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Abstract. The notions of orientation and duality are well understood in
algebraic topology in the framework of the stable homotopy category. In
this work, we follow these lines in algebraic geometry, in the framework of
motivic stable homotopy, introduced by F. Morel and V. Voevodsky. We
use an axiomatic treatment which allows us to consider both mixed mo-
tives and oriented spectra over an arbitrary base scheme. In this context,
we introduce the Gysin triangle and prove several formulas extending the
traditional panoply of results on algebraic cycles modulo rational equi-
valence. We also obtain the Gysin morphism of a projective morphism
and prove a duality theorem in the (relative) pure case. These construc-
tions involve certain characteristic classes (Chern classes, fundamental
classes, cobordism classes) together with their usual properties. They
imply statements in motivic cohomology, algebraic K-theory (assuming
the base is regular) and ”abstract” algebraic cobordism as well as the
dual statements in the corresponding homology theories. They apply
also to ordinary cohomology theories in algebraic geometry through the
notion of a mixed Weil cohomology theory, introduced by D.-C. Cisinski
and the author in [CD06], notably rigid cohomology.
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614 F. Déglise

Notations

We fix a noetherian base scheme S. The schemes considered in this paper are al-
ways assumed to be finite type S-schemes. Similarly, a smooth scheme (resp. mor-
phism of schemes) means a smooth S-scheme (resp. S-morphism of S-schemes).
We eliminate the reference to the base S in all notation (e.g. ×, Pn, ...)
An immersion i of schemes will be a locally closed immersion and we say i is an
open (resp. closed) immersion when i is open (resp. closed). We say a morphism
f : Y → X is projective2 if Y admits a closedX-immersion into a trivial projective
bundle over X .
Given a smooth closed subscheme Z of a scheme X , we denote by NZX the
normal vector bundle of Z in X . Recall a morphism f : Y → X of schemes is
said to be transversal to Z if T = Y ×X Z is smooth and the canonical morphism
NTY → T ×Z NZX is an isomorphism.
For any scheme X , we denote by Pic(X) the Picard group of X .
Suppose X is a smooth scheme. Given a vector bundle E over X , we let P = P(E)
be the projective bundle of lines in E. Let p : P → X be the canonical projection.
There is a canonical line bundle λP on P such that λP ⊂ p−1(E). We call it the
canonical line bundle on P . We set ξP = p−1(E)/λP , called the universal quotient
bundle. For any integer n ≥ 0, we also use the abbreviation λn = λPn

S
. We call

the projective bundle P(E⊕ 1), with its canonical open immersion E → P(E⊕ 1),
the projective completion of E.

1. Introduction

In algebraic topology, it is well known that oriented multiplicative cohomology
theories correspond to algebras over the complex cobordism spectrum MU. Us-
ing the stable homotopy category allows a systematic treatment of this kind of
generalized cohomology theory, which are considered as oriented ring spectra.
In algebraic geometry, the motive associated to a smooth scheme plays the role of
a universal cohomology theory. In this article, we unify the two approaches : on
the one hand, we replace ring spectra by spectra with a structure of modules over
a suitable oriented ring spectra - e.g. the spectrum MGL of algebraic cobordism.
On the other hand, we introduce and consider formal group laws in the motivic
theory, generalizing the classical point of view.
More precisely, we use an axiomatic treatment based on homotopy invariance
and excision property which allows to formulate results in a triangulated cate-
gory which models both stable homotopy category and mixed motives. A suitable
notion of orientation is introduced which implies the existence of Chern classes
together with a formal group law. This allows to prove a purity theorem which
implies the existence of Gysin morphisms for closed immersions and their com-
panion residue morphisms. We extend the definition of the Gysin morphism to
the case of a projective morphism, which involves a delicate study of cobordism
classes in the case of an arbitrary formal group law. This theory then implies
very neatly the duality statement in the projective smooth case. Moreover, these

2 If X admits an amble line bundle, this definition coincide with that of [EGA2].
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Around the Gysin Triangle II. 615

constructions are obtained over an arbitrary base scheme, eventually singular and
with unequal characteristics.
Examples are given which include triangulated mixed motives, generalizing the
constructions and results of V. Voevodsky, and MGL-modules. Thus, this work
can be applied in motivic cohomology (and motivic homology), as well as in alge-
braic cobordism. It also applies in homotopy algebraic K-theory3 and some of the
formulas obtained here are new in this context. It can be applied finally to clas-
sical cohomology theories through the notion of a mixed Weil theory introduced
in [CD06]. In the case of rigid cohomology, the formulas and constructions given
here generalize some of the results obtained by P. Berthelot and D. Pétrequin.
Moreover, the theorems proved here are used in an essential way in [CD06].

1.1. The axiomatic framework. We fix a triangulated symmetric monoidal cat-
egory T , with unit 1, whose objects are simply called motives4. To any pair of
smooth schemes (X,U) such that U ⊂ X is associated a motive M(X/U) functo-
rial with respect to U ⊂ X , and a canonical distinguished triangle :

M(U)→M(X)→M(X/U)
∂
−→M(U)[1],

where we put M(U) := M(U/∅) and so on. The first two maps are obtained by
functoriality. As usual, the Tate motive is defined to be 1(1) := M(P1

S/S∞)[−2]
where S∞ is the point at infinity.
The axioms we require are, for the most common, additivity (Add), homotopy
invariance (Htp), Nisnevich excision (Exc), Künneth formula for pairs of schemes
(Kun) and stability (Stab) – i.e. invertibility of 1(1) (see paragraph 2.1 for the
precise statement). All these axioms are satisfied by the stable homotopy category
of schemes of F. Morel and V. Voevodsky. However, we require a further axiom
which is in fact our principal object of study, the orientation axiom (Orient) :
to any line bundle L over a smooth scheme X is associated a morphism c1(L) :
M(X) → 1(1)[2] – the first Chern class of L – compatible with base change and
constant on the isomorphism class of L/X .
The best known example of a category satisfying this set of axioms is the triangu-
lated category of (geometric) mixed motives over S, denoted by DMgm(S). It is
defined according to V. Voevodsky along the lines of the case of a perfect base field
but replacing Zariski topology by the Nisnevich one (cf section 2.3.1). Another
example can be obtained by considering the category of oriented spectra in the
sense of F. Morel (see [Vez01]). However, in order to define a monoidal structure
on that category, we have to consider modules over the algebraic cobordism spec-
trum MGL, in the E∞-sense. One can see that oriented spectra are equivalent to
MGL-modules, but the tensor product is given with respect to the MGL-module
structure.

3Recall homotopy algebraic K-theory was introduced by Weibel in [Wei89]. This cohomology
theory coincide with algebraic K-theory when S is regular.

4 A correct terminology would be to call these objects generalized triangulated motives or
triangulated motives with coefficients as the triangulated mixed motives defined by Voevodsky
are particular examples.
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616 F. Déglise

Any object E of the triangulated category T defines a bigraded cohomology (resp.
homology) theory on smooth schemes by the formulas

E
n,p(X) = HomT

(

M(X),1(p)[n]
)

resp. En,p(X) = HomT

(1(p)[n],E⊗M(X)
)

.

As in algebraic topology, there is a rich algebraic structure on these graded groups
(see section 2.2). The Künneth axiom (Kun) implies that, in the case where E is
the unit object 1, we obtain a multiplicative cohomology theory simply denoted
by H∗∗. It also implies that for any smooth scheme X , E∗∗(X) has a module
structure over H∗∗(X). More generally, if we put A = H∗∗(S), called the ring of
(universal) coefficients, cohomology and homology groups of the previous kind are
graded A-modules.

1.2. Central constructions. These axioms are sufficient to establish an essential
basic fact, the projective bundle theorem :

(th. 3.2)5 Let X be a smooth scheme, P
p
−→ X be a projective bundle of dimension

n, and c be the first Chern class of the canonical line bundle. Then the map:
∑

0≤i≤n p∗ ⊠ ci : M(P )→
⊕

0≤i≤nM(X)(i)[2i] is an isomorphism.
Remark that considering any motive E, even without ring structure, we obtain
E∗∗(P ) = E∗∗(X) ⊗H∗∗(X) H

∗∗(P ) where tensor product is taken with respect
to the H∗∗(X)-module structure. In the case E = 1, we thus obtain the projec-
tive bundle formula for H∗∗ which allows the definition of (higher) Chern classes
following the classical method of Grothendieck :
(def. 3.10) For any smooth scheme X , any vector bundle E over X and any
integer i ≥ 0, ci(E) : M(X)→ 1(i)[2i].
Moreover, the projective bundle formula leads to the following constructions :

(i) (3.7 & 3.8) A formal group law F (x, y) over A such that for any smooth
scheme X which admits an ample line bundle, for any line bundles L,L′

over X , the formula

c1(L ⊗ L
′) = F (c1(L), c1(L

′))

is well defined and holds in the A-algebra H∗∗(X).
(ii) (def. 5.12) For any smooth schemes X , Y and any projective morphism

f : Y → X of relative dimension n, the associated Gysin morphism f∗ :
M(X)→M(Y )(−n)[−2n].

(iii) (def. 4.6) For any closed immersion i : Z → X of codimension n be-
tween smooth schemes, with complementary open immersion j, the Gysin
triangle :

M(X − Z)
j∗
−→M(X)

i∗
−→M(Z)(n)[2n]

∂X,Z
−−−→M(X − Z)[1].

The last morphism in this triangle is called the residue morphism.

The Gysin morphism permits the construction of a duality pairing in the pure
case :
(th. 5.23) For any smooth projective scheme p : X → S of relative dimension n,

5The proof is essentially based on a very elegant lemma due to F. Morel.
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Around the Gysin Triangle II. 617

with diagonal embedding δ : X → X ×X , there is a strong duality6 (in the sense
of Dold-Puppe) :

µX : 1 p∗

−→M(X)(−n)[−2n]
δ∗−→M(X)(−n)[−2n]⊗M(X)

ǫX : M(X)⊗M(X)(−n)[−2n]
δ∗

−→M(X)
p∗
−→ 1.(iv)

In particular, the Hom object Hom(M(X),1) is defined in the monoidal category
T and µX induces a canonical duality isomorphism :

Hom(M(X),1)→M(X)(−n)[−2n].

This explicit duality allows us to recover the usual form of duality between coho-
mology and homology as in algebraic topology, in terms of the fundamental class
of X and cap-product on one hand and in terms of the fundamental class of δ
and slant product on the other hand. Moreover, considering a motive E with a
monoid structure in T and such that the cohomology E

∗∗ satisfies the Künneth
formula, we obtain the usual Poincaré duality theorem in terms of the trace mor-
phism (induced by the Gysin morphism p∗ : 1→M(X)(n)[2n]) and cup-product
(see paragraph 5.24).
Note also we deduce easily from our construction that the Gysin morphism associ-
ated to a morphism f between smooth projective schemes is the dual of f∗ (prop.

5.26).
Remark finally that, considering any closed subscheme Z0 of S, and taking tensor
product with the motive M(S/S − Z0) in the constructions (ii), (iii) and (iv), we
obtain a Gysin morphism and a Gysin triangle with support. For example, given
a projective morphism f : Y → X as in (ii), Z = X ×S Z0 and T = Y ×S Z0, we
obtain the morphism MZ(X) → MT (Y )(−n)[−2n]. Similarly, if X is projective
smooth of relative dimension n, MZ(X) admits a strong dual, MZ(X)(−n)[−2n].
Of course, all the other formulas given below are valid for these motives with
support.

1.3. Set of formulas. The advantage of the motivic point of view is to obtain
universal formulae which imply both cohomological and homological statements,
with a minimal amount of algebraic structure involved.

1.3.1. Gysin morphism. We prove the basic properties of the Gysin morphisms
such as functoriality (g∗f∗ = (fg)∗), compatibility with the monoidal structure
(f×g)∗ = f∗⊗g∗), the projection formula ((1Y ∗ ⊠ f∗)f

∗ = f∗
⊠ 1X∗) and the base

change formula in the transversal case (f∗p∗ = q∗g
∗).

For the needs of the following formulae, we introduce a useful notation which
appear in the article. For any smooth scheme X , any cohomology class α ∈
Hn,p(X) and any morphism φ : M(X)→M in T , we put

φ⊠α := (φ⊗ α) ◦ δ∗ : M(X)→M(p)[n]

where α is considered as a morphism M(X)→ 1(p)[n], and δ∗ : M(X)→M(X)⊗
M(X) is the morphism induced by the diagonal ofX/S and by the Künneth axiom
(Kun).

6Note we use essentially the axiom (Kun) here.
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618 F. Déglise

More striking are the following formulae which express the defect in base change
formulas. Fix a commutative square of smooth schemes

(1.1) T
q //

g �� ∆

Y
f��

Z p
// X

which is cartesian on the underlying topological spaces, and such that p (resp. q)
is projective of relative dimension n (resp. m).
Excess of intersection (prop. 4.16).– Suppose the square ∆ is cartesian. We
then define the excess intersection bundle ξ associated to ∆ as follows. Choose a

projective bundle P/X and a closed immersion Z
i
−→ P over X with normal bundle

NZP . Consider the pullback Q of P over Y and the normal bundle NY Q of Y in
Q. Then ξ = NYQ/g

−1NZP is independent up to isomorphism of the choice of P
and i. The rank of ξ is the integer e = n−m.
Then, p∗f∗ =

(

g∗ ⊠ ce(ξ)
)

q∗.
Ramification formula (th. 4.26).– Consider the square ∆ and assume n = m.
Suppose that T admits an ample line bundle and (for simplicity) that S is inte-
gral7.
Let T = ∪i∈ITi be the decomposition of T into connected components. Consider
an index i ∈ I. We let pi and gi be the restrictions of p and g to Ti. The canonical
map T → Z×X Y is a thickening. Thus, the connected component Ti corresponds
to a unique connected component T ′

i of Z×X Y . According to the classical defini-
tion, the ramification index of f along Ti is the geometric multiplicity ri ∈ N∗ of
T ′

i . We define (cf def. 4.24) a generalized intersection multiplicity for Ti which
takes into account the formal group law F , called for this reason the F -intersection
multiplicity. It is an element r(Ti; f, g) ∈ H

0,0(Ti). We then prove the formula :

p∗f∗ =
∑

i∈I

(

r(Ti; f, g) ⊠Ti gi∗

)

q∗i .

In general, r(Ti; f, g) = ri + ǫ where the correction term ǫ is a function of the
coefficients of F – it is zero when F is additive.

1.3.2. Residue morphism. A specificity of the present work is the study of the
Gysin triangle, notably its boundary morphism, called the residue morphism. Con-
sider a square ∆ as in (1.1). Put U = X − Z, V = Y − T and let h : V → U be
the morphism induced by f .
We obtain the following formulas :

(1) (j∗ ⊠ 1U∗)∂X,Z = ∂X,Z ⊠ i∗.
(2) For any smooth scheme Y , ∂X×Y,Z×Y = ∂X,Z ⊗ 1Y ∗.
(3) If f is a closed immersion, ∂X−Z,Y −T ∂Y,T + ∂X−Y,Z−T∂Z,T = 0.
(4) If f is projective, ∂Y,T g

∗ = h∗∂X,Z .
(5) When f is transversal to i, h∗∂Y,T = ∂X,Zg∗.
(6) When ∆ satisfies the hypothesis of Excess of intersection,

h∗∂Y,T = ∂X,Z

(

g∗ ⊠ ce(ξ)
)

.

7 We prove in the text a stronger statement assuming only that S is reduced.

Documenta Mathematica 13 (2008) 613–675



Around the Gysin Triangle II. 619

(7) When ∆ satisfies the hypothesis of Ramification formula,
∑

i∈I h∗∂Y,Ti =
∑

i∈I ∂X,Z

(

r(Ti; f, g) ⊠ gi∗

)

.

The differential taste of the residue morphism appears clearly in the last formula
(especially in the cohomological formulation) where the multiplicity r(Ti; f, g)
takes into account the ramification index ri. Even in algebraic K-theory, this
formula seems to be new.

1.3.3. Blow-up formulas. Let X be a smooth scheme and Z ⊂ X be a smooth
closed subscheme of codimension n. Let B be the blow-up of X with center Z

and consider the cartesian square P
k //

p ��
B

f��
Z

i // X

. Let e be the top Chern class of the

canonical quotient bundle on the projective space P/Z.

(1) (prop. 5.38) Let M(P )/M(Z) be the kernel of the split monomorphism
p∗. The morphism (k∗, f

∗) induces an isomorphism :

M(P )/M(Z)⊕M(X)→M(B).

(2) (prop. 5.39) The short sequence

0→M(B)

„

k∗

f∗

«

−−−−→M(P )(1)[2]⊕M(X)
(p∗ ⊠ e,−i∗)
−−−−−−−−→M(Z)(n)[2n]→ 0

is split exact. Moreover, (p∗ ⊠ e,−i∗)◦
„

p∗

0

«

is an isomorphism8.

The first formula was obtained by V. Voevodsky using resolution of singularities
in the case where S is the spectrum of a perfect field. The second formula is the
analog of a result of W. Fulton on Chow groups (cf [Ful98, 6.7]).

1.4. Characteristic classes. Besides Chern classes, we can introduce the follow-
ing characteristic classes in our context.
Let i : Z → X be a closed immersion of codimension n between smooth schemes,
π : Z → S the canonical projection. We define the fundamental class of Z in X
(paragraph 4.14) as the cohomology class represented by the morphism

ηX(Z) : M(X)
i∗
−→M(Z)(n)[2n]

π∗−→ 1(n)[2n].

It is a cohomology class in H2n,n(X) satisfying the more classical expression
ηX(Z) = i∗(1).
Considering the hypothesis of the ramification formula above, when n = m = 1,
we obtain the enlightening formula (cf cor. 4.28) :

f∗(ηX(Z)) =
∑

i∈I

[ri]F · ηY (Ti)

where ri is the ramification index of f along Ti and [ri]F is the ri-th formal sum
with respect to F applied to the cohomological class ηY (Ti). Indeed, the fact T
admits an ample line bundle implies this class is nilpotent.
The most useful fundamental class in the article is the Thom class of a vector
bundle E/X of rank n. Let P = P(E ⊕ 1) be its projective completion and

8This isomorphism is the identity at least in the case when F (x, y) = x + y
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620 F. Déglise

consider the canonical section X
s
−→ P . The Thom class of E/X is t(E) := ηP (X).

By the projection formula, s∗ = p∗ ⊠ t(E), where p : P → X is the canonical
projection. Let λ (resp. ξ) be the canonical line bundle (resp. universal quotient
bundle) on P/X . We also obtain the following equalities9 :

t(E) = cn(λ∨ ⊗ p−1E)
(∗)
= cn(ξ) =

n
∑

i=0

ci(p
−1E) ∪

(

− c1(λ)
)i
.

This is straightforward in the case where F (x, y) = x + y but more difficult in
general.
We also obtain a computation which the author has not seen in the literature (even
in complex cobordism). Write F (x, y) =

∑

i,j aij .x
iyj with aij ∈ A. Consider the

diagonal embedding δ : Pn → Pn × Pn. Let λ1 and λ2 be the respective canonical
line bundle on the first and second factor of Pn × Pn. Then (prop. 5.30) the
fundamental class of δ satisfies

ηPn×Pn(Pn) =
∑

0≤i,j≤n

a1,i+j−n.c1(λ
∨
1 )ic1(λ

∨
2 )j .

Another kind of characteristic classes are cobordism classes. Let p : X → S be a
smooth projective scheme of relative dimension n. The cobordism class of X/S is
the cohomology class represented by the morphism

[X ] : 1 p∗

−→M(X)(−n)[−2n]
p∗
−→ 1(−n)[−2n].

It is a class in A−2n,−n. As an application of the previous equality, we obtain the
following computation (cor. 5.31) :

[Pn] = (−1)n. det















0 0 1

xxxxxxxxxx
a1,1

xx
xxx

xx
xx

xxx
xa1,2

zz
zz

zz
zz0

1
a1,1 a1,2 a1,n















which of course coincides with the expression given by the classical theorem of
Myschenko in complex cobordism. In fact, our method gives a new proof of the
latter theorem.

