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ABSTRACT. We investigate the following two problems on a hermitian
form @ over an algebraic number field: (1) classification of @ over the
ring of algebraic integers; (2) hermitian Diophantine equations. The same
types of problems for quadratic forms were treated in the author’s previ-
ous articles. Here we discuss the hermitian case. Problem (2) concerns
an equation £@ -t¢P = W, where & and ¥ represent hermitian forms. We
connect the number of such ¢ modulo a group of units with the class
number and mass of the unitary group of a form @ such that ? ~ ¥ ¢ 6.

2000 Mathematics Subject Classification: 11E39 (primary), 11E41, 11D09
(secondary)

INTRODUCTION

To explain Problems (1) and (2) of the abstract, we take a quadratic exten-
sion K of an algebraic number field F, a vector space V' over K of dimension
n, and a nondegenerate hermitian form ¢ : V x V. — K with respect to
the nontrivial automorphism p of K over F. We denote by dy(y) the coset of
F* /Ng,p(K*) represented by (—1)"("~1/2 det(¢). It is classically known that
n, do(p), and the indices of ¢ at certain archimedean primes of F, satisfying
a natural consistency condition, determine the isomorphism class of (V, ¢),
and vice versa. This classification does not answer, however, the question of
classification over the ring of integers. To be precise, let t denote the ring of
algebraic integers in K and g = F'Nr; let 9 be the different of K relative to
F. We put

(0.1) 9n={P € GL,(K)|D="9"}.
We call a matrix & = (p;;) € 9, semi-integral if p;; € 07! and ¢;; € g for

every ¢ and j, which means that 3, ; pijrir € g for every (z;)j, € t".

Further we call a semi-integral @ reduced if the following condition is satisfied:
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(R) If ® = PV -'P? with a semi-integral ¥ and P = (p;j) € GL,(K), pij € t,
then det(P) € t*.

These definitions are natural, but cover only a special class of (V, @), as an
t-lattice in V may not be isomorphic to t™. In order to classify all g-valued
hermitian forms, we have to define the genus of a form relative to an isomor-
phism class of lattices, and study its connection with the isomorphism class of
(V, ¢). These are nontrivial, and will be treated in §§2.4 and 2.5. We are then
able to classify all the genera of g-valued hermitian forms in terms of matrices
(Theorems 2.10 and 2.11). The results can be presented in simpler forms if K
is a real or an imaginary quadratic field of odd class number, in which case
the above definitions cover all hermitian spaces. Let d be the discriminant
of such a K; then K = Q(\/ﬁ) For a semi-integral @ with entries in K, put
s(®) = p—q when d < 0 and @ as a complex hermitian matrix has p positive
and ¢ negative eigenvalues; we do not define s(®) if d > 0. Let 2 be the
set of all reduced semi-integral elements of £),,. Then we can prove (Theorem
2.14):

(A) Let three integers n, o, and e be given as follows: 0 < n € 2Z, 0 €
2Z, |o| <n; 0 =0 if d > 0; e is positive and squarefree. Let r be the number
of prime factors of e. Suppose that o—2r € 4Z and no prime factor of e splits
in K. Then there exists an element @ of Sﬁg such that

det(vd®) = (-1)7?¢ and s(®) =0 if d <0,
det(Vd®) =1e with 7=1 or =1 if d>0.

Moreover, every element of 99 is of this type. Its genus is determined by (o, )
if d <0, and by e if d >0.1If d >0 and —1 € Ng,q(K*), then both
e and —e can occur as det(\/aé) for @ in the same genus. If d > 0 and
—1 ¢ Ng,q(K*), then T is uniquely determined by the condition that a prime
number p divides e if and only if Te ¢ Nk (K, ), where K, = K ®q Q,.

This concerns the case of even n. We have similar but somewhat different
results for odd n (Theorem 2.15). In fact we discussed in [S5] and [S6] semi-
integral and reduced quadratic forms and obtained results of the same type. If
K is imaginary, the hermitian case is almost parallel to the case of quadratic
forms over Q, but the theory for real K is more subtle, as can be seen from
the above statement.

Let us now turn to the second problem. Before explaining the principal
results, let us first discuss natural problems which are more basic and which
must be settled before investigating the main question. Given (V, ¢) as before,
let U# (V) and SU%(V') denote the unitary group and the special unitary group
of ¢, defined as subgroups of GL(V, K). Take an t-lattice L in V and put

(02) I'(L)y={acU?V)|La=L},  I''(L)=I(L)NSUYV).
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Then we ask, for a fixed ¢ € F*, whether the set {h € V | plh] = q} modulo
I''(L) is a finite set. A similar question can be asked by replacing F, K, (V, )
and L by their localizations at a nonarchimedean prime and by defining an
obvious analogue of I'!(L). We will prove that the answer is affirmative in both
global and local cases, provided n > 1 (Theorems 3.3 and 4.2). The same is
true for the problem about the solutions ¢ of the equation £® 6P = ¥, where
¥ is of size m, and & belongs to an t-lattice in the space of (m X n)-matrices
with entries in K, where m is a positive integer < n (Theorems 5.2 and 5.3).
We already proved in [S3] the analogues of these facts for quadratic forms and
orthogonal groups.

In order to go beyond the mere finiteness, we consider the adelizations
U?(V)a and SU¥(V)a, and define their open subgroups C' and C* by

(0.3) C={yecUs(V)a|Ly=L}, C'=CNSU?V)a,

where L is a fixed v-lattice in V. Given two solutions &y and &; of the equation
£ - 1P = W, we say that they belong to the same genus (with respect to C)
if £y, = & for every nonarchimedean prime v with an element (v,), € C.
Naturally they are said to belong to the same class if £y = & with v € I'(L).
Now to explain our principal ideas in the simplest case, put G = U?(V) and
H = {a eG ‘ o = 50}; also assume for the moment that Gao = GC. Then
there is a bijection of H\Ha /(Ha N C) onto the set of classes in the genus of
&0, and so

(B)  #{H\Ha/(Ha NC)} = the number of classes in the genus of &.

Here and henceforth #{X} denotes the number of elements in a set X. If
Ga # GC, the right-hand side becomes a finite sum of the class numbers of
several genera (Theorem 5.4). Since the left-hand side is the class number of
the unitary group H with respect to Ha N C, equality (B) connects it to the
solutions & of £@- 4¢P = 0.

If m =1, the results can be stated in a more transparent way. Returning to
the hermitian form ¢ : V x V — K, put ¢[h] = ¢(h, h) for h € V. Then the
equation £ -t¢P =¥ can be written ¢[h] = ¢ with h € V and ¢ € F*; thus
h and q replace ¢ and ¥. Given a fractional ideal b in K, put

(0.4) Lig, b ={h eV |¢lh] =q, ¢(h, L) =b}.

We call L integral if ¢[z] € g for every © € L and call L mazimal if it is
maximal among the integral t-lattices. The point of considering L[q, b] is that
Llq, b], if nonempty, consists of a single genus with respect to C' in the above
sense. This is clearly a result of local nature; unfortunately, its proof given in
Section 3 is not short. In this case H = U¥(W), where W is the orthogonal
complement of Kh in V. Now we can prove (Theorem 4.4, Corollary 5.8):
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(C) For every y € Ga, there is a bijection of H\(Ha NGyC)/(HaNC) onto
(Ly=Y)[q, b]/4A,, where A, = GNyCy~'.
(D) Take {y;}icr C Ga so that Ga = |,c; GyiC and put L; = Ly; *. Then

> #{Lilg, 0]/ (Li)} = #{H\Ha /(HA N C)}.
iel
(E) If the arcfen'medean factor of Ga is compact, then
> #{Lilg, 0]} /#{I} = m(H, HA N C),
where the right-hanzslside is the mass of H with respect to the open subgroup
Ha NC of Ha in the sense of [S2].

These assertions are true with SU?(V'), SU¥(W) and C* in place of G, H,
and C, if dim(V') > 2 and we impose a certain condition on (g, b). Notice that
(E) gives the mass of H by means of the number of solutions h of ¢[h] = ¢
under the condition ¢(h, L) = b, while (D) gives the class number of H.

In our recent book [S3, Chapter III] we developed a theory of a Diophantine
equation ¢[h] = ¢ for a quadratic form ¢ defined on a vector space over an
algebraic number field. The principal result is that to each “primitive solution”
h of this equation for a fixed ¢, considered modulo the group of units I', one
can associate a “class” of lattices with respect to the orthogonal group H of the
restriction of ¢ to a subspace of codimension 1. Consequently the class number
of H equals the number of such A modulo I'. This includes as a special case the
result of Gauss that the number of primitive representations of ¢ as the sum of
three squares equals an elementary factor times the class number of primitive
binary quadratic forms of discriminant —g. Also, formulas of type (B) and (E)
were proved in [S3] and [S6] for quadratic forms. The reader is referred to [S7]
for some more historical and technical comments on this subject. Now (B),
(C), (D), and (E) are hermitian analogues of these results. In order to develop
the theory for hermitian forms, we are naturally guided by the formulation in
the case of quadratic forms, but we need new ideas and technique, and it is
wrong to say that we can do things “in the same way.” This is especially so
when we consider the problem with respect to the special unitary group instead
of the unitary group. Thus there are two theories with respect to these two
types of groups, and one, that for the special unitary group, is more complex
than the other, and in a sense more interesting.

1. GENERALITIES ON HERMITIAN FORMS AND UNITARY GROUPS

1.1. For an associative ring A with an identity element we denote by A*
the group of all invertible elements of A, and for positive integers m and n we
denote by A™ the A-module of all (m x n)-matrices with entries in A. We put
M, (A) = A when we view it as a ring, and denote by 1,, its identity element.
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We take a basic field F' and a couple (K, p) consisting of an F-algebra K
and a nontrivial F-linear automorphism p of K belonging to the following two

types:

(I) K is a separable quadratic extension of F' and p generates Gal(K/F);
(II) K =F x F and (z, y)” = (y, z) for (z, y) € F x F.

In our later discussion, K of type (IT) will appear as a localization of a global
K of type (I). For a matrix a = (a;;) with entries in K we denote by ‘a the
b tar; we put also a™” = ()71
when « is invertible. For a subring S of K we write o < .S if all the entries of
« are contained in S. Given a left K-module V, we denote by End(V, K) the
ring of all K-linear endomorphisms of V' and put GL(V, K) = End(V, K)*.
We let End(V, K) act on V on the right; namely we denote by wa the image
of we V under o € End(V, K).

Let V be a left K-module isomorphic to K}; we put then n = dim(V). By a
hermitian space we mean a structure (V, @), where ¢ is a hermitian form on
V, that is, an F-bilinear map ¢ :V x V — K such that

(1.1) p(z, )" = oly, ),
(1.2) o(ax, by) = ab’p(x, y) for every a, b€ K.

transpose of «, and put a” = (af;) and o* =

Whenever we speak of a hermitian space (V) ¢), we assume that ¢ is non-
degenerate, and put ¢[z] = p(z, ) for x € V. We define groups U¥? (V') and
SU%(V) by

(1.3a) U¥=U?V)={acGL(V, K)|glza] = ¢[z] for every z €V},
(1.3b) SU¥ = SU%(V) = {a e U?(V) } det(a) = 1}.

For every free K-submodule X of V' on which ¢ is nondegenerate, we put
(1.4) X+ ={yeV]eply X)=0},

and define U®(X) and SU®(X) by (1.3a, b) with X in place of V; namely we
use ¢ for its restriction to X. We always identify U#®(X) with the subgroup
of U?(V) consisting of the elements « such that ya =y for every y € X*.
Similarly we view SU¥(X) as a subgroup of SU¥(V).

Let h be an element of V such that @[h] # 0. Then

h-U? if dim(V) =1,

(1.5) {z eV |pl]=¢hl} = {h SU® if dim(V) > 1.

This follows easily from the generalized Witt theorem; see [S2, Lemma 1.3],
for example. The case K = F x F is not included in that theorem, but the
structure of (V, ¢) for such a K is determined by dim(V) as shown in [S2,
§2.13], and so the fact corresponding to the Witt theorem is trivially true; see
also §1.8 below.
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1.2. Let ¢y be the matrix that represents ¢ with respect to a K-basis of
V; then we denote by do(V, @) the element of F'* /Ny, p(K*) represented by
(=1)"/2det(gp) or (—1)»=1/2det(py) according as n is even or odd. This
does not depend on the choice of a K-basis of V. We denote do(V, ¢) simply
by do(V') or do(p) when there is no fear of confusion.

Given s € F*, we denote by {K, s} the quaternion algebra B over F in
which K is embedded and which is given by

(1.6) B=K+Kw, w?=s, wa=a’w forevery a € K.

Since B is determined by K and sNg,p(K™), for a coset € € F'* /N p(K™)
we denote by {K, e} the algebra {K, s} with any s € . In particular, we can
associate with (V, ¢) a quaternion algebra {K, do(p)}.

