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Abstract. We investigate the following two problems on a hermitian

form Φ over an algebraic number field: (1) classification of Φ over the

ring of algebraic integers; (2) hermitian Diophantine equations. The same

types of problems for quadratic forms were treated in the author’s previ-

ous articles. Here we discuss the hermitian case. Problem (2) concerns

an equation ξΦ · tξρ = Ψ , where Φ and Ψ represent hermitian forms. We

connect the number of such ξ modulo a group of units with the class

number and mass of the unitary group of a form Θ such that Φ ≈ Ψ ⊕Θ.
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(secondary)

Introduction

To explain Problems (1) and (2) of the abstract, we take a quadratic exten-

sion K of an algebraic number field F, a vector space V over K of dimension

n, and a nondegenerate hermitian form ϕ : V × V → K with respect to

the nontrivial automorphism ρ of K over F. We denote by d0(ϕ) the coset of

F×/NK/F (K×) represented by (−1)n(n−1)/2 det(ϕ). It is classically known that

n, d0(ϕ), and the indices of ϕ at certain archimedean primes of F, satisfying

a natural consistency condition, determine the isomorphism class of (V, ϕ),

and vice versa. This classification does not answer, however, the question of

classification over the ring of integers. To be precise, let r denote the ring of

algebraic integers in K and g = F ∩ r; let d be the different of K relative to

F. We put

(0.1) Hn =
{
Φ ∈ GLn(K)

∣∣Φ = tΦρ
}
.

We call a matrix Φ = (ϕij) ∈ Hn semi-integral if ϕij ∈ d−1 and ϕii ∈ g for

every i and j, which means that
∑

i,j ϕijxix
ρ
j ∈ g for every (xi)

n
i=1 ∈ rn.

Further we call a semi-integral Φ reduced if the following condition is satisfied:
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(R) If Φ = PΨ · tP ρ with a semi-integral Ψ and P = (pij) ∈ GLn(K), pij ∈ r,

then det(P ) ∈ r×.

These definitions are natural, but cover only a special class of (V, ϕ), as an

r-lattice in V may not be isomorphic to rn. In order to classify all g-valued

hermitian forms, we have to define the genus of a form relative to an isomor-

phism class of lattices, and study its connection with the isomorphism class of

(V, ϕ). These are nontrivial, and will be treated in §§2.4 and 2.5. We are then

able to classify all the genera of g-valued hermitian forms in terms of matrices

(Theorems 2.10 and 2.11). The results can be presented in simpler forms if K

is a real or an imaginary quadratic field of odd class number, in which case

the above definitions cover all hermitian spaces. Let d be the discriminant

of such a K; then K = Q(
√
d ). For a semi-integral Φ with entries in K, put

s(Φ) = p− q when d < 0 and Φ as a complex hermitian matrix has p positive

and q negative eigenvalues; we do not define s(Φ) if d > 0. Let H0
n be the

set of all reduced semi-integral elements of Hn. Then we can prove (Theorem

2.14):

(A) Let three integers n, σ, and e be given as follows: 0 < n ∈ 2Z, σ ∈
2Z, |σ| ≤ n; σ = 0 if d > 0; e is positive and squarefree. Let r be the number

of prime factors of e. Suppose that σ−2r ∈ 4Z and no prime factor of e splits

in K. Then there exists an element Φ of H0
n such that

det(
√
dΦ) = (−1)σ/2e and s(Φ) = σ if d < 0,

det(
√
dΦ) = τe with τ = 1 or −1 if d > 0.

Moreover, every element of H0
n is of this type. Its genus is determined by (σ, e)

if d < 0, and by e if d > 0. If d > 0 and −1 ∈ NK/Q(K×), then both

e and −e can occur as det(
√
dΦ) for Φ in the same genus. If d > 0 and

−1 /∈ NK/Q(K×), then τ is uniquely determined by the condition that a prime

number p divides e if and only if τe /∈ NK/Q(K×

p ), where Kp = K ⊗Q Qp.

This concerns the case of even n. We have similar but somewhat different

results for odd n (Theorem 2.15). In fact we discussed in [S5] and [S6] semi-

integral and reduced quadratic forms and obtained results of the same type. If

K is imaginary, the hermitian case is almost parallel to the case of quadratic

forms over Q, but the theory for real K is more subtle, as can be seen from

the above statement.

Let us now turn to the second problem. Before explaining the principal

results, let us first discuss natural problems which are more basic and which

must be settled before investigating the main question. Given (V, ϕ) as before,

let Uϕ(V ) and SUϕ(V ) denote the unitary group and the special unitary group

of ϕ, defined as subgroups of GL(V, K). Take an r-lattice L in V and put

(0.2) Γ (L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
, Γ 1(L) = Γ (L) ∩ SUϕ(V ).
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Then we ask, for a fixed q ∈ F×, whether the set {h ∈ V
∣∣ϕ[h] = q

}
modulo

Γ 1(L) is a finite set. A similar question can be asked by replacing F, K, (V, ϕ)

and L by their localizations at a nonarchimedean prime and by defining an

obvious analogue of Γ 1(L). We will prove that the answer is affirmative in both

global and local cases, provided n > 1 (Theorems 3.3 and 4.2). The same is

true for the problem about the solutions ξ of the equation ξΦ · tξρ = Ψ, where

Ψ is of size m, and ξ belongs to an r-lattice in the space of (m× n)-matrices

with entries in K, where m is a positive integer < n (Theorems 5.2 and 5.3).

We already proved in [S3] the analogues of these facts for quadratic forms and

orthogonal groups.

In order to go beyond the mere finiteness, we consider the adelizations

Uϕ(V )A and SUϕ(V )A, and define their open subgroups C and C1 by

(0.3) C =
{
γ ∈ Uϕ(V )A

∣∣Lγ = L
}
, C1 = C ∩ SUϕ(V )A,

where L is a fixed r-lattice in V. Given two solutions ξ0 and ξ1 of the equation

ξΦ · tξρ = Ψ, we say that they belong to the same genus (with respect to C)

if ξ0γv = ξ1 for every nonarchimedean prime v with an element (γv)v ∈ C.

Naturally they are said to belong to the same class if ξ0γ = ξ1 with γ ∈ Γ (L).

Now to explain our principal ideas in the simplest case, put G = Uϕ(V ) and

H =
{
α ∈ G

∣∣ ξ0α = ξ0
}
; also assume for the moment that GA = GC. Then

there is a bijection of H\HA/(HA ∩ C) onto the set of classes in the genus of

ξ0, and so

(B) #
{
H\HA/(HA ∩ C)

}
= the number of classes in the genus of ξ0.

Here and henceforth #{X} denotes the number of elements in a set X. If

GA 6= GC, the right-hand side becomes a finite sum of the class numbers of

several genera (Theorem 5.4). Since the left-hand side is the class number of

the unitary group H with respect to HA ∩ C, equality (B) connects it to the

solutions ξ of ξΦ · tξρ = Ψ.

If m = 1, the results can be stated in a more transparent way. Returning to

the hermitian form ϕ : V × V → K, put ϕ[h] = ϕ(h, h) for h ∈ V. Then the

equation ξΦ · tξρ = Ψ can be written ϕ[h] = q with h ∈ V and q ∈ F×; thus

h and q replace ξ and Ψ. Given a fractional ideal b in K, put

(0.4) L[q, b] =
{
h ∈ V

∣∣ϕ[h] = q, ϕ(h, L) = b
}
.

We call L integral if ϕ[x] ∈ g for every x ∈ L and call L maximal if it is

maximal among the integral r-lattices. The point of considering L[q, b] is that

L[q, b], if nonempty, consists of a single genus with respect to C in the above

sense. This is clearly a result of local nature; unfortunately, its proof given in

Section 3 is not short. In this case H = Uϕ(W ), where W is the orthogonal

complement of Kh in V. Now we can prove (Theorem 4.4, Corollary 5.8):
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(C) For every y ∈ GA, there is a bijection of H\(HA∩GyC)/(HA∩C) onto

(Ly−1)[q, b]/∆y, where ∆y = G ∩ yCy−1.

(D) Take {yi}i∈I ⊂ GA so that GA =
⊔

i∈I GyiC and put Li = Ly−1
i . Then

∑

i∈I

#
{
Li[q, b]/Γ (Li)

}
= #

{
H

∖
HA

/
(HA ∩ C)

}
.

(E) If the archimedean factor of GA is compact, then
∑

i∈I

#
{
Li[q, b]

}
/#

{
Γi

}
= m(H, HA ∩ C),

where the right-hand side is the mass of H with respect to the open subgroup

HA ∩ C of HA in the sense of [S2].

These assertions are true with SUϕ(V ), SUϕ(W ) and C1 in place of G, H,

and C, if dim(V ) > 2 and we impose a certain condition on (q, b). Notice that

(E) gives the mass of H by means of the number of solutions h of ϕ[h] = q

under the condition ϕ(h, L) = b, while (D) gives the class number of H.

In our recent book [S3, Chapter III] we developed a theory of a Diophantine

equation ϕ[h] = q for a quadratic form ϕ defined on a vector space over an

algebraic number field. The principal result is that to each “primitive solution”

h of this equation for a fixed q, considered modulo the group of units Γ, one

can associate a “class” of lattices with respect to the orthogonal group H of the

restriction of ϕ to a subspace of codimension 1. Consequently the class number

of H equals the number of such h modulo Γ. This includes as a special case the

result of Gauss that the number of primitive representations of q as the sum of

three squares equals an elementary factor times the class number of primitive

binary quadratic forms of discriminant −q. Also, formulas of type (B) and (E)

were proved in [S3] and [S6] for quadratic forms. The reader is referred to [S7]

for some more historical and technical comments on this subject. Now (B),

(C), (D), and (E) are hermitian analogues of these results. In order to develop

the theory for hermitian forms, we are naturally guided by the formulation in

the case of quadratic forms, but we need new ideas and technique, and it is

wrong to say that we can do things “in the same way.” This is especially so

when we consider the problem with respect to the special unitary group instead

of the unitary group. Thus there are two theories with respect to these two

types of groups, and one, that for the special unitary group, is more complex

than the other, and in a sense more interesting.

1. Generalities on hermitian forms and unitary groups

1.1. For an associative ring A with an identity element we denote by A×

the group of all invertible elements of A, and for positive integers m and n we

denote by Am
n the A-module of all (m× n)-matrices with entries in A. We put

Mn(A) = An
n when we view it as a ring, and denote by 1n its identity element.
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We take a basic field F and a couple (K, ρ) consisting of an F -algebra K

and a nontrivial F -linear automorphism ρ of K belonging to the following two

types:

(I) K is a separable quadratic extension of F and ρ generates Gal(K/F );

(II) K = F × F and (x, y)ρ = (y, x) for (x, y) ∈ F × F.

In our later discussion, K of type (II) will appear as a localization of a global

K of type (I). For a matrix α = (aij) with entries in K we denote by tα the

transpose of α, and put αρ = (aρ
ij) and α∗ = tαρ; we put also α−ρ = (αρ)−1

when α is invertible. For a subring S of K we write α ≺ S if all the entries of

α are contained in S. Given a left K-module V, we denote by End(V, K) the

ring of all K-linear endomorphisms of V and put GL(V, K) = End(V, K)×.

We let End(V, K) act on V on the right; namely we denote by wα the image

of w ∈ V under α ∈ End(V, K).

Let V be a left K-module isomorphic to K1
n; we put then n = dim(V ). By a

hermitian space we mean a structure (V, ϕ), where ϕ is a hermitian form on

V, that is, an F -bilinear map ϕ : V × V → K such that

(1.1) ϕ(x, y)ρ = ϕ(y, x),

(1.2) ϕ(ax, by) = abρϕ(x, y) for every a, b ∈ K.

Whenever we speak of a hermitian space (V, ϕ), we assume that ϕ is non-

degenerate, and put ϕ[x] = ϕ(x, x) for x ∈ V. We define groups Uϕ(V ) and

SUϕ(V ) by

(1.3a) Uϕ = Uϕ(V ) =
{
α ∈ GL(V, K)

∣∣ϕ[xα] = ϕ[x] for every x ∈ V
}
,

(1.3b) SUϕ = SUϕ(V ) =
{
α ∈ Uϕ(V )

∣∣ det(α) = 1
}
.

For every free K-submodule X of V on which ϕ is nondegenerate, we put

(1.4) X⊥ =
{
y ∈ V

∣∣ϕ(y, X) = 0
}
,

and define Uϕ(X) and SUϕ(X) by (1.3a, b) with X in place of V ; namely we

use ϕ for its restriction to X. We always identify Uϕ(X) with the subgroup

of Uϕ(V ) consisting of the elements α such that yα = y for every y ∈ X⊥.

Similarly we view SUϕ(X) as a subgroup of SUϕ(V ).

Let h be an element of V such that ϕ[h] 6= 0. Then

(1.5)
{
x ∈ V

∣∣ϕ[x] = ϕ[h]
}

=

{
h · Uϕ if dim(V ) = 1,

h · SUϕ if dim(V ) > 1.

This follows easily from the generalized Witt theorem; see [S2, Lemma 1.3],

for example. The case K = F × F is not included in that theorem, but the

structure of (V, ϕ) for such a K is determined by dim(V ) as shown in [S2,

§2.13], and so the fact corresponding to the Witt theorem is trivially true; see

also §1.8 below.
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1.2. Let ϕ0 be the matrix that represents ϕ with respect to a K-basis of

V ; then we denote by d0(V, ϕ) the element of F×/NK/F (K×) represented by

(−1)n/2 det(ϕ0) or (−1)(n−1)/2 det(ϕ0) according as n is even or odd. This

does not depend on the choice of a K-basis of V. We denote d0(V, ϕ) simply

by d0(V ) or d0(ϕ) when there is no fear of confusion.

Given s ∈ F×, we denote by {K, s} the quaternion algebra B over F in

which K is embedded and which is given by

(1.6) B = K +Kω, ω2 = s, ωa = aρω for every a ∈ K.

Since B is determined by K and sNK/F (K×), for a coset ε ∈ F×/NK/F (K×)

we denote by {K, ε} the algebra {K, s} with any s ∈ ε. In particular, we can

associate with (V, ϕ) a quaternion algebra {K, d0(ϕ)}.
Lemma 1.3. Given (V, ϕ) as in §1.1, suppose dim(V ) = 2 and put B =

{K, d0(ϕ)}. Then there is a ring-injection j of B into End(V, K) and an

element ℓ of V such that ϕ[ℓ] 6= 0, ℓj(B) = V, ℓj(a) = aℓ for every a ∈ K,

and ϕ[ℓj(ξ)] = ϕ[ℓ]ξξι for every ξ ∈ B, where ι is the main involution of B.

Moreover, TrK/F

(
ϕ(ℓα, ℓβ)

)
= ϕ[ℓ]TrB/F (αβι) for every α, β ∈ B, and

(1.7a) Uϕ(V ) =
{
z−1α

∣∣ z ∈ K×, α ∈ B×, zzρ = ααι
}
,

(1.7b) SUϕ(V ) =
{
α ∈ B×

∣∣ααι = 1
}
,

where we identify α with j(α) for α ∈ B.

