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506 WIESEAWA NIZIOL

1. INTRODUCTION

The purpose of this paper is to set down some basic facts about the algebraic
and topological K-theory of log-schemes. Log-schemes come equipped with
several natural topologies. The main two are the Kummer log-étale topology,
well suited to study l-adic phenomena, and the Kummer log-flat topology (to-
gether with its derivative — the Kummer log-syntomic topology) reasonably
well-suited to study p-adic phenomena. These topologies are often enhanced
by adding log-blow-ups as coverings, a procedure that yields better behaved
topoi.

The investigation of coherent and locally free sheaves in these topologies as
well as of the related descent questions was initiated by Kato in [24]. In par-
ticular, Kato was able to compute the Picard groups of strictly local rings. A
foundational study of the algebraic K-theory of the Kummer log-étale topos
(i.e., the Quillen K-theory of locally free sheaves in that topos) was done by
Hagihara in [I4]. He has shown that over a separably closed field Kummer
log-étale K-theory satisfies devissage, localization as well as Poincaré duality
for log-regular regular schemes. Using these facts and an equivariant K-theory
computation of the Kummer log-étale K’-theory of log-points (fields equipped
with log-structure) he obtained a structure theorem (see Theorem below)
for Kummer log-étale K-theory of a certain class of log-schemes including those
coming from a smooth variety with a divisor with strict normal crossings.
This paper builts on the results of Kato and Hagihara. In section 2 we fo-
cus on some basic properties of the topologies we will use. In section 3 we
study coherent and locally free sheaves in these topologies. Since Kato’s paper
remains unfinished and unpublished, for the convenience of the reader (and
the author), this section contains some of Kato’s proofs as well as supplies
proofs of the results only announced in [24]. In section 4 we study algebraic
K-theory. We generalize Hagihara’s work to schemes over fields with Kummer
log-étale topology and to arbitrary schemes with Kummer log-flat topology.
This is rather straightforward and is done by studying equivariant K-theory
of finite flat group schemes instead of just finite groups as in Hagihara. The
following structure theorem follows. Let X be a regular, log-regular scheme
with the log-structure associated to a divisor D with strict normal crossing.
Let {D;|i € I} be the set of the irreducible (regular) components of D. For an
index set J C I denote by D; the intersection of irreducible components in-
dexed by J and by A, ;| (resp. AT J‘) the free abelian groups generated by the set

{(ar,...,a15)|a; € Q/Z\{0}} (resp. the set {(ai,...,a5)|a; € (Q/Z)'\{0}}).
THEOREM 1.1. For any q > 0 we have the canonical isomorphism
Kq(Xkﬂ) ~ @KQ(D]) ® A|J|
JCI
Moreover, if D is equicharacteristic then canonically

Ky (Xist) ~ @ Kq(Dy) @ Al
JCI
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K-THEORY OF LOG-SCHEMES I 507

Section 5 is devoted to topological K-theory. By definition this is K-cohomology
of the various sites considered in this paper. The main theorem (Theorem B.T4]
and Corollary BET1) states that I-adic log-étale K-theory of a log-regular scheme
computes the étale K-theory of the largest open set on which the log-structure
is trivial.

THEOREM 1.2. Let X be a log-regular scheme satisfying condition (*) from
section 5. Let n be a natural number invertible on X. Then the open immersion
7 :U — X, where U = Xy, is the mazximal open set of X on which the log-
structure is trivial, induces an isomorphism

g% Ky (X, Z/n) S KE(U,Z/n), m > 0.

This follows from the fact that we can resolve singularities of log-regular
schemes by log-blow-ups and that the étale sheaves of nearby cycles can be
killed by coverings that are étale where the log-structure is trivial and tamely
ramified at infinity.

ACKNOWLEDGMENTS. Parts of this paper were written during my visits to
Strasbourg University, Cambridge University, and Tokyo University. I would
like to thank these institutions for their hospitality and support.

For a log-scheme X, Mx will always denote the log-structure of X. Unless
otherwise stated all the log-structures on schemes are fine and saturated (in
short: fs) and come from the étale topology, and all the operations on monoids
are performed in the fine and saturated category.

2. TOPOLOGIES ON LOG-SCHEMES

In this section we collect some very basic facts about topologies on log-schemes.
2.1. THE KUMMER LOG-FLAT AND THE KUMMER LOG-SYNTOMIC TOPOLOGY.

2.1.1. The log-étale, log-syntomic, and log-flat morphisms. The notion of the
log-étale and the log-flat morphism recalled below is the one of Kato [23], 3.1.2].
The notion of log-syntomic morphism we introduce is modeled on that. Our
main reason for introducing it is the local lifting property it satisfies (see Lemma

£).

DEFINITION 2.1. Let f : Y — X be a morphism of log-schemes. We say that
f is log-étale (resp. log-flat, resp. log-syntomic) if locally on X and Y for
the (classical) étale (resp. fppf, resp. syntomic) topology, there exists a chart
(P — Mx,Q — My, P — Q) of f such that the induced morphisms of schemes

oY — X X Spec(Z[P]) SpeC(Z[Q]),
e Spec(Oy[Q9P]) — Spec(Oy [P9P))

are classically étale (resp. flat, resp. syntomic).

Recall the definition of (classical) syntomic morphism.
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508 WIESEAWA NIZIOL

DEFINITION 2.2. Let f : Y — X be a morphism of schemes. We say that
f is syntomic if locally on X and Y for the classical étale topology f can
be written as f : Spec(B) — Spec(A4), with B = A[Xy,..., X, ]/(f1,..., fs),
where the sequence (f1,...,fs) is regular in A[Xy,...,X,] and the algebras
AlX1,..., X)/(f1,..., fi) are flat over A, for all s.

Syntomic morphisms are stable under composition and base change.

REMARK 2.3. We should mention that, a priori, in the Definition ] we have
used (after Kato |23, 3.1]) the following meaning of property being local on
X and Y: there exist coverings (X; — X); and (V;; — X; xx Y);, for each
i, for the corresponding topology such that each morphism Y;; — X; has
the required property. By Lemma below, this is equivalent for log-étale,
log-flat, and log-syntomic morphisms, to the more usual meaning: for every
point y € Y and its image x € X, there exist neighbourhoods U and V of
y and x respectively (for the corresponding topology) such that U maps to
V and the morphism U — V has the required property. In particular, in
the Definition EZTl we may use the second meaning of “locally” and change
the second condition to “Spec(Ox|[Q9]) — Spec(Ox|[P9]) is classically étale
(resp. flat, resp. syntomic).”

REMARK 2.4. The notion of log-syntomic morphism presented here is not the
same as the one used by Kato [Z1], 2.5]. Recall that Kato defines an integral
morphism f : Y — Z of fine log-schemes to be log-syntomic if étale locally Y
(over Z) embeds into a log-smooth Z-scheme via an exact classically regular
embedding over Z. In particular, Kato’s log-syntomic morphisms are classically
flat while ours are not necessarily so.

LEMMA 2.5. Let S be a nonempty scheme and let h : G — H be a homomor-
phism of finitely generated abelian groups. Then the morphism Og|G] — Og[H]
is étale (resp. flat or syntomic) if and only if the kernel and the cokernel of h
are finite groups whose orders are invertible on S (resp. if the kernel of h is a
finite group whose order is invertible on S).

Proof. The étale case follow from [22] 3.4]. The “if” part of the flat case follows
from [22), 4.1]. We will now show that if the induced morphism f : k[G] — k[H],
where k is a field is flat, then the kernel IV of h is torsion of order invertible in k.
Take an element g from N. It is easy to see that the kernel of the multiplication
by g — 1 on k[G] is generated, as an ideal, by elements 1+ g+ ...+ ¢g"~ !, such
that g™ = 1. By the flatness of f, the images of these elements in k[H| generate
as an ideal the whole of k[H]. In particular, the element g has to be of finite
order d and the ideal of the multiplication by g — 1 on k[G] is generated by the
element 1 +g+...+¢% 1. But f(1+g+...+9¢% 1) =d. Hence d is invertible
in k, as wanted. The syntomic case follows from Lemma Bl below. O

LEMMA 2.6. With the notation as in the above lemma, the morphism Og|G] —
Og[H] is flat if and only if it is syntomic.
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K-THEORY OF LOG-SCHEMES I 509

Proof. Since syntomic morphism is flat, we have to show that if the morphism
Os|G] — Og[H] is flat it is already syntomic. Let N = ker(G — H). Our
morphism Og[G] — Og[H] factors as Og[G] — Og[G/N] — Og[H]. Since the
morphism Og[G] — Og[H] is flat, the group N is torsion of order invertible
on S (see the previous lemma). This yields that the first morphism in our
factorization is étale hence syntomic. This allows us to reduce the question to
proving that if the morphism h : G — H is injective then the induced morphism
Z[|G] — Z[H)] is syntomic.

Write H = Hy1/Gy, for HH = G ® Zr1 & ... ® Zr, and a subgroup G; of
H;. Since Hitor = Gior and the map G — H is injective, the group G is
finitely generated and torsion-free. Write Gy = Za1 ®...® Zay. We claim that
Z[H| ~ Z[H1]/(a1—1,...,a;—1) and the sequence {a;—1, ..., ar—1} is regular.
Set Hy; := H1/Za1®...®Za;. Note that, since the group Za1®. . . ®Za;®Za; 41
is torsion free, the element ;1 is not torsion in Hy ;. This easily implies (cf. Bl
2.1.6]) that a;+1 —1 is not a zero-divisor in Z[H7 ;]. To finish, it suffices to check
that the natural map Z[Hy;]/(ai+1 — 1) — Z[H1;/Zai4+1] is an isomorphism.
But this is clear since we have the inverse induced by Z — z, for x € H;;. O

LEMMA 2.7. (1) Log-étale, log-flat, log-syntomic morphisms are stable un-
der compositions and under base changes.

(2) Let f:Y — X be a strict morphism of log-schemes, i.e., a morphism
such that f*Mx = My. Then f is log-étale (resp. log-flat, resp.
log- syntomic) if and only if the underlying morphism of schemes is
(classically) étale (resp. flat, resp. syntomic).

(3) Let S be a scheme and let P — Q be a morphism of monoids. Then the
induced morphism of log-schemes Spec(Og[Q]) — Spec(Og[P]) is log-
étale (resp. log-flat, resp. log-syntomic) if and only if the morphism of
schemes Spec(Og|QI]) — Spec(Og[P%]) is (classically) étale (resp.
flat, resp. syntomic).

Proof. The only nonobvious statement is the one concerning compositions,
which follow easily from Lemma below. |

LEMMA 2.8. Let f : Y — X be a morphism of log-schemes and let § : P — Mx
be a chart. Assume that f is log-étale (resp. log-flat, resp. log-syntomic). Then,
étale (resp. flat, resp. syntomic) locally on X and on'Y in the classical sense,
there exists a chart (P — Mx,Q — My, P — Q) including 8 satisfying the
conditions in Definition[Z1l. We can require further P9? — Q9P to be injective.

Proof. For the log-étale and the log-flat topology this is Lemma 3.1.6 from [23].
We will argue in a similar fashion for the log-syntomic case taking into account
that (unlike in [23]) our monoids are always saturated.

Let (P — Mx,Q" — My,P’ — Q') be a chart satisfying the conditions in
Definition Xl Fix y € Y,z = f(y) € X. By replacing P’ with the inverse
image P; (which is always saturated) of Mx , under the map

PP @ (P — M ,; (a,b) — ab,
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510 WIESEAWA NIZIOL

and by replacing )’ with the pushout P; «+— P’ — @', we may assume that
B : P — Mx factors as P — P’ — Mx. By (Zariski) localization we may also
assume that P'/(P')* ~ Mx ,/O% , and Q'/(Q')* ~ My, /Oy .

Assume for the moment that the morphism (P’)9% — (Q')% is injective. Con-
sider the pushout diagrams with exact rows

O —— P9 — , H w 0
| | H

0 —— (P)? —— (@) w 0
| | H

Oo—— G —— T w 0,

where the group G is the cokernel of the map P% — (P’)9%?. We want to
construct the group H. For that, it suffices to show that the map T'— W has
a section. Consider a direct summond Z/nZ of W. Let t € T be a preimage
of a generator of Z/nZ. Then t" = b,b € G. Take V' € (P')* in the preimage
of b. Since P'/(P')* =~ Mx ./O% , and P% maps onto M5’ /O% , such a
b’ exists. Define the group G; by adjoining the n’th root of ¥ to (P’)*. By
localizing in the classical syntomic topology, we can now change P’ and Q' into
the pushouts P’ — (P')* — G; and Q' «— (P')* — G;. Note that we can
do that since the morphism (P')* — G is injective with finite cokernel, hence
the induced morphism Spec(Z[G1]) — Spec(Z[(P')*]) is syntomic (Lemma EZ5])
and surjective. Moreover, the above pushouts taken in the category of monoids
are already fine and saturated. Now, b = a™ for some a € G. Changing ¢ to
t/a gives us an element in the preimage of our generator of Z/nZ whose n’th
power is one, hence the section we wanted.

Let now @ be the inverse image of My, under the map H — M, (it is
saturated). Since P'/(P')* ~ Mx ,/O% , and Q'/(Q')" ~ My,/05., this
gives a local chart at y. We claim that the natural morphism P — @ gives
us the chart we wanted. The map P% — Q9 is clearly injective. Let @
be the pushout P’ + P — Q. There is a natural morphism @; — @Q’. By
Zariski localizing on Y, we may assume that Q1/QF = Q'/(Q’)*. Since the
map Q¥ — (Q’)9 is an isomorphism, this yields that Q; = @Q’. Hence the
morphism P — (@ is indeed the chart we wanted.