LEMMA 1.3. Given (V, ) as in §1.1, suppose dim(V) = 2 and put B =
{K, do(¢)}. Then there is a ring-injection j of B into End(V, K) and an
element ¢ of V such that ¢[f] # 0, {j(B) =V, {j(a) = al for every a € K,
and p[lj(&)] = [l)¢¢" for every & € B, where ¢ is the main involution of B.
Moreover, Tr/r (¢(la, €8)) = o[ Trgp(ap’) for every o, 3 € B, and

(1.7a) UW(V):{z’la}zeKX,aEBX,zzp:ao/},
(1.7b) SU?(V) = {a e B*|aa* =1},

where we identify o with j(«) for o € B.

Proof. Identify V with K3 so that o(x, y) = xpey* for z,y € K3} with
@o = diag[c, —cs], where ¢, s € F*. Then do(¢) = sNg/p(K*), and so B is
a
sb?
(1, 0). Then it is an easy exercise to verify all the statements; cf. [S2, Lemmas
4.3, 4.4, and (4.3.2)]. Notice that j(B) = {a € My(K)|a*py = poa* }.

given by (1.6). Define j: B — M3(K) by j(a+bw) = [ abp] and put £ =

1.4. When K is a field, by a weak Witt decomposition of V we mean a direct
sum decomposition of V' with 2r elements e;, f;, and a subspace Z of V' such
that

(1.8a) V=" (Ke+Kf)+Z, Z=(X_(Ke; +Kf;)),
(1.8b) (e, ej) =(fi, [;) =0, (e, fj) =0di; for every i and j.
Clearly >"'_,(Ke; + K f;) is a subspace of dimension 2r. We call this a Witt
decomposition if plx] # 0 for every z € Z, # 0, in which case we call Z a

core subspace of (V, ¢) and dim(Z) the core dimension of (V, ¢). If ¢ is the
restriction of ¢ to Z, then clearly do(p) = do(¢).

1.5. In this paper a global field means an algebraic number field of finite
degree, and a local field the completion of a global field at a nonarchimedean
prime. For a global field F' we denote by g the ring of algebraic integers in F';
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for a local F' we denote by g the ring of local integers in F' in the standard
sense. An archimedean completion of a global field will not be called a local
field. In both local and global cases, by a g-lattice in a finite-dimensional vector
space V over F, we mean a finitely generated g-submodule of V' that spans V
over F.

Let (K, p) be as in §1.1 with a local or global F. We then denote by t the
ring of all elements of K integral over g, and by 0 the different of K relative
to F. We have t =0=g x g if K = F x F. By a g-ideal we mean a fractional
ideal in F, and similarly by an t-ideal we mean a fractional ideal in K if K
is a field. If K = F x F, an t-ideal means a subset of K of the form a x b
with g-ideals a and b. In both local and global cases, by an t-lattice in a
K-module V as in §1.1 we mean a g-lattice in V' stable under multiplication
by the elements of t. Given two t-lattices L and M in V, we denote by [L/M]
the t-ideal generated by det(a) for all a € GL(V) such that La € M. Thus
[L/La] = det(a)t. In particular, if o € U¥ and K is a field in the local case,
then [L/La] = . If K = F x F, however, [L/La] = a x a~! with a g-ideal a
for a € U®.

LEMMA 1.6. Two hermitian spaces (V, ) and (V', ¢') in the local case are
isomorphic if and only if dim(V') = dim(V") and do(p) = do(¢’).

This is well known. For the proof, see [S2, Proposition 5.3], for example.

1.7. Let (V, ) be defined with a local or global F. For a g-lattice L in V
we denote by p(L) the g-ideal generated by ¢[x] for all © € L. We call a
g-lattice L in V integral if p(L) C g; we call an t-lattice L mazimal if L is
maximal among the integral t-lattices. (This is what we called g-maximal in
[S2].) For basic properties of maximal lattices in V' the reader is referred to
[S1] or Sections 4 and 5 of [S2]. For example, we note ([S2, (4.7.1)])

(1.9) (L, L) C 01 if L is integral.

If n > 1 and L is maximal, then p(L) = g. This fact in the global case follows
from the local case, which can be seen from [S2, Lemmas 5.4 and 5.6].
Given an t-lattice L in V, ¢ € F*, and an t-ideal b, we put

(1.10a) L={zeV]p( L)cot},
(1.10b) Liq] = {ac €L ‘ ola] = q},
(1.10¢c) Lig, b] = {z € V| p[z] = ¢, o(z, L) = b}.

By (1.9), we have L C L if L is integral. The set L[q, b] is not neces-
sarily contained in Llg]. If M is another t-lattice in V, then we easily see
that [L/M]P = [M\/E] If L, = La with a € U¥, then L; = La, and so
L1/ = [E/L).

The notation being as in (1.8a, b), take a maximal t-lattice M in Z and put
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(1.11) L=3%_ (ve;+07 f;) + M.
Then L is maximal; see [S2, Lemma 4.9 (2)]. We can easily verify that
(1.12) L=Y"_(ve; +07 fi)+ M, M={xeZ|p(x, M)co'}.

1.8. Let us now consider the case K = F x F'; then we define the core
dimension of (V, ¢) to be 0. We can write an element of V = K! in the form
(z, y) with z,y € F!. Taking a suitable coordinate system, we can assume
that

L13) oy (s w) = (@ fw,y- ') (@, 5 we FY).
This is shown in [S2, §2.13]. We have then ¢|[(z, y)] =z - 'y and

(1.14)  U?={( &|€€GLL(F)}, SU?={(& €)|¢€ SLa(F)},

where E: t¢=1 also gl x gl is a maximal lattice. It should be noted that if
h €V and ¢lh] # 0, then Kh is isomorphic to K.

LEMMA 1.9. Let L be a maximal lattice in V and t the core dimension of
(V, v); suppose K is a local field; put

E={eect*|ec? =1}, Ey={e’/e|ect*}, Ep=det(C(L)),

where C(L) = {o € U?(V) | La = L}. Then the following assertions hold:
(i) [E : Ey) =1 or 2 according as K is unramified or ramified over F.
(i) By = By if t = 0; By, = B if t > 0.

This is included in [S1, Lemma 4.16 and Proposition 4.18] and [S2, Lemma
5.11].

Suppose K is a local field ramified over F’; let L and M be maximal lattices
in V. Then there exists an element a € U¥ such that M = La as shown in
(i) of the following lemma. We then denote by e(L/M) the element of E/FEy
represented by det(«). This is well defined in view of (ii) above.

LEMMA 1.10. Let L and M be maximal lattices in V in the local case, and
let t be the core dimension of (V, ). Then the following assertions hold:

(i) There exists an element o of U¥ such that M = La.

(ii) We can take such an « from SU® if t >0 or K is a field unramified
over F.

(iii) Suppose K is ramified over F' and t = 0; then M = Lo with « € SU¥
if and only if e(L/M) = 1.

(iv) Suppose K = F x F; then M = La with o € SU% if and only if
[L/M] =r.

Proof. The first assertion is included in [S1, Propositions 3.3 and 4.13] and
also in [S2, Lemmas 4.12 and 5.9]. Next, suppose K is a field; given M, take
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a € U? so that La = M and put ¢ = det(«). Then ¢ € E. If K is unramified
over F' or t > 0, then Lemma 1.9 guarantees an element [ of U¥ such that
LB =L and det(3) = ¢c!. Then Ba € SU¥ and LBa = M. This proves (ii).
Assertion (iii) can be proved in a similar way. Assertion (iv) is included in [S1,
Proposition 3.3].

1.11. Let us now consider the case with n = 2 and a local F. Using the
symbols B, j, and ¢ of Lemma 1.3, we first observe that

(1.15) B My(F) < t =0 < 1€ dy(p).

Let O be a maximal order in B containing r. We can find an element v € B*
such that ¢[f]7! =y Put M = £j(O7) and © = {a € B | Trp r(aD) C g}
Identifying B with j(B), for o € B we see that

bay € M = o(lary, M) C o7t <= Trg,p(ve(lay, M)) C g
= Trg/p(aD) Cg+=ac O.

Thus M = Ej(ﬁv). If B is not a division algebra, then o= 9, so that M= M,
which means that M is maximal. Suppose B is a division algebra; then O =
{a € B|aa* € g} as noted in [S3, Theorem 5.13], and so M = {z € V| ¢[z] €
g}, which is a unique maximal lattice in V' by [S2, Lemma 5.4]. Since o= Bt
with the maximal ideal B of O, we have M = £j(~1y). Thus [M/M] = pr
with the maximal ideal p of g.

2. CLASSIFICATION OF HERMITIAN FORMS OVER A GLOBAL FIELD

2.1. Throughout this section we assume that F' is a global field and K is
a quadratic extension of F. We denote by a and h the sets of archimedean
primes and nonarchimedean primes of F' respectively, and put v = a U h.
Given an algebraic group G defined over F, we define G, for each v € v and
the adelization G as usual, and view G and G, as subgroups of Ga. We then
denote by G, and Gy the archimedean and nonarchimedean factors of Ga,
respectively. In particular, the adelization of the multiplicative group F'* is
denoted by Fy, which is the idele group of F. For 2 € Ga and v € v we
denote by x, the v-component of x.

Given (V, ¢) over F, for each v € v we can define the v-localization
(V, ©)y = (Va, ©p) with ¢, : V,, x V,, — K, in a natural way. For v € h
let ¢, be the core dimension of (V| ¢),. Since x — @, [x] for = € V, can be
viewed as an F,-valued quadratic form, we have 2t, < 4 by a well known
principle, and so t, < 2. Let rg denote the set of all real archimedean primes
of F that do not split in K. If v € a and v ¢ rg, then there is only one
isomorphism class of (V, ¢), for each n. For each fixed v € ry we have a pair
of nonnegative integers (p,, ¢,) such that ¢, is represented by diag[1,,, —14,]
when F, and K, are identified with R and C. We put then s,(¢) = py, — ¢,
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and call s,(¢) the index of ¢ at v. Clearly |s,(¢)| is the core dimension of
Vo, Su(p) —n € 2Z, and |s,(¢)| < n; also, n and s,(p) determine (py, gv),
and vice versa.

For an t-lattice L in V and v € h we denote by L, the t,-linear span of L
in V,. Also, for £ € GL(V, K)a we denote by L¢ the lattice in V' such that
(L&), = L&, for every v € h. By the U¥(V)-genus (resp. SU?(V)-genus)
of L we understand the set of all lattices of the form L& with & € U?(V)a
(resp. € € SU?(V)a). Also, by the U¥(V)-class (resp. SU%(V)-class) of L
we understand the set of all lattices of the form Lo with a € U¥(V) (resp.
a € SUP(V)).

The classification of (V, ¢) over a number field was done by Landherr in [L].
We formulate the results in the form that suits our later purposes, and give a
proof for the reader’s convenience. To be precise, we are going to show that
the isomorphism classes of hermitian spaces correspond bijectively to the sets
of data consisting of the following objects:

(2.1a) 0 < n € Z; € € F*; an integer o,, given for each v € rqg, such that
low] <n and o, —n € 2Z.

We look for (V, ¢) such that dim(V) = n, do(yp) is represented by e, and
$y(p) = o, for every v € ry. Clearly the following condition is necessary:

(2.1b) (=1)7*/2¢ > 0 for every v € vy if n € 2Z and (—1)7>~V/2c >0 for
every v €rg if n—1¢€ 2Z.

THEOREM 2.2. (i) The isomorphism class of (V, ¢) is determined by
n, {oy}, and do(p).

(ii) Given n, e, and {o,} satisfying (2.1a, b), there exists a hermitian space
(V, @) such that dim(V') =n, e € do(p), and s,(p) = o, for every v € ry.

Proof. Clearly n and {o,} determine (V, ¢), for every v € a, and n and
do(¢) determine (V, @), for every v € h by Lemma 1.6. Therefore we obtain (i)
in view of the Hasse principle. We prove (ii) by induction on n. The case n =1
is trivial, and so we assume n > 1. We first prove the case in which ¢, > 0 for
every v € ro. Let 7, = 0, — 1. Then the set (n — 1, (—1)""'e, {r,}) satisfies
(2.1a, b), and therefore by induction we can find a hermitian space (W, ) such
that dim(W) = n — 1, 7, = s,(¢) for every v € rg, and (—1)""e € do().
Put V=K ®W and define ¢ on V by ¢la ® y] = aa” + ¢[y] for a € K and
y € W. Then clearly ¢ € dy(¢) and s,(¢) = 0, for every v € ry.

Now, given {o,} with possibly negative o,, take ¢ € F* so that ¢ < 0 or
¢>0 at v €ry according as o, <0 or g, > 0. Then the set (n, c"¢, {|o,|})
satisfies (2.1a, b). Therefore we can find a hermitian space (V1, 1) such that
dim(V1) =n, c"e € do(p1), and s,(p1) = |oy| for every v € rg. Put ¢ = cp.
Then e € dy(p) and s,(p) = o, for every v € rg. This completes the proof.
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THEOREM 2.3. Given (V, ¢), put B = {K, do(p)} using the notation of
§1.2. Let e be the product of the prime ideals of F' ramified in B; also let L be
a mazimal lattice in V. Then the following assertions hold.