Proof. Identify V with K1
2 so that ϕ(x, y) = xϕ0y

∗ for x, y ∈ K1
2 with

ϕ0 = diag[c, −cs], where c, s ∈ F×. Then d0(ϕ) = sNK/F (K×), and so B is

given by (1.6). Define j : B →M2(K) by j(a+ bω) =

[
a b
sbρ aρ

]
and put ℓ =

(1, 0). Then it is an easy exercise to verify all the statements; cf. [S2, Lemmas

4.3, 4.4, and (4.3.2)]. Notice that j(B) =
{
α ∈M2(K)

∣∣αιϕ0 = ϕ0α
∗
}
.

1.4. When K is a field, by a weak Witt decomposition of V we mean a direct

sum decomposition of V with 2r elements ei, fi, and a subspace Z of V such

that

(1.8a) V =
∑r

i=1(Kei +Kfi) + Z, Z =
( ∑r

i=1(Kei +Kfi)
)
⊥

,

(1.8b) ϕ(ei, ej) = ϕ(fi, fj) = 0, ϕ(ei, fj) = δij for every i and j.

Clearly
∑r

i=1(Kei + Kfi) is a subspace of dimension 2r. We call this a Witt

decomposition if ϕ[x] 6= 0 for every x ∈ Z, 6= 0, in which case we call Z a

core subspace of (V, ϕ) and dim(Z) the core dimension of (V, ϕ). If ζ is the

restriction of ϕ to Z, then clearly d0(ϕ) = d0(ζ).

1.5. In this paper a global field means an algebraic number field of finite

degree, and a local field the completion of a global field at a nonarchimedean

prime. For a global field F we denote by g the ring of algebraic integers in F ;
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for a local F we denote by g the ring of local integers in F in the standard

sense. An archimedean completion of a global field will not be called a local

field. In both local and global cases, by a g-lattice in a finite-dimensional vector

space V over F, we mean a finitely generated g-submodule of V that spans V

over F.

Let (K, ρ) be as in §1.1 with a local or global F. We then denote by r the

ring of all elements of K integral over g, and by d the different of K relative

to F. We have r = d = g× g if K = F × F. By a g-ideal we mean a fractional

ideal in F, and similarly by an r-ideal we mean a fractional ideal in K if K

is a field. If K = F × F, an r-ideal means a subset of K of the form a × b

with g-ideals a and b. In both local and global cases, by an r-lattice in a

K-module V as in §1.1 we mean a g-lattice in V stable under multiplication

by the elements of r. Given two r-lattices L and M in V, we denote by [L/M ]

the r-ideal generated by det(α) for all α ∈ GL(V ) such that Lα ⊂ M. Thus

[L/Lα] = det(α)r. In particular, if α ∈ Uϕ and K is a field in the local case,

then [L/Lα] = r. If K = F × F, however, [L/Lα] = a × a−1 with a g-ideal a

for α ∈ Uϕ.

Lemma 1.6. Two hermitian spaces (V, ϕ) and (V ′, ϕ′) in the local case are

isomorphic if and only if dim(V ) = dim(V ′) and d0(ϕ) = d0(ϕ
′).

This is well known. For the proof, see [S2, Proposition 5.3], for example.

1.7. Let (V, ϕ) be defined with a local or global F. For a g-lattice L in V

we denote by µ(L) the g-ideal generated by ϕ[x] for all x ∈ L. We call a

g-lattice L in V integral if µ(L) ⊂ g; we call an r-lattice L maximal if L is

maximal among the integral r-lattices. (This is what we called g-maximal in

[S2].) For basic properties of maximal lattices in V the reader is referred to

[S1] or Sections 4 and 5 of [S2]. For example, we note ([S2, (4.7.1)])

(1.9) ϕ(L, L) ⊂ d−1 if L is integral.

If n > 1 and L is maximal, then µ(L) = g. This fact in the global case follows

from the local case, which can be seen from [S2, Lemmas 5.4 and 5.6].

Given an r-lattice L in V, q ∈ F×, and an r-ideal b, we put

(1.10a) L̂ =
{
x ∈ V

∣∣ϕ(x, L) ⊂ d−1
}
,

(1.10b) L[q] =
{
x ∈ L

∣∣ϕ[x] = q
}
,

(1.10c) L[q, b] =
{
x ∈ V

∣∣ϕ[x] = q, ϕ(x, L) = b
}
.

By (1.9), we have L ⊂ L̂ if L is integral. The set L[q, b] is not neces-

sarily contained in L[q]. If M is another r-lattice in V, then we easily see

that [L/M ]ρ = [M̂/L̂]. If L1 = Lα with α ∈ Uϕ, then L̂1 = L̂α, and so

[L̂1/L1] = [L̂/L].

The notation being as in (1.8a, b), take a maximal r-lattice M in Z and put
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(1.11) L =
∑r

i=1(rei + d−1fi) +M.

Then L is maximal; see [S2, Lemma 4.9 (2)]. We can easily verify that

(1.12) L̂ =
∑r

i=1(rei + d−1fi) + M̂, M̂ =
{
x ∈ Z

∣∣ϕ(x, M) ⊂ d−1
}
.

1.8. Let us now consider the case K = F × F ; then we define the core

dimension of (V, ϕ) to be 0. We can write an element of V = K1
n in the form

(x, y) with x, y ∈ F 1
n . Taking a suitable coordinate system, we can assume

that

(1.13) ϕ
(
(x, y), (z, w)

)
= (x · tw, y · tz) (x, y, z, w ∈ F 1

n).

This is shown in [S2, §2.13]. We have then ϕ
[
(x, y)

]
= x · ty and

(1.14) Uϕ =
{
(ξ, ξ̃)

∣∣ ξ ∈ GLn(F )
}
, SUϕ =

{
(ξ, ξ̃)

∣∣ ξ ∈ SLn(F )
}
,

where ξ̃ = tξ−1; also g1
n × g1

n is a maximal lattice. It should be noted that if

h ∈ V and ϕ[h] 6= 0, then Kh is isomorphic to K.

Lemma 1.9. Let L be a maximal lattice in V and t the core dimension of

(V, ϕ); suppose K is a local field; put

E =
{
e ∈ r×

∣∣ eeρ = 1
}
, E0 =

{
eρ/e

∣∣ e ∈ r×
}
, EL = det

(
C(L)

)
,

where C(L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
. Then the following assertions hold:

(i) [E : E0] = 1 or 2 according as K is unramified or ramified over F.

(ii) EL = E0 if t = 0; EL = E if t > 0.

This is included in [S1, Lemma 4.16 and Proposition 4.18] and [S2, Lemma

5.11].

Suppose K is a local field ramified over F ; let L and M be maximal lattices

in V. Then there exists an element α ∈ Uϕ such that M = Lα as shown in

(i) of the following lemma. We then denote by e(L/M) the element of E/E0

represented by det(α). This is well defined in view of (ii) above.

Lemma 1.10. Let L and M be maximal lattices in V in the local case, and

let t be the core dimension of (V, ϕ). Then the following assertions hold:

(i) There exists an element α of Uϕ such that M = Lα.

(ii) We can take such an α from SUϕ if t > 0 or K is a field unramified

over F.

(iii) Suppose K is ramified over F and t = 0; then M = Lα with α ∈ SUϕ

if and only if e(L/M) = 1.

(iv) Suppose K = F × F ; then M = Lα with α ∈ SUϕ if and only if

[L/M ] = r.

Proof. The first assertion is included in [S1, Propositions 3.3 and 4.13] and

also in [S2, Lemmas 4.12 and 5.9]. Next, suppose K is a field; given M, take
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α ∈ Uϕ so that Lα = M and put c = det(α). Then c ∈ E. If K is unramified

over F or t > 0, then Lemma 1.9 guarantees an element β of Uϕ such that

Lβ = L and det(β) = c−1. Then βα ∈ SUϕ and Lβα = M. This proves (ii).

Assertion (iii) can be proved in a similar way. Assertion (iv) is included in [S1,

Proposition 3.3].

1.11. Let us now consider the case with n = 2 and a local F. Using the

symbols B, j, and ℓ of Lemma 1.3, we first observe that

(1.15) B ∼= M2(F ) ⇐⇒ t = 0 ⇐⇒ 1 ∈ d0(ϕ).

Let O be a maximal order in B containing r. We can find an element γ ∈ B×

such that ϕ[ℓ]−1 = γγι. Put M = ℓj(Oγ) and Ô =
{
α ∈ B

∣∣TrB/F (αO) ⊂ g
}
.

Identifying B with j(B), for α ∈ B we see that

ℓαγ ∈ M̂ ⇐⇒ ϕ(ℓαγ, M) ⊂ d−1 ⇐⇒ TrK/F

(
rϕ(ℓαγ, M)

)
⊂ g

⇐⇒ TrB/F (αO) ⊂ g ⇐⇒ α ∈ Ô.

Thus M̂ = ℓj(Ôγ). If B is not a division algebra, then Ô = O, so that M̂ = M,

which means that M is maximal. Suppose B is a division algebra; then O ={
α ∈ B

∣∣ααι ∈ g
}

as noted in [S3, Theorem 5.13], and so M =
{
x ∈ V

∣∣ϕ[x] ∈
g
}
, which is a unique maximal lattice in V by [S2, Lemma 5.4]. Since Ô = P−1

with the maximal ideal P of O, we have M̂ = ℓj(P−1γ). Thus [M̂/M ] = pr

with the maximal ideal p of g.

2. Classification of hermitian forms over a global field

2.1. Throughout this section we assume that F is a global field and K is

a quadratic extension of F. We denote by a and h the sets of archimedean

primes and nonarchimedean primes of F respectively, and put v = a ∪ h.

Given an algebraic group G defined over F, we define Gv for each v ∈ v and

the adelization GA as usual, and view G and Gv as subgroups of GA. We then

denote by Ga and Gh the archimedean and nonarchimedean factors of GA,

respectively. In particular, the adelization of the multiplicative group F× is

denoted by F×

A , which is the idele group of F. For x ∈ GA and v ∈ v we

denote by xv the v-component of x.

Given (V, ϕ) over F, for each v ∈ v we can define the v-localization

(V, ϕ)v = (Vv, ϕv) with ϕv : Vv × Vv → Kv in a natural way. For v ∈ h

let tv be the core dimension of (V, ϕ)v. Since x 7→ ϕv[x] for x ∈ Vv can be

viewed as an Fv-valued quadratic form, we have 2tv ≤ 4 by a well known

principle, and so tv ≤ 2. Let r0 denote the set of all real archimedean primes

of F that do not split in K. If v ∈ a and v /∈ r0, then there is only one

isomorphism class of (V, ϕ)v for each n. For each fixed v ∈ r0 we have a pair

of nonnegative integers (pv, qv) such that ϕv is represented by diag[1pv
, −1qv

]

when Fv and Kv are identified with R and C. We put then sv(ϕ) = pv − qv,
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and call sv(ϕ) the index of ϕ at v. Clearly |sv(ϕ)| is the core dimension of

ϕv, sv(ϕ) − n ∈ 2Z, and |sv(ϕ)| ≤ n; also, n and sv(ϕ) determine (pv, qv),

and vice versa.

For an r-lattice L in V and v ∈ h we denote by Lv the rv-linear span of L

in Vv. Also, for ξ ∈ GL(V, K)A we denote by Lξ the lattice in V such that

(Lξ)v = Lvξv for every v ∈ h. By the Uϕ(V )-genus (resp. SUϕ(V )-genus)

of L we understand the set of all lattices of the form Lξ with ξ ∈ Uϕ(V )A
(resp. ξ ∈ SUϕ(V )A). Also, by the Uϕ(V )-class (resp. SUϕ(V )-class) of L

we understand the set of all lattices of the form Lα with α ∈ Uϕ(V ) (resp.

α ∈ SUϕ(V )).

The classification of (V, ϕ) over a number field was done by Landherr in [L].

We formulate the results in the form that suits our later purposes, and give a

proof for the reader’s convenience. To be precise, we are going to show that

the isomorphism classes of hermitian spaces correspond bijectively to the sets

of data consisting of the following objects:

(2.1a) 0 < n ∈ Z; ε ∈ F×; an integer σv, given for each v ∈ r0, such that

|σv| ≤ n and σv − n ∈ 2Z.

We look for (V, ϕ) such that dim(V ) = n, d0(ϕ) is represented by ε, and

sv(ϕ) = σv for every v ∈ r0. Clearly the following condition is necessary:

(2.1b) (−1)σv/2ε > 0 for every v ∈ r0 if n ∈ 2Z and (−1)(σv−1)/2ε > 0 for

every v ∈ r0 if n− 1 ∈ 2Z.

Theorem 2.2. (i) The isomorphism class of (V, ϕ) is determined by

n, {σv}, and d0(ϕ).

(ii) Given n, ε, and {σv} satisfying (2.1a, b), there exists a hermitian space

(V, ϕ) such that dim(V ) = n, ε ∈ d0(ϕ), and sv(ϕ) = σv for every v ∈ r0.

Proof. Clearly n and {σv} determine (V, ϕ)v for every v ∈ a, and n and

d0(ϕ) determine (V, ϕ)v for every v ∈ h by Lemma 1.6. Therefore we obtain (i)

in view of the Hasse principle. We prove (ii) by induction on n. The case n = 1

is trivial, and so we assume n > 1. We first prove the case in which σv ≥ 0 for

every v ∈ r0. Let τv = σv − 1. Then the set
(
n − 1, (−1)n−1ε, {τv}

)
satisfies

(2.1a, b), and therefore by induction we can find a hermitian space (W, ψ) such

that dim(W ) = n − 1, τv = sv(ψ) for every v ∈ r0, and (−1)n−1ε ∈ d0(ψ).

Put V = K ⊕W and define ϕ on V by ϕ[a⊕ y] = aaρ + ψ[y] for a ∈ K and

y ∈W. Then clearly ε ∈ d0(ϕ) and sv(ϕ) = σv for every v ∈ r0.

Now, given {σv} with possibly negative σv, take c ∈ F× so that c < 0 or

c > 0 at v ∈ r0 according as σv < 0 or σv ≥ 0. Then the set
(
n, cnε, {|σv|}

)

satisfies (2.1a, b). Therefore we can find a hermitian space (V1, ϕ1) such that

dim(V1) = n, cnε ∈ d0(ϕ1), and sv(ϕ1) = |σv| for every v ∈ r0. Put ϕ = cϕ1.

Then ε ∈ d0(ϕ) and sv(ϕ) = σv for every v ∈ r0. This completes the proof.
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Theorem 2.3. Given (V, ϕ), put B = {K, d0(ϕ)} using the notation of

§1.2. Let e be the product of the prime ideals of F ramified in B; also let L be

a maximal lattice in V. Then the following assertions hold.

(i) [L̂/L] = er if n is even.

(ii) When n is odd, put d0(ϕ)g = aNK/F (b) with an r-ideal b and a

squarefree integral g-ideal a whose prime factors remain prime in K. Then

[L̂/L] = ad, where d is the different of K relative to F.

