less than 1. In this 
ase, thevalue of an f ∈ H∞(E) at a T ∈ D(E

σ
) is simply f(T ), de�ned through theusual holomorphi
 fun
tional 
al
ulus. Our Nevanlinna-Pi
k theorem gives asolution to problems su
h as this: given k operators T1, T2, . . . , Tk all of normless than 1 and k operators, A1, A2, . . . , Ak, determine the 
ir
umstan
es underwhi
h one 
an �nd a bounded analyti
 fun
tion f on the open unit dis
 of supnorm at most 1 su
h that f(Ti) = Ai, i = 1, 2, . . . , k (See [31, Theorem 6.1℄.)On the other hand, when M = C, E = Cn, and σ is one dimensional, thespa
e Eσ is Cn and D(Eσ) is the unit ball Bn. Elements in H∞(E) = Lnare realized as holomorphi
 fun
tions on Bn that lie in a multiplier spa
e stud-ied in detail by Arveson [5℄. More a

urately, the fun
tional representation of

H∞(E) = Ln in terms of these fun
tions expresses this spa
e as a quotient of
H∞(E) = Ln. The Nevanlinna-Pi
k theorem of [31℄ 
ontains those of David-son and Pitts [18℄, Popes
u [34℄, and Arias and Popes
u [4℄, whi
h deal withinterpolation problems for these spa
es of fun
tions (possibly tensored with thebounded operators on an auxiliary Hilbert spa
e). It also 
ontains some of theresults of Constanines
u and Johnson in [16℄ whi
h treats elements of Ln asfun
tions on the ball of stri
t row 
ontra
tions with values in the operators ona Hilbert spa
e. (See their Theorem 3.4 in parti
ular.) This situation ariseswhen one takes M = C and E = Cn, but takes σ to be s
alar multipli
ationon an auxiliary Hilbert spa
e.Our obje
tive in the present note is basi
ally two fold. First, we wish to identify
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Schur Class Operator Functions . . . 367those fun
tions on D(E
σ
) that arise from evaluating elements of H∞(E). Forthis purpose, we introdu
e a family of fun
tions on D(E

σ
) that we 
all S
hur
lass operator fun
tions (see De�nition 3.1). Roughly speaking, these fun
tionsare de�ned so that a Pi
k-like kernel that one may atta
h to ea
h one is 
om-pletely positive de�nite in the sense of Barreto, Bhat, Liebs
her and Skeide[14℄. In Theorem 3.3 we use their Theorem 3.2.3 to give a Kolmogorov-typerepresentation of the kernel, from whi
h we derive an analogue of a unitarysystem matrix ( A B

C D

) whose transfer fun
tion
A+B(I − L∗

ηD)−1L∗
ηCturns out to be the given S
hur 
lass operator fun
tion. We then prove inTheorem 3.6 that ea
h su
h transfer fun
tion arises by evaluating an elementin H∞(E) at points of D(Eσ) and 
onversely, ea
h fun
tion in H∞(E) has arepresentation in terms of a transfer fun
tion. The meaning of the notation willbe made pre
ise below, but we use it here to highlight the 
onne
tion betweenour analysis and realization theory as it 
omes from mathemati
al systemstheory. The point to keep in mind is that fun
tions on D(Eσ) that 
ome fromelements of H∞(E) are not, a priori, analyti
 in any ordinary sense and it isnot at all 
lear what analyti
 features they have. Our Theorems 3.1 and 3.6together with [31, Theorem 5.3℄ show that the S
hur 
lass operator fun
tionsare pre
isely the fun
tions one obtains when evaluating fun
tions in H∞(E)(of norm at most 1) at points of D(Eσ). The fa
t that ea
h su
h fun
tion maybe realized as a transfer fun
tion exhibits a surprising level of analyti
ity thatis not evident in the de�nition of H∞(E).Our se
ond obje
tive is to 
onne
t the usual holomorphi
 properties of D(Eσ)with the automorphisms of H∞(E). As a spa
e, D(Eσ) is the unit ball of a

J∗-triple system. Consequently, every holomorphi
 automorphism of D(Eσ) isthe 
omposition of a Möbius transformation and a linear isometry [20℄. Ea
hof these implements an automorphism of the algebra of all bounded, 
omplex-valued analyti
 fun
tions on D(Eσ), but in our setting only 
ertain of themimplement automorphisms of H∞(E) - those for whi
h the Möbius part isdetermined by a �
entral� element of Eσ (see Theorem 4.21). Our proof requiresthe fa
t that the evaluation of fun
tions inH∞(E) (of norm at most 1) at pointsof D(Eσ) are pre
isely the S
hur 
lass operator fun
tions on D(Eσ). Indeed, thewhole analysis is an intri
ate �point - 
ounterpoint� interplay among elementsof H∞(E), S
hur 
lass fun
tions, transfer fun
tions and �
lassi
al� fun
tiontheory on D(Eσ). In the last se
tion, we apply our general analysis of theautomorphisms of H∞(E) to the spe
ial 
ase of H∞-algebras 
oming fromdire
ted graphs.In 
on
luding this introdu
tion, we want to note that a preprint of the presentpaper was posted on the arXiv on June 27, 2006. Re
ently, inspired in partby our preprint, Ball, Biswas, Fang and ter Horst [8℄ were able to realize theFo
k spa
e that we des
ribe here in terms of the theory of 
ompletely positivede�nite kernels advan
ed by Barreto, Bhat, Liebs
her and Skeide [14℄ that we
Documenta Mathematica 13 (2008) 365–411



368 Paul S. Muhly and Baruch Solelalso use (See Se
tion 3 and, in parti
ular, the proof of Theorem 3.3.) Theanalysis of Ball et al. makes additional ties between the theory of abstra
tHardy algebras that we develop here and 
lassi
al fun
tion theory on the unitdis
.
2 PreliminariesWe start by introdu
ing the basi
 de�nitions and 
onstru
tions. We shall followLan
e [24℄ for the general theory of Hilbert C∗-modules that we shall use. Let
A be a C∗-algebra and E be a right module over A endowed with a bi-additivemap 〈·, ·〉 : E × E → A (referred to as an A-valued inner produ
t) su
h that,for ξ, η ∈ E and a ∈ A, 〈ξ, ηa〉 = 〈ξ, η〉a, 〈ξ, η〉∗ = 〈η, ξ〉, and 〈ξ, ξ〉 ≥ 0, with
〈ξ, ξ〉 = 0 only when ξ = 0. Also, E is assumed to be 
omplete in the norm
‖ξ‖ := ‖〈ξ, ξ〉‖1/2. We write L(E) for the spa
e of 
ontinuous, adjointable,
A-module maps on E. It is known to be a C∗-algebra. If M is a von Neumannalgebra and if E is a Hilbert C∗-module overM , then E is said to be self-dual in
ase every 
ontinuousM -module map from E toM is given by an inner produ
twith an element of E. Let A and B be C∗-algebras. A C∗-
orresponden
e from
A to B is a Hilbert C∗-module E over B endowed with a stru
ture of a leftmodule over A via a nondegenerate ∗-homomorphism ϕ : A→ L(E).When dealing with a spe
i�
 C∗-
orresponden
e, E, from a C∗-algebra A to a
C∗-algebra B, it will be 
onvenient sometimes to suppress the ϕ in formulasinvolving the left a
tion and simply write aξ or a · ξ for ϕ(a)ξ. This should
ause no 
onfusion in 
ontext.If E is a C∗-
orresponden
e from A to B and if F is a 
orresponden
e from
B to C, then the balan
ed tensor produ
t, E ⊗B F is an A,C-bimodule that
arries the inner produ
t de�ned by the formula

〈ξ1 ⊗ η1, ξ2 ⊗ η2〉E⊗BF := 〈η1, ϕ(〈ξ1, ξ2〉E)η2〉FThe Hausdor� 
ompletion of this bimodule is again denoted by E ⊗B F .In this paper we deal mostly with 
orresponden
es over von Neumann algebrasthat satisfy some natural additional properties as indi
ated in the followingde�nition. (For examples and more details see [31℄).
Definition 2.1 LetM and N be von Neumann algebras and let E be a Hilbert
C∗-module over N . Then E is 
alled a Hilbert W ∗-module over N in 
ase E isself-dual. The module E is 
alled a W ∗-
orresponden
e fromM to N in 
ase Eis a self-dual C∗-
orresponden
e from M to N su
h that the ∗-homomorphism
ϕ : M → L(E), giving the left module stru
ture on E, is normal. If M = Nwe shall say that E is a W ∗-
orresponden
e over M .We note that if E is a Hilbert W ∗-module over a von Neumann algebra, then
L(E) is not only a C∗-algebra, but is also a W ∗-algebra. Thus it makes senseto talk about normal homomorphisms into L(E).
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Schur Class Operator Functions . . . 369
Definition 2.2 An isomorphism of a W ∗-
orresponden
e E1 over M1 anda W ∗-
orresponden
e E2 over M2 is a pair (σ,Ψ) where σ : M1 → M2 isan isomorphism of von Neumann algebras, Ψ : E1 → E2 is a ve
tor spa
eisomorphism preserving the σ-topology and for e, f ∈ E1 and a, b ∈ M1, wehave Ψ(aeb) = σ(a)Ψ(e)σ(b) and 〈Ψ(e),Ψ(f)〉 = σ(〈e, f〉).When 
onsidering the tensor produ
t E ⊗M F of two W ∗-
orresponden
es,one needs to take the 
losure of the C∗-tensor produ
t in the σ-topology of[6℄ in order to get a W ∗-
orresponden
e. However, we will not distinguishnotationally between the C∗-tensor produ
t and the W ∗-tensor produ
t. Notealso that given aW ∗-
orresponden
e E overM and a Hilbert spa
eH equippedwith a normal representation σ of M , we 
an form the Hilbert spa
e E ⊗σ Hby de�ning 〈ξ1 ⊗ h1, ξ2 ⊗ h2〉 = 〈h1, σ(〈ξ1, ξ2〉)h2〉. Thus, H is viewed as a
orresponden
e from M to C via σ and E ⊗σ H is just the tensor produ
t of
E and H as W ∗-
orresponden
es.Note also that, given an operator X ∈ L(E) and an operator S ∈ σ(M)′, themap ξ ⊗ h 7→ Xξ ⊗ Sh de�nes a bounded operator on E ⊗σ H denoted by
X ⊗ S. The representation of L(E) that results when one lets S = I, is 
alledthe representation of L(E) indu
ed by σ and is often denoted by σE . The
omposition, σE ◦ϕ is a representation ofM whi
h we shall also say is indu
edby σ, but we shall usually denote it by ϕ(·) ⊗ I.Observe that if E is a W ∗-
orresponden
e over a von Neumann algebra M ,then we may form the tensor powers E⊗n, n ≥ 0, where E⊗0 is simply Mviewed as the identity 
orresponden
e over M , and we may form the W ∗-dire
t sum of the tensor powers, F(E) := E⊗0 ⊕ E⊗1 ⊕ E⊗2 ⊕ · · · to obtaina W ∗-
orresponden
e over M 
alled the (full) Fo
k spa
e over E. The a
tionsof M on the left and right of F(E) are the diagonal a
tions and, when it is
onvenient to do so, we make expli
it the left a
tion by writing ϕ∞ for it.That is, for a ∈ M , ϕ∞(a) := diag{a, ϕ(a), ϕ(2)(a), ϕ(3)(a), · · · }, where for all
n, ϕ(n)(a)(ξ1 ⊗ ξ2 ⊗ · · · ξn) = (ϕ(a)ξ1) ⊗ ξ2 ⊗ · · · ξn, ξ1 ⊗ ξ2 ⊗ · · · ξn ∈ E⊗n.The tensor algebra over E, denoted T+(E), is de�ned to be the norm-
losedsubalgebra of L(F(E)) generated by ϕ∞(M) and the 
reation operators Tξ,
ξ ∈ E, de�ned by the formula Tξη = ξ ⊗ η, η ∈ F(E). We refer the reader to[28℄ for the basi
 fa
ts about T+(E).
Definition 2.3 ([31℄) Given a W ∗-
orresponden
e E over the von NeumannalgebraM , the ultraweak 
losure of the tensor algebra of E, T+(E), in L(F(E)),is 
alled the Hardy Algebra of E, and is denoted H∞(E).
Example 2.4 If M = E = C, then F(E) 
an be identi�ed with ℓ2(Z+) or,through the Fourier transform, H2(T). The tensor algebra then is isomorphi
to the dis
 algebra A(D) viewed as multipli
ation operators on H2(T) and theHardy algebra is realized as the 
lassi
al Hardy algebra H∞(T).
Example 2.5 If M = C and E = Cn, then F(E) 
an be identi�ed with thespa
e l2(F

+
n ), where F+

n is the free semigroup on n generators. The tensor
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370 Paul S. Muhly and Baruch Solelalgebra then is what Popes
u refers to as the �non 
ommutative dis
 algebra�
An and the Hardy algebra is its w∗-
losure. It was studied by Popes
u [32℄ andby Davidson and Pitts who denoted it by Ln [17℄.We need to review some basi
 fa
ts about the representation theory of H∞(E)and of T+(E). See [28, 31℄ for more details.
Definition 2.6 Let E be a W ∗-
orresponden
e over a von Neumann algebra
M . Then:1. A 
ompletely 
ontra
tive 
ovariant representation of E on a Hilbert spa
e

H is a pair (T, σ), where(a) σ is a normal ∗-representation of M in B(H).(b) T is a linear, 
ompletely 
ontra
tive map from E to B(H) that is
ontinuous in the σ-topology of [6℄ on E and the ultraweak topologyon B(H).(
) T is a bimodule map in the sense that T (SξR) = σ(S)T (ξ)σ(R),
ξ ∈ E, and S,R ∈M .2. A 
ompletely 
ontra
tive 
ovariant representation (T, σ) of E in B(H) is
alled isometri
 in 
ase

T (ξ)∗T (η) = σ(〈ξ, η〉) (1)for all ξ, η ∈ E.It should be noted that the operator spa
e stru
ture on E to whi
h De�nition2.6 refers is that whi
h E inherits when viewed as a subspa
e of its linkingalgebra.As we showed in [28, Lemmas 3.4�3.6℄ and in [31℄, if a 
ompletely 
ontra
tive
ovariant representation, (T, σ), of E in B(H) is given, then it determines a
ontra
tion T̃ : E ⊗σ H → H de�ned by the formula T̃ (η ⊗ h) := T (η)h,
η ⊗ h ∈ E ⊗σ H . The operator T̃ intertwines the representation σ on H andthe indu
ed representation σE ◦ ϕ = ϕ(·) ⊗ IH on E ⊗σ H ; i.e.

T̃ (ϕ(·) ⊗ I) = σ(·)T̃ . (2)In fa
t we have the following lemma from [31, Lemma 2.16℄.
Lemma 2.7 The map (T, σ) → T̃ is a bije
tion between all 
ompletely 
ontra
-tive 
ovariant representations (T, σ) of E on the Hilbert spa
e H and 
ontra
tiveoperators T̃ : E⊗σH → H that satisfy equation (2). Given su
h a T̃ satisfyingthis equation, T , de�ned by the formula T (ξ)h := T̃ (ξ ⊗ h), together with σ isa 
ompletely 
ontra
tive 
ovariant representation of E on H. Further, (T, σ)is isometri
 if and only if T̃ is an isometry.
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Schur Class Operator Functions . . . 371The importan
e of the 
ompletely 
ontra
tive 
ovariant representations of E(or, equivalently, the intertwining 
ontra
tions T̃ as above) is that they yieldall 
ompletely 
ontra
tive representations of the tensor algebra. More pre
isely,we have the following.
Theorem 2.8 Let E be a W ∗-
orresponden
e over a von Neumann algebra M .To every 
ompletely 
ontra
tive 
ovariant representation, (T, σ), of E there isa unique 
ompletely 
ontra
tive representation ρ of the tensor algebra T+(E)that satis�es

ρ(Tξ) = T (ξ) ξ ∈ Eand
ρ(ϕ∞(a)) = σ(a) a ∈M.The map (T, σ) 7→ ρ is a bije
tion between the set of all 
ompletely 
ontra
tive
ovariant representations of E and all 
ompletely 
ontra
tive (algebra) repre-sentations of T+(E) whose restri
tions to ϕ∞(M) are 
ontinuous with respe
tto the ultraweak topology on L(F(E)).

