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ABSTRACT. This paper proves some properties of the big Chern
classes of a vector bundle on a smooth scheme over a field of charac-
teristic 0. These properties together with the explicit computation of
the big Chern classes of universal quotient bundles of Grassmannians
are used to prove the main Theorems (Theorems 1,2 and 3) of this

paper.

The nonexistence certain morphisms between Grassmannians over a
field of characteristic 0 follows directly from these theorems. One of
our theorems, for instance, states that the higher Adams operations
applied to the class of a universal quotient bundle of a Grassmannian
that is not a line bundle yield elements in the K-ring of the Grassman-
nian that are not representable as classes of genuine vector bundles.
This is not true for Grassmannians over a field of characteristic p.
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1 INTRODUCTION

1.1 MOTIVATION

Problems regarding the constraints that morphisms between homogeneous
spaces must satisfy have been studied by Kapil Paranjape and V. Srinivas [7],
[8]. In [7], they characterize self maps of finite degree between homogeneous
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spaces and prove that finite surjective morphisms from Grassmannian to Grass-
mannian are actually isomorphisms. In [8], they prove that if S is a smooth
quadric hypersurface in P"*1 where n = 2k + 1, and if 2¥|d, then there exist
continuous maps f : P — S so that f*(Og(1)) = Opn(d). Let G(r,n) denote
the Grassmannian of r-dimensional quotient spaces of an n-dimensional vector
space over a field of characteristic 0. In the same spirit, given an integer p > 2,
one can ask questions like whether there exists a map from a Grassmannian
G(r,n) to another Grassmannian G(r, M) so that f*[Qc(ran] = VP [Qc(rn))
where [V] denotes the class of a vector bundle V' in K-theory and Qc(rn)
and Qg(rar) denote the universal quotient bundles of G(r,n) and G(r, M)
respectively. Another question in the same spirit would be whether there
exist morphisms f : G(r,n) — G(r — 1, M) so that f*(ch;(Q)) = chy(Q). The
answers to the first question is in the negative for all » > 2,n > 2r + 1 and
the answer to the second question is in the negative for infinitely many r, with
n assumed to be large enough. It may be noted that in these questions, our
attention is not restricted solely to dominant/finite morphisms unlike in the
results in [7] and [8]. Indeed, the results proven here are not obtainable by the
methods of [7] and [8] as far I can see.

1.2 STATEMENTS OF THE RESULTS

The following theorems contain the answers obtained for the above questions.
These theorems are proven in this paper. Before we proceed, we state that all
varieties in this paper are smooth projective varieties over a field of charac-
teristic 0. For any smooth projective variety X, let K(X) denote the K-ring
of X. For any vector bundle V on X, let [V] denote the class of V in K(X)®Q.

THEOREM 1. Let () denote the universal quotient bundle of a Grassmannian
G(r,n). Suppose that v > 2 and that n > 2r + 1. Then, for all p > 2, the
element YP[Q] of K(G(r,n)) ® Q is not equal to [V] for any genuine vector
bundle V on G(r,n).

COROLLARY 1. If f : G(r,n) — G(r,00) is a morphism of schemes with r > 2
andn > 2r + 1, then f*[QG(r,oo)] 7& wp[QG(r,n)] fO’f’ any p > 2.

Let X be a smooth variety, and let F,CH'(X) ® Q denote the subspace of
CH'(X) ® Q spanned by {ch;(V)[V a vector bundle of rank < r}. Then, this
filtration is nontrivial as a theory. Let Qg(,n) denote the universal quotient
bundle of G(r,n), and let ch denotes the Chern character map, with ch; denot-
ing the degree [ component of ch.

THEOREM 2. Given any natural number | > 2, there exist infinitely many
natural numbers r > 0, and a constant C depending on | so that whenever
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n>Cr?+r,
chi(Qc(rm)) € FrCH/(G(r,n)) ® Q\ F,_1 CH' (G(r,n)) ® Q.

COROLLARY 2. Given any natural number | > 2, there exist infinitely many
natural numbers r > 0, and a constant C' depending on l so that whenever
n>Cr?+r, and f: G(r,n) — G(r —1,00) is a morphism of varieties, then

f*(Chl(QG(T—l,oo))) # Chl(QG(T,n))'

COROLLARY 3. There exist infinitely many r so that if f : G(r,n) — G(r —
1,00) is any morphism of schemes with n > Tr? +r + 2, then

f* Ch2(QG(T—1,OO)) = rchy (QG(T,N))Q
for some constant k € K that possibly depends on r.

THEOREM 3. If f: G(3,6) — G(2,00) is a morphism, then

F*(ch2(Qa(2,00))) = #ich1(Qaa.6))”

for some constant k € K.

1.3 AN OUTLINE OF THE SET UP OF THE PROOFS

All these results are proven using certain facts about certain characteristic
classes. These characteristic classes were discovered by M. Kapranov [6] (and
independently by M.V. Nori [1]) as far as I know. In this paper, I shall
show that these objects are characteristic classes that commute with Adams
operations (Lemma 9 and Lemma 13 of Section 4.2 in this paper). These
characteristic classes are defined as follows.

Let X be a smooth projective variety and let V' be a vector bundle on X.
Consider the Atiyah class

0y € HY(X,End(V) ® Q)

of V. Denote the k -fold cup product of 6y with itself by 6%. Applying
the composition map End(V)®* — End(V), followed by the trace map tr :
End(V) — Ox to 6%, we obtain the characteristic class

tx(V) € H* (X, Q%%).

Note that the projection Q®* — AFQ when applied to tx (V) gives us k! chy (V)
where chi (V) denotes the degree k part of the Chern character of V. The
classes ty, are referred to in the paper by Kapranov [1] as the big Chern classes.
These classes and their properties are discussed in greater detail in Section
4 of this paper. The big Chern classes together give a ring homomorphism
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@ty K(X)®Q — @ H"(X, Q%F) where the right hand side is equipped with
a commutative product that shall be described in the Section 2. The com-
mutative ring @ H* (X, Q®*) shall henceforth be denoted by R(X). Both this
product and the usual cup product in addition to some other (A\-ring) structure
on this ring are preserved under pullbacks. Moreover, the two products are
distinct and the Adams gradation on R(X) is distinct from the obvious one
(unlike in the case of the usual cohomology ring). These facts place serious
restrictions on what pullback maps f* : R(X) — R(Y) corresponding to
morphisms f : Y — X look like. An important subring of the ring R(X) will
be calculated explicitly for the Grassmannian G(r,n) at the end of Section 3.

NoTATION: Throughout this paper, K shall be used to denote the base field.
We assume throughout this paper that the characteristic of K is zero.

1.4 BRIEF OUTLINES OF THE PROOFS
1.4.1 OUTLINE FOR THEOREMS 2 AND 3

The basic idea behind the proofs of Theorem 2, Corollary 2 and Theorem 3 is
the same.

If o € Sk is a permutation of {1,...,k}, and if F is a vector bundle on X, then
o gives us a homomorphism o : F&F — F®% of Ox modules. If fi,..., fi are
sections of F over an affine open subscheme Spec(U) of X, then

o(fi® @ fr) = fo1) @+ @ forr)

This gives us a right action of Sy on F®*. If F = , the cotangent bundle
of X, then o : Q%% — Q®F induces a map o, : H (X, Q®F) — HF (X, Q®F).
Extending this action of S; on HF (X, Q%) gives us an endomorphism 3, of
H” (X, Q%F) corresponding to each element 3 of the group ring KSj of S.

To prove Corollary 2, it suffices to show that for [ fixed, there exist infinitely
many r such that there is some natural number k with the property that there
exists an element 8 of KS% such that

B tr(u(Qa(rny)) # 0

and
B tr(u(Qa(r-1,00))) = 0.

Here a;(V) = ch™' chy(V) for any vector bundle V. This is enough because
tr,oq and B, commute with pullbacks. If Corollary 2 were to be violated with
the above situation being true, we would have something that is 0 [ in this
case, fy tr((Qc(r—1,00))) ] pulling back to something that is nonzero [ in this
case, (s trg((Qa(rny)) |- This gives us a contradiction. A little more work is
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required to prove Theorem 2.

1.4.2 OUTLINE FOR THEOREM 1

The proof of Theorem 1 is in the same spirit, though much more complicated.
We will define a functor of type (k,1) (or a functor of “Adams weight {”) to be
a map ( not necessarily a ring homomorphism/abelian group homomorphism )
from K(X) ® Q — Ry (X) which takes an element z € K(X) ® Q to a linear
combination of expressions of the form

B (b, (cu, () U -+ Uty (au, (2)))

where 8 € KSj. If v is a functor of type (k, 1) then v; commutes with pullbacks
and

u(yPe) = plu(z).

Corollary 1 will be proven by showing that there is a linear dependence relation

Z av(Qa(rmy) =0
l

for all n > 2r 4 1, with v(Qg(rn)) # 0, where v’s are functors of type
(2r,1). We will pick a linear dependence relation of this type of shortest
length. If Corollary 1 is false, we will obtain yet another linear dependence
relation ), plalvl(Qg(nn)) = 0, contradicting the fact that the chosen linear
dependence relation is of shortest length. A little more work will give us
Theorem 1.

Detailed proofs are given in Sections 6 and 7, but the previous sections are
required to understand the set up for the proofs. An important ingredient
required to flesh-out the proof outlined above is the explicit calculation of
tr(Qc(r,n))- This is done in section 5.

1.5 REMARKS ABOUT POSSIBLE FUTURE EXTENSIONS

It can be easily shown that any linear dependence relation between functors of
type (k,!) applied to the universal quotient bundle of G(r,n)

Z av(Qa(rmy) =0
l

that holds for all n large enough will apply to a vector bundle of rank r on
a smooth projective variety X. Thus, if we are able to prove that we have a
linear dependence relation

Z av(Qa(rny) =0
1
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for all n large enough with v;(V) # 0 then we will be able to apply the
same argument to show that in K-Theory, higher Adams operations applied
to [V] give us elements not expressible as the class of any genuine vector bundle.

One can try doing this for other homogenous vector bundles in the Grass-
mannian, and in general, other vector bundles on a G/P space arising out of
P-representations, where G is a linear reductive group and P is a parabolic
subgroup. This could lead to further progress towards finding the P represen-
tations that give rise to vector bundles satisfying Theorem 1. More intricate
combinatorics than was used here in this paper may be required for further
progress along these lines.

At first sight, it may look that theorem 2 needs to be strengthened. In-
deed, on going through the proof, one feels strongly that the filtration Fi.
of CHl() ® Q, which theorem 2 says is nontrivial as a theory, is in fact,
strictly increasing as a theory. More specifically, I feel that given any [ > 2
fixed, and r > 2, there exists some Grassmannian G = G(r,n) so that
chy(Q) € F.CH/(G) @ Q\ F,_1CH(G) ® Q.

One approach to this question is entirely combinatorial (along the lines of the
proof to theorems 2 and 3). Let V) denote the irreducible representation of
S corresponding to the partition A of k. Let |A| denote the number of rows
in the Young diagram of A\. The combinatorial approach to this question is
to try to show that for some k and a particular 8 € KSj, depending on [ and
k only, the subspace spanned by the conjugates of (§,_1 is of strictly smaller
dimension than that spanned by conjugates of 3,.. Here, 3; is the image of (8
under the projection KSy — @©|yj<;End(Vy). Approaching this question along
these lines would indeed involve algebraic combinatorics extensively.

ACKNOWLEDGEMENTS. This work would not have been possible without the
many useful discussions I had with my advisor, Prof. Madhav Nori. It is
difficult to convey my gratitude to him. I also received a lot of encouragement
(as well as many useful suggestions) from Prof. Spencer Bloch, to whom I am
deeply grateful. I am also very grateful to Prof. Shrawan Kumar for pointing
out a theorem of Bott [4] used in this work and to Prof. Victor Ginzburg for
making me aware of the paper by M. Kapranov [6] where the characteristic
classes used are introduced. I thank my friend and colleague Apoorva Khare
for helping me LaTeX this work and Dr. Victor Protsak, Prof. Kaan Akin and
Prof. Mohan Ramachandran for useful suggestions.