Let now (P — Mx,Q — My,P — Q) be a chart satisfying the conditions
in Definition EZJl It remains to show that we may assume P9% — Q9P to be
injective. Indeed, let N be the kernel of P9 — Q9. Consider the pushout
diagram with exact rows

0 —— PP® — H w 0
0 — P®P/N — Q9P w 0.
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It is easy to construct the group H. Let now @’ be the inverse image of My,
under the map H — Mf}?y (it is saturated). @’ gives a local chart at y. Since
N is the kernel of the map (Q")9% — Q9 and N is a finite group of order
invertible on Y, there exists an open set U C X Xgpec(z(p)) Spec(Z[Q']) such
that the order of N is invertible on U. Then the morphism U — X Xgpec(z(pP))
Spec(Z[Q’]) is log-étale. On the other hand this morphism is (perhaps after
Zariski localization) strict. Hence it is étale. This shows that (P — Mx, Q' —
My, P — Q') is a chart satisfying the conditions in Definition EZTl such that
the map P9 — (Q')% is injective. a

LEMMA 2.9. Let Y — X be a exact closed immersion defined by a nilideal.
Etale locally log-syntomic morphisms over Y can be lifted to log-syntomic mor-
phisms over X.

Proof. Immediate from Lemma (note that it suffices to localize in the étale
topology on Y') and the well-known lifting property for classical syntomic mor-
phisms that we recall below. O

LEMMA 2.10. Let A be a commutative Ting, B — A a closed immersion defined
by a nilideal, and C = A[X1,...,X,]/(G1,...,G;) an A-algebra such that the
sequence (G1,...,G,) is reqular and each A[X1,..., X,]/(G1,...,G;), i <r,is
flat over A. Let (G, ...,G,) be liftings of (G1,...,G,) to B[X1,...,X,]. Then
the sequence (Gu,...,G,) is reqular and each B[X1,...,X,]/(G1,...,G), i <
r, is flat over B.

2.1.2. Kummer topologies. Recall first the definition of Kummer morphisms.

DEFINITION 2.11. (1) A homomorphism of monoids h : P — @ is said to
be of Kummer type if it is injective and, for any a € @, there exists

n > 1 such that a™ € h(P).
(2) A morphism f : X — Y of log-schemes is of Kummer type if for
any x € X, the induced homomorphism of monoids (M/ O*)me —

(M/O*)x 7 is of Kummer type in the sense of (1).

One checks 27, 2.1.2] that Kummer morphisms are stable under base changes
and compositions.

REMARK 2.12. Note that if the morphism P — @ is Kummer, then by Lemma
B8 the associated morphism Spec(Z[Q]) — Spec(Z[P]) is both log-flat and
log-syntomic.

DEFINITION 2.13. Let X be a log-scheme. A morphism ¥ — X is called
Kummer log-étale (resp. log-flat, log-syntomic) if it is log-étale (resp. log-flat,
log-syntomic) and of Kummer type and the underlying morphism of schemes
is locally of finite presentation. The log-étale (resp. log-flat, log-syntomic)
topology on the category of Kummer log-étale (resp. log-flat, log-syntomic)
morphisms over X is defined by taking as coverings families of morphisms
{fi : Uy — T}, such that each f; is log-étale (resp. log-flat, log-syntomic) and
T =Y, fi(U;) (set theoretically).
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This defines a Grothendieck topology by the following result of Nakayama [27,
2.2.2].

LEMMA 2.14. Let f : Y — X be a morphism of log-schemes that is Kummer and
surjective. Then, for any log-scheme X' — X, the morphism Y xx X' — X'
is surjective. In fact, for any y € Y and v € X' having the same image in X,
there exists z € Y X x X' mapping to x and to y.

The following proposition describes a very useful cofinal system of coverings
for the Kummer log- étale, log-flat and log-syntomic sites.

PROPOSITION 2.15. Let f : Y — T be a Kummer log-étale (resp. log-flat, log-
syntomic) morphism. Let y € Y,t = f(y), and P — My be a chart such that
P* ~ {1}. Then there exists a commutative diagram

X "7

L

f

Y —— T,
where y is in the image of g, h is classically étale (resp. flat, syntomic), g is
Kummer log-étale (resp. log-flat, log-syntomic), and n is invertible on X (resp.
any, any).

Proof. We will argue the case of Kummer log-flat topology. The other cases
are similar. By Lemma localizing on Y (but keeping y € Y') for the flat
topology, we get a chart (P — Myp,QQ — My,P — Q) as in Definition ]
such that P9 — Q9P is injective. Note that localizing on T is not necessary.
Arguing further as in the proof of Proposition A.2 in [28] we may assume that @
is torsion free. Hence P9 ~ Q9 as abelian groups. Write n : P — Q — P/
for some n, where PY/™ is a P-monoid such that P — P'/" is isomorphic to
n:P — P.Set X =Y xr1,T,, where T, = T(@Z[ID]Z[PI/”]7 Tq = T®zp Z[Q).
By definition the map h : X — T, is classically flat and, since Q9 — P1/79p
the induced map g : X — Y is surjective and Kummer log-flat. O

COROLLARY 2.16. Let f :' Y — T be a Kummer log-flat (resp. log-syntomic)
morphism. Let P — My be a chart such that P* ~ {1}. Then there exists a
Kummer log-flat (resp. log-syntomic) covering V. — Y such that for some n
the map V xp T,, — Ty, is classically flat (resp.syntomic).

Proof. We will treat the flat case. The syntomic case is similar. By Proposition
BT there exists n such that for a flat covering V' — Y the induced map V- — T
factors as V. — T,, — T, where the map V' — T, is classically flat. We have
the following cartesian diagram

Vn:VXT"Tn xXpTl, —— Ty X7 T, 2, T,

l g l

1% —_— T, — T,
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Since p1, po are classicaly flat, so is the map V,, — T,,, as wanted. g
Similarly one proves the following

COROLLARY 2.17. Let f : Y — T be a Kummer log-étale covering. Let P —
My be a chart such that P* ~ {1}. Then, Zariski locally on T, there exists a
Kummer log-étale covering V. — T refining f such that, for some n invertible
onT, the map V x7 T, — T, is classically étale.

For a log-scheme X, we will denote by X (resp. Xua, Xisyn) the site defined
above. In what follows, I will denote sites and the associated topoi in the same
way. I hope that this does not lead to a confusion.

We will need to know that certain presheaves are sheaves for the Kummer
topologies.

PROPOSITION 2.18. Let X be a log-scheme. Then the presheaf (Y — X) —
(Y, Oy) is a sheaf on all Kummer sites.

Proof. 1t is clearly enough to show this for the Kummer log-flat site. In that
case it follows from a Kummer descent argument (see Lemma 28 below). O

More generally

PROPOSITION 2.19. Let X be a log-scheme. Let F be a quasi-coherent sheaf on
Xzar. Then the presheaf

(f:T—X)=I(T, " F)
is a sheaf on all Kummer sites.

Proof. Tt is clearly enough to show this for the Kummer log-flat site. In that
case it follows from the proof of the Kummer descent argument below via
exhibiting an explicite contracting homotopy (see Lemma B2g]). O

And in a different direction, we have the following theorem. The proof pre-
sented here is that of Kato [24], 3.1].

THEOREM 2.20. Let X be a log-scheme, and let Y be a log-scheme over X.
Then the functor
Morx(,Y): T+ Morx(T,Y)

on (fs/X) is a sheaf for all the Kummer topologies.
Proof. We claim that it suffices to show that the functors
(2.1) T—T(T,0r), T—TI(T,Mr).

are sheaves for the Kummer log-flat topology. To see that assume that X =
Spec(Z) with the trivial log-structure, Y is an affine scheme with a chart P —
I'(Y, My). Let F,G, H be the following functors from (fs)/ Spec(Z) to (Sets)

F(T) = {ring homomorphisms I'(Y, Oy) — I'(T, Or)},
G(T) = {monoid homomorphisms P — I'(T, Mr)},
H(T) = {monoid homomorphisms P — I'(T, Or)}.
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The functor Morx(,Y) : T +— Morx (7,Y) is the fiber product F' — H «— G,
where the first arrow is induced by P — I'(Y,Oy) and the second one by
I(T,M7) — I(T,Or). It follows that it suffices to show that the functors
F,G, H are sheaves.
Take now a presentation
N'=N°— P.
We get that F(T) is the kernel of I'(T, Or)! — T'(T, Or)”? and G(T) and H(T)
are the equalizers of I'(T, Mr)* = T(T, Mr)" and T(T,Or)% = I(T,0r)",
respectively. Thus it suffices to show that the functors in Il are sheaves.
For the functor T + T'(T, Or) this follows from Lemma For the functor
T — T'(T, Mt) we first show that it is a sheaf for the classical flat topology. If
T’ — T is a fppf covering, then we know that the sequence
(T, 0% — T(T",0%) = T(T",0%,)
where T7 = T x¢ T, is exact. Since My /O%, and My» /O%., are pulbacks of
My /O%, the sequence
I(T, My /O3) — T(T', My /O3) = D(T", My [O)
is exact as well. Next we treat Kummer coverings

LEMMA 2.21. Take T = Spec(A) for a local ring A equipped with a chart
P — I'(T,Mr), P ~ (Mp/O%):, where t is the closed point of T. Let Q be
a monoid with no torsion. Let P — @) be a homomorphism of Kummer type.
LetT =T ®zp) Z]Q] endowed with the log-structure associated to Q. Let
T' =T x¢T'. Then

F(T, MT) — F(T’, MTI) = F(T”, MTH)
18 exact.
Proof. Set A’ = F(T’,OT/) =A Rz[P] Z[Q], A" = F(T”,OTN) = A®Z[P]
Z[Q @ (Q9/P9)]. By Lemma the sequence A — A" = A" is exact.
Let I,I',I"” be the ideals of A, A’, A”, respectively, generated by the images
of P\ {1},Q\ {1},Q \ {1}, respectively. Let V,V’, V" be the subgroups of
A* (AN)*, (A”)*, respectively, consisting of elements that are congruent to 1
modulo I, I, I”, respectively. Since A/T ~ A’/I' the sequence V. — V' = V"
is exact. It remains to show that the sequence

F(Ta MT)/V - F(Tlv MT’)/VI = F(Tllv MT”)/V”
is exact. This sequence is isomorphic to
P& (A/D) — Qo (A/I)" = Q& {(A/1)[Q%/PP]},

where the two arrows in the middle are 1 : (q,u) — (g, u), B2 : (q,u) — (g, qu).
The exactness of the last sequence follows from the exactness of P — @

Q@ (Q9°/P9P), |
g
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Denote by G the functor T +— I'(T, MZ") on (fs/X). The above theorem
yields

COROLLARY 2.22. (24, 3.6]) The functor G, is a sheaf for all the Kummer
topologies.

Proof. This argument is also due to Kato [24, 3.6]. It suffices to show that
G is a sheaf for the Kummer log-flat topology. Let 77 — T be a Kummer
log-flat covering equipped with a chart P — T'(T, Mt). Set T =T' x¢T'. We
have I'(T, M#?) = injlim, I'(T,a~! M7), where a ranges over all elements of P.
Since both 7" and T" are of Kummer type over T', we also have I'(T", MJ)) =
injlim, D'(T’,a~*My/) and T(T", M%) = injlim, T(T”,a~*My»). It follows
that the exactness of the sequence

0(T, MJP) — T(T', M#%) = T(T", M%)
is reduced to the exactness of the sequence
(T, Mr) — T(T', My:) = T(T", Mqn)
that was proved above. O

2.2. THE VALUATIVE TOPOLOGIES. The valuative topologies refine Kummer
topologies with log-blow-up coverings. That makes them slightly pathological
(blow-ups do not change the global sections of sheaves) but also allows for
better functorial properties [15].

DEFINITION 2.23. Let X be a log-scheme. A morphism Y — X is called Zariski
(resp. étale, log-étale, log-flat, log-syntomic) valuative if it is a composition of
Zariski open (resp. étale, Kummer log-étale, Kummer log-flat, Kummer log-
syntomic) morphisms and log-blow-ups. The Zariski (resp. étale, log-étale,
log-flat, log-syntomic) valuative topology on this category of morphisms over
X is defined by taking as coverings families of morphisms {f; : U; — T'}; such
that each f; is Zariski (resp. étale, log-étale, log-flat, log-syntomic) valuative
and T' = |J; fi(U;) universally (i.e., this equality is valid after any base change
by a map S — T of log-schemes). We will denote the corresponding site by
Xval (resp. Xvét; Xvkéta Xvkﬁ; Xvksyn)-

Note that, since any base change of a log-blow-up is a log-blow-up [30), Cor.4.8],
the above definition makes sense. We have the following commutative diagram
of continuous maps of sites

Xokg — Xvksyn E— vkét Xt Xyal
Xg —— Xigyn —— Xké Xt Xzar-

REMARK 2.24. Note that the site X,k is the same as the full log-étale site
5.
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Denote by Ox~ (or by Ox if there is no risk of confusion) the structure sheaf of
the topos on X induced by one of the above topologies, i.e., the sheaf associated
to the presheaf (Y — X) — I'(Y, Oy).