(i) [L/L] = et if n is even.

(i) When n is odd, put do(p)g = aNg/p(b) with an v-ideal b and a
squarefree integral g-ideal a whose prime factors remain prime in K. Then
[L/L] = ad, where 0 is the different of K relative to F.

Proof. For v € h let t, be the core dimension of (V, ¢),. Suppose n € 2Z;
then ¢, = 0 if and only if do(y) is represented by an element of Ny /p(K ),
that is, if and only if v does not divide e. If n is odd, the isomorphism class
of (V, ¢), depends on a, and 0,. Thus our assertions can be reduced to the
question about [ZU /L) for v € h. In fact, suppressing the subscript v, we
have, in the local case,

(22) [L/L) = v if t = 0; [L/L] = pr if t = 2; [L/L] =0 if t = 1 and
do(p) g #0; [L/L]=pd if t =1 and do(p) Ng* = 0.

Here p is the maximal ideal of g. In view of Lemma 1.10 (i), it is sufficient to
prove this for a special choice of L. If K = F x F, then we can put L = g}, x gl
as noted in §1.8, and so L = L. Thus we assume that K is a field. By (1.12),
L=TLift=0 Let M = {z € Z| ¢[z] € g}. By (1.12), [L/L] = [M/M].
We have seen that [M/M] = pt in §1.11if ¢ = 2. If t = 1, then M = t/
with an element ¢ such that ¢[¢]g is g or pg. Thus M = 2~1[¢]~1¢, and so
[L/L] = []\/4\/M] = @[¢]d, which completes the proof of (2.2). Combining the
results on [L,/Ly,] for all v € h, we obtain our theorem.

2.4. To illustrate Theorem 2.3 in terms of matrices, we have to define the
genus and class of a hermitian matrix. We put

(2.3) ® = GL,(K), N ={Pc®|d* =}, Lo =t}

(2.4) E=6,[[GLu(v,), Ee=¢'E( (£€6a),
veh

(2.5) Ag =FE:N8G, Aé :EgﬂSLn(K).

Every t-lattice L in K} can be given as L = Lo with £ € 84, and E = {y €
Ba ‘ Ly = L}. We denote by 9,,(€) the set of all ¢ € §,, such that aPx* € g
for every @ € Lo&. We call such a @ reduced (relative to &) if the following
condition is satisfied:
(2.6) b € H,(¢71¢) with ¢ € 8p N [[ Ma(r,) = (€ E.
veh

We denote by $2(£) the set of all reduced elements of §,,(€).

We say that two elements @ and ¥ of §,,(£) belong to the same genus (relative
to &) if there exists an element € of E¢ such that ePe* = ¥; they are said to
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belong to the same U-class (resp. SU-class) if a®a* = ¥ for some a € Ag
(resp. « € A%) These depend on the choice of L = Lo&.

Given @ € ,,, put V = K} and ¢[z] = 2®z* for x € V. Then we obtain a
hermitian space (V, ¢), which we denote by [@], and we write U(®) and SU(®P)
for U# (V) and SU¥(V) as subgroups of &. Put L = Ly with & € Ba. Clearly
L is integral if & € §,,(£), in which case L is maximal if and only if & € §2 (£).
Thus an element of 9 (¢) determines a hermitian space and a maximal lattice.

2.5. To parametrize all genera of @ € $H2(¢), we need a few more symbols:

(2.7) t=K§ﬂ(K§ Htv), t={ye K |yy’ € g},
vEh
(2.8) T ={z € &a|det(z) € t}.

Notice that t, = tj{y e K} ‘ yyP = 1} for every v € h, and t, =t} if v does
not split in K. Let Jx denote the ideal group of K and 39( /P the subgroup of
Jx generated by the ideals a such that Ng,p(a) = g and the principal ideals.
Now there is a sequence of isomorphisms:

(2.9) Ga/TS = Ky /K*t = Tk /3% b

The last isomorphism can be obtained by the map y — yr for y € K5. As for
the first isomorphism, we first note, for every £ € & and @ € .,

(2.10) THE = EEU(P)A® = {x € B4 | det(¢71w) € K*t}.

Clearly the last set contains the second set. Conversely, suppose x* € &a
and det(§7'z) = by with b € K* and y € t. We can find z, w € K
such that z, € vt} and w,wf = 1 for every v € h and y = zw. We can
find e € E, a € &, and v € U(P)a such that det(e) = z, det(a) = b, and
det(y) = w. Then det(z~'efya) = 1. By strong approximation in SL,,(K) we
see that 27 'eéya € v 1 ExSL,(K), and so 2~ 'eéya = 7 1e'zp with ¢/ € E
and B € SL,(K). Then x = (') teéyaf~! € EEU(P)a®, which proves the
last equality of (2.10). That T'® equals the last set of (2.10) for £ =1 can be
proved in the same way. Thus T'® is the inverse image of K *t under the map
x +— det(x), and so T'® is a normal subgroup of 4. Then we obtain the first
isomorphism of (2.9) and also the first equality of (2.10) for every £ € &a.

PROPOSITION 2.6. (i) For @, ¥ € 92 (&), &€ € B4, the spaces [P] and [¥] are
isomorphic if and only if they belong to the same genus.

(ii) Let X be a complete set of representatives for &a/T®, and for each
£ € Bp let Ye be a complete set of representatives for the genera of the elements
of 9Y(€). Then the hermitian spaces [P] obtained from & € Y for all & €
X exhaust all isomorphism classes of n-dimensional hermitian spaces without
overlapping.
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Proof. Let ® and ¥ be elements of 99 (£) belonging to the same genus. Then
there exists an element € € F¢ such that ePe* = ¥, and the Hasse principle
guarantees an element « of & such that ¥ = aPa*. Thus [¥] is isomorphic
to [®]. Conversely, suppose [®] and [¥] are isomorphic for @, ¥ € §9(¢). Then
@ = pUF* for some B € &. Now Lpé is maximal in both [@] and [¥], and Lo&S
is maximal in [@]. Thus Lo&B = Lo&y with v € U(¥)a by Lemma 1.10. Put
¢ =Byl Then ¢ € E¢, and (¥(* = @. Therefore ¥ belongs to the genus of
@. This proves (i). Clearly every n-dimensional hermitian space is isomorphic
to [¥] for some ¥ € §),,. Take a maximal lattice L in K} =V and put L = Lon
with 7 € Ba. We have then n € T&E with some ¢ € X. By (2.10) we can
put & =enya~! with ¢ € E, v € U(¥)a, and a € &. Put & = a¥a*. Then
a gives an isomorphism of [@] onto [¥]. Now Loy is a maximal lattice in [¥]
and Lofa = Lony, and so Lof is a maximal lattice in [@]. Thus @ € H2(&).
By (i), & can be replaced by a member of Y. This shows that every (V, ¢)
can be obtained as described in (ii). Now suppose [@1] and [®;] are isomorphic
for @; € Y, with &, & € X. Then @ = a®Pra™ with o € &. Since Lo&; is
maximal, we have Lo&ia = Lo&a¢ with ¢ € U(P2)a. Then glag—lggl SN
and so det(£;£, ') € K*t. We are taking the & from X, and therefore £ = &
by (2.10). By (i), @2 belongs to the genus of &1, and so P2 = $;. This completes
the proof.

2.7. The connection of a class of hermitian matrices with a class of lattices
is not so simple in general. Given @ € $°(¢) with a fixed ¢, in order to
exhaust all classes in the U(®)-genus of Lo, we have to consider the genera of
elements in H9 (£¢) for all ¢ € TG /E:&. Thus H2 (&) is sufficient if and only if
K*t= K* det(FE). We will not go into details, as we do not need the result in
our later treatment.

The case of SU-class is simpler. Fix £ € & and put L = Lo&. For @ € $,,(&)
we define the SU-genus (relative to &) of @ to be the set of all ¥ € §¥(£) such
that ¥ = ePe* with ¢ € E¢ such that det(e) = 1. Clearly det(¥) = det(®).
Given such ¥ and e, the Hasse principle guarantees an element a € & such
that ¥ = a®a*. Then det(a) det(a)” = 1. Changing « for ay with a suitable
v € U(®), we may assume that det(a) = 1. Since La = Le"!a and e la €
SU(P)a, we see that Lo belongs to the SU(P)-genus of L. We then associate
the SU(P)-class of La to W. We can easily verify that the set of all SU-classes
in the SU-genus of @ contained in $),,(£) are in one-to-one correspondence with
the set of SU(P)-classes in the SU(P)-genus of L.

2.8. Define (V, p) by V = K} and ¢[x] = 2P2* as above with any & € §,,.
Put L = Lo with £ € 4. We easily see that L = 071 Lo(®¢*)~!, and so

(2.11) [L/L] = det(PEcP)o™ if L = L.

We need a few more symbols. First, we put 99 = 02N F. For v € rg and (V, )

DOCUMENTA MATHEMATICA 13 (2008) 739-774



752 GORO SHIMURA

isomorphic to [®] with @ € 9,, we put $,(P) = s,(¢) and do(P) = do(¢p).

LEMMA 2.9. Let B be a quaternion algebra over F' and K a quadratic ex-
tension of F' contained in B; let t be the maximal order of K and O a maximal
order in B containing v; further let ¢ be the product of the prime ideals in F'
ramified in B and 0 the different of K relative to F. Then there exists a g-ideal
a such that O is isomorphic as a left t-module to t®a and N/ p(da) = se with
an element s such that B is isomorphic to { K, s}. Moreover, the coset aJ9, /F
is independent of the choice of O, and 9 is isomorphic as a right t-module to
t @ a*, where ¢ is the main involution of B.

Proof. Take ¢ € F* so that B = {K, ¢}, and consider (V| ¢) = [@] over K
with V = K21 and ¢ such that e € do(p). Using the symbols ¥, j of Lemma
1.3, identify j(a) with « for @ € B, and put M = yO~ with v € By such that
©[y] =t = v, for every v € h. Applying the local result of §1.11 to M,,, we see
that M is maximal and [M\/M] = ev. Put M = t}¢ with some ¢ € GLy(K)a
and a = det(¢)r. Then by a well-known principle M is t-isomorphic to t @ a.
By (2.11) we have det(®)Ng,p(0a) = e. Then we obtain the first assertion of
our lemma by taking s = —det(®)~!. Let O’ be another maximal order in B
containing t. By the Chevalley-Hasse-Noether theorem (see [E, Satz 7]) there
exists an t-ideal b such that bO’ = Ob. Take ¢ € K5 so that b = ct. Then
for each v € h we can find 1, € GLy(K,) such that yc,'zc, = yxn, for every
x € By,. Then y9! = yO,n,, and so yO' = M~~n with n = (1,)ven. Using
the map j in the proof of lemma 1.3, we find that n, = diag[1, ¢£/c¢,], and so
det(y~In)t = ¢[y]b~1b” € j?(/F‘ Thus det(&y~In)r € aj(}(/F, which proves the
second assertion. We can put O =tz + aw with elements z and w. Applying
¢ to this, we obtain the last assertion.

We call the coset aj(}( /F in the above lemma the characteristic coset of K
relative to B. Using this notion, we now reformulate Theorems 2.2 and 2.3 in
terms of the matrices @ in H9 ().

THEOREM 2.10 (The case of even n). Let the symbols n, {0y }ver,, €, and
& be given as follows: 0 <n € 2Z, 0, € 27, |o,| <n; e € F*, £ € &a. Let
B ={K, €}; let ¢ be the product of the prime ideals in F ramified in B, and
¢ the characteristic coset of K relative to B. Suppose that (—1)7*/2c > 0 at
each v € rg and

(2.12) det(£)o"=2/2 ¢ ¢,

Then there exists an element ® of 9 (€) such that

(2.13) e € do(P), det(@ffp)ag/2 =e, 8,(P) =0, for every v € ry.
Moreover, every element of 99 () is of this type, and the coset TE and the
genus of ¢ are determined by (eNg/p(K*), {0v}very)-
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Proof. Let the symbols n, {0, }vero, €, and € be given as in our theorem.
Then Theorem 2.2 combined with Proposition 2.6 guarantees an element ¥
of $Y(n) with some 1 € &4 such that € € do(¥) and o, = s,(¥) for ev-
ery v € ro. Put y = det(n)r. By Theorem 2.3 (i), (2.11), and Lemma 2.9
we see that no("~2)/2 ¢ ¢. Combining this with our condition (2.12), we see
that y € det(f)j%/F, and so det(n~1¢) € K*t, which implies 7 € T®E; see
(2.9). By Proposition 2.6 (ii), [¥] is isomorphic to [@] with some ® € H(€).
Replacing (¥, n) by (P, £), we obtain (2.13). This proves the first part of our
theorem. Conversely, given @ € $2 (&), put L = Lof. Let ¢ be the product of
the prime ideals in F' ramified in {K, do(¢)}. By Theorem 2.2 (i) and (2.11),
det(@&{’”)bg/2 = ¢, which together with Lemma 2.9 implies condition (2.12).
This proves the second part. The last part follows from Proposition 2.6.

