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Abstract. We prove a lower bound for the codimension of the
Andreotti-Mayer locus Ng,1 and show that the lower bound is reached
only for the hyperelliptic locus in genus 4 and the Jacobian locus in
genus 5. In relation with the intersection of the Andreotti-Mayer loci
with the boundary of the moduli space Ag we study subvarieties of
principally polarized abelian varieties (B,Ξ) parametrizing points b
such that Ξ and the translate Ξb are tangentially degenerate along a
variety of a given dimension.
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1. Introduction

The Schottky problem asks for a characterization of Jacobian varieties among
all principally polarized abelian varieties. In other words, it asks for a descrip-
tion of the Jacobian locus Jg in the moduli space Ag of all principally polarized
abelian varieties of given dimension g. In the 1960’s Andreotti and Mayer (see
[2]) pioneered an approach based on the fact that the Jacobian variety of a
non-hyperelliptic (resp. hyperelliptic) curve of genus g ≥ 3 has a singular locus
of dimension g − 4 (resp. g − 3). They introduced the loci Ng,k of principally
polarized abelian varieties (X,ΘX) of dimension g with a singular locus of ΘX

of dimension ≥ k and showed that Jg (resp. the hyperelliptic locus Hg) is an
irreducible component of Ng,g−4 (resp. Ng,g−3). However, in general there are
more irreducible components of Ng,g−4 so that the dimension of the singular
locus of ΘX does not suffice to characterize Jacobians or hyperelliptic Jaco-
bians. The locus Ng,0 of abelian varieties with a singular theta divisor has
codimension 1 in Ag and in a beautiful paper (see [27]) Mumford calculated
its class. But in general not much is known about these Andreotti-Mayer loci
Ng,k. In particular, we do not even know their codimension. In this paper we
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give estimates for the codimension of these loci. These estimates are in general
not sharp, but we think that the following conjecture gives the sharp bound.

Conjecture 1.1. If 1 ≤ k ≤ g − 3 and if N is an irreducible component of
Ng,k whose general point corresponds to an abelian variety with endomorphism

ring Z then codimAg
(N) ≥

(

k+2
2

)

. Moreover, equality holds if and only if one
of the following happens:

(i) g = k + 3 and N = Hg;
(ii) g = k + 4 and N = Jg.

We give some evidence for this conjecture by proving the case k = 1. In our
approach we need to study the behaviour of the Andreotti-Mayer loci at the
boundary of the compactified moduli space. A principally polarized (g − 1)-
dimensional abelian variety (B,Ξ) parametrizes semi-abelian varieties that are
extensions of B by the multiplicative group Gm. This means that B maps
to a part of the boundary of the compactified moduli space Ãg and we can
intersect B with the Andreotti-Mayer loci. This motivates the definition of loci
Nk(B,Ξ) ⊂ B for a principally polarized (g − 1)-dimensional abelian variety
(B,Ξ). They are formed by the points b in B such that Ξ and its translate
Ξb are ‘tangentially degenerate’ (see Section 11 below) along a subvariety of
dimension k. These intrinsically defined subvarieties of an abelian variety are
interesting in their own right and deserve further study. The conjecture above
then leads to a boundary version that gives a new conjectural answer to the
Schottky problem for simple abelian varieties.

Conjecture 1.2. Let k ∈ Z≥1. Suppose that (B,Ξ) is a simple principally
polarized abelian variety of dimension g not contained in Ng,i for all i ≥ k.
Then there is an irreducible component Z of Nk(B,Ξ) with codimB(Z) = k+1
if and only if one of the following happens:

(i) either g ≥ 2, k = g − 2 and B is a hyperelliptic Jacobian,
(ii) or g ≥ 3, k = g − 3 and B is a Jacobian.

In our approach we will use a special compactification Ãg of Ag (see [29, 28, 5]).

The points of the boundary ∂Ãg = Ãg −Ag correspond to suitable compacti-
fications of g-dimensional semi-abelian varieties. We prove Conjecture 1.1 for
k = 1 by intersecting with the boundary. For higher values of k the intersection
with the boundary looks very complicated.

2. The universal theta divisor

Let π : Xg → Ag be the universal principally polarized abelian variety of
relative dimension g over the moduli space Ag of principally polarized abelian
varieties of dimension g over C. In this paper we will work with orbifolds and
we shall identify Xg (resp. Ag) with the orbifold Sp(2g,Z)⋉Z2g\Hg×Cg (resp.
with Sp(2g,Z)\Hg), where

Hg = {(τij) ∈ Mat(g × g,C) : τ = τ t, Im(τ) > 0}
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is the usual Siegel upper-half space of degree g. The τij with 1 ≤ i ≤ j ≤ g are
coordinates on Hg and we let z1, ..., zg be coordinates on Cg.
The Riemann theta function ϑ(τ, z), given on Hg × Cg by

ϑ(τ, z) =
∑

m∈Zg

eπi[mtτm+2mtz],

is a holomorphic function and its zero locus is an effective divisor Θ̃ on Hg×Cg

which descends to a divisor Θ on Xg. If the abelian variety X is a fibre of π,
then we let ΘX be the restriction of Θ to X . Note that since θ(τ, z) satisfies
θ(τ,−z) = θ(τ, z), the divisor ΘX is symmetric, i.e., ι∗(ΘX) = ΘX , where
ι = −1X : X → X is multiplication by −1 on X . The divisor ΘX defines
the line bundle OX(ΘX), which yields the principal polarization on X . The
isomorphism class of the pair (X,ΘX) represents a point ζ of Ag and we will
write ζ = (X,ΘX). Similarly, it will be convenient to identify a point ξ of Θ
with the isomorphism class of a representative triple (X,ΘX , x), where ζ =
(X,ΘX) represents π(ξ) ∈ Ag and x ∈ ΘX .
The tangent space to Xg at a point ξ, with π(ξ) = ζ, will be identified with the

tangent space TX,x⊕TAg,ζ
∼= TX,0⊕Sym2(TX,0). If ξ = (X,ΘX , x) corresponds

to the Sp(2g,Z) ⋉ Z2g-orbit of a point (τ0, z0) ∈ Hg × Cg, then the tangent
space TXg,ξ to Xg at ξ can be identified with the tangent space to Hg × Cg at

(τ0, z0), which in turn is naturally isomorphic to Cg(g+1)/2+g , with coordinates
(aij , bℓ) for 1 ≤ i, j ≤ g and 1 ≤ ℓ ≤ g that satisfy aij = aji. We thus view the
aij ’s as coordinates on the tangent space to Hg at τ0 and the bℓ’s as coordinates
on the tangent space to X or its universal cover.
An important remark is that by identifying the tangent space to Ag at

ζ = (X,ΘX) with Sym2(TX,0), we can view the projectivized tangent space

P(TAg,ζ) ∼= P(Sym2(TX,0)) as the linear system of all quadrics in the dual of

Pg−1 = P(TX,0). In particular, the matrix (aij) can be interpreted as the
matrix defining a dual quadric in the space Pg−1 with homogeneous coordi-
nates (b1 : . . . : bg). Quite naturally, we will often use (z1 : . . . : zg) for the
homogeneous coordinates in Pg−1.
Recall that the Riemann theta function ϑ satisfies the heat equations

∂

∂zi

∂

∂zj
ϑ = 2π

√
−1(1 + δij)

∂

∂τij
ϑ

for 1 ≤ i, j ≤ g, where δij is the Kronecker delta. We shall abbreviate this
equation as

∂i∂jϑ = 2π
√
−1(1 + δij)∂τij

ϑ,

where ∂j means the partial derivative ∂/∂zj and ∂τij
the partial derivative

∂/∂τij . One easily checks that also all derivatives of θ verify the heat equations.
We refer to [39] for an algebraic interpretation of the heat equations in terms
of deformation theory.
If ξ = (X,ΘX , x) ∈ Θ corresponds to the Sp(2g,Z) ⋉ Z2g-orbit of a point
(τ0, z0), then the Zariski tangent space TΘ,ξ to Θ at ξ is the subspace of TXg,ξ ≃
Cg(g+1)/2+g defined, with the above conventions, by the linear equation
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(1)
∑

1≤i≤j≤g

1

2π
√
−1(1 + δij)

aij ∂i∂jϑ(τ0, z0) +
∑

1≤ℓ≤g

bℓ ∂ℓϑ(τ0, z0) = 0

in the variables (aij , bℓ), 1 ≤ i, j ≤ g, 1 ≤ ℓ ≤ g. As an immediate consequence
we get the result (see [36], Lemma (1.2)):

Lemma 2.1. The point ξ = (X,ΘX , x) is a singular point of Θ if and only if x
is a point of multiplicity at least 3 for ΘX .

3. The locus Sg

We begin by defining a suborbifold of Θ supported on the set of points where
π|Θ fails to be of maximal rank.

Definition 3.1. The closed suborbifold Sg of Θ is defined on the universal
cover Hg × Cg by the g + 1 equations

(2) ϑ(τ, z) = 0, ∂jϑ(τ, z) = 0, j = 1, . . . , g.

Lemma 2.1 implies that the support of Sg is the union of Sing(Θ) and of the set
of smooth points of Θ where π|Θ fails to be of maximal rank. Set-theoretically
one has

Sg = {(X,ΘX , x) ∈ Θ : x ∈ Sing(ΘX)}
and codimXg

(Sg) ≤ g+ 1. It turns out that every irreducible component of Sg

has codimension g + 1 in Xg (see [8] and an unpublished preprint by Debarre
[9]). We will come back to this later in §7 and §8.
With the above identification, the Zariski tangent space to Sg at a given point
(X,ΘX , x) of Xg, corresponding to the Sp(2g,Z)-orbit of a point (τ0, z0) ∈
Hg × Cg, is given by the g + 1 equations

(3)

∑

1≤i≤j≤g

aij∂τij
ϑ(τ0, z0) = 0,

∑

1≤i≤j≤g

aij∂τij
∂kϑ(τ0, z0) +

∑

1≤ℓ≤g

bℓ∂ℓ∂kϑ(τ0, z0) = 0, 1 ≤ k ≤ g

in the variables (aij , bℓ) with 1 ≤ i, j, ℓ ≤ g. We will use the following notation:

(a) q is the row vector of length g(g + 1)/2, given by (∂τij
θ(τ0, z0)), with

lexicographically ordered entries;
(b) qk is the row vector of length g(g + 1)/2, given by (∂τij

∂kθ(τ0, z0)),
with lexicographically ordered entries;

(c) M is the g × g-matrix (∂i∂jϑ(τ0, z0))1≤i,j≤g .

Then we can rewrite the equations (3) as

(4) a · qt = 0, a · qt
k + b ·M t

k = 0, (k = 1, . . . , g),

where a is the vector (aij) of length g(g + 1)/2, with lexicographically ordered
entries, b is a vector in Cg and Mj the j-th row of the matrix M .
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In this setting, the equation (1) for the tangent space to TΘ,ξ can be written
as:

(5) a · qt + b · ∂ϑ(τ0, z0)
t = 0

where ∂ denotes the gradient.
Suppose now the point ξ = (X,ΘX , x) in Sg, corresponding to (τ0, z0) ∈ Hg×Cg

is not a point of Sing(Θ). By Lemma 2.1 the matrixM is not zero and therefore
we can associate to ξ a quadric Qξ in the projective space P(TX,x) ≃ P(TX,0) ≃
Pg−1, namely the one defined by the equation

b ·M · bt = 0.

Recall that b = (b1, . . . , bg) is a coordinate vector on TX,0 and therefore (b1 :
. . . : bg) are homogeneous coordinates on P(TX,0). We will say that Qξ is
indeterminate if ξ ∈ Sing(Θ).
The vector q naturally lives in Sym2(TX,0)

∨ and therefore, if q is not zero, the

point [q] ∈ P(Sym2(TX,0)
∨) determines a quadric in Pg−1 = P(TX,0). The heat

equations imply that this quadric coincides with Qξ.
Consider the matrix defining the Zariski tangent space to Sg at a point ξ =
(X,ΘX , x). We denote by r := rξ the corank of the quadric Qξ, with the
convention that rξ = g if ξ ∈ Sing(Θ), i.e., if Qξ is indeterminate. If we choose
coordinates on Cg such that the first r basis vectors generate the kernel of q
then the shape of the matrix A of the system (3) is

(6) A =















q 0g

q1 0g

...
qr 0g

∗ B















,

where q and qk are as above and B is a (g − r) × g-matrix with the first r
columns equal to zero and the remaining (g− r)× (g− r) matrix symmetric of
maximal rank.
Next, we characterize the smooth points ξ = (X,ΘX , x) of Sg. Before stating
the result, we need one more piece of notation. Given a non-zero vector b =
(b1, . . . , bg) ∈ TX,0, we set ∂b =

∑g
ℓ=1 bℓ∂ℓ. Define the matrix ∂bM as the

g × g-matrix (∂i∂j∂bϑ(τ0, z0))1≤i,j≤g . Then define the quadric ∂bQξ = Qξ,b of
P(TX,0) by the equation

z · ∂bM · zt = 0.

If z = ei is the i-th vector of the standard basis, one writes ∂iQξ = Qξ,i

instead of Qξ,ei
for i = 1, . . . , g. We will use similar notation for higher order

derivatives or even for differential operators applied to a quadric.

Definition 3.2. We let Qξ be the linear system of quadrics in P(TX,0) spanned
by Qξ and by all quadrics Qξ,b with b ∈ ker(Qξ).
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Since Qξ has corank r, the system Qξ is spanned by r+1 elements and therefore
dim(Qξ) ≤ r. This system may happen to be empty, but then Qξ is indeter-
minate, i.e., ξ lies in Sing(Θ). Sometimes we will use the lower suffix x instead
of ξ to denote quadrics and linear systems, e.g. we will sometimes write Qx

instead of Qξ, etc. By the heat equations, the linear system Qξ is the image of

the vector subspace of Sym2(TX,0)
∨ spanned by the vectors q, q1, . . . , qr.

Proposition 3.3. The subscheme Sg is smooth of codimension g+ 1 in Xg at
the point ξ = (X,ΘX , x) of Sg if and only if the following conditions hold:

(i) ξ /∈ Sing(Θ), i.e., Qξ is not indeterminate and of corank r < g;
(ii) the linear system Qξ has maximal dimension r; in particular, if

b1, . . . , br span the kernel of Qξ, then the r + 1 quadrics Qξ,
Qξ,b1 , . . . , Qξ,br

are linearly independent.

Proof. The subscheme Sg is smooth of codimension g+1 in Xg at ξ if and only
if the matrix A appearing in (6) has maximal rank g + 1. Since the submatrix
B of A has rank g − r, the assertion follows. �

Corollary 3.4. If Qξ is a smooth quadric, then Sg is smooth at ξ =
(X,ΘX , x).

4. Quadrics and Cornormal Spaces

Next we study the differential of the restriction to Sg of the map π : Xg → Ag at
a point ξ = (X,ΘX , x) ∈ Sg. We are interested in the kernel and the image of
dπ|Sg,ξ. We can view these spaces in terms of the geometry of Pg−1 = P(TX,0)
as follows:

Πξ = P(ker(dπ|Sg,ξ)) ⊆ P(TX,0)

is a linear subspace of P(TX,0) and

Σξ = P(Im(dπ|Sg,ξ)
⊥) ⊆ P(Sym2(TX,0)

∨)

is a linear system of quadrics in P(TX,0).
The following proposition is the key to our approach; we use it to view the
quadrics as elements of the conormal space to our loci in the moduli space.

Proposition 4.1. Let ξ = (X,ΘX , x) be a point of Sg. Then:

(i) Πξ is the vertex of the quadric Qξ. In particular, if ξ is a singular point
of Θ, then Πξ is the whole space P(TX,0);

(ii) Σξ contains the linear system Qξ.

Proof. The assertions follow from the shape of the matrix A in (6). �

This proposition tells us that, given a point ξ = (X,ΘX , x) ∈ Sg, the map
dπ|Sg,ξ is not injective if and only if the quadric Qξ is singular.
The orbifold Sg is stratified by the corank of the matrix (∂i∂jθ).
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Definition 4.2. For 0 ≤ k ≤ g we define Sg,k as the closed suborbifold of Sg

defined by the equations on Hg × Cg

(7)
ϑ(τ, z) = 0, ∂jϑ(τ, z) = 0, (j = 1, . . . , g),

rk
(

(∂i∂jϑ(τ, z))1≤i,j≤g

)

≤ g − k.

Geometrically this means that ξ ∈ Sg,k if and only if dim(Πξ) ≥ k − 1 or
equivalently Qξ has corank at least k. We have the inclusions

Sg = Sg,0 ⊇ Sg,1 ⊇ . . . ⊇ Sg,g = Sg ∩ Sing(Θ)

and Sg,1 is the locus where the map dπ|Sg,ξ is not injective. The loci Sg,k have
been considered also in [16].
We have the following dimension estimate for the Sg,k.

Proposition 4.3. Let 1 ≤ k ≤ g − 1 and let Z be an irreducible component of
Sg,k not contained in Sg,k+1. Then we have

codimSg
(Z) ≤

(

k + 1

2

)

.

Proof. Locally, in a neighborhood U in Sg of a point z of Z\Sg,k+1 we have
a morphism f : U → Q, where Q is the linear system of all quadrics in Pg−1.
The map f sends ξ = (X,ΘX , x) ∈ U to Qξ. The scheme Sg,k is the pull-
back of the subscheme Qk of Q formed by all quadrics of corank k. Since
codimQ(Qk) =

(

k+1
2

)

, the assertion follows. �

Using the equations (7) it is possible to make a local analysis of the schemes
Sg,k, e.g. it is possible to write down equations for their Zariski tangent spaces
(see §6 for the case k = g). This is however not particularly illuminating, and
we will not dwell on this here.
It is useful to give an interpretation of the points ξ = (X,ΘX , x) ∈ Sg,k in
terms of singularities of the theta divisor ΘX . Suppose that ξ is such that
Sing(ΘX) contains a subscheme isomorphic to Spec(C[ǫ]/(ǫ2)) supported at x.
This subscheme of X is given by a homomorphism

OX,x → C[ǫ]/(ǫ2), f 7→ f(x) + ∆(1)f(x) · ǫ,
where ∆(1) is a non-zero differential operator of order ≤ 1, hence ∆(1) = ∂b, for
some non-zero vector b ∈ Cg. Then the condition Spec(C[ǫ]/(ǫ2)) ⊂ Sing(ΘX)
is equivalent to saying that ϑ and ∂bϑ satisfy the equations

(8) f(τ0, z0) = 0, ∂jf(τ0, z0) = 0, 1 ≤ j ≤ g,

and this, in turn, is equivalent to the fact that the quadric Qξ is singular at
the point [b].
More generally, we have the following proposition, which explains the nature
of the points in Sg,k for k < g.