We will now describe points of the topoi associated to some of the above sites.
Recall [27), 2.4] that a log-geometric point is a scheme Spec(k), for a separably
closed field k, equipped with a saturated monoid M such that the map a — a”
on P = M/k* is bijective for any integer n prime to the characteristic of k. Log-
geometric points form a conservative system for the Kummer log-étale topos
[27, 2.5]. We get enough points of the full log-étale topos by taking (valuative)
log-geometric points, i.e., log-geometric points with M/k* valuative (recall that
a saturated monoid P is called valuative if for any a € P9, either a or a=! is
in P). There is an alternative way of describing a conservative family of points
for the log-étale topos. For z € X, choose a chart € U, U — Spec Z[P]. For
each finitely generated and nonempty ideal J C P, let U; be the log-blow-up
of U along J. These U;’s form an inverse system indexed by the set of finitely
generated and nonempty ideals J partially ordered by divisibility. Take now a
compatible system of log-geometric points of the U’ s lying above .

A conservative family of points of X, (resp. Xyet) can be described in a similar
fashion by taking compatible systems of Zariski (resp. geometric) points. Recall
[23, 1.3.5] that in the case of Xy, and a chart X — SpecZ[P] there is a
canonical bijection between this set of points and all pairs (V, p) such that V is a
valuative submonoid of P9 containing P and p is a point of Xy = X ®zp)Z[V]
satisfying the following condition: If @ € V' and the image of a in Ox,, , is
invertible, then a € V*. We have then the following description of stalks of the
structure sheaf: Ox_ (v,p) = Oxy p-

LEMMA 2.25. Let Y — X be a log-flat valuative morphism. Then there is a
log-blow-up Y' — Y (hence necessarily a covering) such that the morphism
Y’ — X can be written as a composition Y/ — T — X, where Y' — T s
Kummer log-flat and T — X is a log-blow-up.

Proof. Since composition of log-blow-ups is a log-blow-up [30, Cor.4.11], it is
enough to show this for a composition ¥ — Z — X of a log-blow-up ¥ — Z
with a Kummer log-flat morphism Z — X. Recall that by [20, 3.13] we can
find a log-blow-up B — X such that the base change Y’/ := Y xx B — B
is exact. Here a morphism of log-schemes f : T' — S is called exact if, for
every t € T, the morphism f : Mg5/O0%; — MT,Z/O*T@ s = f(t), is exact, i.e.,
(f9°) "N (Mypz7/O%k ;) = Mss/O%;. Consider now the following commutative
diagram 7
Y —— Z — X

I I I

Y -~ ZxxB —— B.
Since base change of a log-blow-up is a log-blow-up [0, Cor.4.8] the morphisms
Y' =Y, ZxxB— ZandY' — Z xx B are log-blow-ups. But because the
composition Y/ — B is exact, the morphism Z xx B — B is Kummer, and
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the log-schemes are saturated, the morphism Y’ — Z xx B is actually an
isomorphism. Hence Y’ — B is Kummer log-flat as wanted. O

For a general scheme X, the presheaf (Y — X) — I'(Y,Oy) on Xya is not
always a sheaf (see [[Z 2.5]). Let, for example, X = Spec(k[T1,T2]/(TZ,T3))
with the log-structure N? — Ox; e; — Tj, and let Y — X be the log-blow-up
of the ideal generated by e; and e3. Then the map I'(X,Ox) — I'(Y,Oy) is
not injective. On the other hand, since Y covers X and ¥ xx Y ~ Y, the map
I'X,Ox,.,) — I'(Y,Oy,,,) is necessarily an isomorphism. We have however
the proposition below. But first we need to recall the notion of a log-regular
scheme.

DEFINITION 2.26. A log-scheme X is called log-regular at = € X
if Oxz/IzOxz is regular and dim(Oxz) = dim(Oxz/Iz0xz) +
rankz (MY /O%)z), where Iz = Mx 7 \ O% 5. We say that X is log-regular if
X is log-regular at every point z € X.

PROPOSITION 2.27. Let X be a log-regular log-scheme. Then the presheaf (Y —
X) —T'(Y,Oy) is a sheaf on all valuative sites.

Proof. Tt is clearly enough to show this for the log-flat valuative site. Since
this presheaf is a sheaf on the Kummer log-flat site, by Lemma 225, it suffices
to show that if 7 : B — T is a log-blow-up of a log-scheme T — X, log-flat
valuative over X, then I'(T, Or) — I'(B, Op) is an isomorphism. We will show
that Or = Rr,Op. Assume for the moment that T is log-regular. Then T
behaves like a toric variety, and this is a well-known result. As the argument
in [30] shows the key-point is that (flat) locally there is a chart P — O, with
a torsion free monoid P, such that

(2.2)  for injective morphism P — @, ToriZ[P](OT, Z[Q) =0, i>1.

We will show that this is also the case for our (general now) T'. By induction,
assume that a log-scheme Z — X, log-flat valuative over X satisfies the con-
dition ZZ). We have to show that any log-scheme T' — Z, Kummer log-flat
or log-blow-up over Z, also satisfies this condition. We will show the argument
in the case when T' — Z is Kummer log-flat. The argument for log-blow-up is
similar but simpler.

Consider a “good” chart

T —— Spec(Z[Q)])

! !

Y —— SpeC(Z[P]),
where the monoid P has no torsion, the morphism P — @ is injective, and the
morphism 7" — Y3, Y1 := Y Xgpec(z(p)) SPec(Z[Q)]) is flat. A slight modification
of an argument of Nakayama in [28, A.2.], yields that, modulo a flat localization,
we may assume ) to be torsion free as well. Since the morphism T' — Y; is
flat, we just need to show that ToriZ[Q] (Oy,,Z]Q1]) =0, ¢ > 1, for any injection
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@ — Q1. But this follows from the fact that ToriZ[P] (Oy,Z[P]))=0,i>1, for
any injection P — P;. (|

3. COHERENT AND LOCALLY FREE SHEAVES ON LOG-SCHEMES

Let us first collect some basic facts about coherent and locally free sheaves in the
various topologies on log-schemes discussed above. Let F(X ). be the category
of Ox-modules, where * stands for one of the considered here topologies. It is
an abelian category. Let P(X), denote the category of Ox-modules that are
locally a direct factor of a free module of finite type. By [3, 1.2.15.1.ii] this is the
same as the category of locally free sheaves of finite type. Let M(X). denote
the category of coherent Ox-modules, i.e., Ox-modules that are of finite type
and precoherent. Recall that an Ox-module F is called precoherent [3, 1.3.1]

if for every object Y — X in X, and for every map & EN F|Y. from a locally
free finite type Oy-module &, the kernel of f is of finite type.

LEmMA 3.1. (1) The category M(X), is abelian and closed under exten-
S10NS.
(2) The category P(X ). is additive and when embedded in F(X ). with the
induced notion of a short exact sequence, it is exact.

Proof. The first statement follows from [3| 1.3.3]. For the second one it suffices
to check that P(X), is closed under extensions in F(X).. That follows from
the fact that Ox,-modules of finite type are closed under extensions [3l, 1.3.3]
and that all epimorphisms M; — Ma, M3 € P(X)., locally admit a section
B, 1.1.3.1). O

The simplest coherent sheaves come from the Zariski topology. Let X, de-
note one of the Kummer topologies and let ex : X, — Xgza, be the natural
projection. We have

LEMMA 3.2. The pullback functor e’ : QM(Xzar) — F(X.) (from the category
of quasicoherent Zariski sheaves) is fully faithful.

Proof. Immediate from Proposition EZT9 O
PRrOPOSITION 3.3. Let X, satisfy the following property

(3.1) e is exact for a cofinal system of coverings in X,

Then the structure sheaf Ox, is coherent on all Kummer sites.

Proof. We need to check that for any object Y — X in the Kummer site X,
the kernel of any morphism f : Oy" — Oy, is of finite type. But f comes from

a Zariski morphism f' : Oy, =~ — Oy,, and by exactness 3 ker f' = ker f.
Since ker f is of finite type so is ker f. O

COROLLARY 3.4. If X has property (Z1l) then the F is coherent if and only if
there exists a covering X; — X of X such that F|X; is isomorphic to €% F]
for some coherent sheaf F| on X; zar-
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EXAMPLE 3.5. A log-scheme X such that (My/O%)z ~ N"(#) has property
@). In particular, X can be a strict closed subscheme of a regular, log-regular
scheme.

DEFINITION 3.6. The coherent sheaves or locally free sheaves in the (essential)
image of the functor ¢* are called classical.

LEMMA 3.7. Let X be a log-regular log-scheme. Let Y — X be a log-blow-up.
Then the restrictions

rF(X)w = F(Y)h, 1:M(X)y = MY)., r:PX) = PY).
are equivalences of categories for x any of the valuative topologies.

Proof. Let M € F(Y).. Consider the functor 7 : F(X). — F(Y), given by
T(M): (T - X)—T(T xx Y, M). Since Y xx Y ~ Y, the compositions rm
and 71 are naturally equivalent to the identity. Hence the restriction induces
an equivalence of categories F. The remaining equivalences follow since the
map Y — X is covering. ]

LEMMA 3.8. Let X be a log-regular quasi-compact log-scheme. Let F €
P(X)vka be a locally free sheaf of rank n. Then, for some log-blow-up T — X,
F|Tvka ts isomorphic to a pullback of a locally free sheaf of rank n from Tia.

Proof. By Lemma 228 we can restrict our attention to trivializing coverings
of the form' Y — T — X, where Y — T is a Kummer log-flat covering and
T — X is a log-blow-up. Since the isomorphism classes of locally free sheaves
of rank n are classified by the first Cech cohomology groups of the sheaf GL,,,
the statement of the lemma follows now easily from the following commutative
diagram

GL,(Y) —— GL,(Y xxY) —— GL,(Y xx Y xxY)

I | L
GL,Y) —— GL,(Y x¢Y) —— GL,(Y x¢ Y xrY),
where the equalities hold already on the level of schemes (since T' xx T ~

7). O

COROLLARY 3.9. Let X be a log-regular quasi-compact log-scheme. Then the
pullback functor
inj lim P(Ykﬂ) — P(Xvkﬁ)
Y

s an equivalence of categories, where the limit is over log-blow-ups Y — X.

LEMMA 3.10. Let X be a log-regular log-scheme. The the pullback functor
P(Xyksyn) — P(Xvka) is an equivalence of categories.

Proof. Let € be a locally free sheaf on X,iq. Denote by £’ its restriction to
Xvksyn- It is a sheaf. We claim that £’ is actually a locally free sheaf and that

e*&' 5 €, where € : X1iq — Xvksyn is the natural map. By Corollary 2218 and
Lemma ZZA £ can be trivialized by a covering of the form U - T — Y — X,
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where U — T is a (classical) flat covering, T'— X is a Kummer log-syntomic
covering, and Y — X is a log-blow-up. The restriction of £ to T, £|T, comes
from flat topology hence by faithfully flat descent from a Zariski locally free
sheaf. This allows us to show that (e*&")|T = &|T', as wanted. O

Basically the same argument gives the following

LEMMA 3.11. For any Noetherian log-scheme X, the pullback functors
P(Xksyn) — P(Xkn), M(Xisyn) — M(Xxn)

are equivalences of categories.

3.1. INVERTIBLE SHEAVES. We will compute now the groups H!'(X,, G,,) of
isomorphism classes of invertible sheaves for X local and equipped with one
of the Kummer topologies. The main ideas here are due to Kato [24]. Let
X be a log-scheme. We have the following Kummer exact sequences on Xyg,
respectively Xygt,

0—Z/n(1) - G 5 GX —0,

0—Z/n(l) - GX 5 GX —0,
for any nonzero integer n, respectively for any integer n which is invertible on
X. Here Z/n(1) is by definition the kernel of the multiplication by n on the
multiplicative group G,,.

The following theorem was basically proved by Kato in [24, Theorem 4.1]. We
supplied the missing arguments.

THEOREM 3.12. Let X be a log-scheme and assume X to be locally Noetherian.
Let e : Xxa — Xq be the canonical map. Let G be a commutative group scheme
over the underlying scheme of X satisfying one of the following two conditions

(1) G is finite flat over the underlying scheme of X ;
(2) G is smooth and affine over the underlying scheme of X.

We endow G with the inverse image of the log-structure of X. Then we have
a canonical isomorphism

R'e,G ~ injlim Hom(Z/n(1), G) @z (G2 /Gn).
n#0

Proof. Let X be a log-scheme and let G be a sheaf of abelian groups on Xxg.
Define a canonical homomorphism of sheaves on Xig

R inj lim Hom(Z/n(1), G) @z (G, /Gm) — R'e.G
n#0

as follows. Let h be a local section of Hom(Z/n(1),G). The Kummer exact
sequence on Xig

O—»Z/n(l)HG:;ﬁ»G;;—»O

yields the composition

GY =¢e.G) LA R'c.(Z/n(1)) 2 Rle,G,
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where 0 is the connecting morphism. Since multiplication by n on G, on the
site Xjp is surjective, the map 0 kills G,,,. That gives us the definition of the
map U.

It is easy to see now that the first case of the theorem follows from the second.
Indeed, if G is a finite flat commutative group scheme on X we can take its
(see [26, A.5]) smooth resolution, i.e., an exact sequence of sheaves on Xg

0—-—G—=L—L —0,

where both L and L’ are smooth and affine group schemes over the underlying
scheme of X. We endow both L and L’ with the inverse image log-structure.
By applying the pushforward e, to the above exact sequence and using the fact
that L = e, L — L' = e, L’ is surjective on Xg we get an exact sequence

0— R'e.G — R'e.L — R's, L.
Hence bijectivity of the map p for G is reduced to the bijectivity of this map

for L and L.
It suffices now to prove the following proposition

PROPOSITION 3.13. Assume X = Spec(A), where A is strictly local, and as-
sume that G is represented by a smooth commutative group scheme over X
endowed with the induced log-structure. Assume that P = (Mx/O% )., where
x 1is the closed point of X. Then the map

injlim Hom(Z/n(1), G) @z P& % H'(Xua, G),
n
s an isomorphism.