Definition 2.9 If (T, σ) is a 
ompletely 
ontra
tive 
ovariant representationof a W ∗-
orresponden
e E over a von Neumann algebra M , we 
all the repre-sentation ρ of T+(E) des
ribed in Theorem 2.8 the integrated form of (T, σ)and write ρ = σ × T .
Remark 2.10 One of the prin
ipal di�
ulties one fa
es in dealing with T+(E)and H∞(E) is to de
ide when the integrated form, σ × T , of a 
ompletely 
on-tra
tive 
ovariant representation (T, σ) extends from T+(E) to H∞(E). Thisproblem arises already in the simplest situation, vis. when M = C = E. In thissetting, T is given by a single 
ontra
tion operator on a Hilbert spa
e, T+(E)�is� the dis
 algebra and H∞(E) �is� the spa
e of bounded analyti
 fun
tionson the dis
. The representation σ×T extends from the dis
 algebra to H∞(E)pre
isely when there is no singular part to the spe
tral measure of the minimalunitary dilation of T . We are not aware of a 
omparable result in our general
ontext but we have some su�
ient 
onditions. One of them is given in thefollowing lemma. It is not a ne
essary 
ondition in general.
Lemma 2.11 [31, Corollary 2.14℄ If ‖T̃‖ < 1 then σ × T extends to a ultra-weakly 
ontinuous representation of H∞(E).In [31℄ we introdu
ed and studied the 
on
epts of duality and of point evaluation(for elements of H∞(E)). These play a 
entral role in our analysis here.
Definition 2.12 Let E be a W ∗-
orresponden
e over a von Neumann algebra
M and let σ : M → B(H) be a faithful normal representation ofM on a Hilbertspa
e H. Then the σ-dual of E, denoted Eσ, is de�ned to be

{η ∈ B(H,E ⊗σ H) | ησ(a) = (ϕ(a) ⊗ I)η, a ∈M}.
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372 Paul S. Muhly and Baruch SolelAn important feature of the dual Eσ is that it is a W ∗-
orresponden
e, butover the 
ommutant of σ(M), σ(M)′.
Proposition 2.13 With respe
t to the a
tion of σ(M)′ and the σ(M)′-valuedinner produ
t de�ned as follows, Eσ be
omes a W ∗-
orresponden
e over σ(M)′:For Y and X in σ(M)′, and η ∈ Eσ, X ·η·Y := (I⊗X)ηY , and for η1, η2 ∈ Eσ,
〈η1, η2〉σ(M)′ := η∗1η2.In the following remark we explain what we mean by �evaluating an element of
H∞(E) at a point in the open unit ball of the dual�.
Remark 2.14 The importan
e of this dual spa
e, Eσ, is that it is 
losely re-lated to the representations of E. In fa
t, the operators in Eσ whose norm doesnot ex
eed 1 are pre
isely the adjoints of the operators of the form T̃ for a 
o-variant pair (T, σ). In parti
ular, every η in the open unit ball of Eσ (written
D(Eσ)) gives rise to a 
ovariant pair (T, σ) (with η = T̃ ∗) su
h that σ × Textends to a representation of H∞(E).Given X ∈ H∞(E) we 
an apply the representation asso
iated to η to it. Theresulting operator in B(H) will be denoted by X̂(η∗). Thus

X̂(η∗) = (σ × η∗)(X).In this way, we view every element in the Hardy algebra as a B(H)-valuedfun
tion
X̂ : D(Eσ)∗ → B(H)on the open unit ball of (Eσ)∗. One of our primary obje
tives is to understandthe range of the transform X → X̂ , X ∈ H∞(E).

Example 2.15 Suppose M = E = C and σ the representation of C on someHilbert spa
e H. Then it is easy to 
he
k that Eσ is isomorphi
 to B(H). Fix an
X ∈ H∞(E). As we mentioned above, this Hardy algebra is the 
lassi
al H∞(T)and we 
an identify X with a fun
tion f ∈ H∞(T). Given S ∈ D(Eσ) = B(H),it is not hard to 
he
k that X̂(S∗), as de�ned above, is the operator f(S∗)de�ned through the usual holomorphi
 fun
tional 
al
ulus.
Example 2.16 In [17℄ Davidson and Pitts asso
iate to every element of thefree semigroup algebra Ln (see Example 2.5) a fun
tion on the open unit ball of
Cn. This is a spe
ial 
ase of our analysis when M = C, E = Cn and σ is a onedimensional representation of C. In this 
ase σ(M)′ = C and Eσ = Cn. Note,however, that our de�nition allows us to take σ to be the representation of C onan arbitrary Hilbert spa
e H. If we do so, then Eσ is isomorphi
 to B(H)(n),the nth 
olumn spa
e over B(H), and elements of Ln de�ne fun
tions on theopen unit ball of this spa
e viewed as a 
orresponden
e over B(H) with valuesin B(H). This is the perspe
tive adopted by Constantines
u and Johnson in[16℄. In the analysis of [17℄ it is possible that a non zero element of Ln willgive rise to the zero fun
tion. We shall show in Lemma 3.8 that, by 
hoosingan appropriate H we 
an insure that this does not happen.
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Schur Class Operator Functions . . . 373
Example 2.17 Part of the re
ent work of Popes
u in [35℄ may be 
ast in ourframework. We will follow his notation. Fix a Hilbert spa
e K, and let E bethe 
olumn spa
e B(K)n. Take, also, a Hilbert spa
e H and let σ : B(K) →
B(K ⊗ H) be the representation whi
h sends a ∈ B(K) to a ⊗ IH . Then,sin
e the 
ommutant of σ(B(K)) is naturally isomorphi
 to B(H), it is easy tosee that Eσ is the 
olumn spa
e over B(H), B(H)n. It follows that D(Eσ) isthe open unit ball in B(H)n. A free formal power series with 
oe�
ients from
B(K) is a formal series F =

∑
α∈F

+
n
Aα ⊗ Zα where F+

n is the free semigroupon n generators, the Aα are elements of B(K) and where Zα is the monomialin non
ommuting indeterminates Z1, Z2, . . . , Zn determined by α. If F hasradius of 
onvergen
e equal to 1, then one may evaluate F at points of D(Eσ)∗to get a fun
tion on D(Eσ)∗ with values in B(K⊗H), vis., F ((S1, S2, · · ·Sn)) =∑
α∈F

+
n
Aα ⊗ Sα. See [35, Theorem 1.1℄. In fa
t, under additional restri
tionson the 
oe�
ients Aα, F may be viewed as a fun
tion X in H∞(B(K)n) in su
ha way that F ((S1, S2, · · ·Sn)) = X̂(S1, S2, · · ·Sn) in the sense de�ned in [31, p.384℄ and dis
ussed above in Remark 2.14. The spa
e that Popes
u denotes by

H∞(B(X )n
1 ) arises when K = C, and is naturally isometri
ally isomorphi
 to

Ln [35, Theorem 3.1℄. We noted in the pre
eding example that Ln is H∞(Cn).The point of [35℄, at least in part, is to study H∞(B(X )
n
1 ) ≃ Ln = H∞(Cn)through all the representations σ of C on Hilbert spa
es H, that is, throughevaluating fun
tions in H∞(B(X )

n
1 ) at points the unit ball of B(H)n for allpossible H's. The spa
e B(K)n is Morita equivalent to Cn in the sense of [30℄,at least when dim(K) < ∞, and, in that 
ase the tensor algebras T+(B(K)n)and T+(Cn) are Morita equivalent in the sense des
ribed by [15℄. The tensoralgebra T+(Cn), in turn, is naturally isometri
ally isomorphi
 to Popes
u'snon
ommutative dis
 algebra An [33℄. The analysis in [15℄ suggests a sensein whi
h Cn and B(K)n are Morita equivalent even when dim(K) = ∞, andthat together with [30℄ suggests that H∞(B(K)n) should be Morita equivalent to

H∞(B(X )
n
1 ) ≃ H∞(Cn). This would suggest an even 
loser 
onne
tion betweenPopes
u's free power series, and all that goes with them, and the perspe
tivewe have taken in this paper, whi
h, as we shall see, involves generalized S
hurfun
tions and transfer fun
tions. The 
onne
tion seems like a promising avenueto explore.In [31℄ we exploited the perspe
tive of viewing elements of the Hardy algebraas B(H)-valued fun
tions on the open unit ball of the dual 
orresponden
eto prove a Nevanlinna-Pi
k type interpolation theorem. In order to state itwe introdu
e some notation: For operators B1 and B2 in B(H), we write

Ad(B1, B2) for the map from B(H) to itself that sends S to B1SB
∗
2 . Also, givenelements η1, η2 in D(Eσ), we let θη1,η2

denote the map, from σ(M)′ to itselfthat sends a to 〈η1, aη2〉. That is, θη1,η2
(a) := 〈η1, aη2〉 = η∗1aη2, a ∈ σ(M)′.

Theorem 2.18 ([31, Theorem 5.3℄) Let E be a W ∗-
orresponden
e over a vonNeumann algebra M and let σ : M → B(H) be a faithful normal representationof M on a Hilbert spa
e H. Fix k points η1, . . . ηk in the disk D(Eσ) and 
hoose
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374 Paul S. Muhly and Baruch Solel

2k operators B1, . . . Bk, C1, . . . Ck in B(H). Then there exists an X in H∞(E)su
h that ‖X‖ ≤ 1 and
BiX̂(η∗i ) = Cifor i = 1, 2, . . . , k, if and only if the map from Mk(σ(M)′) into Mk(B(H))de�ned by the k × k matrix

(
(Ad(Bi, Bj) −Ad(Ci, Cj)) ◦ (id− θηi,ηj )

−1
) (3)is 
ompletely positive.That is, the map T , say, given by the matrix (3) is 
omputed by the formula

T ((aij)) = (bij),where
bij = Bi((id− θηi,ηj )

−1(aij)B
∗
j − Ci((id− θηi,ηj )

−1(aij)C
∗
jand

(id− θηi,ηj )
−1(aij) = aij + θηi,ηj (aij) + θηi,ηj (θηi,ηj (aij)) + · · ·We 
lose this se
tion with two te
hni
al lemmas that will be needed in ouranalysis. Let M and N be W ∗-algebras and let E be a W ∗-
orresponden
efrom M to N . Given a σ-
losed sub
orresponden
e E0 of E we know thatthe orthogonal proje
tion P of E onto E0 is a right module map. (See [6,Consequen
es 1.8 (ii)℄). In the following lemma we show that P also preservesthe left a
tion.

Lemma 2.19 Let E be a W ∗-
orresponden
e from the von Neumann algebra
M to the von Neumann algebra N , and let E0 be a sub W ∗-
orresponden
e
E0 of E that is 
losed in the σ-topology of [6, Consequen
es 1.8 (ii)℄. If Pis the orthogonal proje
tion from E onto E0, then P is a bimodule map; i.e.,
P (aξb) = aP (ξ)b for all a ∈M and b ∈ N .
Proof. It su�
es to 
he
k that P (eξ) = eP (ξ) for all ξ ∈ E and proje
tions
e ∈M . For ξ, η ∈ E and a proje
tion e ∈M , we have
‖eξ + fη‖2 = ‖〈eξ, eξ〉 + 〈fη, fη〉‖ ≤ ‖〈eξ, eξ〉‖ + ‖〈fη, fη〉‖ = ‖eξ‖2 + ‖fη‖2,where f = 1 − e. So, for every λ ∈ R we have

(λ+ 1)2‖fP (eξ)‖2 = ‖fP (eξ + λfP (eξ))‖2 ≤ ‖eξ + λfP (eξ)‖2

≤ ‖eξ‖2 + λ2‖fP (eξ)‖2.Hen
e, for every λ ∈ R,
(2λ+ 1)‖fP (eξ)‖2 ≤ ‖eξ‖2
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Schur Class Operator Functions . . . 375and, thus,
(I − e)P (eξ) = fP (eξ) = 0.Repla
ing e by f = I − e we get eP ((I − e)ξ) = 0 and, therefore,
P (eξ) = eP (eξ) = eP (ξ).Sin
e M is spanned by its proje
tions, we are done. �

Lemma 2.20 Let E be a W ∗-
orresponden
e over M , let σ be a faithful normalrepresentation of M on the Hilbert spa
e E, and let Eσ be the σ-dual 
orrespon-den
e over N := σ(M)′. Then(i) The left a
tion of N on Eσ is faithful if and only if E is full (i.e. ifand only if the ultraweakly 
losed ideal generated by the inner produ
ts
〈ξ1, ξ2〉, ξ1, ξ2 ∈ E, is all of M).(ii) The left a
tion of M on E is faithful if and only if Eσ is full.

Proof. We shall prove (i). Part (ii) then follows by duality (using [31,Theorem 3.6℄). Given S ∈ N , Sη = 0 for every η ∈ Eσ if and only if forall η ∈ Eσ and g ∈ E , (I ⊗ S)η(g) = 0. Sin
e the 
losed subspa
e spannedby the ranges of all η ∈ Eσ is all of E ⊗M E ([31℄), this is equivalent to theequation ξ ⊗ Sg = 0 holding for all g ∈ E and ξ ∈ E. Sin
e 〈ξ ⊗ Sg, ξ ⊗ Sg〉 =
〈g, S∗〈ξ, ξ〉Sg〉, we �nd that SEσ = 0 if and only if σ(〈E,E〉)S = 0, where
〈E,E〉 is the ultraweakly 
losed ideal generated by all inner produ
ts. If thisideal is all of M we �nd that the equation SEσ = 0 implies that S = 0. In theother dire
tion, if this is not the 
ase, then this ideal is of the form (I − q)Mfor some 
entral nonzero proje
tion q and then S = σ(q) is di�erent from 0 butvanishes on Eσ. �

3 Schur class operator functions and realizationThroughout this se
tion, E will be a �xed W ∗-
orresponden
e over the vonNeumann algebra M and σ will be a faithful representation of M on a Hilbertspa
e E . We then form the σ-dual of E, Eσ, whi
h is a 
orresponden
e over
N := σ(M)′, and we write D(Eσ) for its open unit ball. Further, we write
D(Eσ)∗ for {η∗ | η ∈ D(Eσ)}.The following de�nition is 
learly motivated by the 
ondition appearing inTheorem 2.18 and S
hur's theorem from 
lassi
al fun
tion theory.
Definition 3.1 Let Ω be a subset of D(Eσ) and let Ω∗ = {ω∗ | ω ∈ Ω}. Afun
tion Z : Ω∗ → B(E) will be 
alled a S
hur 
lass operator fun
tion (withvalues in B(E)) if, for every k and every 
hoi
e of elements η1, η2, . . . , ηk in Ω,the map from Mk(N) to Mk(B(E)) de�ned by the k × k matrix of maps,

((id−Ad(Z(η∗i ), Z(η∗j ))) ◦ (id− θηi,ηj )
−1),is 
ompletely positive.
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376 Paul S. Muhly and Baruch SolelNote that, when M = E = B(E) and σ is the identity representation of B(E)on E , σ(M)′ is CIE , Eσ is isomorphi
 to C and D(Eσ)∗ 
an be identi�ed withthe open unit dis
 D of C. In this 
ase our de�nition re
overs the 
lassi
alS
hur 
lass fun
tions. More pre
isely, these fun
tions are usually de�ned asanalyti
 fun
tions Z from an open subset Ω of D into the 
losed unit ball of
B(E) but it is known that su
h fun
tions are pre
isely those for whi
h the Pi
kkernel kZ(z, w) = (I − Z(z)Z(w)∗)(1 − zw̄)−1 is positive semi-de�nite on Ω.The argument of [31, Remark 5.4℄ shows that the positivity of this kernel isequivalent, in our 
ase, to the 
ondition of De�nition 3.1. This 
ondition, inturn, is the same as asserting that the kernel

kZ(ζ∗, ω∗) := (id− Ad(Z(ζ∗), Z(ω∗)) ◦ (id− θζ,ω)−1 (4)is a 
ompletely positive de�nite kernel on Ω∗ in the sense of De�nition 3.2.2 of[14℄.For the sake of 
ompleteness, we re
ord the fa
t that every element of H∞(E)of norm at most one gives rise to a S
hur 
lass operator fun
tion.
Theorem 3.2 Let E be a W ∗-
orresponden
e over a von Neumann algebra Mand let σ be a faithful normal representation of M in B(H) for some Hilbertspa
e H. If X is an element of H∞(E) of norm at most one, then the fun
tion
η∗ → X̂(η∗) de�ned in Remark 2.14 is a S
hur 
lass operator fun
tion on
D((Eσ))∗ with values in B(H).
Proof. One simply takes Bi = I for all i and Ci = X̂(η∗i ) in Theorem 2.18.
�

Theorem 3.3 Let E be a W ∗-
orresponden
e over a von Neumann algebra M .Suppose also that σ a faithful normal representation of M on a Hilbert spa
e
E and that q1 and q2 are proje
tions in σ(M). Finally, suppose that Ω is asubset of D((Eσ)) and that Z is a S
hur 
lass operator fun
tion on Ω∗ withvalues in q2B(E)q1. Then there is a Hilbert spa
e H, a normal representation
τ of N := σ(M)′ on H and operators A,B,C and D ful�lling the following
onditions:(i) The operator A lies in q2σ(M)q1.(ii) The operators C, B, and D, are in the spa
es B(E1, E

σ ⊗τ H), B(H, E2),and B(H,Eσ⊗τH), respe
tively, and ea
h intertwines the representationsof N = σ(M)′ on the relevant spa
es (i.e. , for every S ∈ N , CS =
(S ⊗ IH)C, Bτ(S) = SB and Dτ(S) = (S ⊗ IH)D).(iii) The operator matrix

V =

(
A B
C D

)
, (5)viewed as an operator from E1 ⊕H to E2 ⊕ (Eσ ⊗τ H), is a 
oisometry,whi
h is unitary if E is full.
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Schur Class Operator Functions . . . 377(iv) For every η∗ in Ω∗,
Z(η∗) = A+ B(I − L∗

ηD)−1L∗
ηC (6)where Lη : H → Eσ ⊗ H is de�ned by the formula Lηh = η ⊗ h (so

L∗
η(θ ⊗ h) = τ(〈η, θ〉)h).