1.5. Outline of the work. In section 2, we give the list of axioms (cf 2.1) sat-
isfied by the category T and discuss the first consequences of these. Remark an
originality of our axiomatic is that we not only consider pairs of schemes but also
quadruples (used in the proof of 4.32). The last subsection 2.3 gives the principle
examples which satisfy the axiomatic 2.1. Section 3 contains the projective bundle
theorem and its consequences, the formal group law and Chern classes.
Section 4 contains the study of the Gysin triangle. The fundamental result in this
section is the purity theorem 4.3. Usually, one constructs the Thom isomorphism
using the Thom class (4.4). Here however, we directly construct the former iso-
morphism from the projective bundle theorem and the deformation to the normal

9This corrects an affirmation of I. Panin in the introduction of [Pan03a, p. 268] where equality
(∗) is said not to hold.
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Around the Gysin Triangle II. 621

cone. This makes the construction more canonical – though there is a delicate
choice of signs hidden (cf beginning of section 4.1) – and it thus gives a canonical
Thom class. We then study the two principle subjects around the Gysin triangle :
the base change formula and its defect (section 4.2 which contains notably 4.26
and 4.16 cited above) and the interaction (containing notably the functoriality of
the Gysin morphism) of two Gysin triangles attached with smooth subschemes of
a given smooth scheme (th. 4.32).
In section 5, we first recall the notion of strong duality introduced by A. Dold and
D. Puppe and give some complements. Then we give the construction of the Gysin
morphism in the projective case and the duality statement. The general situation
is particularly complicated when the formal group law F is not the additive one,
as the Gysin morphism associated to the projection p of Pn is not easy to han-
dle. Our method is to exploit the strong duality on Pn implied by the projective
bundle theorem. We show that the fundamental class of the diagonal δ of Pn/S
determines canonically the Gysin morphism of the projection (see def. 5.6). This
is due to the explicit form of the duality pairing for Pn cited above : the motive
M(Pn) being strongly dualizable, one morphism of the duality pairing (µX , ǫX)
determines the other; the first one is induced by δ∗ and the other one by p∗. Once
this fact is determined, we easily obtain all the properties required to define the
Gysin morphism and then the general duality pairing. The article ends with the
explicit determination of the cobordism class of Pn and the blow-up formulas as
illustrations of the theory developed here.

1.6. Final commentary. In another work [Dég08], we study the Gysin triangle
directly in the category of geometric mixed motives over a perfect field. In the
latter, we used the isomorphism of the relevant part of motivic cohomology groups
and Chow groups and prove our Gysin morphism induces the usual pushout on
Chow groups via this isomorphism (cf [Dég08, 1.21]). This gives a shortcut for
the definitions and propositions proved here in the particular case of motives over
a perfect field. In loc. cit. moreover, we also use the isomorphism between the
diagonal part of the motivic cohomology groups of a field L and the Milnor K-
theory of L and prove our Gysin morphism induces the usual norm morphism
on Milnor K-theory (cf [Dég08, 3.10]) – after a limit process, considering L as a
function field.
The present work is obviously linked with the fundamental book on algebraic
cobordism by Levine and Morel [LM07] (see also [Lev08b]), but here, we study
oriented cohomology theories from the point of view of stable homotopy. This
point of view is precisely that of [Lev08a]. It is more directly linked with the pre-
publication [Pan03b] of I. Panin which was mainly concerned with the construction
of pushforwards in cohomology, corresponding to our Gysin morphism (see also
[Smi06] and [Pim05] for extensions of this work). Our study gives a unified self-
contained treatment of all these works, except that we have not considered here
the theory of transfers and Chern classes with support (see [Smi06], [Lev08a, part
5]).
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622 F. Déglise

The final work we would like to mention is the thesis of J. Ayoub on cross functors
([Ayo07]). In fact, it is now folklore that the six functor formalism yields a con-
struction of the Gysin morphism. In the work of Ayoub however, the questions of
orientability are not treated. In particular, the Gysin morphism we obtain takes
value in a certain Thom space. To obtain the Gysin morphism in the usual form,
we have to consider the Thom isomorphism introduced here. Moreover, we do
not need the localization property in our study whereas it is essentially used in
the formalism of cross functors. This is a strong property which is not known in
general for triangulated mixed motives. Finally, the interest of this article relies
in the study of the defect of the base change formula which is not covered by the
six functor formalism.

Remerciements. J’aimerais remercier tout spécialement Fabien Morel car ce tra-
vail, commencé à la fin de ma thèse, a bénéficié de ses nombreuses idées et de son
support. Aussi, l’excellent rapport d’une version préliminaire de l’article [Dég08]
m’a engagé à le généraliser sous la forme présente; j’en remercie le rapporteur,
ainsi que Jörg Wildeshaus pour son soutien. Je tiens à remercier Geoffrey Powell
pour m’avoir grandement aidé à clarifier l’introduction de cet article et Joël Riou
pour m’avoir indiqué une incohérence dans une première version de la formule de
ramification. Mes remerciements vont aussi au rapporteur de cet article pour sa
lecture attentive qui m’a notamment aidée à clarifier les axiomes. Je souhaite enfin
adresser un mot à Denis-Charles Cisinski pour notre amitié mathématique qui a
été la meilleure des muses.

2. The general setting : homotopy oriented triangulated systems

2.1. Axioms and notations. Let D be the category whose objects are the carte-
sian squares

(∗) W //

�� ∆

V

��
U // X

made of immersions between smooth schemes. The morphisms in D are the evident
commutative cubes. We will define the transpose of the square ∆, denoted by ∆′,
as the square

W //

�� ∆′

U

��
V // X

made of the same immersions. This defines an endofunctor of D .
In all this work, we consider a triangulated symmetric monoidal category (T ,⊗,1)
together with a covariant functorM : D → T . Objects of T are called premotives.
Considering a square as in (∗), we adopt the suggesting notation

M

(

X/U

V/W

)

= M(∆).

We simplify this notation in the following two cases :

(1) If V = W = ∅, we put M(X/U) = M(∆).
(2) If U = V = W = ∅, we put M(X) = M(∆).
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We call closed pair any pair (X,Z) of schemes such that X is smooth and Z is a
closed (not necessarily smooth) subscheme of X . As usual, we define the premotive
of X with support in Z as MZ(X) = M(X/X − Z).
A pointed scheme is a scheme X together with an S-point x : S → X . When
X is smooth, the reduced premotive associated with (X,x) will be M̃(X,x) =

M(S
x
−→ X). Let n > 0 be an integer. We will always assume the smooth

scheme Pn
S is pointed by the infinity. We define the Tate twist as the premotive1(1) = M̃(P1

S)[−2] of T .

2.1. We suppose the functor M satisfies the following axioms :

(Add) For any finite family of smooth schemes (Xi)i∈I ,
M(⊔i∈IXi) = ⊕i∈IM(Xi).

(Htp) For any smooth scheme X , the canonical projection of the affine line in-
duces an isomorphism M(A1

X)→M(X).
(Exc) Let (X,Z) be a closed pair and f : V → X be an étale morphism. Put

T = f−1(Z) and suppose the map Tred → Zred obtained by restriction of
f is an isomorphism. Then the induced morphism φ : MT (V ) → MZ(X)
is an isomorphism.

(Stab) The Tate premotive 1(1) admits an inverse for the tensor product denoted
by 1(−1).

(Loc) For any square ∆ as in (∗), a morphism ∂∆ : M
(

X/U
V/W

)

→M(V/W )[1] is

given natural in ∆ and such that the sequence of morphisms

M(V/W )→M(X/U)→M

(

X/U

V/W

)

∂∆−−→M(V/W )[1]

made of the evident arrows is a distinguished triangle in T .
(Sym) Let ∆ be a square as in (∗) and consider its transpose ∆′. There is given

a morphism ǫ∆ : M
(

X/U
V/W

)

→M
(

X/V
U/W

)

natural in ∆.

If in the square ∆, V = W = ∅, we put

∂X/U = ∂∆′ ◦ ǫ∆ : M(X/U)→M(U)[1].

We ask the following coherence properties :
(a) ǫ∆′ ◦ ǫ∆ = 1.
(b) If ∆ = ∆′ then ǫ∆ = 1.
(c) The following diagram is anti-commutative :

M
(

X/U
V/W

)

ǫ∆ //

∂∆ ��

M
(

X/V
U/W

)

∂∆′ // M(U/W )[1]

∂U/W [1]
��

M(V/W )[1]
∂V/W [1]

// M(W )[2].

(Kun) (a) For any open immersions U → X and V → Y of smooth schemes,
there are canonical isomorphisms:
M(X/U)⊗M(Y/V ) = M(X × Y/X × V ∪ U × Y ), M(S) = 1
satisfying the coherence conditions of a monoidal functor.
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(b) Let X and Y be smooth schemes and U → X be an open immersion.
Then, ∂X×Y/U×Y = ∂X/U ⊗ 1Y ∗ through the preceding canonical
isomorphism.

(Orient) For any smooth scheme X , there is an application, called the orientation,

c1 : Pic(X)→ HomT (M(X),1(1)[2])

which is functorial in X and such that the class c1(λ1) : M(P1
S)→ 1(1)[2]

is the canonical projection.

For any integer n ∈ N, we let 1(n) (resp. 1(−n)) be the n-th tensor power of1(1) (resp. 1(−1)). Moreover, for an integer n ∈ Z and a premotive E, we put
E(n) = E⊗ 1(n).

2.2. Using the excision axiom (Exc) and an easy noetherian induction, we obtain
from the homotopy axiom (Htp) the following stronger result :

(Htp’) For any fiber bundle E over a smooth scheme X , the morphism induced
by the canonical projection M(E)→M(X) is an isomorphism.

We further obtain the following interesting property :

(Add’) Let X be a smooth scheme and Z, T be disjoint closed subschemes of X .
Then the canonical map MZ⊔T (X)→ MZ(X)⊕MT (X) induced by nat-
urality is an isomorphism.

Indeed, using (Loc) with V = X − T , W = X − (Z ⊔ T ) and U = W , we get a
distinguished triangle

MZ(V )→MZ⊔T (X)
π
−→M

(

X/W

V/W

)

→MZ(V )[1].

Using (Exc), we obtain MZ(V ) = MZ(X). The natural map MZ⊔T (X)→MZ(X)

induces a retraction of the first arrow. Moreover, we getM
(

X/W
V/W

)

= MT (X) from

the symmetry axiom (Sym). Note that we need (Sym)(b) and the naturality of
ǫ∆ to identify π with the natural map MZ⊔T (X)→MT (X).

Remark 2.3. About the axioms.—

(1) There is a stronger form of the excision axiom (Exc) usually called the
Brown-Gersten property (or distinguished triangle). In the situation of
axiom (Exc), with U = X − Z and W = V − T , we consider the cone in
the sense of [Nee01] of the morphism of distinguished triangles

M(W ) //

��

M(V ) //

��

M(V/W ) //

��

M(V )[1]

��
M(U) // M(X) // M(X/U) // M(U)[1]

This is a candidate triangle in the sense of op. cit. of the form

M(W )→M(U)⊕M(V )→M(X)→M(W ).

Thus, in our abstract setting, it is not necessarily a distinguished triangle.
We call (BG) the hypothesis that in every such situation, the candidate
triangle obtained above is a distinguished triangle. We will not need the
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hypothesis (BG) ; however, in the applications, it is always true and the
reader may use this stronger form for simplification.

(2) We can replace axiom (Kun)(a) by a weaker one
(wKun) The restriction of M to the category of pairs of schemes (X,U) is a

lax monoidal symmetric functor.
(Kun)(b) is then replaced by an obvious coherence property of the bound-
ary operator in (Loc). This hypothesis is sufficient for the needs of the
article with a notable exception of the duality pairing 5.23. For example,
if one wants to work with cohomology theories directly, one has to use
rather this axiom, replace T by an abelian category and ”distinguished
triangle” by ”long exact sequence” everywhere. The arguments given here
covers equally this situation, except for the general duality pairing.

(3) The symmetry axiom (Sym) encodes a part of a richer structure which
possess the usual examples (all the ones considered in section 2.3). This is
the structure of a derivator as the objectM(∆) may be seen as a homotopy
colimit. The coherence axioms which appear in (Sym) are very natural
from this point of view.

Definition 2.4. Let E be a premotive. For any smooth scheme X and any couple
(n, p) ∈ Z×Z, we define respectively the cohomology and the homology groups of
X with coefficient in E as

E
n,p(X) = HomT

(

M(X),E(p)[n]
)

,

resp. En,p(X) = HomT

(1(p)[n],E ⊗M(X)
)

.

We refer to the corresponding bigraded cohomology group (resp. homology group)
by E

∗∗(X) (resp. E∗∗(X)). The first index is usually refered to as the cohomo-
logical (resp. homological) degree and the second one as the cohomological (resp.
homological) twist. We also define the module of coefficients attached to E as
E∗∗ = E∗∗(S).
When E = 1, we use the notations H∗∗(X) (resp. H∗∗(X)) for the cohomology
(resp. homology) with coefficients in 1. Finally, we simply put A = H∗∗(S).

Remark that, from axiom (Kun)(a), A is a bigraded ring. Moreover, using the
axiom (Stab), A = H∗∗(S). Thus, there are two bigraduations on A, one cohomo-
logical and the other homological, and the two are exchanged as usual by a change
of sign. The tensor product of morphisms in T induces a structure of left bigraded
A-module on E∗∗(X) (resp. E∗∗(X)). There is a lot more algebraic structures on
these bigraded groups that we have gathered in section 2.2.
The axiom (Orient) gives a natural transformation

c1 : Pic→ H2,1

of presheaves of sets on SmS , or in other words, an orientation on the fundamental
cohomology H∗,∗ assocciated with the functor M . In our setting, cohomology
classes are morphisms in T : for any element L ∈ Pic(X), we view c1(L) both as
a cohomology class, the first Chern class, and as a morphism in T .

Remark 2.5. In the previous definition, we can replace the premotive M(X) by
any premotive M. This allows to define as usual the cohomology/homology of
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an (arbitrary) pair (X,U) made by a smooth scheme X and a smooth subscheme
U of X . Particular cases of this general definition is the cohomology/homology
of a smooth scheme X with support in a closed subscheme Z and the reduced
cohomology/homology associated with a pointed smooth scheme.

2.2. Products. Let X be a smooth scheme and δ : X → X × X its associated
diagonal embedding. Using axiom (Kun)(a) and functoriality, we get a morphism
δ′∗ : M(X) → M(X) ⊗M(X). Given two morphisms x : M(X) → E and y :
M(X)→ F in T , we can define a product

x⊠ y = (x⊗ y) ◦ δ′∗ : M(X)→ E⊗ F.

2.6. By analogy with topology, we will call ringed premotive any premotive E

equipped with a commutative monoid structure in the symmetric monoidal cat-
egory T . This means we have a product map µ : E ⊗ E → E and a unit map
η : 1→ E satisfying the formal properties of a commutative monoid.
For any smooth scheme X and any couple of integer (n, p) ∈ Z2, the unit map
induces morphisms

ϕX :Hn,p(X)→ E
n,p(X)

ψX :Hn,p(X)→ En,p(X)

which we call the regulator maps.
Giving such a ringed premotive E, we define10 the following products :

• Exterior products :

E
n,p(X)⊗ E

m,q(Y )→ E
n+m,p+q(X × Y ),

(x, y) 7→ x× y := µ ◦ x⊗ y

En,p(X)⊗ Em,q(Y )→ En+m,p+q(X × Y ),

(x, y) 7→ x× y := (µ⊗ 1X×Y ∗) ◦ (x⊗ y)

• Cup-product :

E
n,p(X)⊗ E

m,q(X)→ E
n+m,p+q(X), (x, x′) 7→ x ∪ x′ := µ ◦ (x⊠x′).

Then E∗∗ is a bigraded ring and E∗∗(X) is a bigraded E∗∗-algebra. More-
over, E∗∗ is a bigraded A-algebra and the regulator map is a morphism of
bigraded A-algebra.
• Slant products11 :

E
n,p(X × Y )⊗ Em,q(X)→ E

n−m,p−q(Y ),

(w, x) 7→ w/x := µ ◦ (1E ⊗ w) ◦ (x⊗ 1Y ∗)

E
n,p(X)⊗ Em,q(X × Y )→ Em−n,q−p(Y ),

(x,w) 7→ x\w := (µ⊗ 1Y ∗) ◦ (x ⊗ 1E ⊗ 1Y ∗) ◦ w.

10 We do not indicate the commutativity isomorphisms for the tensor product and the twists
in the formulas to make them shorter.

11For the first slant product defined here, we took a slightly different covention than [Swi02,
13.50(ii)] in order to obtain formula (5.3). Of course, the two conventions coincide up to the
isomorphism X × Y ≃ Y × X.
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• Cap-product :

E
n,p(X)⊗ Em,q(X)→ Em−n,q−p(X), (x, x′) 7→ x ∩ x′ := x\

(

(1E ⊗ δ∗) ◦ x
′
)

.

• Kronecker product :

E
n,p(X)⊗ Em,q(X)→ An−m,p−q, (x, x′) 7→ 〈x, x′〉 := x/x′

where y is identified to a homology class in Em,q(S ×X).

The regulator maps (cohomological and homological) are compatible with these
products in the obvious way.

Remark 2.7. These products satisfy a lot of formal properties. We will not use
them in this text but we refer the interested reader to [Swi02, chap. 13] for more
details (see more precisely 13.57, 13.61, 13.62).

2.8. We can extend the definition of these products to the cohomology of an open
pair (X,U). We refer the reader to loc. cit. for this extension but we give details
for the cup-product in the case of cohomology with supports as this will be used
in the sequel.
Let X be a smooth scheme and Z, T be two closed subschemes of X . Then the
diagonal embedding of X/S induces using once again axiom (Kun)(a) a morphism
δ′′∗ : MZ∩T (X) → MZ(X) ⊗MT (X). This allows to define a product of motives
with support. Given two morphisms x : MZ(X) → E and y : MT (X) → F in T ,
we define

x⊠ y = (x ⊗ y) ◦ δ′′∗ : MZ∩T (X)→ E⊗ F.

In cohomology, we also define the cup-product with support :

E
n,p
Z (X)⊗ Em,q

T (X)→ E
n+m,p+q
Z∩T (X), (x, y) 7→ x ∪Z,T y = µ ◦ (x ⊗ y) ◦ δ′′∗ .

Note that considering the canonical morphism νX,W : E
n,p
W (X) → E

n,p(X), for
any closed subscheme W of X , we obtain easily :

(2.1) νX,Z(x) ∪ νX,T (y) = νX,Z∩T (x ∪Z,T y).

2.9. Suppose now that E has no ring structure. It nethertheless always has a
module structure over the ringed premotive 1 – given by the structural map (iso-
morphism) η : 1⊗ E→ E.
This induces in particular a structure of left H∗∗(X)-module on E∗∗(X) for any
smooth scheme X . Moreover, it allows to extend the definition of slant products
and cap products. Explicitely, this gives in simplified terms :

• Slant products :

Hn,p(X × Y )⊗ Em,q(X)→ E
n−m,p−q(Y ),

(w, y) 7→ w/y := η ◦ (1E ⊗ w) ◦ (x⊗ 1Y ∗)

• Cap-products :

E
n,p(X)⊗Hm,q(X)→ Em−n,q−p(X), (x, x′) 7→ x ∩x′ := (x⊗ 1X∗) ◦ δ∗ ◦ x

′.

These generalized products will be used at the end of the article to formulate
duality with coefficients in E (cf paragraph 5.24).

Documenta Mathematica 13 (2008) 613–675



628 F. Déglise

Note finally that, analog to the cap-product, we have a H∗∗(X)-module struc-
ture on E∗∗(X) that can be used to describe the projective bundle formula in
E-homology (cf formula (2) of 3.4).