Proof. For n > 1, consider X,, = X ®zp] Z[P'/"], with the induced log-
structure. Here PY/™ is a P-monoid such that P — P'/" is isomorphic to
n: P — P. The map X,, — X is a covering in Xyn. Denote by X, ; the fiber
product of ¢ 4+ 1 copies of X,, over X. For any sheaf of abelian groups G on
Xxa, we have a Cech complex

Com: INXn0,G) - T'(Xn1,G) > T'(Xn2,G) — ...

Assume that A is Noetherian and complete. Then our proposition is proved in
two steps via the following two lemmas

LEMMA 3.14. Assume X = Spec(A), where A is strictly local, and assume that
G is represented by a smooth commutative group scheme over X endowed with
the induced log-structure. Then

inj lim H(Cy ,,) = H'(Xa, G).

Proof. From Cech cohomology we know that the map injlim,, H YCqn) —
H'(Xyq,G) is injective and its cokernel injects into injlim,, H'((X,)ka, G).
Hence it suffices to show that injlim,, H'((X,)ka, G) = 0. Take an element «
of H'((X,)ka,G). Let T — X, be a log-flat Kummer covering such that «
dies in H'(Tka,G). By Corollary I we may assume that for some m, we
have a factorization T — X,,,, — X,, where T — X,,,, is a classically flat
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covering. It follows that the class a on X,,, is trivialised by a classically flat
cover. Thus the class of a in H!((X,un)ka, G) comes from H (X, )8, G). But
the group scheme G being smooth, H! (X, ), G) ~ H*((Xomn)et, G). Finally,
since X, is a disjoint union of a finite number of Spec of strictly local rings,
we have H'((X,un)et, G) = 0, as wanted. O

Before stating the second lemma, we would like to show that the com-
position of the structure map P2 — HY(Xyq,G)) with the map py :
H(Xyq,GX) — H'(Xyq,G) induced by a section h € Hom(Z/n(1),G) fac-
tors through H 1(Cé,n)- For that, consider the classical commutative group
scheme H, = Spec(Z[P#P/(P#P)"]) over Spec(Z). It defines the sheaf T +—
Hom(PeP/(PeP)* T'(T,Z/n(1))) on Xya. The group scheme H,, acts on X,
over X, and we have H,, xz X, ~ X,, xx X,. Hence, X,,; ~ (H,)*" Xz X,,.
For a sheaf of abelian groups G on Xyq, let GG,, be the sheaf of abelian groups
on Xyg defined by G,,(T) = I'(T xx X,,,G). The sheaf H,, acts on G,,. The
Cech complex C"G’n can now be written as

Cgn: Mor(l,Gy) % Mor(H,,, G,) 2% Mor(HX2, G.,) o

where Mor refers to morphisms of sheaves of sets, and
O(z)=(c —mox—2x), Oh(x)=((0o,7)— ox(r) —z(oT) + 2(0)),...

Note that the above complex is the standard complex that computes the coho-
mology of the Hy-module G,, (see [6], I1.3]).
Consider now G with the trivial action of H,,. Note that

H'(H,,G) = Hom(H,,G) = Hom(Z/n(1),G) @z P*5P.
It can be easily checked that the map
Hom(Z/n(1),G) ®z P** ~ H'(H,,G) — H'(H,,Gy) ~ H' (Cy.,) — H" (Xua, G)

maps h ® a to the image of a under the above composition. We can now state
the second lemma.

LEMMA 3.15. Assume X = Spec(A), where A is a Noetherian complete local
ring with separably closed residue field, and assume that G is represented by
a smooth commutative group scheme over X endowed with the induced log-
structure. Assume that P = (Mx/O%)s, where x is the closed point of X.
Then, for any n # 0,

p: Hom(Z/n(1),G) @z P& = H'(Cg.,,).

Proof. Let’s treat first the case when A is Artinian. Let I (resp. J) be the
ideal of A (resp. Oy, ) generated by the image of P\ {1} (resp. PY/™\ {1}).
Then I (resp. J) is a nilpotent ideal. Define a descending filtration G* on the
H,,-module GG and Gil on the H,-module G,, by

G'(T) = ker(G(T) — G(T x x Spec(Ox /I%)));
G (T) = ker(G,(T) — G(T x x Spec(Ox, /J%))).
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Since I and J are nilpotent, we have that G(T) = G%(T) = 0 for a large
enough ¢. Since the group scheme G is smooth, for i > 1 we get

gr'(G)(T) ~ Lie(G) @4 T(T, I'O7 /T Or),

gr"(Gn)(T) ~ Lie(G) @4 (T, J'Or /T Or).
Also, since Ox /I = Ox,, /J, we have that gr'(G)(T) = gr(G,)(T). We will
prove now the following lemma

LEMMA 3.16. For any i > 1 and any m > 1, the groups H™(H,,, gr*(G)) and
H™(H,,gr'(G,)) are zero.

Proof. Let i > 1 and consider the standard complex C"(H,,, gr’(G)) that com-
putes the cohomology of the H,-module gri(G). Then for m > 0, since H, is
flat over Z and G is smooth over X, for a certain number k& we have

C™(Hn,gr'(G)) = Mor(H; ™, g1*(G))

= gr'(G)(H, ™ xz X)

= Lie(G) @4 D(H ™ xz X, 'O/ I 0)

= Lie(G) @4 Oy, x @a '/ T

=GEHH ™ xz X) @4 I'/JT!

=Mor(H}™, GF @, I'/T"T = C™(H,,,G") @4 I' )T,
Similarly, for the standard complex C"(H,,, gr‘(G,)) that computes the coho-
mology of the H,-module gr'(G,,), we get

C™(Hy,gr'(Gy)) = Mor(H ™, gr*(G)) = Mor(H,y™, Gg) @4 J' /T
=C"(H,, Gy ®4 J' /T,

Since H,, is diagonalizable and it acts trivially on G we know that
H™(H,,GY) =0 for m > 1 [33, Exp.I, Theorem 5.3.3]. Moreover, G¥ embeds
into Mor(H,, G¥) with an H,-equivariant section [33, Exp.I, Prop. 4.7.4].
Hence

Mor(H,,GF) ~ GF & Mor(H,,,G¥)/Gk
as H,-modules. That gives us that

C'(H,, Mor(H,, G ~ C"(H,,GF @ C"(H,, Mor(H,,,GF)/GF).
Now, C"(H,,, Mor(H,,, G¥)) has an A-linear contracting homotopy [33, Exp.I,
Lemma 5.2.]. It follows that C"(H,,, Mor(H,,GF)) @4 I'/I'*! also has a con-
tracting homotopy. Hence H™(C"(H,,, Mor(H,,G¥)) @4 I'/I"*1) = 0, for
m > 1, and by the above splitting H™(C"(H,,, G¥)®4 I /T**1) = 0, as wanted.
Similarly, H™(H,,gr'(G,))) = H™(C (H,,GF) ®4 Ji/JH) = 0, for m >
1. ]
Using the above lemma, we get
Hom(Z/n(1),G) @z P® = H*(H,,G)
= Hl(Hna gTO(G)) = Hl(angrO(Gn)) - Hl(an Gn) = Hl(cé,n)v
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as wanted.
Let’s turn now to the general case of A complete. We will basically “go to the
limit over the argument for A Artinian”. Denote the maximal ideal of A by m 4.
Note that G(A) = projlim; G(A/m%) and G(X,, ) — projlim, G(X,, r @4
A/m')). Moreover, since G is smooth, we have that the maps
G(A/mi) — G(A/mYy),  G(Xpp©a A/my") — G(Xpp @4 A/m)y)
are surjective. Hence we get the following exact sequences
0—-G(A) - G(X,,0) — D —0,
0 —F — G(Xn’l) — G(Xng),
where E = projlim; F; and D = projlim; D;, and E; and D; are defined by
the following exact sequences
0 —-G(A/mYy) — G(Xpno®a A/m’y) — D; — 0,
0—=F; - G(Xn1®a A/mf4) — G(Xp2®a A/mf4).
We have D; C E; and E;/D; is H' of the complex Cy,,, for Spec(A/mY).
Also E/D ~ H'(Cy,,,) and, since the maps D;1 — D; are surjective, E/D ~
projlim,(F;/D;). On the other hand, let Hom(Z/n(1),G); denote the group
Hom(Z/n(1),G) over Spec(A/mY). Since Hom(Z/n(1),G) is representable
by an étale scheme [l Exp.XI, Prop. 3.12], [2, Exp.XV, Prop.16], we have
Hom(Z/n(1),G) ~ Hom(Z/n(1),G);, i« > 1. The proof of our lemma for A
Artinian gives that
}IOH?[(Z/’N,(l)7 G)z X7z pep = Ez/Dz
Hence taking limits
Hom(Z/n(1),G) @z P % E/D ~ H'(Cy,,),

as wanted. O

In the general case we have to argue a little bit more. Let X = SpeC(A\), where
Ais the completion of A. Endow X with the inverse image log-structure. Since
Hom(Z/n(1), @) is represented by an étale scheme and the morphism A — A
is a covering for the fpqc topology, Hom(Z/n(1), G) does not change when we
pass to the completion. It suffice thus to show that H'(Xq, G) — H'(Xxa, G)
is injective. Let a € H'(Xyq,G) be a class that dies in H'(Xyqg,G). By
fpqc descent, « is a class of a representable smooth affine G-torsor Y over X
(equipped with the inverse image log-structure). Since X is strictly local, YV’
has an X-rational point. Hence o = 0. ]

O

COROLLARY 3.17. Let X = Spec(A) be a log-scheme such that A is Noetherian
and strictly local. We have the following isomorphisms

H' (Xua, Gm) = (MY /O%). ® (Q/Z),
H' (Xyet, Gm) = (M3 /OX)z ® (Q/Z),
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where x denotes the closed point of X and (Q/Z) = ®ixchar(z)Qi/Z1-

Proof. The case of Xyq follows from Proposition Inspecting its proof
we see that together with Corollary EZT1 it actually proves the statement for
HY(Xyst, G as well. O

COROLLARY 3.18. Let X = Spec(A) be a log-scheme equipped with a Zariski
log-structure such that A is Noetherian and local. We have the following iso-
morphisms

H' (X, G) = (MY /O%)a ® (Q/Z),
H' (Xyet, Gm) = (MY /O%)z ® (Q/Z)"

Proof. The proof of Proposition goes through with few small changes. In
Lemma BT we have to use the fact that X,,,, is a product of a finite number of
Spec of local rings and we have H'((X,un)st, Gm) = H'((Ximn)zar, Gm) = 0.
Similarly, at the very end of the proof of the proposition we get that, since X
is local, and Y is a G,,,-torsor, it has a rational point. O

ExXaMPLE 3.19. We can obtain invertible sheaves on the Kummer log-flat site
in the following way. Take a log-scheme X with a chart P — Mx. Consider
the covering Y = X ®gz[p) Z[Q] associated to a Kummer map P — Q. The
Ox-module f,Oy on Xya, f : Y — X, has an action of the group scheme
H = Spec(Z[Q#P/P#P]). Tt decomposes under this action into a direct sum of
invertible sheaves f,Oy ~ ®,0x(a), a € Q& /PP. Here Ox(a) is the part of
f«Oy on which H acts via the character H — G, corresponding to a. More
specifically,

[:0y (Y) = Oyxyy =~ Ox Qg(p] Z[Q ® Q¥ /P#] = Gocqer peraOy
and Ox (a)|Yia = €*aOy. The element of H'(Xya, G,,) corresponding to the
invertible sheaf Ox (a) is given by the image of a™ under
H®(Xyq,GX) — H (X, Z/m(1)) — H' (Xxa, Gpm),
where the first arrow is the connecting map of the Kummer sequence
0—2Z/m(1) - G2 GY —0

Here m is a number such that a™ € P®P and the above image is independent
of m chosen. If X and x are as in the above corollary then this element
corresponds to a @ m~t of (M¥/O%). ® (Q/Z).

To get nontrivial Kummer log-flat coherent sheaves note that, for a € @@ and
for the natural map « : Q — My, the element a ® a(a) € f.Oy (Y) is a global
section of Ox(a). Define Ox{a} to be the image of the map a(a) : Ox —

Ox (a)
As the next corollary we get the following log-version of Hilbert 90.

THEOREM 3.20. (Hilbert 90) Let X be a log-scheme whose underlying scheme
is locally Noetherian. Then the canonical maps

H'(Xp,Gr) = HY (Xka, GY), HY(Xet, GY) = H'(Xier, G)

m
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are isomorphisms.

Proof. We have the short exact sequence
0—- G, -G, —G)/G, —0

of sheaves on Xp. For X = Spec(A), where A is a Noetherian strictly lo-

cal ring, this yields H!(Xp,G)) = 0. Indeed, we have H'(Xg, G,,) = 0.

And, since G\ /G, = *(G),/Gn), where € : Xg — X is the natural map,

HY(Xa,G)/Gn) = H (X4, GX /Gp) = 0 (cf., 25, 11.3]).

The above implies that this theorem is equivalent to the following local form.
O

COROLLARY 3.21. Let X be a log-scheme whose underlying scheme is Spec of
a Noetherian strictly local ring. Then the groups H*(Xyqn, GX), H' (Xet, G5)
and HY (X, G)) are zero.