THEOREM 2.11 (The case of odd n). Let the symbols n, {oy,}ver, €, and
& be given as follows: 0 <n—1¢€ 2Z,0,—1¢€ 2Z, |o,] < n; ¢ € F* and
£ € ®a. Let eg = aNg/p(b) with an t-ideal b and a squarefree integral g-
ideal a whose prime factors remain prime in K. Suppose (—1)(»~1/2¢ > 0 at
each v € rg and

(2.14) det(£)o" V%0 € 3% 1.
Then there exists an element ® of 99 (€) such that
(2.15) € € do(P), det(@fﬁp)Bénfl)/Q =aqa, 8,(P) =0y for every v € ry.

Moreover, every element of 9 () is of this type, and the coset TE and the
genus of ¢ are determined by (eNg/p(K>), {0v}very)-

This can be proved in exactly the same fashion as for Theorem 2.10.

LEMMA 2.12. Suppose F' has class number 1. Then the class number of K
is odd if and only if i = 3%/F, in which case —1 € Nk q(K*) if and only if
—1e NK/Q('CX)

Proof. Suppose the class number of K is odd. Then every t-ideal a is of the
form a = cb? with an t-ideal b and ¢ € K*. Thus a = cbb?b(b?)~! € j?(/F
as bb” is principal, and so Jx = 3(;(/},. Suppose the class number of K is
even. Then there exists an t-ideal ¢ whose ideal class is not a square. Suppose
r e 3%/F. Then r = 2y~ 'y” with z € K* and an tideal . Thus r = znyn°y—2,
a contradiction, as ny” is principal. This proves the first part. To prove the

second part, suppose —1 = aa” with o € K*; put at = bc™!

with integral t-
deals b and ¢ that are relatively prime. Then bb” = cc” and we easily see that
b= ¢, and so ¢Z = o~ 'cc”, which is principal. If the class number of K is odd,
then ¢ = cv with ¢ € v. Thus ac = ec” with € € v*. Then ee? = aa” = —1.

This completes the proof.
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The last statement of the above lemma is false if the class number of K is
even. For example, let K = Q(v/34). Then the class number is 2 and —1 = aa?
with a = (3 +v34)/5, but —1 ¢ Ng ,q(r™).

2.13. Let us now take K to be a real or an imaginary quadratic field whose
class number is odd. We denote by d the discriminant of K. Thus F = Q and
K= Q(\/E) By Lemma 2.12 we have Jx = 3?(/F, and so &5 = T® by (2.9).
Therefore by Proposition 2.6, every hermitian space over K is isomorphic to
(@] with @ € §9(1,,), and t! is a maximal lattice in it. For simplicity we put
9L = 9,(1,) and HY = HY(1,,). Then H consists of all = (c;;) € H, such
that \/Ecij € vand ¢; € Z for every i and j; 9 consists of all & € L
satisfying the following condition:

(2.16) If ® = PUP* W € 9}, and P € GL,(K) N M,(x), then det(P) € v*.

n?

For & € 9, we put s(®) = p — ¢ if K is imaginary and ¢ as a complex
hermitian matrix has p positive and ¢ negative eigenvalues; we put s(@) =0
if d>0and n € 2Z; we do not define s(®) if d >0 and n ¢ 2Z, and so the
symbol s(®) in that case must be ignored. Clearly two elements ¢; and @2 of
9L belong to the same genus if s(®1) = s(P2) and &1 = P, P2 PF with some
P, € GLy(x,) for every v € h. Now, for L =t} we have [L/L] = det(vd ®)r
by (2.11). For d > 0 we fix an embedding of K into R, and take v/d > 0.

THEOREM 2.14 (The case of even n). Let K = Q(\/d) as in §2.13, and let
three integers n, o, and e be given as follows: 0 < n € 2Z, o € 2Z, |o| < n;
o=0 if d>0; e is positive and squarefree. Let r be the number of prime
factors of e. Suppose that o — 2r € 4Z and no prime factor of e splits in K.
Then there exists an element @ of f_)?l such that

(2.17a) det(vVd®) = (-1)7%¢ and s(®) =0 if d<O0,
(2.17h) det(Vd®) =1e with 7=1 or =1 if d>0.

Moreover, every element of $° is of this type. Its genus is determined by
(o,e)if d<0,and by e if d>0.If d>0 and —1 € Ng;q(K*), then both
e and —e can occur as det(x/&@) for @ in the same genus. If d > 0 and
—1¢ Ng/(K™), then T is uniquely determined by the condition that a prime
number p divides e if and only if Te ¢ Ni/q(K)').

Proof. Given (n, o, e) as in our theorem, we can find a quaternion algebra B
over Q which is ramified at p if and only if ple. Then B is definite if and only
if r is odd. Since o —2r € 4Z, we see that d < 0 if r is odd. Our assumption
on the prime factors of e allows us to put B = {K, ¢} with ¢ € Q*. Then
(=1)7/%2¢ > 0 if d < 0. By Theorem 2.10, we obtain ¢ € $° satisfying (2.13)
with &€ = 1,,, as (2.12) can be ignored. Then ¢ = eZ and det(vd®) = e with
7 = 41. Since s(®) = o, we see that 7 = (—1)?/2 if d < 0. The same theorem
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says that every element of § is of this type, and its genus is determined by
eNg/p(K*) and 0. We easily see that (e, o) determines (e Ng,r(K*), o), and
vice versa. If —1 € Ng/q(K ™), then by Lemma 2.12, t* contains an element
¢ such that ((? = —1. Then det(P®P*) = —det(P) for P = diag[¢, 1,-1].
Thus both e and —e can happen. Suppose d > 0 and —1 ¢ Ng/q(K™).
Then {K, e} is not isomorphic to {K, —e}. Since —d € Ng,;q(K*), do(p) is
represented by det(vd®). If det(vd®) = re, then B = {K, 7e}. Thus 7 is
uniquely determined by the condition that a prime number p divides e if and
only if 7e ¢ Ng,q(K,).

THEOREM 2.15 (The case of odd n). Let K = Q(v/d) as in §2.13 and let
four integers n, o, T, and e be given as follows: 0 < n—1 € 2Z; o is necessary
only if d <0, c—1¢€2Z, and |o| < n; 7 is necessary only if d > 0, and
T =1 or —1; e is positive and squarefree, and every prime factor of e remains
prime in K. Then there exists an element ® of $H° such that

(2.18a) det(vVd®) = (—1)=V/2e\/d and s(P)=0 if d<O0,
(2.18D) det(Vd®) = ted if d > 0.

Moreover, every element of 92 is of this type, and its genus is determined by
(0,e) if d <0 and by (7, €) if d > 0. For d > 0 the sets (1, e) and (-1, €)
determine the same genus if and only if —1 € Ng,q(K*).

Proof. Given (n, o, 7, €) as in our theorem, take ¢ = (—1)®~1/2¢ if d <0
and ¢ = (—1)("V/27¢ if d > 0. Then Theorem 2.11 with ¢ = 1,, and a = eZ
guarantees an element @ of HY satisfying (2.15). We can easily verify that
(2.18a, b) hold. That every & € §Y is of this type also follows from Theorem
2.11, as do(®P) can be represented by e or —e with a positive integer e as in
our theorem. Since the last assertion is obvious, our proof is complete.

COROLLARY 2.16. Let K = Q(v/d) and $. be as in §2.13; let 0 < n € Z
and o € Z.

(i) If d < 0, there exists an element ® of O such that det(v/d®) =1 and
s(@) = o exactly when n € 2Z and o € 4Z.

(ii) Suppose d > 0; then there exists an element @ of $HL such that
det(\/aé) = 1 if and only if n € 2Z. Moreover, there exists an element @'
of 9L such that det(vd®d') = —1 if and only if n € 2Z and —1 € Ng/q(K*).

Proof. From Theorem 2.15 we see that det(v/d®) = +1 for & € H) cannot
happen if n is odd. Take e = 1 in Theorem 2.14. Then r = 0, and we
obtain our results immediately from that theorem. Notice that if d > 0 and
—1 ¢ Ng/q(K*), then {K, —1} is a division algebra, and so —1 ¢ Ng/q(K))
for some prime number p.

The above corollary is a natural analogue of a well-known fact on unimodular
quadratic form over Q.

DOCUMENTA MATHEMATICA 13 (2008) 739-774



756 (GORO SHIMURA

2.17. EXAMPLES. (2) Take n =2, d =21, and e; = 11 - 13; then the class

number of K is 1 and —1 ¢ Ng/q(K*). For ¢; = 72/7\/5 2/1/1ﬁ
have det(v/21®;) = —e; and @; € $3. But we cannot have det(v/21®) = e;
for @ € 99.

Next take eg = 3-7-11-13. Then det(\/ﬁé) for @ € f)g can be —ey but
cannot be es. Also, {K, 11 -13} is ramified at p =3, 7, but {K, —11-13} is
not. From this we can derive that diag[11, —13] is reduced, but diag[11, 13] is
not.

3. HERMITIAN DIOPHANTINE EQUATIONS OVER A LOCAL FIELD

3.1. Throughout this section we fix (V, ¢) in the local case, and put n =
dim (V). We denote by p the maximal ideal of g, and by ¢ the core dimension
of (V, ¢). Then t <2 as observed in §2.1. For an t-lattice L in V we put

1) CL)={acU?(V)|La=L}, CYL)=C(L)NSUV).

Define L[g, b] and L[g] by (1.10b, ¢). Clearly L[q, b] and L[q] are stable un-
der right multiplication by the elements of C(L), and so the four orbit sets
Llg, b]/C(L), Llq]/C(L), L[q, b]/C*(L), and L[g]/C*(L) are meaningful. Now
our principal results of this section are the following two theorems.

THEOREM 3.2. Suppose that F is local and n > 1. Let L be a maximal
v-lattice in V. Then for every q € F* and every t-ideal b the following
assertions hold:

() #{Llg. b}/C(L)} < 1.

(i) #{Llg, b]/C* (L)} < <.

(iii) #{L[q, b]/C (L)} < 1 if we exclude the following two cases: (a) n =2
and t=0; (b) t =1, qe =Dbb", and 0 # .

(iv) If n=2 and t =0, then

1 if geg”,
N(qg)[1 = {K/F}N(p)~'] if q€p,
where N(a) = #(g/a), and {K/F} =1, —1, or 0, according as K = F x F, K

is an unramified quadratic extension of F, or K is ramified over F.

(v) Llq, 97t # 0 ezactly in the following cases: (a) t =0 and q € g; (b) t =
Lo=r, dO(‘P) = NK/F(KX)a and q € g; (C) t=1, dO(W) Z gXNK/F(KX)a
and g€ p~t (d) t=1,0#r, and g € po~2 U (072 ﬁdo(ga)); (&) n=t=2
and gCqgCp Ll ifo=v qg=p tifo#v;(f) n>2=t and qep~ L.

62wt ycw) -

The proof will be given in §3.6 through §3.12.
The quantity #{L[g, b]/C*(L)} in Case (b) of (iii) is not so simple. We will
discuss that case in Lemma 3.13 (ii).
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For every a € U¥ we have C(La) = a~'C(L)a, C*(La) = a=1CY(L)a, and
(La)[q, b] = L|g, b]a. Therefore, in view of Lemma 1.10 (i), it is sufficient to
prove Theorem 3.2 for a special choice of L. Also, since ¢- L[q, b] = L]ccPq, cb]
for every ¢ € K*, it is sufficient to prove our theorem when b =071 or b =t.

THEOREM 3.3. If n > 1, we have #{A[q]/C*(A)} < oo for every q € F*
and every t-lattice A in V.

Proof. Let L be a maximal lattice in V. Given A, we can find ¢ € F'* such
that ¢cA C L. Then cAlg] C L[c?q]. For any two open compact subgroups D
and E of SU?¥ we have [D : DN E] < co. Therefore it is sufficient to prove that
#{Llq]/C*(L)} < oo. Given h € L[q], put b = ¢(h, L). Then gt C b C 271,
and hence L[g] C (J, Llg, b], where b runs over the t-ideals b such that
qr C b C 971 Therefore the desired fact follows from Theorem 3.2 (ii).

LEMMA 3.4. Let L be a maximal lattice in V. Suppose dim(V) > 1 and
q € g*; then #{L[q, t]/C(L)} < 1. Moreover, #{L|q, t]/C*(L)} < 1 if K is
a field unramified over F, or the core dimension of (Kh)* is not 0 for some
h e Lig, .

