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Abstract. Let G be a finite subgroup of GLn(C). G-constellations
are a scheme-theoretic generalization of orbits of G in Cn. We study
flat families of G-constellations parametrised by an arbitrary resolu-
tion of the quotient space Cn/G. We develop a geometrical naturality
criterion for such families, and show that, for an abelian G, the num-
ber of equivalence classes of these natural families is finite.

The main intended application is the derived McKay correspondence.
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0 Introduction

Let G ⊆ GLn(C) be a finite subgroup. In this paper we classify flat families of
G-constellations parametrised by a given resolution Y of the singular quotient
space X = Cn/G.
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A G-constellation is a scheme-theoretical generalization of a set-theoretical or-
bit of G in Cn. They first arose in the context of moduli space constructions of
crepant resolutions of X . Interpreting G-constellations in terms of representa-
tions of the McKay quiver of G, it is possible to use the methods of [Kin94] to
consruct via GIT fine moduli spaces of stable G-constellations. The main irre-
ducible component of such a moduli space turns out to be a projective crepant
resolution of X . By varying the stability parameter θ it is possible to obtain
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different resolutions Mθ. In case of n = 3 and G abelian, it is possible to
obtain all projective crepant resolutions in this way [CI04]. For further details
see [Cra01], [CI04], [CMT07a], [CMT07b].
The formal definition of a G-constellation is:

Definition 0.1 ([Cra01]). A G-constellation is a G-equivariant coherent sheaf
F whose global sections Γ(Cn,F), as a representation of G, are isomorphic to
the regular representation.

Families of G-constellations also occur naturally as objects defining Fourier-
Mukai transforms (cf. [BKR01],[CI04], [BO95] and [Bri99]) which give a cat-
egory equivalence D(Y )

∼
−→ DG(Cn) between the bounded derived categories

of coherent sheaves on Y and of G-equivariant coherent sheaves on Cn, respec-
tively. This equivalence is known as the derived McKay correspondence (cf.
[Rei97], [BKR01], [Kaw05], [Kal08]). It is the derived category interpretation
of the classical McKay correspondence between the representation theory of
G and the geometry of crepant resolutions of Cn/G. It was conjectured by
Reid in [Rei97] to hold for any finite subgroup G of SLn(C) and any crepant
resolution Y of Cn/G.
In this paper we take an arbitrary resolution Y → Cn/G and prove that it can
support only a finite number (up to a twist by a line bundle) of flat families of G-
constellations. We give a complete classification of these families which allows
one to explicitly compute them. For the precise statement of the classification
see the end of this introduction.
A motivation for this study is the fact that if a flat family of G-constellations
on a crepant resolution Y of Cn/G is sufficiently orthogonal, then it defines an
equivalence D(Y ) → DG(Cn) ([Log08], Theorem 1.1), i.e. the derived McKay
correspondence conjecture holds for Y . For an example of a specific application
of this see [Log08], §4, where the first known example of a derived McKay
correspondence for a non-projective crepant resolution is explicitly constructed.
This paper is laid out as follows. At the outset we allow Y to be any normal
scheme birational to the quotient space X and first of all we move from the
category Coh

G(Cn) to the equivalent category Mod
fg-R ⋊ G of the finitely-

generated modules for the cross product algebra R ⋊ G, where R denotes the
coordinate ring C[x1, . . . , xn] of Cn. This makes a family of G-constellations
into a vector bundle on Y . In Section 1 we develop a geometrical naturality
criterion for such families: mimicking the moduli spaces Mθ of θ-stable G-
constellations and their tautological families, we demand for a G-constellation
parametrised in a family F by a point p ∈ Y to be supported precisely on
the G-orbit corresponding to the point π(p) in the quotient space X . In other
words, the support of the corresponding sheaf on Y × Cn must lie within the
fibre product Y ×X Cn. We call the families which satisfy this condition gnat-
families (short for a geometrically natural) and demonstrate (Proposition 1.5)
that they enjoy a number of other natural properties, including being equivalent
(locally isomorphic) to the natural family π∗q∗OCn on the open set of Y which
lies over the free orbits in X . In this natural family a G-constellation which
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lies over a free orbit is the unique G-constellation supported on that orbit - its
reduced subscheme structure. Thus, in a sense, gnat-families can be viewed as
flat deformations of free orbits of G.
Another property which characterises gnat-families is that it is possible to
embed them into K(Cn), considered as a constant sheaf on Y . This leads us to
study G-equivariant locally free sub-OY -modules of K(Cn). In Section 2, we
study the rank one case. A G-invariant invertible sub-OY -module of K(Cn) is
just a Cartier divisor, and we define G- Car(Y ), a group of G-Cartier divisors
on Y , as a natural extension of the group of Cartier divisors which fits into a
short exact sequence

1 → Car(Y ) → G- Car(Y )
ρ
−→ G∨ → 1

where G∨ is the group of 1-dimensional irreducible representations of G.
We then define Q-valued valuations of these G-Cartier divisors at prime Weil
divisors of Y and define G-Div Y , the group of G-Weil divisors of Y , as a torsion-
free subgroup of Q-Weil divisors which fits into a following exact sequence:

1 // CarY� _

valK

��

// G- CarY

valKG

��

ρ
// G∨

valG∨

��
��

// 1

0 // Div Y // G- Div Y // valG∨(G∨) // 0

We then show that the three vertical maps in this diagram, valK , the ordinary
Z-valued valuation of Cartier divisors, valKG , the Q-valued valuation of G-
Cartier divisors, and their quotient valG∨ , a Q/Z-valued valuation of G∨, are
all isomorphisms when Y is smooth and proper over X .
Then, in Section 3, we observe that when our group G is abelian all its irre-
ducible representations are of rank 1, so any gnat-family splits into invertible
G-eigensheaves. Thus G-Weil divisors are all that we need to classify it after
an embedding into K(Cn). We further show that, since any gnat-family F
embedded into K(Cn) must be closed under the natural action of R on the
latter, all the G-eigensheaves into which F decomposes must be, in a certain
sense, close to each other inside K(Cn). Up to a twist by a line bundle, this
leaves only a finite number of possibilities for the corresponding G-Weil divi-
sors. Thus, surprisingly, the number of equivalence classes of gnat-families on
any Y is finite.
Our main result (Theorem 4.1) is:

Theorem (Classification of gnat-families). Let G be a finite abelian subgroup
of GLn(C), X the quotient of Cn by the action of G and Y a resolution of X.
Then isomorphism classes of gnat-families on Y are in 1-to-1 correspondence
with linear equivalence classes of G-divisor sets {Dχ}χ∈G∨ , each Dχ a χ-Weil
divisor, which satisfy the inequalities

Dχ + (f) − Dχρ(f) ≥ 0 ∀ χ ∈ G∨, G-homogeneous f ∈ R
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Here ρ(f) ∈ G∨ is the homogeneous weight of f . Such a divisor set {Dχ}
corresponds then to a gnat-family

⊕

L(−Dχ).
This correspondence descends to a 1-to-1 correspondence between equivalence
classes of gnat-families and sets {Dχ} as above and with Dχ0 = 0, where χ0 is
the trivial character. Furthermore, each divisor Dχ in such a set satisfies

Mχ ≥ Dχ ≥ −Mχ−1

where {Mχ} is a fixed divisor set defined by

Mχ =
∑

P

( min
f∈Rχ

vP (f))P

As a consequence, the number of equivalence classes of gnat-families on Y is
finite.

Acknowledgements: The author would like to express his gratitude to Alas-
tair Craw, Akira Ishii and Dmitry Kaledin for useful discussions on the subject
and to Alastair King for the motivation, the discussions and the support. This
paper was completed during the author’s stay at RIMS, Kyoto, and one would
like to thank everyone at the institute for their hospitality.

1 gnat-Families

1.1 Families of G-Constellations

Let G be a finite abelian group and let Vgiv be an n-dimensional faithful repre-
sentation of G. We identify the symmetric algebra S(Vgiv

∨) with the coordinate
ring R of Cn via a choice of such an isomorphism that the induced action of G
on Cn is diagonal. The (left) action of G on Vgiv induces a (left) action of G
on R, where we adopt the convention that

g.f(v) = f(g−1.v) ∀ g ∈ G, f ∈ R,v ∈ Vgiv, (1.1)

When we consider the induced scheme morphisms g : Cn → Cn and the induced
sheaf morphisms g : OCn → g−1

∗ OCn , the convention above ensures that for any
point x ∈ Cn and any function f in the stalk OCn,x at x, the function g.f is,
naturally, an element of the stalk OCn,g.x at g.x
Corresponding to the inclusion RG ⊂ R of the subring of G-invariant functions
we have the quotient map q : Cn → X , where X = Spec RG is the quotient
space. This space is generally singular.
We first wish to establish a notion of a family of G-Constellations parametrised
by an arbitrary scheme.

Definition 1.1 ([CI04]). A G-constellation is a G-equivariant coherent
sheaf F on Cn such that H0(F) is isomorphic, as a C[G]-module, to the regular
representation Vreg.
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We would like for a family of G-constellations to be a locally free sheaf on Y ,
whose restriction to any point of Y would give us the respective G-constellation.
We’d like this restriction to be a finite-dimensional vector-space, and for this
purpose, it would be better to consider, instead of the whole G-constellation
F , just its space of global sections Γ(F). It is a vector space with G and R
actions, satisfying

g.(f.v) = (g.f).(g.v) (1.2)

On the other hand, for any vector space V with G and R actions satisfying
(1.2), we can define maps g : Ṽ → g−1

∗ Ṽ to give the sheaf Ṽ = V ⊗R OCn a
G-equivariant structure. It is convenient to view such vector spaces as modules
for the following non-commutative algebra:

Definition 1.2. A cross-product algebra R ⋊ G is an algebra, which has the
vector space structure of R⊗C C[G] and the product defined by setting, for all
g1, g2 ∈ G and f1, f2 ∈ R,

(f1 ⊗ g1) × (f2 ⊗ g2) = (f1(g1.f2)) ⊗ (g1g2) (1.3)

This is not a pure formalism - R ⋊ G is one of the non-commutative crepant
resolutions of Cn/G, a certain class of non-commutative algebras introduced
by Michel van den Bergh in [dB02] as an analogue of a commutative crepant
resolution for an arbitrary non-quotient Gorenstein singularity. For three-
dimensional terminal singularities, van den Bergh shows ([dB02], Theorem
6.3.1) that if a non-commutative crepant resolution Q exists, then it is pos-
sible to construct commutative crepant resolutions as moduli spaces of certain
stable Q-modules.

Functors Γ(•) and •̃ = (•) ⊗R OCn give an equivalence (compare to [Har77],
p. 113, Corollary 5.5) between the categories of quasi-coherent G-equivariant
sheaves on Cn and of R ⋊ G-modules. G-constellations then correspond to
R ⋊ G-modules, whose underlying G-representation is Vreg. As an abuse of
notation, we shall use the term ‘G-constellation’ to refer to both the equivariant
sheaf and the corresponding R ⋊ G-module.

Definition 1.3. A family of G-constellations parametrised by a

scheme S is a sheaf F of (R ⋊ G) ⊗C OS-modules, locally free as an OS-
module, and such that for any point ιp : Spec C →֒ S, its fiber F|p = ι∗pF is a
G-constellation.

We shall say that two families F and F ′ are equivalent if they are locally
isomorphic as (R ⋊ G) ⊗C OS-modules.

1.2 gnat-Families

Let Y be a normal scheme and π : Y → X be a birational map.
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We wish to refine the definition (1.3) above and develop a notion of a geomet-
rically natural family of G-constellations parametrised by Y .