2 THE A-RING R(X)

We recall that a (p, ¢)-shuffle is a permutation o of {1,2,...,p + ¢} such that
o(l) < - <olp)and o(p+1) < --- < o(p+ q). We denote the set of all
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(p, g)-shuffles by Shy, , throughout the rest of this work. Also, for the rest of
this work, the sign of a permutation o shall be denoted by sgn(o).

If ¢ € S is a permutation of {1,...,k}, and F a vector bundle on X,
then o gives us a homomorphism o : F® — F® of Ox modules. If
f1,--., fx are sections of F over an affine open subscheme Spec(U) of X, then

o(f1® @ fr) = fo1) @ @ for)-

This gives us a right action of S, on F®*. If F = , the cotangent bundle of
X, then ¢ : Q®F — Q®F induces a map o, : Hk(X, O®F) — Hk(X7 Q@F).

If f:Y — X is a morphism of varieties, we have a natural pullback map
e HY X, Qx®F) — HF (Y, f*Qx®%). This can be composed by the map (2%, :
HE (Y, f*Qx®%) — H*(Y,Qy®%) to define the pullback f* : H*(X,Qx®") —
Hk(Y, Qy®k), where ¢ : f*Qx — Qy. We note that

ffoo.,=o0.0f".
If o € H(X,Qx®") and § € H™(X, Qx®™), define
a®pfi= Z sgn(o)o; H(a U pB).
o€eShy m
® gives us a product on & H* (X, Q®¥). Moreover,

PROPOSITION 1. Ifa and 3 are as in the previous paragraph, then a®0 = Oa.
In other words, ® equips R(X) with the structure of a commutative ring.

Proof. If 7 is the permutation of {1,...,k+ 1} where y(i) =l+ifor 1 <i<k
and (i) =i — k for k =1 < i <1+ k, then sgn(y) = (—1)"
gives us a bijection between Sh; ; and Shy ;.

. Also, 0 — goxy

Thus

a@B= Y sgn(o)o. (@UB) = Y sgn(y)sen(r)(r o), (aUp)

O'GShkyL TEShlyk

= > sea(n)(y tor ) sgn(v)(aUp) = Y sen(r)7 (sgn(y)ys (aUp))

T€Shy T€Shy

= Z sen(r)7,H(BUQ) = B0 a.
T€Shy 1

(Note that (y~' o7~ 1), = 77! 0o 47! since the action of Siy; on Q¥F*! is a
right action). O

We recall from Fulton and Lang [9] that a special A-ring A is a commutative
ring together with operations ¢? : A — A indexed by the natural numbers so
that
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a) YP is a ring homomorphism for all p.
b) P ot = .
c) Yt =id.

Here, we show that R(X) has a special A\-ring structure (i.e, has Adams opera-
tions). This is done in Lemma 2. It will be clear from their definition that the
Adams operations commute with pullbacks. The graded tensor co-algebra T*)
of the cotangent bundle Qx is a sheaf of graded-commutative Hopf-algebras on
X. The product on T*Q and the Adams operations on T*Q therefore induce
corresponding operations on the cohomology ring of T*S). Proposition 1 in fact,
proves that the ring R(X) is a subring of the cohomology ring of T*Q. It turns
out that the Adams operations on the cohomology of T*Q restrict to Adams
operations on R(X) as well. The rest of this section is devoted to explaining
the details of the outline we have just highlighted. We begin with a digression
on Hopf-algebras.

2.1 ADAMS OPERATIONS ON COMMUTATIVE HOPF-ALGEBRAS

We recall that a Hopf-algebra over a field K of characteristic 0 is a vector
space H together with maps p: H ® H — H (multiplication), A: H - HQ H
(comultiplication), u : K — H (unit) and ¢ : H — K (counit) such that the six
properties listed below are satisfied.

1. Multiplication is associative and comultiplication is coassociative.

2. Multiplication is a coalgebra homomorphism and comultiplication is an
algebra homomorphism.

3. po(u®id)=po(ideu)=id: H — H.

4. (id®c)oA=(c®id)ocA=id: H— H.

5. u is a coalgebra map and c is an algebra map.

6. cou=id: K— K.

One can define a Hopf algebra in the category of Ox modules in the same spirit.
It is an Ox module H together with maps of Ox modules p: H@® H — H
(multiplication), A : H — H ® H (comultiplication), v : Ox — H (unit) and
¢: H — Ox (counit) such that

1. Multiplication is associative and comultiplication is coassociative.

2. Multiplication is a coalgebra homomorphism and comultiplication is an
algebra homomorphism.

3. po(u®id)=po (ideu) =id : H — H.

4. id®c)oA=(c®id)ocA=id: H — H.

5. u is a coalgebra map and c is an algebra map.

6. cou=1id: Ox — Ox.

The Hopf algebra H is said to be (graded) commutative if po7 = p where
7 is the (signed) swap map from H ® H to itself. In the graded case

T(a®b) = (—1)|allb‘b ® a, where a and b are homogenous sections of H over
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an affine open subset of X. |a| and |b| denote the degrees of a and b respectively.

The following four facts are completely analogous to statements in section 4.5.1
of Loday [2]. The checks Loday [2] asks us to do to make these observations
for the case of a commutative Hopf algebra over a field also go through in
our case, that of a graded commutative Hopf algebra in the category of Ox
modules. These checks are left to the reader as they are fairly simple.

Fact 1. If H is a (graded) commutative Hopf algebra in the category of Ox
modules, we can define the convolution of two maps f, g € Ende, (H) by

frg=po(f®g)oA.

The convolution product = is an associative product on Ende (H).

Fact 2. If f is an algebra morphism, then if g and h are any Ox linear maps,
folgxh)=(fog)=(foh).

Fact 8. If H is (graded) commutative and f and g are algebra morphisms,
then f % g is an algebra morphism.

Fact 4. Tt follows from Fact 3 that
Yk :=idx---xid € Endo, (H)

is an algebra morphism for all natural numbers k. It also follows from Fact 2
that

PP o h? = P4

for all natural numbers p, q.

Further, the following proposition, which is an extension of Proposition 4.5.3
of Loday [2] to graded commutative Hopf algebras in the category of Ox
modules, holds as well. Since the proof of Proposition 4.5.3 of [2] given by
Loday [2] goes through in this case with trivial modifications, we omit the
proof of the following proposition.

PROPOSITION 2. If H = @,>0Hy is a (graded) commutative Hopf algebra in
the category of Ox modules, then
a) YP maps H,, to itself for all p and n.

b) There exist elements el of Endo, (Hn) such that

PF = zn: kel
=1
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Further,
eg) o eglj) = 5ije£f)

where §;; is the Kronecker delta.

An immediate consequence (when k = 1) of this proposition is that
id=e ... e,

The Hopf algebra that is relevant to us is the (graded) tensor co-algebra of a
vector bundle F. Here,
T*(F), = F&"
AfL@ - @f)= > [0 @ fit1 @ @ fu €T (F)@T(F)
0<i<n

(cut coproduct) and

N(f1®“‘®fp®fp+1®"‘®fp+q)

= Y s8u(0)fo1) @ @ fori(pag)
oc€Shy 4

where f; is a section of F over an affine open subscheme U of X for each 3.

We note that in this case,

PV(fL® @ fn) = Z Z sgn(0) fo-1(1) @ -+ @ fo-1(n)-

p+q=noceShy 4

In this particular case, we also want to find out about the idempotents
e,(f ) e Endo, (F)®". The following extension of Proposition 4.5.6 from Loday
[2] is what we want. Again, since the proof given in [2] extends with trivial
modifications to our case. We therefore, leave the proof of the following

proposition to the reader.

LEMMA 1.
o0 =3 ait,
j=1
where
L X
Za:{]XZ _ < 7+ TL)
5 n
=1
and

I = Z (sgno)o. ',

G'GSn,j
Here, S, j = {0 € Sy|card{ilo(i) > (i +1)} =j — 1}.

(n) _

For example, e, =3 ¢ sgn(o)o. "
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2.2 DESCRIPTION OF A-RING STRUCTURE ON R(X)

Consider the tensor co-algebra T*(2. Consider the Adams operations ¥ on
T*Q) as described in the previous subsection. Note that 1¥|gen induces a
map ¥ : R,,(X) — R,,(X). Thus the Adams operation ¥* induces a map ¥* :
R(X) — R(X) that is K-linear. That 1)? 019 = ¢)P4 implies that 1} opd = 9.
Define the k-th Adams operation on @ H" (X, Q®") to be . That the Adams
operations so defined are ring endomorphisms of R(X) follows from the fact
that the product in R(X) is induced by the product in T*Q. We have therefore,
proven the following Lemma.

LEMMA 2. R(X) is a special A-ring with Adams operations ¥P given by ¢%.

REMARK. The Adams operations on R(X) are thus seen to be defined combi-
natorially.

3 THE RING R(G(r,n))c!™

In this section we explicitly compute an important part of R(G(r,n)), where
G(r,n) is the Grassmannian of r dimensional quotients of an n-dimensional
vector space. G(r,n) is a homogenous space Gl(n)/P where P is the appropri-
ate parabolic subgroup of GI(n). Let N denote the unipotent normal subgroup
of P.

All the vector bundles that arise during the course of stating and proving
the main theorems are Gi(n)- equivariant. Thus, the big Chern classes of
these vector bundles lie in the part of R(G(r,n)) fixed by GI(n). If V is an n
dimensional vector space, let S be the subspace of V' preserved by P and @
the corresponding quotient. The cotangent bundle Q of the G(r,n) is the vec-
tor bundle arising out of the P-representation Q* ® S on which IV acts trivially.

CONVENTION. When we refer to 2 in the category of P-representations, we
shall refer to the P representation giving rise to the cotangent bundle of G(r, n).

We are now in a position to make the following four observations. Together
with the step by step justifications that follow them, these observations
describe the method we will use to compute R(G(r,n))%"™) while rigorously
justifying our computations at the same time. Observation 1 that follows is a
serious statement. We devote the appendix of this paper to sketch its proof.
Observations 2 and 3 are first stated ”proposition style” and then followed up
with proofs. Observation 4 is a sequence of four computations that is crucial
to the explicit description of R(G(r,n))%"™) that we provide.

OBSERVATION 1. Let SV denote the vector bundle on G/P arising out of a
G
P-representation V. Then, H*(G/P,SV)" is isomorphic to H*(P, V).
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Here, H*(P, V) is in the category of P-modules. This statement follows from a
theorem of Bott [4]. Though the base field is the field of complex numbers in
[4], an extension of this result to an arbitrary base field of characteristic 0 can
be shown using the method of flat descent [11] (Theorem 6 in the appendix to
this paper). We sketch a proof of this fact in the appendix to this paper.

OBSERVATION 2. In the case of a Grassmannian,

H (a/p.sv)< =uE (v, v)"N.

Proof. We have the Lyndon-Hochschild-Serre spectral sequence
EyP1 = HP(P/N;HY(N; A)) = HPTI(P; A)

where A is any P-representation. In the case of a Grassmannian, P/N is iso-
morphic to GI(Q) x GI(S). The category of P/N -representations is semisimple,
and all but the bottom row of the spectral sequence vanish. Thus in the case
of a Grassmannian,

ut(a/p,sv)< =ut v, v)"N.

O

OBSERVATION 3. From now on G = Gl(n) and P is a parabolic subgroup
such that G/P is the Grassmannian G(r,n). Let N denote the category of
N -representations. For any P-representations V. and W on which N acts
trivially,

Exti (W, V) = Homg (W @ AFQ, V).

Proof. We prove the above assertion as follows.

Step 1: Note that N is a Lie group, and in our case (that of a Grassmannian)
the exponential map gives a bijection between the Lie-algebra n associated to
N and N itself. The category of (finite dimensional) n representations is thus
equivalent to a full subcategory of N in which all our N representations lie.
Note that characteristic 0 is needed to formally define the exponential map and
its inverse. Also, the category of n-representations is equivalent to the category
of U(n)-representations, where U(n) is the universal enveloping algebra of 1.
Since 7 is abelian, (in the case of the Grassmannian) U(n) = Sym* n. In what
follows, we shall work in the category of Sym™ n-modules.

