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ABSTRACT. This is the the second part of a series of two papers,
which investigate spectral properties of Dirac operators with singular
potentials. We will provide a spectral analysis of a relativistic one-
electron atom in interaction with the second quantized radiation field
and thus extend the work of Bach, Frohlich, and Sigal [5] and Hasler,
Herbst, and Huber [19] to such systems. In particular, we show that
the lifetime of excited states in a relativistic hydrogen atom coincides
with the life time given by Fermi’s Golden Rule in the non-relativistic
case. We will rely on the technical preparations derived in the first
part [25] of this work.
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1 INTRODUCTION

We continue our study of resonances for relativistic electrons and apply the
results about one-particle Dirac operators with singular potentials in [25] to
a relativistic Pauli-Fierz model. We prove upper and lower bounds on the
lifetime of excited states for a relativistic hydrogen (-like) atom coupled to
the quantized radiation field and show that it is described by Fermi’s Golden
Rule and coincides with the non-relativistic result in leading order in the fine
structure constant .

The spectral analysis of non-relativistic atoms in interaction with the radia-
tion field was initiated by Bach, Frohlich, and Sigal [4, 5]. It was carried on
by Griesemer, Lieb and Loss [16], by Frohlich, Griesemer and Schlein (see for
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example [15]) and many others (see for example Hiroshima [22], Arai and Hi-
rokawa [3], Derezinski and Gérard [12], Hiroshima and Spohn [21]), Loss, Miyao
and Spohn [32] or Hasler and Herbst [18, 17]). Recently, Miyao and Spohn [35]
showed the existence of a groundstate for a semi-relativistic electron coupled
to the quantized radiation field.

Bach, Frohlich, and Sigal [5] proved a lower bound on the lifetime of excited
states in non-relativistic QED. Later, an upper bound was proven by Hasler,
Herbst, and Huber [19] (see also [24]) and by Abou Salem et al. [1]. Asin [4, 5,
19] we use the method of complex dilation. Since the corresponding operators
are not normal, we are going to apply the Feshbach projection method, which
was introduced in non-relativistic QED by Bach et al. [4, 5].

We describe the electron by the Coulomb-Dirac operator, projected onto its
positive spectral subspace. Note that this choice is not gauge invariant. Our
analysis will work for other potentials as well, as long as condition (26) holds
for the difference between fine structure components, and as long the eigen-
functions have a exponential decay uniform in the velocity of light.

On a technical level the relativistic model is more difficult to handle than the
nonrelativistic Pauli-Fierz model. One reason is the fine structure splitting
of the eigenvalues. Moreover, due to the use of complex dilation one has to
make sense of the notion of a positive spectral subspace for a non-selfadjoint
operator. Finally, a factor of « is missing in front of the radiation field.

We would like to mention that the Feshbach method is named after the physicist
Herman Feshbach, which used the method to deal with resonances in nuclear
physics [14, Equation (2.14)]. Also Howland [23] used the Feshbach operator
calling it “Livsic matrix”, since Livsic [31, 30] used the method in scattering
theory. Moreover, the method is known under the name “Schur complement”.
This name is due to Haynsworth [20], who used it in honor of the Schur determi-
nant formula. Also Menniken and Motovilov [34, 33] use the Schur complement
to treat resonances of 2 X 2-operator matrices. They call it “transfer function”,
however. For a detailed overview over the history of the Schur complement, we
refer the reader to [40]. For some more references about resonances in general
and the spectral analysis of (non-relativistic QED) we refer the reader to [25].

2 MODEL AND DEFINITIONS

The (initial) Hilbert space of our model is H' := He @ F, where Heo :=
L?(R3;C*) is the Hilbert space for a relativistic electron and

F = Z@)SNLQ[(RB x Zo)|N

is the Fock space (with vacuum Q) of the quantized electromagnetic field taking
into account the two polarizations of the photon. Sy is the projection onto the
subspace of functions which are symmetric under exchange of variables.