Proof. Let h, k € L[q, t]. We see that L + th is integral, and so h € L, as L
is maximal. Given z € L, put y =z — [h] " '¢(x, h)h. Then y € LN (Kh)*.
From this we can derive that L = th & M with M = L N (Kh)*. Similarly
L =vk® M with M’ = LN (Kk)*. Since L is maximal, M and M’ must be
maximal. By (1.5) we can find an element « of SU¥?(V) such that k = ha.
Then M« is a maximal lattice in (Kk)*. By Lemma 1.10 (i) we can find an
clement § of U¥((Kk)*) such that Maf = M’; by Lemma 1.10 (ii) such a
B can be taken from SU¥((Kk)*) if K is a field unramified over F, or the
core dimension of (Kk)* is not 0. Extend § to V by putting k8 = k. Then
af € C(L) and haf = k. We have a3 € C'(L) under the said conditions on
K or on Kk. This proves our lemma. Notice that the core dimension of (Kh)*
depends only on hU(p).

3.5. We call an element x of v} primitive if 2t} = t. Replacing t by g, we
can similarly define the primitive elements of gl. Given an integral v-lattice L
in V, identify V and L with K and t} with respect to an t-basis {2}, of
L; also let ¢ = (¢(z, zj))zjzl. By (1.9) we have dpg < v for any element ¢
of v such that §t = 0. Moreover, ¢(z, L) =01 for x € L =t} if and only if
dxpo is primitive.

To prove Theorem 3.2, we fix a maximal lattice L in V, and hereafter write
simply C and C! for C(L) and C*(L); we always assume n > 1.

3.6. In this subsection we consider the case K = F' x F, using the notation
of §1.8. We can put L = gl x gl.
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Let h = (a, b) € L[g, t] with a, b € F}. Then o(h, L) = (ag?, bg}), and
so both a and b are primitive. Let {e;}; be the standard basis of F..
Take o € SL,(g) so that ac = e; and put ¢ = b-‘a™! = (¢;)" ;. Then

(1) 1nz1] with
r = (¢ tc2,..., g tcy,) and put v = a- 3. Then ay = e; and b1y~ =
¢! = ger. Thus L[g, t]/C?! is represented by (e1, ge1) if ¢ € g*.

Next suppose ¢ € p; then (co, ..., ¢,) is primitive, and so we can find S €
GL,—1(g) such that (ca, ..., )8 =(1,0,...,0). Put v = « - diag[1, {371].
Then ay = ey and b-"y~' = (g, 1, 0, ..., 0). This shows that #{L[q, t]/C} =
L. If n > 2, we can take 3 € SL,_1(g), and hence #{L[g, |/C'} = 1.

Finally suppose n = 2 and ¢ € p; then we have shown that L[g, t]/C! can
be represented by the elements of the form (61, (q, s)) with s € g*. Suppose
(e1,(q, 8))a = (e1,(g, 1)) with a = (v, y71) € C', v € SLa(g), and s, ¢ €

¢1 = q. Suppose ¢ € g*; then define 8 € SL,(g) by 8 =

g~. Clearly v = with v € g, and so ¢t = s — qu. Since the procedure

0
1
is reversible, we see that #{L[g, t]/C'} = #(g/qg)*, which gives (3.2) for
K = F x F. This completes the proof of Theorem 3.2 in the case K = F' x F.

Hereafter from §3.7 through §3.12 we assume that K is a field.

3.7. Let us consider the case n =t = 2. Let the symbols be as in Lemma
1.3 and §1.11; we identify B with j(B). In view of Lemma 1.6 we can take
¢[f] = ¢ =1 in the proof of Lemma 1.3, and so we can take v = 1 in §1.11.
Thus M = (9. Since ¢ is anisotropic, SU?(V) = C*'(M) = {a € O* | aa* =
1}. From (1.5) we see that #{M[q, 07']/C*} = 1 if Mg, 0~'] # 0. Since
TrK/F(cp(Eoz, Eﬁ)) =Trg/p(ap’) for a, f € B, we have ¢(fa, M) =0~ only
if Trp,p(O) = g, which is so if and only if &) = O or aO = P~'. Take
such an « and assume that K is unramified over F. Then fa € M[aat, t].
Thus Mg, 071] # 0 if and only if qg is g or p~!. Next suppose that K is
ramified over F. Clearly M|q, 07| # 0 for some ¢, and gg is g or p~! for
the same reason as above. Suppose ¢ € g*. Then we can find an element
& € 9 such that £ = q. Then p[x€] = qp[z] for every z € V, M& = M, and
MI1, b]¢ = Mg, b]. Let do(¢) = sNg/p(K*) as in the proof of Lemma 1.3.
We may assume that s € g*, s ¢ Ng/p(t*), and ¢o = diag[l, —s]. Observe
that O consists of the elements a + bw with a, b € K such that a +a” € g
and aa” — sbb” € g. Now let fa € MJ[1,071] with o € B. Then aa' = 1,
and so £ € M[1,071]. Thus 07! = (¢, M) = p({, £D). For a+ bw € O as
above, we have ¢(¢, {(a 4+ bw)) = a”, and so O contains an element a + bw
such that av = 07, Put Ng,p(0) = p* with 0 < x € Z. Then aa’g = p~",
and bb’g = p~" as aa’ — sbb? € g. Putting a~'b = ¢, we obtain scc” —1 € p*,
a contradiction, as s ¢ N, p(t*). Thus M[g, 9~'] # 0 only if qg = p~*. This
proves Theorem 3.2 when n =t = 2.
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3.8. Take an element u € v so that v = g[u] and put § = u — u”. Then
0 =4t and §” = —40. We will often use these v and § in our later treatment.

Take a decomposition of V' as in (1.8a, b), and assume that it is a Witt
decomposition; thus ¢ = dim(Z). Put g; = 1 f; and

(3.3) L:Z(tei—i—tgi)—i—M, M={yecZ|gly €a}
i=1
Then L is a maximal lattice in V as noted in §1.7. With an ¢
basis {m;}!_; of M, consider matrix representation with respect to
{e1, ..., er,m1, ..., Ms, g1, ..., gr}. Then ¢ is represented by
0 0 —5'1,
(3.4) po=1| 0 ¢ 0 ;
5711, 0 0

where ¢ = (¢(m;, mj))z j—1- Now write an element of GL(V) as a matrix with
9 matrix blocks corresponding to the blocks of (3.4), and let P be the group
consisting of the elements of U¥ whose lower left 3 blocks under the diagonal

blocks are all 0; also let P* = PN .SU¥. Then
(3.5) U® = PC(L) and SU¥ = P'C(L);
see [S2, Proposition 5.16]. If » = 1, P consists of the matrices of the form

a”P(s+ uPbCb*)
—da"Pelb* ,

a_p

(3.6)

o O 9

b
e
0
where a € KX, be K}, e ¢ US(Z), and s € F.

3.9. The case t = 0. Represent the elements of V by row vectors in K}! x K}
with respect to the basis {e1, ..., er, g1, ..., gr}, and GL(V) by GLs,.(K),
acting on the right. Then for h = (y, 2) € K} x K} we have ¢[h] = §~1(2y* —
yz*) and @(h, L) =61 >°"_ (tyi+rz;). Now ¢ is represented by ' n, where

Jo -1,
=l o |-
Therefore diag[a, a] € U? for every o € GL,(K), where & = (*)~!. Suppose

@(h, L) =071 for h = (y, 2); then >_;_, (vy; +tz;) =t and @[h] € g. Putting
k = (e1,qugy1) with ¢ € F (not necessarily # 0), let us prove

(3.7) ¢lhl=q and o(h, L)=0"1 = h e kC(L); h € kC*(L) if r > 1.

Since n € C', changing h for hn if necessary, we may assume that Sty =
t. We can find an element o € GL,(t) such that ya = ej; we can even take
a from SL,(v) if r > 1. Put w = za. Then (y, z)diag[a, a] = (e1, w), and
so w; — w] = ¢d. Thus we can put w; = p + qu with p € g. Define an
element s = s* € M, (¢) so that s11 = p and s1; = w; for j > 1, and put
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8= [1(; 18 } . Then 3 € C* and kB = (e1, w). If r > 1, then we see that

h € kC*, and so L[g, ~!] = kC'. This proves (3.7) and also Theorem 3.2 (i),
(iii), (v) when t = 0.

Suppose r = 1; then y € t*. Since C'! is a normal subgroup of C, the above
argument shows that h € |J,(¢, t~"qu)C', where t runs over v*. Define B
as in Lemma 1.3. From (1.7b), (1.15), and the last equality in the proof of
Lemma 1.3 we obtain B = My(F), SU¥ = SLy(F), and C' = SLy(g). Let

t € t* Nglgu]. Then ¢t = a + cqu with a, ¢ € g, and we can find an element
v € SLa(g) of the form v = {(cl Z} . We have (1, qu)y = (¢t,t"Pv) with

v € t. Then v —v” = ¢, so that v = qu — s with s € g. Since tt? € g*,

!/
we can put s = ttPs’ with s’ € g. Put o = Ll) 51] Then o € C! and
(t, t=Pv)o = (t, t~Pqu), which shows that (t, t=Pqu) € (1, qu)C* if t € glqu].
Since the converse is obvious, we thus obtain Llg, 9] = |, (¢, t~Pqu)C",

where 7 = v*/g[qu]*. This proves (3.2) and completes the proof of Theorem
3.2 when ¢ =0.

3.10. The notation being as in (3.3), put H; = zzl(Kei + Kg;). Let
us now show that given h € V, there exists an element « of C! such that
ha € Hy + Z. This is obvious if h € Z or r = 1. So assume that h ¢ Z and
r>1.Put h=w+k with k€ Z and w = Z;Zl(yiemingi) €eH,, vy, z € K.
Then we can put Y ;_, (vt + z;t) = dv with d € K*. Taking d"'w as h of
(3.7), we can find an element v € C'(L N H,) such that d~'wy € H;. Extend
v to an element of C'(L) by defining zy = z for every x € Z. Then we obtain
the desired fact. This means that if n > ¢ > 0, then it is sufficient to prove
Theorem 3.2 when r = 1.

3.11. Case t > 0, r = 1. Writing simply e and ¢ for e; and g1, we have
V=Ke+7Z+ Kg and L =re+ M + g with a maximal lattice M in Z. Let
h=ye+ax+zg with y, 2 € K and o € Z. Then ¢[h] = §~1(2y” — yz°) + ([x],
where ( is the restriction of ¢ to Z, and o(h, L) = 6~ *(vy + t2) + ((z, M).
Suppose h € L[g, 0~!]. Then ty+rz+0((z, M) =t,and hence y, z € t, ¥ € M,
and @[h] — ¢[z] € g. We identify an element of Z with a row vector of K} with
respect to an t-basis of M. Then an element ae+b+cg of V with a, ¢ € K and
b € Z can be identified with a row vector [a b ¢| of K} ,. If t =2 and M
corresponds to O as in §1.11, then M corresponds to B!, and so ([z] € p7L;
consequently ¢[h] € p~!. Since e + qug € L[q, 97! if ¢ € g, we see that
Llg, 071] # 0 for every q € g.

(a) First suppose t = 2 and ¢ € p. Suppose also that ty + vz # v. Then
yzf € pr, and so 6 1 (2y” —yz”) € p. Thus ([x] € p, and hence ((x, M) # 0~ 1L.
(In §3.7 we showed that ((z, M) = 027! only if g C ¢[z]g C p~'.) Therefore
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d0p(h, L) # ¢, a contradiction. This shows that (y, z) must be primitive. By
(3.7) there is an element a of C(ve + tg) such that (ye + zg)a = e + aug with
a € g. Extend « to an element v of SU%(V) by defining wy = wo for w € Z
with o € U¥(Z) such that det(c) = det(a)~!. Since Mo = M, we see that
v € C and hy = [1 k au] with k € M such that ([k] = ¢ — a. Given
another h' € L[g, 0 !], we can similarly find an element ' of C' such that
Ry =1 kK du] with o' € g and k' € M such that ([k'] = ¢ —a’. Put
b=k —k and

1 b s+ u’b(b*
(3.8) T=1{0 1 —iCb*
0 0 1

with some s € g. This is a special case of (3.6) and belongs to SU?(V). Since
b <t and d¢ < t, we see that 7 € C1. We choose s so that hyr =[1 k' a'u],
which is so if and only if a’u = s + u”b(b* — §k(b* + au. This can be achieved
by taking s = Trg/r(ul(k, ¥')) — (u + w?)([K']. Then h'y' = hy7, and so
h' € hC! as expected.