Proof. For v ∈ h let tv be the core dimension of (V, ϕ)v. Suppose n ∈ 2Z;

then tv = 0 if and only if d0(ϕ) is represented by an element of NK/F (K×

v ),

that is, if and only if v does not divide e. If n is odd, the isomorphism class

of (V, ϕ)v depends on av and dv. Thus our assertions can be reduced to the

question about [L̂v/Lv] for v ∈ h. In fact, suppressing the subscript v, we

have, in the local case,

(2.2) [L̂/L] = r if t = 0; [L̂/L] = pr if t = 2; [L̂/L] = d if t = 1 and

d0(ϕ) ∩ g× 6= ∅; [L̂/L] = pd if t = 1 and d0(ϕ) ∩ g× = ∅.
Here p is the maximal ideal of g. In view of Lemma 1.10 (i), it is sufficient to

prove this for a special choice of L. If K = F ×F, then we can put L = g1
n×g1

n

as noted in §1.8, and so L̂ = L. Thus we assume that K is a field. By (1.12),

L = L̂ if t = 0. Let M =
{
x ∈ Z

∣∣ ϕ[x] ∈ g
}
. By (1.12), [L̂/L] = [M̂/M ].

We have seen that [M̂/M ] = pr in §1.11 if t = 2. If t = 1, then M = rℓ

with an element ℓ such that ϕ[ℓ]g is g or pg. Thus M̂ = d−1ϕ[ℓ]−1ℓ, and so

[L̂/L] = [M̂/M ] = ϕ[ℓ]d, which completes the proof of (2.2). Combining the

results on [L̂v/Lv] for all v ∈ h, we obtain our theorem.

2.4. To illustrate Theorem 2.3 in terms of matrices, we have to define the

genus and class of a hermitian matrix. We put

(2.3) G = GLn(K), Hn =
{
Φ ∈ G

∣∣Φ∗ = Φ
}
, L0 = r1n,

(2.4) E = Ga

∏

v∈h

GLn(rv), Eξ = ξ−1Eξ (ξ ∈ GA),

(2.5) ∆ξ = Eξ ∩ G, ∆1
ξ = Eξ ∩ SLn(K).

Every r-lattice L in K1
n can be given as L = L0ξ with ξ ∈ GA, and Eξ =

{
y ∈

GA

∣∣Ly = L
}
. We denote by Hn(ξ) the set of all Φ ∈ Hn such that xΦx∗ ∈ g

for every x ∈ L0ξ. We call such a Φ reduced (relative to ξ) if the following

condition is satisfied:

(2.6) Φ ∈ Hn(ζ−1ξ) with ζ ∈ Gh ∩
∏

v∈h

Mn(rv) =⇒ ζ ∈ E.

We denote by H0
n(ξ) the set of all reduced elements of Hn(ξ).

We say that two elements Φ and Ψ of Hn(ξ) belong to the same genus (relative

to ξ) if there exists an element ε of Eξ such that εΦε∗ = Ψ ; they are said to
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belong to the same U -class (resp. SU -class) if αΦα∗ = Ψ for some α ∈ ∆ξ

(resp. α ∈ ∆1
ξ). These depend on the choice of L = L0ξ.

Given Φ ∈ Hn, put V = K1
n and ϕ[x] = xΦx∗ for x ∈ V. Then we obtain a

hermitian space (V, ϕ), which we denote by [Φ], and we write U(Φ) and SU(Φ)

for Uϕ(V ) and SUϕ(V ) as subgroups of G. Put L = L0ξ with ξ ∈ GA. Clearly

L is integral if Φ ∈ Hn(ξ), in which case L is maximal if and only if Φ ∈ H0
n(ξ).

Thus an element of H0
n(ξ) determines a hermitian space and a maximal lattice.

2.5. To parametrize all genera of Φ ∈ H0
n(ξ), we need a few more symbols:

(2.7) t = K×

A ∩
(
K×

a

∏

v∈h

tv

)
, tv =

{
y ∈ K×

v

∣∣ yyρ ∈ g×v
}
,

(2.8) T =
{
x ∈ GA

∣∣ det(x) ∈ t
}
.

Notice that tv = r×v ·
{
y ∈ K×

v

∣∣ yyρ = 1
}

for every v ∈ h, and tv = r×v if v does

not split in K. Let IK denote the ideal group of K and I0
K/F the subgroup of

IK generated by the ideals a such that NK/F (a) = g and the principal ideals.

Now there is a sequence of isomorphisms:

(2.9) GA/TG ∼= K×

A/K
×t ∼= IK/I

0
K/F .

The last isomorphism can be obtained by the map y 7→ yr for y ∈ K×

A. As for

the first isomorphism, we first note, for every ξ ∈ GA and Φ ∈ Hn,

(2.10) TGξ = EξU(Φ)AG =
{
x ∈ GA

∣∣ det(ξ−1x) ∈ K×t
}
.

Clearly the last set contains the second set. Conversely, suppose x ∈ GA

and det(ξ−1x) = by with b ∈ K× and y ∈ t. We can find z, w ∈ K×

A

such that zv ∈ r×v and wvw
ρ
v = 1 for every v ∈ h and y = zw. We can

find ε ∈ E, α ∈ G, and γ ∈ U(Φ)A such that det(ε) = z, det(α) = b, and

det(γ) = w. Then det(x−1εξγα) = 1. By strong approximation in SLn(K) we

see that x−1εξγα ∈ x−1ExSLn(K), and so x−1εξγα = x−1ε′xβ with ε′ ∈ E

and β ∈ SLn(K). Then x = (ε′)−1εξγαβ−1 ∈ EξU(Φ)AG, which proves the

last equality of (2.10). That TG equals the last set of (2.10) for ξ = 1 can be

proved in the same way. Thus TG is the inverse image of K×t under the map

x 7→ det(x), and so TG is a normal subgroup of GA. Then we obtain the first

isomorphism of (2.9) and also the first equality of (2.10) for every ξ ∈ GA.

Proposition 2.6. (i) For Φ, Ψ ∈ H0
n(ξ), ξ ∈ GA, the spaces [Φ] and [Ψ ] are

isomorphic if and only if they belong to the same genus.

(ii) Let X be a complete set of representatives for GA/TG, and for each

ξ ∈ GA let Yξ be a complete set of representatives for the genera of the elements

of H0
n(ξ). Then the hermitian spaces [Φ] obtained from Φ ∈ Yξ for all ξ ∈

X exhaust all isomorphism classes of n-dimensional hermitian spaces without

overlapping.
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Proof. Let Φ and Ψ be elements of H0
n(ξ) belonging to the same genus. Then

there exists an element ε ∈ Eξ such that εΦε∗ = Ψ, and the Hasse principle

guarantees an element α of G such that Ψ = αΦα∗. Thus [Ψ ] is isomorphic

to [Φ]. Conversely, suppose [Φ] and [Ψ ] are isomorphic for Φ, Ψ ∈ H0
n(ξ). Then

Φ = βΨβ∗ for some β ∈ G. Now L0ξ is maximal in both [Φ] and [Ψ ], and L0ξβ

is maximal in [Ψ ]. Thus L0ξβ = L0ξγ with γ ∈ U(Ψ)A by Lemma 1.10. Put

ζ = βγ−1. Then ζ ∈ Eξ, and ζΨζ∗ = Φ. Therefore Ψ belongs to the genus of

Φ. This proves (i). Clearly every n-dimensional hermitian space is isomorphic

to [Ψ ] for some Ψ ∈ Hn. Take a maximal lattice L in K1
n = V and put L = L0η

with η ∈ GA. We have then η ∈ TGξ with some ξ ∈ X. By (2.10) we can

put ξ = εηγα−1 with ε ∈ E, γ ∈ U(Ψ)A, and α ∈ G. Put Φ = αΨα∗. Then

α gives an isomorphism of [Φ] onto [Ψ ]. Now L0ηγ is a maximal lattice in [Ψ ]

and L0ξα = L0ηγ, and so L0ξ is a maximal lattice in [Φ]. Thus Φ ∈ H0
n(ξ).

By (i), Φ can be replaced by a member of Yξ. This shows that every (V, ϕ)

can be obtained as described in (ii). Now suppose [Φ1] and [Φ2] are isomorphic

for Φi ∈ Yξi
with ξ1, ξ2 ∈ X. Then Φ1 = αΦ2α

∗ with α ∈ G. Since L0ξi is

maximal, we have L0ξ1α = L0ξ2ζ with ζ ∈ U(Φ2)A. Then ξ1αζ
−1ξ−1

2 ∈ E,

and so det(ξ1ξ
−1
2 ) ∈ K×t. We are taking the ξi from X, and therefore ξ1 = ξ2

by (2.10). By (i), Φ2 belongs to the genus of Φ1, and so Φ2 = Φ1. This completes

the proof.

2.7. The connection of a class of hermitian matrices with a class of lattices

is not so simple in general. Given Φ ∈ H0
n(ξ) with a fixed ξ, in order to

exhaust all classes in the U(Φ)-genus of L0ξ, we have to consider the genera of

elements in H0
n(ξζ) for all ζ ∈ TG/EξG. Thus H0

n(ξ) is sufficient if and only if

K×t = K× det(E). We will not go into details, as we do not need the result in

our later treatment.

The case of SU -class is simpler. Fix ξ ∈ G and put L = L0ξ. For Φ ∈ Hn(ξ)

we define the SU -genus (relative to ξ) of Φ to be the set of all Ψ ∈ H0
n(ξ) such

that Ψ = εΦε∗ with ε ∈ Eξ such that det(ε) = 1. Clearly det(Ψ) = det(Φ).

Given such Ψ and ε, the Hasse principle guarantees an element α ∈ G such

that Ψ = αΦα∗. Then det(α) det(α)ρ = 1. Changing α for αγ with a suitable

γ ∈ U(Φ), we may assume that det(α) = 1. Since Lα = Lε−1α and ε−1α ∈
SU(Φ)A, we see that Lα belongs to the SU(Φ)-genus of L. We then associate

the SU(Φ)-class of Lα to Ψ. We can easily verify that the set of all SU -classes

in the SU -genus of Φ contained in Hn(ξ) are in one-to-one correspondence with

the set of SU(Φ)-classes in the SU(Φ)-genus of L.

2.8. Define (V, ϕ) by V = K1
n and ϕ[x] = xΦx∗ as above with any Φ ∈ Hn.

Put L = L0ξ with ξ ∈ GA. We easily see that L̂ = d−1L0(Φξ
∗)−1, and so

(2.11) [L̂/L] = det(Φξξρ)dn if L = L0ξ.

We need a few more symbols. First, we put d0 = d2∩F. For v ∈ r0 and (V, ϕ)
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isomorphic to [Φ] with Φ ∈ Hn we put sv(Φ) = sv(ϕ) and d0(Φ) = d0(ϕ).

Lemma 2.9. Let B be a quaternion algebra over F and K a quadratic ex-

tension of F contained in B; let r be the maximal order of K and O a maximal

order in B containing r; further let e be the product of the prime ideals in F

ramified in B and d the different of K relative to F. Then there exists a g-ideal

a such that O is isomorphic as a left r-module to r⊕a andNK/F (da) = se with

an element s such that B is isomorphic to {K, s}. Moreover, the coset aI0
K/F

is independent of the choice of O, and O is isomorphic as a right r-module to

r ⊕ aι, where ι is the main involution of B.

Proof. Take ε ∈ F× so that B = {K, ε}, and consider (V, ϕ) = [Φ] over K

with V = K1
2 and ϕ such that ε ∈ d0(ϕ). Using the symbols y, j of Lemma

1.3, identify j(α) with α for α ∈ B, and put M = yOγ with γ ∈ B×

h such that

ϕ[y]−1 = γvγ
ι
v for every v ∈ h. Applying the local result of §1.11 to Mv, we see

that M is maximal and [M̂/M ] = er. Put M = r12ξ with some ξ ∈ GL2(K)A
and a = det(ξ)r. Then by a well-known principle M is r-isomorphic to r ⊕ a.

By (2.11) we have det(Φ)NK/F (da) = e. Then we obtain the first assertion of

our lemma by taking s = − det(Φ)−1. Let O′ be another maximal order in B

containing r. By the Chevalley-Hasse-Noether theorem (see [E, Satz 7]) there

exists an r-ideal b such that bO′ = Ob. Take c ∈ K×

A so that b = cr. Then

for each v ∈ h we can find ηv ∈ GL2(Kv) such that yc−1
v xcv = yxηv for every

x ∈ Bv. Then yO′

v = yOvηv, and so yO′ = Mγ−1η with η = (ηv)v∈h. Using

the map j in the proof of lemma 1.3, we find that ηv = diag[1, cρv/cv], and so

det(γ−1η)r = ϕ[y]b−1bρ ∈ I0
K/F . Thus det(ξγ−1η)r ∈ aI0

K/F , which proves the

second assertion. We can put O = rz + aw with elements z and w. Applying

ι to this, we obtain the last assertion.

We call the coset aI0
K/F in the above lemma the characteristic coset of K

relative to B. Using this notion, we now reformulate Theorems 2.2 and 2.3 in

terms of the matrices Φ in H0
n(ξ).

Theorem 2.10 (The case of even n). Let the symbols n, {σv}v∈r0
, ε, and

ξ be given as follows: 0 < n ∈ 2Z, σv ∈ 2Z, |σv| ≤ n; ε ∈ F×, ξ ∈ GA. Let

B = {K, ε}; let e be the product of the prime ideals in F ramified in B, and

k the characteristic coset of K relative to B. Suppose that (−1)σv/2ε > 0 at

each v ∈ r0 and

(2.12) det(ξ)d(n−2)/2 ∈ k.

Then there exists an element Φ of H0
n(ξ) such that

(2.13) ε ∈ d0(Φ), det(Φξξρ)d
n/2
0 = e, sv(Φ) = σv for every v ∈ r0.

Moreover, every element of H0
n(ξ) is of this type, and the coset TGξ and the

genus of Φ are determined by (εNK/F (K×), {σv}v∈r0
).
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Proof. Let the symbols n, {σv}v∈r0
, ε, and ξ be given as in our theorem.

Then Theorem 2.2 combined with Proposition 2.6 guarantees an element Ψ

of H0
n(η) with some η ∈ GA such that ε ∈ d0(Ψ) and σv = sv(Ψ) for ev-

ery v ∈ r0. Put y = det(η)r. By Theorem 2.3 (i), (2.11), and Lemma 2.9

we see that yd(n−2)/2 ∈ k. Combining this with our condition (2.12), we see

that y ∈ det(ξ)I0
K/F , and so det(η−1ξ) ∈ K×t, which implies η ∈ TGξ; see

(2.9). By Proposition 2.6 (ii), [Ψ ] is isomorphic to [Φ] with some Φ ∈ H0
n(ξ).

Replacing (Ψ, η) by (Φ, ξ), we obtain (2.13). This proves the first part of our

theorem. Conversely, given Φ ∈ H0
n(ξ), put L = L0ξ. Let e be the product of

the prime ideals in F ramified in {K, d0(ϕ)}. By Theorem 2.2 (i) and (2.11),

det(Φξξρ)d
n/2
0 = e, which together with Lemma 2.9 implies condition (2.12).