2.3. Examples.

2.3.1. Motives. Suppose S is a regular scheme. Below, we give the full construction
of the category of geometric motives of Voevodsky over S, and indicate how to
check the axioms of 2.1. Note however we will give a full construction of this
category, together with the category of motivic complexes and spectra, over any
noetherian base S in [CD07]. Here, the reader can find all the details for the proof
of the axioms 2.1 (especially axiom (Orient)).
For any smooth schemesX and Y , we let cS(X,Y ) be the abelian group of cycles in
X ×S Y whose support is finite equidimensional over X . As shown in [Dég07, sec.
4.1.2], this defines the morphisms of a category denoted by Smcor

S . The category
Smcor

S is obviously additive. It has a symmetric monoidal structure defined by the
cartesian product on schemes and by the exterior product of cycles on morphisms.
Following Voevodsky, we define the category of effective geometric motives
DM eff

gm (S) as the pseudo-abelian envelope12 of the Verdier triangulated quotient

Kb(Smcor
S )/T

where Kb(Smcor
S ) is the category of bounded complexes up to chain homotopy

equivalence and T is the thick subcategory generated by the following complexes :

(1) For any smooth scheme X ,

. . . 0→ A
1
X

p
−→ X → 0 . . .

with p the canonical projection.
(2) For any cartesian square of smooth schemes

W
k //

g ��
V

f��
U

j // X

such that j is an open immersion, f is étale and the induced morphism
f−1(X − U)red → (X − U)red is an isomorphism,

(2.2) . . . 0→W

„

g
−k

«

−−−−→ U ⊕ V
(j,f)
−−−→ X → 0 . . .

Consider a cartesian square of immersions

W
k //

g �� ∆

V
f��

U
j // X

12Recall that according to the result of [BS01], the pseudo-abelian envelope of a triangulated
category is still triangulated
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This defines a morphism of complexes in Smcor
S :

ψ :















. . . 0 // W
k //

g ��
V

f��

// 0 . . .

. . . 0 // U
j // X // 0 . . .

We let M(∆) be the cone of ψ and see it as an object of DM eff
gm (S). To fix the

convention, we define this cone as the triangle (2.2) above. With this convention,
we define ǫ∆ as the following morphism :

. . . 0 // W

−1
��

// U ⊕ V
„

0 1
1 0

«

��

// X

+1
��

// 0 . . .

. . . 0 // W // V ⊕ U // X // 0 . . .

The reader can now check easily that the resulting functor M : D → DM eff
gm (S),

satisfies all the axioms of 2.1 except (Stab) and (Orient). We let Z = M(S) be
the unit object for the monoidal structure of DM eff

gm (S).
To force axiom (Stab), we formally invert the motive Z(1) in the monoidal category
DM eff

gm (S). This defines the triangulated category of (geometric) motives denoted
by DMgm(S). Remark that according to the proof of [Voe02, lem. 4.8], the cyclic
permutation of the factors of Z(3) is the identity. This implies the monoidal
structure on DM eff

gm (S) induces a unique monoidal structure on DMgm(S) such

that the obvious triangulated functor DM eff
gm (S) → DMgm(S) is monoidal. Now,

the functor M : D → DMgm(S) still satisfies all axioms of 2.1 mentioned above
but also axiom (Stab).
To check the axiom (Orient), it is sufficient to construct a natural application

Pic(X)→ HomDMeff
gm (S)(M(X),Z(1)[2]).

We indicate how to obtain this map. Note moreover that, from the following
construction, it is a morphism of abelian group.
Still following Voevodsky, we have defined in [Dég07] the abelian category of
sheaves with transfers over S, denoted by Sh(Smcor

S ). We define the cateogy
DM eff(S) of motivic complexes as the A1-localization of the derived category of
Sh(Smcor

S ). The Yoneda embedding Smcor
S → Sh(Smcor

S ) sends smooth schemes
to free abelian groups. For this reason, the canonical functor

DM eff
gm (S)→ DM eff(S)

is fully faithful. Let Gm be the sheaf with transfers which associates to a smooth
scheme its group of invertible (global) functions. Following Suslin and Voevodsky
(cf also [Dég05, 2.2.4]), we construct a morphism in DM eff(S) :

Gm →M(Gm) = Z⊕ Z(1)[1]

This allows to define the required morphism :

Pic(X) = H1
Nis(X ; Gm) ≃ HomDMeff(S)(M(X),Gm[1])

→ HomDMeff(S)(M(X),Z(1)[2]) ≃ HomDMeff
gm (S)(M(X),Z(1)[2]).
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The first isomorphism uses that the sheaf Gm is A1-local and that the functor
forgetting transfers is exact (cf [Dég07, prop. 2.9]).

2.3.2. Stable homotopy exact functors. In this example, S is any noetherian
scheme. For any smooth scheme X , we let X+ be the pointed sheaf of sets on
SmS represented by X with a (disjoint) base point added.
Consider an immersion U → X of smooth schemes. We let X/U be the pointed
sheaf of sets which is the cokernel of the pointed map U+ → X+.
Suppose moreover given a square ∆ as in (∗). Then we obtain an induced morphism

of pointed sheaves of sets V/W → X/U which is injective. We let X/U
V/W be the

cokernel of this monomorphism. Thus, we obtain a cofiber sequence in H•(S)

V/W → X/U →
X/U

V/W

∂∆−−→ S1
s ∧ V/W.

Moreover, the functor

D →H•(S),∆ 7→
X/U

V/W

satisfies axioms (Add), (Htp), (Exc) and (Kun) from [MV99].
Consider now the stable homotopy category of schemes SH (S) (cf [Jar00]) to-
gether with the infinite suspension functor

Σ∞ : H•(S)→ SH (S).

The category SH (S) is a triangulated symmetric monoidal category. The canon-
ical functor D → SH (S) satisfies all the axioms of 2.1 except axiom (Orient). In
fact, (Loc) and (Sym) follows easily from the definitions and (Stab) was forced in
the construction of SH (S).
Suppose we are given a triangulated symmetric monoidal category T together
with a triangulated symmetric monoidal functor

R : SH (S)→ T .

This induces a canonical functor

M : D → T ,
X/U

V/W
7→M

(

X/U

V/W

)

:= R

(

Σ∞

(

X/U

V/W

))

and (M,T ) satisfies formally all the axioms 2.1 except (Orient).
Let BGm be the classifying space of Gm defined in [MV99, section 4]. It is an
object of the simplicial homotopy category H s

• (S) and from loc. cit., proposition
1.16,

Pic(X) = HomH s
• (S)(X+, BGm).

Let π : H s
• (S) → H•(S) be the canonical A1-localisation functor. Applying

proposition 3.7 of loc. cit., π(BGm) = P
∞ where P

∞ is the tower of pointed
schemes

P
1 → ..→ P

n ιn−→ P
n+1 → ...

made of the inclusions onto the corresponding hyperplane at infinity. We let
M(P∞) (resp. M̃(P∞)) be the ind-object of T obtained by applying M (resp.

M̃) on each degree of the tower above.
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Using this, we can define an application

ρX :Pic(X) = HomH s
• (S)(X+, BGm)

→ HomH•(S) (X+, π(BGm)) = HomH•(S)(X+,P
∞)

→ HomT

(

M(X), M̃(P∞)
)

where the last group of morphisms denotes by abuse of notations the group of
morphisms in the category of ind-objects of T – and similarly in what follows.

Remark 2.10. Note that the sequence (λn)n∈N of line bundles is sent by ρP∞ to

the canonical projection M(P∞) → M̃(P∞) – this follows from the construction
of the isomorphism of loc. cit., prop. 1.16.
Recall that 1(1)[2] = M̃(P1) in T . Let π : M(P1) → M̃(P1) be the canonical
projection and ι : P1 → P∞ be the canonical morphism of pointed ind-schemes.
We introduce the following two sets :

(S1) The transformations c1 : Pic(X) → HomT (M(X),1(1)[2]) natural in the
smooth scheme X such that c1(λ1) = π.

(S2) The morphisms c′1 : M̃(P∞)→ M̃(P1) such that c′1 ◦ ι∗ = 1.

We define the following applications :

(1) ϕ : (S1)→ (S2).
Consider an element c1 of (S1). The collection

(

c1(λn)
)

n∈N
defines a mor-

phismM(P∞)→ M̃(P1). Moreover, the restriction of this latter morphism

M̃(P∞)→ M̃(P1) is obviously an element of (S2), denoted by ϕ(c1).
(2) ψ : (S2)→ (S1).

Let c′1 be an element of (S2). For any smooth scheme X , we define

ψ(c′1) : Pic(X)
ρX
−−→ HomT

(

M(X), M̃(P∞)
)

c′1∗−−→ HomT

(

M(X), M̃(P1)
)

.

Using remark 2.10, we check easily that ψ(c′1) belongs to (S1).

The following lemma is obvious from these definitions :

Lemma 2.11. Given, the hypothesis and definitions above, ϕ ◦ ψ = 1.

Thus, an element of (S2) determines canonically an element of (S1). This gives
a way to check the axiom (Orient) for a functor R as above. Moreover, we will
see below (cf paragraph 3.7) that given an element of (S1), we obtain a canonical
isomorphism H∗∗(P∞) = A[[t]] of bigraded algebra, t having bidegree (2, 1). Then
elements of (S2) are in bijection with the set of generators of the the bigraded
algebraH∗∗(P∞). Thus in this case, elements of (S2) are equivalent to orientations
of the cohomology H∗∗ in the classical sense of algebraic topology.

Example 2.12. (1) Let S = Spec(k) be the spectrum of a field, or more
generally any regular scheme. In [CD06, 2.1.4], D.C. Cisinski and the
author introduce the notion of mixed Weil theory (and more generally of
stable theory) as axioms for cohomology theories on smooth S-schemes
which extends the classical axioms of Weil. Examples of such cohomology
theories are algebraic De Rham cohomology if k has characteristic 0, rigid
cohomology if k has caracteristic p and étale l-adic cohomology in any case,
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l being invertible in k (cf part 3 of loc. cit.). To a mixed Weil theory (or
more generally a stable theory) is associated a commutative ring spectrum
(cf loc. cit. 2.1.5) and a triangulated closed symmetric monoidal category
DA1(S, E) – which is obtained by localization of a derived category. By
construction (see loc. cit. (1.5.3.1)), we have a triangulated monoidal
symmetric functor

SH (S)→ DA1(S, E).

In loc. cit. 2.2.9, we associate a canonical element of the set (S2) for this
functor. Thus the resulting functor D → DA1(S, E) satisfies all the axioms
of 2.1.

(2) Consider a noetherian scheme S and the model category of symmetric T -
spectra SpS over S defined by R. Jardine in [Jar00]. It is a cofibrantly
generated, symmetric monoidal model category which satisfies the monoid
axiom of [SS00, 3.1] (cf [Jar00, 4.19] for this latter fact).

A commutative monoid E in the category SpS will be called a (ho-
motopy) coherent ring spectrum. Given such a ring spectrum, according
to [SS00, 4.1(2)], the category of E-modules in the symmetric monoidal
category SpS carries a structure of a cofibrantly generated, symmetric
monoidal model category such that the pair of adjoint functors (F,O)
given by the free E-module functor and the obvious forgetful functor is
a Quillen adjunction. We denote by SH (S; E) the associated homotopy
category and consider the left derived free E-module functor

SH (S)→ SH (S; E).

It is a triangulated symmetric monoidal functor. Then, as indicated in the
previous remark, an element of (S2) relative to this functor is equivalent
to an orientation on the ring spectrum E in the classical sense (see [Vez01,
3.1]).

The basic example of such a ring spectrum is the cobordism ring spec-
trum MGL. Indeed, MGL has a structure of a coherent ring spectrum in
our sense and is evidently oriented (see [PPR07, 1.2.3 and 2.1] for details).
Thus the homotopy category SH (S;MGL) of MGL-modules satisfies
the axioms 2.1.

Another example is given by the spectrum BGL introduced by Vo-
evodsky in [Voe98, par. 6.2]. According to loc. cit., th. 6.9, it represents
the homotopy invariant algebraic K-theory defined by Weibel (cf [Wei89]).
However, it is not at all clear to get a coherent structure on the ring spec-
trum BGL with the definition given in loc. cit. To obtain such a coherent
ring structure on BGL we invoke a recent result of Gepner and Snaith
which construct a coherent ring spectrum homotopy equivalent to BGL

in [DV07, 5.9].

3. Chern classes

3.1. The projective bundle theorem. Let X be a smooth scheme and P be
a projective bundle over X of rank n. We denote by p : P → X the canonical
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projection and by λ the canonical line bundle on P . Put c = c1(λ) : M(P ) →1(1)[2]. We can define a canonical map :

ǫP :=
∑

0≤i≤n

p∗ ⊠ ci : M(P )→
⊕

0≤i≤n

M(X)(i)[2i]

Consider moreover an open subscheme U ⊂ X , PU = P ×X U . We let π :
P/PU → X/U be the canonical projection and ν : P/PU → (P × P )/(P × PU )
the morphism induced by the diagonal embedding and the graph of the immersion
PU → P . Using the product of motives with support (cf 2.8), we also define a
canonical map :

ǫP/PU
:=

∑

0≤i≤n

π∗ ⊠ ci : M(P/PU )→
⊕

0≤i≤n

M(X/U)(i)[2i]

Lemma 3.1. Using the above notations, the following diagram is commutative :

M(PU ) //

ǫPU ��
(1)

M(P ) //

ǫP
��

(2)

M(P/PU ) //

ǫP/PU ��
(3)

M(PU )[1]

ǫPU��
⊕

iM(U)(i)[2i] //⊕
i M(X)(i)[2i] //⊕

i M(X/U)(i)[2i] //⊕
iM(U)(i)[2i+ 1]

where the top (resp. bottom) line is the distinguished triangle (resp. sum of dis-
tinguished triangles) obtained using (Loc) (resp. and tensoring with 1(i)[2i]).

Proof. Coming back to the definition of product and product with supports,
squares (1) and (2) are commutative by functoriality of M . For square (3), besides
this functoriality, we have to use axiom (Kun)(b). �

Theorem 3.2. With the above hypothesis and notations, the morphism ǫP :
M(P )→

⊕

0≤i≤nM(X)(i)[2i] is an isomorphism in T .

Proof. Consider an open cover X = U ∪ V , W = U ∩ V . Assume that ǫPU , ǫPV

and ǫPW are isomorphisms. Then according to the previous lemma, ǫPV /PW
is an

isomorphism. Using the compatibility of the first Chern class with pullback, we
obtain a commutative diagram

M(PV /PW ) //
ǫPV /PW ��

M(P/PU )
ǫP/PU��

⊕

iM(V/W )(i)[2i] //⊕
iM(X/U)(i)[2i]

where the horizontal maps are obtained by functoriality. According to axiom
(Exc), these maps are isomorphisms which implies ǫP/PU

is an isomorphism. Ap-
plying ance again the previous lemma, we deduce that ǫP is an isomorphism.
This reasoning shows that we can argue locally on X and assume P is trivializable
as a projective bundle overX . Then, as the map depends only on the isomorphism
class of the projective bundle P , we can assume P = Pn

X . Finally, by property
(Kun)(a), ǫPn

X
= M(X)⊗ ǫPn and we can assume X = S. Put simply ǫn = ǫPn .

For n = 0, the statement is trivial. Assume n > 0. Recall we consider the
scheme P

n pointed by the infinite point. The morphism ǫn induces a map
M̃(Pn) → ⊕0<i≤nM̃(P1)⊗,i still denoted by ǫn and we have to prove this later
is an isomorphism. Put c1,n = c1(λn) for any integer n ≥ 0.
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The canonical inclusion Pn−1 → Pn − {0} is the zero section of a vector bundle.
For any integer i ∈ [1, n], we put Ui = {(x1, ..., xn) ∈ An | xi 6= 0} considered as
an open subscheme of An. We obtain the canonical isomorphism denoted by τn :

M(Pn/Pn−1)
(1)
≃ M(Pn/Pn − {0})

(2)
≃ M(An/An − {0})

= M(An/ ∪i Ui)
(3)
= M(A1/A1 − {0})⊗,n (4)

≃ M̃(P1)⊗,n

where (1) follows from (Htp) and (Loc), (2) from (Exc), (3) from (Kun)(a) and
(4) from (Exc), (Htp) and (Loc).
Consider the following diagram

(3.1) M̃(Pn−1)
ιn−1∗ //

ǫn−1
��

(a)

M̃(Pn)
πn //

ǫn �� (b)

M(Pn/Pn−1)

τn��
⊕0<i<nM̃(P1)⊗,i // ⊕0<i≤nM̃(P1)⊗,i // M̃(P1)⊗,n

where ιn−1 is the canonical inclusion, πn is the obvious morphism obtained by
functoriality in D , and the bottom line is made up of the evident split distinguished
triangle. We prove by induction on n > 0 the following statement :

(i) ιn−1∗ is a split monomorphism.

(ii) cn1,n−1 = 0 which means square (a) is commutative.

(iii) cn1,n = τnπn which means square (b) is commutative.

(iv) ǫn is an isomorphism.

(3.2)

For n = 1, this is obvious as (iii) is a part of axiom (Orient).
The induction relies on the following lemma due to Morel.

Lemma 3.3. Let δn : Pn → (Pn)n be the iterated n-th diagonal of Pn/S and denote

by δn∗ : M̃(Pn) → M̃(Pn)⊗,n the morphism induced by δn and axiom (Kun)(a).
Let ι1,n : P

1 → P
n be the canonical inclusion.

Then the following square commutes :

M̃(Pn)
δn∗ //

πn ��

M̃(Pn)⊗,n

M(Pn/Pn−1)
τn // M̃(P1)⊗,n.

(ι1,n∗)⊗,n
OO

Consider an integer i ∈ [1, n] and let Ūi be the open subscheme of Pn made of
points (x1 : ... : xn : xn+1) such that xi 6= 0 and put Ωi = Pi−1 × Ui × Pn−i.
We consider the following commutative diagram :

M̃(Pn)
(1) //

πn��

M
(

(Pn)n/ ∪i Ωi

)

M(Pn/Pn−1)
∼ // M

(

P
n/ ∪i Ūi

)

OO

M(An/ ∪i Ui)

(2)jjUUUUUUUUU
∼oo

where the map (1) is induced by δn, the maps on the lower horizontal line are
isomorphisms given respectively by the inclusions Pn−1 ⊂ ∪iŪi and Ui ⊂ Ūi.
Consequently, the map (2) is induced by the restriction of δn. However, this map is
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A1-homotopic to the product ι(1)× ...× ι(n) where ι(i) : A1 → Pn is the embedding
defined by ι(i)(x) = (x1 : ... : xn+1) with xj = 0 if j /∈ {i, n+1}, xi = x, xn+1 = 1.
It follows from property (Htp) and (Kun)(a) that the map (2) is equal to the
morphism

M(A1/A1 − {0})⊗,n ι(1)∗ ⊗...⊗ι(n)
∗−−−−−−−−→M(Pn/Ū1)⊗ ...⊗M(Pn/Ūn).

Note finally the scheme Ūi ≃ An is contractible and, from property (Htp), the

corresponding map ι
(i)
∗ : M(A1/A1−{0})→ M̃(Pn) does not depend on the integer

i. Thus the preceding commutative diagram together with the identifications just
described allows to conclude.
With that lemma in hand, we conclude as follows. Suppose the property (3.2) is
true for n− 1.
The composite map

(
∑

0<i<n p∗ ⊠ cin
)

◦ ιn−1 is equal to ǫn−1 as cn ◦ ιn−1∗ = cn−1.
This shows (3.2)(i). Then, the preceding lemma implies properties (ii) and (iii).
Now, using (Loc) and (Sym), the upper horizontal line of diagram (3.1) is a split
distinguished triangle which concludes. �

Using axiom (Stab), we obtain the following corollary :

Corollary 3.4. Consider the hypothesis and notations of the previous theorem.
Then H∗∗(P ) is a free H∗∗(X)-module with base 1, ..., cn.
Let E be a motive.

(1) The map

E
∗∗(X)⊗H∗∗(X) H

∗∗(P )→ E
∗∗(P ), x ⊗ λ→ λ.p∗(x)

is an isomorphism. If moreover E has a ringed motive structure, it is an
isomorphism of E∗∗(X)-algebra.

(2) Considering the H∗∗(X)-module structure on E∗∗(X) (cf the end of 2.9),
the map

E∗∗(P )→
⊕

0≤i≤n

E∗∗(X), ϕ 7→
∑

i

ci ∩ p∗(ϕ)

is an isomorphism.

Remark 3.5. It can be seen actually that the first assertion of this corollary is
equivalent to the fact Hn,m(M(X)(r)) = Hn,m−r(M(X)) which is a weak form of
the stability axiom (Stab).