Proposition 4.4. Suppose that x ∈ Sing(ΘX) does not lie on Sing(Θ). Then
Sing(ΘX) contains a scheme isomorphic to Spec(C[ǫ1, . . . , ǫk]/(ǫiǫj : 1 ≤ i, j ≤
k < g)) supported at x if and only if the quadric Qξ has corank r ≥ k. Moreover,
the Zariski tangent space to Sing(ΘX) at x is the kernel space of Qξ.
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Proof. With a suitable choice of coordinates in X , the condition that the
scheme Spec(C[ǫ1, . . . , ǫk]/(ǫiǫj : 1 ≤ i, j ≤ k < g)) is contained in Sing(ΘX)
is equivalent to the fact that the functions ϑ and ∂iϑ for i = 1, . . . , k satisfy
(8). But this the same as saying that ∂i∂jϑ(τ0, z0) is zero for i = 1, . . . , k,
j = 1, . . . , g, and the vectors ei, i = 1, . . . , k, belong to the kernel of Qξ. This
settles the first assertion.
The scheme Sing(ΘX) is defined by the equations (2), where τ is now fixed
and z is the variable. By differentiating, and using the same notation as above,
we see that the equations for the Zariski tangent space to Sing(ΘX) at x are
∑g

i=1 bi∂i∂jϑ(τ0, z0), j = 1, . . . , g i.e., b · M = 0, which proves the second
assertion. �

5. Curvi-linear subschemes in the singular locus of theta

A 0-dimensional curvi-linear subscheme Spec(C[t]/(tN+1)) ⊂ X of length N+1
supported at x is given by a homomorphism

(9) δ : OX,x → C[t]/(tN+1), f 7→
N

∑

j=0

∆(j)f(x) · tj ,

with ∆(j) a differential operator of order ≤ j, j = 1, . . . , N , with ∆(N) non-
zero, and ∆(0)(f) = f(x). The condition that the map δ is a homomorphism
is equivalent to saying that

(10) ∆(k)(fg) =
k

∑

r=0

∆(r) f · ∆(k−r) g, k = 0, . . . , N

for any pair (f, g) of elements of OX,x. Two such homomorphisms δ and δ′

define the same subscheme if and only if they differ by composition with a
automorphism of C[t]/(tN+1).

Lemma 5.1. The map δ defined in (9) is a homomorphism if and only if there
exist translation invariant vector fields D1, . . . , DN on X such that for every
k = 1, . . . , N one has

(11) ∆(k) =
∑

h1+2h2+...+khk=k>0

1

h1! · · ·hk!
Dh1

1 · · ·Dhk

k .

Moreover, two N -tuples of vector fields (D1, . . . , DN ) and (D′
1, . . . , D

′
N) de-

termine the same 0-dimensional curvi-linear subscheme of X of length N + 1
supported at a given point x ∈ X if and only if there are constants c1, . . . , cN ,
with c1 6= 0, such that

D′
i =

i
∑

j=1

ci−j+1
j Dj, i = 1, . . . , N.

Proof. If the differential operators ∆(k), k = 1, . . . , N , are as in (11), one
computes that (10) holds, hence δ is a homomorphism.
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As for the converse, the assertion trivially holds for k = 1. So we proceed by

induction on k. Write ∆(k) =
∑k

i=1D
(k)
i , where D

(k)
i is the homogeneous part

of degree i, and write Dk instead of D
(k)
1 . Using (10) one verifies that for every

k = 1, . . . , N and every positive i ≤ k one has

iD
(k)
i =

k−i+1
∑

j=1

DjD
(k−j)
i−1 .

Formula (11) follows by induction and easy combinatorics.
To prove the final assertion, use the fact that an automorphism of C[t]/(tN+1)
is determined by the image c1t+ c2t

2 + . . .+ cN t
N of t, where c1 6= 0. �

In formula (11) one has hk ≤ 1. If ∆(1) = D1 then ∆(2) = 1
2D

2
1 +D2, ∆(3) =

(1/3!)D3
1 + (1/2)D1D2 +D3 etc.

Each non-zero summand in (11) is of the form (1/hi1 ! · · ·hiℓ
!)D

hi1

i1
· · ·Dhiℓ

iℓ
,

where 1 ≤ i1 < . . . < iℓ ≤ k, i1hi1 + . . .+ iℓhiℓ
= k and hi1 , . . . , hiℓ

are positive
integers. Thus formula (11) can be written as

(12) ∆(k) =
∑

{hi1 ,...,hiℓ
}

1

hi1 ! · · ·hiℓ
!
D

hi1

i1
· · ·Dhiℓ

iℓ
,

where the subscript {hi1 , . . . , hiℓ
} means that the sum is taken over all ℓ-tuples

of positive integers (hi1 , . . . , hiℓ
) with 1 ≤ i1 < · · · < iℓ ≤ k and i1hi1 + · · · +

iℓhiℓ
= k.

Remark 5.2. Let x ∈ X correspond to the pair (τ0, z0). The differential
operators ∆(k), k = 1, . . . , N , defined as in (11) or (12) have the following
property: if f is a regular function such that ∆(i) f satisfies (8) for all i =
0, . . . , k − 1, then one has ∆(k)f(τ0, z0) = 0.

We want now to express the conditions in order that a 0-dimensional curvi-
linear subscheme of X of length N + 1 supported at a given point x ∈ X
corresponding to the pair (τ0, z0) and determined by a given N -tuple of vec-
tor fields (D1, . . . , DN ) lies in Sing(ΘX). To do so, we keep the notation we
introduced above.
Let us write Di =

∑g
ℓ=1 ηiℓ∂ℓ, so that Di corresponds to the vector ηi =

(ηi1, . . . , ηig). As before we denote by M the matrix (∂i∂jθ(τ0, z0)).

Proposition 5.3. The 0-dimensional curvi-linear subscheme R of X of length
N + 1, supported at the point x ∈ X corresponding to the pair (τ0, z0) and
determined by the N -tuple of vector fields (D1, . . . , DN) lies in Sing(ΘX) if
and only if x ∈ Sing(ΘX) and moreover for each k = 1, . . . , N one has

(13)
∑

{hi1 ,...,hiℓ
}

1

hi1 ! · · ·hiℓ
!
ηiℓ

· ∂hi1
ηi1

· · · ∂hiℓ
−1

ηiℓ
M = 0,

where the sum is taken over all ℓ-tuples of positive integers (hi1 , . . . , hiℓ
) with

1 ≤ i1 < · · · < iℓ ≤ k and i1hi1 + · · · + iℓhiℓ
= k.

Documenta Mathematica 13 (2008) 453–504



462 Ciro Ciliberto, Gerard van der Geer

Proof. The scheme R is contained in Sing(ΘX) if and only if one has

∆(k)θ(τ0, z0) = 0, ∂j∆
(k)θ(τ0, z0) = 0 k = 0, . . . , N, j = 1, . . . , g.

By Remark 5.2 this is equivalent to

θ(τ0, z0) = 0, ∂j∆
(k)θ(τ0, z0) = 0 k = 0, . . . , N, j = 1, . . . , g.

The assertion follows by the expression (12) of the operators ∆(k). �

For instance, consider the scheme R1, supported at x ∈ Sing(ΘX), correspond-
ing to the vector field D1. Then R1 is contained in Sing(ΘX) if and only
if

(14) η1 ·M = 0.

This agrees with Proposition 4.4. If R2 is the scheme supported at x and
corresponding to the pair of vector fields (D1, D2), then R2 is contained in
Sing(ΘX) if and only if, besides (14) one has also

(15) (1/2)η1 · ∂η1M + η2 ·M = 0.

Next, consider the scheme R3 supported at x and corresponding to the triple
of vector fields (D1, D2, D3). Then R3 is contained in Sing(ΘX) if and only if,
besides (14) and (15) one has also

(16) (1/3!)η1 · ∂2
η1
M + (1/2)η2 · ∂η1M + η3 ·M = 0

and so on. Observe that (13) can be written in more than one way. For example
η2 · ∂η1M = η1 · ∂η2M so that (16) could also be written as

(1/3!)η1 · ∂2
η1
M + (1/2)η1 · ∂η2M + η3 ·M = 0.

So far we have been working in a fixed abelian variety X . One can remove
this restriction by working on Sg and by letting the vector fields D1, . . . , DN

vary with X , which means that we let the vectors ηi depend on the variables
τij . Then the equations (13) define a subscheme Sg(D) of Sing(Θ) which, as a
set, is the locus of all points ξ = (X,ΘX , x) ∈ Sg such that Sing(ΘX) contains
a curvi-linear scheme of length N + 1 supported at x, corresponding to the
N -tuple of vector fields D = (D1, . . . , DN), computed on X .
One can compute the Zariski tangent space to Sg(D) at a point ξ = (X,ΘX , x)
in the same way, and with the same notation, as in §3. This gives in general a
complicated set of equations. However we indicate one case in which one can
draw substantial information from such a computation. Consider indeed the
case in which D1 = . . . = DN 6= 0, and call b the corresponding tangent vector
to X at the origin, depending on the the variables τij . In this case we use
the notation Db,N = (D1, . . . , DN) and we denote by Rx,b,N the corresponding
curvi-linear scheme supported at x. For a given such D = (D1, . . . , DN),
consider the linear system of quadrics

Σξ(D) = P(Im(dπ|Sg(D),ξ)
⊥)

in P(TX,0). One has again an interpretation of these quadrics in terms of the
normal space:
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Proposition 5.4. In the above setting, the space Σξ(Db,N ) contains the
quadrics Qξ, ∂bQξ, . . . , ∂

N
b Qξ.

Proof. The equations (13) take now the form

θ(τ, z) = 0, ∂iθ(τ, z) = 0, i = 1, . . . , g

b ·M = b · ∂bM = · · · = b · ∂N−1
b M = 0.

By differentiating the assertion immediately follows. �

6. Higher multiplicity points of the theta divisor

We now study the case of higher order singularities on the theta divisor. For
a multi-index I = (i1, . . . , ig) with i1, . . . , ig non-negative integers we set zI =

zi1
1 · · · zig

g and denote by ∂I the operator ∂i1
1 · · · ∂ig

g . Moreover, we let |I| =
∑g

ℓ=1 iℓ, which is the length of I and equals the order of the operator ∂I .

Definition 6.1. For a positive integer r we let S
(r)
g be the subscheme of Xg

which is defined on Hg × Cg by the equations

(17) ∂Iϑ(τ, z) = 0, |I| = 0, . . . , r − 1.

One has the chain of subschemes

. . . ⊆ S(r)
g ⊆ . . . ⊆ S(3)

g ⊆ S(2)
g = Sg ⊂ S(1)

g = Θ

and as a set S
(r)
g = {(X,ΘX , x) ∈ Θ : x has multiplicity ≥ r for ΘX}. One

denotes by Sing(r)(ΘX) the subscheme of Sing(ΘX) formed by all points of

multiplicity at least r. One knows that S
(r)
g = ∅ as soon as r > g (see [37]).

We can compute the Zariski tangent space to S
(r)
g at a point ξ = (X,ΘX , x)

in the same vein, and with the same notation, as in §3. Taking into account
that θ and all its derivatives verify the heat equations, we find the equations
by replacing in (3) the term θ(τ0, z0) by ∂Iθ(τ0, z0).
As in §3, we wish to give some geometrical interpretation. For instance, we
have the following lemma which partially extends Lemma 2.1 or 3.3.

Lemma 6.2. For every positive integer r the scheme S
(r+2)
g is contained in the

singular locus of S
(r)
g .

Next we are interested in the differential of the restriction of the map π : Xg →
Ag to S

(r)
g at a point ξ = (X,ΘX , x) which does not belong to S

(r+1)
g . This

means that ΘX has a point of multiplicity exactly r at x. If we assume, as we
may, that x is the origin of X , i.e. z0 = 0, then the Taylor expansion of θ has
the form

ϑ =
∞
∑

i=r

ϑi,

where ϑi is a homogeneous polynomial of degree i in the variables z1, . . . , zg

and

θr =
∑

I=(i1,...,ig),|I|=r

1

i1! · · · ig!
∂Iθ(τ0, z0)z

I
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is not identically zero. The equation θr = 0 defines a hypersurface TCξ of
degree r in Pg−1 = P(TX,0), which is the tangent cone to ΘX at x.
We will denote by Vert(TCξ) the vertex of TCξ, i.e., the subspace of Pg−1

which is the locus of points of multiplicity r of TCξ. Note that it may be
empty. In case r = 2, the tangent cone TCξ is the quadric Qξ introduced in §3
and Vert(TCξ) is its vertex Πξ.

More generally, for every s ≥ r, one can define the subscheme TC
(s)
ξ = TC

(s)
x

of Pg−1 = P(TX,0) defined by the equations

θr = . . . = θs = 0,

which is called the asymptotic cone of order s to ΘX at x.
Fix a multi-index J = (j1, . . . , jg) of length r − 2. For any pair (h, k) with
1 ≤ h, k ≤ g, let J(h,k) be the multi-index of length r obtained from J by first
increasing by 1 the index jh and then by 1 the index jk (that is, by 2 if they
coincide). Consider then the quadric QJ

ξ in Pg−1 = P(TX,0) defined by the
equation

qJ
ξ (z) :=

∑

1≤h,k≤g

∂J(h,k)
θ(τ0, z0)zhzk = 0

with the usual convention that the quadric is indeterminate if the left-hand-side
is identically zero. This is a polar quadric of TCξ, namely it is obtained from
TCξ by iterated operations of polarization. Moreover all polar quadrics are in

the span 〈QJ
ξ , |J | = r−2〉. We will denote by Q(r)

ξ the span of all quadrics QJ
ξ ,

|J | = r − 2 and ∂bQ
J
ξ , |J | = r − 2, with equation

∑

1≤i,j≤g

∂b∂J(h,k)
θ(τ0, z0)zizj = 0,

for every non-zero vector b ∈ Cg such that [b] ∈ Vert(TCξ).
We are now interested in the kernel and the image of dπ

|S
(r)
g ,ξ

. Equivalently we

may consider the linear system of quadrics Σ
(r)
ξ = P(Im(dπ

|S
(r)
g ,ξ

)⊥), and the

subspace Π
(r)
ξ = P(ker(dπ

|S
(r)
g ,ξ

)) of P(TX,0). The following proposition partly

extends Proposition 4.1 and 4.4 and its proof is similar.

Proposition 6.3. Let ξ = (X,ΘX , x) be a point of S
(r)
g . Then:

(i) Π
(r)
ξ = Vert(TCξ). In particular, if ξ ∈ S

(r+1)
g , then Π

(r)
ξ is the whole

space P(TX,0);

(ii) Σ
(r)
ξ contains the linear system Q(r)

ξ .

Remark 6.4. As a consequence, just like in Proposition 4.4, one sees that for

ξ = (X,ΘX , x) the Zariski tangent space to Sing(r)(ΘX) at x is contained in
Vert(TCξ).

As an application, we have:
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Proposition 6.5. Let ξ = (X,ΘX , x) be a point of a component Z of S
(3)
g such

that TCξ is not a cone. Then dim(Q(3)
ξ ) = g− 1 and therefore the codimension

of the image of Z in Ag is at least g.

Proof. Since TCξ is a not a cone its polar quadrics are linearly independent. �

The following example shows that the above bound is sharp for g = 5.

Example 6.6. Consider the locus C of intermediate Jacobians of cubic three-
folds in A5. Note that dim(A5) = 15 and dim(C) = 10. These have (at least) an
isolated triple point on their theta divisor whose tangent cone gives back the cu-

bic threefold. The locus C is dominated by an irreducible component of S
(3)
5 for

which the estimate given in Proposition 6.5 is sharp. Cf. [6] where Casalaina-
Martin proves that the locus of intermediate Jacobians of cubic threefolds is
an irreducible component of the locus of principally polarized abelian varieties
of dimension 5 with a point of multiplicity ≥ 3.

7. The Andreotti–Mayer loci

Andreotti and Mayer consider in Ag the algebraic sets of principally polarized
abelian varieties X with a locus of singular points on ΘX of dimension at least
k. More generally, we are interested in the locus of principally polarized abelian
varieties possessing a k-dimensional locus of singular points of multiplicity r
on the theta divisor. To define these loci scheme-theoretically we consider the
morphism π : Xg → Ag and the quasi-coherent sheaf on Ag

F (r)
k =

g−2
⊕

i=k

Riπ∗OS
(r)
g
.

Definition 7.1. For integers k and r with 0 ≤ k ≤ g − 2 and 2 ≤ r ≤ g

we define Ng,k,r as the support of F (r)
k . We also set Mg,k,r = π−1(Ng,k,r),

a subscheme of both Sg,k and S
(r)
g . We write Ng,k and Mg,k for Ng,k,2 and

Mg,k,2.

The schemes Ng,k are the so-called Andreotti–Mayer loci in Ag, which were
introduced in a somewhat different way in [2].
Note that Ng,k,r is locally defined by an annihilator ideal and so carries the
structure of subscheme. Corollary 8.12 below and results by Debarre [11] (see
§19) imply that the scheme structure at a general point of Ng,0 defined above
coincides with the one considered by Mumford in [27].
We now want to see that as a set Ng,k,r is the locus of points corresponding to
(X,ΘX) such that Sing(ΘX) has an irreducible component of dimension ≥ k
of points of multiplicity ≥ r for ΘX .

Lemma 7.2. Let X be an abelian variety of dimension g and W ⊂ X an
irreducible reduced subvariety of dimension n and let ωW be its dualizing sheaf.
Then H0(W,ωW ) 6= (0).
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Proof. Let f : W ′ → W be the normalization of W . We first claim the
inequality h0(W ′, ωW ′) ≤ h0(W,ωW ). To see this, note that by [24], p.
48 ff (see also [17], Exerc. 6.10, p. 239, 7.2, p. 249), there exists a map
f∗ωW ′ → Hom(f∗OW ′ , ωW ), hence a map

H0(W ′, ωW ′) → H0(W,Hom(f∗OW ′ , ωW )).