Proof. Let X = Spec(A), where A is a Noetherian strictly local ring. As-
sume that P = (Mx/O%)., where z is the closed point of X. We will show
that H'(Xya, G)) = 0 (the proof for the Kummer log-étale site is almost the
same and the case of the étale site is obvious). From Cech cohomology we
know that the map injlim, H*(X,/X,GY) — H'(Xya, G is injective and
its cokernel injects into injlim, H*((X,)ka, G5). Hence it suffices to show
that injlim,, H'((X,)ka, G}) = 0 and H'(X,,/X,G) = 0. Here the covering
Xn=X ®Z[P] Z[Q]a Q= pi/n,

First, let’s show that injlim, H'((X,)ka, GY) = 0. Take an element o of
HY((X,)ka, GY). Let T — X, be a log-flat Kummer covering such that «
comes from H'(T/X,,G). By Corollary LI, for some m, we may assume
that we have a factorization T — X,,, — X,, where T — X,,, is clas-
sically flat and surjective. It follows that the class a on X,,, comes from
HYT xx, Xpn/Xmn, G2). Thus the class of o in H'((Xynn)xa, GX) comes
from H'((Xyn)a, G)). Since Xy, is a disjoint union of a finite number of
Spec of strictly local rings, the last group is trivial as we have shown above.
Now, let’s show that H'(X,/X,GX) = 0. Consider the exact sequence of
presheaves (!) on Xyg

0— G, — G}

m

- G /G,, — 0.
It gives us the exact sequence of Cech cohomology groups
= B (X, /X, G5/ Gr) > H' (X, /X, Gop)
— HY(Xn/X,G)) — HY (X, /X,G) /Gp) —

By Proposition BI3 the connecting morphism 0 is surjective. Indeed, consider
an element a ® n~' € HY(X,/X,G,,) ~ P® @ Z/n, a € P#. Choose an
element b € Q9 such that b” = a. It belongs to H(X,,/X,GX /G,). To see
that recall that the exact sequence of the covering X,,/X

0— F(X,Ox) — F(Xn;OXn) — F(Xn X x XH7OXW,XxXn)
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is isomorphic to

0— A— Acgp Z[Q) "2* Ay p Z[Q & Q= /P,

where f1(z) =1z, z € Q, O2(z) =1® (x,z mod P&P). Hence
B —B5)(0) =10b—1® (b,b mod PP)=10b—1@b=0
and b € H°(X,/X,G/G), as wanted. One easily now checks that 9(b) =

a®n L.
It remains to show that H(X, /X, G /G,,) = 0. Or that the sequence

d dy
G;/Gm(Xn) = G;;/Gm(Xn X x Xn) — G;;/Gm(Xn X x Xn X x Xn)
is exact. By Lemma this sequence is isomorphic to
Q9P dg Q9P dy Q.
where dy = 0 and d; = 1. Hence it is exact, as wanted. O

3.2. LOCALLY FREE SHEAVES OF HIGHER RANK. For isomorphism classes of
locally free sheaves of arbitrary rank we have the following theorem stated
already by Kato [24, Cor. 6.4].

THEOREM 3.22. Let X = Spec(A) be a log-scheme such that A is Noetherian
and strictly local. The map

HHI(kah Gm) - Hl(Xkﬁ) GLn)

given by the diagonal embedding [[" G, — GL,, induces an isomorphism

n

H'(Xin, GLy) ~ S, \([[(ME/0%). @ (Q/Z)),

where Sy, \ denotes the quotient by the action of the symmetric group of degree
n on the product of n copies. Similarly, we have an isomorphism

n

H' (Xier, GLn) > S \([ [(MZ/0%). © (Q/2Z)).

Proof. Assume that P = (Mx /O%)e. For m > 1, let X = X Qzp) Z[pP'/m),
with the induced log-structure.

LEMMA 3.23. We have
injlim A*(X,,/X,GL,) = H'(Xyq, GL,).

m
Proof. The injectivity is obvious. For the surjectivity, consider a class a €
H'(Xya,GL,). Let T — X be a log-flat Kummer covering such that o €
H'(T/X,GL,). By Corollary LT, we may assume that for some m, we have
a factorization T' — X,,, — X, where T' — X, is classically flat and surjective.
Since X, is a disjoint union of a finite number of Spec of strictly local rings
we have H'(X,,a,GL,) = 0. It follows that a is trivialised on X,, hence
a € HY(X,,/X,GL,), as wanted. a
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LEMMA 3.24. Assume X = Spec(A), where A is a Noetherian complete local
ring with separably closed residue field. Then, for any n # 0,
(Hom(H,,,GL,)/ =) = H'(X,,/X,GLy,),

where Hp, is the group scheme Spec(Z[P®P /(PP)™]) and /| = means the quo-
tient set by the inner conjugation by elements of GL,,(A).

Proof. We proceed as in the proof of Lemma and keep its notation. Note
that
(Hom(H,,,GL,)/ =) = H'(H,,,GL,)
Let’s treat first the case when A is Artinian. Consider the corresponding filtra-
tions GL,, GL!, ,, of GL,, and GLy, ,. The computation of the graded pieces
goes through and, since Lie(GL,) ~ GZQ, so does the proof of Lemma BTG
Hence
H*(H,,g"(GL,)) = H*(H,,gr'(GLy,»)) =0, i>1,k>1.
Using now the exact sequences
0 — GL:'/GL!, — GL,/GL!, — GL,/GL:* — 0
(starting from i such that GL! = 0) we get that H!'(H,,GL,) =
H'(H,,gr’(GLy,,)). Similarly, H*(H,,, GL;, ) — H'(H,,gr'(GLy, ,)). Since
gr'(GL,,) = gr%(GL,, ), we are done.
Let’s turn now to the general case of A complete. We compute

(Hom(H,,, GLy)/ =) = S\ Hom(Hp, [ [ Gm) = Su\ [ [ Hom(H,pn, Gi)

=5\ ﬁHom(Z/m(l), G,) ® P9 = Sn\ﬁ Z/m & P*P.

The same computation works over each A/mY. Passing now to the limit over
1 it suffices to show that the natural map

H' (X, GLy,) — projlim H' (X, ;, GLy),

where X, ; is the base change of X,,, to A/m’, is injective. By straightforward
computation this follows from the fact that GL,, defines a sheaf for the Kummer
log-flat topology. O

In the general case we have to argue a little bit more. Let X = SpeC(A\), where
Ais the completion of A. Endow X with the inverse image log-structure. Since
Hom(H,,, GL,)/ = does not change when we pass to the completion (see
above), it suffice to show that H'(Xya, GL,) — Hl()?kﬁ, GL,,) is injective.
This is proved exactly like the corresponding fact in the proof of Lemma BTH
The proof for Xye is analogous (using Corollary EZ17). O

COROLLARY 3.25. In the above theorem we may take X = Spec(A) to be a
log-scheme equipped with a Zariski log-structure such that A is Noetherian and
local.
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Proof. The proof of Theorem goes through with few small changes. In
Lemma we have to use the fact that X, is a product of a finite number
of Spec of local rings and we have H'((X,,)a, GL,) = 0. Similarly, at the
very end of the proof of the theorem we get that, since X is local, and Y is a
GL, -torsor, it has a rational point. O

COROLLARY 3.26. Let X = Spec(A) be a log-scheme such that A is Noetherian
and strictly local. Let F be a locally free finite type Ox-module on Xya (resp.
Xxet). Then F is a direct sum of invertible sheaves on Xya (resp. Xiet)-
Similarly for A local and equipped with a Zariski log-structure.

The following proposition will be useful in computing K-theory groups. It was
originally stated by Kato [24 Prop. 6.5].

PROPOSITION 3.27. Let X be an affine log-scheme. Let F be an Ox-module
on Xxa such that for some Kummer log-flat covering Y — X the restriction
F|Y is isomorphic to the inverse image of a quasi-coherent sheaf on the small
Zariski site of Y. Then H"(Xxa,F) = 0 for any n > 1. Similar statement
holds for Xyet.

Proof. Consider the case of Xyg. Assume first that F is isomorphic to the
inverse image of a quasi-coherent sheaf on the small Zariski site of X. Since
H"(Xzar, F) = 0, n > 1, we may assume that X is equipped with a chart
P — Mx, P* = {1}. We may work on the small site of the Kummer log-flat
site built from affine maps. It suffices now to show that our sheaf F is flasque.
We will show that for every covering ¥ — X from some cofinal system of
coverings the Cech cohomology groups H™(Y/X,F) = H*(C(Y/X)), n > 1,
are trivial. Since our coverings are log-flat and of Kummer type, by Corollary
ETd we may assume that there exists a factorization of Y — X into f : Y — Y3
and g : Y1 — X, where f is affine, strictly flat and a covering and Y; =
Y Xgpec(zip)) Spec(Z[Q)]), for a Kummer morphism u : P — Q.

We will show now that the complex C"(Y/X) has trivial cohomology in de-

grees higher than 0. Assume first that the augmentation I'(X, F) % ¢ (Y1/X)

is a quasi-isomorphism. We will check that this implies that the augmenta-

tion I'(X, F) (a8 C"(Y/X) is a quasi-isomorphism as well. The reader will

note that because the schemes Y, Y7, and X are assumed to be affine, all
the schemes appearing in the argument below are affine as well. Consider the
double complex

C (Y. Y1, X) 1 (i) = DY) e YT F),
where, for any n > 1, Y™ = (Y/X)*", and Y{* = (Y1/X)*". Consider the
natural maps C"(Y/X) it C(Y,Y1,X) and C'(Y1/X) &, C(Y,Y1,X). First,
we claim that f] is a quasi-isomorphism. For that, it suffices to show that, for
any n > 1, the map I'(Y"™, F) 5 C' (Y™ xx Y1/Y™) is a quasi-isomorphism.
Since the projection Y” xx Y7 — Y™ admits a section Y Imyn x i Y1, this
is clear. Next, we will show that g is a quasi-isomorphism. It suffices to show
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that the augmentation T'(Y;", F) & C" (Y xx Y/Y{") is a quasi-isomorphism.

n—1
Consider the composition Y™ " xo YI' xxY — Y*. It is equal to the map

f™, which is faithfully flat. By faithfully flat descent, since the base-change of
the augmentation gf by f" is a quasi-isomorphism I'(Y™", F) — C"(Y (1D /y™)
(the morphism Y (") = Y™ xyn ¥" xx ¥ — Y™ admitting a section), so is
the augmentation gj.
Finally, we have that

filgf)" =919" :T(X, F) = C'(Y, Y1, X).
Since f7, g7, and ¢g* are quasi-isomorphisms, so is (gf)*.
LEMMA 3.28. Let A =T(X,0x). Then the augmentation
(3.2) AL C(v/X)
s a quasi-isomorphism.

Proof. The essential point is that the morphism of monoids u : P — @ is exact,
ie., P = (u)"1(Q) in P9, where u9 : P9 — Q9. Set G = QI /P9. The
augmentation e* is isomorphic to

e” d d 4
AS A@gp ZIQ) B A©yp Z[Q ® G B Ay ZIQ® G B .

Here the A-linear morphism d, : A®zp) Z[Q & G| — A®zp) Z[Q & G ]
is equal to the alternating sum of maps 1, o, ..., On42, where

(b1,b1iby " by, ba, o bygr) ifk=1

bi,bo, ..., b =
ﬁk( 1,72 n+1) {(bl,bQ,...,bk1,1,bk+1;-~'abn+1) 1fk7é 1’

for by € Q, ba,...,bp+1 € G. Consider now the following A-module homomor-
phisms hyq1 1 A ®zp) Z[Q & G¥"] — A®zp) Z[Q & G¥" 1] for n > 1,

(—=1)7(b1,bay .. b)) if bpyy =1

i1 (b1, ba, . bsy) =
+1(01,b2 +1) {0 if byt # 1

We claim that h,,’s together with the morphism hy : A®z(p) Z[Q] — A sending
1®btobif b € Pandto0ifb ¢ P (hy is well-defined since u is exact),
form a contracting homotopy, i.e., that hie* = Id, hady 4+ e*h; = Id, and
hptody + dp—1hny1 =1d, n > 1. We compute that

ha((b1,1) — (b1,1))+1®by ifby € P
ha((b1,b1) — (b1,1)) ifby ¢ P
1® by

(hgdo + €*h1)(b1) = {
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(use that w is exact), and that, for n > 1,
Boyodn(bi,ba, ... byi1)
= hpial(b1,biby by boy o bnr) — (b1, 1,bs, o b)) -

4+ (=1)" (b1, bo, bs, ..., by, 1)]

(—=1)"+ (b1, biby ' by, bay . by)
—(=1)"* (b1, 1,b3, ..., by) + ...
—(b1,bo, b3, ... by, 1) 4 (b1, b, b3, .o byy) if by =1

(b1,ba, b3, ... buy1) if bpyq # 1

dp—1hnt1(b1,b2, ... byy1)

(=1)"dp_1(by, ba, ..., by) if bpyq =1
B {0 i bpyr £ 1
(—=1)"™(by,byby by bay ..., by)
—(=1)"(by,1,b3,...,bp) + ...
+(b1, b2, b3, ..., by, 1) if by =1
0 if byyq # 1
Hence we get that

b1,ba, ..., b, 1 if b =1
(hn+2dn+dn1hn+1)(b1,bz,...,bn+1){(1 2 ml) b

(blab25b37"-abn+1) if bn+1 7é 1,
as wanted. O

This proves the vanishing of cohomology for F = Ox. For general F, the

complex I'(X, F) LN C"(Y1/X) is isomorphic to the tensor product (over A)
of the complex B2) with I'(X,F). Since the contracting homotopy we have
constructed above is A-linear, this complex is clearly exact.