Any free G-orbit supports a unique G-cluster Z ⊂ Cn: the reduced induced
closed subscheme structure. Let U be an open subset of Y such that π(U)
consists of free orbits of G and consider the sheaf π∗q∗OCn restricted to U . It
has a natural (R ⋊ G)-module structure induced from OCn . It is locally free as
an OU module, since the quotient map q is flat wherever G acts freely. Its fiber
at a point p ∈ Y is Γ(OZ), where Z is the G-cluster corresponding to the free
orbit q−1π(p). Thus π∗q∗OCn is a natural family of G-constellations, indeed of
G-clusters, on U ⊂ Y .

Its fiber at the generic point of Y is K(Cn). The Normal Basis Theorem from
Galois theory ([Gar86], Theorem 19.6) gives an isomorphism from K(Cn) to
the generic fiber of any G-constellation family on Y , which we can write as
K(Y ) ⊗C Vreg, but this isomorphism is only K(Y ) and G, but not necessarily
R, equivariant.

On the other hand, for any G-constellation in a sense of G-equivariant sheaf,
we can consider its support in Cn. For instance, in the natural family π∗q∗OCn

discussed above the support of the G-constellation parametrised by a point
p ∈ U is precisely the G-orbit q−1π(p). This turns out to be the criterion we
seek and we shall show that any family satisfying it is generically equivalent to
the natural one.

Definition 1.4. A gnat-family F (short for geometrically natural family) is
a family of G-constellations parametrised by Y such that for any p ∈ Y

q
(

SuppCn F|p

)

= π(p) (1.4)

Proposition 1.5. Let Y be a normal scheme and π : Y → X be a birational
map. Let F be a family of G-constellations on Y . Then the following are
equivalent:

1. On any U ⊂ Y , such that πU consists of free orbits, F is equivalent to
π∗q∗OCn .

2. There exists an (R ⋊ G) ⊗C K(Y )-module isomorphism:

F|pY

∼
−→ (π∗q∗OCn)pY

where pY is the generic point of Y .
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3. There exists an (R ⋊ G) ⊗C OY -module embedding

F →֒ K(Cn)

where K(Cn) is viewed as a constant sheaf on Y and given a OY -module
structure via the birational map π : Y → X.

4. F is a gnat-family.

5. The action of (R ⋊ G) ⊗C OY on F descends to the action of
(R ⋊ G) ⊗RG OY , where RG-module structure on OY is induced
by the map π : Y → X.

Proof. 1 ⇒ 2 is restricting any of the local isomorphisms to the stalk at the
generic point pY of Y . 2 ⇒ 3: the embedding is given by the natural map
F →֒ F ⊗ K(Y ). As Y is irreducible and F is locally free, F ⊗ K(Y ) is
isomorphic to FpY , and hence to K(Cn). 3 ⇒ 5 is immediate by inspecting the
natural R ⋊ G⊗COY -module structure on K(Cn). 5 ⇒ 4 is also immediate, as
the descent of the action of R ⋊ G⊗COY to that of R ⋊ G⊗RG OY implies that
for any p ∈ Y we have mπ(p) ⊂ AnnR F|p, where mπ(p) ⊂ RG is the maximal
ideal of π(p). Therefore mπ(p) = (AnnR F|p)

G, which is equivalent to (1.4).
4 ⇒ 5: Consider the following composition of algebra morphisms:

R ⋊ G ⊗C OY
α
−→ EndOY (F)

βp
−→ EndC(F|p)

where α is the action map of R ⋊ G ⊗C OY on F and βp is restriction to the
fiber at a point p ∈ Y .
To show that α filters through R ⋊ G ⊗RG OY it suffices to show that for any
f ∈ RG we have f⊗1−1⊗f ∈ ker(α). From (1.4) we have mπ(p) = (AnnR F|p)

G,
and therefore

βpα((f − f(p)) ⊗ 1) = 0

Observe that βpα(f(p) ⊗ 1) = f(p) 1EndC F|p
= βpα(1 ⊗ f), and therefore

βpα(f ⊗ 1 − 1 ⊗ f) = 0 (1.5)

As EndOY F is locally free, (1.5) holding ∀ p ∈ Y implies α(f ⊗ 1− 1⊗ f) = 0,
as required.
5 ⇒ 1: We have the R ⋊ G ⊗RG OY -action on F :

R ⋊ G ⊗RG OY
α
−→ EndOY (F)

LHS is isomorphic to π∗ EndOX (q∗OCn). Over U , since q is flat over π(U), LHS
is further isomorphic to EndOU (π∗q∗OCn). Thus we have:

EndOU (π∗q∗OCn)
α′

−→ EndOU (F) (1.6)

This map (1.6) is an OU -algebra homomorphism of (split) Azumaya algebras
over U of the same rank. By a general result on Azumaya algebras any such is
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an isomorphism (see [ACvdE05], Theorem 5.3, for full generality, but the origi-
nal result in [AG60], Corollary 3.4 will also suffice here). Now Skolem-Noether
theorem for Azumaya algebras ([Mil80], IV, §2, Proposition 2.3) implies that
locally α′ must be induced by isomorphisms π∗q∗OCn

∼
−→ F .

2 G-Cartier and G-Weil divisors

If F is a gnat-family, by Proposition 1.5 we can embed it into K(Cn). We
need, therefore, to study G-subsheaves of K(Cn) which are locally free on Y .
In this section we treat the rank 1 case, i.e. the invertible sheaves. Now, on an
arbitrary scheme S, an invertible sheaf together with its embedding into K(S)
defines a unique Cartier divisor on S. But here we embed not into K(Y ) but
into its Galois extension K(Cn). Recall that we identify K(Y ) with K(Cn)G

via the birational map Y
π
−→ X . We therefore seek to extend the familiar

construction of Cartier divisors to accommodate for this fact.