Now OW → f∗OW ′ is an injection and therefore H0(W,Hom(f∗OW ′ , ωW )
maps to H0(W,Hom(OW , ωW )) and we thus get a map H0(W ′, ωW ′) →
H0(W,ωW ) which is injective as one sees by looking at the smooth part of
W .
Let W̃ be a desingularization of W ′. According to [22] we have h0(W̃ ,Ωn

W̃
) ≤

h0(W ′, ωW ′). Since W̃ maps to X we have h0(W̃ ,Ω1
W̃

) ≥ n. If h0(W̃ ,Ωn
W̃

) were

0 then ∧nH0(W̃ ,Ω1
W̃

) → H0(W̃ ,Ωn
W̃

) would be the zero map contradicting the
fact that W has dimension n. �

Corollary 7.3. We have (X,ΘX) ∈ Ng,k,r if and only if dim(Sing(r)(ΘX)) ≥
k.

Proof. By the previous lemma and Serre duality for a reduced irreducible sub-
variety W of dimension m in X it follows that Hm(W,OW ) 6= (0) and we know
Hk(W,OW ) = (0) for k > m. This implies the corollary. �

There are the inclusions

Ng,k,r ⊆ Ng,k,r−1, Ng,k,r ⊆ Ng,k−1,r.

If p = (n1, . . . , nr) with 1 ≤ n1 ≤ . . . ≤ nr < g and n1 + . . . + nr = g is a
partition of g we write Ag,p for the suborbifold (or substack) of Ag correspond-
ing to principally polarized abelian varieties that are a product of r principally
polarized abelian varieties of dimensions n1, . . . , nr. We write r(p) = r for the
length of the partition and write Ag,[r] for the suborbifold ∪r(p)=rAg,p of Ag

corresponding to pairs (X,ΘX) isomorphic as a polarized abelian variety to the
product of r principally polarized abelian varieties. One has the stratification

Ag,[g] ⊂ Ag,[g−1] ⊂ · · · ⊂ Ag,[2].

We will denote by:
i) Πg = ∪r≥2Ag,r = Ag,[2] the locus of decomposable principally polarized
abelian varieties;

ii) A(ns)
g the locus of classes of non-simple abelian varieties, i.e., of principally

polarized abelian varieties of dimension g which are isogenous to a product of
abelian varieties of dimension smaller that g;
iii) AEnd6=Z

g the locus of classes of singular abelian varieties, i.e., of principally
polarized abelian varieties whose endomorphism ring is larger than Z.

Remark 7.4. Note the inclusions Πg ⊂ A(ns)
g ⊂ AEnd 6=Z

g . The locus Πg is re-
ducible with irreducible components Ag,p with p running through the partitions
g = (i, g− i) of g for 1 ≤ i ≤ g/2 and we have codimAg

(Ag,(i,g−i)) = i(g− i). In

contrast to this AEnd6=Z
g and A(ns)

g are the union of infinitely countably many
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irreducible closed subsets of Ag of codimension at least g − 1, the minimum
codimension being achieved for families of abelian varieties that are isogenous
to products of an elliptic curve with an abelian variety of dimension g − 1
(compare with [7]).

We recall a result from [20] and the main result from [12].

Theorem 7.5. For every integer r with 2 ≤ r ≤ g one has:

(i) Ng,k,r = ∅ if k > g − r;
(ii) Ng,g−r,r = Ag,[r], i.e., (X,ΘX) ∈ Ng,g−r,r is an r-fold product.

Hence, for every integer r such that 2 ≤ r ≤ g, one has the stratification

Ng,0,r ⊃ Ng,1,r ⊃ . . . ⊃ Ng,k,r ⊃ . . . ⊃ Ng,g−r,r = Ag,[r],

whereas for every integer k such that 0 ≤ k ≤ g − 2, one has the stratification

Ng,k,2 ⊃ Ng,k,3 ⊃ . . . ⊃ Ng,k,r ⊃ . . . ⊃ Ng,k,g−k = Ag,[g−k].

8. Lower bounds for the codimension of Andreotti-Mayer loci

The results in the previous sections give information about the Zariski tangent
spaces to these loci and this will allow us to prove bounds on the dimension of
the Andreotti–Mayer loci, which is our main objective in this paper.
We start with the results on tangent spaces. We need some notation.

Definition 8.1. Let ζ = (X,ΘX) represent a point in Ng,k,r. By Lg,k,r(ζ) we
denote the linear system of quadrics P(T⊥

Ng,k,r ,ζ), where TNg,k,r ,ζ is the Zariski

tangent space and where we view P(TAg,ζ
) as a space of quadrics as in Section

2. As usual, we may drop the index r if r = 2 and write Lg,k(ζ) for Lg,k,2(ζ).

Notice that

dimζ(Ng,k,r) ≤
(

g + 1

2

)

− dim(Lg,k(ζ)) + 1.

Definition 8.2. For ζ = (X,ΘX) ∈ Ng,k,r we denote by Sing(k,r)(ΘX) the
locally closed subset

Sing(k,r)(ΘX) = {x ∈ Sing(ΘX) : dimx(Sing(r)(ΘX)) ≥ k}.
Moreover, we define Q(k,r)

ζ to be the linear system of quadrics in Pg−1 = P(TX,0)

spanned by the union of all linear systems Q(r)
ξ with ξ = (X,ΘX , x) and x ∈

Sing(k,r)(ΘX).

Propositions 4.1 and 6.3 imply the following basic tool for giving upper bounds
on the dimension of the Andreotti–Mayer loci.

Proposition 8.3. Let N be an irreducible component of Ng,k,r with its re-
duced structure. If ζ = (X,ΘX) is a general point of N then the projectivized
conormal space to N at ζ, viewed as a subspace of P(Sym2(T∨

X,0)), contains the

linear system Q(k,r)
ζ .
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Proof. Let M be an irreducible component of π∗N in S
(r)
g,k. If ξ is smooth

point of M then the image of the Zariski tangent space to M at ξ under dπ is

orthogonal to Q(r)
ξ for all x ∈ Singk,r(ΘX). Since we work in characteristic 0

the map dπ is surjective on the tangent spaces for general points m ∈ M and
π(m) ∈ N . Therefore the result follows from Propositions 4.1 and 6.3. �

We need a couple of preliminary results. First we state a well-known fact,
which can be proved easily by a dimension count.

Lemma 8.4. Every hypersurface of degree d ≤ 2n−3 in Pn with n ≥ 2 contains
a line.

Next we prove the following:

Lemma 8.5. Let V in Ps be a hypersurface of degree d ≥ 3. If all polar quadrics
of V coincide, then V is a hyperplane H counted with multiplicity d, and the
polar quadrics coincide with 2H.

Proof. If d = 3 the assertion follows from general properties of duality (see [41],
p. 215) or from an easy calculation.
If d > 3, then the result, applied to the cubic polars of V , tells us that all these
cubic polars are equal to 3H , where H is a fixed hyperplane. This immediately
implies the assertion. �

The next result has been announced in [8].

Theorem 8.6. Let g ≥ 4 and let N be an irreducible component of Ng,k not
contained in Ng,k+1. Then:

(i) for every positive integer k ≤ g − 3, one has codimAg
(N) ≥ k + 2,

whereas codimAg
(N) = g − 1 if k = g − 2;

(ii) if N is contained in Ng,k,r with r ≥ 3, then codimAg
(N) ≥ k + 3;

(iii) if g − 4 ≥ k ≥ g/3, then codimAg
(N) ≥ k + 3.

Proof. By Theorem 7.5 and Remark 7.4, we may assume k < g − 2. By def-
inition, there is some irreducible component M of π−1

Sg
(N) with dim(M) =

dim(N)+k which dominates N via π. We can take a general point (X,ΘX , z) ∈
M so that ζ = (X,ΘX) is a general point in N . By Remark 7.4 we may assume
X is simple.
Let R be the unique k-dimensional component of π−1

|Sg
(ζ) containing (X,ΘX , z).

Its general point is of the form ξ = (X,ΘX , x) with x the general point of the
unique k-dimensional component of Sing(ΘX) containing z, and x has multi-
plicity r on ΘX . By abusing notation, we may still denote this component by
R. Proposition 6.3 implies that the linear system of quadrics P(T⊥

N,ζ) contains

all polar quadrics of TCξ with ξ = (X,ΘX , x) ∈ R.
Thus we have a rational map

φ : (Pg−1)r−2 × R 99K Q(r)
ζ

which sends the general point (b, ξ) := (b1, . . . , br−2, ξ) to the polar quadric
Qb,ξ of TCξ with respect to b1, . . . , br−2. It is useful to remark that the quadric
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Qb,ξ is a cone with vertex containing the projectivized Zariski tangent space to
R at x (see Remark 6.4).

Claim 8.7 (The finiteness property). For each b ∈ (Pg−1)r−2 the map φ re-
stricted to {b} ×R has finite fibres.

Proof of the claim. Suppose the assertion is not true. Then there is an irre-
ducible curve Z ⊆ R such that, for ξ = (X,ΘX , x) corresponding to the general
point in Z, one has Qb,ξ = Q. Set Π = Vert(Q), which is a proper subspace of
Pg−1.
Consider the Gauss map

γ = γZ : Z 99K Pg−1 = P(TX,0)

which associates to a smooth point of Z its projectivized tangent space. Then
Proposition 6.3 implies that γ(ξ) ∈ R ⊆ Vert(Qξ) = Π. Thus γ(Z) is degener-
ate in Pg−1 and this yields that X is non-simple, cf. [31]. This is a contradiction
which proves the claim. �

Claim 8.7 implies that the image of the map φ has dimension at least k, hence
codimAg

(Ng,k) ≥ k + 1. To do better we need the following information.

Claim 8.8 (The non-degeneracy property). The image of the map φ does not
contain any line.

Proof of the claim. Suppose the claim is false. Take a line L in the image of
the map φ, and let L be the corresponding pencil of quadrics. By Proposition
6.3 and Remark 6.4, the general quadric in L has rank ρ ≤ g − k. Then part
(i) of Segre’s Theorem 21.2 in §21 below implies that the Gauss image γ(Z) of
any irreducible component of the curve Z = φ−1(L) is degenerate. This again
leads to a contradiction. This proves the claim. �

Claim 8.8 now implies that the image of φ spans a linear space of dimension at
least k + 1, hence (i) follows.

To prove part (ii) we now want to prove that dim(Q(r)
ζ ) > k + 1. Remember

that the image of φ has dimension at least k by Claim 8.7. If the image has
dimension at least k+1, then by Claim 8.8 it cannot be a projective space and

therefore dim(Q(r)
ζ ) > k + 1. So we can assume that the image has dimension

k. Therefore each component of the fibre FQ over a general point Q in the
image has dimension (g − 1)(r − 2).
Consider now the projection of FQ to R. If the image is positive-dimensional
then there is a curve Z in R such that the image of the Gauss map of Z is
contained in the vertex of Q. Then X is non-simple, a contradiction (see the
proof of Claim 8.7).
Therefore the image of FQ on R is constant, equal to a point ξ, hence FQ =
(Pg−1)r−2×{ξ}. By Lemma 8.5 there is a hyperplane Hξ such that TCξ = rHξ,
and Q = 2Hξ. Therefore we have a rational map

ψ : R 99K Pg−1∨
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sending ξ to Hξ. We notice that the image of φ is then equal to the 2-Veronese
image if the image of ψ.
By Claim 8.7, the map ψ has finite fibres. By an argument as in Claim 8.8,
we see that the image of ψ does not contain a line, hence is not a linear space.
Thus it spans a space of dimension s ≥ k+1. Then its 2-Veronese image, which
is the image of φ spans a space of dimension at least 2s ≥ 2k + 2 > k + 2.
To prove part (iii), by part (ii), we can assume r = 2. It suffices to show that

dim(Qζ) > k + 1, where Qζ := Q(2)
ζ . Suppose instead that dim(Qζ) = k + 1

and set Σ = φ(R). We have to distinguish two cases:

(a) not every quadric in Qζ is singular;
(b) the general quadric in Qζ is singular, of rank g − ρ < g.

In case (a), consider the discriminant ∆ ⊂ Qζ , i.e. the scheme of singular
quadrics in Qζ. This is a hypersurface of degree g, which, by Proposition 4.4,
contains Σ with multiplicity at least k. Thus deg(Σ) ≤ g/k ≤ 3 and Σ contains
some line, so that we have the corresponding pencil L of singular quadrics. By
Claim 8.8, one arrives at a contradiction.
Now we treat case (b). Let g− h be the rank of the general quadric in Σ. One
has g − h ≤ g − k, hence k ≤ h. Moreover one has g − h ≤ g − ρ, i.e. ρ ≤ h.
Suppose first ρ = h, hence ρ ≥ k. Let s be the dimension of the subspace

Π :=
⋂

Q∈Qζ ,rk(Q)=g−ρ

Vert(Q).

By applying part (iii) of Segre’s Theorem 21.2 to a general pencil contained in
Qζ , we deduce that

(18) 3ρ ≤ g + 2s+ 2.

Claim 8.9. One has s < r − k.

Proof. Suppose s ≥ ρ− k. If Π′ is a general subspace of Π of dimension ρ− k,
then its intersection with P(TR,x), where x ∈ R is a general point, is not empty.
Since ρ− k < g − k and X is simple, this is a contradiction (see [31], Lemma
II.12). �

By (18) and Claim 8.9 we deduce that ρ + 2k ≤ g and therefore 3k ≤ g, a
contradiction.
Suppose now ρ < h. Then part (iv) of Segre’s Theorem 21.2 yields

deg(Σ) ≤ g − 2 − ρ

h− ρ
.

The right-hand-side is an increasing function of ρ, thus deg(Σ) ≤ g − h − 1 ≤
2k − 1 because g ≤ 3k ≤ 2k + h. By Lemma 8.4 the locus Σ contains a line,
and we can conclude as in the proof of the non-degeneracy property 8.8.

�

The following corollary was proved independently by Debarre [9] and includes
a basic result by Mumford [27].
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Corollary 8.10. Let g ≥ 4. Then:

(i) every irreducible component S of Sg has codimension g+1 in Xg, hence
Sg is locally a complete intersection in Xg;

(ii) if ξ = (X,ΘX , x) is a general point of S, then either ΘX has isolated
singularities or (X,ΘX) is a product of an elliptic curve with a princi-
pally polarized abelian variety of dimension g − 1;

(iii) every irreducible component N of Ng,0 has codimension 1 in Ag;
(iv) if (X,ΘX) ∈ N is a general element of an irreducible component N

of Ng,0, then ΘX has isolated singularities. Moreover for every point
x ∈ Sing(ΘX), the quadric Qx is smooth and independent of x.

Proof. Take an irreducible component S of Sg and let N be its image via the
map π : Xg → Ag. Then there is a maximal integer k ≤ g − 2 such that N is
contained in Ng,k. Suppose first that 1 ≤ k ≤ g− 3. Then by Theorem 8.6 the
codimension of N in Ag is at least k+ 2. This implies that the codimension of
S in Xg is at least g + 2, which is impossible because Sg is locally defined in
Xg by g + 1 equations.
Then either k = 0 or k = g − 2. In the former case S maps to an irreducible
component N of Ng,0 which is a proper subvariety of codimension 1 in Ag.
If k = g − 2, then by Theorem 7.5 the polarized abelian variety (X,ΘX) is a
product of principally polarized abelian varieties. The resulting abelian variety
has a vanishing thetanull and so N is contained in the divisor of a modular
form (a product of thetanulls, cf. e.g. [27], p. 370) which is a component of
Ng,0. Assertions (i)–(iii) follow by a dimension count (see Remark 7.4). Part
(iv) follows by Propositions 4.1 and 8.3. �

Finally, we show a basic property of Sg.

Theorem 8.11. The locus Sg is reduced.

Proof. The assertion is well-known for g ≤ 3, using the theory of curves. We
may assume g ≥ 4.
Let S be an irreducible component of Sg, let N = π(S) and k ≤ g − 2 the
maximal integer such that N is contained in Ng,k. As in the proof of Corollary
8.10, one has either k = 0 or k = g − 2. Assume first k = 0, and let ξ =
(X,ΘX , x) ∈ S be a general point. We are going to prove that Sing(ΘX) is
reduced of dimension 0.
First we prove that x has multiplicity 2 for ΘX . Suppose this is not the
case and x has multiplicity r ≥ 3. Since Ng,0 has codimension 1 all polar
quadrics of TCξ are the same quadric, say Q (see Proposition 6.3 and 8.3).
By Lemma 8.5 the tangent cone TCξ is a hyperplane H with multiplicity r.
Again by Proposition 6.3 all the derivatives of Q with respect to points b ∈
H coincide with Q. By Proposition 5.3 the scheme Db,2 supported at x is
contained in Sing(ΘX). By taking into account Proposition 5.4 and repeating
the same argument we see that this subscheme can be indefinitely extended
to a 1-dimensional subscheme, containing x and contained in Sing(ΘX). This
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implies that the corresponding component of Ng,0 is contained in Ng,1, which
is not possible since the codimension of Ng,1 is at least 3.
If x has multiplicity 2 the same argument shows that the quadric Qξ is smooth.
By Corollary 3.4, ξ is a smooth point of Sg and this proves the assertion.
Suppose now that k = g− 2. Then by Theorem 7.5 N is contained in the locus
of products Ag,(1,g−1), and for dimension reasons it is equal to it and then the
result follows from a local analysis with theta functions. �

The following corollary is due to Debarre ([11]).

Corollary 8.12. If (X,ΘX) is a general point in a component of Ng,0 then
ΘX has finitely many double points with the same tangent cone which is a
smooth quadric.