This proves the second part. The last part follows from Proposition 2.6.

Theorem 2.11 (The case of odd n). Let the symbols n, {σv}v∈r, ε, and

ξ be given as follows: 0 < n − 1 ∈ 2Z, σv − 1 ∈ 2Z, |σv| ≤ n; ε ∈ F× and

ξ ∈ GA. Let εg = aNK/F (b) with an r-ideal b and a squarefree integral g-

ideal a whose prime factors remain prime in K. Suppose (−1)(σv−1)/2ε > 0 at

each v ∈ r0 and

(2.14) det(ξ)d(n−1)/2b ∈ I0
K/F .

Then there exists an element Φ of H0
n(ξ) such that

(2.15) ε ∈ d0(Φ), det(Φξξρ)d
(n−1)/2
0 = a, sv(Φ) = σv for every v ∈ r0.

Moreover, every element of H0
n(ξ) is of this type, and the coset TGξ and the

genus of Φ are determined by (εNK/F (K×), {σv}v∈r0
).

This can be proved in exactly the same fashion as for Theorem 2.10.

Lemma 2.12. Suppose F has class number 1. Then the class number of K

is odd if and only if IK = I0
K/F , in which case −1 ∈ NK/Q(K×) if and only if

−1 ∈ NK/Q(r×).

Proof. Suppose the class number of K is odd. Then every r-ideal a is of the

form a = cb2 with an r-ideal b and c ∈ K×. Thus a = cbbρb(bρ)−1 ∈ I0
K/F

as bbρ is principal, and so IK = I0
K/F . Suppose the class number of K is

even. Then there exists an r-ideal x whose ideal class is not a square. Suppose

x ∈ I0
K/F . Then x = zy−1yρ with z ∈ K× and an r-ideal y. Thus x = zyyρy−2,

a contradiction, as yyρ is principal. This proves the first part. To prove the

second part, suppose −1 = ααρ with α ∈ K×; put αr = bc−1 with integral r-

deals b and c that are relatively prime. Then bbρ = ccρ and we easily see that

b = cρ, and so c2 = α−1ccρ, which is principal. If the class number of K is odd,

then c = cr with c ∈ r. Thus αc = εcρ with ε ∈ r×. Then εερ = ααρ = −1.

This completes the proof.
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The last statement of the above lemma is false if the class number of K is

even. For example, let K = Q(
√

34 ). Then the class number is 2 and −1 = ααρ

with α = (3 +
√

34 )/5, but −1 /∈ NK/Q(r×).

2.13. Let us now take K to be a real or an imaginary quadratic field whose

class number is odd. We denote by d the discriminant of K. Thus F = Q and

K = Q(
√
d ). By Lemma 2.12 we have IK = I0

K/F , and so GA = TG by (2.9).

Therefore by Proposition 2.6, every hermitian space over K is isomorphic to

[Φ] with Φ ∈ H0
n(1n), and r1n is a maximal lattice in it. For simplicity we put

H1
n = Hn(1n) and H0

n = H0
n(1n). Then H1

n consists of all Φ = (cij) ∈ Hn such

that
√
d cij ∈ r and cii ∈ Z for every i and j; H0

n consists of all Φ ∈ H1
n

satisfying the following condition:

(2.16) If Φ = PΨP ∗, Ψ ∈ H1
n, and P ∈ GLn(K) ∩Mn(r), then det(P ) ∈ r×.

For Φ ∈ Hn we put s(Φ) = p − q if K is imaginary and Φ as a complex

hermitian matrix has p positive and q negative eigenvalues; we put s(Φ) = 0

if d > 0 and n ∈ 2Z; we do not define s(Φ) if d > 0 and n /∈ 2Z, and so the

symbol s(Φ) in that case must be ignored. Clearly two elements Φ1 and Φ2 of

H1
n belong to the same genus if s(Φ1) = s(Φ2) and Φ1 = PvΦ2P

∗

v with some

Pv ∈ GLn(rv) for every v ∈ h. Now, for L = r1n we have [L̂/L] = det(
√
dΦ)r

by (2.11). For d > 0 we fix an embedding of K into R, and take
√
d > 0.

Theorem 2.14 (The case of even n). Let K = Q(
√
d ) as in §2.13, and let

three integers n, σ, and e be given as follows: 0 < n ∈ 2Z, σ ∈ 2Z, |σ| ≤ n;

σ = 0 if d > 0; e is positive and squarefree. Let r be the number of prime

factors of e. Suppose that σ − 2r ∈ 4Z and no prime factor of e splits in K.

Then there exists an element Φ of H0
n such that

(2.17a) det(
√
dΦ) = (−1)σ/2e and s(Φ) = σ if d < 0,

(2.17b) det(
√
dΦ) = τe with τ = 1 or −1 if d > 0.

Moreover, every element of H0
n is of this type. Its genus is determined by

(σ, e) if d < 0, and by e if d > 0. If d > 0 and −1 ∈ NK/Q(K×), then both

e and −e can occur as det(
√
dΦ) for Φ in the same genus. If d > 0 and

−1 /∈ NK/Q(K×), then τ is uniquely determined by the condition that a prime

number p divides e if and only if τe /∈ NK/Q(K×

p ).

Proof. Given (n, σ, e) as in our theorem, we can find a quaternion algebra B

over Q which is ramified at p if and only if p|e. Then B is definite if and only

if r is odd. Since σ− 2r ∈ 4Z, we see that d < 0 if r is odd. Our assumption

on the prime factors of e allows us to put B = {K, ε} with ε ∈ Q×. Then

(−1)σ/2ε > 0 if d < 0. By Theorem 2.10, we obtain Φ ∈ H0
n satisfying (2.13)

with ξ = 1n, as (2.12) can be ignored. Then e = eZ and det(
√
dΦ) = τe with

τ = ±1. Since s(Φ) = σ, we see that τ = (−1)σ/2 if d < 0. The same theorem
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says that every element of H0
n is of this type, and its genus is determined by

εNK/F (K×) and σ. We easily see that (e, σ) determines (εNK/F (K×), σ), and

vice versa. If −1 ∈ NK/Q(K×), then by Lemma 2.12, r× contains an element

ζ such that ζζρ = −1. Then det(PΦP ∗) = − det(Φ) for P = diag[ζ, 1n−1].

Thus both e and −e can happen. Suppose d > 0 and −1 /∈ NK/Q(K×).

Then {K, e} is not isomorphic to {K, −e}. Since −d ∈ NK/Q(K×), d0(ϕ) is

represented by det(
√
dΦ). If det(

√
dΦ) = τe, then B = {K, τe}. Thus τ is

uniquely determined by the condition that a prime number p divides e if and

only if τe /∈ NK/Q(K×

p ).

Theorem 2.15 (The case of odd n). Let K = Q(
√
d ) as in §2.13 and let

four integers n, σ, τ, and e be given as follows: 0 < n−1 ∈ 2Z; σ is necessary

only if d < 0, σ − 1 ∈ 2Z, and |σ| ≤ n; τ is necessary only if d > 0, and

τ = 1 or −1; e is positive and squarefree, and every prime factor of e remains

prime in K. Then there exists an element Φ of H0
n such that

(2.18a) det(
√
dΦ) = (−1)(σ−1)/2e

√
d and s(Φ) = σ if d < 0,

(2.18b) det(
√
dΦ) = τe

√
d if d > 0.

Moreover, every element of H0
n is of this type, and its genus is determined by

(σ, e) if d < 0 and by (τ, e) if d > 0. For d > 0 the sets (1, e) and (−1, e)

determine the same genus if and only if −1 ∈ NK/Q(K×).

Proof. Given (n, σ, τ, e) as in our theorem, take ε = (−1)(σ−1)/2e if d < 0

and ε = (−1)(n−1)/2τe if d > 0. Then Theorem 2.11 with ξ = 1n and a = eZ

guarantees an element Φ of H0
n satisfying (2.15). We can easily verify that

(2.18a, b) hold. That every Φ ∈ H0
n is of this type also follows from Theorem

2.11, as d0(Φ) can be represented by e or −e with a positive integer e as in

our theorem. Since the last assertion is obvious, our proof is complete.

Corollary 2.16. Let K = Q(
√
d ) and H1

n be as in §2.13; let 0 < n ∈ Z

and σ ∈ Z.

(i) If d < 0, there exists an element Φ of H1
n such that det(

√
dΦ) = 1 and

s(Φ) = σ exactly when n ∈ 2Z and σ ∈ 4Z.

(ii) Suppose d > 0; then there exists an element Φ of H1
n such that

det(
√
dΦ) = 1 if and only if n ∈ 2Z. Moreover, there exists an element Φ′

of H1
n such that det(

√
dΦ′) = −1 if and only if n ∈ 2Z and −1 ∈ NK/Q(K×).

Proof. From Theorem 2.15 we see that det(
√
dΦ) = ±1 for Φ ∈ H1

n cannot

happen if n is odd. Take e = 1 in Theorem 2.14. Then r = 0, and we

obtain our results immediately from that theorem. Notice that if d > 0 and

−1 /∈ NK/Q(K×), then {K, −1} is a division algebra, and so −1 /∈ NK/Q(K×

p )

for some prime number p.

The above corollary is a natural analogue of a well-known fact on unimodular

quadratic form over Q.
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2.17. Examples. (2) Take n = 2, d = 21, and e1 = 11 · 13; then the class

number of K is 1 and −1 /∈ NK/Q(K×). For Φ1 =

[
7 2/

√
21

−2/
√

21 −1

]
we

have det(
√

21Φ1) = −e1 and Φ1 ∈ H0
2. But we cannot have det(

√
21Φ) = e1

for Φ ∈ H0
2.

Next take e2 = 3 · 7 · 11 · 13. Then det(
√

21Φ) for Φ ∈ H0
2 can be −e2 but

cannot be e2. Also, {K, 11 · 13} is ramified at p = 3, 7, but {K, −11 · 13} is

not. From this we can derive that diag[11, −13] is reduced, but diag[11, 13] is

not.

3. Hermitian Diophantine equations over a local field

3.1. Throughout this section we fix (V, ϕ) in the local case, and put n =

dim(V ). We denote by p the maximal ideal of g, and by t the core dimension

of (V, ϕ). Then t ≤ 2 as observed in §2.1. For an r-lattice L in V we put

(3.1) C(L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
, C1(L) = C(L) ∩ SUϕ(V ).

Define L[q, b] and L[q] by (1.10b, c). Clearly L[q, b] and L[q] are stable un-

der right multiplication by the elements of C(L), and so the four orbit sets

L[q, b]/C(L), L[q]/C(L), L[q, b]/C1(L), and L[q]/C1(L) are meaningful. Now

our principal results of this section are the following two theorems.

Theorem 3.2. Suppose that F is local and n > 1. Let L be a maximal

r-lattice in V . Then for every q ∈ F× and every r-ideal b the following

assertions hold:

(i) #
{
L[q, b]/C(L)

}
≤ 1.

(ii) #
{
L[q, b]/C1(L)

}
<∞.

(iii) #
{
L[q, b]/C1(L)

}
≤ 1 if we exclude the following two cases: (a) n = 2

and t = 0; (b) t = 1, qr = bbρ, and d 6= r.

(iv) If n = 2 and t = 0, then

(3.2) #
{
L[q, d−1]/C1(L)

}
=

{
1 if q ∈ g×,

N(qg)
[
1 − {K/F}N(p)−1

]
if q ∈ p,

where N(a) = #(g/a), and {K/F} = 1, −1, or 0, according as K = F × F, K

is an unramified quadratic extension of F, or K is ramified over F.

(v) L[q, d−1] 6= ∅ exactly in the following cases: (a) t = 0 and q ∈ g; (b) t =

1, d = r, d0(ϕ) = NK/F (K×), and q ∈ g; (c) t = 1, d0(ϕ) 6⊂ g×NK/F (K×),

and q ∈ p−1; (d) t = 1, d 6= r, and q ∈ pd−2 ∪
(
d−2 ∩ d0(ϕ)

)
; (e) n = t = 2

and g ⊂ qg ⊂ p−1 if d = r; qg = p−1 if d 6= r; (f) n > 2 = t and q ∈ p−1.

The proof will be given in §3.6 through §3.12.

The quantity #
{
L[q, b]/C1(L)

}
in Case (b) of (iii) is not so simple. We will

discuss that case in Lemma 3.13 (ii).
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For every α ∈ Uϕ we have C(Lα) = α−1C(L)α, C1(Lα) = α−1C1(L)α, and

(Lα)[q, b] = L[q, b]α. Therefore, in view of Lemma 1.10 (i), it is sufficient to

prove Theorem 3.2 for a special choice of L. Also, since c ·L[q, b] = L[ccρq, cb]

for every c ∈ K×, it is sufficient to prove our theorem when b = d−1 or b = r.

Theorem 3.3. If n > 1, we have #
{
Λ[q]/C1(Λ)

}
< ∞ for every q ∈ F×

and every r-lattice Λ in V.

Proof. Let L be a maximal lattice in V. Given Λ, we can find c ∈ F× such

that cΛ ⊂ L. Then cΛ[q] ⊂ L[c2q]. For any two open compact subgroups D

and E of SUϕ we have [D : D∩E] <∞. Therefore it is sufficient to prove that

#
{
L[q]/C1(L)

}
< ∞. Given h ∈ L[q], put b = ϕ(h, L). Then qr ⊂ b ⊂ d−1,

and hence L[q] ⊂ ⋃
b
L[q, b], where b runs over the r-ideals b such that

qr ⊂ b ⊂ d−1. Therefore the desired fact follows from Theorem 3.2 (ii).

Lemma 3.4. Let L be a maximal lattice in V. Suppose dim(V ) > 1 and

q ∈ g×; then #
{
L[q, r]/C(L)

}
≤ 1. Moreover, #

{
L[q, r]/C1(L)

}
≤ 1 if K is

a field unramified over F, or the core dimension of (Kh)⊥ is not 0 for some

h ∈ L[q, r].

Proof. Let h, k ∈ L[q, r]. We see that L+ rh is integral, and so h ∈ L, as L

is maximal. Given x ∈ L, put y = x− ϕ[h]−1ϕ(x, h)h. Then y ∈ L ∩ (Kh)⊥.

From this we can derive that L = rh ⊕M with M = L ∩ (Kh)⊥. Similarly

L = rk ⊕M ′ with M ′ = L ∩ (Kk)⊥. Since L is maximal, M and M ′ must be

maximal. By (1.5) we can find an element α of SUϕ(V ) such that k = hα.

Then Mα is a maximal lattice in (Kk)⊥. By Lemma 1.10 (i) we can find an

element β of Uϕ
(
(Kk)⊥

)
such that Mαβ = M ′; by Lemma 1.10 (ii) such a

β can be taken from SUϕ
(
(Kk)⊥

)
if K is a field unramified over F, or the

core dimension of (Kk)⊥ is not 0. Extend β to V by putting kβ = k. Then

αβ ∈ C(L) and hαβ = k. We have αβ ∈ C1(L) under the said conditions on

K or on Kk. This proves our lemma. Notice that the core dimension of (Kh)⊥

depends only on hU(ϕ).