A corollary of the projective bundle theorem is the following result, classical in
topology and first exploited in the homotopy category of schemes by Morel :

Corollary 3.6. Consider the permutation isomorphism η : 1(1)⊗ 1(1)→ 1(1)⊗1(1) in the symmetric monoidal category T . Then η = 1.
Let E be a ringed motive and X be a smooth scheme.
For any x ∈ En,p(X) and y ∈ Em,q(X), x ∪ y = (−1)nm.y ∪x.

Proof. In general, for x ∈ En,p(X) and y ∈ Em,q(X), we have x ∪ y =
(−1)nmηpq.y ∪x. In particular, when X = P2 and c = c1(λ2), we get c2 = η.c2.
This implies η = 1 from the previous corollary and the other assertion follows. �
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3.2. The associated formal group law.

3.7. Put H∗∗(P∞) = lim
←−
n>0

H∗∗(Pn). Then corollary 3.4 together with the relation

(3.2)(ii) implies H∗∗(P∞) = A[[c]], free ring of power series over A with generator
c = (c1,n)n>0 of degree (2, 1). Moreover, H∗∗(P∞ × P∞) = A[[x, y]].
Consider the Segre embeddings σn,m : Pn × Pm → Pn+m+nm for (n,m) ∈ N2

and the induced map on ind-schemes σ : P∞ × P∞ → P∞. Then the map σ∗ :
H∗∗(P∞)→ H∗∗(P∞ × P

∞) corresponds to a power series

F =
∑

i,j

aij .x
iyj ∈ A[[x, y]]

which according to the classical situation13 in algebraic topology is a commutative
formal group law :

F (x, 0) = x, F (x, y) = F (y, x), F (x, F (y, z)) = F (F (x, y), z).

For any (i, j) ∈ N2, the element ai,j ∈ A is of homological degree (2(i+ j − 1), i+
j − 1) and the first two relations above are equivalent to

a0,1 = 1, a0,i = 0 if i 6= 1, ai,j = aj,i.

Recall also there is a formal inverse associated to F , that is a formal power series
m ∈ A[[x]] such that F (x,m(x)) = 0. We can find the notation x+F y = F (x, y)
in the litterature. For an integer n ≥ 0, we put [n]F · x = x +F ... +F x, that
is the power series in x equal to the formal n-th addition of x with itself. These
notations will be fixed through the rest of the article.

Proposition 3.8. Let X be a smooth scheme.

(1) For any line bundle L/X, the class c1(L) is nilpotent in H∗∗(X).
(2) Suppose X admits an ample line bundle. For any line bundles L,L′ over

X,
c1(L1 ⊗ L2) = F (c1(L1), c1(L2)) ∈ H

2,1(X).

Proof. For the first point, we first remark the question is local in X . As X is
noetherian, we are reduced by induction to consider an open covering X = U ∪V ,
such that c1(LU ) (resp. c1(LV )) is nilpotent in H∗∗(U) (resp. H∗∗(V )) where LU

(resp. LV ) is the restrion of L to U (resp. V ). Let n (resp. m) be the order of
nilpotency of c1(LU ) (resp. c1(LV )). Let Z = X − U (resp. T = X − V ) and
consider the canonical morphism νX,W : H∗∗

W (X)→ H∗∗(X) for W = Z, T . From
axiom (Loc), there exists a class a (resp. b) in H∗∗

Z (X) (resp. H∗∗
T (X) such that

a = c1(L)n (resp. b = c1(L)m). As Z ∩ T = ∅, axiom (Loc) implies a ∪Z,T b = 0.
Thus, relation (2.1) implies c1(L)n+m = 0 as wanted.
The first point follows, as λ is locally trivial and the Chern class of a trivial line
bundle is 0 by definition.
For the second point, the assumption implies there is a torsor π : X ′ → X under
a vector bundle over X such that X ′ is affine. From axioms (Htp’) and (Exc), we

13Recall these properties follows from the fact that the coefficients aij for i ≤ n, j ≤ m are
determined by the map σn,m. The reader can find a more detailed proof in [LM07], proof of cor.

10.6.
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obtain that π∗ : M(X ′)→M(X) is an isomorphism. Thus we are reduced to the
case where X is affine.
Then, the line bundle L is generated by its section (cf [EGA2, 5.1.2,e]), which

means there is a closed immersion L
ι
−→ A

n+1
X where n + 1 is the cardinal of a

generating family. In particular, we get a morphism

f : X ≃ P(L)
ι
−→ P

n
X → P

n

with the property that f−1(λn) = L. In the same way, we can find a morphism
g : X → Pm such that g−1(λm) = L′. We consider the morphism

ϕ : X → X ×X
f×g
−−−→ P

n × P
m σn,m
−−−→ P

nm+n+m.

By construction, ϕ−1(λnm+n+m) = L ⊗ L′ and this concludes, computing in two
ways the Chern class of this line bundle. �

Consider a ringed motive E with regulator map ϕ : H∗∗ → E∗∗.
The map σ∗ : E∗∗(P∞) → E∗∗(P∞ × P∞) defines a formal group law FE with
coefficients in E∗∗ and FE =

∑

i,j ϕS(ai,j).x
iyj. Thus the regulator map induces

a morphism of formal group law (A,F )→ (E∗∗, FE).

Remark 3.9. In case F is the additive formal group law, F (x, y) = x + y, for any
ringed motive E, FE is the additive formal group law. This is the case for example
if T = DMgm(S) or T is the category of modules over a mixed Weil theory.
When F is the universal multiplicative formal group law F = x + y + β.xy, the
obstruction for FE to be additive is the element ϕ(β).

3.3. Higher Chern classes. We now follow the classical approach of
Grothendieck to define higher Chern classes. Consider a vector bundle E of
rank n > 0 over a smooth scheme X . Let λ (resp. p) be the canonical invertible
sheaf (resp. projection) of the projective bundle P(E)/X . From corollary 3.4,
there are unique classes ci(E) ∈ H2i,i(X) for i = 0, ..., n, such that

(3.3)

n
∑

i=0

p∗(ci(E)) ∪
(

− c1(λ)
)n−i

= 0

and c0(E) = 1.

Definition 3.10. With the above notations, we call ci(E) the i-th Chern class of
E. We also put ci(E) = 0 for any integer i > n.

Remark 3.11. In the case n = 1, due to our choice of conventions, λ = p−1(E). The
previous relation is not a definition, but a tautology. This enlighten particularly
our choice of sign in the previous relation. Besides, when c1(λ

∨) = −c1(λ) (in
particular when the formal group law F is additive), relation (3.3) agrees precisely
with that of [Gro58].

Remark 3.12. Considering any ringed motive E, with regulator map ϕ : H → E,
ϕ ◦ ci defines Chern classes for cohomology with coefficients in E. When no ringed
structure is given on E, we still get an action of the former Chern classes on the
E-cohomology using the action of the cohomology theory H (cf 2.9).
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The Chern classes are obviously functorial with respect to pullback and invariant
under isomorphism of vector bundles. They also satisfy the Whitney sum formula
; we recall the proof to the reader as it uses the axiom (Kun)(a) in an essential
way.

Lemma 3.13. Let X be a smooth scheme and consider an exact sequence of vector
bundles over X :

0→ E′ → E → E′′ → 0

Then for any k ∈ N, ck(E) =
∑

i+j=k ci(E
′) ∪ cj(F

′′).

Proof. By compatibility of Chern classes with pullback we can assume the se-
quence above is split. Let n (resp. m) be the rank of E′/X (resp. E′′/X). Put
P = P(E) and consider c ∈ H2,1(P ) (resp. p : P → X) the first Chern class of the
canonical line bundle on (resp. canonical projection of) P/X .
Put a =

∑n
i=0 p

∗(ci(E
′)).cn−i and b =

∑m
j=0 p

∗(cj(E
′′)).cm−j as cohomology

classes in H∗∗(P ). We have to prove a ∪ b = 0.
Consider the canonical embeddings i : P(E′)→ P and j : P − P(E′′)→ P . Then
i∗(a) = 0 which implies by property (Htp’) that j∗(a) = 0. Thus there exists
a′ ∈ H∗,∗

P(E′′)(P ) such that a = νF (a′) where νF : H∗,∗
P(E′′)(P ) → H∗∗(P ) is the

canonical morphism. Similarly, there exists b′ ∈ H∗,∗
P(E′)(P ) such that b = νE(b′)

where νE : H∗,∗
P(E′)(P ) → H∗∗(P ) is the canonical morphism. Then, relation (2.1)

allows14 to conclude because P(E′) ∩ P(E′′) = ∅ in P and H∗,∗
∅

(P ) = 0 from
property (Loc). �

Remark 3.14. Suppose X admits an ample line bundle and consider a vector
bundle E/X . As a corollary of the first point of proposition 3.8 and the usual
splitting principle, we obtain that the class cn(E) is nilpotent in H∗∗(X) for any
integer n ≥ 0.

4. The Gysin triangle

In this section, we consider closed pairs (X,Z) – recall X is assumed to be smooth
and Z is a closed subscheme of X . We say (X,Z) is smooth (resp. of codimension
n) if Z is smooth (resp. has everywhere codimension n in X). A morphism of
closed pair (f, g) : (Y, T )→ (X,Z) is a commutative square

T //
g ��

Y
f��

Z // X

which is cartesian on the underlying topological space. This means the canonical
embedding T → Z ×X Y is a thickening. We say the morphism is cartesian if the
square is cartesian.
The premotive MZ(X) is functorial with respect to morphisms of closed pairs.

14This is where axiom (Kun)(a) is used.
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4.1. Purity isomorphism. Consider a projective bundle over a smooth scheme
X of rank n. For any integer 0 ≤ r ≤ n, we will consider the embedding15

lr(P ) : M(X)(r)[2r]
(−1)r

−−−−→
⊕

0≤i≤n

M(X)(i)[2i]
ǫ−1

P/X
−−−→M(P ).

where the first map is the canonical embedding time (−1)r and the second one is
induced by the isomorphism of theorem 3.2.

4.1. Consider a smooth closed pair (X,Z). Let NZX (resp. BZX) be the normal
bundle (resp. blow-up) of (X,Z) and PZX be the projective completion of NZX .
We denote by BZ(A1

X) the blow-up of A1
X with center {0} × Z. It contains as a

closed subscheme the trivial blow-up A1
Z = BZ(A1

Z). We consider the closed pair
(BZ(A1

X),A1
Z) over A1. Its fiber over 1 is the closed pair (X,Z) and its fiber over

0 is (BZX ∪ PZX,Z). Thus we can consider the following deformation diagram :

(4.1) (X,Z)
σ̄1−→ (BZ(A1

X),A1
Z)

σ̄0←− (PZX,Z).

We will also consider the open subscheme DZX = BZ(A1
X) − BZX , which still

contains A1
Z as a closed subscheme. The previous diagram then gives by restriction

a second deformation diagram :

(4.2) (X,Z)
σ1−→ (DZX,A

1
Z)

σ0←− (NZX,Z).

Note these two deformation diagrams are functorial in (X,Z) with respect to
cartesian morphisms of closed pairs.

Remark 4.2. As we will see in the followings, one of the advantage to con-
sider the deformation space DZX is that, when X is a vector bundle over Z
and the embedding Z ⊂ X is the 0-section, we can define a canonical isomor-
phism DZX ≃ A1 × X . In fact, when X = Spec(A) and Z = Spec(A/I),
DZX = Spec(⊕n∈ZI

n.t−n) with the convention that for n < 0, In = A (t is
an indeterminate). Thus, if A = A0[x1, ..., xn], I = (x1, ..., xn), we get an isomor-
phism defined on the affine level by

A[t′, x′1, ..x
′
n]→ ⊕n∈ZI

n.t−n, t′ 7→ t, x′i 7→ t−1xi.

This isomorphism is independant on the regular sequence parametrizing I. Thus,
in the case when X is an arbitrary vector bundle, we can glue the isomorphisms
obtained by choosing local parametrizations.

Proposition 4.3. Let n be a natural integer.
There exists a unique family of isomorphisms of the form

p(X,Z) : MZ(X)→M(Z)(n)[2n]

indexed by smooth closed pairs of codimension n such that :

15 The change of sign which appears in this formula amounts to take −c instead of c as a
generator of the algebra H∗∗(P ).
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(1) for every cartesian morphism (f, g) : (Y, T ) → (X,Z) of smooth closed
pairs of codimension n, the following diagram is commutative :

MT (Y )
(f,g)∗ //

p(Y,T )
��

MZ(X)

p(X,Z)
��

M(T )(n)[2n]
g∗(n)[2n] // M(Z)(n)[2n].

(2) Let X be a smooth scheme, E be a vector bundle over X of rank n. Put P =
P(E ⊕ 1). Consider the closed pair (P,X) corresponding to the canonical
section of P/X. Then p(P,X) is the inverse of the following composition

M(X)(n)[2n]
ln(P )
−−−→M(P )

π
−→MX(P )

where the second arrow is obtained by functoriality in D .

Proof. Uniqueness : Consider a smooth closed pair (X,Z) of codimension n. Ap-
plying property (1) above to the deformation diagram (4.1), we obtain the following
commutative diagram :

MZ(X)
σ̄1∗ //

p(X,Z)

��

MA1
Z
(BZ(A1

X))

p
(BZ (A1

X
),A1

Z
)

��

MZ(PZX)

p(PZ X,Z)

��

σ̄0∗oo

M(Z)(n)[2n]
s1∗(n)[2n] // M(A1

Z)(n)[2n] M(Z)(n)[2n]
s0∗(n)[2n]oo

The morphisms s0, s1 : Z → A1
Z are respectively the zero section and the unit

section of A1
Z/Z. Using axiom (Htp), s0∗ = s1∗. Thus in the above diagram,

all morphisms are isomorphisms. Now, property (2) stated previously determines
uniquely p(PZX,Z), thus p(X,Z) is also uniquely determined.
Existence : Consider property (2). Let i : P(E)→ P be the canonical embedding.
Its corestriction i′ : P(E) → P −X is the zero section of a vector bundle, thus it
induces an isomorphism on premotives from property (Htp’). By (Loc), we then
obtain the distinguished triangle :

M(P(E))
i∗−→M(P )

π
−→MX(P )

+1
−−→

We easily obtain lr(P(E)) ◦ i∗ = lr(P ) for any integer r < n. Thus the composite

ln(P ) ◦ π is an isomorphism as required. We put: p(P,X) =
(

ln(P ) ◦ π
)−1

.
Considering the proof of uniqueness, we have to show that σ̄0∗ and σ̄1∗ are iso-
morphisms. Considering the excision axiom (Exc), this is equivalent to prove the
morphisms

MZ(X)
σ1∗−−→MA1

Z
(DZ(X))

σ0∗←−−MZ(NZX)

induced by diagram (4.2) are isomorphisms. In the case X = An
Z and the inclusion

Z ⊂ X is the 0-section, the result follows from remark 4.2 and axiom (Htp).
We can argue locally for the Zariski topology on X . In fact, consider an open
cover X = U ∪ V , W = U ∩ V , such that the case of (U,Z ∩ U), (V, Z ∩ V ) and
(W,Z ∩W ) are known. Using axiom (Sym), (Exc) and (Loc), the canonical map

M

(

V/V − Z ∩ V

W/W − Z ∩W

)

→M

(

X/X − Z

U/U − Z ∩ U

)
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is an isomorphism, and the same is true when we replace (X,Z) by (DZX,A
1
Z).

This fact, together with the above three assumptions and axiom (Loc), allows to
obtain the result for (DZX,A

1
Z).

Thus we can assume there exists a parametrisation of the closed pair (X,Z), that

is to say a cartesian morphism (f, g) : (X,Z) → (Ad+n
S ,Ad

S) such that f is étale.
Consider the pullback square

X ′
p //

q ��

X
f��

An
Z

1×g// An+d
S .

There is an obvious closed immersion Z → X ′ and its image is contained in q−1(Z).
As q is étale, Z is a direct factor of q−1(Z). Put W = q−1(Z)−Z and Ω = X ′−W .
Thus Ω is an open subscheme of X ′, and the reader can check that p and q induce
cartesian étale morphisms

(X,Z)← (Ω, Z)→ (An
Z , Z).

The functorialty of (4.2) and axiom (Exc) allow to conclude in view of the previous
case.
To sum up, the purity isomorphism p(X,Z) is defined as the composite

MZX
σ̄0∗−−→MA1

Z

(

BZ(A1
X)
) σ̄−1

1∗−−→MZ(PZX)
p(Z,PZ X)

−−−−−−→M(Z)(n)[2n].

We finally have to check the coherence of this definition in the case of the closed
pair (P,X), P = P(E⊕1), appearing in property (2). Explicitely, we have to check
that in this case σ̄−1

1∗ ◦ σ̄0∗ = 1. This is easily seen considering the commutative
diagram :

MX(P )
σ̄1∗ // MA1

X
(BZ(A1

X)) MX(P )
σ̄0∗oo

MX(E)
σ1∗ //

OO

MA1
X

(DXE)

OO

MX(E).
σ0∗oo

OO

We have identified the projective normal bundle of (P,X) (resp. the normal bundle
of (E,X)) with P (resp. E). According to remark 4.2, there is a canonical
isomorphism DXE ≃ A1×E through which σ0 (resp. σ1) corresponds to the zero
(resp. unit) section. The homotopy axiom (Htp) allows to conclude. �

4.4. Let X be a smooth scheme, E be a vector bundle over X of rank n and put
P = P(E ⊕ 1). Let λ be the canonical line bundle on P , and p : P → X be the
canonical projection. We define the Thom class of E/X as the cohomology class

t(E) =

n
∑

i=0

p∗(ci(E)) ∪ (−c1(λ))
n−i

in H2n(P ). This is in fact a morphism M(P ) → 1(n)[2n] whose restriction to
M(P(E)) is zero. This implies the morphism

p∗ ⊠ t(E) : M(P )→M(X)(n)[2n]

factors as a morphism MX(P )→ M(X)(n)[2n] and this latter is equal to p(P,X).
Indeed, p∗ ⊠ t(E) is a split epimorphism with splitting ln(P ).
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We introduce the Thom premotive16 as MTh(E) := MX(E) - remark it is functo-
rial with respect to monomorphisms of vector bundles. Using property (Exc), the
natural morphism MTh(E)→MX(P ) is an isomorphism. As a consequence, the
morphism p∗ ⊠ t(E) induces an isomorphism MTh(E) : MTh(E)→M(X)(n)[2n]
which is precisely the purity isomorphism p(E,X). In the litterature, this arrow is
called the Thom isomorphism.

Remark 4.5. Recall the universal quotient bundle ξ on P is defined by the exact
sequence

0→ λ→ p−1(E ⊕ 1)→ ξ → 0.

Thus the Whitney sum formula 3.13 gives: t(E) = cn(ξ).

Definition 4.6. Let (X,Z) be a smooth closed pair of codimension n. Put
U = X − Z and consider the obvious immersions i : Z → X and j : U → X .
Considering the notations of the previous proposition, we call p(X,Z) the purity iso-
morphism associated with (X,Z). Using this isomorphism together with property
(Loc) we obtain a distinguished triangle

M(X − Z)
j∗
−→M(X)

i∗
−→M(Z)(n)[2n]

∂X,Z
−−−→M(X − Z)[1]

called the Gysin triangle. The morphism i∗ (resp. ∂X,Z) is called the Gysin
morphism (resp. residue morphism) associated with (X,Z).

Example 4.7. Let X be a smooth scheme and E/X be a vector bundle of rank
n. Put P = P(E⊕1) and consider the canonical section s : X → P of P/X . Then
property (2) of proposition 4.3 implies s∗ ◦ ln(P ) = 1 : the Gysin triangle of (P,X)
is split and ∂P,X = 0. Moreover, remark 4.4 and the previous definition implies
that

s∗ = p∗ ⊠ t(E).

4.2. Base change.

Definition 4.8. Let (X,Z) (resp. (Y, T )) be a smooth closed pair of codimension
n (resp. m). Let (f, g) : (Y, T )→ (X,Z) be a morphism of closed pairs. We define
the morphism (f, g)! : M(T )(m)[2m] → M(Z)(n)[2n] by the equality (f, g)! :=
p(X,Z) ◦ (f, g)∗ ◦ p−1

(Y,T ).