Step 2: Consider the Ad action of P on 1. The resulting P representation is
the P-representation Q*®.S on which N acts trivially. Since co-tangent bundle
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Q of G(r,n) arises out of this P-representation, we abuse notation and denote
this P-representation by ). For the rest of this section as well as in Sections 5.2
and 5.3,  shall denote this P-representation from which the cotangent bundle
of G(r,n) arises. As vector spaces, n ~ (). As algebras,

U(n) ~ Sym™ ().

Step 3: Note that Sym™(2) acts trivially on W. In other words, y.w = 0 for
any w € W and any y in the ideal of Sym*(Q2) generated by Q. Therefore,
a projective Sym™(€2)-module resolution of W can be obtained by taking the
Koszul complex

Lo WeANQeSY M QS WoATTIO®Sym QO — ... - W®Sym* Q — W — 0.

It follows that if V is any other Sym* Q-module, then Ext*(W, V) is just the
k-th cohomology of the complex

0 — Hom(W @ Sym* Q, V) — ... — ...Hom(W @ A*Q @ Sym* Q, V) — ....
If V is also a trivial Sym* Q-module, then we see that
Hom(W @ AFQ ® Sym* Q, V) = Homg (W @ AFQ, V)
and the Koszul differential in the previous complex is 0. Thus,
Exth (W, V) = Homg (W @ AFQ, V).
O

OBSERVATION 4. R(G(r,n))"™) is isomorphic to a quotient of the group ring
KSy as a K-vector space. For the rest of this paper we identify R(G(r,n))GH™)
with this quotient via a particular isomorphism. An explicit step by step
construction of this isomorphism is provided in paragraphs A).-D). below.

A). It follows from Observation 3, Observation 2 and the fact that P/N =
Gl(Q) x GI(S) that

Hk(G(T, n), Q®k)Gl(n) ~ HomK(/\kQ, Q®k>Gl(Q)><Gl(S).

We recall from Weyl [10] that if V' is any vector space, the map
oy : KSp — Endg (VEF)GV)

v1®...®vn;_)va_(l)®...®vo_(n)

is a surjection. It follows from this that

v+ ® ps : KS, @ KSy, — (EndK(Q*®k) ® EndK(5®k))Gl(Q)xGl(s)
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is surjective.

B). Let i : AFQ — Q®* denote the standard inclusion. Let p : Q®% — Q®* de-
note standard projection onto the image of 7. Note that p = % ZwGSk sgn(w)w.

If a € (Endg (Q*®%) @ Endg (S®%))GURQIXGIS) then avoi =0 iff ¢ op = 0. Re-

call that Q = Q*® S. Therefore, every element in Homy (AFQ, Q®k)Gl(Q)XGl(S)
is the image of a linear combination of elements of the form

(reo)on 3 sen(w)wow).

T weSy

Also, since we are using the right action of S; x Sy on Q*®k @ Sk,

(tr®0) o% Z sgn(w)(w @ w) = % Z sgn(w)(w @ w)(1 ® o)

" weSy wESy

1
=27 D sen(wo)sgn(o ) (wo @ wo) (0”7 @ id)
’ weSk

= % sgn(o) Z sgn(w)(w @ w) (ot ®id).

w€eSk

). Identify Endg (Q®*%) with (EndK(Q*®k) ®@Endg (S®*)) and think of S, x Sy,
as acting on this with the left copy of S; permuting the @* and the right copy
permuting the S. Then, the map p is identified with £ > ¢ sgn(w)(w ® w).
It follows from the above computation that if o,7 € Si then

(c®7)op=sgn(o)(c™ T ®id)op.

Therefore, every element in Homy (AFS2, Q®k)Gl(Q) xGi(S)

combination of elements of the form

is the image of a linear

(0’_17' ®id) o p.
It follows that as a K-vector space, Homy (AFQ, Q®k)Gl(Q)XGl(S) can be iden-
tified with a quotient of the group ring KSy. We shall shortly determine this
quotient precisely — but not before making a final computation.

D). Identify 2 with @*®S. With this identification, if o € Sk, the right action
of o on Q®* corresponds to the right action of o ® o on Q*®* @ S®*. Also, if
B € KSg, then

% Z sgn(w)(w @ w)(B®@id)(oc @ o)

’ wE Sk

= % Z sgn(wo) sgn(o)(wo @ wo)(a_lﬂg ®1id)

" weSy
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- %Sgn(‘” > sen(w)(wew)(o! fo @id).
' wESy

THE MAIN RESULT OF THIS SECTION. Henceforth B(G(r,n)) shall denote
R(G(r,n))' (™. Observations 1-4 above enable us to conclude that B(G(r,n))
is isomorphic to a quotient of KSy as a K-vector space.

We need to specify which quotient of KSj gives B(G(r,n)). Recall that the
irreducible representations of Sy over C can be realized over @Q and hence over
any field of characteristic 0. We also recall that the irreducible representations
of Sy are indexed by partitions A of k. They are self-dual, and V) ® Alt = V5,
where ) is the partition conjugate to A. Note that KSj is isomorphic to
D End(V)\)

NOTATION. Let |A| denote the rank (number of summands) of the partition
A. Let P. denote the projection from KSj, to @<, End(Vy) for 1 < r <k,
and let P, denote the projection from KSy to &<, |xj<n—r End(V)). If n is
large enough, P, ,, = P;.

The main result in this section is the following.
LEMMA 3. 1. As a vector space,
B(G(r,n)) & @ P n(KSk).
2. If o € Sk, then
0Py (B) = Prn(sgn(o)o™' fo) V 3 € KS.
8. Ifa €Sy and B € S; then
Prn(@) U Pryn(B) = Prp(a x B)
where a X (3 is thought of as an element of Sk in the obvious fashion.

The second part of this lemma follows from the paragraph D). of Observation
4 in this subsection. The following sequence of lemmas proves the remaining
parts of the above lemma.

3.1 A LEMMA AND SOME COROLLARIES

LEMMA 4. Let G be a finite group and let x : G — C* be a 1-dimensional
representation of G. Then, if 8 € C(G), 3 ccx(9)(g® g)(B®id) = 0 in
C(GxG)=C(G)aCG) if g=0.
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Proof. 1f 3 =0 then clearly > . x(9)(9® g)(8®id) = 0. For the implication
in the opposite direction, let us see what > ., x(9)(9®g) does to C(G'x G) =
® End(V, ®V,) where the V, are the irreducible representations of G. Let e; be
Z] dim(Vy)

a basis for V, and let f; be a basis of V. Suppose that g(e;) = gi;€;
and that g(f) = =™V g 1 for all i € {1,...,dim(V;)} and for all k €

{1,...,dim(V})}. Then,

Zx (9®g)(ei @ f5) ZZgzkggzx (ex ® f1)
g

= (ex @ )OO x(9)gi"gi?) = (ex ® 1) gin*gjn¥)
ol 9 ol g

where V, =V, ® x.

Note that > (9®g) € End(V, ®V}) is a G-module homomorphism. In fact, G
acts trivially on (3, g®g).(V. ®V,). Thus, ﬁ >_,(9®g) acts as a projection
to the trivial part of V, ® V. Note that V, ® V,, has a contains precisely
(Xz, Xy) copies of the trivial representation of G. In particular, it contains one
copy of the trivial representation of G iff V, and V), are dual representations.
In that case, the projection to that copy of the trivial representation is given
by v ® w — Tw(v) Y e; ® f; where d is the dimension of V.. Here, {e;} is
a basis for V, and {f;} is the basis for V, dual to {e;}. This tells us that

¢
>y 9ik g = 15,2656

Therefore, in End(V, ® V,), if V. is not dual to Vy, then > - x(9)(9®g) = 0.
Assume that V, is dual to V. Let {e;} be a basis for V, and let {f;} be the
basis of V,, dual to {e;}. If {&;} is the basis of V, corresponding to {e;}, then
with respect to the ordered basis €1 ® f1,€2® f1,...,64® f1,61 R fa,...,64Q
fo,..,e1® fa,...,€a® faof Vo @V, %‘ deG x(9)(g ® g) corresponds to the
matrix M such that M;; =1if¢,j € {kd+k+10<k<d—1}and M;; =0
otherwise. On the other hand, 8 ® id in End(V, ® V},) is given by a block
diagonal matrix each of whose diagonal blocks is the matrix representing 3 in
End (V). This proves the desired lemma.

O

In fact, in the above proof, we have also proven the following lemma.

LEMMA 5. Let G be a finite group, and let x : G — C* be a 1-dimensional
representation of G. Let V and V, be irreducible representations of G such
that V, @ x is dual to V. Then, if B € C(G), 3 ,cqXx(9)(9® 9)(B®id) =0 in
End(Vy ® V) iff 8 =0 in End(V;).

In our problem, the group in question is Sx. We note that these lemmas give
us the precise description of B(G(r,n) when K = C. Let Sy denote the Schur-
functor associated with the partition A of k. In other words, if V' is any vector
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space S)(V) = V¥ ®kg, V\ where V) is the irreducible representation of Sy,
corresponding to the partition \. We know that if V' is a vector space of rank
m, Sx(V) = 0 iff A has more than m parts. Therefore, if @ has rank r, then
SA(Q) = 0 iff [A| > r and S5(S) = 0 iff |\| > n — 7. Moreover, if A\ and p are
two partitions of k, then V&* @ W& @y (g, xs,) Va ® Vi, = SA(V) ® Su(W).
If v € K(Sk x Sk) # 0 in End(Vy ® V,,), then K(Sk x Si).v contains Vy @ V,.
Therefore, VE*@W @y (s, « 5,)7 contains Sy (V)®S, (W). Lemma 5 therefore
says the following when K = C.

LEMMA 6. If the rank of Q is r and that of S is n —r, then

S sgn(o)(o @ )( @id) =0

as an element of Homy (Q%F Q®k)7iﬁﬁ =0 as an element of End(Vy) for all
partitions \ such that |\ <r and |A| <n—r.

Proof. Let v = 3 _sgn(o)(c ® o)(f ®id). Then, by Lemma 5, v = 0 in
End(Vy ® V,,) if o # A. Therefore, v kills S)(Q*) ® S,,(S) whenever u # .
On the other hand, if v # 0 in End(Vy ® Vy), then Q®* .y contains a copy of
SA(Q*) ® S5(S). The desired lemma follows immediately.

O

Since the irreducible representations of S; over C can be realized over Q and
hence over any field of characteristic 0,Jlemmas 4,5 and 6 thus hold for KSy
where K is any field of characteristic 0. This proves the first part of Lemma
3 specifying the vector space structure of B(G(r,n)). We have so far also
identified the right Sy module structure of B(G(r,n)). To describe the ring
structure completely, we need to be able to compute cup products explicitly
under this identification.

We now show how one computes the cup product of two elements
X, € Homg(AFQ, Q%) ¢ H¥(G(r,n),Q%%) and ¥; € Homg(A'Q,Q%)) c
H' (G(r,n),Q%"). Let X = (7 ®id) 0 ix € Endg(Q*®*) ® Endg(S®*) and
Y=, ®id) o € EndK(Q*@) ® Endg (S®!) where i and i; are the standard
inclusions A*Q — Q®% and AlQ — Q%! respectively. Endg(Q®*) is identified
with Endg(Q*®*) ® Endg(S®*) as usual. The following Lemma explicitly
computes X UY].

LEMMA 7.
[(’Yk ® ld) o ’Lk] U [(51 X ld) o il] = [((’}/k ® 5[) ® ld) o ik+l]-

The element (v ® 6;) € K(Sk x Si) C K(Sk41) where S x S; is embedded in
Sk+1 in the natural way.