DOCUMENTA MATHEMATICA 14 (2009) 115-156



SPECTRAL ANALYSIS OF RELATIVISTIC ATOMS 117

The Coulomb-Dirac operator with velocity of light ¢, Planck constant A, elec-
tron mass m, elementary charge e, atomic number 3 and permittivity of the
vacuum e¢g is in SI units
2
e 1
D' := —ihcar - V + fmc? — —3—

dmeq | - |
This operator is self-adjoint on the domain H*(R?;C*) for ﬁ < ‘/_c In the
following, we will always assume that this condition is fulﬁlled Actually, for
technical reasons, we are even going to impose some more restrictive conditions
later on (see for example Theorem 3).
We denote the positive spectral projection of this operator by A’(H). We will
restrict the operator to its positive spectral subspace and couple it to the quan-
tized radiation field A, (z) := AL, (z)+ + AL, (z)—, where A’,(z)4 and A’ (z)_
are defined as in the non-relativistic case by

A:{/(ZL'>+ = Z /ke]Rd dkK, |l€| 1lm€;(k)€_1kmat(k> (1)
Al () 2;2/1@3 Ak (k) | 5 (D e, (2

Here EL(k:), 1 = 1,2 are the polarization vectors of the photons, which depend
only on the direction of k.
If we add the operator H{ for the kinetic energy of the photons

H} := hc Z/ dk |k|a); (k)al, (k) (3)
pu=1,2 keER3

we obtain (cf. [11, B-V.1., Formula (35) through (39), page 431])

e23 1

H = NP ea - (—ihV — eAL, (z)) + Bmc? —
dmeq | - |

]A/(J,-) + H/

In principle, one could define the operator without restriction to the positive
spectral subspace. For this case it is at least known that selfadjoint realizations
exist [2, Theorem 1.2], which are, however, not explicitly known. Moreover the
expression for the inverse life lifetime (see equation (21)) without UV cutoff
would diverge in this case so the investigation of this operator with regard to the
lifetime of excited states would not make any sense. We would like to mention
that for a certain class of potentials — which does not include the Coulomb
potential — it is known that the operator without projections is essentially
self-adjoint on a suitable domain. (see Stockmeyer and Zenk [38] and Arai [2]).
Similar to the non-relativistic case [19, 5] we set ap := o~ !(-) (Bohr radius),
¢ := ag and &1 = aa—o and scale the operator according to * — (z and
k — & 'k. We denote the corresponding unitary transformation by U. In
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this scaling we can expect to be able to treat the operator similarly as in the
non-relativistic case. We have to make the replacements

hV — amcV eAl,(z) — o®?mcA, (ax)

— a’me’— H{ — o*mc*Hy

and obtain

i}, 5= UH'U* =a*mc® [ALY, [Da-r 5 — Voo An(ax)]AS[)lﬁ—i—Hf} C(4)

Here

Dy-13:= —ioala-V+a 26— |3—|
with a3 < \/3/2 is the scaled version of the Dirac operator D’. A(at)l,g, is
the positive spectral projection of the operator D,-1 3, where a~! plays the
role of the velocity of light after the scaling and 3 the role of the coupling
constant. We denote the eigenvalues of this operator by E~n7l(a_1, 3), where n
is the principal quantum number and ! numbers the eigenvalues belonging to

the principal quantum number n by size not counting multiplicities. We have
ne€Nand ! €N with I <n. We set

32

op2’

E"al(ailas) = En,l(Ofl,B) — 02, En(OO,S) = (5)

where E,, (00, 3) is the n-th eigenvalue (not counting multiplicities) of the Schro-
dinger operator which we obtain in the limit & — 0 (see [25, Section 8]). We
abbreviate E,, := E,(c0,3) and E, ;(a) := E,;(a™!,3) for n € N and for
1<l <n.