9. A conjecture

As shown in [8], part (i) of Theorem 8.6 is sharp for k = 1 and g = 4 and
5. However, as indicated in [8], it is never sharp for k = 1 and g ≥ 6, or for
k ≥ 2. In [8] we made the following conjecture, which is somehow a natural
completion of Andreotti–Mayer’s viewpoint in [2] on the Schottky problem.
Recall the Torelli morphism tg : Mg → Ag which maps the isomorphism class
of a curve C to the isomorphism class of its principally polarized Jacobian
(J(C),ΘC). As a map of orbifolds it is of degree 2 for g ≥ 3 since the general
abelian variety has an automorphism group of order 2 and the general curve
one of order 1. We denote by Jg the jacobian locus in Ag, i.e., the Zariski
closure of tg(Mg) in Ag and by Hg the hyperelliptic locus in Ag, that is, the
Zariski closure in Ag of tg(Hg), where Hg is the closed subset of Mg consisting
of the isomorphism classes of the hyperelliptic curves. By Torelli’s theorem we
have dim(Jg) = 3g − 3 and dim(Hg) = 2g − 1 for g ≥ 2.

Conjecture 9.1. If 1 ≤ k ≤ g − 3 and if N is an irreducible component of
Ng,k not contained in AEnd 6=Z

g , then codimAg
(N) ≥

(

k+2
2

)

. Moreover, equality
holds if and only if one of the following happens:

(i) g = k + 3 and N = Hg;
(ii) g = k + 4 and N = Jg.

By work of Beauville [4] and Debarre [11] the conjecture is true for g = 4 and
g = 5. Debarre [10, 11] gave examples of components of Ng,k for which the
bound in Conjecture 9.1 for the codimension in Ag fails, but they are contained
in AEnd 6=Z

g , since the corresponding abelian varieties are isogenous to products.
Our main objective in this paper will be to prove the conjecture for k = 1.

Remark 9.2. The question about the dimension of the Andreotti–Mayer loci
is related to the one about the loci Sg,k introduced in §3. Note that Mg,k =
π∗(Ng,k) is a subscheme of Sg,k. Let N be an irreducible component of Ng,k not
contained in Ng,k+1, let M be the irreducible component of Mg,k dominating
N and let Z be an irreducible component of Sg,k containing M . We now
give a heuristic argument. Recalling Proposition 4.3, we can consider Z to be
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well-behaved if codimSg
(Z) =

(

k+1
2

)

. Since M is contained in Z, one has also

codimSg
(M) ≥

(

k+1
2

)

and therefore codimAg
(N) ≥

(

k+2
2

)

, which is the first
assertion in Conjecture 9.1. In this setting, the equality holds if and only if Z
is well-behaved and M = Z.
On the other hand, since M is got from Z by imposing further restrictions, one
could expect that M is, in general, strictly contained in Z and therefore that
codimAg

(N) >
(

k+2
2

)

.
In this circle of ideas, it is natural to ask if Jg [resp. Hg] is dominated by a
well-behaved component of Sg,g−4 [resp. Sg,g−3]. This is clearly the case if
g = 4.
A second, related, question is whether Jg [resp. Hg] is contained in some irre-

ducible subvariety of codimension c <
(

g−2
2

)

[resp. c <
(

g−1
2

)

] in Ag, whose gen-
eral point corresponds to a principally polarized abelian variety (X,ΘX) with
Sing(ΘX) containing a subscheme isomorphic to Spec(C[ǫ1, . . . , ǫk]/(ǫiǫj : 1 ≤
i, j ≤ k)) with k = g − 4 [resp. k = g − 3].
One might be tempted to believe that an affirmative answer to the first question
implies a negative answer to the second. This is not the case. Indeed H4

is contained in the locus of Jacobians of curves with an effective even theta
characteristic. In this case S4,1 has two well-behaved irreducible components
of dimension 8, one dominating H4 with fibres of dimension 1, the other one
dominating J4 ∩ θ4,0, where θ4,0 is the theta-null locus, see §19 and §10 below
and [16]. These two components intersect along a 7-dimensional locus in S4

which dominates H4.
Note that it is not always the case that a component of Sg,k is well-behaved.
For example, there is an irreducible component of Sg,g−2, the one dominating
Ag,(1,g−1), which is also an irreducible component of Sg.

10. An Example for Genus g = 4

In this section we illustrate the fact that the quadrics associated to the singu-
larities of the theta divisor may provide more information than obtained above.
The locus S4 in the universal family X4 consists of three irreducible compo-
nents: i) one dominating θ0,4, the locus of abelian varieties with a vanishing
theta-null; we call it A; ii) one dominating the Jacobian locus J4; we call it
B; iii) one dominating A4,(3,1), the locus of products of an elliptic curve with a
principally polarized abelian variety of dimension 3.
The components A and B have codimension 5 in X4 and they intersect along a
locus C of codimension 6. The image of C in A4 is the locus of Jacobians with a
half-canonical g1

3 . The quadric associated to the singular point of order 2 of X
in ΘX has corank 1 at a general point. We refer to [16] for a characterization
of the intersection θ0,4 ∩ J4.

Proposition 10.1. If ξ = (X,ΘX , x) is a point of C then Sing(ΘX) contains
a scheme of length 3 at x.

Proof. The scheme Sing(ΘX) contains a scheme Spec(C[ǫ]) at x, say corre-
sponding to the tangent vector D1 ∈ ker qx, cf. Section 5. In order that ξ be a
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singular point of S4, the quadrics q and q1 associated to x and D1 (cf. equation
(6) and Proposition 3.3) must be linearly dependent. By Proposition 5.3 this
implies that Sing(ΘX) contains a scheme of length 3 at x. �

Proposition 10.2. The two components θ0,4 and J4 of N4,0 in A4 are smooth
at a non-empty open subset of their intersection and are tangent there.

Proof. Let ξ = (X,ΘX , x) be a general point of C so that the singular point x of
ΘX defines a quadric qx of rank 3. Set η = (X,ΘX) ∈ A4. From the equations
(3) and (6), one deduces that the tangent cone to N4,0 at η is supported on q⊥x .
Suppose, as we may by applying a suitable translation, that x is the origin 0
in X . Then θ0,4 is locally defined by the equation θ(τ, 0) in A4 (see [16], §2).
Hence θ0,4 is smooth at η with tangent space q⊥x . Now the jacobian locus J4

is also smooth at η by the injectivity of the differential of Torelli’s morphism
at non-hyperelliptic curves (see [15]) and the assertion follows. �

11. The Gauss map and tangencies of theta divisors

In this section we shall study the situation where a number of translates of
the theta divisor of a principally polarized abelian variety are ‘tangentially
degenerate,’ that is, are smooth but with linearly dependent tangent spaces or
singular at prescribed points.
Let (B,Ξ) be a polarized abelian variety of dimension g, where Ξ is an effective
divisor on B. As usual we let B = Cg/Λ, with Λ a 2g-dimensional lattice, and
p : Cg → B be the projection. So we have coordinates z = (z1, . . . , zg) in Cg

and therefore on B, and we can keep part of the conventions and the notation
used so far. Let ξ = ξ(z) be the Riemann theta function whose divisor on Cg

descends to Ξ via p.
If Ξ is reduced, then the Gauss map of (B,Ξ) is the morphism

γ = γΞ : Ξ − Sing(Ξ) → P(T∨
B,0), x 7→ P(t−x(TΞ,ξ)),

where t−x(TΞ,x) is the tangent space to Ξ at ξ translated to the origin. If
Ξb = tb(Ξ) is the translate of Ξ by the point b ∈ B defined by the equation
ξ(z − b) = 0 then for x ∈ Ξ− Sing(Ξ) the origin is a smooth point for Ξ−x and
γ(x) = P(TΞ−x,0).
As usual we have natural homogeneous coordinates (z1 : . . . : zg) in P(TB,0) =
Pg−1 and therefore dual coordinates in the dual projective space P(T∨

B,0) =

Pg−1∨. Then the expression of γ in coordinates equals γ(p(z)) = (∂1ξ(z) : . . . :
∂gξ(z)) with ∂i = ∂/∂zi.
The following lemma is well-known.

Lemma 11.1. Let (B,Ξ) be a simple abelian variety of dimension g and Ξ an
irreducible effective divisor on B. Then the map γΞ has finite fibres. Moreover,
for a smooth point x ∈ Ξ there are only finitely many b ∈ B such that Ξb is
smooth at x and tangent to Ξ there.

Proof. Suppose γΞ does not have finite fibres. Then there is an irreducible
curve C of positive geometric genus contained in the smooth locus of Ξ which is
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contracted by γΞ to a point of Pg−1∨ corresponding to a hyperplane Π ⊂ Pg−1.
Then the image of the Gauss map γC of C lies in Π. This implies that C does
not generate B and contradicts the fact that B is simple. As to the second
statement, if it does not hold there exists an irreducible curve C such that for
all b ∈ C the divisor Ξb is smooth at x and tangent to Ξ. Then the curve
C′ = {x− b : b ∈ C} is contained in Ξ and contracted by γΞ. This contradicts
the fact that γΞ has finite fibres as we just proved. �

Definition 11.2. Let h be a natural number with 1 ≤ h ≤ g − 1. The
subscheme Th(B,Ξ) of B × Bh is defined in Cg × (Cg)h with coordinates
(z, u1, . . . , uh) by the equations

(19)

ξ(z) = 0, ξ(z − u1) = 0, . . . , ξ(z − uh) = 0,

rk











∂1ξ(z) · · · ∂gξ(z)
∂1ξ(z − u1) · · · ∂gξ(z − u1)

...
∂1ξ(z − uh) · · · ∂gξ(z − uh)











≤ h.

The projection to the first factor induces a morphism p1 : Th(B,Ξ) → Ξ. Note
that for i = 1, . . . , h the variety Ei of codimension h+1 ≤ g in B×Bh defined
by the equations

ξ(z) = 0, ξ(z − uj) = 0 (j 6= i), and ui = 0,

is contained in Th(B,Ξ). Moreover, the expected codimension of the irreducible
components of Th(B,Ξ) is g + 1. We will say that an irreducible component T
of Th(B,Ξ) is regular if:

(i) T 6= Ei for i = 1, . . . , h;
(ii) on a non-empty open subset of T all the rows of the matrix in (19) are

non-zero.

In particular, if T is regular then p1(T ) 6⊆ Sing(Ξ).

Proposition 11.3. If B is simple each regular component of Th(B,Ξ) has
dimension hg − 1.

Proof. Let us first assume h = 1 and denote a component of Th(B,Ξ) by
T . By composing p1 with the Gauss map γ = γΞ, we obtain a rational map
φ : T 99K P(T∨

B,0). We shall prove that φ has finite fibres. Let v be a point in
the image of φ coming from a point in the open subset as in Definition 11.2,
(ii). By Lemma 11.1 there are only finitely many smooth points z1, . . . , za ∈ Ξ
such that γ(zi) = v for i = 1, . . . , a. For each 1 ≤ i ≤ a we consider the theta
divisor defined by ξ(zi − u) = 0. Again by Lemma 11.1 there are only finitely
many points ui1, . . . , uiℓi

in it such that (zi, uij) may give rise to a point on T .
So φ has finite fibres. Thus it is dominant and T has dimension g − 1.
Now we prove the assertion by induction on h. Consider the projection q : T →
B ×Bh−1 by forgetting the last factor B. If the image T ′ of T is contained in
Th−1(B,Ξ), then it is contained in a regular component of Th−1(B,Ξ), hence
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by induction the codimension of T is at least g + 1, while we know from the
equations that it is at most g + 1, and the assertion follows.
Suppose T ′ is not contained in Th−1(B,Ξ). Let U(h− 1, g− 1) → G(h− 1, g−
1) be the universal bundle over the Grassmannian of (h − 1)-planes in Pg−1.
Then we define a rational map ψ : T 99K U(h − 1, g − 1) in the following
way. If (z, u1, . . . , uh) is a general point in T , then by the assumption that
T ′ 6⊆ Th−1(B,Ξ) the hyperplanes γ(z), γ(z − u1), . . . , γ(z − uh−1) are linearly
independent and we define

ψ(z, u1, . . . , uh) = (〈γ(z), γ(z − u1), . . . , γ(z − uh−1)〉, γ(z − uh)).

We claim that Lemma 11.1 implies that the general fibre of ψ has dimension
≤ h(h− 1). Indeed, in a fibre of ψ the points γ(z), γ(z − u1), . . . , γ(z − uh−1)
vary in a (h− 1)-dimensional space giving at most h(h− 1) parameters and if
γ(z), γ(z− u1), . . . , γ(z− uh) are fixed there are for (z, u1, . . . , uh) only finitely
many possibilities. Thus dim(T ) is bounded from above by

dim(U(h− 1, g − 1)) + h(h− 1) = h(g − h) + (h− 1) + h(h− 1) = hg − 1,

and this proves the assertion. �

We will also consider the closed subscheme T 0
h (B,Ξ) of Th(B,Ξ) which is de-

fined in Cg × (Cg)h by the equations

ξ(z) = 0, ξ(z − ui) = 0, i = 1, . . . , h

and

rk











∂1ξ(z) · · · ∂gξ(z)
∂1ξ(z − u1) · · · ∂gξ(z − u1)

...
∂1ξ(z − uh) · · · ∂gξ(z − uh)











= 0.

Finally we will consider the closed subset Th(X,B) which is the union of
T 0

h(X,B) and of all regular components of Th(B,Ξ). Look at the projection

p = p2 : T (X,B) → Bh.

Definition 11.4. We define N0,h(B,Ξ) to be the image of Th(X,B) under the
map p. More generally, for each integer k we define

Nk,h(B,Ξ) := {u = (u1, . . . , uh) ∈ Bh : u1, . . . , uh 6= 0, dim(p−1
2 (u)) ≥ k}.

Roughly speaking, Nk,h(B,Ξ) is the closure of the set of all (u1, . . . , uh) ∈ Bh

such that Ξ contains an irreducible subvariety V of dimension n ≥ k and for
all z ∈ V either:

(a) z, z−u1, . . . , z−uh are smooth points of Ξ and γ(z), γ(z−u1), . . . , γ(z−
uh) are linearly dependent, or

(b) all the points z, z − u1, . . . , z − uh are contained in Sing(Ξ).

In case (a) we say that the divisors Ξ,Ξu1 , . . . ,Ξuh
, all passing through z with

multiplicity one, are tangentially degenerate at z.
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In case h = 1 we have only two divisors which are just tangent at z. We will
drop the index h if h = 1. Thus, N0(B,Ξ) is the set of all u such that Ξ and Ξu

are either tangent, or both singular, somewhere. Note that, if Ξ is symmetric,
i.e., if ξ(z) is even, as happens for the Riemann theta function, then N0(B,Ξ)
contains the divisorial component 2Ξ := {2ξ : ξ ∈ Ξ}, since γ(ξ) = γ(−ξ) for
all smooth points ξ ∈ Ξ.
One has the following result by Mumford (see [27], Proposition 3.2).

Theorem 11.5. If (B,Ξ) is a principally polarized abelian variety of dimension
g with Ξ smooth, then N0(B,Ξ) is a divisor on B algebraically equivalent to
(g+2)!

6 Ξ.

As we will see later, the following result is related to Conjecture 9.1.

Proposition 11.6. Suppose that (B,Ξ) is a simple principally polarized abelian
variety of dimension g. Assume that (B,Ξ) /∈ Ng,k. Then for k ≥ 0 and
1 ≤ h ≤ g − 1 and for every irreducible component Z of Nk,h(B,Ξ) one has
codimBh(Z) ≥ k + 1.

Proof. By the definition of Nk,h(B,Ξ) and by the fact that Sing(Ξ) has dimen-
sion < k an irreducible component of Nk,h(B,Ξ) can only be contained in the
image of a regular component of Th(B,Ξ). The assertion follows by Proposition
11.3 and the fact that the fibres of p2 on a regular component have dimension
≥ k. �

12. Properties of the loci Nk,h(B,Ξ)

We will prove now a more precise result in the spirit of Proposition 11.6.

Proposition 12.1. Suppose that (B,Ξ) is a simple, principally polarized
abelian variety of dimension g. Assume that Nk,h(B,Ξ) is positive-dimensional
for some h ≥ 1 and k ≥ 1. Then (B,Ξ) ∈ Ng,k−1.

Proof. We may assume (B,Ξ) 6∈ Ng,k, otherwise there is nothing to prove. We
may also assume h ≥ 1 is minimal under the hypothesis that Nk,h(B,Ξ) has
positive dimension.
Let (u1, . . . , uh) be a point in Nk,h(B,Ξ), so that Ξ0 := Ξ and Ξi := Ξui

, i =
1, . . . , h, are tangentially degenerate along a non-empty subset V 0 of an irre-
ducible subvariety V of B of dimension k such that Ξi for i = 0, . . . , h are
smooth at all points v ∈ V 0.

For j = 0, . . . , h the element s
(i)
j := ∂iξ(z − uj) (with the convention that

u0 = 0) is a section of O(Ξj) when restricted to V since Ξj contains V . We

know that for given j not all s
(i)
j are identically zero on V 0. Our assumptions on

the tangential degenerateness and minimality tell us that there exist non-zero
rational functions aj such that we have a non-trivial relation

(20)

h
∑

j=0

ajs
(i)
j = 0 for i = 1, . . . , g.
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Suppose that the aj are regular on all of a desingularization f : W → V of V .

Then they are constant and the relation
∑

ajs
(i)
j = 0 holds on the whole of W .

By writing relation (20) in different patches which trivialize the involved line
bundles, and comparing them, we see that, if the transition functions are not
all proportional, then we can shorten the original relation by subtracting two of
them. This would contradict the minimality assumption. Therefore, we have
that all of the divisors f∗(Ξ − Ξuj

)|V with j = 1, . . . h are linearly equivalent.
Since u = (u1, . . . , uh) varies in a subvariety of positive dimension this implies
that the map Pic0(B) → Pic(W ) has a positive-dimensional kernel, and this is
impossible since B is simple. So there exists an index j such that the function
aj has poles on a divisor Zj of W . Note now that a point which is non-singular
for all the divisors Ξj , j = 1, . . . , h, is certainly not a pole for the functions
aj . Therefore, for each j = 1, . . . , h, there an ℓ depending of j such that Zj

is contained in the divisorial part of the scheme f∗(Sing(Ξℓ)). Moreover, since
Zj moves in a linear system on W , it cannot be contracted by the birational
morphism f . This proves that Ξℓ is singular along a variety of dimension k− 1
contained in V , which proves the assertion. �

Corollary 12.2. Suppose that (B,Ξ) is a simple, principally polarized abelian
variety of dimension g. Assume that (B,Ξ) /∈ Ng,0, that is, Ξ is smooth. Then
every irreducible component Z of N0,h(B,Ξ) is a divisor of Bh.