Before proving this Lemma, we note that part & of Lemma 3 follows immedi-
ately from the above lemma.
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Proof. Let W be any K-vector space Sym* ) acts trivially. In other words,
yw = 0 for any w € W and any y in the ideal of Sym*(Q2) generated by €.
Let ¢ € End(W). Let ¢ : W ® Sym*(Q) — W denote the map ¢ ® 1 where
7 : Sym*Q — K canonical map from Sym* to its quotient by the ideal
generated by €.

Let o : Q%7 ® Sym* () — Q%7 @ Sym™* () denote the map
W1®'~'®wj®Y>—>w1®~'-®wj,1®ij
for wy,...,w; € Qand Y € Sym*(Q).
Let d: NVQ & Sym*(2) — AV71Q @ Sym* () denote the Koszul differential.
Note that the following diagram commutes.
0% ® Sym* () —2— Q®i~1 @ Sym*(Q)
z'j@idsym*(ml lij,le@idsym*(m

NQ® Sym*(Q) —L— A0 @ Sym*(Q)

We have the following commutative diagrams.

0 —— Ok — Z — ...

8 3 w

L —— Q%P @ Sym*Q — 5 Q%1 @ Sym* Q) — ...

— I K 0
| | [
. —— Sym* K 0
0o — O®! —_ 4%} —_ ..

i .| 1

L —— Q%@ Sym Q) — 2 Q® 1@ Sym* Q) — ...

. — W K 0
| | E
. — Sym™ Q K 0

The top rows of the two commutative diagrams are exact sequences representing
X and Y] respectively. To compute the cup product X UY; we only need to
find vertical arrows making all squares in the following diagram commute.
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0 —— Qek+l Z1 ® Q%! —_— ...

I I I

L QO g Sym* Q) L, @Rl @ Gyt ——— L.

L — Zk®Q®l _— Wi —_— ...

I I Je I
L ¥R Sym* Q) —— Q¥ @ Sym* Q) —— ...

ay

. —— W K 0
| I [
. —— Sym™ Q K 0

Note that the diagrams below commute.

0 —— Qek+ — 71 @ Q! —_— ...

’Yk@&T 91®51T T

L Q®FH g Sym* Q0 —EH, O@kH-L @ Gyt ) ———— L
Lo 7, @ Q®!

I I

. — Q%@ Sym* Q

_MT Tél

O®! Q Sym* O — 5 O®!

These diagrams prove the desired lemma.

3.2 AN EXAMPLE.

Lemma 3 tells us that if X = G(co,00) = lim G(r,00) then R(X) = ©,KSj
with o.a = sgn(o)o~tao for all ¢ € Sg,a € KSg. Thus, by Lemma 3 and
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Proposition 1, if o € Sk, and 8 € S, then a © B = 3~ g, o(a x B)o~t. In
other words, R(X) is the commutative algebra generated by symbols ., for all
v € Sk, for all kK modulo the relations z x5 = ZaeShM To(axp)o—1- Lhis can
be seen to be larger than the usual cohomology ring of this space.

4 THE BIG CHERN CLASSES t; AND A RING HOMOMORPHISM FROM K (X)®
Q 10 R(X)

Let V' be a locally free coherent sheaf on a scheme X /S with X smooth over S.
An algebraic connection on V is defined as an Og linear sheaf homomorphism
D:V —Qx/s Qp, V satistying the Leibniz rule, i.e,

D(fv)y=df @v+ fDvV f eT'(U,0x), vel'(UYV),

for every U open in X. Note that a connection on V by itself is not Ox linear.
However, if Dy and Dy are two connections on V|y with U C X open, then
Dy — Dy € F(U, EDd(V) ® Qx/s)

For each open U C X , let Cy(U) denote the set of connections on V|y. This
gives us a sheaf of sets on X on which End(V) ®o, Qx,5 acts simply transi-
tively. Consider a covering of X by open affines U; such that V is trivial on
Ui, and pick an element D; € Cy(U;) V i (D; exists as d" : O% — Q% is a con-
nection and thus gives a connection on V|y, = O%, where n is the rank of V).
The D; together give rise to a well defined element 0y € Hl(X7 End(V) ® Q).

LEMMA 8. Oyew = Ay + Bw, where Ay and By are the elements in
HY(X,End(V) @ End(W) ® Q) induced from 6y and Ow respectively by the
maps End(V) — End(V) ® End(W) (m — m ® idw) and End(W) —
End(V) @ End(W), (m’ — idy ®@m') respectively.

COROLLARY 4. Oygy is induced from Oy by the map End(V) — End(V) ®
End(V), (m— m®idy +idy @m).

Proof. Since V and W are locally free, we can cover X by open sets U; so that
V and W are free over U; for each i. Let D; € Cy (U;), and E; € Cw (U;) for
each i. The desired result follows from the fact that idy ®F; + D; ® idy €

4.1 THE BIG CHERN CLASSES tj

Given any two locally free coherent sheaves F and G on X, one has a cup
product U : H'(X, F) ® B/ (X,G) — H""/ (X, F ® G). Hence, we can consider
the cup product of 6y with itself k£ times -

Oy U---Uby =: 0 € H"(X, End(V)®* Q) Q%F).
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The composition map ¢ : End(V)®* — End(V) induces a map

¢, : HY(X,End(V)®* @ Q%) — HF(X End(V) @ Q). Let t,(V) :=
@*9(3. The trace map tr : End(V) — Ox is Ox -linear and induces
tr, - H*(X,End(V) ® Q®F) — H*(X,Q®F). By definition, t5(V) 1= tr.tp(V).
The classes tj are referred to in Kapranov [6] as the big Chern classes. The
projection Q®* — A¥Q when applied to tx (V) gives us k! chy (V) where chy (V)
is the degree k part of the Chern character of V. The appropriate reference for
the construction of the Atiyah class and the construction of the components
of the Chern character as done here is Atiyah [12].

4.2 BASIC PROPERTIES OF THE BIG CHERN CLASSES

Firstly, t; is a characteristic class. In other words,

LEMMA 9. If 0 — V! — V — V" — 0 is an ezact sequence of locally free
coherent sheaves on X, then ty (V) =t (V') + t(V").

Proof. Let V,V’ and V" be as in the statement of this lemma. We first prove
this lemma for the case when k = 1. Consider a cover of X by affine open
sets U; such that V and V' are trivial over the U;. On each U;, choose a
connection D;, so that the restriction D;|V’ of D; to V' is a connection on V.
In other words, D;(T'(U;,V')) € T'(U;,2 ® V'). On the other hand,for each
U C X open, one can consider the K-vector space Cy,y/(U) of connections on
V|U that give rise to a connection on V/|U. Note that the difference between
any two elements of Cy v/ (U) is an element of I'(U, P ® ), which acts simply
transitively on Cy v/ (U). Here, P is the subsheaf of sections of End(V') that
preserve V.

Let Cy (U;) denote the space of connections on V|U;. Thinking of the II; D; as
an element of IL;Cy(U;) we see that the Cech 1-cocycle ILi;(D; — Dj)
of ILi;I'(U; N U;,End(V) ® Q) yields the Atiyah class 6y of V in
H'(X,End(V) @ Q). On the other hand, when the D; are thought of
as elements of Cyy/(U;), they similarly give rise to an element 6y - of
HY(X,P® Q). Ifi : P — End(V) is the natural inclusion, then clearly,
(i ® id)+byv,y» = Oy. We shall denote (i ® id) by i henceforth. Note that
tr o = tr. Hence, tr.0yy: = tr.fy = t1(V). On the other hand, restriction
to V' gives us a map p; : P — End(V’). Then p1.0y,y+ is the cohomology
class obtained by looking at D;|V’ as elements of Cy/(Ui) which is 6Oy.
We also have a projection ps : P — End(V"”). Note that since the D; are
connections on V that restrict to connections on V', they induce connections
on V" (all restricted to U;) which we will again denote by D;. Note that
p2:«0y,y is the cohomology class obtained by thinking of D; as elements of
Cy (U;), i.e, Oy . Now, tr|p = trop; +trops. This proves the lemma for k = 1.
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Let 9'{/,‘,, =0y U---Ubyy € Hk(X, Pk R Q%F). Let ¢ : PO* — P denote

the composition map. Let ty(V, V') := 0,05V, V') € H*(X,P @ Q®F). The
following observations prove the lemma in general.

1. ity (V, V) = m This follows from the commutativity of the following
diagram.

P —'— End(V)
2. pl*tkﬁ/\:‘//’) = m and pg*tk(‘_/\,_‘;/) = t;(—\\}ﬁ) This is because the two
diagrams below commute.

P —2— End(V")
From this and the additivity of trace, we see that t (V) = t5(V') + t(V").

O

LEMMA 10. If f : Y — X is a morphism of varieties and V' is a vector bundle
on X, then tp(f*V) = f*tp(V).

LEMMA 11. If V. = V' ® V" as Ox-modules and p; and ps are the natural
projections End(V) — End(V’) and End(V) — End(V") respectively, then

pl*tk(v) = tk(vl) and p2*tk(v> = tk(vﬂ)'

Lemmas 10 and 11 are fairly straightforward to verify and we shall skip their
verification. Another important property that we prove here is that @ty :
K(X)®Q — R(X) is a ring homomorphism.

LEMMA 12. If V and W are two locally free coherent sheaves on X, then,

(VOW)= > t(V)Otn(W)
I+m=k
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where ® is the product H'(X, Q%) @ H™ (X, Q®™) — H*(X, Q%% appearing in
Proposition 1. In other words, Sty : K(X)® Q — R(X) is a ring homomor-
phism.

Proof. We know that Oy gw = 0y ® idy + idy ®0y,. Therefore,
Ovew" = (Av + Bw)U---U (Ay + Bw)

where Ay = 0y ® idw and By = idy ®0y,. Thus,

Ovow" = (Av + Bw)' = Y > sgn(o)o ' (Av' UBw™).
I+m=Fk c€Shy m

Here, a given permutation p € Sy, acts on End(V @ W)®kF @ Q®F by

'Ul®"'®Uk®w1®"'®’wk'_>v#(1)®"'®Uu(k)®w,u(1)®"'®w,u(k)
and therefore induces a map from H*(X, End(V @ W)®* @ Q®F) to itself.
To verify that

(Av +Bw)" = > > sgn(o)o 'u(Av' UBw™),

I+m=Fk o€Shy

note that in (Ay + By )*, terms having | Ay’s cupped with m By ’s are in one-

one correspondence with sequences by < --- < by, b; € {1,2,3,...,1 +m} Vi
(the b;’s being the positions of the By/’s). Such sequences are in 1 — 1 cor-
respondence with (I,m) shuffles. The sequence B := by, ..,b,, corresponds

to the (I, m)-shuffle o such that og(l + i) = b;,1 < i < m. Note that
sgn(op)ops ' Ay U By™ is exactly the term in (Ay 4 By)* where the Byy's
are in positions by, ...,b,. The lemma is now proven by recognizing that
try 0.0 (Ay'UBw™) = 07 t)(V) Uty (W) if o is any (I, m)-shuffle. This is
because the inverse of an (I, m)-shuffle does not change the order of composition
among the End(V)-terms and among the End(WW) terms respectively. O

Not only that, the ring homomorphism @t; is also a homomorphism of
special A-rings. In other words, the big Chern classes commute with Adams
operations. Indeed, the following lemma proves this fact. Note that in any
special A\-ring A, the eigenspace corresponding to the eigenvalue p' of the
Adams operation 1P coincides with that corresponding to the eigenvalue 2! of
the operation 2 for any p > 1. Therefore, to verify that @ t; commutes with
the Adams operations, it suffices to verify that @ t, commutes with 2. This
is done in the lemma below.

LEMMA 13. t,(¢?V) = 2 t5(V).
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Proof. By the corollary to Lemma 8 (Corollary 4), 8y gy is induced from 6y
by the map § : End(V) — End(V) given by m — m ® idy +idy @m i.e,
Ovgv = B«0y. Therefore,

Ovev" = B.0vU---UBOy = (B0 @ B).0v".