(b) Next suppose t =2 andq ¢ p. Then q € g¥ or qg = p~ 1. If 0 # v and
q € g, then ([z] € g, and so 6{(x, M) # v as shown in §3.7. Consequently
ty+tz =t in such a case, and the argument of case (a) is applicable. Therefore
we may assume that gg = p~! if 0 # t. Then as observed in §3.7, we can find an
element v of Mg, 9~!]. The same can be said for both cases ¢ € g* and qg =
p~ ! if 0 =t. We identify v with the row vector [0 v 0], which can be viewed
as an element of L[g, 971], and so L[g, 97!] # 0 in such cases. Combining (1.5)
and (3.5), we have h € vP*C!, and hence h = vra with 7 € P! and a € C1.
Write 7 in the form (3.6) and focus our attention on the element e of US(Z)
there. Since U¢(Z) = C(M), we see that ve € M[g, 0], and hence ve = ve
with e € CY(M) = SUS(Z) as shown in §3.7. Let 8 = diag[l, ¢, 1] and
7 = 7371 Then 3 € C',m € P!, and vm = ha='3~! € Lg, 071]. Our
choice of ¢ shows that vm; = [0 v p] with p € v. Since v € MJ[q, 071],
dv( is primitive (see §3.5), and so we can find an element b of t} such that
SvCb* = —p. Define 7 by (3.8) with this b and s = 0. Then 7 € C! and
v = vm; = ha~'#~1. This shows that h € vC'. Thus we obtain Theorem 3.2
when n >t =2.

(c) Finally suppose t = 1; let M and ¢ be as in (3.3) and (3.4). Then ¢ =
¢[m] and M = vm with an element m. Clearly ¢ € g* or (g = p; the latter
case occurs only when 9 = t. We first treat the case where ( € g*; the other
case will be treated in §3.12. Thus h = ye+2g+sm with y, z, s € K such that
yt+2zv+s0 =t and 6~ !(zy” —yz?)+(ss” = q. Suppose 0 =t and yr+ 2t # t.
Then s € t* and we see that ¢ = ¢[h] € g*. Then #{L[q, 0~']/C* (L)} < 1
by Lemma 3.4.

(c1) Let us now prove the case in which ¢ € g and yr+ zv =t for both
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ramified and unramified K. Putting p = §~!(z2y” — y2”) and applying (3.7)
to ye+ zg, we find v € C(L) such that M~y= M and (y, z)y= (1, pu) with
pE€g. Replacing v by ya with «a€C such that ma=det(y) !m and « is the
identity map on Ke+K g, we may assume that y€C'. We have hy =[1 2 pu]
with x € v. We consider

1 —x wuflxx’
(3.9) c=10 1 Cx? |,
0 0 1

which is similar to (3.8) and belongs to C'. We have then hyo = [1 0 s
with s € g. Taking (1, s) as (y, z) above, we find 4/ € C! such that hyoy' =
[1 0 gqu]. Thus h € kC* with k = e + qug; also Theorem 3.2 (v), (b) is valid.

(c2) Suppose K is ramified over F. If ¢ € g, then s € t, so that yt+zt = .
and (cl) covers this case. Thus we assume that ¢ ¢ g. Then s ¢ v and
qg = ssg. Put 0 = ¢" with the maximal ideal q of v and 0 < k € Z. Since
50 C t, we can put s 't = q® with 0 < a < &; then ¢g = p~® Thus a is
determined by ¢. Suppose a < k; then s0 # t, so that ytr + zt = v. By the
same technique as in (c1), we can find v € C*! such that hy =[1 2z pu] with
pegand x € K. Then zq® =t. Let k=[1 x1 pu] € L[g, 0] with p; € ¢
and x; such that z;q® = v. Our task is to show that k € hC. For simplicity
put N(w) = ww” for w € K*. We have (N(z)+p =q=(N(x1)+p1, and so
N(z7'z1) — 1 € p® Thus N(z71z;) € N(x*) N (1 +p*) = N(1 + q%) by [S2,
Lemma 17.6 (2)]. We can therefore put N(z7'z;) = N(d) with d € 1 + q°.
Put a = diag[l,, dz; 'z, 1,]. Then a € C' and ka = [1 dr pyu). Put
b= dx — x and consider 7 of (3.8) with this b and any s € g. Then 7 € C!
and hyr =[1 dx ¢] with ¢ € g such that ¢—¢? = dp;. Choosing s suitably,
we obtain ¢ = piu. Then k € hC'.

(c3) It remains to treat the case a = k. Then s =t and qv =02, Put
ho = 6h and qo = —6%q. Then hg € L[qgo, t]. Since qo € g*, by Lemma 3.4 we
see that #{L[q, 7']/C} = #{Llqo, ¥]/C} < 1.

(c4) As for (d) of Theorem 3.2 (v), we have seen that L[g, 97!] # 0 only
if ¢ €072; also e+ qug € L[g, 97 !] if ¢ € g. Thus it remains to consider the
case where 0 # v and ¢ ¢ g. Suppose gg = p~* with 0 < a < k. We can
find ¢ € g* such that ¢ —1 € p® and ¢ ¢ N(x*). Then q or ¢ 'q represents
do(p). If q € do(p), then q = (ss” with s € K, and e + sm € Llg, 071]. If
q € cdo(p), put ¢ = cCss” with s € K and p = (ss”(c—1). Then p € g and
e+ pug + sm € Llg, 071]. Thus L[g, 07! # 0 if ¢ € po~2. The case qv = 02
will be settled in Lemma 3.13.

3.12. Let us now treat the case where ¢t = 1 and (g = p. Then 0 = ¢
and § € v*. To avoid possible confusion, we use the letter 7 instead of (;
thus @[m] = 7. Let h =ae+bf + cm € L|g, t]. Then ta + th + tmre = v and
ab? + a’b + mec? = q. Clearly g € p~!; also ¢ € ¢ if and only if ¢ € g. Given
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q € g, we can find b € v such that b+ b” = q. Then e+ bf € L[qg, t]. Given
gep !, ¢g, wecanfind d € t* such that dd? = 7q. Then 7~ tdm € L]q, t].
Thus L[g, t] # 0 if and only if ¢ € p~1.

(1) Let us first assume that ¢ € g; then ¢ € v and ta +tb = t. By (3.7)
there exists an element 8 of C(te + tf) such that k8 = e + sf with s € t.
Extend 3 to an element o of C'(L) by defining ma = det(8)~'m. Then
ha = e+ sf + cym with ¢; € v. Now represent the elements of U¥?(V) by
matrices with respect to {e, m, f}. Then (3.5) holds with the subgroup P of
U¥ consisting of the upper triangular matrices. Observe that P contains every
matrix of the form

1 -z vy
(3.10) 0 1 7z
0 0 1

with z, y € K such that y +y” = —mzz”. Since Trg/p(r) = g, for any x € ¢
we can take such a y from tv. Let v be the matrix of (3.10) with z = ¢; and
y € t. Then v € CY(L) and hay = e+ zf with z € v such that z + 2# = q.
Take z; € v so that 21 +2{ = ¢. Denote by ¢ the matrix of (3.10) with z =0
and y = 21 —z. Then € € C'(L) and (e+2f)e = e+ 21 f. This gives the desired
result when q € g.

(2) Next we consider the case ¢ ¢ v; put d = me. Then d € v and ¢ =
ab? + a?b + m~1ddP. Thus 7q € g*, and so we can find an element dy € t*
such that dodfj = mq. Put k = m~'dym. Then k € Lg, t]. By (1.5), we have
h = ka with o € SU%, and by (3.5) we can put a = 3y with 8 € P! and
~ € C'. Replacing 3 by 3¢ with a suitable diagonal matrix ¢ belonging to
C', we may assume that the center entry of 3 is 1. (Here we need Lemma 1.9
(i).) Let [0 1 4] be the second row of 3. Then [0 7~ 'dy 7 'doj] = kB =
hy~! € Lig, t], and so 7~ 'dpj € v. Put = 7~ 1j°; then 2 € v. Let ¢ be the
matrix of (3.10) with this 2 and y such that y + y” = —7za?. Then ¢ € C!
and ke = kB = hy~!, which gives the desired fact.

It only remains to discuss L[g, 971]/C? when 9 # v and qr = 272, (In (c3)
we treated L[g, 071]/C.) The problem is settled by (ii) of the following Lemma.

LEMMA 3.13. If K is a field ramified over F, then the following assertions
hold:

(i) Let W = (Kh)* with h € L]g, b] and let Ey = det (C N U%(W)), where
we view U?(W) as the subgroup of U?(V') consisting of the elements & such
that h& = h. Then #{L[q, b]/C'} = [EL : E1] < oo, where Ey is as in Lemma
1.9.

(i) If 1 < n—1 € 2Z and qv = 02, then #{L[g, 0]/C'} = 2 or 0

according as q represents do(p) or not.

Proof. Clearly CNU®? (W) is an open subgroup of U¥(W). Now det : U¥(W)
— F is a continuous surjective map, and so it is an open map by virtue of a well
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know principle; see [S3, Lemma 8.0]. Thus E; is an open subgroup of E, and
so [E : Ey] < o0, as E is compact. Therefore [E, : Eq] < co. Next, take a finite
subset B C C so that {det(8)}sep gives Er/E. Let k € Lg, b]. By Theorem
3.2 (i), k = ha with a € C. Then det(a3~!) € E; for some 3 € B, so that
det(af™!) = det(y) with v € CNU?(W). Put € = a~ty3. Then ¢ € C* and
hB3 = hyB = k€, that is, k € hBCt. Thus L[g, b] = Usen hBC. We easily
see that the last union is disjoint, and so we obtain (i). To prove (ii), let the
notation be as in (3.3) and (3.4); let M = tvm, p[m] =( € g*, and 2 =~ as
in (c2) above. Then ( represents do(). Suppose qt =02 and h € L[g, 071];
put h = > (yie; + zgi) + sm with y;, z;, s € K. Then y;, z; € v, and
q —(ss? € g, so that st = 07" and ((ss”)"'q € 1 +p~ € Nk, p(x*); thus
q represents do(y). This shows that L[g, 97!] # () only for such a ¢. Taking
such a ¢, we can put ¢ = (za” with x € K*. Let k =xm and W = (Kk)*.
Then k € Lig, o7, W = >/ (Ke; + Kg;), and C N U¥(W) = C(A) with
A =37 (ve; +vg;); thus By = Ej. By Lemma 1.9, E;, = E, E5 = Ey, and
[E : Ep] = 2, which together with (i) shows that #{L[q, ~']/C*} = 2. This
completes the proof.

LEMMA 3.14. Let W = (Kh)* with h € Lg, b] and let A = LNW. Suppose
that 0 < n — 1 € 2Z. Then there is a unique maximal lattice in W containing
A at least in the following two cases: (1) q(bb?)~t =1; (2) ¢(bb?)~1 =pr and
{K, qdo(p)} is a division algebra. Moreover, A is mazimal and C(A) = C(L)N
U?(W) in Case (1); A is mazimal and [C(A) : C(L)NU?(W)] = N(p)+ 1 in
Case (2) if K is unramified over I' and do(p) = Ng/p(K*). These assertions
are true with C instead of C.

Proof. Changing h for ch with some ¢ € K*, we may assume that b = t.
This does not change the ideal q(bb?)™! nor {K,qdo(¢)}. Thus ¢ € g* in
Case (1) and gg = p in Case (2). Suppose ¢ € g*. Then L = th@ A as
shown in the proof of Lemma 3.4, and A is maximal as noted there; clearly
C(A) = C(L)NU?(W) and CY(A) = CY(L) N U?(W). Next suppose qg = p
and {K,qdo(p)} is a division algebra. Let wu, d, and {e;, g;} be as in §3.8.
Since n ¢ 2Z, we have L = vm + Y., (ve; + tg;) with an element m such
that ¢[m] = ¢. Theorem 3.2 (i) allows us to replace h by any element in
L[g, t]. Thus we can put h = e; + qug;. Put now k = e; + qug1, Y =
Kk+ Km, and N =tk +tvm. Then ¢lk] = —q, W =Y @) | _,(Ke; + Kg;),
A=N+3>"_,(ve;+tg;), and do(Y) = qdo(p). Since {K, qdo(p)} is a division
algebra, (Y, ¢) is anisotropic, and so has a unique maximal lattice M as noted
in §3.7. Put A" = M +>"._,(ve; +tg;). Then clearly A’ is the unique maximal
lattice in W containing A.

To prove the remaining part, we assume that qg = p, 0 = ¢, and do(p) =
Nip(K*). Since N € M and [M : M] = N(p)? = [N : NJ, we obtain M = N,
and so A is maximal. We easily see that C(L)NU? (W) C C(A). Let v € C(A).
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Then Ly is a maximal lattice in V containing A, so that >__,(ve; +tg;) C L.
By [S2, Lemma 4.9 (i)] we have Ly = J+Y_!_,(ve; +tg;) with a maximal lattice
Jin Km+ Key + Kg;. Since m € J, from (1.9) we see that ¢(m, J) =rt, and
so J =tm + H with a maximal lattice H in Ke; + Kg; as shown in the proof
of Lemma 3.4. Now h = hy € Ly and k € A = A~; thus h, k € J. Put
Hy = ve; +tg1. By Lemma 1.10 (ii), H = Hpa with a € SU¥(Ke; + Kg1). By
(3.5) we can take « in the form (3.6). Identify GL(Ke; + Kg1) with GLy(K)
with respect to the basis {e1, g1}. Replacing a by an element of C'(Hy)«, we
0
w = agy; then H = vz + tw. Since de; = uk —uPh € H and gégy =h—k € H,
we see that p C ag C g, and so we may assume that ¢ = 1 or a = ¢q. Now
©(z,e1) €t, and so b€ g. Thus if a =1, then H = Hy. Suppose a = g; put
al b
0
exist exactly N(p) + 1 maximal lattices in Ke; + Kg; containing h and k,
and so there exist at most N(p) + 1 lattices of the form Ly with v € C(A).
This shows that

can put o = {a with @ € F* and b € F. Put z = a e + bg1 and

op = . Then Hypap = Hpoay if and only if b — b € p. Thus there

(3.11) [C(A): C(L)NU?(W)] < N(p) + 1.