Hi and A, (x) are given by

H= 3 / kTl (6o, (8 (6)
and A, (z) := Ax(x)4 + Ax(x)— with
dk r([k])

N VYA e—ik‘za*
a3 [ e a0 7
() = b AlM) (ke =a, (k) ®)

> | o=
p—1.2/ kER? V42 |k| .

as in the non-relativistic case.
In the following, we will consider the operator

H, = AS[)113[DQ71,3 —a? - Vaoa- Iﬁl,ﬁ(cm:)]Agj[)l’3 + H (9)
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on H := A(at)l 3L2 (R3;C*) @ F, where we omit trivial factors ®1¢ or 1¢®.
In order to apply the methods of the non-relativistic case (see Bach, Frohlich,
and Sigal [5] and Hasler, Herbst, and Huber [19]) with a minimal amount
of changes, and in order to apply the results about the non-relativistic limit
obtained in [25], we subtract the rest energy a~2. As in the non-relativistic
case we define the perturbation parameter g := /2 > 0 and the perturbation
operator

W) .= \/aA(;l)l,g)a A (ax)A +)

a=1.3

as well as the free operator

Ha,O = Agt)173Da—173Ag‘t)113 + Hf - Oé_2

and the electronic operator

H = AP S [Do-1 5 — o AL S
We will always assume 3 > 0.

We will prove the self-adjointness of these operators in Section 3. Note that
contrary to the non-relativistic case also the free operator depends on o. We

) on the atomic

suppress the dependence of the operators H,, Hy o and H, e(la
number 3, since we will treat it as a fixed parameter.

Note that the prefactor of the photonic field in (9) is /o only and not o>/?
as in the non-relativistic case. Moreover, D, 3 depends on the fine structure
constant. The limit & — 0 corresponds in this scaling to the non-relativistic
limit. In the treatment of the resonances for this operator the distance of
neighbouring eigenvalues may vanish as o — 0 so that the estimates on the
Feshbach operator (see below) have to be improved. Nevertheless we will use
the perturbation parameter g = a3/2.

As in [5, 19], we will make use of (complex) dilations of the above operators:
We define

H(0) - = Ua(0)H U (0) 7", Hy(0) := UO)HU(O) " and  (10)

W, (6) : = UOW,U(0)
for real 6, where U(0) is the unitary group associated to the generator of di-
lations. It is defined in such a way that the coordinates of the electron are

dilated as x; — e’r; and the momenta of the photons as k — e~%k. In this
way we obtain the operator

H(a) (9) = uel(e)Héla)uel(g)—l _ A(+) (9)[Da*1,3(9) o a—Q]A(Jr) (9)

el a—1.3 a=1,3
on A((;)l 5(0)L?(R?; C*), which is selfadjoint on Dom(He(la) 0)) =
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= A(Ojr)l 3(0)H' (R? C*), as well as the operators

Ho(0) == A, 5(0)[Da-1,3(0) — a7 ao AD (ax)]AST, (0) + eV H
W (0) = Var(D, 50)]a- AP (a)]AL, 5(0)
Hao(0) = A, 5(0) Dy 5(0)AL) 3( )+ e Hy —a™?

on A(tl 3(19)L2(]R3 C*)® F, where AL ,1 3(0) has been defined in [25] even for

non-real 6. Here AEf’)( ) = A,(f)( )+ + AEf’)( )—, where
AV = Y [ akGO e b)
u=1,2 keR3

and
AO@) =Y / dk GO (k, 1)a(k)
u=1,2 keR3

with 0 0
e k(e |k]) ipa

eu(k).
A2k *)

We will show in Section 3 that these operators admit a holomorphic continua-
tion to certain values of 6. Moreover, we define

Wi ( = Varl", () {a A<9>(ax)+} A ()
)

= var't Lo [a AY (az)_ }Agpﬁw)

1

GOk, p) =

(

(
w0,1(kaM§9) = Voo G(az)(k 1+) (13)
wl,o(k,u;G) = w071(kz,u;9) . (

Using the notation from [25, Section 5] we define the projections

Pe(la,;)z,l(o) = Poy(a",3:0) Pe(fé,i,l = Ppi(a™t,3;0)
P (0) = Po(a™",3;0) P = Pa(a™!,3;0)
P (0) = A, S (6) - PS(0) P = ALY, , — P
Py (0) = PS(60) — P (0) Py, =P — B
P 0) = A0, S0 - P 0) P =AC - P

as operators on Ag (9)L2(]R3 ch) andA 3L2(1R3 (C4) respectively. More-
over, we need for a n > 0 such that E’ ala™3) < a? —n and
Eat11(a™1,3) > a=2 — ) for some 2 € N (see [25, Section 7]) the projec-
tions

Puise(a; 0) := Paise.n(a™,3;0) = Z Pu(a™h,3;0) (15)

1<n/<#
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and ~
Pdisc(a; 9) - A(J’;)l 3(9) - Pdisc(a; 9) (16)

as operators on Ran Agji)l 3(6’)L2 (R3;C*) as well. 7 is chosen in such a way
that 7 > n, where n is the principal quantum number whose life-time we are
interested in.