Remark 3.4 Before giving the proof of Theorem 3.3, we want to note that theresult bears a strong resemblan
e to standard results in the literature. We 
allspe
ial attention to [1, 2, 7, 9, 10, 11, 12, 13℄. Indeed, we re
ommend [7℄,whi
h is a survey that explains the general strategy for proving the theorem.What is novel in our approa
h is the adaptation of the results in the literatureto a

ommodate 
ompletely positive de�nite kernels.Sin
e the matrix in equation (5) and the fun
tion in equation (6) are familiar
onstru
ts in mathemati
al systems theory, more parti
ularly from H∞-
ontroltheory (see, e.g., [38℄), we adopt the following terminology.
Definition 3.5 Let E be a W ∗-
orresponden
e over a von Neumann algebra
M . Suppose that σ is a faithful normal representation of M on a Hilbert spa
e
E and that q1 and q2 are proje
tions in σ(M). Then an operator matrix V =(
A B
C D

), where the entries A, B, C, and D, satisfy 
onditions (i) and (ii)of Theorem 3.3 for some normal representation τ of σ(M)′ on a Hilbert spa
e
H, is 
alled a system matrix provided V is a 
oisometry (that is unitary, if Eis full). If V is a system matrix, then the fun
tion A + B(I − L∗

ηD)−1L∗
ηC,

η∗ ∈ D(Eσ)∗ is 
alled the transfer fun
tion determined by V .
Proof. As we just remarked, the hypothesis that Z is a S
hur 
lass fun
tionon Ω∗ means that the kernel kZ in equation (4) is 
ompletely positive de�nitein the sense of [14℄. Consequently, we may apply Theorem 3.2.3 of [14℄, whi
h isa lovely extension of Kolmogorov's representation theorem for positive de�nitekernels, to �nd an N -B(E) W ∗-
orresponden
e F and a fun
tion ι from Ω∗ to
F su
h that F is spanned by Nι(Ω∗)B(E) and su
h that for every η1 and η2 in
Ω∗ and every a ∈ N ,

(id−Ad(Z(η∗1), Z(η∗2))) ◦ (id− θη1,η2
)−1(a) = 〈ι(η1), aι(η2)〉.It follows that for every b ∈ N and every η1, η2 in Ω∗,

b− Z(η∗1)bZ(η∗2)∗ = 〈ι(η1), bι(η2)〉 − 〈ι(η1), 〈η1, bη2〉ι(η2)〉

= 〈ι(η1), bι(η2)〉 − 〈η1 ⊗ ι(η1), bη2 ⊗ ι(η2)〉.Thus,
b+ 〈η1 ⊗ ι(η1), bη2 ⊗ ι(η2)〉 = 〈ι(η1), bι(η2)〉 + Z(η∗1)bZ(η∗2)∗. (7)
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378 Paul S. Muhly and Baruch SolelSet
G1 := span{bZ(η∗)∗q2T ⊕ bι(η)q2T | b ∈ N, η ∈ Ω∗, T ∈ B(E) }and
G2 := span{bq2T ⊕ (bη ⊗ ι(η)q2T ) | b ∈ N, η ∈ Ω∗, T ∈ B(E) }.Then G1 is a sub N -B(E) W ∗-
orresponden
e of B(E) ⊕ F (where we usethe assumption that q2Z(η∗) = q2Z(η∗)q1) and G2 is a sub N -B(E) W ∗-
orresponden
e of B(E)⊕(Eσ⊗NF ) . (The 
losure in the de�nitions ofG1, G2 isin the σ-topology of [6℄. It then follows that G1 and G2 areW ∗-
orresponden
es[6, Consequen
es 1.8 (i)℄). De�ne v : G1 → G2 by the equation

v(bZ(η∗)∗q2T ⊕ bι(η)q2T ) = bq2T ⊕ (bη ⊗ ι(η)q2T ).It follows from (7) that v is an isometry. It is also 
lear that it is a bimodulemap. We write Pi for the orthogonal proje
tion onto Gi, i = 1, 2 and Ṽ for themap
Ṽ := P2vP1 : q1B(E) ⊕ F → q2B(E) ⊕ (Eσ ⊗N F ).Then Ṽ is a partial isometry and, sin
e P1, v and P2 are all bimodule maps(see Lemma 2.19), so is Ṽ . We write Ṽ matri
ially:

Ṽ =

(
α β
γ δ

)
,where α : q1B(E) → q2B(E), β : F → q2B(E), γ : q1B(E) → Eσ ⊗ F and

δ : F → Eσ ⊗ F and all these maps are bimodule maps. Let H0 be theHilbert spa
e F ⊗B(E) E and note that B(E) ⊗B(E) E is isomorphi
 to E (andthe isomorphism preserves the left N -a
tion). Tensoring on the right by E (over
B(E)) we obtain a partial isometry

V0 :=

(
A0 B0

C0 D0

)
:

(
E1

H0

)
→

(
E2

Eσ ⊗H0

)
.Here A0 = α ⊗ IE , B0 = β ⊗ IE , C0 = γ ⊗ IE and D0 = δ ⊗ IE . These mapsare well de�ned be
ause the maps α, β, γ and δ are right B(E)-module maps.Sin
e these maps are also left N -module maps, so are A0, B0, C0 and D0.By the de�nition of V0, its initial spa
e is G1 ⊗ E and its �nal spa
e is G2 ⊗ E .In fa
t, V0 indu
es an equivalen
e of the representations of N on G1 ⊗ E andon G2 ⊗ E .It will be 
onvenient to use the notationK1 �N K2 if the Hilbert spa
esK1 and

K2 are both leftN -modules and the representation ofN onK1 is equivalent to asubrepresentation of the representation of N onK2. This means, of 
ourse, thatthere is an isometry from K1 into K2 that intertwines the two representations.If the two representations are equivalent we write K1 ≃N K2.
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Schur Class Operator Functions . . . 379Using this notation, we 
an write G1⊗E ≃N G2⊗E . Form M2 := (E2⊕ (Eσ ⊗
H0)) ⊖ (G2 ⊗ E), whi
h is a left N -module, and note that L := F(Eσ) ⊗M2also is a left N -module, where the representation of N on L is the indu
edrepresentation. Sin
e L = F(Eσ)⊗M2 =

⊕∞
n=0((E

σ)⊗n⊗(M2)), it is evidentthat (Eσ ⊗L)⊕M2 ≃N L. Indeed, the isomorphisms are just the natural onesthat give the asso
iativity of the tensor produ
ts involved. Thus, E2 ⊕ (Eσ ⊗
(H0⊕L)) = E2⊕(Eσ⊗H0)⊕(Eσ⊗L) = G2⊗E⊕M2⊕E

σ⊗L ≃N G2⊗E⊕L ≃N

G1 ⊗E ⊕L �N E1 ⊕ (H0 ⊕L). Consequently, we obtain a 
oisometri
 operator
V : E1 ⊕ (H0 ⊕ L) → E2 ⊕ Eσ ⊗ (H0 ⊕ L) that intertwines the representationsof N and extends V0. Note that, if V0 were known to be an isometry (so that
G2 ⊗ E ≃N G1 ⊗ E = E1 ⊕H0 ), then we would have equivalen
e above and V
an be 
hosen to be unitary.Assume that E is full. We also write M1 for (E1 ⊕H0) ⊖G1 ⊗ E . Sin
e E isfull, the representation ρ of N on Eσ⊗E is faithful (Lemma 2.20) and it followsthat every representation of N is quasiequivalent to a subrepresentation of ρ.Write E∞ for the dire
t sum of in�nitely many 
opies of E . Then Eσ⊗E∞ is thedire
t sum of in�nitely many 
opies of Eσ⊗E and, thus, every representation of
N is equivalent to a subrepresentation of the representation of N on Eσ ⊗E∞.In parti
ular, we 
an write M1 ⊕ E∞ �N Eσ ⊗ E∞. Thus E1 ⊕ (H0 ⊕ E∞) =
(G1⊗E)⊕M1⊕E∞ �N E2⊕ (Eσ ⊗H0)⊕ (Eσ ⊗E∞) = E2⊕ (Eσ ⊗ (H0⊕E∞)).So, repla
ing H0 by H0 ⊕E∞, we 
an repla
e V0 by an isometry and, using theargument just presented, we 
on
lude that the resulting V is a unitary operatorintertwining the representations of N and extending V0.So we let V be the 
oisometry just 
onstru
ted (and treat it as unitary when
E is full). Writing H := H0 ⊕ L, we 
an express V in the matri
ial form as inpart (iii) of the statement of the theorem. Conditions (i) and (ii) then followfrom the fa
t that V intertwines the indi
ated representations of N . It is leftto prove (iv).Setting b = T = I in the de�nition of v above and writing v in a matri
ial formwe see that (

α β
γ δ

)(
Z(η∗)∗q2
ι(η)q2

)
=

(
q2

η ⊗ ι(η)q2

)
.Tensoring by IE on the right and identifying B(E)⊗B(E) E with E as above, we�nd that (

A0 B0

C0 D0

)(
Z(η∗)∗g
ι(η) ⊗ g

)
=

(
g

η ⊗ (ι(η) ⊗ g)

)
,for g ∈ E2. Sin
e A,B,C and D extend A0, B0, C0 and D0 respe
tively, we
an drop the subs
ript 0. We also use the fa
t that the matrix we obtain is a
oisometry, and thus its adjoint equals its inverse on its range. We 
on
ludethat (

A∗ C∗

B∗ D∗

)(
g

η ⊗ (ι(η) ⊗ g)

)
=

(
Z(η∗)∗g
ι(η) ⊗ g

)
. (8)Thus ι(η) ⊗ g = B∗g +D∗(η ⊗ (ι(η) ⊗ g)) = B∗g +D∗Lη(ι(η) ⊗ g) and

ι(η) ⊗ g = (I −D∗Lη)−1B∗g.
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380 Paul S. Muhly and Baruch SolelCombining this equality with the other equation that we get from (8), we have
Z(η∗)∗g = A∗g + C∗Lη(I −D∗Lη)−1B∗g , g ∈ E .Taking adjoints yields (iv). �Thus, Theorem 3.3 asserts that every S
hur 
lass fun
tion determines a systemmatrix whose transfer fun
tion represents the fun
tion. The system matrix isnot unique in general, but as the proof of Theorem 3.3 shows, it arises througha series of natural 
hoi
es. Of 
ourse, equation (6) suggests that every S
hur
lass fun
tion represents an element in H∞(E). This is indeed the 
ase, as thefollowing 
onverse shows.

Theorem 3.6 Let E be a W ∗-
orresponden
e over a W ∗-algebra M , and let
σ be a faithful normal representation of M on a Hilbert spa
e E. If V =(
A B
C D

) is a system matrix determined by a normal representation τ of
N := σ(M)′ on a Hilbert spa
e H, then there is an X ∈ H∞(E), ‖X‖ ≤ 1,su
h that

X̂(η∗) = A+B(I − L∗
ηD)−1L∗

ηC,for all η∗ ∈ D(Eσ)∗ and, 
onversely, every X ∈ H∞(E), ‖X‖ ≤ 1, may berepresented in this fashion for a suitable system matrix V =

(
A B
C D

).
Proof. For every n ≥ 0 we de�ne an operator Kn from E to (Eσ)⊗n ⊗ E asfollows. For n = 0, we set K0 = A - an operator in B(E). For n = 1, we de�ne
K1, mapping E to Eσ ⊗E , to be (I1 ⊗B)C, where for all k ≥ 1, Ik denotes theidentity operator on (Eσ)⊗k. For n ≥ 2, we set

Kn := (In ⊗B)(In−1 ⊗D) · · · (I1 ⊗D)C.Note, �rst, that it follows from the properties of A,B,C and D that, for every
n ≥ 0 and every a ∈ N , Kna = (ϕn(a) ⊗ IE)Kn where ϕn de�nes the leftmultipli
ation on (Eσ)⊗n. Thus, writing ι for the identity representation of Non E , Kn lies in the ι-dual of (Eσ)⊗n whi
h, by Theorem 3.6 and Lemma 3.7of [31℄, is isomorphi
 to E⊗n. Hen
e, for every n ≥ 0, Kn de�nes a uniqueelement ξn in E⊗n.For every n ≥ 0 and η ∈ Eσ we shall write Ln(η) for the operator from
(Eσ)⊗n ⊗ E to (Eσ)⊗(n+1) ⊗ E given by tensoring on the left by η. Alsonote that, for k ≥ 1 and n ≥ 0, Ik ⊗ Kn is an operator from (Eσ)⊗k ⊗ Eto (Eσ)⊗(k+n) ⊗ E . With this notation, it is easy to see that, for all k ≥ 1 and
n ≥ 0,

(Ik+1 ⊗Kn)Lk(η) = Lk+n(η)(Ik ⊗Kn). (9)Note, too, that we 
an write
F(Eσ) ⊗ E = E ⊕ (Eσ ⊗ E) ⊕ · · · ⊕ ((Eσ)⊗m ⊗ E) ⊕ · · ·
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Schur Class Operator Functions . . . 381and every operator on F(Eσ)⊗E 
an be written in a matri
ial form with respe
tto this de
omposition (with indi
es starting at 0). For every m, 0 ≤ m ≤ ∞,we let Sm be the operator de�ned by the matrix whose i, j entry is Ij ⊗Ki−j ,if 0 ≤ j ≤ i ≤ m, and is 0 otherwise. (For m = ∞, it is not 
lear yet that thematrix so 
onstru
ted represents a bounded operator, but this will be veri�edlater).So far we have not used the assumption that V is a 
oisometry. But if we takethis into a

ount, form the produ
t V V ∗, and set it equal to IE⊕(Eσ⊗H), we�nd that
IE −AA∗ = BB∗ (10)

CC∗ = IEσ⊗τ H −DD∗ (11)
AC∗ = −BD∗ (12)We 
laim that, for 1 ≤ j ≤ i ≤ m, the following equations hold,

(I − SmS
∗
m)i,j = (Ii ⊗B)(Ii−1 ⊗D) · · ·DD∗ · · · (Ij−1 ⊗D∗)(Ij ⊗B∗); (13)that for 0 < i ≤ m,

(I − SmS
∗
m)i,0 = (Ii ⊗B)(Ii−1 ⊗D) · · ·DB∗, (14)and that for i = j = 0,

(I − SmS
∗
m)0,0 = BB∗. (15)Equation (15) follows immediately from (10) sin
e (Sm)0,0 = A. For 0 < i ≤ mwe 
ompute (I − SmS

∗
m)i,0 = −(Sm)i,0(Sm)∗0,0 = −(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗

D)CA∗ = (Ii ⊗ B)(Ii−1 ⊗ D) · · · (I1 ⊗ D)DB∗ where, in the last equality weused (12). It is left to prove (13). Let us write Ri,j for the left hand side of(13). (For j = 0 < i we have Ri,0 = (Ii ⊗ B)(Ii−1 ⊗ D) · · ·DB∗ and whenboth are 0, R0,0 = BB∗). We have K0K
∗
0 = AA∗ = I − BB∗ = I − R0,0R

∗
0,0.For 0 = j < i ≤ m we have KiK

∗
0 = (Ii ⊗ B)(Ii−1 ⊗ D) · · · (I1 ⊗ D)CA∗ =

−(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗D)DB∗ = −Ri,0 and for 0 < j ≤ i ≤ m, KiK
∗
j =

(Ii ⊗B)(Ii−1 ⊗D) · · · (I1 ⊗D)CC∗(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = (Ii ⊗
B)(Ii−1 ⊗D) · · · (I1 ⊗D)(I −DD∗)(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = (Ii ⊗
B)(Ii−1 ⊗D) · · · (I1 ⊗D)(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) − (Ii ⊗B)(Ii−1 ⊗
D) · · · (I1 ⊗D)DD∗(I1 ⊗D∗) · · · (Ij−1 ⊗D∗)(Ij ⊗B∗) = I1 ⊗Ri−1,j−1 −Ri,j .We have
(SmS

∗
m)i,j =

j∑

k=0

(Sm)i,k(Sm)j,k =

j∑

k=0

Ik ⊗Ki−kK
∗
j−k =

j∑

l=0

Ij−l ⊗Ki−j+lK
∗
l .Using the 
omputation above, we get, for i = j ≤ m,

(SmS
∗
m)i,i = Ii ⊗ (I−R0,0R

∗
0,0)+

i∑

l=1

(Ii−l+1 ⊗Rl−1,l−1− Ii−l ⊗Rl,l) = I−Ri,i
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382 Paul S. Muhly and Baruch Soleland, for j < i ≤ m,
(SmS

∗
m)i,j = −Ij⊗Ri−j,0+

j∑

l=1

(Ij−l+1⊗Ri−j+l−1,l−1−Ij−l⊗Ri−j+l,l) = −Ri,j .This 
ompletes the proof of the 
laim. If we let R be the operator whose matrixis (Ri,j) (letting Ri,j = 0 if i or j is larger than m) then we get R = I−SmS
∗
m.But it is easy to verify that R is a positive operator and, thus, ‖Sm‖ ≤ 1. Thisholds for everym and, therefore, we 
an �nd a weak limit point of the sequen
e