Thus we obtain a commutative diagram

(4.3) M(Y − T )
l∗ //

h∗ ��

M(Y )
k∗

//

f∗

��

M(T )(n)[2n]
∂Y,T //

(f,g)!��

M(Y − T )[1]

h∗[1]
��

M(X − Z)
j∗ // M(X)

i∗ // M(Z)(n)[2n]
∂X,Z // M(X − Z)[1]

where i, j, k, l are the obvious immersions and h is the restriction of f .
In what follows, we will compute the morphism (f, g)! in various cases. The com-
mutativity of the second square will give us refined projection formulas. The new
thing in our study is that any such formula corresponds to another formula involv-
ing residue morphisms as we see by considering the third commutative square.

16Analog of the Thom space in algebraic topology.
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Remark 4.9. The notation (f, g)! is to be compared with the notation of [Ful98]
for the ”refined Gysin morphism”. In fact, the reader will notice that in the
case of motivic cohomology, our formulas extend the formulas of Fulton to the
case of arbitrary weights (and arbitrary base). Be careful however that our Gysin
morphism i∗ : M(X)→ M(Z)(n)[2n] corresponds to the usual pushout on Chow
groups (cf [Dég08][1.21]). The Gysin morphism considered by Fulton is induced
by the usual functoriality of motives. This fact can be understand if we thought
of Chow groups over a field studied by Fulton as motivic homology with compact
support.

4.2.1. The transversal case.

Proposition 4.10. Consider the hypothesis of definition 4.8.
Suppose (f, g) is cartesian and n = m. Then (f, g)! = g∗(n)[2n].

Proof. Diagram (4.1) is functorial with respect to cartesian morphism. Let p :
PTY → PZX be the morphism induced by (f, g) on the projective completions
of the normal bundles. Through the morphisms σ̄0∗ and σ̄1∗ for the closed pairs
(X,Z) and (Y, T ), the morphism (f, g)∗ is isomorphic to

(p, g)∗ : M(PTY, T )→M(PZX,Z).

As n = m and Y = X ×Z T , one has PTY = PZX ×Z T . Using the compatibility
of the projective bundle isomorphism with base change, we see that the following
diagram commutes

M(T )(n)[2n]
ln(PT Y ) //

g∗(n)[2n] ��

M(PTY )
p∗��

M(Z)(n)[2n]
ln(PZX) // M(PZX)

which concludes in view of the property (2) in proposition 4.3. �

Corollary 4.11. Consider a smooth closed pair (X,Z) of codimension n and
i : Z → X the corresponding immersion. Put U = X − Z.
Then (1Z∗ ⊠ i∗) ◦ i∗ = i∗ ⊠ 1X∗ as a morphism M(X)→M(Z ×X)(n)[2n],
and (j∗ ⊠ 1U∗) ◦ ∂X,Z = ∂X,Z ⊠ i∗ as a morphism M(Z)(n)[2n]→M(U ×X)[1].

Proof. We consider the cartesian square

Z
γi ��

i // X
δX��

Z ×X
i×1X // X ×X

where δX is the diagonal embedding ofX/S. The two formulas then follow from the
previous proposition applied to the morphism of closed pairs (δX , γi) : (X,Z) →
(X ×X,Z ×X) with the help of the following elementary lemma :

Lemma 4.12. Let (X,Z) be a smooth closed pair of codimension n and Y be a
smooth scheme.
Then (i× 1Y )∗ = i∗ ⊗ 1Y ∗ and ∂X×Y,Z×Y = ∂X,Z ⊗ 1Y ∗.
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Using axiom (Kun)(a) and (Kun)(b), the lemma is reduced to prove that
p(X×Y,Z×Y ) = p(X,Z) ⊗ Y . From the construction of the purity isomorphism,
we are reduced to show that for a projective bundle P/X , ǫP×Y = ǫP ⊗ 1X∗ us-
ing the notations of theorem 3.2. This last equality follows finally from axiom
(Kun)(a) and the functoriality of the first Chern class in axiom (Orient). �

Remark 4.13. (1) In the formula of this lemma, there is hidden a permutation
isomorphism for the tensor product. In this paper, we will not need to
care about this isomorphism. However, in some cases, it may result in a
change of sign (see [Dég05], rem. 2.6.2).

(2) Considering a ringed premotive E, the previous corollary gives the usual
projection formula for i : for any z ∈ E∗∗(Z) and any x ∈ E∗∗(X),
i∗(z ∪ i∗(x)) = i∗(z) ∪x.

4.14. Let (X,Z) be a smooth closed pair of codimension n, i : Z → X the corres-
ponding closed immersion. Following Grothendieck (see [Gro58]), we define the
fundamental class of Z in X as the cohomology class ηX(Z) = i∗(1) in H2n,n(X).
As a morphism, it is equal to the composite

M(X)
i∗
−→M(Z)(n)[2n]

πZ∗−−→ 1(n)[2n]

where πZ : Z → S is the structural morphism of Z/S.
Suppose that i admits a retraction p : X → Z. Then corollary 3.10 gives the
following computation17 of the Gysin morphism :

(4.4) i∗ = p∗ ⊠ ηX(Z).

Suppose given a vector bundle E/X and put P = P(E ⊕ 1). Applying example
4.7, we get

ηP (X) = t(E)

where X is embedded in P through the canonical section. Indeed example 4.7 is
a particular case of the formula (4.4).
More generally, we can define the localised fundamental class of Z in X as the
cohomology class η̄X(Z) ∈ H2n,n

Z (X) equal to the composite

MZ(X)
p(X,Z)
−−−−→M(Z)(n)[2n]

πZ∗−−→ 1(n)[2n].

Considering the canonical morphism νX,Z : H2n,n
Z (X)→ H2n,n(X), we have tau-

tologically νX,Z(η̄X(Z)) = ηX(Z).
For any vector bundle E/X of rank n, P = P(E ⊕ 1), the localised Thom class
t̄(E) = η̄P (X) is uniquely determined by the Thom class t(E). Usually, t̄(E) is

considered as an element of H2n,n
X (E) using axiom (Exc).

As a last application of the previous corollary, let us remark the following :

Corollary 4.15. Let (X,Z) be a smooth closed pair of codimension m, and P be
a projective bundle of rank n over X.

17 Considered in cohomology, this is a well known formula.
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Then for any integer r ∈ [0, n], the following diagram is commutative :

M(PV )
ν∗ //

pV ∗ ⊠ c1(λV )r

��

M(P )
ι∗ //

p∗ ⊠ c1(λ)r

��

M(PZ)(m)[2m]
∂ι //

pZ∗ ⊠ c1(λZ )r

��

M(PV )[1]

pV ∗[1] ⊠ c1(λV )r

��
M(V )(r)[2r]

j∗ // M(Y )(r)[2r]
i∗ // M(Z)(r +m)[2(r +m)]

∂i // M(V )(r)[2r + 1].

In particular, the Gysin triangle is compatible with the projective bundle isomor-
phisms and with the induced embeddings lr(P?).

4.2.2. The excess intersection case. Remark that in the hypothesis of definition
4.8, we have a canonical closed immersion

NTY
ν
−→ g∗(NZX).

In particular, we have necessarily the inequality n ≥ m.

Proposition 4.16. Consider the hypothesis of definition 4.8. Suppose (f, g) is
cartesian.
Put e = n−m and consider ξ = g−1(NZX)/NTY , quotient vector bundle over T .
Then (f, g)! = (g∗ ⊠T ce(ξ)) (m)[2m].

Remark 4.17. The integer e is usually called the excess of intersection, and ξ the
excess intersection bundle.

Proof. The morphism (f, g) induces the following composite morphism on normal
bundles :

NTY
ν
−→ g−1(NZX)

g′

−→ NZX.

Thus, considering now the functoriality of diagram (4.2) with respect to the carte-
sian morphism (f, g), we obtain (f, g)! = (ν, 1T )!(g

′, g)!. From proposition 4.10,
(g′, g)! = g∗(n)[2n]. We conclude using the following lemma :

Lemma 4.18. Let E and F be vector bundles over a smooth scheme T of respective
rank n and m. Consider a monomorphism ν : F → E of vector bundles and put
e = n−m.
Then (ν, 1T )! =

(

1T∗ ⊠ ce(E/F )
)

(m)[2m].

To prove the lemma, we use the description of p(F,T ) and p(E,T ) using the Thom
class (cf 4.4). Let P , Q and ν̄ : Q → P be the respective projective completions
of E, F and ν. Let p : P → T and q : Q → T be the canonical projections. We
are reduced to prove the relation ν̄∗(t(E)) = (q∗ce(E/F )) ∪ t(F ) in H2n,n(Q).
From remark 4.5, we get t(E) = cn(ξP ) (resp. t(F ) = cm(ξQ)) where ξP (resp.
ξQ) is the universal quotient bundle on P (resp. Q). Thus, the relation follows
from the Whitney sum formula 3.13 and the following exact sequence of vector
bundles over Q :

0→ ξQ → ν̄−1ξP → q−1(E/F )→ 0.

�
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Corollary 4.19. Let (X,Z) be a smooth closed pair of codimension n. Then :
(1) i∗i∗ = 1Z ⊠ cn(NZX) as a morphism M(Z)→M(Z)(n)[2n].
(2) ∂X,Z ◦ (1Z ⊠ cn(NZX)) = 0.

This follows from the previous proposition applied with (f, g) = (i, 1Z). We usually
refer to the first formula as the self-intersection formula.

4.20. Consider a vector bundle E over a smooth scheme X of rank n. Let E×

be the complement of the zero section in E and π : E× → X be the obvious
projection. Then using property (Htp’) and the previous corollary, we obtain
from the Gysin triangle for (E,X) the following distinguished triangle

M(E×)
π∗−→M(X)

1X ⊠ cn(E)
−−−−−−−→M(X)(n)[2n]

∂E,X
−−−→M(E×)[1]

which we shall call the Euler distinguished triangle. Indeed, in cohomology with
coefficients in a ringed premotive E, it corresponds to a long exact sequence where
one of the arrow is the cup product by cn(E).
As a corollary of the self-intersection formula 4.19, we obtain the following tool
to compute fundamental classes which generalises in our setting a theorem of
Grothendieck (cf [Gro58, th. 2]).

Corollary 4.21. Consider a smooth closed pair (X,Z) of codimension n. Let
i be the corresponding closed immersion and ηX(Z) = i∗(1) ∈ H2n,n(X) be the
fundamental class of Z in X (cf 4.14).
Suppose there exists a vector bundle E on X and a section s of E/X such that s
is transversal to the zero section s0 of E and Z = s−1(s0(X)).
Then, ηX(Z) = cn(E).

It simply follows from corollary 4.19 applied to s0 together with proposition 4.10
applied to the following transversal square :

Z
i //

��
X

s0��
X

s // E.

Example 4.22. Let E be a vector bundle of rank n over a smooth scheme X .
Put P = P(E ⊕ 1) and consider p : P → X (resp. s : X → P , λ) the canonical
projection (resp. section, line bundle) of P/X . Consider finally the vector bundle
F = λ∨ ⊗ p−1(E) over P . The sequence of morphisms of vector bundles over P ,

λ→ p−1(E ⊕ 1)→ p−1(E)

gives a section σ of F/P . We check easily it is transversal to the zero section and
we have σ−1(0) = X , while the embedding σ−1(0)→ P is s. Thus we obtain from
the previous corollary ηX(P ) = cn(F ). Considering paragraph 4.14 and remark
4.5 we thus obtain three expressions of the fundamental class of X in P :

t(E) = cn
(

p−1(E ⊕ 1)/λ
)

= cn
(

λ∨ ⊗ p−1(E)
)

.

Note the last equality, though obvious in the case where F is the additive formal
group, is not evident to check directly in the general case. However, we left as
an exercice to the reader to check it using the inverse series of the formal group
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law F in the case of a line bundle. This implies the general case by the splitting
principle.

4.2.3. The ramified case. In this section, we study the case of a morphism (f, g) :
(Y, T )→ (X,Z) of smooth closed pairs of same codimension n. This corresponds
to the proper case in the operation of pullback of Z along f . We put T ′ = Z×X Y
and consider the canonical thickening T ′ → T induced by (f, g).
We first need an assumtion. Let T ′ =

⋃

i∈I T
′
i be the decomposition into connected

components. For any i ∈ I, we also consider the decomposition T ′
i =

⋃

j∈Ji
T ′

ij

into irreducible components. Put Tij = T ′
ij ×T ′ T . As T → T ′ is a thickening,

the geometric multiplicity m(T ′
ij) of T ′

ij is an integral multiple of the geometric

multiplicity m(Tij) of Tij . We introduce the following condition on the morphism
(f, g):

(Special) For any i ∈ I, there exists an integer ri ≥ 0 such that for any j ∈ Ji,
m(T ′

ij) = ri.m(Tij).

The integer ri will be called the ramification index of f along Ti.

Remark 4.23. When S is irreducible, this condition is always fulfilled. When S
is integral, T ′

i is irreducible and the integer ri is nothing else than the geometric
multiplicity of T ′

i .

Under this assumption, we define intersection multiplicities which take into ac-
count the formal group law F introduced in paragraph 3.7.
Let B be the blow-up of A

1
X with center {0} × Z, and P its exceptional divisor.

Put C = B ×X Y , and for any i ∈ I, Qi = P ×T Ti. Remark that Qi/Ti admits
a canonical section si. We denote by Li the line bundle over Ti obtain by the
pullback of the normal bundle NQi(C) along si. We consider the localised Thom

class t̄(Li) ∈ H
2,1
Ti

(Li) (cf 4.14); we recall it is sent to 1 by the purity isomorphism

p∗(Li,Ti)
: H2,1

Ti
(Li)→ H0,0(Ti).

Note that, according to remark 3.14, the Thom class t(Li) is nilpotent. Thus,
the same is true for t̄(Li). In particular, we can apply the power series [ri]F (see
paragraph 3.7) to the element t̄(Li) of the A-algebra H∗∗

Ti
(Li). This defines an

element [ri]F · t̄(Li) ∈ H∗∗
Ti

(Li) of bidegree (2, 1).

Definition 4.24. Consider a morphism (f, g) : (Y, T ) → (X,Z) which satisfies
the condition (Special). Assume T admits an ample line bundle.
We consider the notations introduced above. For any i ∈ I, we define the F -
intersection multiplicity of Ti in f−1(Z) as the element

r(Ti; f, g) = p∗(Li,Ti)

(

[ri]F · t̄(L)
)

∈ H0,0(Ti)

where ri is the ramification index of f along Ti.

A straightforward check shows the F -intersection multiplicities are compatible
with flat base change. When the formal group law F is additive, we easily get
that r(Ti; f, g) = ri.
In the codimension n = 1 case, we can also consider the localised fundamental class
η̄Y (Ti) ∈ H

2,1
Ti

(Y ) introduced in paragraph 4.14. It corresponds to the localised
Thom class t̄(NTi(Y )) under the isomorphisms given by the deformation diagram
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(4.2). Thus applying remark 3.14 as above, we obtain that the class η̄Y (Ti) is

nilpotent. In particular, we can consider the class [ri]F ·η̄Y (Ti) ∈ H
2,1
Ti

(Y ) obtained
by applying the power series [ri]F of 3.7. We then obtain a natural expression of
the F -intersection multiplicity :

Lemma 4.25. Consider the hypothesis and assumptions of the previous definition
and assume n = 1. Let η̄Y (Ti) ∈ H

2,1
Ti

(Y ) be the localised fundamental class of Ti in

Y (cf paragraph 4.14) and p∗(Y,Ti)
: H2,1

Ti
(Y )→ H0,0(Ti) be the purity isomorphism

in cohomology.
Then, r(Ti; f, g) = p∗(Y,Ti)

(

[ri]F · η̄Y (Ti)
)

.

Proof. We may assume T is connected. Thus I = {i} and we put L = Li, r = ri
with the notations of the previous definition. As n = 1, the zero section of A1

X/X
induces the following transversal square

Z = P(NZX)
s //

��

P(NZX ⊕ 1) = P

��
X = BZX // BZ(A1

X) = B

which, after pullback above Y gives a cartesian square, still transversal, T
t //

��

Q

��
Y // C

with t the canonical section of Q/T . Thus we get :

p∗(L,T )([r]F · t̄(L)) = t∗p∗(NQC,Q)([r]F · t̄(NQC)) = t∗p∗(C,Q)([r]F · η̄C(Q))

= p∗(Y,T )([r]F · η̄Y (T ))

where the last equality follows from the transversal square above and proposition
4.10 whereas the other equalities follow from the definitions. �

Before stating the main result of this section, we need to recall an extension of
the functoriality of the deformation diagram (4.2) to certain morphisms of closed
pairs (see also [Dég03, proof of 3.3]).
Consider a morphism (f, g) : (Y, T )→ (X,Z) of smooth closed pairs of codimen-
sion 1. Let I (resp. J , J ′) be the ideal defining Z in X (resp. T in Y , T ′ in Y ).
The map f induces a morphism ϕ : I → f∗J ′ of sheaves over X .
We consider the second deformation space DZX = BZ(A1

X)−BZX as in 4.1. An
easy computation shows

DZX = SpecX

(

⊕

n∈Z

In.u−n

)

where In = OX for n < 0, and u is an indeterminate.
Assume18 J ′ = J r. Then we can define a morphism of sheaves of rings over X :

⊕

n∈Z

I n.u−n →
⊕

n∈Z

f∗(J
′ n

).u−n →
⊕

m∈Z

f∗(J
m).v−m

18 As the immersion T → Y is regular, this can happen only in the codimension 1 case. Note
it implies (f, g) satisfies the condition (Special) and the ramification indexes are all equal to r.
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where the first arrow is induced by ϕ and the second is the obvious inclusion which
maps u to vr as J ′ = J r.
Taking the spectrum of these morphisms over X , we get a morphism

ρr(f, g) : DTY → DZX

of schemes over A1. The fibre of ρr(f, g) over 1 is simply f and one can check that
its fiber over 0 is a composite morphism

σr(f, g) : NTY
ν
−→ g∗NZX

µ
−→ NZX

such that µ is induced by g and ν is a homogenous morphism of degree r. Thus,
considering the respective deformation diagrams (4.2) for (X,Z) and (Y, T ) we
obtain a commutative diagram of closed pairs

(4.5) (Y, T )
σ′
1 //

(f,g)
��

(DTY,A
1
T )

(ρr(f,g),1×g)
��

(NTY, T )
σ′
0oo

(σr(f,g),g)
��

(X,Z)
σ1 // (DZX,A

1
Z) (NZX,Z).

σ0oo

Theorem 4.26. Let (f, g) : (Y, T )→ (X,Z) be a morphism of smooth closed pairs
of codimension n. We assume T admits an ample line bundle and (f, g) satisfies
condition (Special).
Then

(f, g)! =
∑

i∈I

r(Ti; f, g) ⊠T gi∗

where T =
⋃

i∈I Ti is the decomposition into connected component, gi = g|Ti and

r(Ti; f, g) is the F -intersection multiplicity of Ti in f−1(Z).

Proof. Using axiom (Add’), we can assume T is connected.
We first reduce to the codimension n = 1 case. Consider the blow-up B = BZ(A1

X)
and its exceptional divisor P = P(NZX⊕1). Consider also the cartesian morphism
(p, q) : (B,P ) → (X,Z). If we put BY = B ×X Y , Q = P ×Z T , we obtain the
following commutative diagram of morphisms closed pairs :

(BY , Q)
(f ′,g′) //

(π′,q) ��

(B,P )
(π,p)��

(Y, T )
(f,g) // (X,Z).

By definition, (f, g)!(π
′, q)! = (π, p)!(f

′, g′)!.
Note that (π, p) and (π′, q) are cartesians. We can apply proposition 4.16 to
(π, p) : the excess intersection bundle is the universal quotient bundle ξ0 on P
and (π, p)! = p∗ ⊠ cn(ξ0). Thus, according to remark 4.5 and paragraph 4.14,
(π, p)! = s∗ where s : X → P is the canonical section.