To show that this is actually an equality, define the symbols ¢, j, w, and O as in
Lemma 1.3, (1.6), and §3.7, with Y as the space V there. In the proof of Lemma
1.3 take g = diag[(, —q] and s = (~'q. Then the identification of V with
K2 in the proof of Lemma 1.3 (which is unrelated to the above identification
of GL(Ke; + Kg1) with K2) identifies m with (1, 0) and k with (0, 1), so
that m here equals ¢ of Lemma 1.3; also, M = £j(O) = mj(9). Let 8 be an
element of O such that S3* = 1; define & € SU?(V) by £ = j(8) on Y and
zé =z forevery v € Kh+Y., ,(Ke;+Kg;). Then £ € C'(A). Put 8 = c+dw
with ¢, d € v. Thent§ = ¢l + dk and k€ = sdPl + cPk. Since de; = uk — ulh
and ¢dg1 = h — k, we have ¢dg1§ = (1 — ¢”)e; — sd?l + q(u — c®u”)gy. Thus
¢ € CY(L) if and only if ¢ — 1 € pr, which is so if and only if 8 —1 € .
Since (33" = 1, this shows that there exist at least N(p) + 1 different Ly with
v € C(A), and so

N(p)+1< [CHA) : CHL)NUP(W)].
This combined with (3.11) proves that
[CH(A) : CHL)NU#(W)] = [C(A) : C(L)NU(W)] = N(p) + 1,
which completes the proof.

We insert here the classification of the structures (V, sp) with s € F*. If
K = F x F, the matter is settled in §1.8.
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PROPOSITION 3.15. (i) If F' is a local field and dim(V') is even, then (V, ¢)
is isomorphic to (V, sp) for every s € F*.

(ii) Suppose F is an arbitrary field and dim(V) is odd; let s € F*; then
(V, p) is isomorphic to (V, sp) if and only if s € Ng/p(K™).

Proof. The first assertion is included in Lemma 1.6. The second assertion
can be proved easily in the same manner as for [S3, Theorem 7.13] in the
even-dimensional case.

4. HERMITIAN DIOPHANTINE EQUATIONS OVER A GLOBAL FIELD

4.1. Throughout this section we assume that F' is an algebraic number field
and K is a quadratic extension of F'; we fix a hermitian space (V, ¢) and use
the notation of §2.1. For an t-lattice L in V we put

(4.1) I'L)={acU?(V)|La=L}, I'Y(L) =T (L)NSU#(V).

Given h € V such that @[h] # 0, put W = (Kh)*. We view U?(W) as a
subgroup of U?(V), and SU®(W) as a subgroup of SU?(V) as explained in
81.1. For o0 € U?(V)a, the symbol ho is meaningful as an element of V.

THEOREM 4.2. If dim(V) > 1, then #{A[q]/I"'(A)} < oo for every q € F*
and every t-lattice A in V.

Proof. Assuming dim(V) > 1 and A[g] # 0, take h € A[g] and define W as
above; put G = SU¥(V), H = SU?(W), D = {ac € GA|A30 = A}, and D, =
G,ND for v € h. Then I''(A) = GND and D, = C'(A,). By Theorem 3.3 and
(1.5) we have A,[q] = U,cx, haD, with a finite subset X, of G,,. By Theorem
3.2 (iii) and (iv) we can take X, = {1} if A, is maximal, v is not ramified in
K, and ¢ € gf. Thus X, = {1} for almost all v € h. Put X =[], o}, X,. This
is a finite subset of Gi. For each £ € X we can find a finite subset E¢ of Hy
such that Ha = UEEEg He(Ha NEDE™Y). Then HAED = UEEEg HeéD. For
each (g, £) such that GNe&D # 0 pick . ¢ € GNe&D. Now let k € Alg]. Then
k = h&C for some & € X and ¢ € D. On the other hand k£ = ha with a € G
by (1.5). Then a(~1¢~1 € Ha, so that a € HA(D. Thus o € He€D for some
€ € E¢. Then o € HB. ¢ DNG = HB: ¢I'' (M), and hence k = ha € hb. ¢ ' (A).
Since the b ¢ form a finite set, we obtain our theorem.

4.3. We now fix a maximal lattice L in V, and put
(4.2) C={yeU?(V)a|Ly=L}, C'=CnSU?V)a.

We are going to state our main theorem with respect to a pair (G, H) belonging
to the following two types of objects:

Type U: G=U%?V) and H = U¥(W);
Type SU: G = SU?(V) and H = SU?(W).

DOCUMENTA MATHEMATICA 13 (2008) 739-774



ARITHMETIC OF HERMITIAN FORMS 767

Here W = (Kh)* with a fixed h € V. For a subset S of U¥(V)a the symbol
hS is meaningful as a subset of V. Therefore V N hS is a well-defined subset
of V.

THEOREM 4.4. Suppose dim(V') > 1. For a fixed h € V such that ¢[h] #0
put W = (Kh)*, and take (G, H) of Type U or SU as above. Let D = DoGa
with an open compact subgroup Dy of Gy. Then the following assertions hold.

(i) For y € Ga we have Ha N GyD # (0 if and only if V N hDy~! # (.

(ii) Fizing y € Ga, for every € € Ha N GyD take o € G so that € € ayD.
Then the map & — ha gives a bijection of H\(Ha N GyD)/(Ha N D) onto
(VN hDy=1Y)/A,, where A, = GNyDy~!.

(ili) Take {y;}icr C Ga so that Ga = |
Then
(4.3) #{H\Ha/(HaN D)} =>_ #{(VNnhDy;")/T;}.

icl
(iv) Let ¢ = ¢[h] and b = @(h, L). Then for every y € U¥(V)a, we have

ie1 GYi D, and put I'; = Gny;Dy; .

(4.4) VNhCy™ ! = (Ly‘l)[q7 b].

(v) Suppose moreover that dim(V') > 2 and the following condition is satis-

fied:

(4.5) If n is odd, then g,t, # 0,07 for every v € h ramified in K.
Then for every y € SU?(V)a we have

(4.6) VNhCly=' = (Ly~Y)[g, b].

Proof. Let y, e, and a be as in (ii); then clearly ha € V N hDy~!. If
ne¢ € fyD with n € H, ( € HaND, and 3 € G, then 3~ 'na € GNyDy~ ! =
Ay, and hence ha = hna € hBA,. Thus our map is well defined. Next let
k€ VNhDy~!. Then k = héy~' with § € D, and moreover, by (1.5), k = h&
with € € G. Then h = héyé ', sothat éyd~' € Ha. Thus £yd—' € HaNGyD.
This shows that % is the image of an element of Ha N GyD. To prove that the
map is injective, suppose ¢ € ayD N Ha and § € SyD N Ha with «, 8 € G,
and ha = hfo with o € A,. Put w = Boa~!. Then hw = h, so that w € H.
Since o € yDy~ !, we have fyD = foyD = wayD, and hence § € ByDNHA =
wayD N Hp =w(ayD N HA) =w(eDNHp) =we(DNHa) C He(DN Ha).
This proves the injectivity, and completes the proof of (ii). At the same time
we obtain (i).

Since Ha = | |;c;(Ha NGy; D), we can derive (iii) immediately from (ii).

As for (v), clearly VNhC! C L|q, b]. Conversely, if x € L[g, b], then x € hC*!
by Theorem 3.2 (iii). Thus

(4.7) V NhC! = L[q, b].
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If k€ VNnhCly !, then hCly~! = kyCly~!. Now @(k,Ly’l) =p(h, L)=".
Taking k,yCly~! and Ly~! in place of h, C!, and L in (4.7), we obtain V N
kyC'y~! = (Ly~')[g, b]. This proves (4.6) when VNhCly~1 # (). To prove the
remaining case, suppose ¢ € (Ly~')[g, b]; then ¢(lyyy, Ly) = by = ¢@(h, L),
for every v € h, and so, by Theorem 3.2 (iii), fy € hC'. Taking ¢, yCly~1,
and Ly~! in place of h, C', and L in (4.7), we obtain () # (Ly~')[q, b] =V N
LyCly=' = V N hCly~!. This shows that (Ly‘l)[q, b =0if VNhCly=! =0,
and hence (4.6) holds for every y € Ga. This proves (v). Assertion (iv) can be
proved in the same way.

In view of (i) we can restrict the indices ¢ on the right-hand side of (4.3)
to those for which Ha N Gy; D # 0. If I' denotes the set of all such 4’s, then
HA = Uje]’ (HA N Gij)

Combining (4.3) and (4.4), we obtain, for (G, H) of type U, an equality
(48) #{H\Ha/(HANC)} =3 #{(Ly; "lg, b]/ T3},

iel
where {y;} is such that Ga =| |;c; Gy:C and I; = G N inyjl. We can state
a similar formula for (G, H) of type SU when n > 2 and (4.5) is satisfied.
Formula (4.8) connects the class number of H with respect to Ha N C' to the
solutions % of the equation ¢[h] = ¢ under the condition ¢(h, Ly; ') = b.

5. NONSCALAR HERMITIAN DIOPHANTINE EQUATIONS

5.1. So far we discussed the equation @[h] = ¢ with a scalar q. We can
formulate a similar problem with nonscalar ¢, which can be stated in terms of
matrices as follows. We take F' to be local or global. Given ¢* = ¢ € GL,,(K)
and ¢* = ¢ € GL,(K), we consider the solutions h € K] of the equation
hoh* = q. Here and throughout this section we assume n > m > 0. More
intrinsically, take (V, ¢) as before and take also (X, ¢) with a nondegenerate
hermitian form ¢ on a free K-module X of dimension m. We consider h €
Hom(X, V) such that ¢[xzh] = ¢[z] for every x € X. Since ¢ is nondegenerate,
h must be injective. To simplify our notation, for every k € Hom(X, V)
we denote by ¢[k] the hermitian form on X defined by ¢[k]|[z] = p[zk] for
every x € X. Then our problem concerns the solutions h € Hom(X, V') of the
equation ¢lh] = ¢ for a fixed ¢. If m =1 and X = K, then ¢ € F*, and
an element h of V defines an element of Hom(K, V') that sends ¢ to ch for
¢ € K, and every element of Hom(K, V) is of this type. Thus the problem
about ¢[h] = ¢ with g € F* is the one-dimensional special case. Let h be an
element of Hom(X, V') such that rank(e[h]) = m. Then

(5.1) {z € Hom(X, V)| ¢lz] = ¢[h]} = h- SU%.
This is similar to (1.5), and follows easily from the Witt theorem in the unitary

case. Though we take V to be coordinate-free, it is practical to take X to be
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K}, and so take g to be a hermitian element of GL,,(K), and ¢[z] = zqz*
for x € K},. For h € Hom(X, V) and 1 < i < m we define “the i-th row” of
h to be the element h; of V determined by ah = Y" | a;h; for a = (a;)74 €
Kl =X.
We first prove a local finiteness result that generalizes Theorem 3.3.

THEOREM 5.2. Suppose F is a local field; let A be an t-lattice in Hom(X, V)
and let D = {y € SU®(V)| Ay = A}. Then, given h € Hom(X, V) N A such
that [h] is nondegenerate, there exists a finite subset A of SU¥(V') such that

(5.2) {zeA | olz] = ¢[h] } = [aea haD.

Moreover, suppose K = F X F or K is a field unramified over F'; suppose also
that @lh] € GLm(r) and A = {X € Hom(X, V) ’t,ln)\ C L} with a mazimal
lattice L in V. Then we can take A = {1}.

Proof. The first part is Theorem 3.3 if m = 1, and so we assume m > 1
and prove (5.2) by induction on m. Put ¢ = ¢[h]. Changing (h, ¢, A) for
(ch, cqc*, cA) with a suitable ¢ € GL,,(K), we may assume that ¢ = diag[a, 7]
with @ € F* and n* = n € GL;—1(K). Also we may assume that A =
{r € Hom(X, V)| Mk C L} with M = ¢}, and an tlattice L in V. Then
D ={a e SU?(V)|La=L}. If x € A and ¢[z] = ¢, then z1, by € L and
p[z1] = ¢[h1] = a, and hence by Theorem 3.3 there exists a finite subset B
of L such that such an x; belongs to (J,c 5 bD and ¢[b] = a for every b € B.
Suppose z; = by with b € B and v € D. Put W, = (Kb)*, y = 2y~ ! and
z=[y;|" 5. Then y1 =b and ¢[y]=[h], so that ¢[z]=n, and y; € W} for i > 1.
We can view z as an element of Hom(K},_,, W;). Then t},_,2 € LNW,.
Put E={e€SU?(W,) | (LNW,)e=LNW,}. By induction there exists a finite
subset U, of Hom(K},_;, W) such that

m—1»
{zeHom(K}, 1, Wo) | v}, 12 C LOW,, ¢lz]=n} = [y, uE.