Proof. Each irreducible component Z of N0,h(B,Ξ) is dominated by a regular
component T of Th(B,Ξ), which has dimension hg − 1 by Proposition 11.3.
The map p : T → Z is finite by Corollary 11.1. The assertion follows. �

Remark 12.3. If we have two divisors Ξ0,Ξ1 which are tangentially degenerate
along an irreducible k-dimensional variety V whose general point is smooth for
both Ξ0,Ξ1, then Ξ0,Ξ1 are both singular along some (k−1)-dimensional variety
contained in V . This can be easily proved by looking at the relation (20) in
this case, and noting that the polar divisor Zj is contained in f∗(Sing(Ξj)),
j = 0, 1.

Remark 12.4. Suppose (B,Ξ) /∈ Ng,0. Then N0(B,Ξ) is described by all
differences of pairs of points of Ξ having the same Gauss image.
Suppose (B,Ξ) ∈ Ng,0 −Ng,1 and assume {x,−x} = Sing(Ξ) have multiplicity
2 and the quadric Qx = Q−x is smooth. It may or may not be the case that
b = −2x ∈ N1(B,Ξ). In any case, we claim that N1(B,Ξ)−{−2x} is contained
in the set of all differences of points in γ−1

Ξ (Q∗
x) with x. Let us give a sketch of

this assertion, which provides, in this case, a different argument for the proof
of Proposition 11.6.
If b ∈ N1(B,Ξ) − {−2x}, there is a curve C ⊂ Ξ such that for t ∈ C general
γΞ(t) = γΞ(t+ b). Along C the divisors Ξ and Ξb are tangent, hence the curve
contains x (see Remark 12.3). Note that the curve C is smooth at x. Indeed,
locally at x, the divisor Ξ is a quadric cone of rank g − 1 in Cg with vertex x,
whereas Ξb is a hyperplane through x, and they can only be tangent along a
line.
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Thus it makes sense to consider the image of x for γC , which is a point on Qx.
The point x+ b ∈ C + b ⊂ Ξ is smooth for Ξ and γ(x+ b) is clearly tangent to
Qx at γC(x).

13. On Ng−2 and Ng−3 for Jacobians

The following result shows that the bound in Proposition 11.6 is sharp in the
case h = 1. Recall that a curve C is called bielliptic if it is a double cover of
an elliptic curve.

Proposition 13.1. Let C be a smooth, irreducible projective curve of genus g
and let (J = J(C),ΘC) be its principally polarized Jacobian. Then one has:

(i) {OC(p− q) ∈ J : p, q ∈ C} ⊆ Ng−3(J,ΘC);
(ii) either C is bielliptic or the equality holds in (i);
(iii) if C is hyperelliptic, then

{OC(p− q) ∈ J : p, q ∈ C, h0(C,OC(p+ q)) = 2} = Ng−2(J,ΘC).

Proof. We begin with (i). We assume that C is not hyperelliptic; the hy-
perelliptic case is similar and can be left to the reader. We may identify C
with its canonical image in Pg−1. Moreover, we identify J with Picg−1(C) and
ΘC ⊂ Picg−1(C) with the set of effective divisor classes of degree g−1. Then the
Gauss map γC := γΘC

can be geometrically described as the map which sends
the class of an effective divisor D of degree g − 1 such that h0(C,OC(D)) = 1
to the hyperplane in Pg−1 spanned by D (see [15], p. 360).
Take two distinct points p1, p2 on C. Then |ωC(−p1 − p2)| is a linear series of
degree 2g − 4 and dimension g − 3. For i = 1, 2 we let Vi be the subvariety
of ΘC which is the Zariski closure of the set of all divisor classes of the type
E + pi, where E is a divisor of degree g − 2 contained in some divisor of
|ωC(−p1−p2)|. Clearly dim(Vi) = g−3, hence Vi is not contained in Sing(ΘC)
which is of dimension g−4. If u denotes the divisor class p2−p1 then x 7→ x+u
defines an isomorphism V1

∼= V2. Moreover, for x in an non-empty open subset
of V1 we have γC(x) = γC(x+ u). This proves (i).
Conversely, assume there is a point u ∈ Pic0(C)−{0}, and a pair of irreducible
subvarieties V1, V2 of ΘC of dimension g − 3 such that x 7→ x + u gives a
birational map from V1 to V2. For x in a non-empty open subset U ⊂ V1 we
have γC(x) = γC(x+ u). If D and D′ are the effective divisors of degree g − 1
on C corresponding to x and x+ u and if E is the greatest common divisor of
D and D′ then by the geometric interpretation of the Gauss map γC there is
an effective divisor F with deg(E) = deg(F ) such that D+D′ −E +F ≡ KC .
Thus (2D − E) + F ≡ KC − u.

Consider the linear series |KC − u|, which is a gg−2
2g−2. If this linear series has

a base point q, then there is a point p such that KC − u − q ≡ KC − p, i.e.
D′ − D ≡ u ≡ p − q, proving (ii). So we may assume that |KC − u| has no
base point. If C is not bielliptic, then |KC − u| determines a birational map of
C to a curve in Pg−2. On the other hand it contains the (g − 3)-dimensional
family of divisors of the form (2D−E)+F , which are singular along the divisor

Documenta Mathematica 13 (2008) 453–504



480 Ciro Ciliberto, Gerard van der Geer

D−E. This is only possible if deg(D−E) = 1, i.e., u ≡ D′ −D ≡ p− q, with
p, q ∈ C. But in this case |KC − u| has the base point q, a contradiction. This
proves (ii).
Assume now C is hyperelliptic. Let p1 + p2 be an effective divisor of the g1

2

on C with p1 6= p2. Then |ωC(−p1 − p2)| is a linear series of degree 2g − 4
and dimension g − 2. For i = 1, 2 we let Vi be the subvariety of ΘC which is
the Zariski closure of the set of all divisors classes of the type E + pi, where
E is a divisor of degree g − 2 contained in a divisor of |ωC(−p1 − p2)|. The
variety Vi has dimension g − 2 and is not contained in Sing(ΘC), which is of
dimension g − 3. The translation over u induces an isomorphism V1

∼= V2 and
for x in a non-empty subset U of V1 we have γC(x) = γC(x + u). Hence the
left-hand-side in (iii) is contained in Ng−2(J,ΘC).

Finally, assume there is a point u ∈ Pic0(C) − {0}, and a pair of irreducible
subvarieties V , V ′ of ΘC of dimension g − 2 such that translation by u gives a
rational map V 99K V ′ with γC(x) = γC(x+ u) on a non-empty open subset of
V . Let D, D′ be the effective divisors of degree g− 1 on C corresponding to x
and x + u. As in the proof of part (ii), let E be the greatest common divisor
of D and D′. In the present situation the linear series |KC − u| of dimension
g − 2 contains the (g − 2)-dimensional family of divisors of the form 2D − E,
which are singular along the divisor D − E. This means that 2(D − E) is in
the base locus of |KC − u|. This is only possible if D = E + q for some point
q ∈ C, and KC − u− 2q ≡ (g− 2)(p+ q), where p is conjugated to q under the
hyperelliptic involution. In conclusion, we have u ≡ p− q and the equality in
(iii) follows. �

Remark 13.2. The hypothesis that C is not bielliptic is essential in (ii) of
Proposition 13.1. Let in fact C be a non-hyperelliptic bielliptic curve which is
canonically embedded in Pg−1. Let f : C → E be the bielliptic covering. One
has f∗OC ≃ OE ⊕ ξ∨, with ξ⊕2 ≃ OE(B), where B is the branch divisor of f .
Let u ∈ Pic0(E) − {0} be a general point, which we can consider as a non-
trivial element in Pic0(C) via the inclusion f∗ : Pic0(E) → Pic0(C) Note that
f is ramified, hence f∗ is injective. We want to show that u ∈ Ng−3(J,ΘC),
proving that equality does not hold in (i) in this case.
The canonical image of C is contained in a cone X with vertex a point v ∈ Pg−1

over the curve E embedded in Pg−2 as a curve of degree g − 1 via the linear
system |ξ|. Let us consider the subvariety W of |ξ| consisting of all divisors
M ∈ |ξ| such that there is a subdivisor p+ q of M with p, q ∈ E and p− q ≡ u.
It is easily seen that W is irreducible of dimension g − 3.
Notice that for M general in W one has M = p + q + N , with N effective of
degree g − 3. Therefore we may write KC ≡ f∗(M) ≡ f∗(p) + f∗(q) + F + F ′,
where F, F ′ are disjoint, effective divisors of degree g − 3 which are exchanged
by the bielliptic involution.
We let V be the (g − 3)-dimensional subvariety of ΘC described by all classes
of divisors D of degree g − 1 on C of the form D = f∗(p) + F , as M varies in
W . Then D + u ≡ D′ := f∗(q) + F and D and D′ span the same hyperplane
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through v in Pg−1. Therefore, if x ∈ V is the point corresponding to D, one
has γC(x) = γC(x+ u). This proves that u ∈ Ng−3(J,ΘC).

14. A boundary version of the Conjecture

We will now formulate a conjecture. As we will see later, it can be considered
as a boundary version of Conjecture 9.1 (see also Proposition 11.6).

Conjecture 14.1. Suppose that (B,Ξ) is a simple principally polarized abelian
variety of dimension g. Assume that (B,Ξ) /∈ Ng,i for all i ≥ k ≥ 1. Then
there is an irreducible component Z of Nk(B,Ξ) with codimB(Z) = k + 1 if
and only if one of the following happens:

(i) either g ≥ 2, k = g − 2 and B is a hyperelliptic Jacobian,
(ii) or g ≥ 3, k = g − 3 and B is a Jacobian.

One implication in this conjecture holds by Proposition 13.1. Note that the
conjecture would give an answer for simple abelian varieties to the Schottky
problem that asks for a characterization of Jacobian varieties among all prin-
cipally polarized abelian varieties. For related interesting questions, see [30].

15. Semi-abelian Varieties of Torus Rank One

Let (B,Ξ) be a principally polarized abelian variety of dimension g − 1. The
polarization Ξ gives rise to the isomorphism

φΞ : B → B̂ = Pic0(B), b→ OB(Ξ − Ξb).

and we shall identify B and B̂ via this isomorphism. Thus an element b ∈
B̂ ∼= B determines a line bundle L = Lb = OB(Ξ−Ξb) with trivial first Chern
class. We can associate to L a semi-abelian variety X = XB,b, namely the Gm-
bundle over B defined by L which is an algebraic group since it coincides with
the theta group Gb := G(L) of L (cf. [25], p. 221). This gives the well-known

equivalence between B̂ and Ext(B,Gm), the group of extension classes of B
with Gm in the category of algebraic groups (see [35], p. 184).
Both the line bundle L and the Gm-bundle X determine a P1-bundle P =
P(L ⊕OB) over B with projection π : P → B and two sections over B, say s0
and s∞ given by the projections L ⊕ OB → L and L ⊕ OB → OB. If we set
P0 = s0(B) and P∞ = s∞(B) then we can identify P − P0 − P∞ with X . By
[17], Proposition 2.6 on page 371 we have OP(1) ∼= OP(P0). We can complete
X by considering the non-normal variety X = XB,b obtained by glueing P0

and P∞ by a translation over b ∈ B ∼= B̂. On P we have the linear equivalence
P0−P∞ ≡ π−1(Ξ−Ξb). We set E := P∞+π−1(Ξ) and put MP = OP(E). This
line bundle restricts to OB(Ξ) on P0 and to OB(Ξb) on P∞, and thus descends
to a line bundle M = MX on X . We have π∗(OP(E)) = OB(Ξ) ⊕ OB(Ξb)
and H0(P,MP) is generated by two sections with divisors P∞ + π−1(Ξ) and
P0 + π−1(Ξb). One concludes that H0(X,M) corresponds to the sections of
MP such that translation over b carries its restriction to P0 to the restriction
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to P∞. It follows that h0(X,M) = 1 with effective divisor Ξ, which is called
the generalized theta divisor on X.
Analytically we can describe a section of OX̄(Ξ) on the universal cover C×Cg−1

by a function

ξ(τ, z) + u ξ(τ, z − ω),

where ω ∈ Cg−1 represents b ∈ B = Cg−1/Zg−1 + τZg−1, ξ(τ, z) is Riemann’s
theta function for B and u = exp(2πiζ) is the coordinate on C∗. This is called
the generalized theta function of X .
Let D be the Weil divisor on X that is the image of P0 (or, what is the same, of
P∞). We consider a locally free subsheaf Tvert of the tangent sheaf toX, namely
the dual of the sheaf Ω1(logD) of rank g. If d ∈ D is a point such that on the
normalization P near the two preimages z1, . . . , zg−1, u and z1+b, . . . , zg−1+b, v
are local coordinates such that u = 0 defines P0 (resp. v = 0 defines P∞)
with uv = 1 then Tvert is generated by ∂/∂z1, . . . , ∂/∂zg−1, u∂/∂u − v∂/∂v.
Here z1, . . . , zg−1 are coordinates on B. We interpret local sections of Tvert

as derivations. In particular, if an effective Cartier divisor Y of X has local
equation f = 0, then for each local section ∂ of Tvert, the restriction to Y of
∂f is a local section of OX(Y )/OX . Then the subscheme Singvert(Ξ) of Ξ is
locally defined by the g equations

(21) ∂if = 0 modulo f in OX(Ξ)/OX

with f = 0 a local equation of Ξ and ∂i local generators of Tvert.
The equations for Singvert(Ξ) on X are thus given by

ξ(τ, z) + u ξ(τ, z − ω) =0,

ξ(τ, z − ω) =0,

∂iξ(τ, z) + u∂iξ(τ, z − ω) =0, (1 ≤ i ≤ g − 1).

The points in Singvert(Ξ) are of two sorts depending on whether they lie on the
double locus D of X or not. The singular points of Sing(Ξ) on X = X − D
are the points (z, u), with u 6= 0, which are zeros of ξ(τ, z) and ξ(τ, z − ω) and
such that γ(τ, z) = −uγ(τ, z − ω). That is, geometrically, these correspond
under the projection on B to the points on B where Ξ and Ξb are tangent to
each other. To describe the singular points of Sing(Ξ) on D, we consider the
composition

φ : B ∼= P0 → P
ν−→X,

where ν is the normalisation. Then we have φ−1(Singvert(Ξ)) = Sing(Ξ) and
the same if we identify B with P∞.
Points of Singvert(Ξ) determine again quadrics in Pg−1 as follows. Note that
the projective space P(TX,0) contains a point Pb corresponding to the tangent
space TGm

⊂ TX of the algebraic torus Gm at the origin. Recall that we write
γ(τ, z) for the row vector

γ(τ, z) = (∂1ξ, . . . , ∂g−1ξ)(τ, z).
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Then a singular point determines a, possibly indeterminate, quadric defined by
the matrix

(22)

(

0 γ(τ, z − ω)
γ(τ, z − ω)t M

)

with M the (g− 1)× (g − 1) matrix (∂/∂τijξ(τ, z) + u∂/∂τijξ(τ, z −ω)). Note
that we have γ(τ, z) = −uγ(τ, z − ω). The quadric passes through the point
Pb. For a point on D the quadric is a cone with vertex Pb over a quadric in
Pg−2 given by M .

Remark 15.1. The above considerations show that a point in Singvert(Ξ) has
to be regarded as a point of multiplicity larger than 2 if the matrix (22) vanishes
identically. This can happen only if z and z + ω are both singular for Ξ.

16. Standard Compactifications of Semi-Abelian Varieties

Let (B,Ξ) be a principally polarized abelian variety. We assume now that
dim(B) = g − r with r ≥ 1 and extend the considerations of the previous
section.
The extensions of B by Gr

m are parametrized by Ext1(B,Gr
m) ∼= B̂r. To a

point (b1, . . . , br) ∈ B̂r one associates the Gr
m-extension X = Xb obtained as

the fibre product of theta groups Gb1 ×B · · · ×B Gbr
.

One of the type of degenerations of abelian varieties that we shall encounter are
special compactifications of semi-abelian varieties. We shall call them standard

compactifications of torus rank r. Let b = (b1, . . . , br) ∈ B̂r. The algebraic
group X = Xb sits in a P1 ×B · · · ×B P1-bundle π : P → B that is obtained as
the fibre product over B of the P1-bundles Pbi

= P(Lbi
⊕OB). The complement

P−X is a union of 2r divisors
∑r

i=1 Π
(i)
0 +Π

(i)
∞ , where Π

(i)
0 (resp. Π

(i)
∞ ) is given

by taking 0 (resp. ∞) in the i-th fibre coordinate, with projections πi,0, πi,∞

to B.
We now define a non-normal variety obtained from P by glueing Π

(i)
0 with Π

(i)
∞

for i = 1, . . . , r. This identification depends on a r × r-matrix T = (tij) with

entries from Gm such that tii = 1 and tij = t−1
ji . Let s

(i)
0 : B → Pbi

(resp. s
(i)
∞ )

be the zero-section (infinity section) of Pbi
. We glue the point

(β, x1, . . . , xi−1, s
(i)
0 (β), xi+1, . . . , xr)

on Π
(i)
0 with the point

(β + bi, ti,1x1, . . . , ti,i−1xi−1, s
(i)
∞ (β), ti,i+1xi+1, . . . , ti,rxr)

on Π
(i)
∞ . We denote the resulting variety by X. It depends on the parameters

b ∈ B̂r and t ∈ Mat(r × r,Gm).

We have the linear equivalences Π
(i)
0 − Π

(i)
∞ ≡ π∗(Ξ − Ξbi

). We set E = Π∞ +

π∗(Ξ) =
∑

Π
(i)
∞ + π∗(Ξ) and Ei = Π∞ − Π

(i)
∞ and M := MP = OP(E). This

line bundle restricts to O
Π

(i)
0

(Ei +π∗
i,0(Ξ)) on Π

(i)
0 and to O

Π
(i)
∞

(Ei +π∗
i,∞(Ξbi

))
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on Π
(i)
∞ . Thus, by the definition of the glueing, M descends to a line bundle

M := MX on X. We have

π∗(M) =
(

⊗r
i=1 (OB ⊕ L−1

i )
)

⊗OB(Ξ)

∼= ⊕r
k=1

(

⊕0≤i1<...<ik≤r OB(Ξbi1+...+bik
)
)

.