{Sm}. But this limit point it 
learly equal to S∞, showing that S∞ is indeeda bounded operator, with norm at most 1.Re
all that the indu
ed representation of H∞(E) on F(E) ⊗σ E is the repre-sentation that maps X ∈ H∞(E) to σF(E)(X) := X ⊗ IE . The representationis faithful and is a homeomorphism with respe
t to the ultraweak topologies.Its image is the ultraweakly 
losed subalgebra of B(F(E) ⊗ E) generated bythe operators Tξ ⊗ IE and ϕ∞(a) ⊗ IE for ξ ∈ E and a ∈ M . Similarly onede�nes the indu
ed representation ιF(Eσ) of H∞(Eσ) on F(Eσ) ⊗ E and itsimage is generated by the operators Tη ⊗ I and ϕ∞(b) ⊗ I for η ∈ Eσ and
b ∈ N . Re
all also, from [31, Theorem 3.9℄, that there is a unitary operator
U : F(Eσ) ⊗ E → F(E) ⊗ E su
h that

(ιF(Eσ)(H∞(Eσ)))′ = U∗σF(E)(H∞(E))U.That is, U gives an expli
it representation of H∞(Eσ) as the 
ommutant ofthe indu
ed algebra σF(E)(H∞(E)). Thus, to show that S∞ = U∗(X ⊗ I)Ufor an X ∈ H∞(E), we need only show that S∞ lies in the 
ommutant of
ιF(Eσ)(H∞(Eσ)). And for this, we only have to show that it 
ommutes withthe operators ϕ∞(b) ⊗ I, b ∈ N , and Tη ⊗ I, η ∈ Eσ. Note that, matri
ially,
ϕ∞(b)⊗ I is a diagonal operator whose i, i entry is ϕi(b). For S∞ to 
ommutewith it we should have, for all j ≤ i,

(Ij ⊗Ki−j)(ϕj(b) ⊗ I) = (ϕi(b) ⊗ I)(Ij ⊗Ki−j).This equality is obvious for j > 0. For j = 0 it amounts to the equality
Kib = (ϕi(b) ⊗ IE)Kiand, this, as was mentioned above, follows immediately from the propertiesof A,B,C and D. To show that S∞ 
ommutes with every Tη ⊗ I, η ∈ Eσ,note that, matri
ially, the i, j entry of Tη ⊗ I vanishes unless i = j + 1 and,in this 
ase the entry is Lj(η). Equation (9) then ensures that S∞ and Tη ⊗ I
ommute.Thus, by [31, Theorem 3.9℄, there is an element X ∈ H∞(E) su
h that S∞ =

U∗(X ⊗ I)U (= U∗σF(E)(X)U). Sin
e S∞ has norm at most one, so does X .It remains to show that X is given by the transfer fun
tion built from V . Tothis end, �x ξ ∈ E and re
all that ξ de�nes a map W (ξ) : E → Eσ ⊗ E
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Schur Class Operator Functions . . . 383via the formula W (ξ)∗(η ⊗ h) = L∗
ξη(h), η ⊗ h ∈ Eσ ⊗ E (See [31, Theorem3.6℄.), and that W maps E onto the ι-dual of Eσ. The desired propertiesfollow easily from the de�nition of W . For every k ≥ 0, Ik ⊗W (ξ)∗ is a mapfrom (Eσ)⊗k+1 ⊗ E into (Eσ)⊗k ⊗ E . An easy 
omputation shows that it isequal to the restri
tion of U∗(T ∗

ξ ⊗ IE )U to (Eσ)⊗k+1 ⊗ E . (Re
all from [31,Lemma 3.8℄ that the restri
tion of U to (Eσ)⊗k+1⊗E is de�ned by the equation
U(η1 ⊗ · · · ⊗ ηk+1 ⊗ h) = (Ik ⊗ η1) · · · (I1 ⊗ ηk)ηk+1(h).)It then follows that the i, j entry of the matrix asso
iated with U∗(Tξ ⊗ IE )Uvanishes unless i = j + 1 and

(U∗(Tξ ⊗ IE)U)j+1,j = Ij ⊗W (ξ).Similarly one 
an show that, for ξ ∈ E⊗k, the i, j entry of the matrix asso
iatedwith U∗(Tξ ⊗ IE)U vanishes unless i = j + k and
(U∗(Tξ ⊗ IE)U)j+k,j = Ij ⊗W (ξ).In the last equation, W (ξ), ξ ∈ E⊗k, is a map from E to (Eσ)⊗k ⊗ E .Re
all that we de�ned ξn to be the ve
tors in E⊗n with W (ξn) = Kn. Thuswe see that the nth lower diagonal in the matri
ial form of S∞ is the matri
ialform of U∗(Tξn ⊗ IE )U .Re
all from the dis
ussion at the end of Se
tion 2 in [31℄ that S∞ is the ultra-weak limit of the sequen
e Σk where

Σk =

k−1∑

j=0

(1 −
j

k
)U∗(Tξj ⊗ I)U.Hen
e X is the ultraweak limit of Xk where

Xk =

k−1∑

j=0

(1 −
j

k
)Tξjand, for η ∈ Eσ, X̂(η∗) is the ultraweak limit of X̂k(η∗) =

∑k−1
j=0 (1− j

k )T̂ξj (η
∗).Fix η ∈ Eσ and k ≥ 1. Then it is easy to 
he
k that, in the notation of thetheorem, L∗

η(Ik ⊗ B) = (Ik−1 ⊗ B)L∗
η and L∗

η(Ik ⊗D) = (Ik−1 ⊗D)L∗
η, all asoperators on (Eσ)⊗k ⊗H . It then follows that for n ≥ 1,

(L∗
η)nW (ξn) = (L∗

η)nKn = B(L∗
ηD)n−1L∗

ηCand
A+B(I − L∗

ηD)−1L∗
ηC = A+

∞∑

n=1

B(L∗
ηD)n−1L∗

ηC =

∞∑

n=0

(L∗
η)nW (ξn).(Note that the last series 
onverges in norm). It follows from [31, Proposition5.1℄ that T̂ξn(η∗) = (L∗

η)nW (ξn) and, thus, we �nally 
on
lude that X̂(η∗) =
A+B(I − L∗

ηD)−1L∗
ηC.The `
onverse' portion of the Theorem is immediate from Theorems 3.2 and3.3. �
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384 Paul S. Muhly and Baruch Solel

Corollary 3.7 Every S
hur 
lass operator fun
tion de�ned on a subset Ω∗of D(Eσ)∗ with values in some B(E) 
an be extended to a S
hur 
lass operatorfun
tion de�ned on all of D(Eσ)∗.
Proof. Let Z be a S
hur 
lass fun
tion on Ω∗ and apply Theorem 3.3 torepresent Z as the restri
tion to Ω∗ of a transfer fun
tion. The result thenfollows from the evident 
ombination of Theorems 3.6 and 3.2. �Re
all that every element X in H∞(E) with ‖X‖ ≤ 1 de�nes a S
hur 
lassoperator fun
tion by evaluation at η∗ for η ∈ D(Eσ) (where σ is a suitablepres
ribed faithful normal representation ofM) . We usually suppress referen
eto σ and write X̂ for this S
hur 
lass operator fun
tion. In general, however,the map X → X̂ is not one-to-one, and whether it is or not depends on the
hoi
e of σ. Indeed, in the parti
ular 
ase when M = C and E = Cn, so
H∞(E) is Ln, and when σ is the identity representation of C, Davidson andPitts showed that the kernel of the map X 7→ X̂ is pre
isely the 
ommutatorideal in Ln [17℄. We shall show in the next lemma that given E, if σ is 
hosen tobe faithful and have in�nite uniform multipli
ity, meaning that σ is an in�nitemultiple of another faithful normal representation of M , then the map X 7→ X̂will be one-to-one. It will be 
onvenient to write K(σ) for the kernel of themap determined by σ, so that

K(σ) = {X ∈ H∞(E) : X̂(η∗) = 0, η ∈ D(Eσ)} (16)
= {X ∈ H∞(E) : σ × η∗(X) = 0, η ∈ D(Eσ)}.

Lemma 3.8 If σ is a faithful normal representation of M on a Hilbert spa
e Hof in�nite multipli
ity, then K(σ) = 0. Moreover, if {Xβ} is a bounded net in
H∞(E) and if there is an element X ∈ H∞(E) su
h that for every η ∈ D(Eσ),
X̂β(η∗) → X̂(η∗) in the weak operator topology, then Xβ → X ultraweakly.
Proof. It follows from the stru
ture of isomorphisms of von Neumannalgebras that any two in�nite multiples of faithful representations of a vonNeumann algebra are unitarily equivalent. It follows, therefore, that to provethe lemma, we 
an pi
k a spe
ial representation with this property that is
onvenient for our purposes. So let π be the representation ofM on F(E)⊗σHde�ned by π = ϕ∞ ⊗ IH . We shall see that K(π) = {0}. For ξ ∈ E let V (ξ) =
Tξ ⊗ IH . Then (V, π) is a representation of E on F(E) ⊗σ H . The integratedform of this representation is the indu
ed representation πF(E) restri
ted to
H∞(E). It is a faithful representation of H∞(E). For 0 ≤ r ≤ 1, (rV, π) isalso a representation of E. It follows from [31, Lemma 7.11℄ that, for every
X ∈ H∞(E), the limit in the strong operator topology of (π × rV )(X), as
r → 1, is (π × V )(X). Thus, for X 6= 0 in H∞(E), there is an r, 0 ≤ r < 1,su
h that (π × rV )(X) 6= 0. Sin
e for su
h r the inequality ‖rV ‖ < 1 holds,and we 
on
lude that K(π) = {0}.For the se
ond assertion of the lemma, suppose a bounded net {Xβ} in H∞(E)has the property that for every η ∈ D(Eπ), X̂β(η∗) → 0. Sin
e the net is
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Schur Class Operator Functions . . . 385bounded, it has a ultraweak limit point X0 in H∞(E). Sin
e �evaluation at
η∗� is the same as applying a ultraweakly 
ontinuous representation, we seethat X̂β(η∗) → X̂0(η

∗) for every η ∈ D(Eπ). But then, X̂0(η
∗) = 0 for every

η ∈ D(Eπ) and, 
onsequently, X0 = 0 by the �rst assertion of the lemma. �With this lemma in hand, we summarize the results of this se
tion for futurereferen
e in the following 
orollary.
Corollary 3.9 Let E be a W ∗-
orresponden
e over the W ∗-algebra M , let
σ be a faithful normal representation of M on the Hilbert spa
e E and assumethat σ has in�nite multipli
ity. Then the map X → X̂ is a bije
tion from the
losed unit ball of H∞(E) onto the spa
e of S
hur 
lass B(E)-valued fun
tionson D(Eσ)∗. Further, for ea
h X in the 
losed unit ball of H∞(E), X̂ is thetransfer fun
tion asso
iated with a system matrix V =

(
A B
C D

) de�ned interms of a suitable auxiliary normal representation τ of σ(M)′ on a Hilbertspa
e H, and 
onversely, ea
h su
h transfer fun
tion on D(Eσ)∗,
η∗ → A+B(I − L∗

ηD)−1L∗
ηC,is of the form X̂ for a uniquely determined X ∈ H∞(E): X̂(η∗) = A+B(I −

L∗
ηD)−1L∗

ηC for all η ∈ D(Eσ).
Proof. The proof is just the evident 
ombination of Lemma 3.8 and Theo-rems 3.2, 3.3, and 3.6. �

Remark 3.10 One may well wonder why not stipulate at the outset that all
σ's have uniform in�nite multipli
ity. It turns out that in many interesting ex-amples, su
h as those 
oming from graphs, whi
h we dis
uss in the last se
tion,the prin
ipal σ's one wants to 
onsider fail to have this property.
4 Applications to automorphisms of the Hardy algebraIn this se
tion we apply the analysis of S
hur 
lass fun
tions to study au-tomorphisms of H∞(E). Our �rst goal is to show that under very generalassumptions, the automorphisms are obtained by 
omposition with (
ertain)biholomorphi
 automorphisms of the open unit ball of the dual 
orresponden
e.For the 
ase were E = Cn , so that H∞(E) is the algebra Ln studied by David-son and Pitts and by Popes
u, this was shown for the dual 
orresponden
easso
iated with the one dimensional representation σ of C by Davidson andPitts in [17℄.Throughout this se
tion we will fo
us on automorphisms α of H∞(E) that are
ompletely isometri
 and w∗-homeomorphisms. Also, we shall usually assumethat the restri
tion of α to ϕ∞(M) is the identity.It is known that, in various settings, one 
an assume mu
h less. In [17℄, theauthors begin by assuming that α is simply an algebrai
 automorphism but,to get the one-to-one 
orresponden
e with automorphisms of the unit ball of
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386 Paul S. Muhly and Baruch Solelthe dual, they need to impose also the assumption that the automorphism is
ontra
tive. It then follows from their results that it is, in fa
t, 
ompletelyisometri
 and a w∗-homeomorphism. In [22℄, Katsoulis and Kribs show thatin the setting when E is determined by a dire
ted graph, G say, so H∞(E)is the algebra they denote by LG, an algebrai
 automorphism is always norm-
ontinuous and w∗-
ontinuous.As for the assumption that the restri
tion of α to ϕ∞(M) is the identity, weshall see that for many purposes this is no signi�
ant restri
tion. However,in some situations, it 
an be a signi�
ant te
hni
al heada
he to sort out whathappens if we don't impose the assumption. We will 
omment on this further,as we pro
eed. (See, in parti
ular, Remark 4.10).So, for the remainder of this se
tion, unless spe
i�ed otherwise, E will be a �xed
W ∗-
orresponden
e over a W ∗-algebraM and α will be a �xed automorphismof H∞(E) that is 
ompletely isometri
, w∗-homeomorphi
 and �xes ϕ∞(M)element-wise. Also, σ will be a faithful normal ∗-representation of M on aHilbert spa
e H .We think about elements of H∞(E) as fun
tions on D(Eσ)∗ via the fun
tionalrepresentation developed in the pre
eding se
tion and we want to study thetransposed a
tion of α on D(Eσ)∗. For every η ∈ D(Eσ), let τ(η) : H → E⊗σHbe de�ned by the equation

τ(η)∗(ξ ⊗ h) = α̂(Tξ)(η
∗)h (= (σ × η∗)(α(Tξ))h ), (17)

ξ⊗h ∈ E⊗σH . (Observe that if α is the identity automorphism ofH∞(E), thenthis equation implies that τ is the identity map, as it should.) The next lemmashows that τ(η) is well de�ned and is an element in the 
losed unit ball of Eσ.Thus τ is a map from D(Eσ) into D(Eσ). What we would really like to show,however, is that τ 
arries D(Eσ) into D(Eσ), not the 
losure. At this stage,we 
an only arrange for this under spe
ial 
ir
umstan
es: Theorem 4.7 below.The restri
tion on 
ir
umstan
es, however, is not so limiting as to eliminatemany interesting examples. We also want to show that τ is holomorphi
 on
D(Eσ) in the usual sense of in�nite dimensional holomorphy [21℄.
Lemma 4.1 For ea
h η ∈ D(Eσ), τ(η) is well de�ned and lies in the 
losedunit ball of Eσ.
Proof. For ξ ∈ E, let S(ξ) := (σ × η∗)(α(Tξ)). For every a, b ∈ M ,
S(aξb) = (σ×η∗)(α(Taξb)) = (σ×η∗)(α(ϕ∞(a)Tξϕ∞(b))) = (σ◦α)(ϕ∞(a))(σ×
η∗)(α(Tξ))(σ ◦ α)(ϕ∞(b)). By our assumption, σ ◦ α ◦ϕ∞ = σ ◦ ϕ∞ and, thus,
(S, σ) is a 
ovariant pair. Also, S is a 
ompletely 
ontra
tive map of E into
B(H) as a 
omposition of three 
ompletely 
ontra
tive maps. Thus S̃∗ = τ(η)lies in the 
losed unit ball of Eσ. �To determine 
ir
umstan
es under whi
h τ maps D(Eσ) into D(Eσ), we �x
η ∈ D(Eσ) and determine 
ir
umstan
es under whi
h τ(zη) ∈ D(Eσ), for every
z ∈ D := {z ∈ C | |z| < 1}. This will prove that τ maps D(Eσ) into itself.
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Schur Class Operator Functions . . . 387So for z ∈ D, we de�ne
F (z) := τ(z̄η)∗. (18)Thus, F (z)(ξ ⊗ h) = (σ × zη∗)(α(Tξ))h for ξ ∈ E and h ∈ H .