We can find a finite subset S of E such that F = Uaes o(DNE). Then y=

{b} = [ b } with u e Uy, 0 €S, and T€ DN E. Thus = = [ul;} 77, and

z uoT
7y € D. This shows that z €| |,.p kD with a finite subset P of the left-hand
side of (5.2), as the elements (b, u, o) form a finite set. By (5.1), for each k€ P
there exists an element a of SU¥(V) such that k=ha. This proves the first
assertion.

Next suppose that the conditions on K, ¢, A, and ¢ as in the second asser-
tion are satisfied. Take an t-basis of L and identify V, L, and ¢ with K}, ¢},
and a hermitian matrix with respect to that basis. Given ¢ € L =tl, put
2z = q thel* and y = £ — z*h. Since ¢ < t and ¢ € GL,,(r), we see that
y € L, and for every w € X we have whey* = 0, so that y € (Xh)*. Put
M=x! and Y =(Xh)*. Then V=Xh@®Y and L=Mh & (LNY). Suppose
plk]=q with k€ A. Then similarly L=Mk® (LN Z) with Z=(Xk)*. Since L
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is maximal, Mh resp. Mk is maximal in Xh resp. Xk, and LNY resp. LN Z
is maximal in Y resp. Z. By (5.1) there exists an element v € SU¥? (V') such
that hy = k. Then Mhy = Mk, Yy=Z, and (LNY)y is v-maximal in Z,
so that by Lemma 3.4 (i), (LNY)ye = L N Z with some € € U¥(Z). Define
a € GL(V)by a =+ on Xh and a =~ on Y. Then a € U?(V), La = L,
and ha = k. Since det(a) € v, we can find an element ¢ of U¥(Z) such that
(LN Z) = LN Z and det(¢) = det(a)~t. This is clear if K = F x F; see
83.6. If K is a field unramified over F, then the fact is included in Lemma
1.9. Extend ¢ to an element of U%(V') by putting zk{ = zk for z € X. Then
af € SU?(V), ha& =k, and Lag = L. Clearly Aag = A, and hence we obtain
(5.2) with A={1}. This completes the proof.

Next we prove a generalization of Theorem 4.2, which is a global version of
the above theorem.

THEOREM 5.3. Suppose that F' is an algebraic number field; let A be an t-
lattice in Hom(X, V), I'={~ € SU?(V)|Ay=A},and T, = { x € A | p[z] =
q} with ¢* = q € GLy(K). Then T,/ is a finite set.

Proof. We assume the existence of h € T,. Put W = (Xh)*, G = SU¥(V),
H = SU?(W), M =}, D ={y € Ga|Ay = A}, and D, = DN G, for
v € h. We identify H with {o& € G| ha = h}. Fix a maximal lattice L in V.
By Theorem 5.2, for each v € h there exists a finite subset E, of G, such that

{zeh|pla]=q}= .cx, heDeo.

Now for almost all v € h we have A, = {'yEHom(XU, V) ‘ MU'yCLU}, L, is
maximal, v is unramified in K, and ¢€ GL,(t,). Therefore, by Theorem 5.2,
we can take E, = {1} for almost all v € h. Consequently we can find a finite
subset £ of Gy such that Ty CJ, g hnD. If © € Ty, then = € hG by (5.1).
Thus & = ha = hné with a € G, n € E,and § € D. We have ad " 'n~! € Ha,
and hence a € HanD. For each n € E we can find a finite subset Z,, of Hy
such that Ha = |—|€€Zn H((Ha NnDn~1). Then HanD = UCGZT, H¢nD, and
hence o € |, (GN H(MD) = U, - H(G N (nD). For each (¢, n) such that
GN{¢nD # 0, pick any 8 € GN{nD. Then GN¢nD = GNBD = BI. Let B
be the set of such (s chosen for each ({, ). Then « € UﬁeB HQETI, and thus
ha € UQGB hGI, which proves our theorem.

THEOREM 5.4. Suppose that F is an algebraic number field. With a fixed
h € Hom(X, V) such that rank(¢[h]) = m, put q¢ = ¢[h], W = (Xh)*, G =
U¢(V), H=U?W), and ¥ = Hom(X, V). Let D be an open subgroup of Ga
containing Ga such that D N Gy is compact, and let Ga = | |;c; Gy:D. Then
assertions (i), (ii), and (iii) of Theorem 4.4 are valid if we take the symbols
h, G, H, and D there to be those of the present setting, and replace V there by
V. In particular we have
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(5.3) #{H\Ha/(HaN D)} = #{(¥NhDy;")/Ii},
el
where T; = GNy; Dy; . The same is true with G = SU? (V) and H = SU#(W).

Proof. We can repeat the proof of Theorem 4.4 with obvious modifications.

THEOREM 5.5. In the setting of Theorem 5.4 with G = SU?(V) and H =
SU¥ (W) suppose that n —m > 1 and neither G, nor H, is compact. Let k
be an element of Hom(X, V') such that k = h~, for every v € h with some
(Vo)ven € DN Gh. Then there exists an element « € GN D such that k = ha.
In particular, if m = 1 and (4.5) is satisfied, then #{L[q, b]/I""(L)} <1 for
every maximal lattice L in V.

Proof. By our assumptions, strong approximation holds on G and H, and so
we have Go = GD and Hpy = H(Ha N D). Thus we can take {y; }ier = {1}.
Therefore (5.3) implies that #{(¥ N hD)/(GN D)} = 1, which gives the first
assertion. This combined with (4.6) proves the second assertion.

5.6. Before proceeding further, let us recall the notion of the mass of an
algebraic group G with respect to an open subgroup D of Ga containing G,
and such that Gy N D is compact. For simplicity here we take G to be U? or
SU% and assume that U¢ is compact. For € Ga put A, = GNzDx~! and
v(A;) = [A; : 1]7L. Then the the mass of G with respect to D is defined by
(5.4) m(G, D)= Y v(4), #=G\Ga/D.

ve P
For this the reader is referred to [S2, (10.9.4), (24.1.1), (24.1.2)]. If D' is a
subgroup of Ga of the same type as D, then from [S2, Lemma 24.2] we obtain

(5.5) [D:DND'm(G, D)=m(G, DND')=[D":DnNDm(G, D).

THEOREM 5.7. In the setting of Theorem 5.4, suppose that G, is compact.
Then for every y € Ga we have
(5.6) v(A)#{V N hDy~} = v(AL),

ce&
where & = H\(Ha N GyD)/(Ha N D) and A, = H N axDxz~t. Moreover, let
Ga = |lie; GyiD and I'; = G Ny Dy; *; then
(5.7) > v(L)#{¥ N hDy; '} = m(H, HA N D).
iel

Proof. To prove (5.6), we may assume that Ha N GyD # (. For € € &
take a. € G so that € € a,yD. Then H N aEAyagl =HnN (Jc,gyDy_lag_1 =
HnNeDe ' = A.. Now ¥NhDy~ ! = UaeéahagAy by the part of Theorem 5.4
corresponding to Theorem 4.4 (ii). For v, 4" € I'(A) we have ha.y = hay' if
and only if a.y'y"taZ! € H, that is, vy ! € a;'Ha. N A, = a1 A.a., so
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that

#lhac Ay} = [Ay s ait Acac] = v(A)/v(4y).
Therefore we obtain (5.6). Next, let & = H\(Ha N Gy;D)/(Ha N D). Then
Ha = Uie](HAﬁGyiD) = l_lieI l—lseﬁ HE(HAQD), and so m(H, HAﬁD) =
>ier 2ce& V(A:), which combined with (5.6) proves (5.7).

COROLLARY 5.8. Define C' and C! by (4.2) with a mazimal lattice L in V;
take (G, H) of type U as in Theorem 4.4; suppose that G, is compact. Let
Ga =|l;c; GyiC, Li = Ly; ", and Iy = I'(L;). Then

(5.8) > _v(L)#{Lilg, b} = m(H, HaAN O),

i€l
where q¢ = plh] and b = (h, L). This is valid for (G, H) of type SU if we
replace C and I'(-+) by C' and I''(-), provided n > 2 and (4.5) is satisfied.

Proof. Take m =1 and D = C in Theorem 5.7. Combining (5.7) with (4.4),
we obtain (5.8). The case of SU? follows similarly from (4.6).

5.9. Formulas (5.7) and (5.8) are similar to, but different from, the formula
of Siegel about Y, v/(I3)#{Lilq]}. We already explained in [S3, §13.13] the
main differences between our formulas in the orthogonal case given in that
book and that of Siegel. In principle, our comments there apply to the present
unitary case.

Now in [S2, Theorem 24.4] we gave an exact formula for m(G, D) for G = U¥
and a certain type of D, under the condition that if n is odd, then dy(yp) is
represented by an element of g*. The group HoNC in (5.8) does not necessarily
belong to the types of D there, but we can compute [D : Ha N C] by means of
Lemma 3.14 under some conditions on (g, b). Then we obtain m(H, Ha N C)
from [S2, Theorem 24.4] by (5.5).

PROPOSITION 5.10. In the setting of Theorem 5.4 suppose that n — m is
odd. Then the structure (W, det(q)p) depends only on ¢ and the indices of q
at the real archimedean primes of F ramified in K.

Proof. Let i be the restriction of ¢ to W. Then we can easily verify that
do(det(q)v) = det(q)" ™do(¢) = (—1)""'do() as m —n is odd. This com-
bined with Theorem 2.2 (i) proves our proposition.

This is an analogue of the fact concerning a quadratic form in even dimension
with square discriminant given in [S4, Theorem 1.12].

We insert here some results about the relationship between various invariants
associated with U%¥ and those with SU¥.

PROPOSITION 5.11. Let D be an open subgroup of Uy containing U¢ and
such that UZ N D is compact; put P = {x € K* ‘ za? =1} and D' = DNSUY.
Then U?SUZD is a normal subgroup of Uy and
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(5.92) [US : UPSULD] = [Pa : Pdet(D)],

(5.9b) #(UP\UZ/D) < > #(SUP\SUZ /zD'a™?),
T€EE

where = =UX JU?SUXD. Moreover, if Uf is compact, then

(5.9¢) m(U?, D) < [Pa : Pdet(D)] - m(SU¥, D').

Furthermore, if P N det(D) = det(U? NyDy~') for every y € Ug, then the
equality holds in (5.9b), and

(5.9d) #(PNdet(D))m(U?, D) = [Pa : Pdet(D)m(SU?#, D').
Proof. Since P = det(U¥), we can easily show that
(5.10) U?SUZ Dz = {y € UZ | det(y) € Pdet(Dz)}

for every z € UJX. This shows that U?SUZD is a normal subgroup of
U and UZ/U¥SUZD is isomorphic to Pa/[Pdet(D)], as Pa = det(Uy).
Thus we obtain (5.9a); we also see that UYSUX\UX/D can be identified
with UZ/U¢SULD. Given z € UZ, take B, C SUX so that SU{ =
Llpes, SU?bzD'z~". Then we have U*SUZxD = |,z U¥bxD, and hence
Ux = Upez Upep, UbxD. From this we obtain (5.9b). To prove (5.9¢), put
I, =U%NzDx ! and I'} = SU? NaDz~? for = € UZ. Then m(U¥, D) <
ZzeEZbeBm V(Fbm) S ZzeEZbeBm V(Fb1x> = ZzeE m(SU“", lezil)' Now
formula (5.5) shows that m(SU¥, D') depends only on the measure of D!.
(If U¢ is not compact, we have to consider the measure of D].) Since
m(SU¥, xD'z~1) = m(SU¥, D'), we obtain (5.9¢).

Suppose P Ndet(D) = det(Iy) for every y € UZ. Suppose also that b’z =
abxd for a € U?,d € D, and b,V € B,. Then det(a) = det(d™!) € PN
det(D) = det(I}), and so det(a) = det(c) with ¢ € I,. Put e = 27 1b~1cha.
Then e € D, det(ed) = 1, and b'x = abxd = ac 'bzed € SU¥bxD'. Thus
b = b. This shows that U*SURxD = | |,cp SU¥bxD, from which we obtain
the equality in (5.9b). Also, v(I})/v(Ive) = [The : I),]) = #(det(lpe)) =
#(P N det(D)), and so

#(PNdet(D))m(U?, D) =" > v(l},)
zEZ bEB,
=Y _m(SU?, zD'a™!) = #(Z) - m(SU¥, DY),
TEZ

which is (5.9d).
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