Hence we have h0(P,M) = 2r. As in the preceding section one sees that
only a 1-dimensional space of sections descends to sections of M on X. In
terms of coordinates (ζ1, . . . , ζr, z1, . . . , zg−r) on the universal cover ofX , where
(z1, . . . , zg−r) ∈ Cg−r are coordinates on the universal cover of B, a non-zero

section of M is given by
∑

I⊆{1,...,r}

uI tI ξ(τ, z − ωI),

where I runs through the subsets of {1, . . . , r}, uI =
∏

i∈I ui with ui =
exp(2πζi), tI =

∏

i,j∈I,i<j tij , bI =
∑

i∈I bi and ωI ∈ Cg−r represents bI ∈ B.

This is the generalized theta function of X, whose zero locus is the generalized

theta divisor Ξ of X.
Next we look at the singular points of Ξ. All points in Ξ∩D are singular points
of Ξ. However, just as in the rank one case in the preceding section we will in
general disregard these singularities of Ξ, and we will only look at the so-called
vertical singularities, which we are going to define now (cf. [27], §2).
The locally free subsheaf Tvert of rank g of the tangent sheaf TX is the dual
of Ω1(logD). Its pull back to P is generated, in the (u, z)-coordinates, by
the differential operators ui∂/∂ui − vi∂/∂vi with uivi = 1 for i = 1, . . . , r
and ∂j = ∂/∂zj with j = 1, . . . , g − r. We interpret local sections of Tvert

as derivations as above and define the scheme Singvert(Ξ) of vertical singular
points of Ξ as the subscheme of Ξ defined by the equations (21) with f = 0 a
local equation of Ξ for all local sections ∂ ∈ Tvert. This is independent of the
choice of a local equation.

Lemma 16.1. Let (X,Ξ) be a standard compactification of a semi-abelian va-
riety X of torus rank r with abelian part (B,Ξ). If dim(Singvert(Ξ)) ≥ 1 then
(B,Ξ) ∈ Ng−r,0.

Proof. The compactification X is a stratified space and the (closed) strata are
(standard) compactifications of semi-abelian extensions of (B,Ξ) of torus rank
s with 0 ≤ s ≤ r. In view of the relations

∑

I uItI∂iξ(z − ωI) = 0 the vertical

singularities of Ξ correspond to points where 2s translates of Ξ are tangentially
degenerate. Therefore we have dim(N1,h(B,Ξ)) ≥ 1 with h = 2s. By Lemma
12.1 it follows that (B,Ξ) ∈ Ng−r,0. �

17. Semi-abelian varieties of torus rank two

In the compactification of the moduli space of principally polarized abelian
varieties of dimension g we shall encounter two types of degenerations of torus
rank 2. The first of these is a standard compactification introduced above
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and its normalization is a P1 × P1-bundle over a principally polarized abelian
variety of dimension g− 2. For such a standard compactification the equations
for Singvert(Ξ) are given in terms of the (u, z)-coordinates by the system (we
write t instead of t1,2; note that t 6= 0)

ξ(z) − tu1u2ξ(z − ω1 − ω2) =0,

u1ξ(z − ω1) + tu1u2ξ(z − ω1 − ω2) =0,

u2ξ(z − ω2) + tu1u2ξ(z − ω1 − ω2) =0,

∂iξ(z) + u1∂iξ(z − ω1) + u2∂iξ(z − ω2) + tu1u2∂iξ(z − ω1 − ω2) =0,

i = 1, . . . , g − 2.

From this and the analogous equations in the v-coordinates (with uivi = 1) we
see that the vertical singular points of Ξ are essentially of three types:
(i) A point x ∈ D that is the image via ϕ : X → X of a point in Π1,0∩Π2,0

∼= B,
(i.e. in the (u, z) coordinates one has u1 = u2 = 0) is a vertical singular point
of Ξ if and only if it corresponds to a singular point of Ξ on Π1,0 ∩ Π2,0

∼= B
and to a singular point of Ξb1+b2 on Π1,∞ ∩ Π2,∞

∼= B.
(ii) A point x ∈ D which is the image via ϕ of a point in Πj,0 but not of a
point in Π3−j,0, (i.e., in the (u, z) coordinates one has ui = 0, u3−j 6= 0, for a

j = 1, 2) is a vertical singular point of Ξ if and only if

ξ(τ, z) = 0, ξ(τ, z − ω3−j) =0,

∂iξ(τ, z) + u3−j∂iξ(τ, z − ω3−j) =0, i = 1, . . . , g − 2.

i.e. if and only if z and z − b are in Ξ and γΞ(z) = γΞ(z − b).
(iii) A point x /∈ D, (i.e. in the (u, z) coordinates one has u1 6= 0 6= u2) is a
vertical singularity if and only if z is a singular point of the divisorH ∈ |2Ξb1+b2 |
defined by the equation

ξ(τ, z − ω1)ξ(τ, z − ω2) = t ξ(τ, z)ξ(τ, z − ω1 − ω2).

By the way, this occurs even in case (ii) above. Note also that, by the above
equations, the existence of a vertical singularity implies that the theta divisors
Ξ, Ξb1 , Ξb2 and Ξb1+b2 are tangentially degenerate at some point x of B, i.e.,
z ∈ N0,3(B,Ξ).

We call of type (i), (ii) or (iii) the singular points of Ξ according to whether
cases (i), (ii) or case (iii) occur.

Remark 17.1. A point x in Singvert(Ξ) again determines a quadric Qx in Pg−1.
It is useful to remark that:
(a) in case (i) the quadric Qx is a cone with vertex the line Lb := 〈Pb1 , Pb2〉
given by the tangent space to the Gm-part over the quadric Qz in Pg−3 which
corresponds to the singular point z of Ξ;
(b) in case (ii), say we are at a point with u1 = 0, u2 6= 0. Then Qx is a cone
with vertex Pb1 over the quadric in the hyperplane u1 = 0 with matrix

(

0 −γ(τ, z)t

−γ(τ, z) M

)
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with γ(τ, z) = (∂1ξ, . . . , ∂g−2ξ)(τ, z) and the matrix M is given by

M = (∂/∂τijξ(τ, z) + u∂/∂τijξ(τ, z − ω))1≤i,j≤g−2.

In §15 we saw that all rank 1 compactifications of Gm-extensions of a principally
polarized abelian variety B form a compact family B̂. This is no longer the case
in the higher rank case. This is where semi-abelian varieties of non-standard

type come into the picture. This will depend on choices. It is good to see this
in some detail in the rank 2 case.
Given a principally polarized abelian variety (B,Ξ) of dimension g − 2, all
standard rank 2 compactifications of (B,Ξ) are of the form (X,Ξ) with X =
XB,b,t with b = (b1, b2) ∈ B × B and t ∈ C∗. Thus the parameter space
may be identified (up to dividing by automorphisms) with the total space of
the Poincaré bundle P → B × B minus the 0-section P0. It is then natural
to compactify this by looking at the associated P1-bundle and by glueing on
it the 0-section P0 with the infinity section P∞. This in fact works and it is
explained in [26], §7, and in [29]. We describe next the new objects that arise.
We denote by Li the line bundle associated to bi, for i = 1, 2. We consider again
the P1 ×P1-bundle P on B as in §16 and in the glueing operation described in
§16, we let t = t12 tend to 0 (or equivalently to ∞). Letting t → ∞, one con-
tracts Π1,0 and Π2,0 to the section A = Π1,∞ ∩Π2,∞

∼= B, and Π1,∞ and Π2,∞

to the section ∆ = Π1,0 ∩ Π2,0
∼= B. In order to properly describe the glueing

process, we have first to blow up the two sections A and ∆ in P . Let us do
that. Let w : P̃ → P be the blow-up, on which we have the following divisors:
α is the exceptional divisor over A and δ is the exceptional divisor over ∆;
β, γ, ǫ, ζ are the proper transforms on P̃ of Π1,∞,Π2,0,Π1,0,Π2,∞, respectively.
We will abuse notation and denote by the same letters the restrictions of these
divisors on the general fibre Φ of P̃ over B, which is a P1 × P1 blown up at
two points, hence a P2 blown up at three points. Note that α, β, γ, δ, ǫ, ζ are
P1-bundles over B and one has

(23)
α ∼= P(L∨

1 ⊕ L∨
2 ), γ ∼= P(L2 ⊕OB), ǫ ∼= P(L1 ⊕OB),

δ ∼= P(L1 ⊕ L2), ζ ∼= P((L1 ⊗ L2) ⊕ L2), β ∼= P((L1 ⊗ L2) ⊕ L1).

At this point one could be tempted to suitably glue α with γ and ǫ and δ with
β and ζ. This however, as (23) shows, does not work. The right construction
is instead the following.

One considers two P2-bundles φi : P ♯
i → B, i = 1, 2, associated to the vector

bundles L1 ⊕ L2 and L∨
1 ⊕ L∨

2 on B, i.e.,

P ♯
1 = P(L∨

1 ⊕ L∨
2 ⊕OB), P ♯

2 = P(L1 ⊕ L2 ⊕OB).

There are three relevant P1-subbundles of the bundles P ♯
i , i = 1, 2, namely

(24)
ᾱ = P(L∨

1 ⊕ L∨
2 ), γ̄ = P(L∨

2 ⊕OB), ǭ = P(L∨
1 ⊕OB) in P ♯

1

δ̄ = P(L1 ⊕ L2), ζ̄ = P(L1 ⊕OB), β̄ = P(L2 ⊕OB) in P ♯
2 .

As (23) and (24) show, we can glue P with P ♯
1 and P ♯

2 in such a way that α
and δ are respectively glued to ᾱ and δ̄; ǫ is glued to ǭ and β to β̄ with a shift
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by −b1, and ζ to ζ̄ and γ to γ̄ with a shift by −b2. The resulting variety is
denoted by X = XB,b. As usual, we will denote by D its singular locus. On P̃
we have the line bundle

M̃ = w∗OP (Π1,∞ + Π2,∞) ⊗OP̃ (Ξ − α),

where we write L instead of w∗(π∗(L)) for a line bundle, or divisor, L on B.
With similar notation, one has

(25)
M̃ ∼= OP̃ (α+ β + ζ + Ξ) ∼= OP̃ (δ + ǫ+ ζ + Ξb1 )

∼= OP̃ (δ + γ + β + Ξb2).

One has OP ♯
1
(1) = OP ♯

1
(ᾱ) and the following linear equivalences

(26) ᾱ− γ̄ ≡ L∨
2 , ᾱ− ǭ ≡ L∨

1

where again we write L instead of φ∗i (L), i = 1, 2, for a line bundle, or divisor, L
on B (see again [17], Proposition 2.6, p. 371). From (25) and (26) one deduces

that M̃ glues with the line bundle M ♯
1 = OP ♯

1
(ᾱ+ Ξ) and with the line bundle

M ♯
2 = OP ♯

2
(Ξ), to give a line bundle M on X . In the obvious coordinates

(u, z) = ((u1, u2), (z1, . . . , zg−2)), which can be considered as coordinates on

P̃ − (α ∪ · · · ∪ ζ), the sections of M̃ can be expressed as

a ξ(τ, z) + a1u1 ξ(τ, z − ω1) + a2u2 ξ(τ, z − ω2)

with a, a1, a2 complex numbers. By taking into account the glueing conditions,
one sees that only a 1-dimensional subspace V of H0(P̃ , M̃) gives rise to a
space of sections of H0(X,M); V is generated by

(27) ξ(τ, z) + u1ξ(τ, z − ω1) + u2ξ(τ, z − ω2).

in the (u, z)-coordinates. Note that (27) is just obtained from the generalized
theta function in 16 by letting t = t12 tend to 0.
In conclusion, one has h0(X,M) = 1, hence there is a unique effective divisor
Ξ = Ξ which is the zero locus of a non-zero section of H0(X,M).
As in the standard case, we parametrize an open subset of Pic0(Ξ) with points

in the union of P −⋃

i=1,2;h=1∞ Πi,h with P ♯
1 − (ᾱ∪ γ̄ ∪ ǭ) and P ♯

1 − (δ̄ ∪ ζ̄ ∪ β̄).

We can define the vertical singularities of the divisor Ξ, whose equations, in
the (u, z) coordinates, take the form
(28)

ξ(τ, z) = 0, u1ξ(τ, z − ω1) = 0, u2ξ(τ, z − ω2) =0,

∂iξ(τ, z) + u1∂iξ(τ, z − ω1) + u2∂iξ(τ, z − ω2) =0, i = 1, . . . , g − 2.

Again the vertical singular points of Ξ are essentially of three types:
(i) Consider a point x ∈ D which is the image via ϕ : X → X of a point in
Π1,0 ∩ Π2,0

∼= B, i.e. in the (u, z) coordinates one has u1 = u2 = 0. Then this

is a vertical singular point of Ξ if and only if it corresponds to a singular point
of Ξ on Π1,0 ∩Π2,0

∼= B and to a singular point of Ξb1+b2 on Π1,∞ ∩Π2,∞
∼= B.
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(ii) Consider a point x ∈ D which is the image via ϕ of a point in Πi,0 but not
of a point in Π3−i,0, i.e. in the (u, z) coordinates one has ui = 0, u3−i 6= 0, for

an i = 1, 2. If i = 1, this is a vertical singular point of Ξ if and only if

ξ(τ, z) = 0, ξ(τ, z − ω2) =0,

∂iξ(τ, z) + u2 ∂iξ(τ, z − ω2) =0, i = 1, . . . , g − 2.

i.e., if and only if z and z− b2 are in Ξ and γΞ(z) = γΞ(z− b2). Thus points of
this type correspond to points in N0(B,Ξ).
(iii) Consider a point x /∈ D, i.e., in the (u, z) coordinates one has u1 6= 0 6= u2.
Then equations (28) mean that z corresponds to a point in Ξ ∩ Ξb1 ∩ Ξb2

where Ξ,Ξb1 ,Ξb2 are tangentially degenerate. In other words points of this
type correspond to points in N0,2(B,Ξ).

Remark 17.2. A point x in Singvert(Ξ) determines a quadric Qx in Pg−1.
Remark 17.1 is still valid here.

A variant of this second type of rank-2 degeneration is obtained as follows.
Given a G2

m-extension X = Xb of B determined by a point b = (b1, b2) ∈ B̂2

we consider two P2-bundles P and P′ over B:

P = P(OB ⊕ L1 ⊕ L2) and P′ = P(L2 ⊕ L1 ⊕ (L1 ⊗ L2)),

where we write as before Li for Lbi
. We can glue these over the common P1-

subbundle P(L1 ⊕ L2). Then we glue the P1-subbundle P(OB ⊕ L1) of P with
the P1-subbundle P(L2⊕ (L1 ⊗L2)) of P′ via a shift over b2. Similarly, we glue
the P1-subbundle P(OB ⊕ L2) of P with the P1-subbundle P(L1 ⊕ (L1 ⊗ L2))
of P′ via a shift over b1. In this way we obtain a non-normal variety over B.
Both P and P′ come with a relatively ample bundle OP(1) and OP′(1). On P

we have the linear equivalences

Π1 + π∗(Ξb1) ≡ Π2 + π∗(Ξb2) ≡ Π3 + π∗(Ξb1+b2).

with Πi = P(OB ⊕Li) for i = 1, 2 and Π3 = P(L1 ⊕L2). We let M be the line
bundle O(Π3 + π∗(Ξb1+b2)) on P and M ′ the line bundle O(Π′

3 + π∗(Ξb1+b2))
on P′, where Π′

3 is the bundle P(L1 ⊕ L2). This descends to a line bundle M
on X . This line bundle has a 1-dimensional space of sections generated by

θ(τ, z) = ξ(τ, z) + u1 ξ(τ, z1 − ω1) + u2 ξ(τ, z − ω2)

in suitable affine coordinates (u1, u2) on P2. Again the vertical singular points
of Ξ are essentially of three types:
(i) A point x ∈ D which is the image via ϕ : X → X of a point in Π1 ∩ Π2 =
P(OB) ∼= B is a vertical singularity if it corresponds to a singularity on Ξ, to a
singularity on Ξb1 on Π1 ∩ Π3 and a singularity on Ξb2 on Π2 ∩ Π3;
(ii) A point x ∈ D which is the image via ϕ of a point on one Π3 but not of a
point in Π1 or Π2 is a vertical singular point of Ξ if and only if x ∈ Ξb1∩Ξb2 and
γΞb1

(x) = γΞb2
(x). Thus points of this type correspond to points in N0(B,Ξ).

Something similar happens for the points on exactly one of Π1 or Π2.
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(iii) A point x /∈ D is a vertical singularity if x ∈ Ξ ∩ Ξb1 ∩ Ξb2 and Ξ,Ξb1 ,Ξb2

are tangentially degenerate at x. In other words points of this type correspond
to points in N0,2(B,Ξ).
We see that the compactification depends on a choice, but in both cases we
can deal explicitly with the singularities of the theta divisors.

Remark 17.3. The variant just given corresponds to a tesselation of R2 given
by the lines x = a, y = b and x + y = c with a, b, c ∈ Z. To a triangle with
integral vertices (n,m), (n+1,m) and (n,m+1) (resp. (n−1,m), (n,m−1) and
(n,m)) we associate the P2-bundle P(Lnb1+mb2 ⊕L(n+1)b1+mb2 ⊕Lnb1+(m+1)b2)
(resp. P(L(n−1)b1+mb2 ⊕ Lnb1+(m−1)b2 ⊕ Lnb1+mb2) and we glue the bundles

belonging to adjacent triangles over the P1-bundle defined by the common
edge. Then the generator τ1 (resp. τ2) of Z2 acts by glueing the P1-bundle
associated to an edge to the P1-bundle associated to the translate by x 7→ x+1
(resp. y 7→ y + 1) of this edge using a translation over b2 (resp. b1). The
quotient under Z2 is the non-normal variety we just constructed. Also the
earlier compactifications thus correspond to tesselations (see [26], §7).