For p > 0 (to be specified later) we define the projections

Pml(e) = P(] 7)11 & XHi<p) Pn,l(o) =1- Pn,l(e)
and for R >0
Poa(0:R) i= P (0) @ X s + P, 1(0) @14

AP S(0) L2 (R CY © F.

As in [5, 19], the main technical tool in our analysis is the Feshbach operator

as operators on

an,z(9)(H0<(9) —z) = ml(e)(Ha(e) - Z)Pn,l(e) - (Q)W(a) (9) n,l (9)
x [Fn,lw)(Ha(@)*Z)Fn,l(@]*l?n,l(@)w( (0)Pna(0), (17)

which we define as an operator on Ran P, ;(6). Note that we need the Feshbach
operator for each fine structure component of the considered principal quantum
number n, i.e. for all 1 < [ < n. Note moreover that we do not distinguish
between the operators PAP and PAP|ran p when we write PAP, where A is a
closed operator an P a projection with Dom A C Ran P. The meaning of this
expression will be clear from the context.

We will show below that the Feshbach operator can be approximated in a
certain sense by the operators

Z = i dk P\ k, 11,0
nl:t( ) elﬁ)l ;Q/keRs el,n,l’LUO,l( s M )

@ [p@ @) 17 () (@)
x PO, [P0 S = Baale) + K| 2] P, ool i )P, (18)

el,n,l

dk fe% (e [e3
Zg,z(a) = Z /k - mpe(l,r)z,ZWO,l(kaMO)Pé,y)z,zwLO(kaM; )Pe(l'r)zl (19)
p=1,2"7~€

as well as
Zn1:(0) i= Z (@) + Z39 (), (20)

defined as operators on Ran Pe(1 71 ;- These operators are the relativistic analoga

of [19, Equations (3) and (4)]. Note that Ue () restricted to Ran P(1 7)” is a
similarity transformation ([25, Lemma 9]).
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It is easy to see that the imaginary part of Z, ; 1 («) is given by (cf. Equation
(11) in Remark 1 in [19])

ImZy, (0) =Fm > > / dw (Epr 1 (0) — Epy(a))?
n',l: p=1,2 lwl=1
En/,Ll(a)<En’l(Ot)

x P wo 1 (Bna(a) = Enp(@))w, 1:0) S,
x w1,0((Bni() — Eurr(@))w, 113 0) P

el,n,l*

It will turn out that the lifetime in lowest order in the fine structure constant
« is given by the same expression as in the non-relativistic case (see Lemma
10). Therefore, we define (cf. [19, Equation (12)])

2
Zonlim = 925 S CEv+E)5 6(|— Ew+E|)?PY) 2P, jaPY)  (21)
1<n’<n
i<i<n

and
Yo (@) :==Usr(a™,3;0) 7 'Re Z, i (@)Unr (1, 3;0) FiZnim  (22)

0
as operators on Ran Pe(lﬂ)%l,

X Péf‘r)lleNR(a_l, 3;0). Unr (a1, 3;0) is the unitary transformation which cor-

responds to taking the non-relativistic limit (see [25, Section 8]). We set

where we defined Ran P\¥) | .= Unr (a1, 3;0)7 !

el,n,l *

Zni(@) :=Zp1 (o), Ypi(a):=Y_(a).

Note that contrary to [19] the coupling constant g is contained in the definition
of the objects Z, i(c), Y, () and so on. We see from Equation (21) that
transitions between fine structure components of a principal quantum number
do not play a role in lowest order in a.