2.1 G-Cartier divisors

We write G∨ for Hom(G, C∗), the group of irreducible representations of G of
rank 1.

Definition 2.1. We shall say that a rational function f ∈ K(Cn) is
G-homogeneous of weight χ ∈ G∨ if

g.f = χ(g−1)f ∀ g ∈ G (2.1)

We shall denote by Kχ(Cn) the subset of K(Cn) of homogeneous elements of a
specific weight χ and by KG(Cn) the subset of K(Cn) of all the G-homogeneous
elements. We shall use Rχ and RG to mean R ∩ Kχ(Cn) and R ∩ KG(Cn)
respectively.

NB: The choice of a sign is dictated by wanting f ∈ R to be homogeneous of
weight χ ∈ G∨ if f(g.v) = χ(g)f(v) for all g ∈ G and v ∈ Cn.

The invertible elements of KG(Cn) form a multiplicative group which we shall
denote by K∗

G(Cn). We have a short exact sequence:

1 → K∗(Y ) → K∗
G(Cn)

ρ
−→ G∨ → 1 (2.2)

The following replicates, almost word-for-word, the definition of a Cartier di-
visor in [Har77], pp. 140-141.

Definition 2.2. A group of G-Cartier divisors on Y , denoted by G-
Car(Y ) is the group of global sections of the sheaf of multiplicative groups
K∗

G(Cn)/O∗
Y , i.e. the quotient of the constant sheaf K∗

G(Cn) on Y by the sheaf
O∗

Y of invertible regular functions.
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Observe that (2.2) gives a well-defined short exact sequence:

1 → Car(Y ) → G- Car(Y )
ρ
−→ G∨ → 1 (2.3)

Given a G-Cartier divisor, we call its image χ ∈ G∨ under ρ the weight of
the divisor and say, further, that the divisor is χ-Cartier.
A G-Cartier divisor can be specified by a choice of an open cover {Ui} of Y
and functions {fi} ⊆ K∗

G(Cn) such that fi/fj ∈ Γ(Ui ∩ Uj ,O∗
Y ). In such case,

the weight of the divisor is the weight of any one of fi.
As with ordinary Cartier divisors, we say that a G-Cartier divisor is principal
if it lies in the image of the natural map K∗

G(Cn) → K∗
G(Cn)/O∗

Y and call two
divisors linearly equivalent if their difference is principal.
Consider now a χ-Cartier divisor D on Y specified by a collection {(Ui, fi)}
where Ui form an open cover of Y and fi ∈ K∗

χ(Cn). We define an invertible

sheaf L(D) on Y as the sub-OY -module of K(Cn) generated by f−1
i on Ui.

Observe that G acts on L(D), the action being the restriction of the one on
K(Cn), and that it acts on every section by the character χ.

Proposition 2.3. The map D → L(D) gives an isomorphism between G-
CarY and the group of invertible G-subsheaves of K(Cn). Furthermore, it
descends to an isomorphism of the group G-Cl of G-Cartier divisors up to
linear equivalence and the group G-Pic of invertible G-sheaves on Y .

Proof. A standard argument in [Har77], Proposition 6.13, shows everything
claimed, apart from the fact we can embed any invertible G-sheaf L, with G
acting by some χ ∈ G∨, as a sub-OY -module into K(Cn).
Given such L, we consider the sheaf L⊗OY K(Y ). On every open set Ui where
L is trivial, it is G-equivariantly isomorphic to the constant sheaf Kχ(Cn). On
an irreducible scheme a sheaf constant on an open cover is constant itself, so
as Y is irreducible we have L ⊗OY K(Y ) ≃ Kχ(Cn) and a particular choice of
this isomorphism gives the necessary embedding as

L → L⊗OY K(Y ) ≃ Kχ(Cn) ⊂ K(Cn)

2.2 Homogeneous valuations

We now aim to develop a matching notion of G-Weil divisors. Recall that the
homomorphism from ordinary Cartier to ordinary Weil divisors is defined in
terms of valuations of rational functions at prime Weil divisors of Y .
Valuations at prime divisors of Y define a unique group homomorphism valK
from K∗(Y ) to Div Y , the group of Weil divisors. Looking at the short exact
sequence (2.2), we see that valK must extend uniquely to a homomorphism
valKG from K∗

G(Cn) to Q-Div Y , as G∨ is finite and Q is injective. We further
obtain a quotient homomorphism valG∨ from G∨ to Q/Z-Div Y .
Explicitly, we set:
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Definition 2.4. Let P be a prime Weil divisor on Y .
For any f ∈ K∗

G(Cn), observe that f |G| is necessarily of trivial weight and
hence lies in K(Y ). We define valuation of f at P to be

vP (f) =
1

|G|
vP (f |G|) ∈ Q (2.4)

where vP (f |G|) is the ordinary valuation in the local ring of P .
For any χ ∈ G∨, observe that for any f, f ′ homogeneous of weight χ their
ratio f/f ′ is of trivial character and therefore has integer valuation. We define
valuation of χ at P to be

vP (χ) = frac(vP (f)) ∈ Q/Z (2.5)

where f is any homogeneous function of weight χ and frac(-) denotes the frac-
tional part.

It can be readily verified that valKG =
∑

vP (-)P and valG∨ =
∑

vP (-)P .
Furthermore, the short exact sequence (2.3) becomes a commutative diagram:

1 // CarY

valK

��

// G- CarY

valKG

��

ρ
// G∨

valG∨

��

// 1

0 // Div Y // Q-Div Y // Q/Z−Div Y // 0

(2.6)

2.3 G-Weil divisors

Aiming to have a short exact sequence similar to (2.3), we now define the group
G-Div Y of G-Weil divisors to be the subgroup of Q-Div Y , which consists of
the pre-images of valG∨(G∨) ⊂ Q/Z-Div Y .