18. Compactification of Ag

In order to study the Andreotti-Mayer loci we need to compactify Ag. The mod-
uli space Ag admits a ‘minimal’ compactification, the Satake compactification

constructed by Satake and Baily-Borel in characteristic 0 and by Faltings-Chai
over the integers (see [32], [13]). This compactification A∗

g is an orbifold or
stack which admits a stratification

A∗
g = ⊔g

i=0Ai

and the closure of Am in A∗
g is A∗

m = ⊔m
i=0Ai. This compactification is highly

singular for g ≥ 2. Smooth compactifications can be constructed by the theory
developed by Mumford and his co-workers in characteristic 0 and by Faltings-
Chai in general. These compactifications depend on combinatorial data. We
shall use the Voronoi compactification Ãg = ÃVor

g as described by Namikawa,
Nakamura and Alexeev (see [29, 28, 5]). This compactification is a smooth

orbifold with a natural map q : Ãg → A∗
g. It has the stratification induced by

that of A∗
g: the stratum

A(r)
g = q−1(Ag−r)

is called the stratum of quasi-abelian varieties of torus rank r.
In §20 we also shall use another compactification, the perfect cone compactifi-

cation, cf. [29, 34]. It also has a map to the Satake compactification denoted by

q : Ãpc
g → A∗

g ; sometimes we shall denote Ãpc
g simply by Ãg in order to avoid

introducing more notation. It has the following properties: i) the boundary is
an irreducible Q-Cartier divisor, ii) the general point of the boundary is smooth,

iii) the codimension of A(r)
g = q−1(Ag−r) equals r, iv) there is a dense open

subset U of A(≤4)
g and a family of compactified semi-abelian varieties X → U

extending the universal compactified semi-abelian variety over A≤1
g such that
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the standard compactifications of §16 form a dense open subset of A(r)
g . We

point out that in this case for r ≤ 4 the general fibre of q : A(r)
g → Ag−r has

dimension gr − r(r + 1)/2, thus dim(A(r))
g ) = g(g + 1)/2 − r.

We define for our chosen compactification Ãg the boundary as ∂Ãg := A(≥1)
g .

Moreover we set A(≤r)
g := Ãg −A(≥r+1)

g .

For the Voronoi compactification the fibres of the map q : A(≤r)
g → A∗

g are

well-behaved if r ≤ 4. Indeed, the points of A′
g := A(≤4)

g correspond to so-
called stable quasi-abelian varieties which are compactifications of semi-abelian
varieties, which can be explicitely described (see [29, 28, 5] and §§15, 17 for
torus ranks 1 and 2). Thus one can define the vertical singular locus and
the Andreotti-Mayer loci on the partial compactification A′

g (see Remark 18.1
below). For higher torus rank the situation is more complicated. For instance

the fibres of q : A(≥r)
g → A∗

g−r might be non-reduced. However we will not
need r > 4 here.
An alternative approach might be to use the idea of Alexeev and Nakamura (cf.
[1], [28], [5]) who have constructed canonical limits for 1-dimensional families
of abelian varieties equipped with principal theta divisors.
The stable quasi-abelian varieties that occur in A′

g for torus rank 1 and 2 are ex-
actly those described in Section 15 and 17. For torus rank 3 these are described
by the tesselations of R3 occuring on p. 188 of [28], cf. also Remark 17.3. The

open stratum of A(3)
g over Ag−3 corresponds to the standard compactifications

(see §16), obtained by glueing six P3-bundles over a (g−3)-dimensional abelian
variety B generalizing the construction for torus rank 2 where two P2-bundles
were glued. These closed strata correspond to degenerations of the matrix T
of the glueing data on which the standard compactifications depend (see §16).
For instance the codimension 3 stratum corresponds to the fact that in T two
of the three elements above the main diagonal tend to zero (or to ∞).

Remark 18.1. As we remarked before, for stable quasi-abelian varieties cor-
responding to points (X,Ξ) of A′

g one can define the vertical singularities

Singvert(Ξ) using Ω1(logD) as in the previous sections. One checks that for
these compactifications the analogue of Lemma 16.1 still holds.

We will need the following result from [14].

Theorem 18.2. Let Z be an irreducible, closed subvariety of Ãg. Then Z∩∂Ãg

is not empty as soon as codimÃg
(Z) < g.

19. The Andreotti–Mayer loci and the boundary

We are working with a fixed compactification Ãg = ÃVor
g and, as indicated in

§18 above, we can define the Andreotti–Mayer loci over the part A′
g = A(≤4)

g of

Ãg. We have Ng,k as a subscheme of Ag and we define Ñg,k as the schematic

closure. The support of Ñg,k contains the set of points corresponding to pairs

(X,Ξ) such that Singvert(X) has a component of dimension at least k (see [27]).

Documenta Mathematica 13 (2008) 453–504



Andreotti–Mayer Loci and the Schottky Problem 491

It is interesting to look at the case k = 0, which has been worked out by
Mumford [27] and Debarre [11]. In this case Ñg,0 is a divisor and by Theorem

18.2, every irreducible component N of this divisor intersects ∂Ãg. Let M be

an irreducible component of N ∩ ∂Ãg, which has dimension
(

g+1
2

)

− 2.

First of all, notice that M cannot be equal to A(≥2)
g . This follows by the results

in §17 and by Propositions 11.6 and 12.1. More generally, in the same way, one

proves that M cannot contain A(r)
g for any r = 2, 3 and 4.

Hence M intersects A(1)
g in a non-empty open set of M , i.e., the intersection

with the boundary has points corresponding to semi-abelian varieties of torus
rank 1. If M does not dominate Ag−1 via the map q, then each fibre must have
dimension g − 1. By Proposition 11.6 this implies that M dominates N0,g−1.
If M dominates Ag−1 via q, the fibre of q|M over a general point (B,Ξ) ∈ Ag−1

is N0(B,Ξ).
Recall now that Debarre proves in [11] that N0,g has two irreducible com-
ponents, one of which is the so-called theta-null component θ0,g: the general
abelian variety (X,ΘX) in θ0,g, with ΘX symmetric, is such that ΘX has a
unique double point which is a 2-torsion point of X lying on ΘX .
Let M0,g be the other component. The general abelian variety (X,ΘX) in M0,g,
with ΘX symmetric, is such that ΘX has exactly two double points x and −x.
It is useful to recall that, by Corollary 8.12, at a general point of either one of
these component of Ng,0, the tangent cone to the theta divisor at the singular
points is a smooth quadric.
The component θ0,g intersects the boundary in two components, θ′0,g, θ

′′
0,g, one

dominating θ0,g−1, the other dominating Ag−1 with fibre over the general point
(B,Ξ) ∈ Ag−1 given by the component 2Ξ of N0(B,Ξ) (see §11). Also M0,g

intersects the boundary in two irreducible divisors M ′
0,g,M

′′
0,g. The former is

irreducible and dominates M0,g−1, the latter dominates Ag−1 with fibre over
the general point (B,Ξ) ∈ Ag−1 given by the components of N0(B,Ξ) different
from 2Ξ.
The main ingredient for Debarre’s proof of the irreducibility of M0,g is a mon-
odromy argument which implies that, if (B,Ξ) is a general principally polarized
abelian variety of dimension g, then N0(B,Ξ) consists of only two irreducible
components.

Remark 19.1. Let (B,ΘB) be a general element in θ0,g and let (X,Ξ) be a
semi-abelian variety of torus rank one with abelian part B. Then there are no
points in Singvert(Ξ) with multiplicity larger than 2. This follows from the fact
that ΘB has a unique singular point and by Remark 15.1.

We finish this section with the following result which will be useful later on. It
uses the notion of asymptotic cone given in §6.

Proposition 19.2. One has:

(i) let g ≥ 3, let (B,Ξ) be a general point of θ0,g and let x be the singular

point of Ξ. Then the asymptotic cone TC
(4)
ξ is strictly contained in the

quadric tangent cone Qx;
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(ii) let g ≥ 4, let (B,Ξ) be a general point of M0,g and let x,−x be the sin-

gular points of Ξ. Then the asymptotic cone TC
(3)
ξ is strictly contained

in the quadric tangent cone Qx = Q−x.

Proof. Degenerate to the jacobian locus and apply the results from [18, 19]. �

20. The Conjecture for N1,g

In this section we prove Conjecture 9.1 for k = 1. We consider an irreducible
component N of Ñg,1 which is of codimension 3. The first observation is that
the assumption about the codimension of N implies that the generic princi-
pally polarized abelian variety is simple since by Remark 7.4 every irreducible

component of A(ns)
g has codimension ≥ g − 1 > 3 if we assume g ≥ 5.

Proposition 20.1. Let g ≥ 6 and let N be an irreducible component of Ñg,1

which is of codimension 3 in Ãg. Then N intersects the stratum A(1)
g .

Proof. We begin by remarking that N cannot be complete in Ag in view of

Theorem 18.2. Therefore N intersects ∂Ãg. Here we shall use the perfect

cone compactification, see §18. Since ∂Ãg is a divisor in Ãg it intersects N in

codimension one. Let M be an irreducible component of N ∩ ∂Ãg. It is our

intention to prove that M has a non-empty intersection with A(1)
g .

Suppose that M ⊆ A(≥4)
g . For dimension reasons we haveM = A(≥4)

g . Since we

are using a compactification Ãg such that the general point of A(4)
g corresponds

to a standard compactification (X,Ξ) of torus rank 4 with abelian part (B,Ξ) ∈
Ag−4 we deduce from Lemma 16.1 and Remark 18.1 that if dim(Singvert(Ξ)) ≥
1 then (B,Ξ) ∈ Ng−4,0. But for g ≥ 5 the locus Ng−4,0 is a divisor in Ag−4

and we obtain the inequality codim∂Ãg
(M) ≥ codim∂Ãg

(A(4)
g ) + 1 ≥ 5, a

contradiction. Therefore we can assume that M ∩ A(≤3)
g 6= ∅.

Suppose that M ∩A(3)
g has codimension 1 in A(3)

g . Then either M maps dom-

inantly to Ãg−3 via the map q : A(3)
g 99K Ãg−3 and M intersects the general

fibre F of q in a divisor, or M maps to a divisor in Ag−3 under q with full
fibres F contained in M .
The former case is impossible by Proposition 12.1. In the latter case for a
general (B,Ξ) in q(M) all the quasi-abelian varieties (X,Ξ) in the fibre F
over (B,Ξ) must have a 1-dimensional vertical singular locus of Ξ. Note that
(X,Ξ) corresponds to a standard compactification as considered in §16. By the
discussion given in §16 and by Proposition 11.6, we see that q(M) has to be

contained in Ng−3,1, against Theorem 8.6. We thus conclude that M ∩A(≤2)
g 6=

∅.
Suppose that M ∩ A(≥2)

g 6= ∅. Then M ∩ A(2)
g has codimension 2 in A(2)

g . As
above we have that q(M) is contained in Ng−2,0.
Suppose first q(M) is dense in a component of Ng−2,0. If (B,Ξ) is a general

element of q(M), then M intersects the fibre of q : A(2)
g 99K Ãg−2 over (B,Ξ) in

Documenta Mathematica 13 (2008) 453–504



Andreotti–Mayer Loci and the Schottky Problem 493

codimension one. This gives a contradiction by the analysis §17 and Proposition
11.6.
Suppose that q(M) is not dense in a component of Ng−2,0. If (B,Ξ) is a general

element of q(M), then M contains the full fibre of q : A(2)
g → Ag−2 over (B,Ξ).

By taking into account the analysis §17 and Proposition 11.6, this implies q(M)
contained in Ng−2,1, giving again a contradiction.

This proves that M ∩ A(≤1)
g 6= ∅. �

From now on we use again the Voronoi compactification. Let g ≥ 4 and let
N be an irreducible component of Ng,1 of codimension 3 in Ag. As in the
proof above we denote by M an irreducible component of the intersection of
the closure of N in Ãg with the boundary ∂Ãg. According to Lemma 20.1 the

morphism q : Ãg → A∗
g induces a rational map α : M 99K Ãg−1, whose image

is not contained in ∂Ãg−1.

Lemma 20.2. In the above setting, the Zariski closure of q(M) in Ãg−1 is:

(i) either an irreducible component N1 of Ñg−1,1 of codimension 3 in Ãg−1;

(ii) or an irreducible component N0 of Ñg−1,0 and in this case:
(a) if η = (B,Ξ) ∈ N0 is a general point, then the closure of q−1(η)

in B is an irreducible component of N1(B,Ξ) of codimension 2 in
B;

(b) if ξ = (X,Ξ) ∈ M is a general point, then Singvert(Ξ) meets
the singular locus D of X in one or two points, whose associated
quadric has corank 1.

Proof. If q(M) ⊆ Ng−1,1, then Theorem 8.6 implies 3 ≤ codimAg−1(q(M)) ≤
codim∂Ãg

(M) = 3 and the closure of q(M) must an irreducible component

of Ñg−1,1. If q(M) 6⊆ Ng−1,1 then by Proposition 12.1 we have that q(M) ⊆
Ng−1,0 and the fibre q−1(B,Ξ) ⊆ N1(B,Ξ). By Proposition 11.6 we have
codimB(N1(B,Ξ)) ≥ 2 and since Ng−1,0 is a divisor in Ag−1 we see that (iia)
follows. The last statement (iib) follows from Remark 12.3, the analysis in
Section 17, the description of Ng,0 by Mumford and Debarre (see [27], [11], and
§19) and Corollary 8.12. �

We are now ready for the proof of the conjecture for Ng,1.

Theorem 20.3. Let g ≥ 4. Then the codimension of an irreducible component
N of Ng,1 in Ag is at least 3 with equality if and only if:

(i) g = 4 and either N = H4 is the hyperelliptic locus or N = A4,(1,3);
(ii) g = 5 and N = J5 is the jacobian locus.

Proof. By Theorem 8.6, the codimension of N is at least 3. Suppose that N
has codimension 3. It is well-known that the assertion holds true for g = 4 and
5 (see [4], [10], [8]). We may thus assume g ≥ 6 and proceed by induction.
Let ζ = (X,ΘX) be a general point of N , so that X is simple (see Remark 7.4).
Let S be a 1-dimensional component of Sing(ΘX). We can assume that the
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class of S in X is a multiple mγX of the minimal class γX = Θg−1
X /(g − 1)! ∈

H2(X,Z). If not so, then End(X) 6= Z and this implies that codimAg
(N) ≥

g − 1 (see Remark 7.4).
By Theorem 8.6, the general point in S is a double point for ΘX . We let R be
the curve in Sg whose general point is ξ = (X,ΘX , x), with x ∈ S a general
point. Note that R is birationally equivalent to S. Let Q be the linear system
of all quadrics in P(TX,0). One has the map

φ : ξ ∈ R 99K Qξ ∈ Q.
As in the proof of Theorem 8.6, the map φ is not constant. Let QR be the
span of the image of φ. As in the proof of Theorem 8.6, one has dim(QR) ≥ 2.
By Proposition 8.3, QR is contained in the linear system Ng,1(ζ) (see §7 for
the definition), which has dimension at most 2 since codimAg

(N) = 3. Thus
QR = Ng,1(ζ) has dimension 2.

By Lemma 20.1, the closure of N in A(≤1)
g has non-empty intersection with

the boundary. As in the proof of Lemma 20.1, we let M be an irreducible

component of the intersection of the closure of N in A(≤1)
g with the boundary.

Consider the rational map α : M 99K Ag−1 and the closure of the image α(M),
for which we have the possibilities described in Lemma 20.2.

Claim 20.4. Possibility (i) in Lemma 20.2 does not occur.

Proof of the claim. By induction, one reduces to the case g = 6 and α(M) =
J5. Let (X,Ξ) ∈ M be a general point. Then (X,Ξ) is a general rank one
extension of the Jacobian (J(C),ΘC) of a general curve C of genus 5. Note
that if x ∈ J(C) corresponds to the extension, then ΘC and x + ΘC are not
tangentially degenerate (see [17], Thm. 10.8, p. 273). Then the analysis of
§15 implies that the vertical singular locus S0 of Ξ sits on the singular locus
D ∼= J(C) of X and it is isomorphic to SC = Sing(ΘC) with cohomology class
Θ4/12 (see [3]). Thus Ξ · S0 = ΘC · SC = 10. Hence, if ζ = (X,ΘX) is a
general point of N , then Sing(ΘX) is a curve S such that ΘX · S = 10. On
the other hand S is homologous to mγX and one has 10 = mΘX · γX = 6m, a
contradiction. �

Claim 20.4 shows that only possibility (ii) in Lemma 20.2 can occur. In par-
ticular, by (iib) of Lemma 20.2, for ξ = (X,ΘX , x) general in R, the quadric
Qξ has corank 1. Let vξ ∈ Pg−1 be the vertex of Qξ. Remember that R is
birational to S. Hence, by Proposition 4.4, the map

γ : ξ ∈ R 99K vξ ∈ Pg−1

can be regarded as the Gauss map γS of S.

Claim 20.5. If the general quadric in the linear system QR is singular, then for
ξ = (X,ΘX , x) general in R, the vertex vξ of Qξ is contained in the asymptotic

cone TC
(4)
ξ .
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Proof of the claim. Suppose the general quadric in QR is singular. Then the
general quadric in QR has corank 1 (see Lemma 20.2, (iib)) and, by Bertini’s
theorem, its vertex lies in the base locus of QR. In particular, for ξ = (X,ΘX , x)
general in R, the vertex vξ of the quadric Qξ lies in all the quadrics of QR.
Choose a local parametrization x = x(t) of S around a general point of it, with
t varying in a disc ∆. Then ξ(t) = (X,ΘX , x(t)) ∈ R and we set Qξ(t) := Qt,
its equation being

∑

ij

∂i∂jθ(x(t))zizj = 0,

where we set θ(z) := θ(τ, z) for the theta function of X . The main remark is
that all the subsequent derivatives of Qt with respect to t lie in QR and actually
Qt and its first two derivatives Q′

t and Q′′
t span QR, because dim(QR) = 2.