Similarly, if we put ξ = g′
−1

(ξ0), we get (π′, q)! = q∗ ⊠ cn(ξ) = t∗ with t : T → Q
the canonical section. Note this latter morphism is a split epimorphism with
splitting ln(Q). Thus we get

(f, g)! = s∗ ◦ (f ′, g′)! ◦ ln(Q).
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Remark that Q = P ×B BY . Thus the morphism (f ′, g′) of smooth closed pairs
of codimension 1 satifies the condition (Special) and the ramification indexes of f
along T and f ′ along Q are equal. Assume (f ′, g′) = r(Q; f ′, g′) ⊠ g′∗. According
to the expression above, we get

(f, g)! =
(

r(Q; f ′, g′) ⊠ s∗g′∗
)

◦ ln(Q)
(1)
=
(

r(Q; f ′, g′) ⊠ g∗t
∗
)

◦ ln(Q)

(2)
=
(

(r(Q; f ′, g′) ◦ t∗) ⊠ g∗
)

t∗ ◦ ln(Q) = (r(Q; f ′, g′) ◦ t∗) ⊠ g∗.

where equality (1) follows from the projection formula of proposition 4.10 and
equality (2) from the other projection formula of corollary 4.11. From definition
4.24, the reader can now easily check the equality of the cohomological classes
t∗[r(Q; f ′, g′)] = r(T ; f, g).
Thus we are reduced to the case n = 1, T still being connected. Let r be the
ramification index of f along T . Let J (resp. J ′) be the ideal sheaf of T (resp.
T ′) in Y . As Z → X and T → Y are regular immersions of a divisor, we see that
necessarily, J ′ = J r. Considering now diagram (4.5), we obtain that (f, g)! =
(σr(f, g), g)!. In view of the factorization of the morphism σr(f, g), we then are
reduced to the following lemma :

Lemma 4.27. Let T be a smooth scheme which admits an ample line bundle.
Consider a line bundle N over T and N⊗r be its r-th tensor power over T .
Let ν : N → N⊗r be the obvious homogenous morphism of degree r, and (ν, 1T ) :
(N,T )→ (N⊗r, T ) be the corresponding morphism of closed pairs.
Then (ν, 1T )! = ρ⊗ 1T∗ where ρ is the unique element of H00(T ) such that [r]F ·
t(N) = ρ.t(N).

Put P = P(N ⊕ 1), P ′ = P(N⊗r ⊕ 1) and consider the projective completion
ν̄ : P → P ′ of ν. Let λ (resp. λ′) be the canonical line bundle and p (resp. p′) be
the canonical projection of P/T (resp. P ′/T ). An easy computation shows that
ν̄∗(λ′) = λ⊗r. Recall from 4.22 that the Thom class of N (resp. L⊗r) is equal
to t(N) = c1(λ

∨ ⊗ p−1N) (resp. t(N⊗r) = c1(λ
′∨ ⊗ p′−1N⊗r)). Thus, from the

second point of proposition 3.8, ν̄∗t(N⊗r) = [r]F · t(N). This latter class is zero
on P −T , thus we get the relation [r]F · t(N) = ρ.t(N) in H2,1(P ). The conclusion
now follows according to the computation of the Thom isomorphism 4.4.
To finish the proof with that lemma, we remark that ρ = r(T ; ν, 1T ) = r(T ; f, g).

�

Corollary 4.28. Let (f, g) : (Y, T ) → (X,Z) be a morphism of smooth closed
pairs of codimension 1. We assume T admits an ample line bundle and (f, g)
satisfies condition (Special). Let (Ti)i∈I be the connected components of T , and
ri ∈ N be the ramification index of f along Ti.
Then, for any i ∈ I, the fundamental class ηY (Ti) is nilpotent and

f∗(ηX(Z)) =
∑

i∈I

[ri]F · ηT (Ti)

where [ri]F is the power series equal to the ri-th formal sum with respect to the
formal group law F .
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Proof. Let i : Z → X and ji : Ti → Y be the canonical immersions. We simply
put ρi = r(Ti; f, g) ∈ H0,0(Ti). In cohomology, the preceding theorem applied to
(f, g) gives the relation

f∗i∗(z) =
∑

i∈I

ji∗(ρi ⊠ g∗i (z))

for z ∈ H∗∗(Z). Applied with z = 1, this gives f∗(ηX(Z)) =
∑

i ji∗(ρi). Recall
from lemma 4.25 that ρi = p∗(Y,Ti)

([ri]F · η̄Y (Ti)). Tautologically, the composition

ji∗p
∗
(Y,Ti)

is equal to the canonical morphism H∗∗
Ti

(Y )→ H∗∗(Y ) simply obtained

by functoriality. For conclusion, it is sufficient to recall this latter is a morphism
of A-algebra (cf paragraph 2.8). �

Remark 4.29. In the previous corollary, the integers ri can be understood as fol-
lows: locally, Z is parametrized by a S-regular function a : X → A1. Then, (f, g)
is special if a◦f can be written locally u.

∏

i∈I b
ri

i where u is a unit and bi : Y → A1

is a S-regular function parametrizing Ti – this expression should remain the same
when we change any of the parameters bi or a.

4.3. Crossing Gysin triangles. The following lemma will be the key point of
the main result of this section. Though it will appear finally as a particular case,
we begin by proving it to enlighten the proof of theorem 4.32.

Lemma 4.30. Let Z be a smooth scheme, E and E′ be vector bundles over Z of
respective ranks n and m. Put Q = P(E ⊕ 1), Q′ = P(E′ ⊕ 1) and P = Q×Z Q

′.
Consider the fundamental class (see paragraph 4.14) ηP (Z) (resp. ηP (Q), ηP (Q′))
of the canonical embedding of Z (resp. Q, Q′) in P , as an element of H∗∗(P ).
Then ηP (Z) = ηP (Q) ∪ ηP (Q′).

Proof. Put d = n + m. Let η̄P (Z) be the localised fundamental class of Z in P
(cf paragraph 4.14). Consider the deformation diagram (4.1) for the closed pair
(P,Z), with B = BZ(A1

P ) :

(P,Z)
σ̄1−→ (B,A1

Z)
σ̄0←− (P,Z).

As σ̄∗
0 and σ̄∗

1 are isomorphisms, η̄P (Z) is uniquely determined by the class t̄ =
σ̄∗

1(η̄P (Z)) and t̄ is uniquely determined by the fact that σ̄∗
0(t̄) corresponds to the

Thom class t(E ⊕ E′) in H2d,d(P ).
Consider the divisor D = BZ(A1×P(E)×P(E′⊕ 1)) (resp. D′ = BZ(A1×P(E⊕
1)× P(E′)) in B and the class c = −c1(D) (resp. c′ = −c1(D′)) in H2,1(B). Let
π be the canonical projection of P/X . We define a cohomology class in H2,1(B) :

t =





∑

0≤i≤n

π∗(ci(E)) ∪ cn−i



 ∪





∑

0≤j≤m

π∗(cj(E
′)) ∪ c′

m−j



 .

Then t vanishes on B − A1
Z and, by construction, its pullback by σ̄0 is equal to

t(E ⊕ E′). Thus t corresponds to the class t̄ mentionned above, through the map

H2d,d
A1

Z
(B) → H2d,d(B). The computation of its pullback by σ̄1 gives the desired

formula. �
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Remark 4.31. Another way to obtain this lemma is to apply corollary 4.21 with
X = P and E = ξ ×Z ξ′ where ξ (resp. ξ′) is the universal quotient bundle of Q
(resp. Q′) — compare with remark 4.5.

Theorem 4.32. Consider a cartesian square of smooth schemes Z
k //

l ��
Y ′

j��
Y

i // X

such

that i,j,k,l are closed immersions of respective pure codimension n, m, s, t. We
put d = n+s = m+ t and consider the closed immersion h : (Y −Z) −→ (X−Y ′)
induced by i.
Then, in the following diagram :

M(X)
j∗ //

i∗
��

(1)

M(Y ′)(m)[2m]
∂X,Y ′

//

k∗

��
(2)

M(X − Y ′)[1]

h∗

��
M(Y )(n)[2n]

l∗
// M(Z)(d)[2d]

∂Y,Z //

∂Y ′,Z ��
(3)

M(Y − Z)(n)[2n+ 1]

∂X−Y ′,Y−Z��
M(Y − Z)(m)[2m+ 1]

∂X−Y,Y−Z

// M(X − Y ∪ Y ′)[2]

squares (1) and (2) are commutative and square (3) is anti-commutative.

Proof. Put Y ′′ = Y ∪Y ′. Using axiom (Loc) and (Sym)(c), we obtain the following
diagram :

(D) : M(X − Y ′′) //

��

M(X − Y ) //

��

M
(

X−Y
X−Y ′′

)

//

��

M(X − Y ′′)[1]

��
M(X − Y ′) //

��

M(X) //

�� (1)

M
(

X
X−Y ′

)

��

//

(2)

M(X − Y ′)[1]

��

M
(

X−Y ′

X−Y ′′

)

//

��

M
(

X
X−Y

)

//

��

M
(

X/X−Y
X−Y ′/X−Y ′′

)

// //

�� (3)

M
(

X−Y ′

X−Y ′′

)

[1]

��
M(X − Y ′′)[1] // M(X − Y )[1] // M

(

X−Y
X−Y ′′

)

[1] // M(X − Y ′′)[2],

in which any line or any row is a distinguished triangle, every square is commuta-
tive except square (3) which is anticommutative.

We put M(X ;Y, Y ′) = M
(

X/X−Y
X−Y ′/X−Y ′′

)

for short. The proof will consist in

constructing a purity isomorphism p(X;Y,Y ′) : M(X ;Y, Y ′) → M(Z)(d)[2d] which
satisfies the following properties :

(i) Functoriality : The morphism p(X;Y,Y ′) is functorial with respect to mor-
phisms in X which are transversal to Y , Y ′ and Z respectively.

(ii) Symmetry : The following diagram is commutative :

M(X ;Y, Y ′)

p(X;Y,Y ′) ((PPPPPP

ǫ // M(X ;Y ′, Y )

p(X;Y ′,Y )vvmmmmmm

M(Z)(d)[2d],
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where ǫ is the isomorphism given in axiom (Sym).
(iii) Compatibility : The following diagram is commutative :

M(X−Y ′

X−Ω ) //

p(X−Y ′,Y −Z)

��

M( X
X−Y ) //

p(X,Y )

��

M(X ;Y, Y ′) //

p(X;Y,Y ′)

��

M(X−Y ′

X−Ω )[1]

p(X−Y ′,Y −Z)

��
M(Y − Z)(n)[2n] // M(Y )(n)[2n]

j∗ // M(Z)(d)[2d]
∂Y,Z // M(Y − Z)(n)[2n+ 1]

With this isomorphism, we can deduce the three relations of the theorem by con-
sidering squares (1), (2), (3) in the above diagram when we apply the evident
purity isomorphisms where we can. We then are reduced to construct the isomor-
phism and to prove the above relations. The difficult one is the second relation
because we have to show that two isomorphisms in a triangulated category are
equal. This forces to be very precise in the construction of the isomorphism.
We use a construction analog to the construction of the purity isomorphism in
proposition 4.3. The first deformation space (cf paragraph 4.1) for the pair (X,Y )
is B = BY (A1

X). We let P = PY X be the projective completion of the normal
bundle of (X,Y ). Consider also the closed pair (U, V ) = (X − Y ′, Y − Z). The
analog deformation space for (U, V ) is BU = B×XU and the projective completion
of its normal bundle is PV = P ×Y V .
The deformation diagrams (4.1) for (X,Y ) and (U, V ) induce the following mor-
phisms

M(X ;Y, Y ′)=M

(

X/X − Y

U/U − V

)

σ̄1∗−−→M

(

B/B − A1
Y

BU/BU − A1
V

)

σ̄0∗←−−M

(

P/P − Y

PV /PV − V

)

and the axiom (Loc) together with the purity theorem 4.3 shows σ̄0∗ and σ̄1∗ are
isomorphisms.
Using the compatibility of the Gysin triangle with the projective bundle isomor-
phism (cf corollary 4.15), we obtain a commutative diagram :

M(PV /PV − V ) // M(P/P − U) // M
(

P/P−Y
PV /PV −V

)

+1 //

M(PV ) //

OO

M(P ) //

OO

M( P
PV

)
+1 //

OO

M(PV ) // M(P ) // M(PZ)(s)[2s]
+1 //

p
−1
(P,PZ )

OO

M(Y − Z)(n)[2n] //

ln(PV )

OO

M(Y )(n)[2n]
j∗ //

ln(P )

OO

M(Z)(d)[2d]
+1 //

ln(PZ )(s)[2s]

OO

The composite of the vertical maps thus gives a morphism of triangles. Using
property (2) of proposition 4.3, the first two maps of this morphism are isomor-
phisms and so is the third. This last isomorphism together with the maps σ̄1∗ and
σ̄0∗ gives the desired isomorphism p(X;Y,Y ′).
Note that property (iii) is obvious by construction. Property (i) is easily obtained
as in proposition 4.10.
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Thus we have only to prove property (ii). First of all, we remark that the previous
construction implies immediately the commutativity of the diagram :

M(X ;Y, Y ′)

p(X;Y,Y ′) ((PPPPPP

α(X;Y,Y ′) // M(X ;Y, Z)

p(X;Y,Z)vvnnnnnn

M(Z)(d)[2d],

where α(X;Y,Y ′) is induced by the evident open immersions.
Consider the following map

β(X;Y,Y ′) : MZ(X)
π(X,Y,Z)
−−−−−→M(X ;Y, Z)

α−1

(X;Y,Y ′)
−−−−−−→M(X ;Y, Y ′)

where π(X,Y,Z) is obtained by functoriality as usual – it is an isomorphism from
axioms (Loc) and (Sym). Using the coherence axiom (Sym)(b), one checks that
the following diagram is commutative

MZ(X)
β(X;Y,Y ′)

xxqqqqq β(X;Y ′,Y )

&&NN
NN

NN

M(X ;Y, Y ′)
ǫ // M(X ;Y ′, Y ).

Thus, it will be sufficient to prove the commutativity of the following diagram :

MZ(X)

p(X,Z) &&NNNNN

π(X,Y,Z) //
(∗)

M(X ;Y, Z)

p(X;Y,Z)vvnnnnnn

M(Z)(d)[2d].

In the remainings of the proof, we consider the triples of smooth schemes
(X ′, Y ′, Z ′) such that Z ′ ⊂ Y ′ ⊂ X ′ are closed subschemes. A morphism of triples
(f, g, h) : (X ′′, Y ′′, Z ′′) → (X ′, Y ′, Z ′) is a morphism of schemes f : X ′′ → X ′

which is transversal to Y ′ and Z ′, and such that Y ′′ = f−(Y ′), Z ′′ = f−1(Z ′).
Using the functoriality of p(X;Y,Z), we remark that diagram (∗) is natural with
respect to morphisms of triples.
We use the notations of paragraph 4.1. We also put B(X ′, Z ′) := BZ′(X ′), for
a closed pair (X ′, Z ′), and so on for the other schemes depending on a closed
pair, to clarify the following considerations. We consider the evident closed pair
(DZX,DZX |Y ) and we put D(X,Y, Z) = D(DZX,DZX |Y ). This scheme is
in fact fibered over A2. The fiber over (1, 1) is X and the fiber over (0, 0) is
B(BZX ∪ PZX,BZX |Y ∪ PZX |Y ). In particular, the (0, 0)-fiber contains the
scheme P (PZX,PZY ).
We now put : D = D(X,Y, Z), D′ = D(Y, Y, Z). Remark that D(Z,Z, Z) = A2

Z .
Similarly, we put P = P (PZX,PZY ), Q = PZY . Remark finally that if we
consider Q′ = PY X |Z , then19 P = Q×Z Q

′.
From the above description of fibers, we obtain a deformation diagram of triples :

(X,Y, Z)→ (D,D′,A2
Z)← (E,G,Z).

19This is equivalent to the canonical isomorphism N(NZX, NZY ) = NZY ⊕ NY X|Z .
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Note that these morphisms are on the smaller closed subscheme the (0, 0)-section
and (1, 1)-section of A2

Z over Z, denoted respectively by s1 and s0. Now we apply
these morphisms to diagram (∗) obtaining the following commutative diagram :

MZ(X)

p(X,Z)

��

πX,Y,Z

��@
@@

@@
@@

// MA2
Z
(D)

p
(D,A2

Z
)

��

""F
FF

FF
FF

MZ(P )

p(P,Z)

��

πP,Q,Z

  A
AA

AA
AA

oo

M(X ;Y, Z)