Note that we remove the dependence on « only from the imaginary part, since
a discussion of the real part, which yields the Lamb shift [28, 6], does not
make sense without an UV renormalization. Moreover, the Lamb shift is not
important for lifetime measurements using the so called “beam-foil”-method
[10, 13, 7, 8§].

We can now formulate our main result: Fix n > 2. Since Z, ;i is obtained
from the corresponding matrix in the nonrelativistic case by restricting the
corresponding quadratic form to Ran Pe(l?zl,l, we see immediately that in this
case Zy1im is strictly positive for all 1 < I < n (see [19, Appendix B.3]).
Note that this is not the case for n = 2 due to the metastability of the 2s-
sates of hydrogen. Indeed we will need in our proof the Feshbach operator and
the matrices Z,; +(a) and Y, ;4 (a) for all fine structure components of the
corresponding principal quantum number and not only for the fine structure
component, whose lifetime we are interested in.
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THEOREM 1. Let n > 2 and ¢(a) a normalized eigenvector of He(la) with eigen-
value B, (), () := ¢(a)@Q and ¢(0) := Unr (o™, 3;0) " 2é(a). Then there
is a C' > 0 such that for all o > 0 small enough and all s >0

((a), e Hogp(a)) = ($(0), e = Ent @71t g(0)) + b(g, 5)
holds, where |b(g, s)| < Cy/a.
We will prove Theorem 1 in Section 7.

REMARK 1. If we compare Definition (22) of Yy (a) with [19, Formula (12)]
we see that the lifetime of an excited state in the relativistic model is the same as
in the Pauli-Fierz model. Thus relativistic effects play a minor role for electric
dipole transitions. But there seems to be a small relativistic contribution for
the decay of the metastable 2s-state of hydrogen (see Breit and Teller [9]).

3  SELFADJOINTNESS AND DILATION ANALYTICITY

Before we can turn to the operator H, in the following sections we have to
prove its selfadjointness and the holomorphicity properties of the operators
H,(0).

THEOREM 2. Let 0 < a3 < \/3/2. Then the following holds: The operator

H, :D c (ALY, SLA(R%CY) @ Dom(Hy) — (ALY, sLA(R*CY) © F
is on D = Agt)l 3Hl(IRg’; C*))® Dom(Hy) essentially selfadjoint, where & de-
notes the algebraic tensor product.

Proof. Because of [39, Theorem 4.4] the operator Héf‘) + a2 is selfadjoint
and positive on the domain Dom(He(la)) = Agt)113H1(R3;(C4). Since Hy is
selfadjoint and positive on a suitable domain Dom(Hg), it follows from [36,
Theorem VIIL.33] that H, o+ a2 is essentially selfadjoint and positive on the
(algebraic) tensor product D = Agji)lﬁsHl(R% C*)® Dom(H;). We have for all

1 € D and all € > 0 with a C' > 0 (see for example [5, Proof of Lemma 1.1])

IW | < eVl (H +1)"29l| < Cvallel + TRTTH)
1 1
< OVal(t+ o)l + I Hrll] < CVal(t+ o)l + 51l (Hao +a2)e):

Thus W(®) is infinitesimally (H, o+ a~2)-bounded, and in turn H, +a~2 (and
thus also Hy) is essentially selfadjoint on Dom(Hy o). O

We denote the operators defined in Theorem 2 again by H, and H,, o respec-
tively.
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We turn to the operators H,(0) and H, o(0) on the domain Dom(H,(0)) =
Dom(H, 0(0)) = A((;[)l 3((9)H1 (R?; C*)® Dom(H;). In the following theorem
we show that the families of operators

Upr(a™",3;0)Ha(0)Upr (o', 3;60) 7",

Upr(a™t,3;0)Ha o(0)Upr(a™t,3;0)7", (23)
defined on the Hilbert space A((;)l 3LQ(R3; C*)® F with domain Upy,(a~t, 3;6)
x A (0)H'(R3; C*)& Dom(H;), are holomorphic families of type (B) on a

a3

suitable domain. Here Upp,(a™!, 3;0) is the transformation function between
positive spectral projections of D,-1 3 and D,-1 3(6) defined in [25, Theorem
6]. We will write Upp,(a~1, 3;0) for the operator Upr,(a!,3;6) @ 1;.