3.5. We call an element x of r1n primitive if xrn
1 = r. Replacing r by g, we

can similarly define the primitive elements of g1
n. Given an integral r-lattice L

in V, identify V and L with K1
n and r1n with respect to an r-basis {zi}n

i=1 of

L; also let ϕ0 =
(
ϕ(zi, zj)

)n

i,j=1
. By (1.9) we have δϕ0 ≺ r for any element δ

of r such that δr = d. Moreover, ϕ(x, L) = d−1 for x ∈ L = r1n if and only if

δxϕ0 is primitive.

To prove Theorem 3.2, we fix a maximal lattice L in V, and hereafter write

simply C and C1 for C(L) and C1(L); we always assume n > 1.

3.6. In this subsection we consider the case K = F × F, using the notation

of §1.8. We can put L = g1
n × g1

n.
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Let h = (a, b) ∈ L[q, r] with a, b ∈ F 1
n . Then ϕ(h, L) = (agn

1 , bg
n
1 ), and

so both a and b are primitive. Let {ei}n
i=1 be the standard basis of F 1

n .

Take α ∈ SLn(g) so that aα = e1 and put c = b · tα−1 = (ci)
n
i=1. Then

c1 = q. Suppose q ∈ g×; then define β ∈ SLn(g) by β =

[
1 x
0 1n−1

]
with

x = (q−1c2, . . . , q
−1cn) and put γ = α · tβ. Then aγ = e1 and b · tγ−1 =

cβ−1 = qe1. Thus L[q, r]/C1 is represented by (e1, qe1) if q ∈ g×.

Next suppose q ∈ p; then (c2, . . . , cn) is primitive, and so we can find β ∈
GLn−1(g) such that (c2, . . . , cn)β = (1, 0, . . . , 0). Put γ = α · diag[1, tβ−1].

Then aγ = e1 and b · tγ−1 = (q, 1, 0, . . . , 0). This shows that #
{
L[q, r]/C} =

1. If n > 2, we can take β ∈ SLn−1(g), and hence #
{
L[q, r]/C1} = 1.

Finally suppose n = 2 and q ∈ p; then we have shown that L[q, r]/C1 can

be represented by the elements of the form
(
e1, (q, s)

)
with s ∈ g×. Suppose(

e1, (q, s)
)
α =

(
e1, (q, t)

)
with α = (γ, tγ−1) ∈ C1, γ ∈ SL2(g), and s, t ∈

g×. Clearly γ =

[
1 0
v 1

]
with v ∈ g, and so t = s − qv. Since the procedure

is reversible, we see that #
{
L[q, r]/C1} = #(g/qg)×, which gives (3.2) for

K = F × F. This completes the proof of Theorem 3.2 in the case K = F × F.

Hereafter from §3.7 through §3.12 we assume that K is a field.

3.7. Let us consider the case n = t = 2. Let the symbols be as in Lemma

1.3 and §1.11; we identify B with j(B). In view of Lemma 1.6 we can take

ϕ[ℓ] = c = 1 in the proof of Lemma 1.3, and so we can take γ = 1 in §1.11.

Thus M = ℓO. Since ϕ is anisotropic, SUϕ(V ) = C1(M) =
{
α ∈ O×

∣∣ααι =

1
}
. From (1.5) we see that #

{
M [q, d−1]/C1

}
= 1 if M [q, d−1] 6= ∅. Since

TrK/F

(
ϕ(ℓα, ℓβ)

)
= TrB/F (αβι) for α, β ∈ B, we have ϕ(ℓα, M) = d−1 only

if TrB/F (αO) = g, which is so if and only if αO = O or αO = P−1. Take

such an α and assume that K is unramified over F. Then ℓα ∈ M [ααι, r].

Thus M [q, d−1] 6= ∅ if and only if qg is g or p−1. Next suppose that K is

ramified over F. Clearly M [q, d−1] 6= ∅ for some q, and qg is g or p−1 for

the same reason as above. Suppose q ∈ g×. Then we can find an element

ξ ∈ O× such that ξξι = q. Then ϕ[xξ] = qϕ[x] for every x ∈ V, Mξ = M, and

M [1, b]ξ = M [q, b]. Let d0(ϕ) = sNK/F (K×) as in the proof of Lemma 1.3.

We may assume that s ∈ g×, s /∈ NK/F (r×), and ϕ0 = diag[1, −s]. Observe

that O consists of the elements a + bω with a, b ∈ K such that a + aρ ∈ g

and aaρ − sbbρ ∈ g. Now let ℓα ∈ M [1, d−1] with α ∈ B. Then ααι = 1,

and so ℓ ∈ M [1, d−1]. Thus d−1 = ϕ(ℓ, M) = ϕ(ℓ, ℓO). For a + bω ∈ O as

above, we have ϕ(ℓ, ℓ(a + bω)) = aρ, and so O contains an element a + bω

such that ar = d−1. Put NK/F (d) = pκ with 0 < κ ∈ Z. Then aaρg = p−κ,

and bbρg = p−κ as aaρ−sbbρ ∈ g. Putting a−1b = c, we obtain sccρ−1 ∈ pκ,

a contradiction, as s /∈ NK/F (r×). Thus M [q, d−1] 6= ∅ only if qg = p−1. This

proves Theorem 3.2 when n = t = 2.
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3.8. Take an element u ∈ r so that r = g[u] and put δ = u − uρ. Then

d = δr and δρ = −δ. We will often use these u and δ in our later treatment.

Take a decomposition of V as in (1.8a, b), and assume that it is a Witt

decomposition; thus t = dim(Z). Put gi = δ−1fi and

(3.3) L =

r∑

i=1

(rei + rgi) +M, M =
{
y ∈ Z

∣∣ϕ[y] ∈ g
}
.

Then L is a maximal lattice in V as noted in §1.7. With an r-

basis {mi}t
i=1 of M, consider matrix representation with respect to

{e1, . . . , er, m1, . . . , mt, g1, . . . , gr}. Then ϕ is represented by

(3.4) ϕ0 =




0 0 −δ−11r

0 ζ 0
δ−11r 0 0


 ,

where ζ =
(
ϕ(mi, mj)

)t

i,j=1
. Now write an element of GL(V ) as a matrix with

9 matrix blocks corresponding to the blocks of (3.4), and let P be the group

consisting of the elements of Uϕ whose lower left 3 blocks under the diagonal

blocks are all 0; also let P 1 = P ∩ SUϕ. Then

(3.5) Uϕ = PC(L) and SUϕ = P 1C1(L);

see [S2, Proposition 5.16]. If r = 1, P consists of the matrices of the form

(3.6)



a b a−ρ(s+ uρbζb∗)
0 e −δa−ρeζb∗

0 0 a−ρ


 ,

where a ∈ K×, b ∈ K1
t , e ∈ U ζ(Z), and s ∈ F.

3.9. The case t = 0. Represent the elements of V by row vectors in K1
r ×K1

r

with respect to the basis {e1, . . . , er, g1, . . . , gr}, and GL(V ) by GL2r(K),

acting on the right. Then for h = (y, z) ∈ K1
r ×K1

r we have ϕ[h] = δ−1(zy∗−
yz∗) and ϕ(h, L) = δ−1

∑r
i=1(ryi+rzi). Now ϕ is represented by δ−1 η, where

η =

[
0 −1r

1r 0

]
.

Therefore diag[α, α̃] ∈ Uϕ for every α ∈ GLr(K), where α̃ = (α∗)−1. Suppose

ϕ(h, L) = d−1 for h = (y, z); then
∑r

i=1(ryi + rzi) = r and ϕ[h] ∈ g. Putting

k = (e1, qug1) with q ∈ F (not necessarily 6= 0), let us prove

(3.7) ϕ[h] = q and ϕ(h, L) = d−1 =⇒ h ∈ kC(L); h ∈ kC1(L) if r > 1.

Since η ∈ C1, changing h for hη if necessary, we may assume that
∑r

i=1 ryi =

r. We can find an element α ∈ GLr(r) such that yα = e1; we can even take

α from SLr(r) if r > 1. Put w = zα̃. Then (y, z)diag[α, α̃] = (e1, w), and

so w1 − wρ
1 = qδ. Thus we can put w1 = p + qu with p ∈ g. Define an

element s = s∗ ∈ Mr(r) so that s11 = p and s1j = wj for j > 1, and put
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β =

[
1r s
0 1r

]
. Then β ∈ C1 and kβ = (e1, w). If r > 1, then we see that

h ∈ kC1, and so L[q, d−1] = kC1. This proves (3.7) and also Theorem 3.2 (i),

(iii), (v) when t = 0.

Suppose r = 1; then y ∈ r×. Since C1 is a normal subgroup of C, the above

argument shows that h ∈ ⋃
t(t, t

−ρqu)C1, where t runs over r×. Define B

as in Lemma 1.3. From (1.7b), (1.15), and the last equality in the proof of

Lemma 1.3 we obtain B = M2(F ), SUϕ = SL2(F ), and C1 = SL2(g). Let

t ∈ r× ∩ g[qu]. Then t = a + cqu with a, c ∈ g, and we can find an element

γ ∈ SL2(g) of the form γ =

[
a b
c d

]
. We have (1, qu)γ = (t, t−ρv) with

v ∈ r. Then v − vρ = qδ, so that v = qu − s with s ∈ g. Since ttρ ∈ g×,

we can put s = ttρs′ with s′ ∈ g. Put σ =

[
1 s′

0 1

]
. Then σ ∈ C1 and

(t, t−ρv)σ = (t, t−ρqu), which shows that (t, t−ρqu) ∈ (1, qu)C1 if t ∈ g[qu].

Since the converse is obvious, we thus obtain L[q, d−1] =
⊔

t∈τ (t, t−ρqu)C1,

where τ = r×/g[qu]×. This proves (3.2) and completes the proof of Theorem

3.2 when t = 0.

3.10. The notation being as in (3.3), put Hj =
∑j

i=1(Kei + Kgi). Let

us now show that given h ∈ V, there exists an element α of C1 such that

hα ∈ H1 + Z. This is obvious if h ∈ Z or r = 1. So assume that h /∈ Z and

r > 1. Put h = w+k with k ∈ Z and w =
∑r

i=1(yiei +zigi) ∈ Hr, yi, zi ∈ K.

Then we can put
∑r

i=1(yir + zir) = dr with d ∈ K×. Taking d−1w as h of

(3.7), we can find an element γ ∈ C1(L ∩Hr) such that d−1wγ ∈ H1. Extend

γ to an element of C1(L) by defining xγ = x for every x ∈ Z. Then we obtain

the desired fact. This means that if n > t > 0, then it is sufficient to prove

Theorem 3.2 when r = 1.

3.11. Case t > 0, r = 1. Writing simply e and g for e1 and g1, we have

V = Ke+ Z +Kg and L = re+M + rg with a maximal lattice M in Z. Let

h = ye+x+ zg with y, z ∈ K and x ∈ Z. Then ϕ[h] = δ−1(zyρ − yzρ)+ ζ[x],

where ζ is the restriction of ϕ to Z, and ϕ(h, L) = δ−1(ry + rz) + ζ(x, M).

Suppose h ∈ L[q, d−1]. Then ry+rz+dζ(x, M) = r, and hence y, z ∈ r, x ∈ M̂,

and ϕ[h]− ζ[x] ∈ g. We identify an element of Z with a row vector of K1
t with

respect to an r-basis of M. Then an element ae+b+cg of V with a, c ∈ K and

b ∈ Z can be identified with a row vector [a b c] of K1
t+2. If t = 2 and M

corresponds to O as in §1.11, then M̂ corresponds to P−1, and so ζ[x] ∈ p−1;

consequently ϕ[h] ∈ p−1. Since e + qug ∈ L[q, d−1] if q ∈ g, we see that

L[q, d−1] 6= ∅ for every q ∈ g.

(a) First suppose t = 2 and q ∈ p. Suppose also that ry + rz 6= r. Then

yzρ ∈ pr, and so δ−1(zyρ−yzρ) ∈ p. Thus ζ[x] ∈ p, and hence ζ(x, M) 6= d−1.

(In §3.7 we showed that ζ(x, M) = d−1 only if g ⊂ ϕ[x]g ⊂ p−1.) Therefore
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δϕ(h, L) 6= r, a contradiction. This shows that (y, z) must be primitive. By

(3.7) there is an element α of C(re+ rg) such that (ye+ zg)α = e+ aug with

a ∈ g. Extend α to an element γ of SUϕ(V ) by defining wγ = wσ for w ∈ Z

with σ ∈ Uϕ(Z) such that det(σ) = det(α)−1. Since Mσ = M, we see that

γ ∈ C1, and hγ = [1 k au] with k ∈ M such that ζ[k] = q − a. Given

another h′ ∈ L[q, d−1], we can similarly find an element γ′ of C1 such that

h′γ′ = [1 k′ a′u] with a′ ∈ g and k′ ∈ M such that ζ[k′] = q − a′. Put

b = k′ − k and

(3.8) τ =




1 b s+ uρbζb∗

0 1 −δζb∗
0 0 1




with some s ∈ g. This is a special case of (3.6) and belongs to SUϕ(V ). Since

b ≺ r and δζ ≺ r, we see that τ ∈ C1. We choose s so that hγτ = [1 k′ a′u],

which is so if and only if a′u = s+ uρbζb∗ − δkζb∗ + au. This can be achieved

by taking s = TrK/F

(
uζ(k, k′)

)
− (u + uρ)ζ[k′]. Then h′γ′ = hγτ, and so

h′ ∈ hC1 as expected.

(b) Next suppose t = 2 and q /∈ p. Then q ∈ g× or qg = p−1. If d 6= r and

q ∈ g, then ζ[x] ∈ g, and so δζ(x, M) 6= r as shown in §3.7. Consequently

ry+rz = r in such a case, and the argument of case (a) is applicable. Therefore

we may assume that qg = p−1 if d 6= r. Then as observed in §3.7, we can find an

element v of M [q, d−1]. The same can be said for both cases q ∈ g× and qg =

p−1 if d = r. We identify v with the row vector [0 v 0], which can be viewed

as an element of L[q, d−1], and so L[q, d−1] 6= ∅ in such cases. Combining (1.5)

and (3.5), we have h ∈ vP 1C1, and hence h = vπα with π ∈ P 1 and α ∈ C1.

Write π in the form (3.6) and focus our attention on the element e of U ζ(Z)

there. Since U ζ(Z) = C(M), we see that ve ∈ M [q, d−1], and hence ve = vε

with ε ∈ C1(M) = SU ζ(Z) as shown in §3.7. Let β = diag[1, ε, 1] and

π1 = πβ−1. Then β ∈ C1, π1 ∈ P 1, and vπ1 = hα−1β−1 ∈ L[q, d−1]. Our

choice of ε shows that vπ1 = [0 v p] with p ∈ r. Since v ∈ M [q, d−1],

δvζ is primitive (see §3.5), and so we can find an element b of r12 such that

δvζb∗ = −p. Define τ by (3.8) with this b and s = 0. Then τ ∈ C1 and

vτ = vπ1 = hα−1β−1. This shows that h ∈ vC1. Thus we obtain Theorem 3.2

when n > t = 2.