p(X,Y,Z)
~~
~

~~~~~

// M(D;D′,A2
Z)

p(D,D′,Z)
xxx

||xxx

M(P ;Q,Z)

p(P,Q,Z)
||
|

~~|||

oo

M(Z)(d)[2d]
s1∗

// M(A2
Z)(d)[2d] M(Z)(d)[2d].s0∗

oo

The square parts of this prism are commutative. As morphisms s1∗ and s0∗ are
isomorphisms, the commutativity of the left triangle is equivalent to the commu-
tativity of the right one.
Thus, we are reduced to the case of the smooth triple (P,Q,Z). Now, using the
canonical split epimorphism M(P )→ M(P/P − Z), we are reduced to prove the
commutativity of the diagram :

M(P )

i∗ ��
--[[[[[[[[[[[[[

M
(

P/P−Q
P−Z/P−Q

)

p(P,Q,Z)
qqccccccccccc

M(Z)(d)[2d]

where i : Z → P denotes the canonical closed immersion.
Using property (iii) of the isomorphism p(P,Q,Z), we are finally reduced to prove
the commutativity of the triangle

M(P )
i∗

--[[[[[[[[[[[
j∗ // M(Q)(n)[2n]

k∗
qqbbbbbbbbbbb

M(Z)(d)[2d]

where we considered Z
k
−→ Q

j
−→ P the canonical closed embeddings. This now

simply follows from paragraph 4.14 and lemma 4.30. �

As a corollary (apply commutativity of square (1) in the case Y ′ = Z), we get the
functoriality of the Gysin morphism of a closed immersion :

Corollary 4.33. Let Z
l
−→ Y

i
−→ X be closed immersions between smooth schemes

of respective pure codimension n and m.
Then, l∗ ◦ i∗ = (i ◦ l)∗ as a morphism M(X)→M(Z)(n+m)[2(n+m)].

A corollary of this result, using lemma 4.12, is the compatibility of the Gysin
morphism with products :

Corollary 4.34. Consider a closed immersion i : Z → X (resp. k : T → Y )
between smooth schemes of pure codimension n (resp. m).
Then (i× k)∗ = i∗ ⊗ k∗ as a morphism20 :

M(X)⊗M(Y )→M(Z)⊗M(T )(n+m)[2(n+m)].

20 When we identify M(Z)(n)[2n] ⊗ M(T )(m)[2m] with M(Z) ⊗ M(T )(n + m)[2(n + m)]
through the canonical isomorphism.
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Remark 4.35. In the hypothesis of the previous corollary, we obtain in terms of
fundamental classes :

ηX×Y (Z × T ) = ηX(Z)⊗ ηY (T ).

We also obtain a result of intersection of fundamental classes in the case of smooth
cycles :

Corollary 4.36. Let X be a smooth scheme, Z and T be smooth closed subschemes
of X. We assume that :

(1) The intersection of Z and T in X is proper.
(2) There is a closed subscheme W in Z ∩ T which is smooth, homeomorphic

to Z ∩ T and admits an ample line bundle.
(3) The induced morphism of closed pairs (T,W )→ (X,Z) satisfies condition

(Special).

Let νX,W : H∗∗
W (X) → H∗∗(X) be the canonical morphism. According to (Add′),

H∗∗
W (X) =

⊕

i∈I H
∗∗
Wi

(X) where (Wi)i∈I are the connected components of W . For
any i ∈ I, we can consider the localised fundamental class η̄X(Wi) as an element
of H∗∗

W (X) (see paragraph 4.14). We let ρi ∈ H0,0(Wi) be the F -intersection
multiplicity of Wi in Z ∩ T (see definition 4.24). Then,

ηX(Z) ∪ ηX(T ) = νX,W

(

∑

i∈I
ρi.η̄X(Wi)

)

using the H0,0(W )-module structure of H∗∗
W (X) obtained through the purity iso-

morphism.

Proof. We apply theorem 4.26 to the obvious square :

W
ν′

//
g ��

T
f��

Z
ν // X.

For any i ∈ I, we let ν′i (resp. µi) be the immersion of Wi in T (resp. X). We
thus obtain the formula in H∗∗(T ) : f∗ν∗(1) =

∑

i∈I ν
′
i∗(ρi).

Applying f∗ to this formula and using corollary 4.11 for the left hand side, corollary
4.33 for the right hand side, we obtain ηX(Z) ⊠ ηX(T ) =

∑

i∈I µi∗(ρi). By the very
definition now, µi∗(ρi) = νX,W (ρi.η̄X(Wi)). �

5. Duality and Gysin morphism

5.1. Preliminaries. For the rest of the section, we fix a monoidal category C

with unit 1.

Definition 5.1. Let M an object of C .
We say M is strongly dualizable if the following conditions are fulfilled :

(1) The functor M ⊗ . admits a right adjoint Hom(M, .).
(2) For any object N of C , consider the map

M ⊗Hom(M,1)⊗N
ad⊗1N−−−−→ N

induced by the evident adjunction morphism. Then the adjoint map

Hom(M,1)⊗N → Hom(M,N)
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is an isomorphism.

This definition coincides with definition 1.2 of [DP80]. Obviously, strongly dual-
izable objects are stable by finite sums and tensor product. Remark also that any
invertible object of C for the tensor product is a fortiori strongly dualizable.

Definition 5.2. Consider an object M of C .
A strong dual of M is an object M∨ of C and two morphisms µ : M ⊗M∨ → 1,
ǫ : 1→M∨ ⊗M such that the following composites

(i) M
1⊗ǫ
−−→M ⊗M∨ ⊗M

µ⊗1
−−−→M

(ii) M∨ ǫ⊗1
−−→M∨ ⊗M ⊗M∨ 1⊗µ

−−−→M∨

are the identity morphisms.

The conditions of the definition imply that M∨ ⊗ . is right adjoint to M ⊗ . and
the natural transformations ǫ ⊗ . and µ ⊗ . are the adjunction transformations.
Moreover, M is strongly dualizable as condition (2) of the first definition simply
follows from the structural isomorphism (M∨⊗1)⊗N ≃M∨⊗N (see also [DP80,
1.3]).
Remark we also obtain that .⊗M∨ is left adjoint to .⊗M with natural transfor-
mation .⊗ µ and .⊗ ǫ. This gives the following reciprocal isomorphisms which we
describe for future needs :

HomC (M∨,E)→ HomC (1,E⊗M),ϕ 7→ (ϕ⊗ 1M ) ◦ ǫ

HomC (1,E⊗M)→ HomC (M∨,E),ψ 7→ (1E ⊗ µ) ◦ (ψ ⊗ 1M∨),
(5.1)

where E is any object of C .
The following lemma gives some precisions on the relation between ”strongly du-
alizable” and ”strong dual” :

Lemma 5.3. Consider a strongly dualizable object M of C . Let M∨ be an object
of C .
Consider the following sets :

(1) Couples of morphisms µ : M ⊗M∨ → 1 and ǫ : M∨ ⊗M → 1 such that
(M∨, µ, ǫ) is a strong dual of M .

(2) Morphisms µ : M ⊗ M∨ → 1 such that the adjoint map φ : M∨ →
Hom(M,1) is an isomorphism.

We associate to any morphism µ in (2) the following composite

ǫµ : 1 ad′

−−→ Hom(M,M)→ Hom(M,1)⊗M
φ−1⊗1
−−−−→M∨ ⊗M

where the first map is the evident adjunction morphism and the second one is
induced by the isomorphism obtained by the property of the strongly dualizable
object M .
Then (µ, ǫµ) is an element of (1) and the application

(2)→ (1), µ 7→ (µ, ǫµ)

is a bijection.

We left the easy check to the reader.
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Definition 5.4. Let M (resp. N) be an object of C and (M∨, µM , ǫM ) (resp.
(N∨, µN , ǫN )) be a strong dual of M (resp. N).
For any morphism f : M → N , we define the transpose morphism of f (with
respect to the chosen strong duals) as the composite

tf : N∨ µM⊗1
−−−−→M∨ ⊗M ⊗N∨ 1⊗f⊗1

−−−−→M∨ ⊗N ⊗N∨ 1⊗ǫN−−−→M∨.

Remark that the morphism tf in the previous definition is characterized by either
one of the next two properties :

(i) The following diagram is commutative :

M ⊗N∨
f⊗1 //

1⊗tf ��

N ⊗N∨

µN
��

M ⊗M∨
µM // 1.

(ii) The following diagram is commutative :

N∨
tf //

��

M∨

��
Hom(N,1)

Hom(f,1) // Hom(M,1)

where the vertical maps are induced by adjunction from µN and µM – cf
lemma 5.3.

5.2. The projective bundle case. Fix an integer n ≥ 0. Using the projective
bundle theorem 3.2 and axiom (Stab), we obtain that the motiveM(Pn) is strongly
dualizable, as a finite sum of invertible motives.
Let λn be the canonical line bundle on Pn, c′ = c1(λn). From the projective
bundle theorem 3.2, c′ is a generator of the A-algebra H∗∗(Pn). Let c = c1(λ

∨
n).

According to paragraph 3.7, c = m(c′) = −c′ mod c′2 where m is the inverse
series associated to the formal group law F . Thus, the class c is still a generator
of H∗∗(Pn) and also satisfies the relation cn+1 = 0. In all this section on duality,
we systematically use this generator.
We consider the following morphism

µn : M(Pn)⊗M(Pn)(−n)[−2n]
δ∗

−→M(Pn)
p∗
−→ 1

where p : Pn → S is the canonical projection and δ : Pn → Pn × Pn the diagonal
embedding of Pn/S.
If we consider this morphism as a cohomological class in H2n,n(Pn× Pn), it is the
fundamental class ηPn×Pn(Pn) = δ∗(1) ∈ H2n,n(Pn × Pn) of the diagonal. Using
the projective bundle theorem 3.2, it can be written

ηPn×Pn(Pn) =
∑

0≤i,j≤n

η
(n)
i,j .c

i
∪ dj

where η
(n)
i,j is an element in A2(n−i−j),n−i−j and c (resp. d) is the first Chern class

of the canonical dual line bundle on the first (resp. second) factor of Pn × Pn.

We define the (n + 1)-dimensional square matrix Mn =
(

η
(n)
i,j

)

0≤i,j≤n
over the

bigraded ring A. Note that Mn is symmetric. Remark finally that the morphism
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induced by adjunction from µn gives by another application of theorem 3.2 a
morphism

n
⊕

i=0

1(n− i)[2(n− i)]→
n
⊕

j=0

1(j)[2j]

whose matrix is precisely Mn.

Lemma 5.5. For any integer i ≥ 0, put ηi = η
(i)
ii ∈ A

−2i,−i. The matrix Mn has
the form













0 0 1

}}
}}

}}
}}

}}
}}
η1

}}
}}

}}
}

0

1 η1 ηn













Proof. First remark the lemma is clear when n = 0.
Consider the canonical embedding σ : Pn → Pn+1. We apply the excess intersec-
tion formula 4.16 in the case of the following square

Pn δ //

σ
��

Pn × Pn

σ×σ
��

Pn+1 δ′

// Pn+1 × Pn+1.

In this case, the excess of codimension is 1 and the excess intersection bundle on
Pn is the canonical dual line bundle λ∨n . Proposition 4.16 then gives the formula
(σ × σ)∗(δ′∗(1)) = δ∗(c1(λ

∨
n)).

The projection on the first factor p1 : Pn × Pn → Pn gives a retraction of δ, and
consequently, δ∗(c1(λ

∨
n)) = c ∪ δ∗(1). Thus the previous relation reads :
∑

0≤i,j≤n

η
(n+1)
i,j .ci ∪ dj =

∑

0≤i,j≤n

η
(n)
i,j .c

i+1
∪ dj

with the notations which precede the lemma. This in turn gives the relations
{

η
(n+1)
0,j = 0 if 0 ≤ j ≤ n,

η
(n+1)
i,j = η

(n)
i−1,j if 0 < i ≤ n and 0 ≤ j ≤ n,

which allow to conclude by induction on the integer n. �

As a corollary, we obtain from lemma 5.3 that µn : M(Pn)⊗M(Pn)(−n)[−2n]→ 1
turns M(Pn)(−n)[−2n] into a strong dual of M(Pn).

Definition 5.6. We define the Gysin morphism p∗ : 1 → M(Pn)(−n)[−2n]
associated to the projection p : P

n → S as the transpose of the morphism
p∗ : M(Pn)→ 1 with respect to the strong duality on M(Pn) induced by µn.
Moreover, for any smooth scheme X , considering the projection pX : Pn

X → X , we
define the Gysin morphism associated to pX as the morphism

p∗X := 1⊗ p∗ : M(X)→M(Pn
X)(−n)[−2n].
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Using property (ii) after definition 5.4, we obtain the following way to compute
p∗. Consider the inverse matrix

M−1
n =

















η′n η′1

��
��

��
1

��
��

��
��

��
��

�

0

η′1

1 0 0

















where η′i ∈ A
−2i,−i is given by the determinant of the matrix obtained by removing

line 0 and column n− i from Mn times (−1)i. Then

p∗ : 1→ n
⊕

i=0

1(i− n)[2(i− n)]

is given by the vector










η′n
...
η′1
1











.

Note we have the fundamental relation in A−2n,−n :

(5.2)
n
∑

i=0

ηi ∪ η
′
n−i =

{

1 if n = 0

0 otherwise

Remark 5.7. The coefficients ηi and η′i will be determined in proposition 5.30 and
corollary 5.31.

5.3. The Gysin morphism associated to a projective morphism.

5.3.1. Preliminary lemmas.

Lemma 5.8. Fix a couple of integers n,m ∈ N and a smooth scheme X. Consider
the projection morphisms

Pn
X ×X Pm

X

q′

//

p′

��

Pn
X

p
��

Pm
X

q // X.

Then q′
∗
p∗ = p′

∗
q∗.

Obvious from definition 5.6.

Lemma 5.9. Consider a closed immersion i : Z → X between smooth schemes
and an integer n ≥ 0. Consider the pullback square

Pn
Z

l //
q ��

Pn
X
p��

Z
i // X.

Then l∗p∗ = q∗i∗.

It follows easily from definition 5.6 and lemma 4.12.
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Lemma 5.10. Consider and integer n ≥ 0 and a smooth scheme X. Consider
the canonical projection p : Pn

X → X.
Then for any section s : X → Pn

X of p, we have : s∗p∗ = 1.

Proof. Recall from paragraph 4.14 that s∗ = p∗ ⊠Pn
X

(πX∗s
∗) where πX : X → S is

the structural morphism of X/S. We easily obtain the following relation :

(p∗ ⊠Pn
X

1) ◦ p∗ = 1 ⊠X p∗.

Thus : s∗p∗ = 1 ⊠X(πX∗s
∗p∗).

As s is a section of p, it can be written s = ν × 1X for a closed immersion
ν : X → Pn

S . Consider the following cartesian squares :

X
s //

ν
��

Pn
S ×X

p //

1Pn
S
×ν

��

X

ν
��

P
n
S

δ // Pn
S × P

n
S

π // Pn
S

where δ is the diagonal embedding and π the canonical projection on the second
factor. Using the projection formula for each square – for the first square, this
is 4.10, for the second square, it follows easily from definition 5.6 – we obtain :
ν∗s

∗p∗ = δ∗π∗ν∗.
As πX∗ = πPn

S∗ν∗, we thus are reduced to prove δ∗π∗ = 1. To conclude, the reader
has the choice :

(1) A direct computation shows that the matrix of π∗ (resp. δ∗), through the
projective bundle isomorphism 3.2, is

(

δk
i .η

′
n−j

)

(j,k)∈[0,n]2, i∈[0,n]

resp. (ηj+k−l−n)l∈[0,n], (j,k)∈[0,n]2 .

The fundamental relation (5.2) allows to conclude.
(2) Use definition 5.4 to compute π∗ = 1 ⊗ p∗ in terms of the duality pairing

(µn, ǫµn) (cf lemma 5.3). Apply the projection formula 4.10 to compute
directly δ∗π∗ ; the second relation of definition 5.2 concludes.

(3) Prove δ∗ = t(δ∗) using characterization (i) after definition 5.4 (and the
usual projection formula 4.10).

�

5.3.2. Definition.

Lemma 5.11. Consider a commutative diagram :

Pn
X

p
**UUU

Y
k 44jjj

i
**TTT X
Pm

X
q
44iii

where i (resp. k) is a closed immersion of codimension r (resp. s) and p (resp.
q) is the canonical projection. Then, k∗p∗ = i∗q∗.
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Proof. Let us introduce the following morphisms :

Pn
X p

&&LL
LL

LL

Y

k 00

i ..

ν // Pn
X ×X Pm

X

q′

55lllllll

p′

))RRRRRRR
X.

P
m
X

q

88rrrrrr

Applying lemma 5.8, we are reduced to prove k∗ = ν∗q′
∗

and i∗ = ν∗p′
∗
. In other

words, we are reduced to the case m = 0 and q = 1X .
In this case, we introduce the following morphisms :

Y

77
77

77
77

77

77
77

77
77

77 s
''NNNNN

k

&&
Pn

Y l
//

q
��

Pn
X

p
��

Y
i // X

Then the lemma follows from lemma 5.9, lemma 5.10 and corollary 4.33. �

Consider smooth schemes X and Y and a projective morphism f : Y → X of

codimension d. Consider an arbitrary factorization Y
i
−→ Pn

X

p
−→ X of f into a

closed immersion of codimension d+n and the canonical projection. The preceding
lemma shows that the composite morphism

M(X)
p∗

−→M(Pn
X)(−n)[−2n]

i∗
−→M(Y )(d)[2d]

is independent of the chosen factorization.

Definition 5.12. Considering the above notations, we define the Gysin morphism
associated to f as the morphism

f∗ := i∗p∗ : M(X)→M(Y )(d)[2d].

5.3.3. Properties.

5.13. Let us first remark that, as a corollary of 4.34, we obtain : (f×g)∗ = f∗⊗g∗

for any projective morphisms f and g.

Proposition 5.14. Consider projective morphisms Z
g
−→ Y

f
−→ X between smooth

schemes.
Then g∗f∗ = (fg)∗.

Proof. We choose a factorization Y
i
−→ Pn

X

p
−→ X (resp. Z

j
−→ Pm

X

q
−→ X) of f (resp.

fg) and we introduce the diagram

Pm
X

q

��

Pn
X ×X Pm

X
q′

((RRRRRR

p′
OO

Pm
Y q′′

))SSSSSSSS

i′ 66llllll
Pn

X
p

LL
&&LL

Z g //
kss

99ss

j

11

Y f //
i 55kkkkkkkk

X.
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in which p′ is deduced from p by base change and so on for q′ and q′′.
Then, by using the factorizations given in the preceding diagram, the proposition
follows directly using 5.9, 5.8, 4.33 and finally 5.11. �

Proposition 5.15. Consider a commutative square of smooth schemes

T
k //

g ��
Y

f��
Z

i // X

such that i is a closed immersion and f is a projective morphism. Let h be the
pullback of f on X −Z. Let n, m, s, t be the respective codimension of i, k, f , g.
Note that n+ s = m+ t and put d = n+ s.
Then the following square is commutative :

M(T )(d)[2d]
∂Y,T // M(Y − T )(s)[2s+ 1]

M(Z)(n)[2n]
∂X,Z //

g∗

OO

M(X − Z)[1]

h∗

OO

Proof. By construction of the Gysin morphism, we have only to consider the case
where f is the projection of a projective bundle or a closed immersion. It follows
from lemma 4.12 in the first case and from theorem 4.32 in the second. �

Remark 5.16. Applying the two preceding propositions and case (i) of the following
proposition, we obtain that the Gysin triangle is functorial with respect to the
Gysin morphism of a projective morphism in the case of a cartesian square as in
the preceding statement.

Proposition 5.17. Consider a cartesian square of smooth schemes

Y ′
g //

q ��
X ′

p��
Y

f // X

such that f (resp. g) is a projective morphism of codimension n (resp. m). Note
that necessarily, n ≥ m.

(i) Suppose n = m and Y ×X X ′ is smooth ( i.e. Y ′ = Y ×X X ′).
Then f∗p∗ = q∗g

∗.
(ii) Suppose Y ×X X ′ is smooth and n > m. Put e = n −m. We attach to

the above square a vector bundle ξ of rank e called the excess intersection

bundle : choose a projective bundle P/X and a factorization Y
i
−→ P

p
−→ X

of f into a closed immersion followed by the canonical projection. We
obtain a canonical embedding NY ′(P ×X X ′)→ q∗NY (P ) and denote by ξ
the quotient bundle over Y ′. This definition is independent of the choice
of the factorization as shown in [Ful98], proof of prop. 6.6.

Then, f∗p∗ =
(

q∗ ⊠ ce(ξ)
)

◦ g∗.

Proof. In each case, we reduce to the corresponding assertion for a closed immer-
sion (4.10, 4.16 and 4.26) by choosing a factorization of f into a closed immersion
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followed by a projection and by considering its pullback on X ′. Indeed, the asser-
tion (i) when f is the projection of a projective bundle is trivial. �

We obtain finally the analog of corollary 4.11 :

Corollary 5.18. Let f : Y → X be a projective morphism between smooth scheme
of pure codimension d.
Then (1Y ∗ ⊠ f∗) ◦ f∗ = f∗

⊠ 1X∗ as a morphism M(X)→M(Y ×X)(d)[2d].

The proof is the same as for 4.11 using assertion (i) of the proposition above and
the formula of 5.13.

5.19. We now consider the analog of the ramification formula 4.26. Consider a
commutative square of smooth schemes

T
q //

g �� ∆

Y
f��

Z p
// X

which is cartesian on the underlying topological spaces and such that p and q
are projective morphisms of codimension n. We assume T admits an ample line
bundle.
Put T ′ = T ×X Y and note the morphism T → T ′ induce by ∆ is a thickening. Let
T ′ =

⋃

i∈I T
′
i (resp. T ′

i =
⋃

j∈Jj
T ′

ij) be the decomposition into connected (resp.

irreducible) components. Put Ti = T ′
i ×T ′ T and Tij = T ′

ij ×T ′ T . We introduce
the following condition on ∆ :