By abuse of notation, we shall refer to f ® --- ® 3 as 8. Then, 9{“,®V = 6*9(3,
where 3 : End(V)®* — End(V)®* is given by

k . .
m1®"'®mk'—>® (mi®ldv+1dv®mi).
=1

Further, a direct computation shows that if W is a vector space over a field F/,
with charF # 2, W@ W = Sym? W & A2W. Let p; and ps denote the resulting
projections from End(W) ® End(W) = End(W ® W) onto End(Sym? W) and
End(A2W) respectively. If M, N € End(W), then

tr(p1(M @ N)) —tr(p2(M @ N)) =tr(M o N).

By this fact, and Lemma 11, we see that

tr(1?V) = t1.(Sym? V) — tx(A%V) = truprate(V @ V) — troposte(V @ V)

—_~—

=tr.aty (Ve V)
where a : End(V) ® End(V) — End(V) is the composition map.

Let ¢ : End(V ® V)®¥ — End(V ® V) be the composition map. Observe that
aoyoB:End(V)® — End(V) is the map given by

my - Qmg = Z Z Meg(1) © " O Mg (k)
p+q=k 0€Shy 4

(o denoting the usual matrix multiplication on the right hand side of the last
equation). Consider the map v : End(V)®* — End(V)®* given by

MG @M Y Y M) @ @ M.
p+q=k c€Shy 4

Then, we see that

174 © Py 0 YOy =11, 0 it (V @ V) = tg (¥2V).

Also observe that 12t (V) = tr.,20y" since the following diagram com-
mutes.

End(V)®F @ 08k 8V, phq(v)ek g ek
tro(@@id)l ltTO(lp@id)
Ok v’ &k
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Here, 12 on H*(X,End(V)®* @ Q®*) is by definition induced on co-homology
by the endomorphism id ®? of End(V)®* @ Q®k. Thus, the following lemma
remains to be proven.

O
k _ .12n k
LEMMA 14. ~,.60y" = Y20y
Proof. Note that the cup-product is anti-commutative. Therefore, if o € S, ,
then the map given by
o:miR- - -Qmy ® V1Q- QU — Sgn(U)mg(l)@)' QMg (k) ® Uo(1) @+ " QVg (k)

preserves 0y "
If o € Sy let 0 ® id denote the endomorphism of End(V)®* @ Q®* such that

m1®...®mk®fv1®...®vk ;_)mo_(l)®...®ma(k)®vl®...®vk_
Similarly, let id ®o denote the endomorphism of End(V)®* @ Q®* such that

Mm@ @m QUi @ Qg =My @ - @My Q) Uo(1) @+ @ Vg (r)-

It now suffices to note that

v = Z Z o®id = Z Z sgn(o)(id@o~1) o (o)

p+q=k c€Sh, 4 p+q=k c€Sh, 4

— .05 = Z Z sgn(o)(id @071, o (0).0%
p+q=k c€Shy 4

= Z Z sgn(o)(id @ 1), 0%

p+q=k 0€Shy 4

=20y

O

Recalling that a;(V) = ch™*(ch;(V)), where ch is the Chern character map,
we now have the following corollary of Lemma 13 below.

COROLLARY 5. tg(aqy(V)) = el tr (V) where ex V) is the idempotent described

in Lemma 1.

Proof. Note that ¢? = Y eW2l. The fact that the e,!) are mutually orthog-
onal idempotents adding upto id tells us that 1% o e, () = 2le;, (. Therefore,
P2 ep(V) = Y2l (V) = th(@?V) = th(D2a(V)) = X2 ty(au (V).
Since eigenvectors corresponding to different eigenvalues of a linear operator
on a finite dimensional vector space over a field of characteristic 0 are linearly
independent, the desired result follows. O
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REMARK. More conceptually, if TV is the graded tensor algebra over a vector
space V, (with usual tensor product giving the multiplication, and coproduct
dictated by the fact that V' C TV are primitive elements), then T*V is the
graded Hopf algebra dual to TV. The map 9> = po A : T*V — T*V has
as its dual the map po A : TV — TV. The 2'-eigenspace of this map is
seen to be ” Sym'(L(V))”. Thus, the 2-cigenspace of 1 : T*V — T*V is
dual to the space ” Sym'(L(V))". Thus, t(a;(V)) lands in k-cohomology with
coefficients in a space dual to ” Sym'(L(Q))”. Moreover, the last corollary
explicitly describes the projector that gives t; (o (V') from t (V) as the action
on tx(V) of a certain idempotent in K(Sg). Thus, one can recover ty(a;(V))
from t (V') combinatorially.

5 CALCULATING t4(Q), Q THE UNIVERSAL QUOTIENT BUNDLE OF A GRASS-
MANNIAN G(r,n)

We remark that Qg(rn) is often denoted by just @ in this and subsequent
sections. The Grassmannian whose universal quotient bundle we are referring
to is usually clear by the context.

—_~—

5.1 ALTERNATIVE CONSTRUCTION FOR t(V) AND tg(V)

Let V be a locally free coherent sheaf on a (separated) scheme X/S. It is a fact
that 0y is the element in Ext*(V,V @ Q) = H'(X,End(V) ® Q) corresponding
to the exact sequence 0 — V@ Q — J1(V) — V — 0 where J; (V) is the first
jet bundle of V. Suppose that o € H (X, F) = Ext'(Ox,F) is given by an
exact sequence

0—-F—-Y1T—...-2Y, —>0x—0

and that 8 € H/(X,G) = Ext/ (O, G) is given by an exact sequence
0—-G—-21—...—Z; — 0Ox —0.

Let a3 be the element in H™ (X, F®G) = Ext"™ (Ox, F®G) defined by the
exact sequence which is the tensor product of the exact sequences representing
«a and  respectively. We note that the product

« H(X,F) o B/ (X,6) — H (X, F®g)

a®@pPr—axf

has the linearity and anticommutativity properties required of the cup product.
Since all the cohomology classes we are dealing with are represented by exact
sequences of Ox-modules, we can define the cup product to be the product .

With this definition of the cup product, it will follow that t(V) € Ext®(V,V ®
Q%F) is given by (fy ® idgkfl) o -0 6y where o denotes the Yoneda product
and Oy is treated as an element in Ext'(V,V ® Q).
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5.2 COMPUTATION OF t1(Q)

Recall that  is identified with Q* ® S. Let A : S — Q ® €2 be the map whose
dual A* : Q* ® Q ® §* — S* is ev ® idg«, where ev : @* ® Q — K is the
evaluation map. Also, ev ® idg is a map from Q ® Q to S.

LEMMA 15. The element of Endg(Q ® Q) representing g is A o (ev @ idg).

Proof. We note that the following diagram commutes.

0 —— S S N V4 * . Q 0
Al l lid
0 —— QRQ* ®S —— L(Q) —— Q 0

The bottom row of this diagram is the exact sequence giving 6y. By the uni-
versal property of push-forwards, we see that the following diagram commutes
(F denotes the pushforward V IIs @* ® Q ® 5).

€

0 —— S L N Ve Q 0
:| I L
0 — Q*®Q®S —— F Q 0
[1a | al
0 — Q"'®Q®S —— J1(Q) Q 0

Therefore, 6g can be represented by the second row of the above diagram in
Extl(Q,Q ® Q). Observe, however, that every arrow in this exact sequence
is a P-module homomorphism (of course, @* ® Q@ ® S, V and therefore, F
are all P-modules). Thus g can be represented by an exact sequence in the

category of P-representations. It follows that for all £ > 1, t4(Q) and t,(Q)
can be represented by exact sequences in the category of P-representations.
Therefore, to find 0g, we need to find arrows o and 3 so that all squares in the
following diagram commute.

0 —— Q'S — F Q 0
AT T Tid

0 —— S — 1% ‘— Q 0
] 't

L RQRO2®Sym" Q) —— Q ® Sym* Q Q 0

Observe that Q@ = Homg(Q,S) C End(V) (here, we have chosen a K-vector
space splitting 0 — § — V = @ — 0. Choosing such a splitting describes
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Q as the subspace of elements in End(V') consisting of matrices whose “upper
right block” is the only nonzero block. Note that the product of two such
matrices is 0. Thus, any element of Sym* ) can be thought of as an element
of Hom(®,V) C End(V). In this scheme of things, we choose § to be the
natural evaluation map, and « the restriction of 3 to Q ® Q ® Sym™ Q. Note
that 8 and « are Sym™ Q-module homomorphisms by construction. Note that
a:Q®02®Sym"Q is the Sym* Q-module homomorphism induced by & :=
ev € Homg (Q ® 2, S), where ev is the natural evaluation map. It follows that
as an element in Homg(Q ® ,Q ® ), 6g is given by Ao (ev ® idg).

O

Let {e;},1 < i <r be a basis for Q. Let {f;} be the basis of @* dual to {e;}.
Let {u;},1 <i <mn—r be a basis for S, and {v;} the basis for S* dual to {u;}.
The following is a restatement of Lemma 15.

LEMMA 16. With the notation just fized, as an element of Endg(Q ® Q) =
End(Q) ®End(2) = Q*0QQQ®S*RQQ*® S,

9@ = Z fm1 K el ®€m1 & Ury ®fll & Upy

l1,m1,r1
(I1, m1 running from 1 to r, 1 running from 1 ton —r).
Proof. ev(e; ® fj @ ug) = d;ju and A(ug) = >.;_; e ® fi ® ug. Therefore,
Og(e; @ f; ®up) =0i; > _1 &1 @ fi @ ug. On the other hand,

fm, ®ery ®em1 Ury ® fi, ®ur, (6 ® f; @uk) = dim, Gjm, Okery €1, @ fiy @ Uy,

This is nonzero iff = j = my and k = ry. This proves the desired result. O

—_~—

5.3 COMPUTING t(Q) FOR k > 1

This is done inductively. The method by which Yoneda products are computed
is very similar to the cup product computation in the previous section. We
therefore omit the details and state the key results.

If i : AFQ — Q®F is the natural inclusion, t;(Q) is given by 7% o i where
Y € Endg (Q ® Q%F) is as described in the following lemma.

LEMMA 17. Identifying Endg (Q@Q®%) with Endxk (Q) @ *“* Q Q®*, we have

(frmy ®e1y )or-0( frn, ®er, ) @(€my @Vp )@+ @(em, @i, )
Ve = Z ( ®(flk1®uf1>®"'®(flk®urk) k k )

Here, the l;,1 < i < k and the m;,1 < i < k run from 1 to r , while the

f— 7

ri, 1 <i<krun from1 ton—r.
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Having computed tx(Q) we compute tx(Q). For this, we note that t5(Q) =

(tr®id).tx(Q) where t;(Q) € End(Q)®Homgk (AFQ, Q¥%) and tr : End(Q) — K
is the trace map. Calculating t;(Q) is then easy. In the formula in the previous
lemma, we see that

(fm1 ® el1) O---0 (fmk ® elk)(ei) = 6imk6lkmk—l s 6127711611-

From this, we see that (fm, ® e,) o+ 0 (fm, ® e1,,) has trace 1 iff my, =
l1,lg. = mg_1,...,la = mq and has trace 0 otherwise. From this it follows
that if i : AFQ — Q®* is the natural inclusion, t(Q) is given by uy o where
. € Homg (%%, Q®k) is as described in the following lemma.

LEMMA 18. Identifying Endg (Q®F) with *®* Q Q®F we have

ik =
Y (@)@ @ (e, ®vr,) @ (e, ®vn) QUfiy @ un) @ @ (fi, @ un,)

ok

= Z(eml ®Un)® ®(emk ®'U1"k)®(fmk ®UT1) (fm1 ®UT2)® ®(fmk 1®urk)
M ,y.nny m
TLyeens Tk

As a consequence, the basis element f;, ® -+ ® fi, Quj, ® -+ @ uj, of OBk
is mapped by tk(Q) to fik @ fil Q- ® fik—l ®U’j1 @ - @ Uy, Therefore,
if we identify Endg(Q®F) with Q*®* @ S®* t,(Q) can be thought of as
(kk—1k—2.21)®idger where (k k—1k—2..21) is the k-cycle acting
on Q*®k by the usual action of Sy on V®* for a vector space V. We denote
this k-cycle by 7.