Hence Bertini’s theorem implies that x′ := x′(s) sits on all these quadrics for t
and s general in ∆. The equations of Q′

t and Q′′
t are respectively

∑

ijh

∂i∂j∂hθ(x(t))x
′
h(t)zizj = 0

∑

ijhk

∂i∂j∂h∂kθ(x(t))x
′
h(t)x′k(t)zizj +

∑

ijh

∂i∂j∂hθ(x(t))x
′′
h(t)zizj = 0

Thus we have the relations
(29)

X

ij

∂i∂jθ(x(t))x′

i(s)x
′

j(t) = 0,
X

ijh

∂i∂j∂hθ(x(t))x′

h(t)x′

i(s)x
′

j(s) = 0

X

ijhk

∂i∂j∂h∂kθ(x(t))x′

h(t)x′

k(t)x′

i(s)x
′

j(s) +
X

ijh

∂i∂j∂hθ(x(t))x′′

h(t)x′

i(s)x
′

j(s) = 0

identically in s, t ∈ ∆. The first of these relations says that the tangent
hyperplane to Qt at x′(t) contains the vertex x′(s). From the second relation
we have

(30)
∑

ijh

∂i∂j∂hθ(x(t))x
′
h(t)x′i(t)x

′
j(t) = 0

which shows that vξ is contained in the asymptotic cone TC
(3)
ξ . By differenti-

ating (30), one finds
X

ijhk

∂i∂j∂h∂kθ(x(t))x′

h(t)x′

k(t)x′

i(t)x
′

j(t) + 3
X

ijh

∂i∂j∂hθ(x(t))x′′

h(t)x′

i(t)x
′

j(t) = 0.

By comparing with (29) for s = t, we deduce that
∑

ijhk

∂i∂j∂h∂kθ(x(t))x
′
h(t)x′k(t)x′i(t)x

′
j(t) = 0

which proves that vξ ∈ TC
(4)
ξ . �

The crucial step in our proof is the following claim.

Claim 20.6. The general quadric in the linear system QR is non singular.
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Proof of the claim. Suppose this is not the case. Again we consider an irre-
ducible component M of N̄ ∩ ∂Ã′

g and let (X,Ξ) be a general point of M .

By Claim 20.4 and Lemma 20.2, (X,Ξ) is a rank 1 extension of (B,Ξ) corre-
sponding to a general point in a component of Ng−1,0, with extension datum b
varying in a codimension 2 component of N1(B,Ξ). We let S0 be the vertical
singular locus of Ξ. By the analysis of §15, this corresponds to a contact curve
C := Cb of Ξ with Ξb, which contains the singular points of both Ξ and Ξb

(see Remark 12.3). This means that we have a point on S0, corresponding to a
singular point x of Ξ, where the tangent cone is the cone over Qx with vertex
the point of Pg−1 corresponding to b (see S 15).
Now we note that C is smooth at x. Indeed locally around x, the divisor Ξ
looks like a quadric cone of corank 1 in Pg−2 and Ξb looks like a hyperplane,
which touches it along a curve. This implies that C locally at x looks like a
line along which a hyperplane touches a quadric cone of corank 1 (see Remark
12.4).
Hence, the Gauss image xb := γCb

(x) lies in Qx and actually, by Claim 20.5,

the point xb lies in the asymptotic cone TC
(4)
x .

The Gauss map γΞ : Ξ 99K Pg−2 of Ξ has an indeterminacy point at x and −x,
which can be resolved by blowing up x and −x, since we may assume Ξ to be
symmetric. Let p : Ξ̃ → Ξ be the blow-up and let γ̃Ξ be the morphism which
coincides with γΞ ◦ p : Ξ̃ 99K Pg−2 on an open subset. The exceptional divisor
at x and −x is isomorphic to Qx and γ̃Ξ(xb) is the tangent hyperplane to Qx

at xb. The tangency property of Ξ and Ξb along C implies that the tangent
hyperplane to Qx at xb coincides with γΞb

(x).
Now we let b vary in a component Z of N1(B,Ξ) of dimension g − 3, so that
we have a rational map

f : Z 99K Qx, b 7→ xb.

Note that Qx also has dimension g − 3 and we claim that f has finite fibres,
hence it is dominant. If not, we would have an irreducible curve Γ in Z such
that for all b ∈ Γ, xb stays fixed. But then for the general b ∈ Γ, the divisor Ξb

has a fixed tangent hyperplane at x, a contradiction by Lemma 11.1.
On the other hand, by Claim 20.5 and by part (i) of Proposition 19.2, one has
that f cannot be dominant, a contradiction. �

By Lemma 20.6, the curve φ(R) := Σ is an irreducible component of the
discriminant ∆ ⊂ QR of singular quadrics in QR

∼= P2. Note that ∆ has
degree g in P2. The map φ has degree at least 2 since we may assume ΘX to
be symmetric, hence it factors through the multiplication by −1X on X .

Claim 20.7. The map φ : R → Σ has degree 2.

Proof. Let d ≥ 2 be the degree of the map. Then for ξ = (X,ΘX , x) general in
R, we have distinct points ξi = (X,ΘX , xi) ∈ R, with ξ = ξ1, such that all the
quadrics Qξi

, i = 1, . . . , d, coincide with the quadric Q = Qξ. If for i = 1, . . . , d
we let ηi be the tangent vector to S at xi, we have that η1 = · · · = ηd and
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∂ηi
Qξi

, for i = 1, . . . , d, coincide with the quadric Q1 = ∂η1Q, which is linearly
independent from Q. The analysis we made in §3 shows that Sg is smooth at
each of the points ξi, i = 1, . . . , d, and the tangent space there is determined by
Q and Qη1 . This implies that a general deformation of ξ = (X,ΘX , x) inside
Sg carries with it a deformation of each of the points ξi (i = 1, . . . , d) in Sg,
because the involved quadrics are the same at these points. This yields that a
general element of an irreducible component of Ng,0 containing N has at least
d singular points. By Debarre’s result in [11] (see §19), one has d = 2, proving
our claim. �

Claim 20.8. The map φ is a morphism.

Proof. To prove the claim, it suffices to show that N is not contained in Ng,0,r,

with r ≥ 3. In order to prove this, one verifies that, for a general point (X,Ξ)
in a component M of the intersection of N with the boundary, there are no
points of multiplicity r ≥ 3 in Singvert(Ξ). Recall that, by Proposition 20.1, we
may assume that (X,Ξ) is a semi-abelian variety of torus rank 1, with abelian
part η = (B,Ξ). Moreover, by Claim 20.4, only case (ii) of Lemma 20.2 can
occur. Therefore we may assume that η is either a general point of θ0,g−1 or a
general point of M0,g−1 and the extension corresponds to a general point in an
irreducible component of N1(B,Ξ) which has dimension g−3 > 0. By Remark
15.1 we see that no triple points can occur on Singvert(Ξ). �

Note now that the morphism φ is defined on R ∼= S by sections of OS(ΘX),
since the points of S verify the equations (2) and, if ξ = (X,ΘX , x) ∈ R,
the entries of the matrix of Qξ are ∂i∂jθ(τ, z), where z corresponds to x. We
deduce from deg(∆) = g and from Claim 20.7, that

(31) S · ΘX ≤ 2g.

As we assumed at the beginning of the proof, the class of S in X is a multiple
mγX of the minimal class. In view of (31), we find m ≤ 2. The Matsusaka-
Ran criterion [31] and a result of Welters [40] imply that (X,ΘX) is either a
Jacobian or a Prym variety or depends on less than 3g parameters. Since g ≥ 6
this is not possible in view of the dimensions. This ends the proof. �

Remark 20.9. A. Verra communicated to us an interesting example of an
irreducible component M of codimension 6 of N6,1 contained in the Prym
locus. We briefly sketch, without entering in any detail, its construction and
properties. Let C be the normalization of a general curve of type (4, 4) on
P1 × P1 with two nodes on a line of type (0, 1), so that C has genus g = 7.
Let d, t be the linear series formed by pull-back divisors on C of the rulings of
type (1, 0), (0, 1) respectively. Consider a non trivial, unramified double cover

f : C̃ → C of C and let (P,Ξ) be the corresponding Prym variety. Then Ξ has
a 1-dimensional unstable singular locus R (see [23]), homologically equivalent

to twice the minimal class, described by all classes in Pic12(C̃) of divisors of
the form f∗(d) + M , with f∗(M) ∈ t. One proves that the map φ described
in the proof of Theorem 20.3 sends R to a plane sextic of genus 7 which is
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tetragonally associated to C (see [23] for the tetragonal construction). The
divisor Ξ has 24 further isolated singular points, which are pairwise exchanged
by the multiplication by −1. One shows that the corresponding 12 tangent
cones span the same linear system Q of dimension 2 spanned by φ(R). The
linear system Q is the tangent space to the Prym locus P6 at (P,Ξ), which is
therefore a smooth point for P6. By contrast, M is a non-reduced component
of N6,1 of codimension 6 such that the projectivized normal space Q at a
general point has dimension 2 rather than 5. This shows that the hypotheses
of Theorem 20.3 cannot be relaxed by assuming only that the projectivized
normal space to M at a general point has dimension 2.

21. Appendix: A Result on Pencils of Quadrics

One of the ingredients of the proof Theorem 8.6 is a classical result of Corrado
Segre from [33] on pencils of quadrics.
First we recall the following:

Proposition 21.1. Let L be a pencil of quadrics in Pn with n ≥ 1 whose
general member is smooth. Then:

(i) the number of singular quadrics Q ∈ L is n+1, where each such quadric
Q has to be counted with a suitable multiplicity µ(Q) ≥ n+ 1 − rk(Q);

(ii) for a singular quadric Q ∈ L one has µ(Q) ≥ 2 if and only if either
rk(Q) < n or the singular point of Q is also a base point of L;

(iii) for a singular quadric Q ∈ L with rank n one has µ(Q) = 2 if and only
if any other quadric Q′ ∈ L is smooth at p and the tangent hyperplane
to Q′ at p is not tangent to Q along a line.

Proof. Consider the linear system Qn of dimension n(n+ 3)/2 all quadrics in
Pn. Inside Qn we have the discriminant locus ∆n of singular quadrics, which is
a hypersurface of degree n+ 1, defined by setting the determinant of a general
quadric equal to zero. The differentiation rule for determinants implies that
the locus ∆n,r of quadrics of rank r < n+ 1 has multiplicity n+ 1− r for ∆n.
By intersecting ∆n with the line corresponding to L we have (i).
As for assertion (ii), we may assume rk(Q) = n, so that Q has a unique double
point p, which we may suppose to be the point (1, 0, . . . , 0). Thus the matrix
of Q is of the form

(

0 0n

0t
n A

)

where 0n ∈ Cn is the zero vector and A is a symmetric matrix of order n and
maximal rank. Let Q′ be another quadric in L, with matrix

(

β b
bt B

)

with β ∈ C, b = (b1, . . . , bn) ∈ Cn and B is a symmetrix matrix of order n. By
intersecting L with ∆n, we find the equation
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(32) det

(

tβ tb
tbt A+ tB

)

= 0.

The constant term in the left-hand-side is 0. The coefficient of the linear term
is

det

(

β b
0t

n A

)

= β det(A)

which proves (ii).
Let us prove (iii). Suppose rk(Q) = n, so that Q has a unique double point p,
which is a base point of L. Again we may suppose p is the point (1 : 0 : . . . : 0)
and we can keep the above notation and continue the above analysis. The
left-hand-side in (32) is

t2 det

(

0 b
bt A+ tB

)

= 0

hence the coefficient of the third order term is

(33) det

(

0 b
bt A

)

.

One has µ(Q) = 2 if and only if this determinant is not zero, hence b 6= 0,
which is equivalent to saying that all quadrics in the pencil different from Q
are smooth at p. Note that there is a vector c = (c1, . . . , cn) ∈ Cn such that
b = c · A. Now the determinant in (33) vanishes if and only if c · bt = 0, i.e.
c · A · ct = 0. This means that the line L joining p with (0 : c1 : . . . : cn)
sits on Q and that the tangent hyperplane to Q′ at p, which has equation
b1x1 + · + bnxn = 0, is tangent to Q along r. �

Next we prove Segre’s theorem.

Theorem 21.2. Let L be a linear pencil of singular quadrics in Pn with n ≥ 2
whose general member Q has rank n+ 1− r, i.e. Vert(Q) ∼= Pr−1. We assume
that Vert(Q) is not constant when Q varies in L with rank n+ 1 − r. Then:

(i) the Zariski closure

VL =
(

⋃

Q∈L, rk(Q)=n+1−r

Vert(Q)
)

is a variety of dimension r spanning a linear subspace Π of dimension
m in Pn with r ≤ m ≤ (n+ r − 1)/2;

(ii) VL is a variety of minimal degree m− r + 1 in Π;
(iii) if

dim
(

⋂

Q∈L, rk(Q)=n+1−r

Vert(Q)
)

= s

then r ≤ (n+ 2s+ 3)/3;
(iv) the number of quadrics Q ∈ L of rank rk(Q) < n + 1 − r is n + r −

2m− 1 ≤ n− r − 1, where each such quadric Q has to be counted with
a suitable multiplicity ν(Q) ≥ n+ 1 − r − rk(Q).
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Proof. We start with the proof of part (i). Notice that, by iteratedly restricting
to a general hyperplane, we can reduce to the case r = 1.
In this case VL is a rational curve which, by Bertini’s theorem, is contained in
the base locus B of L. Let p, q be general points on it and let L be the line
joining them. There is a quadric Qp ∈ L with vertex at p. Hence Qp contains
L. Similarly there is a different quadric Qq with vertex at q, and it also contains
L. Since Qp and Qq span L, we see that L is contained in B, i.e., the secant
variety to VL is contained in B. Take now three general points p, q, r on VL.
Since the lines pq, pr, qr are contained in B also the plane spanned by p, q, r is
contained in B. Continuing this way, we see that Π = 〈VL〉 is contained in B.
Since the general quadric in L has rank n (recall we are assuming r = 1 now),
the maximal dimension of subspaces on it is n/2. Thus dim(Π) ≤ n/2 which
proves part (i).
Also for (ii) we can reduce ourselves to the case r = 1, in which we have to
prove that VL is a rational normal curve in Π = 〈VL〉. Set dim(Π) = m.
Let p ∈ VL be a general point. The polar hyperplane πp of p with respect to
Q ∈ L does not depend on Q, since there is a quadric in L which is singular at
p (see the proof of Proposition 21.1). Note that πp has to contain all vertices
of the quadrics in L, hence it contains Π. By the linearity of polarity, we have
that polarity with respect to all quadrics in L is constant along Π and for a
general point x ∈ Π, the polar hyperplane πx with respect to all quadrics in L
contains Π. Furthermore the linear system of hyperplanes P = {πx}x∈Π has
dimension m− 1.
Now, let p ∈ VL be a general point and let Qp be the unique quadric in L
with a double point at p. We denote by Star(p) the Pm−1 of all lines in Π
containing p. Let π ∈ P be a general hyperplane, which is tangent to Qp along
a line L containing p. Moreover L sits in Π, because this is the case if π = πq

with q another general point on VL, in which case L is the line 〈p, q〉. Thus we
have a linear map φp : P → Star(p), which is clearly injective and therefore an
isomorphism.
Fix now another general point q on VL. The two maps φp and φq determine a
linear isomorphism φ : Star(p) → Star(q). Note that L meets φ(L) if and only
if L∩ φ(L) is a point of VL. This implies that VL is a rational normal curve in
Π, proving part (ii).
Let us prove part (iii). It suffices to prove the assertion if s = −1. The variety
VL is swept out by a 1-dimensional family of projective spaces of dimension
r − 1, i.e., the vertices of the quadrics in L. Under the assumption s = −1 no
two of these vertices can intersect. Thus we must have 2(r − 1) < m. Using
part (i), the assertion follows.
Finally we come to part (iv). Let us restrict L to a general subspace Λ of
dimension n− r. We get a pencil L̄ of quadrics in Λ whose general member is
smooth.
We get a singular quadric in L̄ when we intersect Λ with a quadric in L whose
vertex intersects Λ. We claim that this is the only possibility for getting a
singular quadric in L̄. Indeed, let Q ∈ L and suppose that its intersection
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Q̄ ∈ L̄ with Λ is singular at p ∈ Λ, but Q is not singular at p. Then Λ is
tangent to Q at p and therefore also intersects the vertex of Q.
In conclusion we have only two possibilities for getting singular quadrics in L̄:

(a) there is quadric of rank n+ 1 − r in L whose vertex intersects Λ;
(b) there is quadric of rank n + 1 − h < n + 1 − r in L giving rise to a

quadric of rank n− h in L̄.

Case (a) occurs as many times as the degree of VL, that is, m − r + 1 times.
According to part (ii) of Proposition 21.1, each quadricQ in case (a) contributes
with multiplicity at least 2 in the counting of singular quadrics in L̄. We claim
that, because of the generality of Λ, this multiplicity is exactly 2. To prove
this, by part (iii) of Proposition 21.1, we will prove that for each quadric Q
in case (a), with vertex p ∈ Λ and for any other quadric Q′ ∈ L, the tangent
hyperplane π to Q′ at p is not tangent to Q along a line contained in Λ. To
see this we can, by first cutting with a general subspace of dimension n− r+1
through Λ, reduce ourselves to the case r = 1, in which VL is a rational normal
curve. Choose then a general point q ∈ VL and let Q′ = Qq be the unique
quadric in L with a double point at q. The hyperplane π is tangent to Qq

along the line 〈p, q〉. This implies that π is tangent to Q only along the tangent
line Lp to VL at p (see the proof of part ii)). By the generality assumption, Λ
is not tangent to VL at p. Thus the assertion follows.
As for quadrics in case (b), again by part (i) of Proposition 21.1, each such
quadric contributes to the same count with multiplicity h − r. Since, by part
(i) of Proposition 21.1, the number of singular quadrics in L̄, counted with
appropriate multiplicity, is n− r + 1, the assertion follows. �

One has the following consequence:

Corollary 21.3. Let L be a linear pencil of quadrics in Pn with n ≥ 2. Then
the general member Q ∈ L has rank n + 1 − r (i.e., Vert(Q) ∼= Pr−1) if and
only if the base locus of L contains a linear subspace Π of dimension m with
r ≤ m ≤ (n + r − 1)/2, along which all the quadrics in L have a common
tangent subspace of dimension n+ r−m− 1. In this case Π is the span of the
variety VL.

Proof. As usual it suffices to prove the assertion for r = 1. If the general
quadric Q ∈ L has rank rk(Q) = n, the assertion follows from the proof of
Theorem 21.2. The converse is trivial, since a smooth quadric in Pn has a
tangent subspace of dimension n−m− 1, and not larger, along a subspace of
dimension m. �

These results imply the existence of canonical forms for pencils of singular
quadrics, originally due to Weierstrass [38] and Kronecker [21]. This is ex-
plained in some detail in [33], §§20-25, and we will not dwell on this here.
It would be desirable to have an extension of the results in this Appendix to
higher-dimensional linear families of quadrics.
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