(c) Finally suppose t = 1; let M and ζ be as in (3.3) and (3.4). Then ζ =

ϕ[m] and M = rm with an element m. Clearly ζ ∈ g× or ζg = p; the latter

case occurs only when d = r. We first treat the case where ζ ∈ g×; the other

case will be treated in §3.12. Thus h = ye+zg+sm with y, z, s ∈ K such that

yr+zr+sd = r and δ−1(zyρ−yzρ)+ζssρ = q. Suppose d = r and yr+zr 6= r.

Then s ∈ r× and we see that q = ϕ[h] ∈ g×. Then #
{
L[q, d−1]/C1(L)

}
≤ 1

by Lemma 3.4.

(c1) Let us now prove the case in which q ∈ g and yr + zr = r for both
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ramified and unramified K. Putting p = δ−1(zyρ − yzρ) and applying (3.7)

to ye + zg, we find γ ∈ C(L) such that Mγ =M and (y, z)γ = (1, pu) with

p∈g. Replacing γ by γα with α∈C such that mα=det(γ)−1m and α is the

identity map onKe+Kg,we may assume that γ∈C1.We have hγ = [1 x pu]

with x ∈ r. We consider

(3.9) σ =




1 −x uρζxxρ

0 1 δζxρ

0 0 1



 ,

which is similar to (3.8) and belongs to C1. We have then hγσ = [1 0 s]

with s ∈ g. Taking (1, s) as (y, z) above, we find γ′ ∈ C1 such that hγσγ′ =

[1 0 qu]. Thus h ∈ kC1 with k = e+ qug; also Theorem 3.2 (v), (b) is valid.

(c2) SupposeK is ramified over F. If q ∈ g, then s ∈ r, so that yr+zr = r.

and (c1) covers this case. Thus we assume that q /∈ g. Then s /∈ r and

qg = ssρg. Put d = qκ with the maximal ideal q of r and 0 < κ ∈ Z. Since

sd ⊂ r, we can put s−1r = qa with 0 < a ≤ κ; then qg = p−a. Thus a is

determined by q. Suppose a < κ; then sd 6= r, so that yr + zr = r. By the

same technique as in (c1), we can find γ ∈ C1 such that hγ = [1 x pu] with

p ∈ g and x ∈ K. Then xqa = r. Let k = [1 x1 p1u] ∈ L[q, d−1] with p1 ∈ g

and x1 such that x1q
a = r.Our task is to show that k ∈ hC. For simplicity

put N(w) = wwρ for w ∈ K×. We have ζN(x) + p = q = ζN(x1) + p1, and so

N(x−1x1) − 1 ∈ pa. Thus N(x−1x1) ∈ N(r×) ∩ (1 + pa) = N(1 + qa) by [S2,

Lemma 17.6 (2)]. We can therefore put N(x−1x1) = N(d) with d ∈ 1 + qa.

Put α = diag[1r, dx
−1
1 x, 1r]. Then α ∈ C1 and kα = [1 dx p1u]. Put

b = dx − x and consider τ of (3.8) with this b and any s ∈ g. Then τ ∈ C1

and hγτ = [1 dx c] with c ∈ g such that c− cρ = δp1. Choosing s suitably,

we obtain c = p1u. Then k ∈ hC1.

(c3) It remains to treat the case a = κ. Then sd = r and qr = d−2. Put

h0 = δh and q0 = −δ2q. Then h0 ∈ L[q0, r]. Since q0 ∈ g×, by Lemma 3.4 we

see that #
{
L[q, d−1]/C

}
= #

{
L[q0, r]/C

}
≤ 1.

(c4) As for (d) of Theorem 3.2 (v), we have seen that L[q, d−1] 6= ∅ only

if q ∈ d−2; also e+ qug ∈ L[q, d−1] if q ∈ g. Thus it remains to consider the

case where d 6= r and q /∈ g. Suppose qg = p−a with 0 < a < κ. We can

find c ∈ g× such that c − 1 ∈ pa and c /∈ N(r×). Then q or c−1q represents

d0(ϕ). If q ∈ d0(ϕ), then q = ζssρ with s ∈ K, and e + sm ∈ L[q, d−1]. If

q ∈ cd0(ϕ), put q = cζssρ with s ∈ K and p = ζssρ(c− 1). Then p ∈ g and

e+ pug + sm ∈ L[q, d−1]. Thus L[q, d−1] 6= ∅ if q ∈ pd−2. The case qr = d−2

will be settled in Lemma 3.13.

3.12. Let us now treat the case where t = 1 and ζg = p. Then d = r

and δ ∈ r×. To avoid possible confusion, we use the letter π instead of ζ;

thus ϕ[m] = π. Let h = ae+ bf + cm ∈ L[q, r]. Then ra + rb + rπc = r and

abρ + aρb + πccρ = q. Clearly q ∈ p−1; also c ∈ r if and only if q ∈ g. Given
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q ∈ g, we can find b ∈ r such that b + bρ = q. Then e + bf ∈ L[q, r]. Given

q ∈ p−1, /∈ g, we can find d ∈ r× such that ddρ = πq. Then π−1dm ∈ L[q, r].

Thus L[q, r] 6= ∅ if and only if q ∈ p−1.

(1) Let us first assume that q ∈ g; then c ∈ r and ra + rb = r. By (3.7)

there exists an element β of C(re + rf) such that kβ = e + sf with s ∈ r.

Extend β to an element α of C1(L) by defining mα = det(β)−1m. Then

hα = e + sf + c1m with c1 ∈ r. Now represent the elements of Uϕ(V ) by

matrices with respect to {e, m, f}. Then (3.5) holds with the subgroup P of

Uϕ consisting of the upper triangular matrices. Observe that P contains every

matrix of the form

(3.10)




1 −x y
0 1 πxρ

0 0 1





with x, y ∈ K such that y + yρ = −πxxρ. Since TrK/F (r) = g, for any x ∈ r

we can take such a y from r. Let γ be the matrix of (3.10) with x = c1 and

y ∈ r. Then γ ∈ C1(L) and hαγ = e+ zf with z ∈ r such that z + zρ = q.

Take z1 ∈ r so that z1 + zρ
1 = q. Denote by ε the matrix of (3.10) with x = 0

and y = z1−z. Then ε ∈ C1(L) and (e+zf)ε = e+z1f. This gives the desired

result when q ∈ g.

(2) Next we consider the case c /∈ r; put d = πc. Then d ∈ r× and q =

abρ + aρb + π−1ddρ. Thus πq ∈ g×, and so we can find an element d0 ∈ r×

such that d0d
ρ
0 = πq. Put k = π−1d0m. Then k ∈ L[q, r]. By (1.5), we have

h = kα with α ∈ SUϕ, and by (3.5) we can put α = βγ with β ∈ P 1 and

γ ∈ C1. Replacing β by βξ with a suitable diagonal matrix ξ belonging to

C1, we may assume that the center entry of β is 1. (Here we need Lemma 1.9

(i).) Let [0 1 j] be the second row of β. Then [0 π−1d0 π−1d0j] = kβ =

hγ−1 ∈ L[q, r], and so π−1d0j ∈ r. Put x = π−1jρ; then x ∈ r. Let ε be the

matrix of (3.10) with this x and y such that y + yρ = −πxxρ. Then ε ∈ C1

and kε = kβ = hγ−1, which gives the desired fact.

It only remains to discuss L[q, d−1]/C1 when d 6= r and qr = d−2. (In (c3)

we treated L[q, d−1]/C.) The problem is settled by (ii) of the following Lemma.

Lemma 3.13. If K is a field ramified over F, then the following assertions

hold:

(i) Let W = (Kh)⊥ with h ∈ L[q, b] and let E1 = det
(
C ∩ Uϕ(W )

)
, where

we view Uϕ(W ) as the subgroup of Uϕ(V ) consisting of the elements ξ such

that hξ = h. Then #
{
L[q, b]/C1

}
= [EL : E1] <∞, where EL is as in Lemma

1.9.

(ii) If 1 < n − 1 ∈ 2Z and qr = d−2, then #
{
L[q, d−1]/C1

}
= 2 or 0

according as q represents d0(ϕ) or not.

Proof. Clearly C∩Uϕ(W ) is an open subgroup of Uϕ(W ). Now det : Uϕ(W )

→ E is a continuous surjective map, and so it is an open map by virtue of a well
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know principle; see [S3, Lemma 8.0]. Thus E1 is an open subgroup of E, and

so [E : E1] <∞, as E is compact. Therefore [EL : E1] <∞. Next, take a finite

subset B ⊂ C so that {det(β)}β∈B gives EL/E1. Let k ∈ L[q, b]. By Theorem

3.2 (i), k = hα with α ∈ C. Then det(αβ−1) ∈ E1 for some β ∈ B, so that

det(αβ−1) = det(γ) with γ ∈ C ∩ Uϕ(W ). Put ξ = α−1γβ. Then ξ ∈ C1 and

hβ = hγβ = kξ, that is, k ∈ hβC1. Thus L[q, b] =
⋃

β∈B hβC
1. We easily

see that the last union is disjoint, and so we obtain (i). To prove (ii), let the

notation be as in (3.3) and (3.4); let M = rm, ϕ[m] = ζ ∈ g×, and d = qκ as

in (c2) above. Then ζ represents d0(ϕ). Suppose qr = d−2 and h ∈ L[q, d−1];

put h =
∑r

i=1(yiei + zigi) + sm with yi, zi, s ∈ K. Then yi, zi ∈ r, and

q − ζssρ ∈ g, so that sr = d−1 and (ζssρ)−1q ∈ 1 + pκ ∈ NK/F (r×); thus

q represents d0(ϕ). This shows that L[q, d−1] 6= ∅ only for such a q. Taking

such a q, we can put q = ζxxρ with x ∈ K×. Let k = xm and W = (Kk)⊥.

Then k ∈ L[q, d−1], W =
∑r

i=1(Kei + Kgi), and C ∩ Uϕ(W ) = C(Λ) with

Λ =
∑r

i=1(rei + rgi); thus E1 = EΛ. By Lemma 1.9, EL = E, EΛ = E0, and

[E : E0] = 2, which together with (i) shows that #
{
L[q, d−1]/C1

}
= 2. This

completes the proof.

Lemma 3.14. Let W = (Kh)⊥ with h ∈ L[q, b] and let Λ = L∩W. Suppose

that 0 < n− 1 ∈ 2Z. Then there is a unique maximal lattice in W containing

Λ at least in the following two cases: (1) q(bbρ)−1 = r; (2) q(bbρ)−1 = pr and

{K, qd0(ϕ)} is a division algebra. Moreover, Λ is maximal and C(Λ) = C(L)∩
Uϕ(W ) in Case (1); Λ is maximal and [C(Λ) : C(L) ∩ Uϕ(W )] = N(p) + 1 in

Case (2) if K is unramified over F and d0(ϕ) = NK/F (K×). These assertions

are true with C1 instead of C.

Proof. Changing h for ch with some c ∈ K×, we may assume that b = r.

This does not change the ideal q(bbρ)−1 nor {K, qd0(ϕ)}. Thus q ∈ g× in

Case (1) and qg = p in Case (2). Suppose q ∈ g×. Then L = rh ⊕ Λ as

shown in the proof of Lemma 3.4, and Λ is maximal as noted there; clearly

C(Λ) = C(L) ∩ Uϕ(W ) and C1(Λ) = C1(L) ∩ Uϕ(W ). Next suppose qg = p

and {K, qd0(ϕ)} is a division algebra. Let u, δ, and {ei, gi} be as in §3.8.

Since n /∈ 2Z, we have L = rm +
∑r

i=1(rei + rgi) with an element m such

that ϕ[m] = ζ. Theorem 3.2 (i) allows us to replace h by any element in

L[q, r]. Thus we can put h = e1 + qug1. Put now k = e1 + quρg1 , Y =

Kk +Km, and N = rk + rm. Then ϕ[k] = −q, W = Y ⊕ ∑r
i=2(Kei +Kgi),

Λ = N +
∑r

i=2(rei + rgi), and d0(Y ) = qd0(ϕ). Since {K, qd0(ϕ)} is a division

algebra, (Y, ϕ) is anisotropic, and so has a unique maximal lattice M as noted

in §3.7. Put Λ′ = M +
∑r

i=2(rei + rgi). Then clearly Λ′ is the unique maximal

lattice in W containing Λ.

To prove the remaining part, we assume that qg = p, d = r, and d0(ϕ) =

NK/F (K×). Since N ⊂M and [M̂ : M ] = N(p)2 = [N̂ : N ], we obtain M = N,

and so Λ is maximal. We easily see that C(L)∩Uϕ(W ) ⊂ C(Λ). Let γ ∈ C(Λ).
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Then Lγ is a maximal lattice in V containing Λ, so that
∑r

i=2(rei + rgi) ⊂ Lγ.

By [S2, Lemma 4.9 (i)] we have Lγ = J+
∑r

i=2(rei+rgi) with a maximal lattice

J in Km+Ke1 +Kg1. Since m ∈ J, from (1.9) we see that ϕ(m, J) = r, and

so J = rm+H with a maximal lattice H in Ke1 +Kg1 as shown in the proof

of Lemma 3.4. Now h = hγ ∈ Lγ and k ∈ Λ = Λγ; thus h, k ∈ J. Put

H0 = re1 + rg1. By Lemma 1.10 (ii), H = H0α with α ∈ SUϕ(Ke1 +Kg1). By

(3.5) we can take α in the form (3.6). Identify GL(Ke1 +Kg1) with GL2(K)

with respect to the basis {e1, g1}. Replacing α by an element of C(H0)α, we

can put α =

[
a−1 b
0 a

]
with a ∈ F× and b ∈ F. Put z = a−1e1 + bg1 and

w = ag1; then H = rz+ rw. Since δe1 = uk− uρh ∈ H and qδg1 = h− k ∈ H,

we see that p ⊂ ag ⊂ g, and so we may assume that a = 1 or a = q. Now

ϕ(z, e1) ∈ r, and so b ∈ g. Thus if a = 1, then H = H0. Suppose a = q; put

αb =

[
a−1 b
0 a

]
. Then H0αb = H0αb′ if and only if b − b′ ∈ p. Thus there

exist exactly N(p) + 1 maximal lattices in Ke1 + Kg1 containing h and k,

and so there exist at most N(p) + 1 lattices of the form Lγ with γ ∈ C(Λ).

This shows that

(3.11)
[
C(Λ) : C(L) ∩ Uϕ(W )

]
≤ N(p) + 1.