Lemma 4.2 F is an analyti
 fun
tion from D into B(E ⊗H,H).
Proof. Fix ξ ⊗ h ∈ E ⊗ H with ‖ξ‖ ≤ 1 and k ∈ H , and 
onsider theexpression

〈F (z)(ξ ⊗ h), k〉 = 〈α̂(Tξ)(zη
∗)h, k〉.Sin
e α(Tξ) ∈ H∞(E) and ‖α(Tξ)‖ ≤ 1, we know from Theorem 3.6 that we
an write α̂(Tξ)(zη

∗) = A + B(I − zL∗
ηD)−1zL∗

ηC for some system matrix.Thus
α̂(Tξ)(zη

∗) = A+ zBL∗
ηC +

∞∑

k=2

zkB(L∗
η)k−1L∗

ηC.Hen
e, for every ξ ⊗ h ∈ E ⊗H (even when ‖ξ‖ > 1) and k ∈ H , the fun
tion
z 7→ 〈F (z)(ξ⊗h), k〉 is analyti
. Sin
e ‖F (z)‖ ≤ 1 by Lemma 4.1, |〈F (z)g, k〉| ≤
‖g‖‖k‖ for every g ∈ E ⊗H and k ∈ H and it follows that, for ea
h su
h g, k,the fun
tion fg,k(z) := 〈F (z)g, k〉 is analyti
 in D and |fg,k(z)| ≤ ‖g‖‖k‖. We
an then write fg,k as a 
onvergent power series fg,k(z) =

∑∞
k=0 an(g, k)znand, for every n ≥ 0, |an(g, k)| ≤ ‖g‖‖k‖. But then there are operators An ∈

B(E ⊗ H,H) with ‖An‖ ≤ 1 su
h that an(g, k) = 〈Ang, k〉 for g ∈ E ⊗ Hand k ∈ H . Hen
e F (z) =
∑∞

k=0 z
nAn where the sum 
onverges in the weakoperator topology. Sin
e |z| < 1 and the norms of {An} are bounded by 1, theseries 
onverges to F (z), for z ∈ D, in the norm topology. We 
on
lude that

F (z) is analyti
. �If we were dealing with s
alar-valued fun
tions, we would be able to assert that
|F (z)| < 1 for all z ∈ D, unless F is 
onstant, by the maximum modulus the-orem. Unfortunately, an unalloyed version of the maximum modulus theoremdoes not hold in our setting. This is what leads to the spe
ial hypotheseson τ in Theorem 4.7. The next few results, then, whi
h lead up to Theorem4.7 
ome out of our e�orts to �nd a servi
eable repla
ement for the maximummodulus theorem. Our �rst theorem in this dire
tion, Theorem 4.4, is 
loselyrelated to [36, Proposition V.2.1℄. It does not seem to follow dire
tly from thisresult, however. Instead, we appeal to the following lemma, whi
h in turn isan immediate appli
ation of an operator form of the 
lassi
al Pi
k 
riterionfor interpolating operators at pre-assigned points by operator-valued analyti
fun
tions. As su
h, it may be tra
ed ba
k to Sz.-Nagy and Koranyi's in�uentialpaper [37℄. It also is a 
onsequen
e of Theorem 6.2 in [31℄, where it is presentedas a 
orollary of our Nevanlinna-Pi
k Theorem.
Lemma 4.3 If K,H are Hilbert spa
es and if F : D → B(K,H) is an analyti
fun
tion satisfying ‖F (z)‖ ≤ 1 for all z ∈ D, then, for every z1, z2 ∈ D, thematrix (

IH−F (z1)F (z1)
∗

1−|z1|2
IH−F (z1)F (z2)

∗

1−z1z̄2

IH−F (z2)F (z1)
∗

1−z2z̄1

IH−F (z2)F (z2)
∗

1−|z2|2

)
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388 Paul S. Muhly and Baruch Solelis positive. In parti
ular (setting z1 = z and z2 = 0), for every z ∈ D,
(

IH−F (z)F (z)∗

1−|z|2 IH − F (z)F (0)∗

IH − F (0)F (z)∗ IH − F (0)F (0)∗

)
≥ 0. (19)

Theorem 4.4 Suppose H and K are Hilbert spa
es and suppose F : D →
B(K,H) is an analyti
 fun
tion that satis�es the following 
onditions:(1) ‖F (z)‖ ≤ 1 for all z ∈ D.(2) There are proje
tions P1, P2 in B(H) that sum to IH and proje
tions

Q1, Q2 in B(K) that sum to IK and satisfy:(i) P1F (0)Q2 = 0 and P2F (0)Q1 = 0.(ii) P1F (0)F (0)∗P1 = P1.(iii) P2F (0)F (0)∗P2 ≤ rP2 for some 0 < r < 1.Then, for every z ∈ D,(1) P1F (z)Q2 = 0.(2) P1F (z)Q1 = P1F (0)Q1.(3) There is a fun
tion q0(z) on D, su
h that 0 < q0(z) < 1 for all z ∈ D,and su
h that P2F (z)F (z)∗P2 ≤ q0(z)P2.
Proof. It will be 
onvenient to use the proje
tions P1, P2 and Q1, Q2 towrite F (z) matri
ially as

F (z) =

(
A(z) B(z)
C(z) D(z)

)so that, by assumption,
F (0) =

(
A(0) 0

0 D(0)

)where A(0)A(0)∗ = P1 and D(0)D(0)∗ ≤ rP2.Sin
e F satis�es the 
onditions of Lemma 4.3, Equation 19 holds for all z ∈ D.Compressing ea
h entry of the matrix in (19) to the range of P1 and using thefa
t that A(0)A(0)∗ = P1 and that P1F (0)Q2 = 0, we get
(

P1−P1F (z)F (z)∗P1

1−|z|2 P1 − P1F (z)Q1A(0)∗

P1 −A(0)Q1F (z)∗P1 0

)
≥ 0. (20)It follows that P1 = P1F (z)Q1A(0)∗. Thus 0 ≤ (P1F (z)Q1 −

A(0))(Q1F (z)∗P1 − A(0)∗) = P1F (z)Q1F (z)∗P1 + A(0)A(0)∗ −
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Schur Class Operator Functions . . . 389
P1F (z)Q1A(0)∗ − A(0)Q1F (z)∗P1 ≤ 0. Consequently, A(0) = P1F (z)Q1(for every z ∈ D).But then P1F (z)Q1F (z)∗P1 = P1 and, sin
e P1F (z)F (z)∗P1 ≤
P1, P1F (z)Q2 = 0. This proves (1) and (2).Compress ea
h entry of (19) to the range of P2 to get

(
P2−P2F (z)F (z)∗P2

1−|z|2 P2 − P2F (z)Q2D(0)∗

P2 −D(0)Q2F (z)∗P2 P2 −D(0)D(0)∗

)
≥ 0. (21)Write ∆ for the positive square root of P2 − D(0)D(0)∗ and note that ∆ isinvertible as an operator on the range of P2. Equation (21) implies that

(P2 −D(0)D(z)∗)∆−2(P2 −D(z)D(0)∗) ≤ (
P2 − P2F (z)F (z)∗P2

1 − |z|2
).Sin
e D(0)D(z)∗ lies in B(P2(H)) and has norm stri
tly less than 1 (as

‖D(0)‖ < 1), P2 − D(0)D(z)∗ is invertible in B(P2(H)) and so, therefore, is
(P2−D(0)D(z)∗)∆−2(P2−D(z)D(0)∗). Hen
e, for ea
h z ∈ D there is a q(z) >
0, su
h that P2−P2F (z)F (z)∗P2

1−|z|2 ≥ (P2 − D(0)D(z)∗)∆−2(P2 − D(z)D(0)∗) ≥

q(z)P2. Thus,
P2 − P2F (z)F (z)∗P2 ≥ (1 − |z|2)q(z)P2,whi
h yields P2F (z)F (z)∗P2 ≤ (1 − q(z)(1 − |z|2))P2. So, if we set q0(z) =

(1 − q(z)(1 − |z|2)), we obtain a fun
tion with the desired properties. �We return to our analysis of the spe
ial fun
tion F : D → B(E⊗σH,H) de�nedin equation (18).
Lemma 4.5 The fun
tion F de�ned by equation (18) satis�es:(1) For every z ∈ D and a ∈ M , F (z)(ϕE(a) ⊗ IH) = σ(a)F (z) and

F (z)F (z)∗ 
ommutes with σ(M).(2) For every b ∈ σ(M)′, bF (0) = F (0)(IE ⊗ b) and F (0)F (0)∗ ∈ Z(σ(M)).
Proof. Sin
e F (z)∗ ∈ Eσ by Lemma 4.1, (1) holds. For (2), simply note that
bF (0)(ξ⊗h) = bα(Tξ)(0)h = α(Tξ)(0)bh = F (0)(ξ⊗ bh) = F (0)(IE ⊗ b)(ξ⊗h),where we used the fa
t that for every X ∈ H∞(E), X(0) ∈ σ(M). �

Definition 4.6 Let τ be the map de�ned by equation (17). We say that τ(0)splits if there are proje
tions P1, P2 in σ(M)′ su
h that(i) P1 + P2 = I,(ii) P1τ(0)∗τ(0)P1 = P1 and(iii) P2τ(0)∗τ(0)P2 ≤ rP2 for some r < 1.
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390 Paul S. Muhly and Baruch SolelNote that τ(0) = F (0)∗ so that, although F depends on a 
hoi
e of η ∈ D(Eσ),
F (0) does not. It follows from Lemma 4.5, therefore, that τ(0)∗τ(0) lies in the
enter of σ(M), Z(σ(M)) = σ(Z(M)).Note also that, if the 
enter of M , Z(M), is an atomi
 abelian von Neumannalgebra, then τ(0) always splits. This is the 
ase, in parti
ular, if M is a fa
toror if M = Cn. It is also the 
ase, therefore, when E is the 
orresponden
easso
iated with a (
ountable) dire
ted graph.When τ(0) splits we have the following.
Theorem 4.7 Assume that the left a
tion map of M on E, ϕE , is inje
tiveand that τ(0) splits. Then the map τ de�ned in equation (17)) maps D(Eσ)into itself and satis�es the following equation

(α̂(X))(η∗) = X̂(τ(η)∗),for every X ∈ H∞(E) and η ∈ D(Eσ).
Proof. Fix η ∈ D(Eσ) and let F be the map de�ned in (18). Sin
e τ(0) =
F (0)∗ splits, there are proje
tions P1, P2 as in De�nition 4.6. Using Lemma 4.5,we see that the 
onditions of Theorem 4.4 are satis�ed with K = E ⊗H and
Qi = IE ⊗ Pi, i = 1, 2. Thus,

P1F (z) = P1F (z)(IE ⊗ P1) = P1F (0)(IE ⊗ P1) = P1F (0)for all z ∈ D. Consequently, for all ξ ∈ E, P1(σ × zη∗)(α(Tξ)) = P1σ(α(Tξ)0)where, forX ∈ H∞(E), X0 is the image ofX under the 
onditional expe
tationonto ϕ∞(M). Sin
e the representation σ × zη∗ is w∗-
ontinuous and α issurje
tive, we have for all X ∈ H∞(E),
P1(σ × zη∗)(X) = P1σ(X0).In parti
ular, letting X = Tξ, we see that P1(σ × zη∗)(Tξ) = 0. Sin
e, for

h ∈ H , (σ × zη∗)(Tξ)h = P1η
∗(ξ ⊗ h) = 0 we have ηP1 = 0. (Re
all that

P1 ∈ σ(M)′ and, thus, ηP1 is well de�ned sin
e Eσ is a right module over
σ(M)′).Sin
e η is arbitrary in D(Eσ), EσP1 = 0. If P1 6= 0, it follows that Eσ is notfull and, using Lemma 2.20, the map ϕE is not inje
tive, 
ontradi
ting ourassumption. Thus P1 = 0 and it follows from Theorem 4.4 that ‖F (z)‖ < 1for every z. sin
e this holds for all η ∈ D(Eσ), the 
on
lusion of the theoremfollows. �Next we show that the map τ is holomorphi
 on D(Eσ). We view it as amap into B(H,E ⊗ H). To be holomorphi
 is the same as being Fre
het-di�erentiable. If we use [21, Theorem 3.17.1℄ and the fa
t, proved in Lemma 4.1,that τ is bounded, it su�
es to show that τ is (G)-di�erentiable in the sense of[21, De�nition 3.16.2℄. But if we apply [21, Theorem 3.16.1℄, this means thatwe have to show that for every η0, η ∈ D(Eσ), the fun
tion G(z) := τ(η0 + zη),
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Schur Class Operator Functions . . . 391de�ned on D(η, η0) := {z ∈ C||z| < (1−‖η0‖)/‖η‖} is holomorphi
 in the senseof [21, De�nition 3.10.1℄.Sin
e the set of all fun
tionals on B(H,E ⊗ H) that are w∗-
ontinuous is adetermining manifold for B(H,E ⊗ H) in the sense of [21, De�nition 2.8.2℄,it su�
es to show that for every w∗-
ontinuous fun
tional w, the map z 7→
w(τ(η0 + zη)) is holomorphi
 on D(η, η0). It is enough, in fa
t, to 
onsider allfun
tionals of the form T 7→ 〈Th, ξ ⊗ k〉 for h, k ∈ H and ξ in the unit ball of
E.So we �x η0, η ∈ Eσ, h, k ∈ H and ξ ∈ E with ‖ξ‖ < 1 and write f(z) =
〈τ(η0 + zη)h, ξ ⊗ k〉 for z ∈ D(η, η0). We have

f(z) = 〈h, τ(η0 + zη)∗(ξ ⊗ k)〉 = 〈h, α̂(Tξ)(η
∗
0 + z̄η∗)k〉.Note that by Theorem 3.6, we 
an write

α̂(Tξ)(η
∗
0 + zη∗) = A+

∞∑

m=1

B((L∗
η0

+ z̄L∗
η)D)m−1(L∗

η0
+ z̄L∗

η)Cwhere A,B,C,D are from some system matrix and the sum 
onverges in norm.Thus
f(z) = 〈A∗h, k〉 +

∞∑

m=1

〈C∗(Lη0
+ zLη)(D∗(Lη0

+ zLη))m−1B∗h, k〉and this fun
tion is 
learly holomorphi
.We 
an 
on
lude:
Corollary 4.8 The fun
tion τ is a holomorphi
 map from D(Eσ) to its 
lo-sure.
Theorem 4.9 Let E be a faithful W ∗-
orresponden
e over M , let α be anautomorphism of H∞(E) that is 
ompletely isometri
, is a w∗-homeomorphismand leaves ϕ∞(M) elementwise �xed, and let σ be a faithful representationof M . Write τ for the transpose of α de�ned in equation (17) and write θfor the map asso
iated similarly with α−1. If both τ(0) and θ(0) split (as inDe�nition 4.6) then τ is a biholomorphi
 map of the open unit ball of Eσ,
τ−1 = θ, and, for every X ∈ H∞(E),

(α̂(X))(η∗) = X̂(τ(η)∗) , η ∈ D(Eσ). (22)
Proof. We already know that, under the 
onditions of the theorem, both
τ and θ are holomorphi
 maps of the open unit ball. It follows from equation(17) that, for every ξ ∈ E, h ∈ H and η ∈ D(Eσ), α̂(Tξ)(η

∗) = τ(η)∗(ξ ⊗ h).But τ(η)∗(ξ ⊗ h) = T̂ξ(τ(η)
∗), so that equation (22) holds for Tξ. It also holdsfor ϕ∞(a), a ∈ M , sin
e α(ϕ∞(a)) = ϕ∞(a). Therefore it holds for every Xin a w∗-dense subalgebra of H∞(E). By the w∗-
ontinuity of α, equation (22)
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392 Paul S. Muhly and Baruch Solelholds for every X ∈ H∞(E). Sin
e a similar 
laim holds for α−1 and θ, we
on
lude that for all X ∈ H∞(E), X̂(η∗) = ̂α−1(α(X))(η∗) = α̂(X)(θ(η)∗) =

X̂(τ(θ(η))∗). Thus τ−1 = θ. �A biholomorphi
 map τ is said to implement α if equation (22) holds.
Remark 4.10 If α is implemented by τ in the sense of equation (22), then,writing this equation when X = ϕ∞(a), a ∈ M , shows that α leaves ϕ∞(M)elementwise �xed. Also, inspe
ting the proof of Lemma 4.1, one sees that, if αdoes not have this property, the map τ, de�ned in equation (17) would map theunit ball of Eσ into the unit ball of Eπ where π = σ ◦ ϕ−1

∞ ◦ α ◦ ϕ∞. One 
anstudy su
h automorphisms by studying these maps but the situation be
omesquite 
ompli
ated, unless one makes a global assumption to begin with, vis.,that σ has uniform in�nite multipli
ity. In that event, by properties of normalrepresentations of von Neumann algebras, σ and π are unitarily equivalent. Say
π(·) = uσ(·)u∗ for some Hilbert spa
e isomorphism from the Hilbert spa
e of σto the Hilbert spa
e of π. Then it is a straightforward 
al
ulation to see that
Eπ = (I ⊗ u)Eσu∗. It is then a straightforward matter to in
orporate u intoour formulas.As we have remarked before, D(Eσ) is the unit ball of a J∗-triple system. Itresults, therefore, from well-known theory [20℄ that the biholomorphi
 mapsof D(Eσ) are determined by Möbius transformations (and �isometri
 multipli-ers�). As we shall, however, the Möbius transformations of D(Eσ) that im-plement automorphisms of H∞(E) have to have a spe
ial form: They mustbe parametrized by �
entral� elements of D(Eσ) in the sense of the followingde�nition. (See also Remark 2.1.3 of [14℄).
Definition 4.11 Let E be a W ∗-
orresponden
e over a W ∗-algebra M . The
enter of E, denoted Z(E), is the set of ξ ∈ E su
h that aξ = ξa for all a ∈M .
Lemma 4.12 (1) The 
enter Z(E) of a W ∗-
orresponden
e E over M is a

W ∗-
orresponden
e over the 
enter Z(M) of M .(2) Let σ be a faithful normal representation of M on the Hilbert spa
e E, andfor ξ ∈ E, de�ne Φ(ξ) := Lξ where Lξ maps E to E ⊗ E via the formula
Lξ(h) = ξ⊗h. Then the pair (σ,Φ) de�nes an isomorphism of Z(E) onto
Z(Eσ) in the sense of De�nition 2.2. (Here, Z(E) is a 
orresponden
eover Z(M) and Z(Eσ) is a 
orresponden
e over Z(σ(M)′) = Z(σ(M)) =
σ(Z(M))).(3) Given a faithful representation σ of M on the Hilbert spa
e E and γ ∈
D(Eσ), then γ lies in the 
enter of Eσ if and only if the representation
σ × γ∗ maps H∞(E) into σ(M).