THEOREM 3. Let 0 € Sr/4, 2a3C(Im0) < 1, Cpr|f| < q and Cprs|f| < g
for some 0 < q < 1, where the constants Cpr, and Cprs are defined in [25,
Section 6] and C(Im@) is defined in [25, Section 4]. Then there is a 6y > 0
independent of 0 < o < 1 such that for all |0] < 0y the operators (23) define
holomorphic families of operators Ha(6) bzw. I:Iayo(G) of type (B) on a suitable

domain Dom(H,(0)) = Dom(Ha,0(0)). These operators are m-sectorial.

Proof. The expression q,-10(¢) = (¥, (Da-13 ® 1 + 1 ® Hy)y) for ¢ € D
is a positive closable quadratic form whose closure ¢,-: ¢ defines a selfadjoint
operator which coincides with the operator H, o defined in Theorem 2. We have
Dom(Gy-1,0) = Dom((Ha,o + a2)Y/2). In particular, for ¢ € Dom(g,-10) the
estimate

Do 5720l = 1A 5 Da-1 5057 )20

< NAGE 3Dam1 38,7 5 © 14 1@ Hi) /29| < oo

holds, and in the same way we see ||(Hz 4+ 1)'/2¢|| < oo.
Thus, we find for ¢ € Dom(g,-10)

(t,UpL(a30)Do—1 5(0)Upr(a™":6) ) (24)
:<|Da*1,3|1/21/]’ |Da*1,3|_1/2|Doﬁ1,0|1/2
X |Dy-1,0| "V 2Upr,(a™0)Dy-1 3(0)Upr(a™1;0) " Dy-1 o 72
X |Da*1,0|1/2|Da*1,3|_1/2|Da*1,3 |1/21/1>'

[25, Lemma 5 and Lemma 6] imply
|<¢7 UDL(a_l; G)Da*I,B(G)UDL(Q_l; 9)_1¢> - <¢7 Da*1,3w>| < C|9|<wa Da*1,3w>

with some C' > 0 independent of « and 6. Moreover, |e=% (¢, Hpap) — (1, Hy)| <
B|0|(x, Hetp) with B := e™/%. Since ||W(®)(0)(Hs +1)"/?|| < \/aC; with some
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Cy > 0 independent of § and « (see for example [5, Proof of Lemma 1.1]) we
obtain for all € > 0

(¥, UpL (5 0)W ) (0)Upr (a5 0) )|
<VaCi(1+4 Corl0))*[(1/€ + €)[[¢]1? + € (v, Hy)].  (25)

It follows that the quadratic form p,-1.4(¢) = (¢, (Ha + a=2)¢) for ¢ €
Dom(g,-1 ) is well defined for sufficiently small |f|. If we choose || so small
that (C' + B)|f] < 1 holds, and then in (25) € > 0 small enough (depending on
6), we see that the quadratic form p,-1.9 — a0 is relatively Go,o-bounded with
form bound smaller than 1.

Because of [27, Theorem VI-1.33] the quadratic form p,-1, is closed with
Dom(py-1.9) = Dom(G,-1,9) and sectorial. Moreover,

D10l 2 Unr(a™0)Da-15(0)UpL (a3 0) " Da-1,0/ 1/
=[Da-1,0"UpL(a”*;0)|Da-1.0]/*|Da-1,0| ™ Da-1,3(6)| Do-1,0 71/
X [Do1,0] /2 Upr(a™':0) 7 Do 0] 712,
Using Equation (24) and [25, Theorem 6 c)] we see that the expression

(¥, UpL(a™10)Dy-1 5(0)Upr (a5 0) 1) for all ¢ € Dom(p,-1,¢) is a holo-
morphic function of 6. It is easy to see that