To show that this is actually an equality, define the symbols ℓ, j, ω, and O as in

Lemma 1.3, (1.6), and §3.7, with Y as the space V there. In the proof of Lemma

1.3 take ϕ0 = diag[ζ, −q] and s = ζ−1q. Then the identification of V with

K1
2 in the proof of Lemma 1.3 (which is unrelated to the above identification

of GL(Ke1 + Kg1) with K2
2 ) identifies m with (1, 0) and k with (0, 1), so

that m here equals ℓ of Lemma 1.3; also, M = ℓj(O) = mj(O). Let β be an

element of O such that ββι = 1; define ξ ∈ SUϕ(V ) by ξ = j(β) on Y and

xξ = x for every x ∈ Kh+
∑r

i=2(Kei+Kgi). Then ξ ∈ C1(Λ). Put β = c+dω

with c, d ∈ r. Then ℓξ = cℓ+ dk and kξ = sdρℓ+ cρk. Since δe1 = uk − uρh

and qδg1 = h − k, we have qδg1ξ = (1 − cρ)e1 − sdρℓ + q(u − cρuρ)g1. Thus

ξ ∈ C1(L) if and only if c − 1 ∈ pr, which is so if and only if β − 1 ∈ P.

Since ββι = 1, this shows that there exist at least N(p) + 1 different Lγ with

γ ∈ C1(Λ), and so

N(p) + 1 ≤
[
C1(Λ) : C1(L) ∩ Uϕ(W )

]
.

This combined with (3.11) proves that

[
C1(Λ) : C1(L) ∩ Uϕ(W )

]
=

[
C(Λ) : C(L) ∩ Uϕ(W )

]
= N(p) + 1,

which completes the proof.

We insert here the classification of the structures (V, sϕ) with s ∈ F×. If

K = F × F, the matter is settled in §1.8.
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Proposition 3.15. (i) If F is a local field and dim(V ) is even, then (V, ϕ)

is isomorphic to (V, sϕ) for every s ∈ F×.

(ii) Suppose F is an arbitrary field and dim(V ) is odd; let s ∈ F×; then

(V, ϕ) is isomorphic to (V, sϕ) if and only if s ∈ NK/F (K×).

Proof. The first assertion is included in Lemma 1.6. The second assertion

can be proved easily in the same manner as for [S3, Theorem 7.13] in the

even-dimensional case.

4. Hermitian Diophantine equations over a global field

4.1. Throughout this section we assume that F is an algebraic number field

and K is a quadratic extension of F ; we fix a hermitian space (V, ϕ) and use

the notation of §2.1. For an r-lattice L in V we put

(4.1) Γ (L) =
{
α ∈ Uϕ(V )

∣∣Lα = L
}
, Γ 1(L) = Γ (L) ∩ SUϕ(V ).

Given h ∈ V such that ϕ[h] 6= 0, put W = (Kh)⊥. We view Uϕ(W ) as a

subgroup of Uϕ(V ), and SUϕ(W ) as a subgroup of SUϕ(V ) as explained in

§1.1. For σ ∈ Uϕ(V )A, the symbol hσ is meaningful as an element of VA.

Theorem 4.2. If dim(V ) > 1, then #
{
Λ[q]/Γ 1(Λ)

}
<∞ for every q ∈ F×

and every r-lattice Λ in V.

Proof. Assuming dim(V ) > 1 and Λ[q] 6= ∅, take h ∈ Λ[q] and define W as

above; put G = SUϕ(V ), H = SUϕ(W ), D =
{
x ∈ GA

∣∣ Λx = Λ
}
, and Dv =

Gv∩D for v ∈ h. Then Γ 1(Λ) = G∩D and Dv = C1(Λv). By Theorem 3.3 and

(1.5) we have Λv[q] =
⋃

α∈Xv
hαDv with a finite subset Xv of Gv. By Theorem

3.2 (iii) and (iv) we can take Xv = {1} if Λv is maximal, v is not ramified in

K, and q ∈ g×v . Thus Xv = {1} for almost all v ∈ h. Put X =
∏

v∈hXv. This

is a finite subset of Gh. For each ξ ∈ X we can find a finite subset Eξ of Hh

such that HA =
⋃

ε∈Eξ
Hε(HA ∩ ξDξ−1). Then HAξD =

⋃
ε∈Eξ

HεξD. For

each (ε, ξ) such that G∩εξD 6= ∅ pick βε,ξ ∈ G∩εξD. Now let k ∈ Λ[q]. Then

k = hξζ for some ξ ∈ X and ζ ∈ D. On the other hand k = hα with α ∈ G

by (1.5). Then αζ−1ξ−1 ∈ HA, so that α ∈ HAξD. Thus α ∈ HεξD for some

ε ∈ Eξ. Then α ∈ Hβε,ξD∩G = Hβε,ξΓ
1(Λ), and hence k = hα ∈ hbε,ξΓ

1(Λ).

Since the bε,ξ form a finite set, we obtain our theorem.

4.3. We now fix a maximal lattice L in V, and put

(4.2) C =
{
γ ∈ Uϕ(V )A

∣∣Lγ = L
}
, C1 = C ∩ SUϕ(V )A.

We are going to state our main theorem with respect to a pair (G, H) belonging

to the following two types of objects:

Type U: G = Uϕ(V ) and H = Uϕ(W );

Type SU: G = SUϕ(V ) and H = SUϕ(W ).
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Here W = (Kh)⊥ with a fixed h ∈ V. For a subset S of Uϕ(V )A the symbol

hS is meaningful as a subset of VA. Therefore V ∩ hS is a well-defined subset

of V.

Theorem 4.4. Suppose dim(V ) > 1. For a fixed h ∈ V such that ϕ[h] 6= 0

put W = (Kh)⊥, and take (G, H) of Type U or SU as above. Let D = D0Ga

with an open compact subgroup D0 of Gh. Then the following assertions hold.

(i) For y ∈ GA we have HA ∩GyD 6= ∅ if and only if V ∩ hDy−1 6= ∅.
(ii) Fixing y ∈ GA, for every ε ∈ HA ∩GyD take α ∈ G so that ε ∈ αyD.

Then the map ε 7→ hα gives a bijection of H\(HA ∩ GyD)/(HA ∩ D) onto

(V ∩ hDy−1)/∆y , where ∆y = G ∩ yDy−1.

(iii) Take {yi}i∈I ⊂ GA so that GA =
⊔

i∈I GyiD, and put Γi = G∩yiDy
−1
i .

Then

(4.3) #
{
H

∖
HA

/
(HA ∩D)

}
=

∑

i∈I

#
{
(V ∩ hDy−1

i )/Γi

}
.

(iv) Let q = ϕ[h] and b = ϕ(h, L). Then for every y ∈ Uϕ(V )A, we have

(4.4) V ∩ hCy−1 =
(
Ly−1

)
[q, b].

(v) Suppose moreover that dim(V ) > 2 and the following condition is satis-

fied:

(4.5) If n is odd, then qvrv 6= bvbρ
v for every v ∈ h ramified in K.

Then for every y ∈ SUϕ(V )A we have

(4.6) V ∩ hC1y−1 =
(
Ly−1

)
[q, b].

Proof. Let y, ε, and α be as in (ii); then clearly hα ∈ V ∩ hDy−1. If

ηεζ ∈ βyD with η ∈ H, ζ ∈ HA ∩D, and β ∈ G, then β−1ηα ∈ G∩ yDy−1 =

∆y, and hence hα = hηα ∈ hβ∆y. Thus our map is well defined. Next let

k ∈ V ∩ hDy−1. Then k = hδy−1 with δ ∈ D, and moreover, by (1.5), k = hξ

with ξ ∈ G. Then h = hξyδ−1, so that ξyδ−1 ∈ HA. Thus ξyδ−1 ∈ HA∩GyD.
This shows that k is the image of an element of HA ∩GyD. To prove that the

map is injective, suppose ε ∈ αyD ∩HA and δ ∈ βyD ∩HA with α, β ∈ G,

and hα = hβσ with σ ∈ ∆y. Put ω = βσα−1. Then hω = h, so that ω ∈ H.

Since σ ∈ yDy−1, we have βyD = βσyD = ωαyD, and hence δ ∈ βyD∩HA =

ωαyD ∩HA = ω(αyD ∩HA) = ω(εD ∩HA) = ωε(D ∩HA) ⊂ Hε(D ∩HA).

This proves the injectivity, and completes the proof of (ii). At the same time

we obtain (i).

Since HA =
⊔

i∈I(HA ∩GyiD), we can derive (iii) immediately from (ii).

As for (v), clearly V ∩hC1 ⊂ L[q, b]. Conversely, if x ∈ L[q, b], then x ∈ hC1

by Theorem 3.2 (iii). Thus

(4.7) V ∩ hC1 = L[q, b].
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If k ∈ V ∩ hC1y−1, then hC1y−1 = kyC1y−1. Now ϕ
(
k, Ly−1

)
=ϕ(h, L)=b.

Taking k, yC1y−1, and Ly−1 in place of h, C1, and L in (4.7), we obtain V ∩
kyC1y−1 =

(
Ly−1

)
[q, b]. This proves (4.6) when V ∩hC1y−1 6= ∅. To prove the

remaining case, suppose ℓ ∈
(
Ly−1

)
[q, b]; then ϕ

(
ℓvyv, Lv

)
= bv = ϕ(h, L)v

for every v ∈ h, and so, by Theorem 3.2 (iii), ℓy ∈ hC1. Taking ℓ, yC1y−1,

and Ly−1 in place of h, C1, and L in (4.7), we obtain ∅ 6=
(
Ly−1

)
[q, b] = V ∩

ℓyC1y−1 = V ∩ hC1y−1. This shows that
(
Ly−1

)
[q, b] = ∅ if V ∩ hC1y−1 = ∅,

and hence (4.6) holds for every y ∈ GA. This proves (v). Assertion (iv) can be

proved in the same way.

In view of (i) we can restrict the indices i on the right-hand side of (4.3)

to those for which HA ∩ GyiD 6= ∅. If I ′ denotes the set of all such i’s, then

HA =
⊔

j∈I′ (HA ∩GyjD).

Combining (4.3) and (4.4), we obtain, for (G, H) of type U, an equality

(4.8) #
{
H

∖
HA

/
(HA ∩ C)

}
=

∑

i∈I

#
{
(Ly−1

i )[q, b]/Γi

}
,

where {yi} is such that GA =
⊔

i∈I GyiC and Γi = G ∩ yiCy
−1
i . We can state

a similar formula for (G, H) of type SU when n > 2 and (4.5) is satisfied.

Formula (4.8) connects the class number of H with respect to HA ∩ C to the

solutions h of the equation ϕ[h] = q under the condition ϕ(h, Ly−1
i ) = b.

5. Nonscalar hermitian Diophantine equations

5.1. So far we discussed the equation ϕ[h] = q with a scalar q. We can

formulate a similar problem with nonscalar q, which can be stated in terms of

matrices as follows. We take F to be local or global. Given q∗ = q ∈ GLm(K)

and ϕ∗ = ϕ ∈ GLn(K), we consider the solutions h ∈ Km
n of the equation

hϕh∗ = q. Here and throughout this section we assume n > m > 0. More

intrinsically, take (V, ϕ) as before and take also (X, q) with a nondegenerate

hermitian form q on a free K-module X of dimension m. We consider h ∈
Hom(X, V ) such that ϕ[xh] = q[x] for every x ∈ X. Since q is nondegenerate,

h must be injective. To simplify our notation, for every k ∈ Hom(X, V )

we denote by ϕ[k] the hermitian form on X defined by ϕ[k][x] = ϕ[xk] for

every x ∈ X. Then our problem concerns the solutions h ∈ Hom(X, V ) of the

equation ϕ[h] = q for a fixed q. If m = 1 and X = K, then q ∈ F×, and

an element h of V defines an element of Hom(K, V ) that sends c to ch for

c ∈ K, and every element of Hom(K, V ) is of this type. Thus the problem

about ϕ[h] = q with q ∈ F× is the one-dimensional special case. Let h be an

element of Hom(X, V ) such that rank(ϕ[h]) = m. Then

(5.1)
{
x ∈ Hom(X, V )

∣∣ϕ[x] = ϕ[h]
}

= h · SUϕ.

This is similar to (1.5), and follows easily from the Witt theorem in the unitary

case. Though we take V to be coordinate-free, it is practical to take X to be
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K1
m, and so take q to be a hermitian element of GLm(K), and q[x] = xqx∗

for x ∈ K1
m. For h ∈ Hom(X, V ) and 1 ≤ i ≤ m we define “the i-th row” of

h to be the element hi of V determined by ah =
∑m

i=1 aihi for a = (ai)
m
i=1 ∈

K1
m = X.

We first prove a local finiteness result that generalizes Theorem 3.3.

Theorem 5.2. Suppose F is a local field; let Λ be an r-lattice in Hom(X, V )

and let D =
{
γ ∈ SUϕ(V )

∣∣ Λγ = Λ
}
. Then, given h ∈ Hom(X, V ) ∩ Λ such

that ϕ[h] is nondegenerate, there exists a finite subset A of SUϕ(V ) such that

(5.2)
{
x ∈ Λ

∣∣ϕ[x] = ϕ[h]
}

=
⊔

α∈A hαD.

Moreover, suppose K = F × F or K is a field unramified over F ; suppose also

that ϕ[h] ∈ GLm(r) and Λ =
{
λ ∈ Hom(X, V )

∣∣ r1mλ ⊂ L
}

with a maximal

lattice L in V. Then we can take A = {1}.
Proof. The first part is Theorem 3.3 if m = 1, and so we assume m > 1

and prove (5.2) by induction on m. Put q = ϕ[h]. Changing (h, q, Λ) for

(ch, cqc∗, cΛ) with a suitable c ∈ GLm(K), we may assume that q = diag[a, η]

with a ∈ F× and η∗ = η ∈ GLm−1(K). Also we may assume that Λ ={
κ ∈ Hom(X, V )

∣∣Mκ ⊂ L
}

with M = r1m and an r-lattice L in V. Then

D =
{
α ∈ SUϕ(V )

∣∣Lα = L
}
. If x ∈ Λ and ϕ[x] = q, then x1, h1 ∈ L and

ϕ[x1] = ϕ[h1] = a, and hence by Theorem 3.3 there exists a finite subset B

of L such that such an x1 belongs to
⋃

b∈B bD and ϕ[b] = a for every b ∈ B.

Suppose x1 = bγ with b ∈ B and γ ∈ D. Put Wb = (Kb)⊥, y = xγ−1 and

z=[yi]
m
i=2. Then y1 =b and ϕ[y]=ϕ[h], so that ϕ[z]=η, and yi∈Wb for i > 1.

We can view z as an element of Hom(K1
m−1, Wb). Then r1m−1z ⊂ L ∩Wb.

Put E=
{
ε∈SUϕ(Wb)

∣∣ (L∩Wb)ε=L∩Wb

}
. By induction there exists a finite

subset Ub of Hom(K1
m−1, Wb) such that

{
z ∈ Hom(K1

m−1, Wb)
∣∣ r1m−1z ⊂ L ∩Wb, ϕ[z]=η

}
=

⊔
u∈Ub

uE.

We can find a finite subset S of E such that E =
⊔

σ∈S σ(D ∩ E). Then y=[
b
z

]
=

[
b
uστ

]
with u ∈ Ub, σ ∈ S, and τ ∈ D ∩ E. Thus x =

[
b
uσ

]
τγ, and

τγ ∈D. This shows that x∈⊔
k∈P kD with a finite subset P of the left-hand

side of (5.2), as the elements (b, u, σ) form a finite set. By (5.1), for each k∈P
there exists an element α of SUϕ(V ) such that k=hα. This proves the first

assertion.