Proof. It is 
lear that Z(E) is a bimodule over Z(M) and, to prove (1), weneed only show that the inner produ
t of two elements in Z(E) lies in Z(M).
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Schur Class Operator Functions . . . 393For a ∈M , ξ1, ξ2 ∈ Z(E) we have
a〈ξ1, ξ2〉 = 〈ξ1a

∗, ξ2〉 = 〈a∗ξ1, ξ2〉 = 〈ξ1, aξ2〉 = 〈ξ1, ξ2a〉 = 〈ξ1, ξ2〉a.Hen
e the inner produ
t lies in the 
enter of M , proving (1). We �x a faithfulrepresentation σ of M on E . For ξ ∈ Z(E), a ∈ M and h ∈ E we have
Lξσ(a)h = ξ⊗σ σ(a)h = ξa⊗h = aξ⊗h = (a⊗ I)Lξh. Hen
e, Lξ ∈ Eσ. Given
b ∈ σ(M)′ and h ∈ E we have Lξbh = ξ ⊗ bh = (IE ⊗ b)Lξh. Thus Lξ lies in
Z(Eσ).For ξ ∈ Z(E), a, b ∈ Z(M), and h ∈ E , Laξbh = aξb ⊗ h = ξab ⊗ h = ξ ⊗
σ(a)σ(b)h = (I ⊗ σ(a))Lξσ(b)h hen
e

Φ(aξb) = σ(a)Φ(ξ)σ(b).For ξ1, ξ2 ∈ Z(E) we have L∗
ξ1
Lξ2

= σ(〈ξ1, ξ2〉). Therefore the pair (σ,Φ) is anisomorphism of Z(E) into Z(Eσ).To prove that the map Φ is onto, �x an η ∈ Z(Eσ). Then, η is a map from Eto E ⊗σ E satisfying
ησ(a) = (a⊗ I)η (23)and
ηb = (I ⊗ b)η, (24)for a ∈ M and b ∈ σ(M)′. De�ne the map ψ : E → B(E) by ψ(ζ) = η∗Lζand note that for b ∈ σ(M)′ and h ∈ E , η∗Lζbh = η∗(ζ ⊗ bh) = η∗(I ⊗ b)Lζh.Using (24) the latter is equal to bη∗Lζh. Hen
e ψ(ζ) lies in σ(M). Also

ψ(ζa) = ψ(ζ)σ(a) for all a ∈ M and it then follows from the self dualityof E that there is an ξ ∈ E with 〈ξ, ζ〉 = σ−1(ψ(ζ)). Thus, for all ζ ∈ E,
L∗

ξLζ = σ(〈ξ, ζ〉) = η∗Lζ and we 
on
lude that η = Lξ.It follows from (23) that, for all a ∈M , Lξa = ησ(a) = (a⊗I)η = Laξ, showingthat ξ lies in Z(E).Finally, to prove (3), �x an η ∈ D(Eσ) and write (T, σ) for the 
ovariant pairasso
iated with σ×η∗ (so that, T̃ = η∗). Then the representation mapsH∞(E)into σ(M) if and only if, for ea
h ξ ∈ E, T (ξ) ∈ σ(M). This holds i�, for all
b ∈ σ(M)′, ξ ∈ E and h ∈ E , T̃ (IE ⊗ b)(ξ⊗ h) = T (ξ)bh = bT (ξ)h = bT̃ (ξ⊗ h);that is, if and only if T̃ (IE⊗b) = bT̃ for every b ∈ σ(M)′. But the last statementsays that η lies in the 
enter of Eσ. �The following example may help to show that the 
enter of a 
orresponden
eis mu
h less �inert� than the 
enter of a von Neumann algebra.
Example 4.13 Let M be a von Neumann algebra and let α be an endomor-phism of M . Then we obtain a W ∗-
orresponden
e over M , denoted αM , bytaking M with its usual right a
tion and inner produ
t give by the formula,
〈ξ, η〉 = ξ∗η and by letting α implement the left a
tion. Then an element ξ in
αM lies in the 
enter of αM if and only if ξ intertwines α and the identity en-domorphism; i.e., ξ ∈ Z(αM) if and only if α(a)ξ = ξa for all a ∈M . Z(αM)is a mu
h studied obje
t in the literature and the pre
eding lemma spells outsome of its important elementary properties.
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394 Paul S. Muhly and Baruch SolelOur goal now is to develop the properties of Möbius transformations of D(Eσ)and to identify those that implement automorphisms of H∞(E). To this end,�x a faithful representation σ of M on a Hilbert spa
e E . Set N = σ(M)′,write K = E ⊕ (E ⊗σ E), and de�ne the (ne
essarily faithful) representation ρof N on K by the formula
ρ(S) =

(
S 0
0 I ⊗ S

)
, S ∈ N.For γ ∈ D(Eσ) we set ∆γ := (IE − γ∗γ)1/2 - an element in B(E) - and ∆γ∗ :=

(IE⊗E − γγ∗)1/2 - an element in B(E ⊗ E). When γ is understood, then weshall simply write ∆ for ∆γ and ∆∗ for ∆γ∗ . Given γ ∈ D(Eσ) we de�ne themap gγ on D(Eσ)∗ by the formula,
gγ(z∗) = ∆γ(I − z∗γ)−1(γ∗ − z∗)∆−1

γ∗ , (25)
z ∈ D(Eσ). Then gγ is a biholomorphi
 automorphism of D(Eσ)∗ that maps 0to γ∗ and γ∗ to 0. Further, g2

γ = id, and every biholomorphi
 map g of D(Eσ)∗is of the form
g = w ◦ gγwhere w is an isometry on (Eσ)∗ and γ∗ = w−1g(0) [20℄. When γ lies in the
enter of Eσ, we see that gγ maps the 
enter onto itself and it follows that everybiholomorphi
 automorphism of the open unit ball of (Eσ)∗ that preserves the
enter is of the form
g = w ◦ gγwhere γ lies in the 
enter and w is an isometry on (Eσ)∗ that preserves the
enter.If z ∈ D(Eσ), then the series ∑∞

n=0(z
∗γ)n 
onverges in norm to the operatorin N , (I − z∗γ)−1 =

∑∞
n=0(z

∗γ)n. One easily 
al
ulates, then, that
gγ(z∗) = ∆γ∗∆−1

∗ − ∆(I − z∗γ)−1z∗∆∗.Re
all that the equation U(z ⊗ h) = z(h) de�nes a Hilbert spa
e isomorphism
U : Eσ ⊗ E → E ⊗ E [31, p. 369℄. Consequently, as maps on E , ULz = z and
z∗ = L∗

zU
∗. Thus we may write

gγ(z∗) = ∆γ∗∆−1
∗ − ∆(I − L∗

zU
∗γ)−1L∗

zU
∗∆∗.We write K1 = E ⊗σ E for the se
ond summand in K = E ⊕ (E ⊗σ E) and welet q1 denote the proje
tion from K onto K1. Likewise, we set K2 = E withproje
tion q2. Corresponding to the dire
t sum de
omposition, we de�ne V bythe formula

V :=

(
∆γ∗∆−1

∗ −∆
U∗∆∗ U∗γ

)
:

(
K1

E

)
→

(
K2

Eσ ⊗ E

)
. (26)
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Schur Class Operator Functions . . . 395If we 
al
ulate V V ∗, we �nd that the o� diagonal terms vanish and the terms onthe diagonal are ∆γ∗∆−2
∗ γ∆+∆2 and U∗(∆2

∗+γγ∗)U . Sin
e ∆2
∗+γγ∗ = IE⊗E ,the latter expression is U∗U = IEσ⊗E = q2. For the �rst expression, we notethat γ∗∆−2

∗ γ = γ∗(I − γγ∗)−1γ = (I − γ∗γ)−1 − 1 and ∆γ∗∆−2
∗ γ∆ + ∆2 =

∆((I − γ∗γ)−1 − I)∆ + ∆2 = IE . This shows that V is a 
oisometry. Similar
omputations show that it is, in fa
t, a unitary operator. Thus V is a transferoperator.We want to apply Theorem 3.6 to obtain an elementX ∈ H∞(E) with X̂(η∗) =
gγ(η∗), for η ∈ D(Eσ). To do this, we �rst let F be the 
orresponden
e Eσand then F ρ is a 
orresponden
e over ρ(N)′. In order to apply Theorem 3.6we let M , in that theorem, be the von Neumann algebra ρ(N)′ and let σ therebe the identity representation of ρ(N)′ on K (so that E there is K). E in thattheorem will be F ρ and N there (the 
ommutant of σ(M)) will be ρ(N). Therepresentation τ of N then will be the map ρ−1 of ρ(N) on E (so that E willplay the role of H there). Also, q1 will be as above. We set A = ∆γ∗∆−1

∗ ,
B = −∆, C = U∗∆∗ and D = U∗γ. These A,B,C and D give rise to thematri
ial operator V of equation (26). In order to show that the assumptionsof Theorem 3.6 are satis�ed, we have to show that these operators (A,B,C and
D) all have the required intertwining properties. (Note that we have already
he
ked that V is a unitary operator).The required intertwining properties are:(a) A = ∆γ∗∆−1

∗ lies in q2ρ(N)′q1.(b) B = −∆ lies in N ′.(
) For every S ∈ N , U∗∆∗(IE ⊗ S) = (S ⊗ IE )U∗∆∗ on E ⊗ E .(d) For every S ∈ N , U∗γS = (IE ⊗ S)U∗γ on E .Indeed, re
all that γ lies in the 
enter of Eσ and, thus, for S ∈ N , γS = (I⊗S)γ.Therefore ∆ 
ommutes with N and ∆∗ 
ommutes with I ⊗ S for S ∈ N .This implies (a) and (b). Re
all that, for h ∈ E , U∗γh = γ ⊗ h and, thus,
U∗γSh = γ ⊗ Sh = (I ⊗ S)(γ ⊗ h) = (I ⊗ S)U∗γh proving (d). For (
), itsu�
es to note that U(S ⊗ I)U∗ = I ⊗ S and ∆∗ 
ommutes with I ⊗ S for all
S ∈ N .We 
an now apply Theorem 3.6. Sin
e F ρ plays the role of E in that theoremand the identity representation of ρ(N)′, id, plays the role of σ, Eσ in thattheorem is repla
ed by (F ρ)id whi
h, by the duality theorem [31, Theorem 3.6℄ is isomorphi
 to F = Eσ. We therefore 
on
lude:
Lemma 4.14 For every γ ∈ D(Z(Eσ)), there is an X in H∞(F ρ) with ‖X‖ ≤ 1su
h that, for all z ∈ D(Eσ), X̂(z∗) = gγ(z∗).Note that gγ(z∗) is an operator from E ⊗ E into E and 
an be viewed as anoperator in B(K) whi
h is where the values of X , as an element of H∞(F ρ),lie.We 
an now use [31, Theorem 5.3℄ to prove the following.
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Corollary 4.15 Fix γ ∈ D(Z(Eσ)) as above. Then, for every z1, z2, . . . , zkin D(Eσ), the map on Mk(σ(M)′) de�ned by the k × k matrix
((id− θgγ (z∗

i )∗,gγ(z∗

j )∗) ◦ (id− θzi,zj )
−1)is 
ompletely positive.

Proof. Applying [31, Theorem 5.3℄ to X of Lemma 4.14, we get the 
ompletepositivity of the map de�ned by the matrix
((I −Ad(gγ(z∗i ), gγ(z∗j ))) ◦ (id− θzi,zj)

−1).But note that, for every b ∈ σ(M)′, Ad(gγ(z∗i ), gγ(z∗j ))(ρ(b)) =
gγ(z∗i )ρ(b)gγ(z∗j )∗ = 〈gγ(z∗i )∗, bgγ(z∗j )∗〉 = θgγ(z∗

i )∗,gγ(z∗

j )∗(b). �

Corollary 4.16 Let Z : D(Eσ)∗ → B(E) be a S
hur 
lass operator fun
tionand let γ be in D(Z(Eσ)). Then the fun
tion Zγ : D((Eσ)∗) → B(E) de�ned by
Zγ(η∗) = Z(gγ(η∗))is also a S
hur 
lass operator fun
tion.

Proof. For every ηi, ηj in D(Eσ) we have (id−Ad(Z(gγ(η∗i )), Z(gγ(η∗j )))) ◦

(id− θηi,ηj )
−1 = ((id− Ad(Z(gγ(η∗i )), Z(gγ(η∗j )))) ◦ (id− θgγ (η∗

i )∗,gγ(η∗

j )∗)
−1) ◦

(id − θgγ(η∗

i )∗,gγ(η∗

j )∗) ◦ (id − θηi,ηj )
−1). Hen
e the map asso
iated with Zγ isa 
omposition of two 
ompletely positive maps and is, therefore, 
ompletelypositive. �For the statement of the next lemma, re
all from [31, end of Se
tion 2℄ thatevery X ∈ H∞(E) has a �Fourier series" expansion given by a sequen
e of�Fourier 
oe�
ient operators" {Ej}. (In [31℄ we wrote {Φj} for this sequen
e).Ea
h map Ej is 
ompletely 
ontra
tive, w∗-
ontinuous and Ej(Tξ1

Tξ2
· · ·Tξk

) =
Tξ1

Tξ2
· · ·Tξk

if j = k and is zero otherwise. The Cesaro means of the �Fourierseries" of X 
onverge to X in the w∗-topology.
Lemma 4.17 Let σ be a normal, faithful, representation of M on a Hilbertspa
e H and let K(σ) denote the kernel of the map X → X̂ de�ned in equation(16).(i) K(σ) ⊆ {X ∈ H∞(E) | E0(X) = E1(X) = 0}.(ii) If, for every k ∈ N, ∨{(η⊗k)(H) | η ∈ D(Eσ)} = E⊗k ⊗H, then K(σ) =

{0}.(iii) Every 
ompletely isometri
 automorphism α of H∞(E) that is a w∗-homeomorphism and is implemented by a biholomorphi
 map of D(Eσ) inthe sense of (22) leaves K(σ) invariant. In parti
ular, K(σ) is invariantunder the a
tion of the gauge group and, thus, under the maps Ek, k ≥ 0.
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Proof. Write C1 for {X ∈ H∞(E) | E0(X) = E1(X) = 0}. Then for every
X ∈ H∞(E), X = E0(X) + E1(X) +X1 where X1 ∈ C1. Note that for every
η ∈ D(Eσ), every 0 < t ≤ 1 and every k ≥ 0, Ek(X)((tη)∗) = tkE(X)(η∗).Thus, for X ∈ K(σ), 0 = X((tη)∗) = E0(X)(η∗) + tE1(X)(η∗) + t2S where
S is some bounded operator on H . Sin
e this holds for every 0 < t ≤ 1, wehave (by di�erentiation) E0(X) = 0 and E1(X)(η∗) = 0 for all η ∈ D(Eσ).Write E1(X) = Tξ (for some ξ ∈ E). Then, for all h ∈ H and η ∈ D(Eσ),
0 = E1(X)(η∗)h = η∗(ξ ⊗ h). Sin
e ∨{η(H)| η ∈ D(Eσ)} = E ⊗ H ([31,Lemma 3.5℄), we �nd that ξ ⊗ h = 0 for all h ∈ H . Sin
e E is faithful, thisimplies that ξ = 0, 
ompleting the proof of (i).We 
an also write 0 = X((tη)∗) = E0(X)(η∗)+tE1(X)(η∗)+· · ·+tkEk(X)(η∗)+
tk+1S and 
on
lude that Ej(X)(η∗) = 0 for all j ≤ k. We 
an then 
ontinueas above but to be able to 
on
lude that Ek(X) = 0 we need the 
ondition inpart (ii) (to repla
e the use of [31, Lemma 3.5℄ in the argument above).To prove (iii), note that the invarian
e of K(σ) under an automorphism α asin (iii) follows from (22). The invarian
e under the gauge group (and under
Ek) is then immediate. �The following proposition is obvious if K(σ) = {0}. But, in fa
t, it holds forevery faithful, normal representation σ. The argument uses an idea from [17,Proof of Theorem 4.11℄.
Proposition 4.18 Let σ be a faithful, normal representation of M and let
α, β be two homomorphisms of H∞(E) into itself su
h that β is 
ompletely iso-metri
, surje
tive and a w∗-homeomorphism, while α is 
ompletely 
ontra
tiveand w∗-
ontinuous. Suppose they satisfy the equation