Let P, , be as in Lemma 3. By Lemma 18 and the above paragraph,

LEMMA 18’°.

tk(Q) = Pr,n(Tk)-

6 PROOFS OF THEOREMS 2 AND 3

We recall that Sk ; denotes the set Sk ; = {0‘ € Skleard{ilo(i) > o(i+ 1)} =
j — 1}, i.e, the set of permutations of {1,...,k} with j — 1 descents. By part
2 of Lemma 3, if Y a, sgn(o)o € K(S%), we have

Z assgn(o)o. (tx(Q)) = Prp Z U450 Th0).

The following lemma now follows immediately from Corollary 5.

LEMMA 19.

g (ay = T"Z Z ak oo )

j=1o€Sk;

DOCUMENTA MATHEMATICA 14 (2009) 67-113



96 Ajay C. RAMADOSS

A REMARK AND SOME NOTATION. 25—1 Y oSy sgn(a)aﬁ;jofl is the operator
- 2J

eg) for the graded commutative Hopf-algebra T*V. In fact, Z?Zl Y oSy S aéc o
is the operator e(l) for the co-commutative ordinary Hopf-algebra TV. We

henceforth denote this idempotent by e( ). Let % denote the conjugation action
of KS), on itself. If a € S, and b € KS;€ then a + b= aba™! and (3 cy9) xh =
> egghg™t, h € KSk. Then, Lemma 19 can be concisely restated as

tk(al(Q>) = Prn(e](g) * Tk)-

Note that * is a left action.

6.1 PROOFS OF COROLLARY 2 AND COROLLARY 3

Recall the definitions of the projections P, and P, , from Section 3. Assume
for now that n is large enough so that P = P, ,, for all values of k that we
shall use. Let I(k,r,1) denote the annihilator in KSy of t;(c(Q)). By Lemma
3 and Lemma 19 this is precisely the subspace

I(k,r1) {chsgn )g| P ( chg ! *ekl x71) = 0}.

If (o) denotes the subspace of KSj, spanned by conjugates of o by elements of
Sk where a € KSj, then

dim(I(k, 1)) = dim((E" 7)) — dim((P, (6" % 73,))).

Note that since P._; factors through P,., I(k,r,1) C I(k,r — 1,1). It follows
that this inclusion is strict if

dim((Pr (& % 7)) > dim((P,_1 (8 7)),
We will prove the following lemma.

LEMMA 20. For a fixed l, there exists a constant C' and infinitely many r such
that there exists a k < Cr? so that

dim((P, (&) * 7)) > dim((P,_1 (8} * 7))

Note that in such a situation, if n > Cr? + r then P. = P., as pro-
jection operators on KS;. We can then pick an element § in KSj such

that (. tk(al(QG(r—l,oo))) = 0 and [, tk(al(QG(r,n))) % 0. If Corollary 2
were false there would be a morphism f : G(r,n) — G(r — 1,00) so that

r* (ﬁ* tk(al(QG(T,Loo)))) = Bitr((Qg(r,n)))- This gives us a contradiction.
Therefore, Corollary 2 follows immediately from Lemma 20.

We will prove Lemma 20 by a simple counting argument. We however, need
the following lemma.
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LEMMA 21.
~(1) (1-1)

€, ¥ Tk =€,_1 *Tj
where Sk—1 C Sk is embedded as the subgroup fixing k.

Proof. Let a be a permutation of {1,2,3,...,k— 1} with j — 1 descents. Then,
among the permutations o, aty, . .., a7, "1, we see that j of the permutations
have j — 1 descents, while the remaining k — j have j descents. For, a7’ has j
descents or j — 1 descents depending on whether a(k —i) < a(k —i+ 1) or not,
for 2 <¢ <k —1. For j — 1 such i, a(k —i) > a(k — ¢ + 1) (corresponding to
the descents of «). These j — 1 elements together with « have j — 1 descents.
The remaining k — j permutations have j descents. As 7'7,7, "% = T, the
coefficient of ara™! in é,il) * T), 1s given by jai’j + (k- j)ai’jﬂ, since among
the elements o, aty, ..., ar,* !, those with j — 1 descents contribute a;’j and
1 @

k

those with j descents contribute a;’j *1 to the coefficient of arza~! in é

. . g N LGl .11
The desired lemma follows from observing that ja,” + (k — j)ay’™ = ja,_77,

since j(Xfngrk) + (k _j)(ijlzlfk) _ X(Xf,ffllik)'

* Tk

O

Proof. (Proof of Lemma 20). Suppose we have shown that there exists a con-
stant C' such that for a fixed [ and r,

dim((&},) + 74)) > dim((P,(&}) 7))
if k > Cr?. Then,
there exists s > r so that dim((Ps(ég) * 7)) < dim((PsH(ég) *Tk))).
Therefore, for any [ and r, there exists s > r so that
dim((Py(e)) « 7)) < dim((Pay1 (&) % 75))).

With [, and s as above, pick k = Cr2. Then k < C(s+1)* as well. This
proves the lemma provided we actually show that there exists a constant C'
such that for a fixed [ and 7,

dim((8" 7)) > dim((P (6" % 7,)))

whenever k > Cr2. This is what we will do now.

1. Observe that the stabilizer of 74, under conjugation is the cyclic subgroup
generated by 7. Thus, Sx_1 acts freely on the conjugates of 7, and 71, =0
for some 3 € KS;_; iff 5 = 0. It follows from this remark and the Lemma
21 that dim((é,(cl) * 7)) is the dimension of the representation KSk,l.é,(f__ll) of
KSk—1. By exercise 4.5 in Loday[2] that this space has dimension equal to the
coefficient of ¢~ in g(g+1)...(¢ +k —2).

DOCUMENTA MATHEMATICA 14 (2009) 67-113



98 Ajay C. RAMADOSS

2. On the other hand, look at dim(®)y <, End(Vy) for a fixed r. Note that if
Ak =AM 44 A\ is a partition of k, and if II denotes the product of the
hook lengths of the Young diagram corresponding to A, then dim(V}) = % <

. 2
7/\1!)\2?!“&/!. Thus, dim(End(Vy)) < (7)\1!/\2?_!__/\T/!) . Hence,

| k! 2
dim(@pe, Brd(B) < Y (o)
MEE

i

Therefore, for a fixed r,
dim((P, (& % 7)) < dim(@)5j<, End(V3)) < r2.

On the other hand,

dim((é,(cl) % 7p)) = coefficient of ¢~ in q(g+1)... (¢ +k—2) >

We need to find k large enough so that ((15:22))!! >

find k large enough so that

2k To see this we need to

In((k —2)!) —In((I — 2)!) > 2kInr.

Note that
In((k —2)!) > (k—2)In(k — 2) — (k — 3).

We therefore, only need to find &k large enough so that
(k—2)In(k —2) >k —3+1In((l —2)) + (k — 2) In(r?) + 21In(r?).
Put D = In(r*(l — 2)!). We then need k so that
(k—2)In(k —2) >k -3+ D+ (k—2)In(r?).

Certainly, there exists N € N so that N(k — 2) > (k — 3) + D To see this,
note that we can pick N > D + 1 if £ > 3 for instance. In fact, picking
N > 5+ 1In((I —2)!) works as well. The latter choice of N is independent of r.
If K — 2> eNr2, then we see that

(k—2)In(k —2) >k —3+ D+ (k—2)In(r?).

N+1T2

Certainly, k > e would do for our purposes.

DOCUMENTA MATHEMATICA 14 (2009) 67-113



ON THE NONEXISTENCE OF CERTAIN MORPHISMS FROM ... 99

Thus, if [ and r are fixed, we have shown that there is a constant C' so that
when k > Cr?, then

dim (&) *71)) > dim((P (&} * 7))).
If [ = 2, in particular, we need
(k—2)In(k —2) >k — 3+ (k — 2)In(r®) + 2In(r?)
We see that this happens if &k — 2 > 7r2.

O

This completes the proof of Corollary 2. In addition, we have shown in Lemma
20 and hence in Corollary 2 that if [ =2, C' = 7 works.

To complete the proof of Corollary 3, we make some observations.

OBSERVATION 1. By Lemma 21,

T = Zégjll) * T = Zé,(cl) * Tk

1>2 1>2

— t1(Q) =>_th((Q)) = tr(e1(Q)) =0 Vk > 2.

1>2

OBSERVATION 2. Since $ty : K(X)®@Q — @ H* (X, Q%) is a ring homomor-
phism, is follows that ,
tr(a1(@)”) =0

if k # 2.
If f:G(s+1,N)— G(s, M) is a morphism, then one sees that

F(a2(Q") = A1 (Q)® + Baz(Q)

where @ and Q' are the universal quotient bundles of G(s+ 1, N) and G(s, M)
respectively. By Observation 2,

te (f* (a2(Qa(s,an))) = Btr(az(Qa(s+1,n)))-

If B # 0, one sees that I(k,s,2) C I(k,s+ 1,2) (a contradiction). This finally
proves Corollary 3.

To prove Theorem 2, we need the following lemma.

LEMMA 22. X a smooth (projective) scheme. Suppose that [V] € K(X) is
gwen by [V] = 3" a;[Vi], where V;’s are of rank < r. Then, I(k,r,1) annihilates
tr(u([V]))-
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Proof. There exists N € N so that for each m > N there exist surjections
G; — Vi(m) where G; is a free Ox module for each i. Let K; denote
the rank of G;. This is equivalent to saying that for each i there exists a
morphism f; : X — G(rank(V;), K;) so that V;(m) = f;*Q;, Q; being the
universal quotient bundle of G(rank(V;), K;). Thus for each 4, I(k,r, 1) kills
tx (a;(V; ® O(m))) for each m > N.

To prove this lemma, it suffices to show that I(k,r,!) kills tx(c;(V;)) for each
i. For this, we note that ®t,(O(1)) = e(@1(©1)) with the understanding
that t1 (a1 (01))”™" = 0 where D is the dimension of the ambient projective
space. Thus, @ t;(O(m)) = e™ 41 (@1(01)) " Since the Vandermonde determinant
A(N+1,.,N+ D+ 1) # 0, we can find a linear combination W of O(N +
1),...,O(N + D + 1) so that t,(W) = 0 for every £k > 1 and to(W) = 1.
Clearly, ty(ay(V; @ W)) = tg(au(V;)) is killed by I(k,r,1).

O

PROOF OF THEOREM 2. Lemma 20 implies that given any fixed [ > 2, there
exists a constant C' such that there exist infinitely many r such that given any
n>Cr? +r,

I(k,r, 1) C I(k,r —1,1).
Lemma 22 implies that I(k,r — 1,1) annihilates ty(z) for any element = of

Fr,chl(Qg(T,n)) ® Q. Theorem 2 now follows immediately from the fact that
I(k,r,1) is the annihilator of t(cu(Qg(rn))) by definition.

6.2 OUTLINE OF PROOF OF THEOREM 3

Originally, the hope was for a stronger result saying that for fixed [ and r, there
exists a k satisfying I(k,r,1) C I(k,r — 1,1). In fact, there was the hope of
being able to show that I(2r,r,1) C I(2r,r —1,1). This would have shown that
there is no morphism f : G(r,2r) — G(r — 1, M) so that f*(a(Q")) = «(Q).
We have so far been unable to do this in general. However, we have found (by
means of a computer program) that I(6,3,2) C I(6,2,2) thus proving that if
f:G(3,6) — G(2, M) is a morphism, then f*(az(Q’)) = Coy(Q)*. This we
do by showing that @y -3 End(Vy) contains an irreducible representation V,
of Sg not contained in @©|yj<2 End(Vy), and that if 7, denotes the projection
from K9S}, to V,,, then 7, * ég) x 7g 7 0. This is achieved using a Mathematica
program.

7 PROOF OF THEOREM 1

7.1 A CERTAIN DECOMPOSITION OF KS}

Observe that KS, = W), where W), is the K-span of elements of Sy in the
conjugacy class corresponding to the partition \. We shall break each of the
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spaces W) further into a direct sum of K-vector spaces in a specific manner.
The significance of the new decomposition shall become clear as we proceed.