Next suppose that the conditions on K, q, Λ, and ϕ as in the second asser-

tion are satisfied. Take an r-basis of L and identify V, L, and ϕ with K1
n, r1n,

and a hermitian matrix with respect to that basis. Given ℓ ∈ L = r1n, put

z = q−1hϕℓ∗ and y = ℓ − z∗h. Since ϕ ≺ r and q ∈ GLm(r), we see that

y ∈ L, and for every w ∈ X we have whϕy∗ = 0, so that y ∈ (Xh)⊥. Put

M = r1m and Y = (Xh)⊥. Then V =Xh ⊕ Y and L=Mh ⊕ (L ∩ Y ). Suppose

ϕ[k]=q with k∈Λ. Then similarly L=Mk⊕ (L∩Z) with Z=(Xk)⊥. Since L
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is maximal, Mh resp. Mk is maximal in Xh resp. Xk, and L ∩ Y resp. L ∩ Z
is maximal in Y resp. Z. By (5.1) there exists an element γ ∈ SUϕ(V ) such

that hγ = k. Then Mhγ = Mk, Y γ = Z, and (L ∩ Y )γ is r-maximal in Z,

so that by Lemma 3.4 (i), (L ∩ Y )γε = L ∩ Z with some ε ∈ Uϕ(Z). Define

α ∈ GL(V ) by α = γ on Xh and α = γε on Y. Then α ∈ Uϕ(V ), Lα = L,

and hα = k. Since det(α) ∈ r×, we can find an element ξ of Uϕ(Z) such that

(L ∩ Z)ξ = L ∩ Z and det(ξ) = det(α)−1. This is clear if K = F × F ; see

§3.6. If K is a field unramified over F, then the fact is included in Lemma

1.9. Extend ξ to an element of Uϕ(V ) by putting xkξ = xk for x ∈ X. Then

αξ ∈ SUϕ(V ), hαξ = k, and Lαξ = L. Clearly Λαξ = Λ, and hence we obtain

(5.2) with A={1}. This completes the proof.

Next we prove a generalization of Theorem 4.2, which is a global version of

the above theorem.

Theorem 5.3. Suppose that F is an algebraic number field; let Λ be an r-

lattice in Hom(X, V ), Γ =
{
γ ∈ SUϕ(V )

∣∣ Λγ = Λ
}
, and Tq =

{
x ∈ Λ

∣∣ϕ[x] =

q
}

with q∗ = q ∈ GLm(K). Then Tq/Γ is a finite set.

Proof. We assume the existence of h ∈ Tq. Put W = (Xh)⊥, G = SUϕ(V ),

H = SUϕ(W ), M = r1m, D =
{
γ ∈ GA

∣∣Λγ = Λ
}
, and Dv = D ∩ Gv for

v ∈ h. We identify H with
{
α ∈ G

∣∣ hα = h
}
. Fix a maximal lattice L in V.

By Theorem 5.2, for each v ∈ h there exists a finite subset Ev of Gv such that
{
x ∈ Λv

∣∣ϕ[x] = q
}

=
⊔

ε∈Ev
hεDv.

Now for almost all v ∈ h we have Λv =
{
γ∈Hom(Xv, Vv)

∣∣Mvγ⊂Lv

}
, Lv is

maximal, v is unramified in K, and q∈ GLm(rv). Therefore, by Theorem 5.2,

we can take Ev = {1} for almost all v ∈ h. Consequently we can find a finite

subset E of Gh such that Tq ⊂
⋃

η∈E hηD. If x ∈ Tq, then x ∈ hG by (5.1).

Thus x = hα = hηδ with α ∈ G, η ∈ E, and δ ∈ D. We have αδ−1η−1 ∈ HA,

and hence α ∈ HAηD. For each η ∈ E we can find a finite subset Zη of Hh

such that HA =
⊔

ζ∈Zη
Hζ(HA ∩ ηDη−1). Then HAηD =

⋃
ζ∈Zη

HζηD, and

hence α ∈ ⋃
η,ζ(G ∩ HζηD) =

⋃
η,ζ H(G ∩ ζηD). For each (ζ, η) such that

G ∩ ζηD 6= ∅, pick any β ∈ G ∩ ζηD. Then G ∩ ζηD = G ∩ βD = βΓ. Let B

be the set of such β’s chosen for each (ζ, η). Then α ∈ ⋃
β∈B HβΓ, and thus

hα ∈ ⋃
β∈B hβΓ, which proves our theorem.

Theorem 5.4. Suppose that F is an algebraic number field. With a fixed

h ∈ Hom(X, V ) such that rank
(
ϕ[h]

)
= m, put q = ϕ[h], W = (Xh)⊥, G =

Uϕ(V ), H = Uϕ(W ), and V = Hom(X, V ). Let D be an open subgroup of GA

containing Ga such that D ∩ Gh is compact, and let GA =
⊔

i∈I GyiD. Then

assertions (i), (ii), and (iii) of Theorem 4.4 are valid if we take the symbols

h, G, H, and D there to be those of the present setting, and replace V there by

V . In particular we have
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(5.3) #
{
H

∖
HA

/
(HA ∩D)

}
=

∑

i∈I

#
{
(V ∩ hDy−1

i )/Γi

}
,

where Γi = G∩yiDy
−1
i . The same is true with G = SUϕ(V ) and H = SUϕ(W ).

Proof. We can repeat the proof of Theorem 4.4 with obvious modifications.

Theorem 5.5. In the setting of Theorem 5.4 with G = SUϕ(V ) and H =

SUϕ(W ) suppose that n −m > 1 and neither Ga nor Ha is compact. Let k

be an element of Hom(X, V ) such that k = hγv for every v ∈ h with some

(γv)v∈h ∈ D∩Gh. Then there exists an element α ∈ G∩D such that k = hα.

In particular, if m = 1 and (4.5) is satisfied, then #
{
L[q, b]/Γ 1(L)

}
≤ 1 for

every maximal lattice L in V.

Proof. By our assumptions, strong approximation holds on G and H, and so

we have GA = GD and HA = H(HA ∩ D). Thus we can take {yi}i∈I = {1}.
Therefore (5.3) implies that #

{
(V ∩ hD)/(G ∩D)

}
= 1, which gives the first

assertion. This combined with (4.6) proves the second assertion.

5.6. Before proceeding further, let us recall the notion of the mass of an

algebraic group G with respect to an open subgroup D of GA containing Ga

and such that Gh ∩D is compact. For simplicity here we take G to be Uϕ or

SUϕ and assume that Uϕ
a is compact. For x ∈ GA put ∆x = G ∩ xDx−1 and

ν(∆x) = [∆x : 1]−1. Then the the mass of G with respect to D is defined by

(5.4) m(G, D) =
∑

b∈B

ν(∆b), B = G\GA/D.

For this the reader is referred to [S2, (10.9.4), (24.1.1), (24.1.2)]. If D′ is a

subgroup of GA of the same type as D, then from [S2, Lemma 24.2] we obtain

(5.5) [D : D ∩D′]m(G, D) = m(G, D ∩D′) = [D′ : D ∩D′]m(G, D′).

Theorem 5.7. In the setting of Theorem 5.4, suppose that Ga is compact.

Then for every y ∈ GA we have

(5.6) ν(∆y)#
{
V ∩ hDy−1

}
=

∑

ε∈E

ν(∆ε),

where E = H\(HA ∩ GyD)/(HA ∩ D) and ∆x = H ∩ xDx−1. Moreover, let

GA =
⊔

i∈I GyiD and Γi = G ∩ yiDy
−1
i ; then

(5.7)
∑

i∈I

ν
(
Γi

)
#

{
V ∩ hDy−1

i

}
= m(H, HA ∩D).

Proof. To prove (5.6), we may assume that HA ∩ GyD 6= ∅. For ε ∈ E

take αε ∈ G so that ε ∈ αεyD. Then H ∩ αε∆yα
−1
ε = H ∩ αεyDy

−1α−1
ε =

H ∩ εDε−1 = ∆ε. Now V ∩ hDy−1 =
⊔

ε∈E hαε∆y by the part of Theorem 5.4

corresponding to Theorem 4.4 (ii). For γ, γ′ ∈ Γ (Λ) we have hαεγ = hαεγ
′ if

and only if αεγ
′γ−1α−1

ε ∈ H, that is, γ′γ−1 ∈ α−1
ε Hαε ∩∆y = α−1

ε ∆εαε, so

Documenta Mathematica 13 (2008) 739–774



772 Goro Shimura

that

#
{
hαε∆y

}
=

[
∆y : α−1

ε ∆εαε

]
= ν(∆ε)/ν

(
∆y

)
.

Therefore we obtain (5.6). Next, let Ei = H\(HA ∩ GyiD)/(HA ∩ D). Then

HA =
⊔

i∈I(HA ∩GyiD) =
⊔

i∈I

⊔
ε∈Ei

Hε(HA ∩D), and so m(H, HA ∩D) =∑
i∈I

∑
ε∈Ei

ν(∆ε), which combined with (5.6) proves (5.7).

Corollary 5.8. Define C and C1 by (4.2) with a maximal lattice L in V ;

take (G, H) of type U as in Theorem 4.4; suppose that Ga is compact. Let

GA =
⊔

i∈I GyiC, Li = Ly−1
i , and Γi = Γ (Li). Then

(5.8)
∑

i∈I

ν
(
Γi

)
#

{
Li[q, b]

}
= m(H, HA ∩ C),

where q = ϕ[h] and b = ϕ(h, L). This is valid for (G, H) of type SU if we

replace C and Γ (··) by C1 and Γ 1(··), provided n > 2 and (4.5) is satisfied.

Proof. Take m = 1 and D = C in Theorem 5.7. Combining (5.7) with (4.4),

we obtain (5.8). The case of SUϕ follows similarly from (4.6).

5.9. Formulas (5.7) and (5.8) are similar to, but different from, the formula

of Siegel about
∑

i ν(Γi)#
{
Li[q]

}
. We already explained in [S3, §13.13] the

main differences between our formulas in the orthogonal case given in that

book and that of Siegel. In principle, our comments there apply to the present

unitary case.

Now in [S2, Theorem 24.4] we gave an exact formula for m(G, D) forG = Uϕ

and a certain type of D, under the condition that if n is odd, then d0(ϕ) is

represented by an element of g×. The groupHA∩C in (5.8) does not necessarily

belong to the types of D there, but we can compute [D : HA ∩C] by means of

Lemma 3.14 under some conditions on (q, b). Then we obtain m(H, HA ∩ C)

from [S2, Theorem 24.4] by (5.5).

Proposition 5.10. In the setting of Theorem 5.4 suppose that n − m is

odd. Then the structure (W, det(q)ϕ) depends only on ϕ and the indices of q

at the real archimedean primes of F ramified in K.

Proof. Let ψ be the restriction of ϕ to W. Then we can easily verify that

d0

(
det(q)ψ

)
= det(q)n−md0(ψ) = (−1)n−1d0(ϕ) as m − n is odd. This com-

bined with Theorem 2.2 (i) proves our proposition.

This is an analogue of the fact concerning a quadratic form in even dimension

with square discriminant given in [S4, Theorem 1.12].

We insert here some results about the relationship between various invariants

associated with Uϕ and those with SUϕ.

Proposition 5.11. Let D be an open subgroup of Uϕ
A containing Uϕ

a and

such that Uϕ
h ∩D is compact; put P =

{
x ∈ K×

∣∣ xxρ = 1
}

and D1 = D∩SUϕ
A.

Then UϕSUϕ
AD is a normal subgroup of Uϕ

A and
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(5.9a) [Uϕ
A : UϕSUϕ

AD] = [PA : P det(D)],

(5.9b) #(Uϕ\Uϕ
A/D) ≤

∑

x∈Ξ

#(SUϕ\SUϕ
A/xD

1x−1),

where Ξ = Uϕ
A/U

ϕSUϕ
AD. Moreover, if Uϕ

a is compact, then

(5.9c) m(Uϕ, D) ≤ [PA : P det(D)] · m(SUϕ, D1).

Furthermore, if P ∩ det(D) = det(Uϕ ∩ yDy−1) for every y ∈ Uϕ
A, then the

equality holds in (5.9b), and

(5.9d) #
(
P ∩ det(D)

)
m(Uϕ, D) = [PA : P det(D)]m(SUϕ, D1).

Proof. Since P = det(Uϕ), we can easily show that

(5.10) UϕSUϕ
ADx =

{
y ∈ Uϕ

A

∣∣ det(y) ∈ P det(Dx)
}

for every x ∈ Uϕ
A. This shows that UϕSUϕ

AD is a normal subgroup of

Uϕ
A and Uϕ

A/U
ϕSUϕ

AD is isomorphic to PA/[P det(D)], as PA = det(Uϕ
A).

Thus we obtain (5.9a); we also see that UϕSUϕ
A\Uϕ

A/D can be identified

with Uϕ
A/U

ϕSUϕ
AD. Given x ∈ Uϕ

A, take Bx ⊂ SUϕ
A so that SUϕ

A =⊔
b∈Bx

SUϕbxD1x−1. Then we have UϕSUϕ
AxD =

⋃
b∈Bx

UϕbxD, and hence

Uϕ
A =

⋃
x∈Ξ

⋃
b∈Bx

UϕbxD. From this we obtain (5.9b). To prove (5.9c), put

Γx = Uϕ ∩ xDx−1 and Γ 1
x = SUϕ ∩ xD1x−1 for x ∈ Uϕ

A. Then m(Uϕ, D) ≤∑
x∈Ξ

∑
b∈Bx

ν(Γbx) ≤ ∑
x∈Ξ

∑
b∈Bx

ν(Γ 1
bx) =

∑
x∈Ξ m(SUϕ, xD1x−1). Now

formula (5.5) shows that m(SUϕ, D1) depends only on the measure of D1.

(If Uϕ
a is not compact, we have to consider the measure of D1

h.) Since

m(SUϕ, xD1x−1) = m(SUϕ, D1), we obtain (5.9c).

Suppose P ∩ det(D) = det(Γy) for every y ∈ Uϕ
A. Suppose also that b′x =

abxd for a ∈ Uϕ, d ∈ D, and b, b′ ∈ Bx. Then det(a) = det(d−1) ∈ P ∩
det(D) = det(Γbx), and so det(a) = det(c) with c ∈ Γbx. Put e = x−1b−1cbx.

Then e ∈ D, det(ed) = 1, and b′x = abxd = ac−1bxed ∈ SUϕbxD1. Thus

b′ = b. This shows that UϕSUϕ
AxD =

⊔
b∈Bx

SUϕbxD, from which we obtain

the equality in (5.9b). Also, ν(Γ 1
bx)/ν(Γbx) = [Γbx : Γ 1

bx] = #
(
det(Γbx)

)
=

#
(
P ∩ det(D)

)
, and so

#
(
P ∩ det(D)

)
m(Uϕ, D) =

∑

x∈Ξ

∑

b∈Bx

ν(Γ 1
bx)

=
∑

x∈Ξ

m(SUϕ, xD1x−1) = #(Ξ) · m(SUϕ, D1),

which is (5.9d).
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