α̂(X)(η∗) = β̂(X)(η∗)for all X ∈ H∞(E) and η ∈ D(Eσ). Then α = β.
Proof. It is 
learly enough to assume β = id and α̂(X)(η∗) = X̂(η∗). Notethat α, viewed as a representation of H∞(E) on F(E)⊗σ H (whose restri
tionto ϕ∞(M) is ϕ∞(·) ⊗ IH), 
an be written as (ϕ∞(·) ⊗ IH) × ζ∗ for some ζ inthe 
losed unit ball of the ϕ∞(·) ⊗ IH -dual of E. Thus, for k ∈ F(E) ⊗σ H ,
α(Tξ)k = (ζ∗)(ξ ⊗ k) and ‖α(Tξ)k‖ ≤ ‖ξ ⊗ k‖ = ‖Tξk‖.Fix h ∈ H viewed as the zeroth summand of F(E)⊗σH . Then for every ξ ∈ E,

‖α(Tξ)h‖ ≤ ‖Tξh‖.By 
onstru
tion α(Tξ) − Tξ ∈ K(σ). But also, by Lemma 4.17(i), for every
X ∈ K(σ), Xh is orthogonal to Tξh. Thus

‖α(Tξ)h‖
2 = ‖(α(Tξ) − Tξ)h‖

2 + ‖Tξh‖
2 ≥ ‖Tξh‖

2.We 
on
lude that for every h ∈ H , (α(Tξ)−Tξ)h = 0. It follows that α(Tξ) = Tξfor all ξ ∈ E. Sin
e α is a w∗-
ontinuous homomorphism, α(X) = X for all
X ∈ H∞(E). �
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398 Paul S. Muhly and Baruch SolelThe following lemma will prove very useful when we deal with a representation
σ for whi
h K(σ) 6= {0}. It relates the σ-dual with the π-dual where π is therepresentation de�ned in the proof of Lemma 3.8 (for whi
h K(π) = {0}).
Lemma 4.19 Let σ be a faithful representation of M on H and π be the repre-sentation ϕ∞⊗ IH of M on K := F(E)⊗H. Let ψ : σ(M)′ → (ϕ∞(M)⊗ IH)′be de�ned by ψ(b) = IE⊗b and let Ψ : Eσ → Eπ be de�ned by Ψ(η) = IF(E)⊗η.Then we have the following.(1) The pair (ψ,Ψ) is an isomorphism of Eσ into (not ne
essarily onto) Eπsatisfying

Ψ(η)PH = PE⊗HΨ(η) = η , η ∈ Eσwhere PH is the proje
tion from K to H (viewed as a subspa
e) and PE⊗His the proje
tion of E ⊗K onto E ⊗H.(2) For every X ∈ H∞(E) and ζ ∈ Eπ that satis�es ζPH = PE⊗Hζ, we have
ζ|H ∈ Eσ and the restri
tion of X̂(ζ∗) to H (viewed as a summand of
F(E) ⊗H = H ⊕ E ⊗H ⊕ · · · ) is X̂((ζ|H)∗).(3) There is an isomorphism Φ of Z(Eσ) onto Z(Eπ) satisfying

Φ(γ)PH = PE⊗HΦ(γ) = γ , γ ∈ Z(Eσ).(4) For η ∈ Eσ and γ ∈ Z(Eσ),
gΦ(γ)(Ψ(η)∗)PE⊗H = PHgΦ(γ)(Ψ(η)∗) = gγ(η∗).

Proof. It is 
lear that ψ is indeed an isomorphism into (ϕ∞(M) ⊗ IH)′.Note that it follows from the intertwining property of η ∈ Eσ that Ψ(η) is awell de�ned bounded operator. To show that Ψ maps Eσ into Eπ, �x η ∈ Eσ,
θ⊗ h ∈ F(E)⊗H and a ∈M and 
ompute (IF(E) ⊗ η)π(a)(θ ⊗ h) = (IF(E) ⊗
η)(ϕ∞(a)θ⊗ h) = ϕ∞(a)θ⊗ η(h), where we view F(E)⊗E as the subspa
e of
F(E) 
onsisting of all the positive tensor powers of E. But the last expressionis equal to (ϕ∞(a) ⊗ IH)(IF(E) ⊗ η)(θ ⊗ h), showing that Ψ(η) ∈ Eπ.To show that the map is a bimodule map, �x η ∈ Eσ, b, c ∈ σ(M)′ and
θ ⊗ h ∈ F(E) ⊗ H . Then Ψ(cηb)(θ ⊗ h) = θ ⊗ (cηb)h = θ ⊗ (IE ⊗ c)ηbh =
ψ(c)(θ ⊗ ηbh) = ψ(c)Ψ(η)(θ ⊗ bh) = ψ(c)Ψ(η)ψ(b)(θ ⊗ h), proving that theimage of Ψ lies in Eπ. Regarding the inner produ
t, we have: 〈Ψ(η1),Ψ(η2)〉 =
Ψ(η1)

∗Ψ(η2) = (IF(E) ⊗ η1)
∗(IF(E) ⊗ η2) = (IF(E) ⊗ η∗1η2) = ψ(〈η1, η2〉) for all

η1, η2 ∈ Eσ. Thus (ψ,Ψ) is an isomorphism of Eσ into Eπ. The proof of theequation Ψ(η)PH = PE⊗HΨ(η) = η for η ∈ Eσ is easy. This proves (1).To prove (2), let ζ ∈ Eπ satisfy ζPH = PE⊗Hζ and �x a ∈M and h ∈ H . Then
(ζ|H)σ(a)h = ζ(ϕ∞(a)⊗IH)h = (ϕE(a)⊗IK)PE⊗Hζh = (ϕE(a)⊗IH)(ζ|H)h.Thus, ζ|H ∈ Eσ. To prove that X̂((ζ|H)∗) = X̂(ζ∗)|H , let, �rst, 
onsider X =

ϕ∞(a) for a ∈ M . Then X̂(ζ∗) = ϕ∞(a) ⊗ IH and X̂((η|H)∗) = σ(a) and (2)
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Schur Class Operator Functions . . . 399holds in this 
ase. Take X = Tξ for some ξ ∈ E. Then, for h ∈ H ⊆ F(E)⊗H ,
X̂(ζ∗)h = ζ∗(ξ ⊗ h) = (ζ|H)∗(ξ ⊗ h) = X̂((ζ|H)∗)h. In parti
ular, we see that
H is invariant for all X̂(ζ∗) where X runs over a set of generators. Thus, His invariant under X̂(ζ∗) for all X ∈ H∞(E) and (2) holds for all X 's in a
w∗-dense subalgebra of H∞(E). Sin
e the map X 7→ X̂(ζ∗) is w∗-
ontinuous,we are done.To prove (3), re
all from Lemma 4.12 (2) that both Z(Eσ) and Z(Eπ) areisomorphi
 to Z(E). Combining these two isomorphisms, we get Φ. Morepre
isely, every η ∈ Z(Eσ) is equal to Lξ for some ξ ∈ Z(E) (that is, η(h) =
ξ ⊗ h, h ∈ H). Then we set Φ(η)k = ξ ⊗ k for k ∈ K = F(E) ⊗ H . Theequation Φ(γ)PH = PE⊗HΦ(γ) = γ , γ ∈ Z(Eσ) follows easily.Part (4) follows from (1) and (3). �Fix X ∈ H∞(E) with ‖X‖ ≤ 1, let π = ϕ∞ ⊗ IH , as in Lemma 3.8, and let γbe an element of D(Z(Eπ)). Then if X̂ is the S
hur 
lass operator fun
tion on
D((Eπ)∗) determined by X then by Corollary 4.16, X̂ ◦ gγ also is a S
hur 
lassoperator fun
tion on D((Eπ)∗). By Corollary 3.9 there is an element αγ(X) in
H∞(E), whose norm does not ex
eed 1, su
h that α̂γ(X) = X̂ ◦gγ. Further, byLemma 3.8, this element is uniquely de�ned. We 
an, of 
ourse, extend this toa map, αγ , from H∞(E) to itself su
h that, for X ∈ H∞(E) and η ∈ D((Eπ)∗),

α̂γ(X)(η∗) = X̂(gγ(η∗)). (27)
Lemma 4.20 Let σ and π be as in Lemma 4.19. Then:(i) For every γ ∈ D(Z(Eπ)), αγ , de�ned by equation (27) is an automorphismof the algebra H∞(E) that is 
ompletely isometri
 and is a homeomor-phism with respe
t to the ultraweak topology.(ii) For every γ ∈ D(Z(Eσ)) let αγ be de�ned to be αΦ(γ) (with Φ as inLemma 4.19). Then, for every X ∈ H∞(E) and η ∈ Eσ,

α̂γ(X)(η∗) = X̂(gγ(η∗)). (28)
Proof. We �rst prove (i). Linearity and multipli
ativity of αγ are easyto 
he
k. Sin
e g2

γ = id, αγ is invertible (with α−1
γ = αγ). So it is an auto-morphism. Sin
e αγ maps the 
losed unit ball of H∞(E) into itself (as doesthe inverse map), αγ is isometri
. It is, in fa
t, 
ompletely isometri
. Tosee this, 
onsider, for n ∈ N, the algebra H∞(Mn(E)), asso
iated with the

W ∗-
orresponden
e Mn(E) over the von Neumann algebra Mn(M). The 
or-responding Fo
k spa
e is Mn(F(E)) and the algebra 
an be identi�ed with
Mn(H∞(E)). The representation σ of M gives rise to a representation σn of
Mn(M) on H(n) = Cn ⊗H (with σn(Mn(M))′ = ICn ⊗ σ(M)′ ∼= σ(M)′). One
an 
he
k that Eσ ∼= (Mn(E))σn . For γ ∈ Z(Eσ), write γ′ for the 
orrespondingelement of Z(Mn(Eσ)). Then αγ′ a
ts on Mn(H∞(E)) by applying αγ to ea
h
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400 Paul S. Muhly and Baruch Solelentry. Sin
e we know that αγ′ is an isometry, it follows that αγ is a 
ompleteisometry.It is left to show that αγ is 
ontinuous with respe
t to the ultraweak topology.For this, let {Xβ} be a net in the 
losed unit ball of H∞(E) that 
onvergesultraweakly to X . Sin
e evaluating at η∗ (for η in the open unit ball) amountsto applying a ultraweakly 
ontinuous representation , we have, for every su
h
η, X̂β(η∗) → X̂(η∗) in the weak operator topology. Sin
e this holds for gγ(η∗)in pla
e of η, we see that, for every η in the open unit ball of Eσ,

α̂γ(Xβ)(η∗) → α̂γ(X)(η∗).Using Lemma 3.8, we �nd that αγ(Xβ) → αγ(X) in the ultraweak topology.This proves (i).Part (ii) of the lemma results from the following 
omputation
α̂γ(X)(η∗) = ̂αΦ(γ)(X)(Ψ(η)∗)|H = X̂(gΦ(γ)(Ψ(η)∗))|H

= X̂(gΦ(γ)(Ψ(η)∗)|E ⊗H) = X̂(gγ(η)∗),where we used equation (27) and Lemma 4.19. �Note that we needed to use the representation π in order to de�ne, for every
X ∈ H∞(E), the element αγ(X) in H∞(E) satisfying (27). That is, we usedthe fa
t that K(π) = 0. On
e we de�ned it, it may be more 
onvenient to workwith the original representation σ (whi
h 
an be 
hosen to be an arbitraryfaithful representation) and invoke (28). Note that, using Proposition 4.18, wesee that there is only one automorphism that satis�es (28).
Theorem 4.21 Let E be a W ∗-
orresponden
e over M and let σ be a faithfulnormal representation of M on a Hilbert spa
e H. Let α be an isometri
 auto-morphism of H∞(E) and assume that g : D(Eσ)∗ → D(Eσ)∗ is a biholomorphi
automorphism of D(Eσ)∗ su
h that

α̂(X)(η∗) = X̂(g(η∗)),for all X ∈ H∞(E) and all η ∈ Eσ. Then:(i) g(DZ((Eσ)∗)) ⊆ DZ((Eσ)∗).(ii) There is a γ ∈ DZ((Eσ)) and a unitary operator u in L(E) su
h that
u(Z(E)) = Z(E) and su
h that

g(η∗) = gγ(η∗) ◦ (u⊗ IE)(as a map from E ⊗σ H to H).(iii) With u as in (ii), there is an automorphism αu of H∞(E) su
h that
αu(Tξ) = Tuξ for every ξ ∈ E.
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Schur Class Operator Functions . . . 401(iv) With u and γ as in (ii),
α = αγ ◦ αuwhere αγ is the automorphism de�ned in equation (27) (and satis�es(28)).(v) For every η1, η2, . . . , ηk in the open unit ball of Eσ, the map de�ned bythe k × k matrix

((id− θg(η∗

i )∗,g(η∗

j )∗) ◦ (id− θηi,ηj )
−1)is 
ompletely positive.

Proof. Note �rst that, sin
e α is an isometri
 automorphism, it maps ϕ∞(M)onto itself.Suppose η lies in D(Z(Eσ)∗). Then, by part (3) of Lemma 4.12, X̂(η∗) ∈ σ(M)for every X ∈ H∞(E). But then, for every X , X̂(g(η∗)) lies in σ(M), showingthat g(η∗) ∈ Z(Eσ). This proves (i).The dis
ussion following Lemma 4.12 shows that we 
an write g = w ◦ gγ forsome γ in DZ((Eσ)) and an isometry w on (Eσ)∗ that preserves the 
enter. Let
αγ be the automorphism des
ribed in Lemma 4.20(ii) and write β = α−1

γ ◦ α.Then it follows that
β̂(X)(η∗) = X̂(wη∗)for X ∈ H∞(E) and η ∈ D(Eσ).For η = 0 and Y ∈ H∞(E) we have Ŷ (0) = σ(E0(Y )) where E0 is the 
ondi-tional expe
tation of H∞(E) ontoM (whereM is viewed as the �zeroth term�).Thus, σ(E0(β(X))) = β̂(X)(0) = X̂(0) = σ(E0(X)) for every X ∈ H∞(E).Sin
e σ is faithful, E0(β(X)) = E0(X). Thus, for every ξ ∈ E, E0(β(Tξ)) = 0and we 
an write
β(Tξ) = Tθ + Y (29)where Y lies in (TE)2H∞(E). Write C for (TE)2H∞(E). Sin
e (29) holds forall ξ ∈ E, β(C) ⊆ C. We 
an apply the same arguments to β−1, in pla
e of β,and �nd that β−1(C) ⊆ C. Applying β−1 to (29), we �nd that
β−1(Tθ) = Tξ + Z (30)for some Z ∈ C.Arguing as in the proof of Proposition 4.18, we �nd that, for every h ∈ H ,

‖β(Tξ)h‖ ≤ ‖Tξh‖ and ‖β(Tξ)‖
2 = ‖Y h‖2 + ‖Tθh‖

2 ≥ ‖Tθh‖
2. Thus ‖Tξh‖ ≥

‖Tθh‖. Applying the same arguments to β−1 (using (30) in pla
e of (29))we �nd that ‖Tθh‖ ≥ ‖Tξh‖ and, thus, ‖Tξh‖ = ‖Tθh‖ and, 
onsequently,
Y h = 0 for all h ∈ H . Thus Y = 0 and β(Tξ) = Tθ. Sin
e β is isometri
,
‖Tξ‖ = ‖Tθ‖. It follows that ‖ξ‖ = ‖θ‖. If we write θ = uξ (and re
all thatthen β(Tξ) = Tuξ) then u is a linear isometry. We also have, for a ∈ M ,
Tu(ξa) = β(Tξa) = β(Tξa) = β(Tξ)a = Tu(ξ)a = Tu(ξ)a. Hen
e u is an isometri
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402 Paul S. Muhly and Baruch Solel(right) module map and, therefore, u lies in L(E). Sin
e β is an automorphism,
u is a unitary operator. We also have β(Tξ) = Tuξ, so β = αu (in the notationof (iii)). This proves (iii) and (iv).Re
all that β̂(X)(η∗) = X̂(wη∗) and set X = Tξ to get T̂uξ(η

∗) = β̂(Tξ)(η
∗) =

T̂ξ(wη
∗). Hen
e η∗Luξ = (wη∗)Lξ. Applying this to h ∈ E we get η∗(uξ⊗h) =

(wη∗)(ξ ⊗ h). Hen
e wη∗ = η∗ ◦ (u ⊗ I), proving g(η∗) = gγ(η∗) ◦ (u ⊗ IE).To prove (ii) we need only to show that u preserves the 
enter of E. So �x
ξ ∈ Z(E). By Lemma 4.12, L∗

ξ lies in the 
enter of (Eσ)∗. Thus wL∗
ξ lies in

Z((Eσ)∗). But wL∗
ξ = L∗

ξ ◦ (u⊗ I) = Lu∗ξ. Thus Lu∗ξ lies in Z((Eτ )∗). UsingLemma 4.12 again we get u∗ξ ∈ Z(E). This shows that u∗Z(E) ⊆ Z(E) and,applying the same argument to β−1, we 
omplete the proof of (ii).To prove (v), �x b ∈ σ(M)′ and ηi, ηj in D(Eσ) and 
ompute 〈g(η∗i ), b ·g(η∗j )〉 =
g(η∗i )(IE ⊗ b)g(η∗j )∗ = gγ(η∗i )(u ⊗ IE )(IE ⊗ b)(u∗ ⊗ IE)gγ(ηj)