Definition 2.5. We say that a Q-Weil divisor
∑

qP P on Y is a G-Weil

divisor if there exists χ ∈ G∨ such that

frac(qP ) = vP (χ) for all prime Weil P (2.7)

We call a G-Weil divisor principal if it is an image of a single function
f ∈ K∗

G(Cn) under valKG , call two G-Weil divisors linearly equivalent if their
difference is principal and call a divisor

∑

qiDi effective if all qi ≥ 0.
We now have a following commutative diagram:

1 // CarY� _

valK

��

// G- CarY

valKG

��

ρ
// G∨

valG∨

��
��

// 1

0 // Div Y // G- Div Y // valG∨(G∨) // 0

(2.8)
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A warning: for general Y , even a smooth one, G-Cartier and G-Weil divisors
may not be very well behaved. For an example let Y be the smooth locus of
X . It can be shown, that while valK is an isomorphism, valKG is not even
injective as G-CarY has torsion. And valG∨ is the zero map, thus G-Div Y is
just Div Y .

Proposition 2.6. If Y is smooth and proper over X, then valK , valKG and
valG∨ in (2.8) are isomorphisms.

Proof. If Y is smooth, or at least locally factorial, valK is well-known to be
an isomorphism ([Har77], Proposition 6.11). It therefore suffices to show that
valG∨ is injective and hence an isomorphism. As diagram (2.8) commutes,
valKG will then also have to be an isomorphism.
Fix χ ∈ G∨. Let Yχ denote the normalisation of Y ×X (Cn/ kerχ). It is a
Galois covering of Y whose Galois group is χ(G). By Zariski-Nagata’s purity
of the branch locus theorem ([Zar58], Proposition 2), the ramification locus of
Yχ → Y is either empty or of pure codimension one. As Y is smooth, Yχ → Y
being finite and unramified would make it an étale cover. Which is impossible,
since a resolution of a quotient singularity is well known to be simply-connected
(see, for instance, [Ver00], Theorem 4.1).
Thus, we can assume there exists a ramification divisor P ⊂ Yχ. Let Q be its
image in Y . Let Ram(P ) be the subgroup of G which fixes P pointwise. Then
nram = |Ram(P )/ kerχ| is the ramification index of P . We can take ordinary
integer valuations of K∗

χ(Cn) on prime divisors of Yχ as K∗
χ(Cn) ⊂ K(Cn)ker χ.

It is easy to see that for any f ∈ K∗
χ(Cn)

vQ(f) =
1

nram

vP (f) (2.9)

where LHS is a rational valuation in sense of Definition 2.4.
If vQ(χ) = 0, then vQ(K∗

χ(Cn)) ⊂ Z. Then necessarily vQ(K∗
χ(Cn)) = Z,

as K∗
χ(Cn) is a coset of K(Y ) in K∗

G(Cn). In particular, there would exist
fχ ∈ K∗

χ(Cn), such that vQ(fχ) = 0, i.e. fχ is a unit in OYχ,P . Which is
impossible: any g ∈ Ram(P ) fixes P pointwise, in particular f − g.f ∈ mY,P

for any f ∈ OY,P . As Ram(P )/ kerχ is non-trivial we can choose g such that
χ(g) 6= 1 and then fχ = 1

1−χ(g) (fχ − g.fχ) must lie in mY,P . This finishes the

proof.
For abelian G, this all can be seen very explicitly by exploiting the toric struc-
ture of the singularity: even though we do not assume the resolution Y to
be toric, it has been proven by Bouvier ([Bou98], Theorem 1.1) and by Ishii
and Kollár ([KI03], Corollary 3.17, in a more general context of Nash problem)
that every essential divisor over X (i.e. a divisor which must appear on every
resolution) is toric. The set of essential toric divisors is well understood - it can
be identified with the Hilbert basis of the positive octant of the toric lattice
of weights, and then with a subset of Ext1(G∨, Z) = Hom(G∨, Q/Z). This
correspondence sends each divisor precisely to the valuation of G∨ at it, see
[Log04], Section 4.3 for more detail.
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We also show that, away from a finite number of prime divisors on Y , all G-Weil
divisors are ordinary Weil.

Proposition 2.7. Unless a prime divisor P ⊂ Y is exceptional or its image
in X is a branch divisor of Cn → X, the valuation vP : G∨ → Q/Z is the
zero-map.

Proof. If P is not exceptional, let Q be its image in X . The valuations at
P and Q are the same, so it suffices to prove the statement about vQ. Let
P ′ be any divisor in Cn which lies above Q. As in Proposition 2.6, for any
f ∈ K∗

G(Cn) we have vQ(f) = 1
nram

vP ′(f) where nram is the ramification

index of P ′. Unless Q is a branch divisor, nram = 1 and vQ = vP ′ . Which
makes vQ integer-valued on K∗

G(Cn) and makes the quotient homomorphism
G∨ → Q/Z the zero map.

3 Classification of gnat-families

3.1 Reductor Sets

From now on, in addition to assuming that G is a finite group acting faithfully
on Vgiv, we also assume that G is abelian. We further assume that Y is smooth
and π : Y → X is proper.
Let F be a gnat-family on Y . Write the decomposition of F into G-eigensheaves
as

⊕

χ∈G∨ Fχ. By Proposition 1.5 we can embed F into K(Cn) and, as was
demonstrated in Proposition 2.3, the image of each Fχ defines a χ-Cartier
divisor. Hence F ≃

⊕

χ L(−Dχ) for some set {Dχ}χ∈G∨ of G-Weil divisors.

Definition 3.1. Let {Dχ}χ∈G∨ be a set of G-Weil divisors on Y . We call it a
reductor set if each Dχ is a χ-Weil divisor and ⊕L(−Dχ) is a gnat-family on
Y . We call a reductor set normalised if Dχ0 = 0. We say that two reductor
sets {Dχ} and {D′

χ} are linearly equivalent if there exists f ∈ K(Y ) such that
Dχ − D′

χ = Div f for all χ ∈ G∨.