First, let us decompose the conjugacy class C(y) which is the conjugacy class
of the cycle 7. Note that 7, = Zl>2 é,(cl) * 73, and that é,(vl)é,(vl/) = 5”/é,(€l). Define
operators II; on Cy, by 0, (BB~ Y) = B (é,(cl) x 1y ) for B € Sy, and extend this
by linearity to C(yy. Note that ) -, IIj(B*7x) = B+ 7. First, we need to check
that we actually have a well defined operator here. It suffices to show that if

B,7 € Sk with 8 7, = v * 7 then II;(8 * 71,) = II;(y * 7% ). In other words, we

need to show that g * (ég) *Tp) = 7 % (é,(cl) * 7)) which is equivalent to showing

that (B717) * (é,(cl) *T)) = é,(cl) *Tp. But fx71p = yx7y iff 71y = 7 for some s.
Therefore, the fact that II; is well defined follows from the following lemma.

LEMMA 23.
Th * (ég) * T)) = é,(cl) * T,
for any integer s.

Proof. This really follows from the fact that for any smooth scheme X, and for
any vector bundle V on X,

sgn (7 ) Tix b6 (V) = t1(V).
After all, sgn(Tk)Tk*ka =" (by the properties of the cup product). Hence,
Iy s sgn(Tk)Tk*Gvk = tr, gp,ﬁvk

where ¢ : End(V)®* — End(V) is k-fold composition. The right hand side
of this equation is t; (V') by definition. The left hand side is sgn(7x )7k, tr (V)
since

tropoT, =T otrop.

This tells us that sgn(7)7;, tx(V) = tx (V). To finish the proof of the lemma,
we observe that by Lemma 19,

7% (8 x7.) = sgn(ri) 7, te(a(Q"))

and that l
el w7 = tr(cu(Q")

where @)’ is the universal quotient bundle of the Grassmannian G(r/, 2r') with
r’ chosen to be greater than k. O

The other detail to be verified is the fact that the operators II; are mutually
orthogonal projections. For this, we see that

IL (B * 1) = B * (ég) *T)) = (Bég)) x 7, = 11 oI, (8 * %)
= (B DY w1y, = (BO1mel) % 7.
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We therefore, have a direct sum decomposition Wy = @ZZQHZ(W(k)).

We now proceed to breakup W) into a direct sum of K-vector spaces in an anal-
ogous manner. Note that C'y is the conjugacy class of 7y := 7\, Ty, ... Ta, Where
the partition A is given by A : k = A1 + .. + As, the \; ’s arranged in decreasing
order and where 7y, is the cycle (A1 +- -+, A4+ XN —1, .. A\ 4+ XNi—1)
which is after all the cycle 7), embedded in Sy under the composition
Sy, C Sy X---x8Sy, CSk. Call the map Sy, x---xSy, C Sk as ¢. Note that ¢
extends to a K-algebra homomorphism ¢ : K(Sy, x---xSy,) — K(Sj). Identify

K(Sy,)®---®@K(Sy,) with K(Sy, x---x S),) and consider (ef\l)® ®e(l ))*7')\

By this we mean that we are looking at e(lll) - (l ) as an element of KSk
through the homomorphism ¢. We now make the followmg observations that
give a step by step, explicit construction of the decomposition of KSy that we
are interested in.

OBSERVATION 1. The elements e(ll) R ® e( 2 are mutually orthogonal
idempotents in K(Sy) adding up to 1d This follows from the fact that the
above statement is true in K(Sy, x --- x Sy, ).

OBSERVATION 2. ASTh =T, @+ Q Tx,,
(ég\lll)® ®e(l ))*T)\:(éf\lll)*T,\l)Q@---@(ég\l:)*T)\S)
It follows that if for some i, \; > 2 and l; = 1, then

@) e o8 n=0

OBSERVATION 3. Let

V= Y Ve e
lit-+ls=l

Then é&l) 18 an tdempotent with
(1 11 ~(ls I ~(ls
eg\) ( ~( ® - eg\s)) ( ~( )® 65\8))
ifli+---+1ls=1and
D6 o) =0
otherwise.

Let II; be defined by II; (3 * 75) = (ﬂé&l)) x 1) for every 8 € C) . We then have

LEMMA 24. The II; are well-defined mutually orthogonal projection operators
on Wy.
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Proof. Note that it suffices to show that if v is a permutation in the stabilizer
of 7, under conjugation, then ~ * (é&l) K Ty) = ég\l) * Tx. Note that if v stabilizes
7 under conjugation, then v is of the form {(7}! ®---®7,°) where { permutes
blocks of equal lengths among [1,..., A\1],[AM +1,.. ., A1 + Xo], ooy [Ar + -+ +

As—1 + 1,..., k] while preserving order within such blocks. Now we need to
show that ~ (ég\l) *Ty) = éf\l) * 7). Observe that

5(11) ()

(e --or)*@E e o8 3 2\ xry,)

)kTy = (7‘;1*6)\1 *T,\1)®---®(T§z*e)\s kT,

=@V e o)) rn
(the last equality by Lemma 23). So, we only need to show that
C*é&l) * Ty :ég\l) * Ty
But this is true since ¢ induces a permutation ¢’ of 1,2,..,s and we see that
CEY e wdl)) =@ 0 e i ), =

OBSERVATION 4. It now follows from this and the fact that the I1; are mutually
orthogonal idempotents adding upto id that

Wy = @HZ(W,\).

Also, Observation 2 tells us that II;(Wy) = 0 and that TIo(Wy) = 0 if A # (k).
Therefore, this direct sum decomposition runs over I > 2. Combining this with
the decomposition KS = @ W, we see that

KSk = ®x @i>2 I (W) = @214 (KSy).

7.2 PROOF OF COROLLARY 1

DEFINITION :Define an elementary functor of type (k,l) to be a map v (not
necessarily linear) from K(X) ® Q to Ri(X) such that

w(z) = Bty (au, () U--- Uty (ar,(z))

for some 8 € KSj, some s-tuple (Ay, .., As) of non-negative integers adding up
to k and some s-tuple (l1,...,ls) of non-negative integers adding up to .

Define a functor of type (k,1) to be a map from K(X)® Q to Rx(X) given by
a ”linear combination of elementary functors of type (k,1)”. In other words, a
functor of type (k,1) is a map v from K(X) ® Q to Ri(X) such that

v(r) = i cjw; ()

DOCUMENTA MATHEMATICA 14 (2009) 67-113



104 Ajay C. RAMADOSS

where p € N, and wy, .., w, are elementary functors of type (k, ).

Define a vector of type (k,l) in P, ,,(KSy) to be an element of the form v(Q),
where v is a functor of type (k,1) and @ is the universal quotient bundle of the
Grassmannian G(r,n).

Note that if v is a functor of type (k,1), then
v(yPz) = p'o(z)
for any © € K(X)® Q. Also note that functors of type (k,[) respect pullbacks.

We now try to understand what the decomposition of KSy given in the Section
7.1 means. Lemma 19 together with Lemma 3 part 3 tells us that

a0 (Qarm)) U+ U ta, (01, (Qatrm)) = Pron(&R) % 73).

Also, by Lemma 3 part 2

sgn(3)87 " ta, (01, (Qarm)) U+ - Ut (1, (Qarn)) = Pron (85 5 7).
Let [ = )", ;. Thus the space spanned by

{Bsta (a1, Qi) U+ Ut (a, (Qairm)) 1Dl =1,>_ N =k},
which is P, ,, (II;(KS)), is precisely the space of vectors of type (k,1).

If both r and n — r are larger than k, then P., = id. What we did in
Section 7.1 shows that in this case, KSj decomposes into the direct sum of the
spaces II;(KSg). The space II;(KSy) is stable under conjugation and is the
space of vectors of type (k,1). However, if k is not too large, something very
interesting happens primarily because the projection P, , "behaves badly”
with the projections II;. Let n > 2r + 1 and let k¥ = 2r. Then, P, = P,.
Also, t(Qa(rn)) = tj(Qa(ran) for every M > n and every j < k. It follows
that vi(Qc(r,n)) = vi(Qa(r,a) for all M > n if vy is any functor of type (2r,1).
Let @ denote Qg(r,n)- The following claim holds in this situation.

Claim: There exists a nontrivial linear dependence relation of the form
> u@) =0
1

such that vy is a functor of type (2r,1) for each l.

The above claim is proven in Section 7.3. This leads to Corollary 1 as follows.
Choose a shortest nontrivial linear dependence relation of the form

> ul(@) =0

l
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with v; a functor of type (2r,1). Then, suppose that there exists a map f :
G(r,n) — G(r, M) with f*([Qcran]) = YP[Qc(rn)], We can assume without
loss of generality that M > n. Thus,

0=FO_uQcwan) =Y vulf Qeran) = _ ut’Q) =>_pu(Q).
1 1 I

l

Since p > 2, comparing this linear dependence relation with the previous one
would enable us to extract a linear dependence relation of the same form but
of shorter length than the one we began with. This yields a contradiction.

The proof of theorem 1 requires a little more work which we do in Section 7.4.

7.3 A LINEAR DEPENDENCE RELATION BETWEEN FUNCTORS OF TYPE (2r,1)

First, we observe that if V is a vector space with V' = V1 &V, and also V = W,
with p; being the projections to V; and m; being the projections to W;, then

dim py(W1) + -+ dim p;(W,,) > dim V.
To see this, suppose that equality holds. Then,
dim p; (W;) = dim W; — dim W; N V4

= dim WiNVo+---+dim W, NVy =dim V5.

From this, we see that m;(Va) = W; NV, for all i € {1,2,..,, }. In particular, if
mi(Va) # Wi N Vs, then

dim p;(Wh) + -+ +dim py (Wy,) > dim V4.

Having said this, we will prove that for V.= KSy,. ( V = Vi & Vo where
Vi = Dal<r End(V)) and V = D|A|>r End(Vy) also V = @ZZQHZ(V))

0,(V) # To(V) N Va.
This will prove that

> dim P.(IL(V)) > dim V4.
1>2

Observation 4 of Section 7.1 tells us that IIy(V') = 2(W(a,). Any element in
this space is a linear combination of conjugates of 19,. It follows that if such
a linear combination is nonzero in End(V)) it is also nonzero as an element of
End(V3), where X is the partition conjugate to A. Thus Iz, (V) N V2 = 0. It
therefore, suffices to prove that Iz (V2) # 0.
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LEMMA 25. To prove that Ia(Va) # 0, it suffices to show that

mo((12r) 3 9) #0

geCly

where (1 2r) is the transposition interchanging 1 with 2r and p is some partition
among {(2r — 1,1),...,(r,7)}.

Proof. Consider the matrix M = (xx(C,)) where X runs over all partitions of
2r that satisfy A > (r,r) (recall that there is a lexicographic ordering among
the partitions,enabling one to compare them), and p € {(2r —1,1),...,(r,7)}.
Note that if A is such a partition and A # (r,r) then A; > r+1. We claim that
M is of rank r. To prove this, it suffices to show that N is of rank r where
N = (¢ (C})), where

dx = Ind@ (triv) = x» + Z Kyuxxu-
u>A

However,

w)\(cu) So,. :S,\]|CHQS,\|.

1
|l

Therefore, 1»(Cy,) = 0 if p > X. This lexicographic order is a total or-
der. Consider the restriction of N to the rows given by the partitions in
{(2r—1,1),...,(r,7)}. This restriction of N is then a lower triangular matrix
with nonzero diagonal entries if the rows are arranged in the correct order
(since ¥ (Cy) # 0). It follows that N and therefore, M are matrices of rank 7.