∗ = gγ(η∗i )(IE ⊗
b)gγ(η∗j )∗ = 〈gγ(η∗i ), b · gγ(η∗j )〉. Thus (v) follows from Corollary 4.15. �Combining Theorem 4.21 with Theorem 4.9, we get the following.
Theorem 4.22 Let E be a faithful W ∗-
orresponden
e over M where Z(M)is atomi
. Let α be an automorphism of H∞(E) that is 
ompletely isometri
and a w∗-homeomorphism and leaves ϕ∞(M) elementwise �xed and let σ be afaithful representation of M .Then there is a γ ∈ DZ((Eσ)) and a unitary operator u in L(E), satisfying
u(Z(E)) = Z(E), su
h that

α = αγ ◦ αu,where αγ is the automorphism de�ned in Lemma 4.20 and αu(Tξ) = Tuξ forevery ξ ∈ E.In parti
ular, if Z(E) = {0}, every su
h automorphism is αu for some unitaryoperator u ∈ L(E).Theorem 4.22 provides another perspe
tive on the results from [26, 27℄. Theanalyti
 
rossed produ
ts dis
ussed there are of the form H∞(E), where Eis the 
orresponden
e αM asso
iated with a von Neumann algebra M and anautomorphism α that is properly outer. This means that Z(E) = {0}. Theorem4.22 implies that all automorphisms of H∞(E) are given by automorphisms of
Ṁ .
5 Examples : Graph AlgebrasIn this se
tion we 
onsider some examples that 
ome from dire
ted graphs.We shall assume for simpli
ity that our graphs have �nitely many verti
es andedges. We write Q both for the graph and for its set of edges. The spa
e ofverti
es will be denoted V . We shall write s and r for the sour
e and range mapson Q, mapping Q to V , and we shall think of an edge e in Q as �pointing� from
s(e) to r(e). For simpli
ity, we shall also assume that r is surje
tive, i.e., weshall assume that Q is without sour
es. Write Q∗ for the set of all �nite paths
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Schur Class Operator Functions . . . 403in Q, i.e., the path 
ategory generated by Q. An element in Q will be written
α = e1e2 · · · ek, where s(ei) = r(ei+1). We set s(α) = s(ek), r(α) = r(e1), and
|α| = k, the length of α. We will also view vertex v ∈ V as a �path of length
0", and we extend r and s to V simply by setting r(v) = s(v) = v.Let M be C(V ), the set of 
omplex-valued fun
tions on V . Of 
ourse, Mis a �nite dimensional 
ommutative von Neumann algebra. Likewise, we let
E be C(Q), the set of 
omplex-valued fun
tions on Q. Then we de�ne an
M -bimodule stru
ture on E as follows: for f ∈ E, ψ ∈M and e ∈ Q,

(fψ)(e) := f(e)ψ(s(e)),and
(ψf)(e) := ψ(r(e))f(e).Note that the �no sour
es" assumption implies that the left a
tion of M isfaithful. An M -valued inner produ
t on E will be given by the formula

〈f, g〉(v) =
∑

s(e)=v

f(e)g(e),for f, g ∈ E and v ∈ V . With these operations, E be
omes a W ∗-
orresponden
e over M . The algebra H∞(E) in this 
ase will be written
H∞(Q). In the literature, H∞(Q) is sometimes denoted LQ. It is the ul-traweak 
losure of the tensor algebra T+(E(Q)) a
ting on the Fo
k spa
e of
F(E(Q)). For e ∈ Q, let δe be the δ-fun
tion at e, i.e., δe(e′) = 1 if e = e′ andis zero otherwise. Then Tδe is a partial isometry that we denote by Se. Also,for v ∈ V , Pv is de�ned to be ϕ∞(δv). Then ea
h Pv is a proje
tion and it isan easy matter to see that the families {Se : e ∈ Q} and {Pv : v ∈ V } form aCuntz-Toeplitz family in the sense that the following 
onditions are satis�ed:(i) PvPu = 0 if u 6= v,(ii) S∗

eSf = 0 if e 6= f(iii) S∗
eSe = Ps(e) and(iv) ∑r(e)=v SeS

∗
e ≤ Pv for all v ∈ V .In fa
t, these parti
ular families yield a faithful representation of the Cuntz-Toeplitz algebra T (E(Q)) [19℄. The algebra T+(E(Q)) is the norm-
losed (un-starred) algebra that they generate inside T (E(Q)) and H∞(Q) is the ultra-weak 
losure of T+(E(Q)). The algebra T+(E(Q)) was �rst de�ned and studiedin [25℄, providing examples of the theory developed in [28℄. It was 
alled a quiveralgebra there be
ause in pure algebra, graphs of the form Q are 
alled quivers.(Hen
e the notation we use here.) The properties of quiver algebras were fur-ther developed in [29℄. In [23℄, the fo
us was on H∞(Q) and the authors 
alledthis algebra a free semigroupoid algebras. Both algebras are often representedas algebras of operators on l2(Q

∗), and it will be helpful to understand how
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404 Paul S. Muhly and Baruch Solelfrom the perspe
tive of this note. Let H0 be a Hilbert spa
e whose dimensionequals the number of verti
es, let {ev| v ∈ V } be a �xed orthonormal basis for
H0 and let σ0 be the diagonal representation ofM = C(V ) on H0. Then l2(Q∗)is isomorphi
 to F(E(Q))⊗σ0

H0 where the isomorphism maps an element ξα ofthe standard orthonormal basis of l2(Q∗) to δα ⊗es(e) (where, for α = e1 · · · ek,
δα = δe1

⊗ · · · ⊗ δek
∈ E⊗k). The partial isometries Se 
an then be viewedas the shift operators Seξα = ξeα. Thus, the representations of T+(E(Q)) and

H∞(Q) on l2(Q∗) are just the representations indu
ed by σ0.Quite generally, a 
ompletely 
ontra
tive 
ovariant representation of E(Q) ona Hilbert spa
e H is given by a representation σ of M = C(V ) on H and by a
ontra
tive map T̃ : E ⊗σ H → H satisfying equation (2). The representation
σ is given by the proje
tions Qv = σ(δv) whose sum is I. Also, from T̃ we mayde�ne maps T (e) ∈ B(H) by the equation T (e)h = T̃ (δe ⊗ h) and it is easyto 
he
k that T̃ T̃ ∗ =

∑
e T (e)T (e)∗ and T (e) = Qr(e)T (e)Qs(e). Thus to every
ompletely 
ontra
tive representation of the quiver algebra T+(E(Q)) we asso-
iate a family {T (e)|e ∈ Q} of maps on H that satisfy ∑e T (e)T (e)∗ ≤ I and

T (e) = Qr(e)T (e)Qs(e). Conversely, every su
h family de�nes a representation,written σ×T (or σ× T̃ ), satisfying (σ×T )(Se) = T (e) and (σ×T )(Pv) = Qv.We �x σ to be σ0 and write H in pla
e of H0. So that, in this 
ase, ea
hproje
tion Qv is one dimensional (with range equal to Cev). Then obviously
σ(M)′ = σ(M). To des
ribe the σ-dual of E, write Q−1 for the dire
ted graphobtained from Q by reversing all arrows, so that s(e−1) = r(e) and r(e−1) =
s(e). Sometimes Q−1 is denoted Qop and is 
alled the opposite graph. Notethat the Hilbert spa
e E⊗σH0 is spanned by the orthonormal basis {δe⊗es(α)}.Fix η ∈ Eσ and note that its 
ovarian
e property implies that, for every e ∈ Q,
η∗(δe ⊗ es(e)) = η∗(δr(e)δe ⊗ es(e)) = Qr(e)η

∗(δe ⊗ es(e)) = η(e−1)er(e) for some
η(e−1) ∈ C. The reason for the �strange" way of writing that s
alar is that we
an view η as an element of E(Q−1) and the 
orresponden
e stru
ture on Eσ,as des
ribed in Proposition 2.13, �ts the 
orresponden
e stru
ture of E(Q−1).Consequently, we 
an identify the two and write

Eσ = E(Q−1).(See Example 4.3 in [31℄ for a des
ription of the stru
ture of the dual 
orre-sponden
e for more general representations σ ). It will also be 
onvenient towrite η matri
ially with respe
t to the orthonormal bases {δv | v ∈ V } of H0and {δe ⊗ es(e)}e∈Q of E ⊗H0 as
(η)e,r(e) = η(e−1). (31)Suppose η ∈ D(Eσ). For every X ∈ H∞(Q), we have de�ned X(η∗) as anelement of B(H) in Remark 2.14. For the generators of H∞(Q), the de�nitionyields the equations,

P̂v(η∗) = θv,v , v ∈ V (32)and
Ŝe(η

∗) = η(e−1)θr(e),s(e) , e ∈ Q (33)
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Schur Class Operator Functions . . . 405where θv,w is the partial isometry operator on H that maps ew to ev andvanishes on (ew)⊥. For a general X ∈ H∞(Q), X̂(η∗) is obtained by using thelinearity, multipli
ativity and w∗-
ontinuity of the map X 7→ X̂(η∗).The proof of the next lemma is straightforward and is omitted.
Lemma 5.1 The 
enters of the 
orresponden
es E(Q) and E(Q−1) are givenby the formulae

Z(E(Q)) = span{δe | s(e) = r(e)}and
Z(E(Q−1)) = span{δe−1 | s(e) = r(e)}.The following proposition is immediate from Theorem 4.22.

Proposition 5.2 If there is no e ∈ Q with s(e) = r(e), then every automor-phism α of H∞(Q) that is 
ompletely isometri
, w∗-homeomorphi
 and leaves
ϕ∞(C(V )) elementwise �xed (that is, does not permute the verti
es) is of theform αu for some unitary u ∈ L(E(Q)). That is,

α(Se) =
∑

s(f)=s(e)

uf,eSfwhere the s
alars uf,e are given by uf,e = (u(δe))(f). (Note that this is zero if
s(f) 6= s(e), sin
e u(δe) = u(δeδs(e)) = u(δe)δs(e)).We note, as we did at the beginning of Se
tion 4, that the assumptions madeon the automorphism 
an be weakened using arguments of [22℄ but we shallnot elaborate on this here.
Example 5.3 Let Q be an n-
y
le (for n > 1) ; that is V = {v1, v2, . . . , vn}and Q = {e1, . . . , en} where ei is the arrow from v1 to vi+1 (or to v1 when
i = n). Then, for every α as in Proposition 5.2, there are {λ1, λ2, . . . , λn} with
|λi| = 1, su
h that α(Sei ) = λiSei for all i.The rest of this se
tion will be devoted to the study of the following example,whi
h is very simple, yet provides a full array of the stru
tures we have beenstudying.
Example 5.4 Let the vertex set of the graph have two elements: V = {v, w}.Suppose the edge set 
onsists of three elements Q = {e, f, g}, where e is thearrow from v to w, so s(e) = v, r(e) = w; f is an arrow from w to v; and g isa loop based at w, s(g) = r(g) = w.Then by Lemma 5.1, Z(E(Q)) = Cδg. We know from Theorem 4.22 that everyautomorphism α is the 
omposition of an automorphism, written αu asso
iatedwith a unitary in L(E(Q)) that maps δg into λ3δg (with |λ3| = 1) and anautomorphism asso
iated with a �Möbius transformation".
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406 Paul S. Muhly and Baruch SolelAs noted in Proposition 5.2, (u(δe′))(f ′) = 0 unless s(e′) = s(f ′), so that
u(δe) ∈ Cδe and u(δf ) ∈ span{δf , δg}. Sin
e u∗ is unitary, we have that
u(δf ) = λfδf . Thus

αu(Se) = λeSe, αu(Sf ) = λfSf (34)and
αu(Sg) = λgSgfor λe, λf , λg with absolute value 1.It is left to analyze the Möbius transformations and the 
orresponding auto-morphisms. Sin
e the 
enter of Eσ are s
alar multiples of δg−1 , the Möbiustransformations are asso
iated with s
alars λ ∈ D (in fa
t, with λδg−1 ) and willbe denoted τλ, λ ∈ D. We have

τλ(η∗) = ∆λ(I − η∗(λδg−1 ))−1(λ̄δg−1 − η∗)∆−1
λ∗ (35)where ∆λ = (IH−(λδg−1)∗(λδg−1))1/2 and ∆λ∗ = (IE⊗H−(λδg−1)(λδg−1 )∗)1/2.It will be 
onvenient to write τλ(η∗) matri
ially as a map from E⊗H , with theordered orthonormal basis {δe ⊗ δv, δf ⊗ δw, δg ⊗ δw}, to H , with the orderedorthonormal basis {δv, δw}. Using the formula (31), we see that

η =




0 η(e−1)
η(f−1) 0

0 η(g−1)


and

λδg−1 =




0 0
0 0
0 λ


 .The 
omputation of the expression in (35) yields

τλ(η∗) =

(
0 −η(f−1) 0

−η(e−1)(1−|λ|2)1/2

1−λη(g−1)
0 λ̄−η(g−1)

1−λη(g−1)

)
.Thus

τλ(η∗)∗(e−1) =
−η(e−1)(1 − |λ|2)1/2

1 − λη(g−1)
= −η(e−1)(1 − |λ|2)1/2

∞∑

k=0

(λη(g−1))k,

τλ(η∗)∗(f−1) = −η(f−1),and
τλ(η∗)∗(g−1) =

λ̄− η(g−1)

1 − λη(g−1)
= (λ̄− η(g−1))

∞∑

k=0

(λη(g−1))k.
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Schur Class Operator Functions . . . 407This suggests setting
T (e) = −(1 − |λ|2)1/2

∞∑

k=0

(λSg)kSe,

T (f) = −Sfand
T (g) = −(λ̄Pw − Sg)

∞∑

k=0

(λSg)k.Using (32), (33) and the fa
t that the map X 7→ X̂(η∗) is a 
ontinuous homo-morphism, we get
T̂ (e)(η∗) = τλ(η∗)∗(e−1)θw,v,
T̂ (f)(η∗) = τλ(η∗)∗(f−1)θv,wand
T̂ (g)(η∗) = τλ(η∗)∗(g−1)θw,w.Using Theorem 4.9, Theorem 4.22, Equation (34) and Theorem 4.18, we 
on-
lude the following.

Theorem 5.5 (1) For every λ ∈ D, there is a unique automorphism αλ of
H∞(Q) su
h that, for every e′ ∈ {e, f, g}, αλ(Se′) − T (e′) ∈ K(σ).(2) Every 
ompletely isometri
, w∗-homeomorphi
 automorphism α of
H∞(Q) 
an be written

α = αu ◦ αλwhere λ ∈ D and αu(Se′ ) = λe′Se′ for every e′ ∈ {e, f, g} (where λe, λfand λg are 
omplex numbers of absolute value 1).
Proof. The only thing that we need to 
larify here is that, in part (2),we do not have to require that α �xes Pv and Pw. Indeed, assume that
α satis�es α(Pv) = Pw and α(Pw) = Pv. Then α(Se) = Pvα(Se)Pw and,thus, E0(α(Se)) = 0 and E1(α(Se)) ∈ CSf . Similarly, we get E0(α(Sf )) =
E1(α(Sg)) = 0, E1(α(Sf )) ∈ CSe and E0(α(Sg)) ∈ CPv. Thus, Sg is not in therange of α, 
ontradi
ting the surje
tivity of α. �Finally, we note the following.
Proposition 5.6 In this example, K(σ) is the ideal generated by the 
ommu-tator [Sg, SeSf ].
Proof. Sin
e we shall not use this result, we only sket
h the idea of theproof. It follows from Lemma 4.17 that it su�
es to analyze Ek(K(σ)) fora given k. Sin
e K(σ) is an ideal, it su�
es to 
onsider Pv′Ek(K(σ))Pv′′ for�xed v′, v′′ ∈ {v, w}. Evaluating an element of Pv′Ek(K(σ))Pv′′ in η∗ yields a
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408 Paul S. Muhly and Baruch Solelpolynomial in three the variables z1 = η(e−1), z2 = η(f−1) and z3 = η(f−1).This polynomial is de�ned on a small enough neighborhood of 0 and, from thede�nition of K(σ), it vanishes there. It follows that its 
oe�
ients are all 0.This shows that an element in Pv′Ek(K(σ))Pv′′ is a linear 
ombination of sumsof the form ∑
aiSαi (for some paths αi) where ∑ ai = 0 and for every i, j,the paths αi and αj satisfy s(αi) = s(αj) = v′′, r(αi) = r(αj) = v′ and bothpaths 
ontain the same edges (with the same multipli
ities) but in a di�erentorder. A moment's re�e
tion shows that this 
an happen only if the two pathsare identi
al ex
ept that, at some points, one path travels along g and thenalong ef while the other path �
hooses" to travel �rst along ef and then along

g. This shows that the element in Pv′Ek(K(σ))Pv′′ lies in the ideal generatedby [Sg, SeSf ]. �
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