(He + 1)~ Y2UpL(a™ Y 0)W ™ (0)UpL(a™t;0) "1 (He + 1)~ 1/2

is bounded-holomorphic. ~ Thus (1, Upr, (a1 0)W () (0)Upr,(a™;0)"1y) is
holomorphic function of 6. It follows that p,-1.4(¢)) is a holomorphic func-
tion of @ for all ¥ € Dom(p,-1.9) = Dom(gy-1,0). The family of m-sectorial
operators defined by these quadratic forms is a holomorphic family of type (B)
(see [27, Chapter VII-4.2]). The proof for the operator without interaction
works analogously. Since ||[W(®)(0)(Hy 4+ 1)~'/2|| < \/aC} (see above), is in-
finitesimally operator bounded with respect to the free operator which implies
the equality of the domains. O

REMARK 2. The above proof also shows that the operators

UpL(a™";0) D1 3(0)Upr (a5 0)~ on the space AL, JL2(R* C*)

are sectorial for sufficiently small |0|. In pd}“ticular, the assumptions of the
Ichinose Lemma (see [37, Corollary 2 on page 183] or [26]) are fulfilled so that

1
|Ran Ait)l 5

(Dot 30l ), 9 @1+ e ’1a ® Hy) =

= 0(Dy-1,3(0) )+ e Yo (Hy)

|Ran AE::)1 s 0)
holds.

In the following, we will consider UDL(a_l,S;9)_1ﬁa(9)UDL(a_1,3;9) and
Upr(a~',3;0) " H, o(0)Upr(a~", 3;6) on the respective domains
Upr(a~t,3;60)~' Dom(H,(0)) and Upr(a~',3;0)"! Dom(H,0(0)). We will
denote these operators by H, () and H, ¢(0) again.
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4 TECHNICAL LEMMATA

In this section we will formulate and prove all technical statements which we
will need to show the existence of the Feshbach operator and in order to ap-
proximate it by suitable operators.

Using the dilation analyticity we can restrict to § = i¢ with 0 < ¢ < 6.
We choose 6y so small that the statements of Theorem 3 as well as the state-
ments in [25, Appendix A] hold. Moreover, we choose for this 6y a ag > 0
so small that the statements about the “nonrelativistic limit” of the operator
D, -1 5(0) (proven in [25, Section 8]) and inequality (26) hold. In particular,
all projections occurring in the following are uniformly bounded in « and 6.
We put

|Eni(a) — Epgr1(a)|/2 1<i<n
Ong2(@) = { [Bni(@) = Engni(@)]/2 1=1
|Eni(a) = Enj—1(a)]/2 1=n
On.1(a) = min{dn 1.+ (@), On 1.~ ()}, On,+ = |En — Ent1l/2,

Op, = min{dp 4+, 0n _}.

Note that 6, ;(a) = dp,+(a) holds for [ = 1 or I = n. We will suppress
the dependence of these quantities on « in certain places in order to simplify
notation. It follows from the explicit form of the eigenvalues (see [29]) that for
all a < ag with ag > 0 small enough the inequality

c10? < 6 1(a) < c2a? (26)

holds with two constants 0 < ¢; < ¢ independent of « and I.
We choose p,o > 0 and define the sets (see Figure 1)

A5 (e, 0) i= [Bpa(a) = 0ni,— (@), Bpi(a) + 0p,4(a)] +i[-0,00), 1<1<n
and

[Eni(a) = 0p1,—(a), Eni(@)+0n,+(@)]+i]—0,00) 1<l<n
Ani(e,0): =1 [Ey — 6~y En (@) + 0p 4+ ()] +i[—0,00) =1
[En — Oni,— (), Ep + p 4] +1i]—0,00) l=n

Note that for 1 < I < n the identity A5, (a,0) = A, (a,0) holds. More-
over, following [5] we define By(p) := Aat)I’B(H)[He(la) (0) — Epi(a) + e 9(Hy +