(Special) For any i ∈ I, there exists an integer ri ≥ 0 such that for any j ∈ Ji,
m(T ′

ij) = ri.m(Tij).

In this case, the integer ri will be called the ramification index of f along Ti.

Consider a factorization Z
i
−→ P

π
−→ X of p into a closed immersion and the

projection of a projective bundle. We put Q = P ×X Y and consider the obvious
morphism of closed pairs (h, g) : (Q, T )→ (P,Z). Of course, ∆ satisfies (Special)
if and only if (h, g) satisfies (Special). Moreover, for any i ∈ I, the element
r(Ti;h, g) is independent of the chosen factorization. Indeed, taking into account
the compatibility of F -intersection multiplicity with flat base change, this boils
down to the following lemma :

Lemma 5.20. Consider a commutative diagram of smooth schemes

T ′

))SSSSSSSS
t
yyttt

t
g′

��
T //

g

��

Y

f

��
Z ′

s

yyttt
t

))SSSSSSSS

Z // X

such that T and T ′ are connected and admits an ample line bundle, t = s ×Z T
and (f, g) (resp. (f, g′)) is a morphism of smooth closed pairs satisfying condition
(Special) with ramification index r.
Then, r(T ′; f, g′) = t∗r(T ; f, g) ∈ H0,0(T ′).
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Proof. Consider the blow-up B = BZ(A1
X) (resp. B′ = BZ′(A1

X)) and its excep-
tional divisor P (resp. P ′). As Z ′ ⊂ Z, we get a cartesian transversal square,
together with its pullback over Y

P ′ //

��

B′,

��
P // B.

pullback above Y : Q′ //

��

C′.

��
Q // C

The second square is still transversal. Put L = NQC|Z and L′ = NQ′(C′)|Z′ .
Thus, L′ = L|Z′ . According to this equality, the lemma follows from the definition
of F -intersection multiplicities. �

Definition 5.21. Consider the notations and hypothesis of 5.19, assuming the
square ∆ satisfies condition (Special). For any i ∈ I, we define the F -intersection
multiplicity r(Ti; ∆) of Ti in the pullback square ∆ as the well defined element
r(Ti;h, g) according to the notations above.

The following proposition is now a corollary of 4.26 :

Proposition 5.22. Consider the hypothesis and notations of the preceding defi-
nition. Put gi = g|Ti and qi = q|Ti .
Then, p∗f∗ =

∑

i∈I

(

r(Ti; ∆) ⊠ gi∗

)

q∗i .

5.4. The duality pairing. Let X/S be a smooth projective scheme of pure di-
mension n. Let p : X → S (resp. δ : X → X × X) be its structural morphism
(resp. its diagonal embedding).
Then we define morphisms

µX : 1 p∗

−→M(X)(−n)[−2n]
δ∗−→M(X ×X)(−n)[−2n]=M(X)(−n)[−2n]⊗M(X)

ǫX : M(X)⊗M(X)(−n)[−2n]
δ∗

−→M(X)
p∗
−→ 1.

The following result is now a formality :

Theorem 5.23. Consider the notations above.
Then

(

M(X)(−n)[−2n], µX, ǫX
)

is a strong dual of M(X).

Proof. Each identity of definition 5.2 is an easy application of 5.13, 5.17(i) (the
usual projection formula) and proposition 5.14. �

5.24. Applications : Consider the notations of the previous proposition and let E

be a motive.

(1) We define the fundamental class τX ∈ H2n,n(X) of X as the element

p∗ : 1→M(X)(−n)[−2n].

We also consider η ∈ H2n,n(X ×X) the fundamental class of the diagonal
δ.

Then the isomorphisms of (5.1) with M = M(X) gives exactly, consid-
ering the definitions of cap-product and slant product (cf 2.9), the following
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reciprocal isomorphisms :

E
r,p(X) ⇆ E2n−r,p−n(X)

x 7→ x ∩ τX

η/y ←[ y.

(5.3)

This is the Poincaré duality isomorphism, as it appears in algebraic topol-
ogy (cf [Ada74], [Swi02, 14.41, 14.42]). To the knowledge of the author,
the first appearance of this precise form of duality in algebraic geometry
is in [PY02].

(2) Suppose E is a ringed motive. In this case, the regulator maps

ϕX :H2n,n(X)→ E
2n,n(X)

ψX :H2n,n(X)→ E2n,n(X)

allow to define the fundamental class of X (resp. the fundamental class of
the diagonal) with coefficients in E as the image ψX(τX) (resp. ϕX(η)) of
the corresponding class with coefficients in H . Moreover, we can obviously
express the isomorphisms above with this classes (cf number (1) above),
obtaining a Poincaré duality purely in terms of the cohomology theory
E∗∗.

(3) Suppose E is a ringed motive.
The morphism

p∗ : E
∗∗(X)→ A

induced by the Gysin morphism of p is usually called the trace morphism
(relative to S).

We suppose the cohomology E∗∗ satisfies the following Künneth prop-
erty : for any motivesM,N,P ∈ {1,M(X),M(X)(−n)[−2n]}, the pairing

E
∗∗(M)⊗A E

∗∗(N)⊗A E
∗∗(P )→ E

∗∗(M ⊗N ⊗ P )

is an isomorphism.
Then it follows formally that

(

E
∗∗(M(X)(−n)[−2n]),E∗∗(µ),E∗∗(ǫ)

)

is a strong dual of E∗∗(M(X)) in the category of graded A-modules.
More concretely, the pairing (induced by E∗∗(µ))

E
∗∗(X)⊗A E

∗∗(X)→ A, x⊗ y 7→ p∗(x ∪ y)

is a perfect pairing of graded A-modules. This is usually called the
Poincaré duality pairing21 for the cohomology theory E∗∗.

Note it implies that E∗∗(X) is a projective finitely generated graded
A-module (see [DP80, 1.4]).

Example 5.25. The conditions of point (3) are fulfilled when X is a Grassmanian
scheme over S, or more generally a cellular variety over S, without any assumption
on E. In [CD06], we study cohomology theories E∗∗ which satisfies the Künneth
formula.

21 This way of deducing the Poincaré duality pairing from the abstract duality of theorem
5.23 and the Künneth formula was explained to me by D.C.Cisinski.
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The Gysin morphism determine the duality pairing defined above. Reciprocally,
this duality determines the Gysin morphism as shown in the next proposition.

Proposition 5.26. Let f : Y → X be a morphism between smooth projective
S-schemes. Suppose X (resp. Y ) is of constant relative dimension n (resp. m)
over S.
Then

f∗ = t(f∗)(−n)[−2n]

where the transpose morphism on the right hand side is taken with respect to the
strong duals of M(X) and M(Y ) obtained in the previous theorem.

Proof. Consider the structural projections p : X → S, q : Y → S and the diagonal
embeddings δX : X → X ×X , δY : Y → Y ×Y . Let n be the dimension of X Put
M(X)∨ = M(X)(−n)[−2n] and M(Y )∨ = M(Y )(−m)[−2m].
According to the first point which follows definition 5.4, we have to prove the
following square is commutative :

M(Y )⊗M(X)∨
f∗⊗1 //

1⊗f∗

��

M(X)⊗M(X)∨

p∗δ∗
X��

M(Y )⊗M(Y )∨
q∗δ∗

Y // 1.
We introduce the following cartesian square :

Y
γ //

f ��

Y ×X
f×1��

X
δX // X ×X

Note that f∗ ⊗ 1 = (f × 1)∗ and 1 ⊗ f∗ = (1 × f)∗ (cf 5.13). The result follows
from the computation :

p∗δ
∗
X(f × 1)∗ = p∗f∗γ

∗ = q∗δ
∗
Y (1× f)∗

which uses 5.17(i) and 5.14. �

5.5. Two illustrations.

5.27. Cobordism classes.—

Definition 5.28. Let X be a smooth projective scheme of pure dimension n. Let
p : X → S be its structural projection.
We define the cobordism class of X/S as the element of A, of (cohomological)
degree (−2n,−n),

[X ] = 1 p∗

−→M(X)(−n)[−2n]
p∗
−→ 1(−n)[−2n].

In other words, [X ] = p∗(1) as a cohomological class. Note that according to
definition 5.6 and what follows it, we obtain that [Pn] = η′n. Note also that
[X ⊔ Y ] = [X ] + [Y ] (from axiom (Add)) and [X ×S Y ] = [X ] ∪[Y ] (from 5.13).

Example 5.29. Consider a factorization X
i
−→ PN π

−→ S of the morphism p into
a closed immersion followed by the canonical projection. Let c = N − n be the
codimension of i. Let ηPN (X) ∈ H2c,c(PN ) be the fundamental class associated to
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the embedding i. Then from corollary 4.33, [X ] = p∗(ηPN (X)) (as a cohomological
class).
Thus, to compute this cobordism class, we can use the projective bundle theorem,

which implies we can write ηPN (X) =
∑N

i=0 xi.c
i where c is the Chern class of the

dual canonical line bundle, and xi is an element of A. Then,

[X ] =

N
∑

i=0

xi ∪[PN−i]

as p∗(c
i) = [PN−i] according to definition 5.6.

We want to compute now the cobordism class [Pn]. Let δ : Pn → Pn × Pn be the
diagonal embedding. According to definition 5.6, we have to compute

(5.4) δ∗(1) =
∑

0≤i,j≤n

ηi+j−n.c
i
∪ dj

with the notations preceding lemma 5.5.
Let p1, p2 : Pn × Pn → Pn be the projections respectively on the first and second
factor. Let λ (resp. ξ) be the canonical line bundle (resp. quotient bundle) on Pn.
Consider the vector bundles λ(i) = p−1

i (λ) and ξ(i) = p−1
i (ξ) for i = 1, 2. In the

preceding expression, c = c1(λ
∨
1 ) and d = c1(λ

∨
2 ). Put E = Hom(λ1, ξ2) = λ∨1 ⊗ξ2.

We get a section s of this vector bundle considering the canonical morphism

λ1 → A
n+1 × P

n = P
n × A

n+1 → ξ2.

It is well known (see [PSP]) that δ(Pn) is the subscheme defined by s = 0. Thus
according to corollary 4.21, δ∗(1) = cn(E) = cn(λ∨1 ⊗ ξ2). From this expression,
we obtain easily :

(1) Additive case : When the formal group law is additive22 (i.e. F (x, y) =
x+ y), according to a well known formula (cf [Ful98, ex. 3.2.2]),

cn(λ1 ⊗ ξ2) =
n
∑

i=0

c1(λ1)
i
∪ cn−i(ξ2) =

n
∑

i=0

ci ∪ dn−i.

Thus, [Pn] = 0 if n > 0.
(2) Case n = 1 : As c2 = d2 = 0, we simply obtain :

c1(λ1 ⊗ ξ2) = F (c1(λ1), c1(ξ2)) = c+ d+ a1,1.c ∪ d.
Thus η1 = a1,1 which implies [P1] = −a1,1.

In the general case, we obtain the following computation :

Proposition 5.30. With the notations introduced above,

δ∗(1) =
∑

0≤i,j≤n

a1,i+j−n.c
i
∪ dj .

Proof. Consider the ind-scheme P∞×Pn and the embedding τ : Pn×Pn → P∞×Pn.
Let p̃1 (resp. p2) be the projection on the first (resp. second) factor of P∞ × Pn.

Put λ̃1 = p̃−1
1 (λ), λ2 = p−1

2 (λ) and ξ2 = p−1
2 (ξ). Thus, with a little abuse of

notation, cn(λ1 ⊗ ξ2) = τ∗cn

(

λ̃1 ⊗ ξ2
)

.

22 This is the case for the category DM(S).
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According to the definition of ξ, we consider the short exact sequence :

0→ λ̃∨1 ⊗ λ2 → λ̃∨1 ⊗ A
n+1 → λ̃∨1 ⊗ ξ2 → 0.

From the Whitney sum formula 3.13, we thus obtain the relation :

cn+1(λ̃
∨
1 ⊗ A

n+1) = c1(λ̃
∨
1 ⊗ λ2) ∪ cn(λ̃∨1 ⊗ ξ2).

Put c̃ = c1(λ̃1), d = c1(λ2) as cohomology classes in B = H∗∗(P∞ × Pn). Note
moreover the A-algebra B is equal to (A[d]/dn+1)[[c̃]]. In terms of the fundamental
group law F and its inverse power series m, the preceding relation reads23 c̃n+1 =
F (c̃,m(d)) ∪ cn(λ̃∨1 ⊗ ξ2).
We have to prove :

cn(λ̃∨1 ⊗ ξ2) =
∑

0≤i,j≤n

a1,i+j−n.c̃
i
∪ dj mod c̃n+1.

Let m(x) =
∑

k>0mk.x
k (thus m1 = −1,m2 = a1,1, etc). For any integers l, s, we

put

Ml,s =
∑

k1+...+kl=s

k1,...,kl>0

mk1 ...mkl

when (l, s) 6= (0, 0), and M0,0 = 1. Thus, F (c̃,m(d)) =
∑

k,l,s ak,lMl,s.c̃
k
∪ ds. In

particular, F (c̃,m(d)) = u.c̃+ v where u is invertible in B and v is nilpotent. This
implies F (c̃,m(d)) is a non zero divisor in B and we are reduced to prove :

F (c̃,m(d)) ∪

∑

0≤i,j≤n

a1,i+j−n.c̃
i
∪ dj = 0 mod c̃n+1.

The left hand side can be expanded (modulo c̃n+1) as the sum :

∑

0≤u,v≤n





∑

k,l,s

ak,lMl,sa1,u+v−n−k−s



 .c̃u ∪ dv.

Finally, for any integers u, v ∈ [0, n], the coefficient of c̃u ∪ dv in the preceding sum
can be written

∑

w





∑

k,l

ak,lMl,w−k



 a1,u+v−n−w.

This is zero according to the relation F (x,m(x)) = 0. �

From definition 5.6, the previous proposition reads ηi = a1,i. As a corollary (cf
relation (5.2)), we recover the classical Myschenko theorem together with a nice
expression of [Pn] as a determinant :

23This expression for computing δ∗(1) was also obtained in [Pan03b].
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Corollary 5.31. (1) For any integer n ≥ 0,

[Pn] = (−1)n. det















0 0 1

xx
xx

xx
xx

xx
x

a1,1

xx
xx

xx
xx

xx
xx

xxa1,2

zzzz
zzz

z
0

1
a1,1 a1,2 a1,n















.

(2) For any integer n > 0,
∑

0≤i≤n a1,i.[P
n−i] = 0.

The usual formulation of the relations given in (2) uses the series p(x) =
∑

i[P
i].xi

and ω(x) = ∂F
∂y (x, 0). It reads p(x) = ω(x)−1.

Remark 5.32. An interesting problem is to extend this computation to the
case of an arbitrary projective bundle P(E). We hope the fundamental class
ηP(E)×P(E)(P(E)) as an explicit description in terms of the coefficients a1,i and
the Chern classes of E which would give an expression of [P(E)] as a determinant
analog of the above. This will give a counter-part to a classical formula of Quillen.

5.33. Blow-up formulas.—

Proposition 5.34. Let (X,Z) be a smooth closed pair and B be the blow-up of
X with center Z. Let f : B → X be the canonical projection.
Then, f∗f

∗ = 1.

Proof. Let s1 (resp. s0, π) be the unit section (resp. zero section, canonical
projection) of A1

X/X . Let B′ be the blow-up of A1
X with center 0 × Z. We

consider the following cartesian square :

X
σ̄1 // B′

f ′

��
X

s1 // A1
X .

From the projection formula 5.17(i), we obtain f ′∗s1∗ = σ̄1∗ which implies f ′∗ =
σ̄1∗π∗ by the axiom (Htp).
Thus we deduce easily : f ′

∗f
′∗ = f ′

∗σ̄1∗π∗ = s1∗π∗ = 1.
Finally we consider the cartesian diagram :

B
f //

ν ��

X
s0��

B′
f ′

// A1
X

Using once again the projection formula loc. cit. we get : f ′
∗f

′∗s0∗ = s0∗f∗f
∗.

This concludes using axiom (Htp). �

Lemma 5.35. Let P/X be a projective bundle over a smooth scheme X of pure
dimension d. Let ξ be the canonical quotient bundle of P/X and put e = cd(ξ)
seen as a morphism M(P )→ 1(d)[2d].
Then, (p∗ ⊠ e) ◦ p∗ is an isomorphism.
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Proof. Using the projection formula 5.18, we have to prove that the cohomological
class p∗(e) ∈ H00(X) is a unit. By compatibility of this class with base change
and invariance under isomorphisms of projective bundles, we reduce to the case of
P = Pd

S. Let s : S → Pd
S be the canonical section. Then, e = s∗(1) (cf remark 4.5

combined with example 4.7). Thus, following lemma 5.10, p∗(e) = 1. �

Remark 5.36. In the case of an additive formal group law, we can easily see that
p∗(e) = 1 for any projective bundle P/X which implies the composite isomorphism
of the lemma is just the identity.

5.37. Let X be a smooth scheme, Z be a smooth closed subscheme of X of pure
codimension n. Let B be the blow-up of X with center Z and P be the exceptional
divisor. Consider the cartesian squares :

P
k //

p
��

B
f
��

B − P
loo

h��
Z

i // X X − Z.
joo

We let λ (resp. ξ = p−1(NZX)/λ) be the canonical line bundle (resp. quotient
bundle) on P = P(NZX) and we put : e = cn−1(ξ).

Proposition 5.38. Using the notations above, the short sequence

0→M(P )

„

p∗

k∗

«

−−−→M(Z)⊕M(B)
(−i∗,f∗)
−−−−−→M(X)→ 0

is split exact with splitting
„

0
f∗

«

.

By abuse of notation, we denote by M(P/Z) the kernel24 of the split monomor-

phism p∗ and let k̃∗ : M(P/Z) → M(B) be the morphism induced by k∗. Then,
we obtain an isomorphism

M(P/Z)⊕M(X)
(k̃∗,f∗)
−−−−−→M(B).

Proof. The previous short sequence is obviously a complex. The fact
„

0
f∗

«

is a

splitting is proposition 5.34.
We directly prove the last assertion of the proposition which then concludes. Con-
sider the following diagram :

M(X − Z)

„

0
j∗

«

//

h∗

��

(1)

M(P/Z)
⊕

M(X)

„

1 0
0 i∗

«

//

(k̃∗,f∗)

��

(2)

M(P/Z)
⊕

M(Z)(n)[2n]

(0,∂X,Z ) //

(k∗k̃∗,p∗)

��

(3)

M(X − Z)[1]

h∗

��
M(B − P )

l∗

// M(B)
k∗

// M(P )(1)[2]
∂B,P

// M(B − P )[1]

The two horizontal lines are distinguished triangles. It is commutative : for square
(1), use the projection formula 5.17(i), for square (2), the functoriality of the Gysin

24If we had a splitting s : Z → P of p, this will be the motive associated to the immersion s.
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morphism 5.14, for square (3), the compatibility of residues and Gysin morphism
5.15 and the defining property of the residue ∂B,P .

As h is an isomorphism, we are reduced to prove (k∗k̃∗, p
∗) is an isomorphism.

The normal bundle of k : P → B is the canonical line bundle λ. Thus, from
the self-intersection formula 4.19, k∗k∗ = 1P∗ ⊠ c with c = c1(λ). The remaining
assertion is local in X so that we can assume that NZX is trivializable. Finally,
we compute easily the matrix of

(k∗k∗, p
∗) : ⊕n−1

i=0 M(Z)(i)[2i]⊕M(Z)(n)[2n]→ ⊕n−1
i=0 M(Z)(i+ 1)[2i+ 1]

obtained through the projective bundle isomorphism 3.2 :





















0

::
::

::
::

::
::

::
:1

::
::

::
::

::
:0

9
9

9
9

9
9

9 0 [Pn]

[Pn−1]

0

1

0 0 1





















.

As the matrix of (k∗k̃∗, p
∗) is obtained from the above one removing the first

column, it is obviously invertible. �

Proposition 5.39. Consider the notations 5.37. The short sequence

0→M(B)

„

k∗

f∗

«

−−−−→M(P )(1)[2]⊕M(X)
(p∗ ⊠ e,−i∗)
−−−−−−−−→M(Z)(n)[2n]→ 0

is split exact with pseudo-splitting
„

p∗

0

«

.

Let C be the cokernel of the split mono p∗ : M(Z)(n − 1)[2n − 2] → M(P ) and

k̃∗ : M(B)→ C(1)[2] the morphism induced by k∗. Then the following morphism
is an isomorphism :

M(B)

„

k̃∗

f∗

«

−−−−→ C(1)[2]⊕M(X).

Remark 5.40. This second blow-up formula is a generalization of [Ful98, 6.7(a)]. In
caseX and Z are projective smooth, it is simply the dual statement of the previous
proposition using 5.26. More precisely, from 5.38 (resp. 5.39) the morphism

„

k∗ p∗

f∗ 0

«

(resp.
„

k
∗

f∗

p∗ 0

«

)

is an isomorphism. These two matrices are dual.

Proof. The above sequence is a complex from the excess intersection formula 4.16
applied to the morphism (f, p). The pseudo-splitting of this sequence is exactly
lemma 5.35. We thus are reduced to the last assertion.
Let π : M(P )(1)[2]→ C(1)[2] be the canonical projection. Consider the following
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diagram :

M(B − P )
l∗ //

(1)h∗

��

M(B)
k∗

//

(2)

„

k̃∗

f∗

«

��

M(P )(1)[2]
∂B,P //

(3)

„

π
p∗ ⊠ e

«

��

M(B − P )[1]

h∗

��
M(X − Z)

„

0
j∗

«

//
C(1)[2]
⊕

M(X)
„

1 0
0 i∗

«

//
C(1)[2]
⊕

M(Z)(n)[2n]
(0,∂X,Z )

// M(X − Z)[1]

The horizontal lines are distinguished triangles. The diagram is commutative : (1)
follows from definitions, (2) is a consequence of the excess intersection formula 4.16
for (f, p) and (3) is a consequence of the same formula, considered for residues.

Finally, we are reduced to prove that
„

π
p∗ ⊠ e

«

is an isomorphism. But coKer(p∗) ≃

Ker(p∗ ⊠ e) by a canonical isomorphism so that the latter morphism is simply the
decomposition isomorphism associated to the split epimorphism p∗ ⊠ e. �
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