Let us turn now to the case of general Y. By Corollary EZT6 and faithfully flat
descent we may assume that Y = Spec(A ®zp Z[P'/™)) for some m. Then
(see the proof of Proposition BI3)

H”(Y/X,]:) = Hn(Hmaf*}-)

where H,, is the group scheme Spec(Z[P9 /(P9)™]). Since H,, is diagonal-
izable, we know that H"(H,,, f«F) = 0 for n > 1 B3, Exp. I, Thm. 5.3.3].
This finishes our proof for the Kummer log-flat topology. The proof for the
Kummer log-étale topology is analogous (replace Corollary 2216 with Corollary

E17). O

The above proposition implies the following

PROPOSITION 3.29. Let X be a log-scheme and let
0—-F - F—=F'=0
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be an exact sequence of locally free finite rank Ox-sheaves on Xyig or Xyet.
Then

(1) if X is affine, this exact sequence splits;

(2) F is classical if and only if so is F' and F".

Proof. Consider the following exact sequence of sheaves on Xyq
0 — Homo, (F", F') — Home, (F', F) — Home, (F', F") — 0.

Since, by Proposition B24, H'(Xxa, Homo (F”,F)) = 0, (1) follows. To
prove (2) reduce to the case of X affine and use (1). Treat the case of Xy
similarly. 0

4. ALGEBRAIC K-THEORY OF LOG-SCHEMES

We present in this section basic properties and some examples of calculations of
algebraic (Quillen) K-theory of log-schemes for the topologies discussed earlier.
Hagihara [I4] was the first one to study algebraic K-theory of Kummer log-
étale topos. Most of his results hold for log-schemes over (separably) closed
fields. Working with equivariant K-theory for finite flat group schemes instead
of finite groups and using some of the results from earlier sections we show that
they hold in greater generality. In particular, for the Kummer log-flat site.
Let X be a Noetherian log-scheme. Let K(X,) = K(P(X).) denote the higher
K-theory groups of the exact category P(X ). as defined by Quillen [32]. Sim-
ilarly, let K'(X,) = K(M(X).) be the Quillen’s K-theory of the abelian cat-
egory M(X).. Denote by K(X.), K'(X,) the Waldhausen spectra [B5, 1.5.3]
corresponding respectively to the categories P(X )., M(X).. Recall that they
are functorial with respect to exact functors. We have

mi(K(X,)) = Ki(X.), m(K'(X.)) = Ki(X.)
Let K/n(X,),K’/n(X.) be the associated mod-n spectra. Set
Ki(Xs,Z/n) = m(K/n(X.)), Ki(X.,Z/n) = m(K'/n(X.)).

4.1. BAsIC PROPERTIES. We easily check that we have the following morphisms
o K(X,)— K'(X,) if Ox, is a coherent sheaf;
o f*: K(X,)— K(Yi), for any morphism f:Y — X;
o f*: K'(X,) — K'(Y.) for any object f:Y — X in X, or f classically
flat and * any Kummer site.

Less obvious is the existence of pushforward for exact closed immersions.

LEMMA 4.1. The pushforward functor i, : K'(Y,) — K'(X,) exists for an ezact
closed immersion i : Y — X, X such that (Mx /O% )z ~ N"®) for every point
r € X, and x any Kummer topology.

Proof. This follows easily for the Kummer étale topology from the exactness
of i, on all abelian sheaves (check on stalks at log-geometric points of X). We
present here the argument for the Kummer log-flat topology (the log-syntomic
case is analogous). In that case it can be reduced to the exactness of i, for
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the Zariski topology. Let f : F1 — F2 be a surjective morphism of Kummer
log-flat coherent sheaves on Y. Cover X with étale open sets U that are affine
and equipped with charts P — My, P ~ N". For each U, by Corollary 2210
and faithfully flat descent, there exists an n such that the map f|U comes from
a Zariski map fzar : F1,zar — F2,7ar o0 Uy, = Yy Xy Uy Since €* : Uy p kg —
Uy ,n,zar is exact and faithful, the map fz., is surjective as well. It follows
that the pushforward . fzar : 2+F1,zar — ©xF2,zar 18 a surjection on X,,. Since
£*iy ~ i.e* (easy to check), we are done. O

The following two propositions follow from Corollary B3 Lemma B0 and
Lemma BTl

PROPOSITION 4.2. Let X be a log-reqular quasi-compact log-scheme. Then
(1) injlimy K, (Yia) = K«(Xykn), where the limit is over log-blow-ups
Y - X;
(2) Ko Xekeyn) = Ku(Xon).

PROPOSITION 4.3. For any Noetherian log-scheme X, the pullback functors
induce isomorphisms

K*(styn) :> K*(Xkﬁ); Ki(styn) :) Ki(Xkﬂ)

The following two propositions are proved in a similar way to their classical
versions.

PROPOSITION 4.4. Let X be a Noetherian, log-scheme satisfying property
[Z1). Then the natural immersion i : Xyoqa < X induces an isomorphism
it K (Xred,x) = K (X.), for any Kummer topology.

PrOPOSITION 4.5. Let {X;} be a filtered system of Noetherian log-schemes.
Assume that all the schemes X; satisfy property (1) and the transition maps
oy X; — X, are affine and classically flat. Then, for any Kummer site *,

injlim K7 (X; .) ~ K, ((projlim X;).).

We have the following versions of the localization exact sequence. Their proofs
are analogous to the proof of their classical version and the interested reader
will find the details of the Kummer log-étale case in Hagihara [I4, Theorem
4.5].

PROPOSITION 4.6. Let X be a Noetherian, equicharacteristic log-scheme, Y a
strictly closed subscheme and U its complement. Assume that (Mx/O% )z ~
N7(®) for every point © € X. Then we have the canonical long exact sequence

— K;(Yier) = Kj(Xiat) = Ki(Ukat) — Ki_; (Yier) —

PROPOSITION 4.7. Let X be a Noetherian log-scheme, Y a strictly closed sub-
scheme and U its complement. Assume that (Mx/O%)z ~ N"®) for every
point x € X. Then we have the canonical long exact sequence

— K;(Ykﬂ) — K,L((Xkﬁ) — K{(Ukﬂ) — K,L{il(Ykﬁ) —
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Recall Hagihara’s notion of an M-framed log-scheme. Let M =~ N" be
a monoid. An M-framed log-scheme is a pair (X,0), where § : M —
I'(X,Mx/O%) is a frame such that for all points z € X the composite
M — T(X,Mx/O0%) — (Mx/O%)s is isomorphic to a projection N" — N™,
r > m. Note that the log-structure on X is Zariski. A standard example is
given by a regular scheme with the log-structure coming from a strict normal
crossing divisor (generate M from the irreducible components of the divisor at
infinity).

PROPOSITION 4.8. (Poincaré isomorphism) Let X be a log-reqular, regu-
lar quasi-compact log-scheme with a frame M. Then the natural morphism
K;(X.) — K[(X.) is an isomorphism for all i and any Kummer topology.

Proof. We will argue the case of the Kummer log-flat topology. Assume that
X has dimension n. Let F be a log-flat coherent sheaf. By the lemma below
we can find a resolution

0->P—-E1—...890—F —0,

where each &; is a locally free sheaf and P is coherent. Zariski localize
now on X and take ¥ = Spec(Ox,) for a point z € X with a chart
P — My, P ~ (Mx/O%), ~ N". We may assume that the above long
exact sequence pullbacked to Yig comes from a Zariski long exact sequence on
B =0x: ®zp Z[Pl/m], for some m. Note that B is log-regular and regular.
Hence P|Spec(B)xa is locally free. This suffices to exhibit a covering U — X
for the Kummer log-flat topology such that P|Uyq is locally free, as wanted. O

LEMMA 4.9. For any Kummer log-flat or log-étale coherent sheaf F there exists
a locally free sheaf € that surjects onto F.

Proof. Take a point z € X. By interpreting kfl-modules as equivariant mod-
ules, we can construct a surjection: f, : & — F, on Spec(Ox ;)ka. Note that,
by Corollary BZH, £, is a sum of invertible sheaves.

Consider now the following commutative diagram

M % D(Xyg, Mx/O%) —2—  Pic(Xya)

H ! l

Mdiv L F(OX,x,kﬁ7MX/O;() L> PiC(OX7g;7kﬂ)7
where MY = injlim,, MY™ or MUY = inj lim, y—y MY p = char(z). By
Corollary B8 the map 06, is surjective. Hence there exists a locally free sheaf
& on Xyg that restricts to £,. By [14, Lemma 4.11] , there exists an invertible
sheaf £ on Xyg such that the map &, — F, extends toamap f: E® L — F.
The map f is surjective in a neighbourhood U, of x. We finish by covering X
with a finite number of such U,’s and taking a direct sum of the corresponding
maps f. O

REMARK 4.10. It is easy to see that all of the above holds for the K-theory
groups with coefficients: K.(X.,Z/n) and K,(X.,Z/n).
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4.2. CALCULATIONS.

PROPOSITION 4.11. Let X = Spec(A) be a log-scheme such that A is Noether-
ian and strictly local. We have the following isomorphisms

Pic(Xi) ~ (MY /0% )z @ (Q/Z),  Pic(Xyer) ~ (MY/O% ). @ (Q/2Z)',
Ko(Xxa) ~ Z[(MF/O%): © Q/Z],  Ko(Xier) ~ Z[(MF/O%)e @ (Q/Z)']
where x denotes the closed point of X.

Proof. The statement about the Picard groups is simply a reformulation of
Corollary BTA Since, by Theorem B2 every locally free sheaf is a sum of
invertible sheaves and, by Proposition B29, there are no nontrivial relations we
get the statement about Ky-groups. O

PROPOSITION 4.12. Let X = Spec(K), for a field K, be a log-scheme with a
chart P— Mx, P~ Mx/O% ~N". Then

K (Kxn) ~ K, (Kzar) ®z Z[P? @ Q/Zl],
K (Kxet) ~ KL (Kzar) @z Z[P7 @ (Q/Z)'].

Proof. For any m, denote by F™ M (Xyxg) the full subcategory of the cate-
gory of Kummer log-flat coherent sheaves that become classical on the cov-
ering X,,, of X. We have F"" M (Xyq) ~ M(Xp, zar; Hm), where the group
scheme H,, = Spec(Z[P'/™9"/P9]). Here the right hand side denotes the
category of H,,-equivariant Zariski coherent sheaves on X,,. By devissage, the
natural functor M(Xzar, Hm) — M(Xm zar, Hrm) induces an isomorphism on
K'-theory groups. Here H,, acts trivially on K.

Consider now the functor

@ M(XZar) _’M(XZarva); {]:5} '_)@‘7:§®E§’
gept/m.gp | pap
where Ly is the invertible sheaf corresponding to the map K — K[P/™9?  p9p],
a — a€. Since H,, is diagonalizable this is an equivalence of categories (cf. [33|
Exp.I,Prop.4.7.3]). This yields the isomorphism @EePl/magy/Pyp K'(Kza) =

K(F™M(Xxa)) and, by passing to the limit with respect to m, our proposition.
U

For a framed log-scheme (X, M) and a prime ideal p of M, we write V(p) = {x €

X|p C 0, (Mx/O%),\{1})}, where 6, : M % T(X, M) — (Mx/O% ). V(p)
is a closed subset of X and we equip it with the reduced subscheme structure.
We write M (p) for the unique face of M such that M(p) & (M \ p) = M, and
set

Alp] = Z[(M(p)? @ Q/Z) \ Uqcp (M ()™ @ Q/Z)].
We will denote by A’[p] the same group as A[p] but defined using (Q/Z)’ instead
of Q/Z.

THEOREM 4.13. Let X be a Noetherian M -framed log-scheme. Then
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(1) if X is equicharacteristic then there is a natural isomorphism
B @ Ki(v(p)zar) ® Al[p] - Ki(Xkét)§
p, prime of M
(2) there is a natural isomorphism

B: P KLUV(p)zar) @ Alp] = KL(Xia).

p, prime of M

Proof. Let us define the map £ (in the second case). We fix £ € M (p)?? R Q/Z.
The corresponding map fF¢ : K. (V(p)zar) — KL (Xka) is induced by the functor

Be : M(V(p)zar) = M(Xxa), F riu(e"F @ Oypy{}),

where i : V(p) — X is the natural closed immersion and Oy ,){{} is the
coherent sheaf on V(p)a (see Example BIJ) associated to the locally free
sheaf Oy (,)(&) on V(p)ka obtained as the image of £ (or rather of the minimal
lifting of &) by the following map
M(p)div - Mdiv - F(XZara (MX/O;()div)
x\divy O :

— DV (p)zar, (M/O*)) = Pic(V (p)n)-
Note here that using Oy (,)(§) instead of Oy (,){£} would tend to give a zero
map.
The functor (¢ is exact (follow [I4, 6.2] replacing Spec(k) by Spec(Z)). The
rest of the argument goes as follows. One proves that the map 3 is compatible
with localization sequences and by a limit argument reduces the proof to the
case of a field. Then it suffices to evoke Proposition EET2, and we are done.

Compatibility with localization sequences requires the following lemma
(Lemma 9.4 in [I4]) that we have to reprove in our setting.