Lemma 3.2. Let {Dχ} and {D′
χ} be two reductor sets. Any (R ⋊ G) ⊗ OY -

module morphism φ :
⊕

L(−Dχ) →
⊕

L(−D′
χ) is necessarily a multiplication

inside K(Cn) by some f ∈ K(Y ).

Proof. Because of G-equivariance φ decomposes as
⊕

χ∈G∨ φχ with φχ a mor-
phism L(−Dχ) → L(−D′

χ). Each φχ is a morphism of invertible sub-OY -
modules of K(Cn) and so is necessarily a multiplication by some fχ ∈ K(Y ):
consider the induced map OY → L(−Dχ + D′

χ) and take fχ to be the image
of 1 under this map.
It remains to show that all fχ are equal. Fix any χ ∈ G∨ and consider any G-
homogeneous m ∈ R of weight χ. Take any s ∈ L(−Dχ0). Then ms ∈ L(−Dχ)
and by R-equivariance of φ

φχ(ms) = mφχ0(s) = fχ0ms (3.1)

and hence fχ = fχ0 for all χ ∈ G∨.
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Corollary 3.3. Isomorphism classes of gnat-families on Y are in 1-to-1 cor-
respondence with linear equivalence classes of reductor sets.

Proof. If in the proof of Lemma 3.2 each φχ is an isomorphism, then f , by
construction, globally generates each L(−D′

χ + Dχ). Thus Dχ −D′
χ = Div(f).

Proposition 3.4. Let {Dχ} and {D′
χ} be two reductor sets. Then

⊕

L(−Dχ)
and

⊕

L(−D′
χ) are equivalent (locally isomorphic) if and only if there exists a

Weil divisor N such that Dχ − D′
χ = N for all χ ∈ G∨.

Proof. The ‘if’ direction is immediate.
Conversely, if the families are equivalent, then by applying Lemma 3.2 to each
local isomorphism, we obtain the data {Ui, fi}, where Ui are an open cover
of Y and on each Ui multiplication by fi is an isomorphism

⊕

L(−Dχ)
∼
−→

⊕

L(−D′
χ). One can readily check that such {Ui, fi} must define a Cartier

divisor and that the corresponding Weil divisor is the requisite divisor N .

Corollary 3.5. In each equivalence classes of gnat-families there is precisely
one family whose reductor set is normalised.

3.2 Reductor Condition

We now investigate when is a set {Dχ} of G-divisors a reductor set.
This issue is the issue of

⊕

L(−Dχ) actually being (R ⋊ G)⊗OY -module. By
definition it is a sub-OY -module of K(Cn), but there is no a priori reason for it
to also be closed under the natural R ⋊ G-action on K(Cn). If it is closed, it can
be checked that it trivially satisfies all the other requirements in Proposition
1.5, item 3, which makes it a gnat-family. We further observe that

⊕

L(−Dχ)
is always closed under the action of G, so it all boils down to the closure under
the action of R.
Recall, that we write RG for R ∩ K∗

G(Cn), the G-homogeneous regular poly-
nomials, and Rχ for R ∩ K∗

χ(Cn), the G-homogeneous regular polynomials of
weight χ ∈ G∨.

Proposition 3.6 (Reductor Condition). Let {Dχ}χ∈G∨ be a set with each Dχ

a χ-Weil divisor. Then it is a reductor set if and only if, for any f ∈ RG, the
divisor

Dχ + (f) − Dχρ(f) ≥ 0 (3.2)

i.e. it is effective.

Remarks:

1. If we choose a G-eigenbasis of Vgiv, then its dual basis, a set of basic
monomials x1, . . . , xn, generates RG as a semi-group. As condition (3.2)
is multiplicative on f , it is sufficient to check it only for f being one of
xi. This leaves us with a finite number of inequalities to check.
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2. Numerically, if we write each Dχ as
∑

qχ,P P , inequalities (3.2) subdivide
into independent sets of inequalities

qχ,P + vP (f) − qχρ(f),P ≥ 0 ∀ χ ∈ G∨ (3.3)

a set for each prime divisor P on Y . This shows that a gnat-family can
be specified independently at each prime divisor of Y : we can construct
reductor sets {Dχ} by independently choosing for each prime divisor P
any of the sets of numbers {qχ,P }χ∈G∨ which satisfy (3.3).

3. There is an interesting link here with the work of Craw, Maclagan and
Thomas in [CMT07a] which bears further investigation. In a toric con-
text, they have rediscovered these inequalities as dual, in a certain sense,
to the defining equations of the coherent component Yθ of the mod-
uli space Mθ of θ-semistable G-constellations. They then use them to
compute the distinguished θ-semistable G-constellations parametrised by
torus orbits of Yθ. In particular, their Theorem 7.2 allows them to ex-
plicitly write down the tautological gnat-family on Yθ and suggests that,
up to a reflection, it is the gnat family which minimizes θ.{Dχ}. We shall

see an example of that for the case of Yθ = HilbG in our Proposition 3.17.

Proof. Take an open cover Ui on which all L(−Dχ) are trivialised and write gχ,i

for the generator of L(−Dχ) on Ui. As R is a direct sum of its G-homogeneous
parts, it is sufficient to check the closure under the action of just the homo-
geneous functions. Thus it suffices to establish that for each f ∈ RG, each Ui

and each χ ∈ G∨

fgχ,i ∈ OY (Ui)gχρ(f),i

On the other hand, with the notation above, G-Cartier divisor Dχ+(f)−Dχρ(f)

is given on Ui by
fgχ,i

gχρ(f),i
and it being effective is equivalent to

fgχ,i

gχρ(f),i
∈ OY (Ui)

for all Ui’s. The result follows.