We further claim that if we restrict M to rows corresponding to A > (r,r), we
still get a matrix of rank . To see this, we need to show that for some scalars
ay,

X(rr) (Cp) = Z axxA(Cy)

A>(r,r)

for all p € {(2r —1,1),...,(r,7)}. For this, it is enough to show that

Q/J(T,T)(CM): Z bkwk(cu)

A>(r,r)

for all p € {(2r — 1,1),...,(r,r)}, for some scalars by. In fact, we claim that
there are scalars b;,0 < i <r —1, so that

Yy (Cp) = Z bith(2r—i,i) (Cp)-

0<i<r—1

Note that |C(gr—s ) N S(ar—t.4)] = 0 if s # t and both are nonzero. Also note
that ¥(9,y(Cirry) # 0. Thus the vector (¢(2,)(Cy)), p € {(2r = 1,1),...,(r,7)}
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is given by (ai,..,a,), where a, # 0. The vector 1o, ) (Cp), p € {(2r —
1,1),...,(r,r)} is given by (0,..,0,ds,...,0), ds #0 for 1 < s <r — 1. Thus,

"/)(27") (CAL> - Z %1/}(27“—3,5)(0#) = (Oﬂ 0, aT)

which is a nonzero multiple of v, ,)(C,). This shows that the matrix
M = x\(C,) where A > (r,r) and p € {(2r — 1,1),...,(r,r)} is of rank r.
Since x5 = xa.sgn, and |A| > r + 1 iff A > (r,r), the matrix M’ = xx(Cy)
where |[A\| > r+ 1 and p € {(2r — 1,1),...,(r,7)} is obtained from M by
multiplying some columns by —1 and is therefore of rank r.

Now suppose that I3 ((1 27) EyGC(zPS N g) # 0 for some 1 < s < r. Since M’ is
of rank 7, we can find a linear combination of rows of M’ that gives us the vector

es 1€, D\ spp1 @XA(Cu) = 0f p# (2r —s,s) and 32 55,1y axxa(Cy) = 1if
w=(2r—s,s). So,

Mo ((1 27)( Z axxx(9)g)) = Ha((1 2r) Z g) # 0.

gE€S2y 9€C(2r—s,5)
[A|>r+1

The first equality is because only the 2r cycles contribute to Iz (V). Note that
since Y xa(g)g € End(Vy) it follows that

(D axalg)g) € Ve

gESar

[A|>r+1
and hence
(12r)( > axxalg)g) € Va.
gESar
[A|>r+1
It follows that II2(V2) # 0. O

LEMMA 26. For some s, 1 < s <, we have I3((1 2r) deC@ - )g) # 0.

Proof. Every 2r cycle that arises in (1 2r) > 9€Cars 0 I arises with coefficient

1. We therefore need to identify the 2r cycles that do arise. They are those
of the form (1 ag .. as 2r as4o ...) or (1 ag ... ag.—s 2r...). For this proof,
denote the subgroup of So, fixing the elements 7 and j by S(4,7) for any 1 <
1 < 7 < 2r. We note that

(1 2r) Z g

9€C (2r—s,s)

= Z ax(2r2r—s2r—s—1.12r—12r—2... 2r—s+1)
a€eS(1,2r)

+ax(2rss—1...12r—1.s+1)
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s—1 2r—s—1
= E ax (T + 75,21 ) * Tor
a€eS(1,2r)

= (Y Bme )= (T T ) ey
BeSs(2r—1,2r)

= (i Y, B+ x T
BeS(2r—1,2r)
Therefore,

Mo((12r) > @ =("y Y B+ 750 (65 7o)

9€C2r—s,9) BeS(2r—1,2r)
_ —s (1
=ty YL O T (@ ),
BeS(2r—1,2r)
the last equality following from Lemma 21.

For this proof, denote the subgroup of Sa,_; fixing the element i by S(i) for
any 1 < ¢ < 2r — 1. It therefore, suffices to show that

— s r—sy/~(1
(G Z B) (751 + Tgrfl)(eér)fl) #0
pBeS(2r—1)
for some s, 1 < s < r. It therefore, suffices to show that
s r—sy/z(1
W = ( Z B) (131 + 722r—1)(€ér)—1) #0
BeS(2r—1)

for some s, 1 < s < r. Consider a vector space V of finite dimension, and let u
and v be two basis vectors of V. We will show that the right action of Wy on
u®?"~2 ® v is nonzero. Note that

1 2r—2 2r—2 2r—sy5(1
DL A (it DI A
= (Wl @ueulr 17 L @1t gy u®5*1)é$¢)71.
Therefore, it is enough to show that
(u®sfl ®RvE® u®2r7175 + u®2rflfs RV ® u®571)é$¢),1 7& 0
for some s, 1 < s < r. For this, we note that

0 # adw~*o) = (1, = ru ) = 1 (

%

2r —2

)u®i RV u2r727i.
2

Now, ad(u)*"~2(v) is an element of the free Lie algebra generated by V. The
idempotent ég«)q therefore acts as the identity on this vector, which is a linear
combination of (u®7! @ v @ u®?r=175 4 4®27=1=5 @y @ u®*~1) where s runs
from 1 to 7.

O
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7.4 FINAL STEP TO THE PROOF OF THEOREM 1

Suppose that [¢PQ] = [Y] for some genuine vector bundle Y. Then Y is of
rank r, and for all sufficiently large m, Y ® O(m) is a quotient of Og* for some
s. Tt follows that Y @ O(m) = f*Q’ for some morphism f : G(r,n) — G(r,n’),
where @' is the universal quotient bundle of G(r,n’). Without loss of generality
we may assume that n’ > 2r + 1. Let @ denote the universal quotient bundle
of G(r,n). As in Section 7.2, choose a shortest linear dependence relation of

the form
> ul(@) =0

l

where v; is a functor of type (2r,1).

Then, Y, v(Q") = 0. Since the v;’s respect pullbacks,
Zvl(Y ®O(m)) =0
1

for all sufficiently large m. Note that @ t5(O(m)) = exp(t1(a1(O(1)))). There-
fore,

ta; (i, (Y @ O(m))) = ta, (c, (V) + mag, 1 (Y)ea (O(1)) +....).
Therefore,
¥ @0m))=v(Y)+mA(Y)+ -+ m A, (Y)

for all I with 4;(Y) € R(G(r,n)). In other words, v;(Y ® O(m)) is a polynomial
in m with coefficients in R(G(r,n)) whose constant term is v;(Y"). It follows
that >, v;(Y ® O(m)) is a polynomial in m with coefficients in R(G(r,n))
whose constant term is >, v;(Y). The fact that ), v;(Y ® O(m)) vanishes for
all sufficiently large m implies that ), v;(Y") = 0. Thus,

Do u@rQ) =Y pu(@) =0
l l

as well. As in Section 7.2, since p > 2, this together with the linear dependence
relation ), v;(Q) = 0 yields a linear dependence relation of the same form but
of shorter length, thereby giving a contradiction. This finally proves Theorem 1.

APPENDIX

This appendix if for sketching a proof of Observation 1 of Section 3. This
material is by and large reproduced from notes by Jinhyun Park [13] of a
course taught by Madhav Nori at the University of Chicago in Fall 2004.
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Recall that given a morphism f : Y — X of schemes, a sheaf 7 on Y is said
to have descent data if it satisfies the following three properties.

[D1]. Given any two morphisms gi, g2 : Z — Y such that fog; = f o gs, there
is an isomorphism ¢(g1,g2) : g7 F = g3 F.

[Ds]. (Functoriality). Given any morphisms h: W — Z and ¢1,92 : Z = Y
such that f o g; = f o g2, the following diagram commutes.

hrogtF  2OLE) e e r

* c(g10oh,g20h *
(g1 0 by F 0ol o hy

[Ds3)]. Given any three morphisms g1, ¢g2,93 : Z — Y such that fogy = fogs =
f o g3 the following diagram commutes.

gr 0(91192) gg]__
c(g1 ,gs)l lc(gmgs)

\ A
935 —— g3 F
We now recall a theorem of Grothendieck [15].

THEOREM 4. Let f:Y — X be a flat surjective morphism of schemes. There
s an equivalence of categories

{ Quasicoherent sheaves on X} «——

{quasicoherent sheaves on Y with descent data}

g f'g.

The following construction due to Grothendieck [15] gives the inverse to the
above equivalence of categories.

CONSTRUCTION 1. Let F be a quasicoherent sheaf on Y with descent data.
Note that for every open U C X, F|;-1(y) is a quasicoherent sheaf with descent
data for the morphism f|¢-1() : f71(U) — U. Let F denote the sheafification
of the presheaf

U {s € D(f7HU), F) | clg1,92)975 = g3s for all g1,92: Z — f7H(U)}.

The inverse to the equivalence of categories in Theorem 4 is given by F +— F.
For example, Oy = Ox.

Let P be an affine group scheme over K. Let f : Y — X be a principal P-
bundle on X. Then, descent data for f on a sheaf F is indeed equivalent to a
P-action on F. Theorem 4 therefore implies the following theorem.
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THEOREM 5. Let f:Y — X be a principal P-bundle. There is an equivalence
of categories

{ Quasicoherent sheaves on X} «—

{ Quasicoherent sheaves on Y with P action}

G [G.
COROLLARY 6. The functor

F : { P-representations} — {locally free Quasicoherent sheaves on X}

F(V) =0y @V
is an exact functor commuting with .

Proof. Oy is naturally a P-sheaf on Y. A representation V of P is a H-sheaf
on Spec K. Therefore, Oy ®x V is a P-sheaf on Y =Y Xgpec k Spec K. By
Theorem 5, F(V) is a quasicoherent sheaf on X. Clearly, F (V) is locally free.
It can also be verified without difficulty that V — Oy ®k V is an exact functor
commuting with ®. Since the functor from Theorem 5 is an equivalence of
categories, the desired corollary follows. O

We can now sketch the proof of the following theorem. Let G be a affine
algebraic group and let P be a closed subgroup of G. Let P denote the category
of P-representations. With these assumptions, we have the following theorem
of Bott [4]. This theorem has been referred to in Section 3 as Observation 1.

THEOREM 6. Let G be reductive. If K is regarded as the trivial P-
representation,

H(G/P,F(V))¢ ~ Exts>(K, V).

Proof. Forany V € P, let T*(V) = H'(G/P, F(V))%. We shall show that in the
language of Grothendieck [14], T°(V) = Homp (K, V) and T%(V) = R'T°(V).
This will prove the desired theorem. To do this, we need to verify the following
list of properties.
(a) T : P — K — vector spaces is a functor.
(b) Given a short exact sequence 0 — V' — V — V" — (0 in P, there is a long
exact sequence

L TV —— THV) —— TV —L s ity
The given short exact sequence gives a long exact sequence Hi(G /P, —). Now,
for any exact sequence W/ — W — W of G-representations, the sequence
W'¢ = WY — W% is exact. This verifies (b).
(¢) The data in (b) is functorial.
(d) TO(V) = VP,
(e) (effaceability) For all i > 0, for all @ € T%(V), there is a monomorphism
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j:V — W in P such that T(j)(a) = 0.

We check (e), the only nontrivial assertion above. Put W = T'(P,Op). Then,
F(W) = f.O¢g where f : G — G/P is the natural morphism. Note that G
is affine and f ia an affine morphism. Therefore, for any quasicoherent sheaf
F on G, H(G,F) = 0 for every i > 0 and R'f,F = 0 for every i > 0. The
Leray spectral sequence then tell us that H (G/P, f,F) ~ H(G,F) = 0 for
all i > 0. In particular, H'(G/P, F(W)) = 0 for every i > 0. Let V be any
P-representation. We have an isomorphism

Homp(V,I'(P,Op)) ~V* (1)
L+ evigo L.

Here, eviq o L is the composite

vV —L 5 r(P,op) -4, K.

Denote the inverse of the isomorphism (1) by S. Choose linear func-
tionals wq,...,u;,... on V such that NKer(u;) = 0. Then, S(u;) €
Homp(V,I'(P,Op)). Clearly, the morphism &;S(u;) : V — @&I'(P,Op) is
a monomorphism in P. Further, TP(®;I'(P,Op)) = 0 whenever p > 0 since
we just showed that TP(I'(P,Op)) = 0 whenever p > 0. This completes the
verification of (e) and therefore, the proof of the desired theorem.

O
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