LEMMA 4.14. Let N be a face of M and U an M -framed log-scheme. Assume
that the frame of U comes from a chart M — My that maps N \ {1} to zero
in T(U,Oy). Then for any exact closed immersion i : V — U with the induced
M -frame and £ € N we have i*Oy{€} ~ Oy {¢}.
Proof. Write M ~ N™ N ~ N¥ M = N @& Q for a face Q. Let & € N/,
Set M’ = NY/" & Q. We have U’ = U ®za) Z[M'] = U Xspec(z) S, where
S = Spec(Z ®@z(ny Z[NV/™]). Similarly, V! = V @z ZIM'] = V Xgpec(z) S-
One easily computes

S = Spec(Z[zy,...,zi]/ (2}, ..., 2}));
Os(xr)(S) = a7 H(@yxsZ), zp=2a0 .z zy=a . 2] 0<j <k—1;
Ogs{z}(S) = :EI_I(@J:EJZ), rr = :c’f .. .x};’“,x,] = :4331'1 ...xi’“,z’l <p<k-1
Hence, if we write £ = xy, then Og{x;} is a direct factor of Og(xs) and the
cokernel is a free Z-module. It follows that

Ov{zr} = Os{zr} ®z Ou, Ovi{zr} = Os{zr} @z Ov.
Thus Oy {zr} = i*Op/{x1}, as wanted. O
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O

ExXAMPLE 4.15. Let A be a complete discrete valuation ring with residue field
k and the log-structure coming from the closed point. Then, by Theorem
(see the argument below), we have
K.(Axn) ~ K.(A) & K.(k) © Z[Q/Z \ {0}],
K. (Axer) ~ K. (A) @ K. (k) ® Z[(Q/Z)" \ {0}].

When comparing this with Proposition EETTl we get that [A(a)] = [k{a}] + [A]
in K.(4) © K. (k) © Z[Q/2\ {0}].

EXAMPLE 4.16. More generally, let X be a regular, log-regular scheme with
the log-structure associated to a divisor D with strict normal crossing. Let
{D;li € I} be the set of the irreducible (regular) components of D. For an index

set J C I denote by D the intersection of irreducible components indexed
by J and by Aj; (resp. AT(,‘) the free abelian groups generated by the set

{(ar,...,a15)|a; € Q/Z\{0}} (resp. the set {(ai,...,a5)|a; € (Q/Z)'\{0}}).
COROLLARY 4.17. For any q > 0 we have the canonical isomorphism
Ky(Xin) = @ Ko(Dy) ® Ay
JcI
Moreover, if D is equicharacteristic then canonically
Ky(Xier) ~ @) Kq(Dy) ® A
JcI

Proof. The Kummer log-flat statement follows from Theorem EET3 For the
Kummer log-étale note that we do have a localization sequence

— K (Dist) = K (Xiar) — K (Uker) — K (Det) —

where U = X,. This follows just like in the classical situation using the fact
that Kummer log-étale coherent sheaves on U are simply the Zariski coherent
sheaves and those can be extended to the whole of X. Now the proof of
Theorem goes through. a

ExXAMPLE 4.18. Again, all of the above holds for the K-theory groups with
coeflicients. For example, let A be a complete discrete valuation ring of mixed
characteristic (0,p). Let X be a smooth A-scheme equipped with the log-
structure coming from the special fiber Xy. Then

K.(Xn, Z/p") ~ K.(Xo, Z/p") © ZIN\ {0}] © K. (X, Z/p")
Since, by Geisser-Levine [I3], K;(Xo,Z/p*) = 0, for i > dim X, we get
Ki(Xun, Z/p") ~ Ki(X,Z/p") ~ K;(X[1/p], Z/p"), i > dim X,.

5. TOPOLOGICAL K-THEORY OF LOG-SCHEMES

In this section we initiate the study of topological K-theory of log-schemes.
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5.1. HOMOTOPY THEORY OF SIMPLICIAL PRESHEAVES AND SHEAVES. The for-
malism of cohomologies of simplicial presheaves we use here is based on the
closed model structures for the category of simplicial presheaves and sheaves
on an arbitrary Grothendieck site developed by Jardine [T6], [I7], [T8], [19].
We begin by recalling basic facts about cohomology of simplicial presheaves.
Let us start with some definitions. A closed model category is a category M
equipped with three classes of maps called cofibrations, fibrations and weak
equivalences, such that the following axioms are satisfied:

(1) M is closed under all finite limits and colimits.

(2) Given f : X - Y and g : Y — Z, if any of the two of f,g or gf are
weak equivalences, then so is the third.

(3) If f is aretract of g and g is a weak equivalence, fibration or cofibration,

then so is f.
(4) Given any commutative diagram
U— X
I
Vv —— Y

in M, where ¢ is a cofibration and p is a fibration, then an arrow V' — X
exists making this diagram commute assuming that either ¢ or p is a
weak equivalence.
(5) Any map f: X — Y may be factored
e [ = pi, where p is a fibration and ¢ is a trivial cofibration, and
e f = qj, where ¢ is a trivial fibration and j is a cofibration.

A trivial fibration is a map that is a fibration and a weak equivalence and a
trivial cofibration is a map that is a cofibration and a weak equivalence. A
basic example of a closed model category is the category S of simplicial sets:
the cofibrations of S are the monomorphisms, the weak equivalences are the
maps which induce isomorphisms on all possible homotopy groups of associated
realizations, and the fibrations are the Kan fibrations.

A closed simplicial model category is a closed model category M which has a
natural function complex Hom(U, X) in the category S of simplicial sets for
each pair of objects U, X in M. This simplicial set is supposed to satisfy some
adjointness properties as well as the following axiom:

e Ifi: A — B is a cofibration and p : X — Y is a fibration, then the
induced map of simplicial sets
Hom(B, X) ““ Hom(A, X) Xttom(a.y) Hom(B, X)

is a Kan fibration, which is trivial if either ¢ or p is trivial.

A closed model category M is called proper if it satisifes the following additional
axiom:

e Given a commutative diagram
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B—2-D
(1) if the square is a pullback, j is a fibration and g is a weak equiv-
alence, then f is a weak equivalence.
(2) if the square is a push out, ¢ is a cofibration and f is a weak
equivalence, then g is a weak equivalence.
The category S of simplicial sets is a proper closed simplicial model category.
Let C be a site and let T be the Grothendieck topos of sheaves on C. Denote
by pT (resp. sT') the category of presheaves (resp. sheaves) of simplicial sets
on C. When X is a presheaf, we denote by mo(X) the sheaf on T associated to
the presheaf

U mo(X(U)).

For an object U in C, we let X|U be the image of X in the site C|U. When
n > 0 is an integer and x € Xo(U), we denote by 7, (X |U, z) the sheaf on C|U
associated to the preasheaf

Vi m(X(V), x).
Here, for a simplicial set S, we take 7, (S) = 7, (]S|), where |S| is the geometric
realization of S.

DEFINITION 5.1. Let f: X — Y be a map of presheaves. Then

e fis called a weak equivalence if the induced map f, : mo(X) — mo(Y)
is an isomorphism, and for all n > 0, all objects U in C, and all
x € Xo(U), the natural maps

fo (XU, 2) = mp (YU, f(2))

are isomorphisms;

e f is called a cofibration if, for any object U from C, the induced map
fU): X(U) - Y(U) is injective;

e f is called a fibration if it satisfies the following lifting property: for
any commutative diagram

A— X

l lf

B ——,

where 7 is a trivial cofibration, there exists a map B — X such that
the resulting diagram commutes.
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For two simplicial presheaves X and Y, the simplicial set Hom(X,Y") is defined
o n — Hompr (X x A™)Y),
where A" is the standard mn-simplex. We also have the simplicial presheaf
Hom(X,Y') defined by

U (’I’L — Homp(T‘U) (X|U X An, Y|U))
Jardine proves (see Prop. 1.4 in [I7]) the following

THEOREM 5.2. With the above definitions the categories sT and pT are proper
closed simplicial model categories.

We can associate to sT and pT' the homotopy categories Ho(sT') and Ho(pT')
by formally inverting all weak equvalences. We have (Prop. 2.8 from [16])

THEOREM 5.3. The associated sheaf functor induces an equivalence
Ho(pT) ~ Ho(sT')
between the associated homotopy categories.

For simplicial presheaves X and Y, we denote by [X,Y] the set of morphisms
from X to Y in the homotopy category. A simplicial presheaf X is called
fibrant if the unique map X — *¢ is a fibration. Here *¢ is the final object of
the category of presheaves on C. For any simplicial presheaf X the canonical
map X — ¢ admits a factorization X — X7 — %o, where X — X7 is a
trivial cofibration and X/ is fibrant. Such a map X — X/ is called a fibrant
replacement of X. For two simplicial presheaves X and Y, we have

[X,Y] = [X,Y7] = 7o Hom(X,Y7),

where Y — Y/ is a fibrant replacement of Y. That is, the set [X,Y /] is given
by morphisms X — Y/ modulo simplicial homotopy.

5.1.1. Cohomology of simplicial presheaves. Let F be a pointed simplicial
presheaf . Define cohomology of C' with coefficients in F' (see [16, 3]) by
H™(C,F) = [*¢,Q"F] for m>0.

In the case the site C' has a final object X we will write H ™ (X, F) for
H~™(C,F). Note that H-™(C, F) ~ [S™, F)., where the subscript * refers
to morphisms in the pointed homotopy category. Here S™ is the simplicial
m-sphere A™/OA™. H-™(C, F) is a pointed set for m = 0, a group for m > 0,
and an abelian group for m > 1.

5.1.2. Change of sites. This section is based on [[9]. Let f : C — D be a
morphism of sites given by a functor f : D — C' that preserves finite limits and
sends covers to covers. We have the associated presheaf functors

fs:C" — D", P. DN - CN,
where C” denotes the category of presheaves on C. The functor f? is left ad-

joint to f.. Both functors are exact and f, maps sheaves to sheaves. Both f?
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and f, preserve cofibrations and f, preserves fibrations. In particular, the func-
tor F' — F(U) preserves fibrations. Thus a fibration is a pointwise fibration.
The functor fP also preserves weak equivalences.

Jardine proves the following

THEOREM 5.4. Let f : C' — D be a morphism of sites. Let F' be a pointed
simplicial presheaf on the site C. Take a fibrant replacement F — F¥ of F.
Then we have an isomorphism

H™(C,F) ~ H™(D, f.F7),
for all m <0.
Proof. We start with the following lemma.

LEMMA 5.5. Suppose that F' is a fibrant simplicial presheaf on C. Then there
18 an adjointness isomorphism

(D, [ F] = [xc, F].

Proof. We know that f.F is also fibrant. Hence we have the following sequence
of isomorphisms

[¥p, f«F] ~ 7o Hom(*p, f« F') ~ mo Hom(fP*p, F') ~ mo Hom(x¢, F) ~ [*¢, F],

as wanted. O

Since fibrant objects are preserved by the loop functor (Corollary 3.2 from [16]),
the above lemma gives us the following isomorphisms

H™(C,F) =~ [%c, Q" F] =~ [*¢, Q" F/] ~ [xp, £.Q™F7].
Since the loop functor commutes with the direct image functor, we also get
[¥p, QYT FT] ~ [xp, Q™ f. Ff].

This proves our theorem. O

It will be useful for us to identify the homotopy group presheaves of the presheaf
f*Ff from the above theorem.

PROPOSITION 5.6. We have
Proof. This follows from the following sequence of isomorphisms

mhfo I (V) = i (F(V) 2 [y, QEFT | F(V)] = x50y, Q| £ (V).
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5.2. TOPOLOGICAL K-THEORY. We base this section on Gillet and Soulé [9,
3.1]. Let (C,O¢) be a ringed site with enough points. We assume that O¢ is
unitary and commutative. For any n > 1, we consider the following presheaves

GL, : U — GL,(I'(U,Op)),  BGLy : U — BGL,(I'(U,0p)).

Here BGL,(T'(U, Oy)) is the classifying space of GL,(I'(U, Oy)).
Let F be a simplicial presheaf such that 7o(F) = x. We define its Bousfield-
Kan integral completion Z., F to be the simplicial presheaf U — ZF(U).
The functor Z. for simplicial sets is defined in H]. Its basic property gives
us that if a map of simplicial presheaves f : F' — G induces an isomorphism
of presheaves of integral homology groups f : H,(F,Z) — H,(G,Z), then the
map Zoo f : Zoo F' — Zoo G is a weak equivalence. We set BGL = injlim,, BGLy,
and

K =7 x ZBGL,
where the constant presheaf Z is concentrated in degree zero and pointed by
zZero.
To compare the above definition with Quillen’s K-theory, take, for any ringed
site (C,O¢), the functor U — Pg(U), where Po(U) is the category of lo-
cally free O¢|U-modules of finite rank. Consider the simplicial presheaf
QBQPo : U — QBQPc(U). Here Q is the Quillen Q-construction. Con-
sider also a related simplicial presheaf QBQP : U — QBQP(Oc¢(U)), where
P(O¢(U)) is the category of finitely generated projective O¢(U)-modules.
There is a natural map QBQP — QBQPc and, by [8, 2.15], a natural map (in
the homotopy category) Z x Z.BGL — QBQPs. Gillet and Soulé [9, 3.2.1]
prove the following

LEMMA 5.7. If C is locally ringed, then the natural maps of pointed simplicial
presheaves
Z x Z..BGL — QBQP — QBQPc

are weak equivalences.

Let C be now the Zariski site of some scheme X. Choose a fibrant replace-
ment K/ of QBQPz... It defines a map K,,(X) = 7, (QBQPz.: (X)) —
H™"™(Xzar, K). Gillet and Soulé show [0, 3.2.2] that the Mayer-Vietoris prop-
erty implies the following

PROPOSITION 5.8. Suppose that X is a Noetherian regular scheme of finite
Krull dimension. Then the above map gives an isomorphism

Kn(X) S H "™ ( Xz, K), m >0
5.2.1. Topological K /n-theory. For a scheme X, write
K(X) = K(Xza) = {K°(X), K'(X),....}

for the Waldhausen spectrum associated to the category of Zariski locally free
sheaves (cf. [BB] 1.5.2]). Write

K/n(X) = K/n(Xza) = {K°/n(X), K*/n(X),.. .}
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for the corresponding mod-n spectrum. Both spectra are connective and
contravariant in X. For a site C built from schemes, denote by K and
K/n the pointed simplicial presheaves K : X +— K°(X) and K/n : X
K°/n(X). Since, by the + = @ theorem, the map (of simplicial presheaves)
Z x Z«BGL — QBQP is a weak equivalence and there exists a (local) weak
equivalence QBQP — (U — K°(U)) [B5, 1.11.2] this notation is compatible
with the one used above.