3.3 Canonical family

We have not yet given any evidence of any gnat-families actually existing on
an arbitrary resolution Y of X .

Proposition 3.7 (Canonical family). Let Y be a resolution of X = Cn/G.
Define the set {Cχ}χ∈G∨ of G-Weil divisors by

Cχ =
∑

v(P, χ)P
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where P runs over all prime Weil divisors on Y and v(P, χ) are the numbers
introduced in Definition 2.4 (lifted to [0, 1) ⊂ Q).
Then {Cχ}χ∈G∨ is a reductor set.
We call the corresponding family the canonical gnat-family on Y .

Proof. We must show that {Cχ} satisfies the inequalities (3.2). Choose any
χ ∈ G∨, any f ∈ RG and any prime divisor P on Y . Observe that 0 ≤
vP (χ), vP (χρ(f)) < 1 by definition, while vP (f) ≥ 0 since f |G| is regular on all
of Y . So we must have

vP (χ) + vP (f) − vP (χρ(f)) > −1

As the above expression must be integer-valued, we further have

vP (χ) + vP (f) − vP (χρ(f)) ≥ 0

as required.

This family has a following geometrical description:

Proposition 3.8. On any resolution Y , the canonical family is isomorphic to
the pushdown to Y of the structure sheaf N of the normalisation of the reduced
fiber product Y ×X Cn.

Proof. First we construct a (R ⋊ G)⊗OY -module embedding of N into K(Cn).
Let α be the map OY ⊗RG R → K(Cn) which sends a⊗ b to ab. It is R ⋊ G⊗
OY -equivariant. If we show that kerα is the nilradical of OY ⊗RG R, then
N can be identified with the integral closure of the image of α in K(Cn).
Due to G-equivariance α decomposes as

⊕

χ∈G∨ αχ with each αχ a morphism

OY ⊗RG Rχ → Kχ(Cn). Observe that (OY ⊗RG Rχ)|G| ⊂ OY ⊗RG Rχ0 = OY

as a product of |G| homogeneous functions is invariant. Hence (kerαχ)|G| ⊂
kerαχ0 = 0 as required.
Write

⊕

χ∈G∨ Nχ for the decomposition of N into G-eigensheaves. Fix a point
p ∈ Y and observe that f ∈ Kχ(Cn) is integral over the local ring Np if and
only if f |G| ∈ (Nχ0)p = OY,p. Therefore

(Nχ)p = {f ∈ Kχ(Cn) | G-Weil divisor Div(f) is effective at p}

In particular, the generator cχ of Cχ at p lies in (Nχ)p. Observe further that
for any f ∈ (Nχ)p the Weil divisor Div(f) − Cχ is effective at p as the coef-
ficients of Cχ are just the fractional parts of those of Div(f) and the latter is
effective. Therefore cχ generates (Nχ)p as OY,p-module, giving Nχ = L(−Cχ)
as required.

3.4 Symmetries

Having demonstrated that the set of equivalence classes of gnat-families is
always non-empty, we now establish two types of symmetries which this set
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possesses. It is worth noting that from the description of the symmetries of the
chambers in the parameter space of the stability conditions for G-constellations
described in [CI04], Section 2.5, it follows that all the symmetries described
below take the subset of gnat-families on Y consisting of universal families of
stable G-constellations into itself.

Proposition 3.9 (Character Shift). Let {Dχ} be a normalised reductor set.
Then for any χ in G∨

D′
χλ = Dχ − Dλ−1 (3.4)

is also a normalised reductor set. We call it the χ-shift of {Dχ}.

Proof. Writing out the reductor condition (3.2) for the new divisor set {D′
χ}

we get:

(Dχ − Dλ−1) + (m) − (Dχρ(m) − Dλ−1) ≥ 0

Cancelling out D−1
λ , we obtain precisely the reductor condition for the original

set {Dχ}. And since

D′
χ0

= D′
λ−1λ = Dλ−1 − Dλ−1 = 0

we see that the new reductor set is normalised.

NB: Observe, that for a reductor set {Dχ} and for any χ-Weil divisor N , the
set {Dχ + N} is linearly equivalent to the χ-shift of {Dχ}.

Proposition 3.10 (Reflection). Let {Dχ} be a normalised reductor set.
Then the set {−Dχ−1} is also a normalised reductor set, which we call the

reflection of {Dχ}.

Proof. We need to show that

−Dχ−1 + (m) − (−Dχ−1ρ(m)−1) ≥ 0

Rearranging we get

Dχ−1ρ(m)−1 + (m) − Dχ−1ρ(m)−1ρ(m) ≥ 0

which is one of the reductor equations the original set {Dχ} must satisfy. As
D′

χ0
= −Dχ0 = 0, the new set is normalised.

3.5 Maximal shift family and finiteness

We now examine the individual line bundles L(−Dχ) in a gnat-family and show
that the reductor condition imposes a restriction on how far apart from each
other they can be.
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Lemma 3.11. Let {Dχ} be a reductor set. Write each Dχ as
∑

qχ,P P , where
P ranges over all the prime Weil divisors on Y . For any χ1, χ2 ∈ G∨ and for
any prime Weil divisor P , we necessarily have

min
f∈Rχ1/χ2

vP (f) ≥ qχ1,P − qχ2,P ≥ − min
f∈Rχ2/χ1

vP (f) (3.5)

Proof. Both inequalities follow directly from the reductor condition (3.2): the
right inequality by setting χ = χ1 ∈ G∨, ρ(f) = χ2

χ1
and letting f vary within

Rρ(f); the left inequality by setting χ = χ2 and ρ(f) = χ1

χ2
.

This suggests the following definition:

Definition 3.12. For each character χ ∈ G∨, we define the maximal shift

χ-divisor Mχ to be

Mχ =
∑

P

( min
f∈Rχ

vP (f))P (3.6)

where P ranges over all prime Weil divisors on Y .

Lemma 3.13. The G-Weil divisor set {Mχ} is a normalised reductor set. We
call the corresponding family the maximal shift gnat-family on Y .

Proof. We need to show that for any f ∈ RG and any prime divisor P

vP (mχ) + vP (f) − vP (mχρ(f)) ≥ 0

where mχ and mχρ(f) are chosen to achieve the minimality in (3.6).
Observe that mχf is also a G-homogeneous element of R, therefore by the
minimality of vP (mχρ(f)) we have

vP (mχf) ≥ vP (mχρ(f))

as required.
To establish that Mχ0 = 0 we observe that for any G-homogeneous f ∈ R
we have vP (f) ≥ 0 on any prime Weil divisor P as f |G| is globally regular.
Moreover for f in Rχ0 = RG this lower bound is achieved by f = 1.

Observe that with Lemma 3.13 we have established another gnat-family which
always exists on any resolution Y . While sometimes it coincides with the
canonical family, generally the two are distinct.

Proposition 3.14 (Maximal Shifts). Let {Dχ} be a normalised reductor set.
Then for any χ ∈ G∨

Mχ ≥ Dχ ≥ −Mχ−1 (3.7)

Moreover both the bounds are achieved.
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Proof. To establish that (3.7) holds set χ2 = χ0 in Lemma 3.11. Lemma 3.13
shows that the bounds are achieved.

Proposition 3.15. If the coefficient of a maximal shift divisor Mχ at a prime
divisor P ⊂ Y is non-zero, then either P is an exceptional divisor or the image

of P in X is a branch divisor of Cn q
−→ X.

Proof. Let P be a prime divisor on X which is not a branch divisor of q. Let
χ ∈ G∨. By the defining formula (3.6) it suffices to find f ∈ Rχ such that
vP (f) = 0.
As R is a PID, there exist t1, . . . , tk ∈ R such that (t1), . . . , (tk) are all the
distinct prime divisors lying over P in Cn. Observe that the product t1 . . . tn
must be G-homogeneous. Since P is not a branch divisor, there exists u ∈ R
such that t1 . . . tku is invariant and u /∈ (ti) for all i. Then u′ = u|G|−1 is a G-
homogeneous function of the same weight as t1 . . . tk and vP (u′) = 0. Now take
any f ∈ Rχ and consider its factorization into irreducibles. G-homogeneity of
f implies that all ti occur with the same power k. Now replacing (t1 . . . tn)k in
the factorization by (u′)k we obtain an element of Rχ whose valuation at P is
zero.

Corollary 3.16. The number of equivalence classes of gnat-families on Y is
finite.

Proof. Let {Dχ} be a normalised reductor set. Coefficients of Dχ at prime
divisors P of Y have fixed fractional parts (Definition 2.5), are bound above and
below (Proposition 3.14) and are zero at all but finite number of P (Proposition
3.15). This leaves only a finite number of possibilities.

For one particular resolution Y the family provided by the maximal shift divi-
sors has a nice geometrical description.

Proposition 3.17. Let Y = HilbG
Cn, the coherent component of the moduli

space of G-clusters in Cn. If Y is smooth, then
⊕

L(−Mχ) is the univer-
sal family F of G-clusters parametrised by Y , up to the usual equivalence of
families.

Proof. Firstly F is a gnat-family, as over any set U ⊂ X such that G acts
freely on q−1(U) we have F|U ≃ π∗q∗OCn |U . Write F as ⊕L(−Dχ) for some
reductor set {Dχ}. Take an open cover {Ui} of Y and consider the generators
{fχ,i} of Dχ on each Ui. Working up to equivalence, we can consider {Dχ} to
be normalised and so fχ0,i = 1 for all Ui.
Now any G-cluster Z is given by some invariant ideal I ⊂ R and so the corre-
sponding G-constellation H0(OZ) is given by R/I. In particular note that R/I
is generated by R-action on the generator of χ0-eigenspace. Therefore any fχ,i

is generated from fχ0,i = 1 by R-action, which means that all fχ,i lie in R.
But this means that for any prime Weil divisor P on Y we have

vP (fχ,i) ≥ min
f∈Rχ

vP (f)
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and therefore Dχ ≥ Mχ. Now Proposition 3.14 forces the equality.

4 Conclusion

We summarise the results achieved in the following theorem:

Theorem 4.1 (Classification of gnat-families). Let G be a finite abelian sub-
group of GLn(C), X the quotient of Cn by the action of G, Y nonsingular and
π : Y → X a proper birational map. Then isomorphism classes of gnat-families
on Y are in 1-to-1 correspondence with linear equivalence classes of G-divisor
sets {Dχ}χ∈G∨ , each Dχ a χ-Weil divisor, which satisfy the inequalities

Dχ + (f) − Dχρ(f) ≥ 0 ∀ χ ∈ G∨, G-homogeneous f ∈ R

Such a divisor set {Dχ} corresponds then to a gnat-family
⊕

L(−Dχ).
This correspondence descends to a 1-to-1 correspondence between equivalence
classes of gnat-families and sets {Dχ} as above and with Dχ0 = 0. Further-
more, each divisor Dχ in such a set satisfies inequality

Mχ ≥ Dχ ≥ −Mχ−1

where {Mχ} is a fixed divisor set defined by

Mχ =
∑

P

( min
f∈Rχ

vP (f))P

As a consequence, the number of equivalence classes of gnat-families is finite.

Proof. Corollary 3.3 establishes the correspondence between isomorphism
classes of gnat-families and linear equivalence classes of reductor sets. Propo-
sition 3.6 gives description of reductor sets as the divisor sets satisfying the
reductor condition inequalities.
Corollary 3.5 gives the correspondence on the level of equivalence classes of
gnat-families and normalised reductor sets. Proposition 3.14 establishes the
bounds on the set of all normalised reductor sets and Corollary 3.16 uses it to
show that the set of all normalised reductor sets is finite.
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