Set

KS(X):=H "™(Xc,K), KS(X,Z/n):=H ™(Xc,K/n), m >0.

COROLLARY 5.9. Suppose that X is a Noetherian reqular scheme of finite Krull
dimension. Then we have a natural isomorphism

Kn(X,Z/n) 5 K2 (X, Z/n) = H "™ (Xgza, K/n),  m >0
Proof. The fibration sequence
K%n— K" % K*
gives compatible long exact sequences
H™"(Xzar,K)—"—H ™ (Xza0,K)———H " "™(Xzar,K /) ———H " (Xzar,K)
[ [ I [
Kn(X) —2— Kn(X) —— Kn(X,Z/n) —— m—1(X)

Our corollary easily follows. O

5.3. TOPOLOGICAL LOG-ETALE K/n-THEORY. We show in this section that
l-adic topological log-étale K-theory of a log-regular scheme computes étale
K-theory of the largest open set on which the log-structure is trivial. As the
reader will see the log-étale story presented here is very similar to the story of
étale K-theory. We will mainly work with schemes S such that

(*) S is separated, Noetherian and regular. The natural number n is invertible
on S and v/(—1) € Ox if nis even. S has finite Krull dimension and a uniform
bound on n-torsion étale cohomological dimension of all residue fields. Each
residue field of S has a Tate-Tsen filtration.

We quote from Jardine (Theorem 3.9 in [T6])

THEOREM 5.10. Suppose that X satisfies the above condition. Then, forn > 0,
we have an isomorphism

[¥x., QMK /n] ~ KPF (X,Z/n), m >0,
where KPY¥ (X, Z/n) is the étale K-theory.

This yields the following
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COROLLARY 5.11. Suppose that X satisfies the above condition. Then there is
an isomorphism

KX, Z/n) ~ KPY(X,Z/n), m>0.
Proof. The above theorem and the weak equivalence K°/n ~ QK'/n give the
following isomorphisms
H™"™(Xe, K/n) = [¥x,, Y"K%/n] ~ [xx,., Q" K /n] ~ KPF(X,Z/n),
as wanted. g

We will now compute the homotopy groups of K-presheaves. Recall [36], 2.7,
2.7.2] that, for a scheme Y satisfying condition (*) such that I'(Y, Oy ) contains
a primitive n’th root of unity, there are compatible functorial Bott element
homomorphisms

ﬁn : MTL(Y) - KQ(Ya Z/n)7
where 1, (V) denotes the group of n’th roots of unity in I'(Y, Oy).

PROPOSITION 5.12. Suppose that X satisfies condition (*) and that for all
z e X, MX@/O}’5 is isomorphic to a direct sum of N. Let n be invertible
on X. Then the sheaves of homotopy groups of K/n in the Kummer log-étale
topology are given by

7q(K/n) 2{

Z/n(7) forq=2i>0
0 for ¢ >0, odd.

Proof. We have a map of sheaves

induced locally by taking the product of the map 3, — m2(K/n(Y)).

It suffices to show that this map is an isomorphism and that, for ¢ odd, the sheaf
7g(K/n) is trivial. For that we need to compute the stalks of the presheaves
K/n. For any point x € X, consider the natural chart P — Oxz, where
P= MX@/O}@. By assumption P ~ N", for some r. We have

K /N0 = injlim K/n(U) = injlim K/n(Ox z ),
U k

where the first limit is over the Kummer log-étale neighbourhoods U of the
log geometric point z(log) in X, and the second limit is over the base changes
Oxzr = Oxz ®z[p) Z[P] of Oxz by the k-power map k : P — P, k being
invertible in Ox z. Since P >~ N", the ring Ox 7 is local.

By Gabber’s rigidity [] we have the following commutative diagram

m(K/n(Oxz)) —— mq(K/n(k))

| |~
7 1(Ox,2.0) — K n(F).

Hence, injlimy, 7y (K/n(Oxzx)) — m4(K/n(k)). The proposition now follows
from the computations of K-theory of separably closed fields. |
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The above computation yields the following

PROPOSITION 5.13. Suppose that X satisfies condition (*) and that, for all
zeX, MX@/O},E is tsomorphic to a direct sum of N. Let n be invertible on
X. Then there exists a cohomological spectral sequence BP9, r > 2, such that

B — H?(Xyet, Z/n(q/2)) for q—p >0 and q even
0 for q—p >0 and q odd.

This spectral sequence converges strongly to K}I‘ftp(X, Z/n) forq—p>1. The

differential d,. in the above spectral sequence maps EP? to Eptmatr—1

THEOREM 5.14. Let X be a log-regular, regular scheme satisfying condition
(*). Let n be a natural number invertible on X. Then the open immersion
j U — X, where U = Xy, is the mazximal open set of X on which the log-
structure is trivial, induces an isomorphism

§* KXY(X,Z/n) S KU, Z/n), m > 0.
Proof. Let K/n — K/ /n be a fibrant replacement. By Theorem 41
H™™(Us, Z/n) ~ H ™ (Uss, Z/n) ~ H ™ (Xyes, 5. K7 /n).
It suffices to show that the natural map of presheaves on Xy,
K/n — j.(K' /n)

is a weak equivalence. Or that the induced map on all the log-geometric stalks
is a weak equivalence. By Proposition BET3 74(K/n,(04)) is trivial for ¢ odd
and isomorphic to Z/n(i) for ¢ = 2i. From Proposition B8

Tg (G (/1)) g (10g)) =~ inj lim K& (Yy,Z/n),

where the limit is over the Kummer log-étale neighbourhoods Y of z(log) in
X. Consider now the composition

7o (K7 /1) 4 (10g)) = inj lim K (Y, Z/n)
L injlim K,(Yy, Z/n)
Y
L, inj lim K'Yy, Z/n) ~ mg((j« (K7 /1)) a(10g))-

By Proposition BTH below, the map j* is an isomorphism. By Thomason [34,
11.5], the map p is an isomorphism after inverting the Bott element. This yields
the isomorphism

T (K /1) (109) 1B 1] = 7 (s (B /1)) 109 185 1]-

Since the Bott element is invertible on both sides, we get the isomorphism

7Tq((I(/n)at(log)) = 7rq((j* (Kf/n))x(log))a

as wanted. O
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PROPOSITION 5.15. Let X be a log-regular, reqular scheme. Let n be a natural
number invertible on X. For any point x € X, the natural map

injlim K (Y, Z/n) — injlim K,(Yy, Z/n)
Y Y

is an isomorphism. Here, the limit is taken over the Kummer log-étale neigh-
bourhoods of xz(log) in X.

Proof. Looking étale locally, we may assume that X = Spec(Ox z) (abusing
notation a bit), and we have a chart P — Oxz, for P = MXJ/(’)%’T ~ Nk,
Consider the closed subscheme of X

Z =X ®zix,,..x,) LIX1, -, Xi] /(X1 ... Xi).
Up to reindexing, Z can be covered by closed subschemes

Zi = X @z, xg ZIX1, - Xe) (X0, X,

We will need the following lemma

LEMMA 5.16. Consider the cartesian diagram
Z! —— Spec(Z[X1,..., Xk)/(XT,..., X]))

e I
Zi — Spec(Z[Xy, ..., Xi]/(X1,..., Xi)),
where the map m, 1is defined by sending X; to X]. The pullback map m; :
K. (Z;,Z/n) — K,(Z[,Z/n) is trivial for v large enough and invertible on X.

Proof. We can filter the ring Z[X4,...,X3]/(XT],...,X])) (as an
Z(X1,...,Xy]/(X1,...,X;) module) with r* graded pieces isomorphic to
Z[X1,..., X,/ (X1,...,X;) = Z[X,;41,...,Xk]. Now, we can do the same for
the ring Oz assuming that there is enough flatness, i.e., that

Tor?X0 X/ X0 (0, 71Xy, X /(X8 X)) =0,
j>0, al,...,aiZL
But that follows from the results of Kato [22), 6.1] in the following way
Tor Xt X/ (X X0 (0, 7 (X0, X /(X X))
jZ[XIV»»,Xk]/(Xlgwai)(OX
®zixy, o xx] LIX1, - Xi] /(X X5), Z[X o X /(XD X))

= Tor? XX (O 21X, L X /(XL X)) = 0.

= Tor

Hence we have a filtration of Oz by Oz, modules. This filtration has length
rt and the graded pieces are isomorphic to Oz, OZ[Xis1, Xn] Ll Xix1, -, Xi],
where the tensor product is over the map m,. (sending X; to X]). Since the map
m,. is flat, this yields (by devissage) that the map K’ (Z;,Z/n) — K.(Z],Z/n)
is zero for r* > n. Clearly r = n will do. |
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Mayer-Vietoris for K'-theory and the above lemma yield that the map m,. :
X — X defined by X; — XJ kills K/(Z,Z/n) for some r = n?. Since m, is
Kummer log-étale, this gives the isomorphism in our proposition (note that we
can assume all the schemes Y in the limits to be regular). O

COROLLARY 5.17. Let X be a log-regular scheme satisfying condition (*). Let
n be a natural number invertible on X. Then the open immersion j : U — X,
where U = Xy, is the maximal open set of X on which the log-structure is
trivial, induces an isomorphism

§* KYXN(X,Z/n) = KE(U,Z/n), m>0.
Proof. By Theorem B4
H™"™(Uet, Z/n) =~ H ™ (Uskes, Z/n) = H™™(Xyker, 2 K7 /n).
It suffices to show that the natural map of presheaves on Xyket,
K/n— j.(K7 /n)

induces a weak equivalence on the stalks at a conservative family of valuative
log-geometric points. Recall (section Z2) that, for x € U, U — Spec(Z[P]), a
valuative log-geometric point over x can be described as a compatible system
of log-geometric points of certain log-blow-ups Uy of U. Since X is log-regular,
all the log-blow-ups U; can be assumed to be regular (see [30, Thm 5.5]). On
each Uy, the computations in the proof of Theorem BJ4 show that the map

7rQJ(I{/nzlc(l<)g)) - 7rq((j* (Kf/n)):c(log))

is an isomorphism. This finishes our proof. O

Similarly, Proposition implies the following two corollaries.

COROLLARY 5.18. Suppose that X is log-regular and satisfies condition (*).
Let n be invertible on X. Then the sheaves of homotopy groups of K/n in the
log-€étale topology are given by

Z/n(7) forq=2i>0

mq (K ~
To(K/n) {0 for ¢ >0, odd.

COROLLARY 5.19. Suppose that X is log-regular and satisfies condition (*).
Let n be invertible on X. Then there exists a cohomological spectral sequence
EPa r >2, such that

B = H? (Xket, Z/n(q/2)) for ¢ —p >0 and q even
0 forq—p >0 and q odd.

This spectral sequence converges strongly to KY*"(X,Z/n) for q—p > 1.

REMARK 5.20. Let X, be one of the Kummer sites studied in this paper. Con-
sider the presheaves K0 : X — K%(X,) and K?/n : X — K°/n(X,). They
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are weakly equivalent to the presheaves K and K/n. Choose their fibrant res-
olutions K7/, Kf /n. For m > 0 they define functorial maps from the algebraic
K-theory to topological K-theory

pin s K (Xa) = 1 (K2(X)) — mn (K7 (X)) = Ky (X),

Pt Kon(XasZ/1) = 1o (K (X)) = 1o (K7 /(X)) = K2 (X, Z/n)
The above yields that for a log-regular regular scheme X satisfying condition
(*), a number n invertible on X, and m > 0, the map

pm: Kn( X, Z/n) — KX, Z/n)
factors through the projection
m: Kp(Xet, Z/n) — Kpn(Xuer, Z/n) /K, (Ziss, Z/n),

where Z is the divisor at infinity. Indeed, we have the following commutative
diagram

Ko (Xets Z/1) —2— K (Ust, Z/1) = Kn(U, Z/n)

J/pm lpm
KX (X, Z/n) ——— KX4(U, Z/n),

where j : U = X;, < X is the natural immersion. And our claim follows now
from the localization sequence and Theorem BT4l

REMARK 5.21. Corollary BT is closely related to the following absolute log-
purity conjecture (see [15), 3.4.2]).

CONJECTURE 5.22. Let X be a log-scheme, locally Noetherian. Assume that X
is log-reqular and let j : U — X be the open set of triviality of the log-structure
of X. Assume that n is invertible on X. Then the adjunction map

Z/n(q) — Rj.j"Z/n(q)
is an isomorphism for any q.

Indeed, the log-purity conjecture coupled with the spectral sequences B2T9 for
X and U implies Corollary ET7l On the other hand, the usual computation
with Adams operations on the spectral sequences BET9 for X and U should
imply their degeneration up to small torsion. Hence the absolute log-purity
conjecture (up to small torsion).

Since log-regular schemes can be desingularized by a log-blow-up, the absolute
log-purity conjecture follows easily from the following absolute purity conjec-
ture in étale cohomology.

CONJECTURE 5.23. Let i : Y — X be a closed immersion of Noetherian,
regular schemes of pure codimension d. Let n be an integer invertible on X.

Then
) L for q # 2d
Hy (Xet, Z/n) = {Z/n(d) for q=2d
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This conjecture was proved by Gabber [I1]. Thus to prove Corollary BT7 we
could have used spectral sequences.T9 and evoke the purity conjecture in étale
cohomology.
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