p)]AS[)l 5(0) as an operator on the Hilbert space Agji)l S(OL*(R*CY) @ F

with domain Dom(By(p)) = Upp(a~t,3;0)~ Dom(H, (). The operator is
a densely defined and closed operator (cf. Theorem 3 and the remarks fol-
lowing it). It follows that By(p)* is densely defined as well and we have
By(p)*™ = Bg(p). Note that the adjoint is to be taken with respect to the
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scalar product on the Hilbert space AP P 3( )L2(R?;C*) ® F. In particular,
By(p)* # Bz(p). As in the Pauli-Fierz model By(p) is only an auxiliary object,
which saves some combinatorics. In principle, one could prove all statements
without using By(p). Note that all norms, scalar products and adjoints are to
be understood in the sense of A(tl 3(9)L2 (R3;C*) or A(tl 5(0 VL2 (R3;CYH e F.
We will choose p and o later on as suitable functions of the coupling constant
g. At the moment, we assume only that o and p are nonnegative and bounded
by some constant from above.
In the proofs in this and the following section, C' denotes a generic, positive
constant, which does not depend on « and z, but perhaps on 9.
In the following lemmas we will prove some estimates on the resolvents of the
free operator H, o and of the electronic operator H, éla ). The lemmas generalize
similar statements and their proofs [5]. Due to the fine structure splitting and
the missing power of a some additional difficulties have to be addressed.

LEMMA 1. Let 0 < ¥ < 8. Then the following statements hold:

a) There is a C > 0 such that for all o < g, all o < %, all R >0
and all z € Ay, 1(a, 0)

| [P 1(6) @ 1e(HEV(0) + e (Hi + R) = )Pyt 1(6) @ 14]

XPglzzl( ®1f‘

-1

C
’_ On,1(a) sin? 27)

holds.

b) There is a C > 0 such that for all p > 0, all 0 < psg”g, all R > p and
all z € Ay, (a, 0)

(@)

el,n,l

(0) @ 1(H) (6) + e (Hy + R) — 2)Ph ,(6) @ 1]

—(@) H c
P 0 1| < ———— (28
X el,n,l( ) ® 1f|| < Rsind ( )

I :

holds.

¢) There is a C > 0 such that for all a < ag, all 0 < 52:;:1;9, all R > 0 and
all z € Ay, (a, 0)

| P (6) @ 1e(HSV(0) + e~ (H + R) = )Py (6) @ 1]~

X Pilazl 0) ® 1fH <

. (2
Oy sindd (29)
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Proof.

a) We split the projection and the resolvent according to the formula
ﬁiii,l(ﬁ) = D 1<i<n, 14l Pe(lag »(0) and use the representation (spectral theo-
rem) in which H; is the multiplication with the variable 7. In order to simplify
the notation we will suppress the dependence of the eigenvalues E,, ;/(a) on a.

Note that for £, < Ey;

|Eny — 2+ 676(7’ + R)| > Im (ee(z —En1)) >
sin 99, ;(«)

> —(cosV)o +sin(Rez — Ep ) > 5

(30)
and for En,l’ > En,l

|Eny — 2 + e_e(r + R)| > Re(Epp — 2 + e_e(r + R)) > dnu(a) (31)

holds, which proves the claim together with [25, Corollary 5]. For [ = 1 and
I = n the estimates (30) and (31) respectively are not needed. We used in the
first estimate that (cosd)o < Sinﬂgi"’lm).

b) We estimate Im (—E, v + 2 — e ?(r + R)) > —o + sind(r + R) > Snifi,

where we used o < %.

c) We split the projection ﬁfj; = Puisc(0) + Y 1</ <t Pe(lar)l, (0) according to
n’;ﬂ_z 1
(15) and obtain analogously to the proof of a) the estimate

Fer) ¢ and with [25, Corollary 4]

1
| Enwlffere*e(rJrR) | <

H [Paise(; 0)(H () + e~ (Hy + R) — 2) Paise(;0) ® 1¢] ™ Pajee (s 9)”
¢ ¢
5

< sup <

>0 —Nn— (Rez — (r+ R))

O

LEMMA 2. Let 0 < 9 < 8g. Then the following statements hold:

a) There is a C > 0 such that for all « < ap, all R > 0, all 0 <

min{ é"é(g)):gnﬁ, 2using 1 /9psind} and all z € A, (a,0)

1=

H [Pr1(0; R)(HS(0) + e (H + R) — 2) P 1(6; )] Py (6; R)H <

C
< 2
~ min{dy,, d,i(a), p}sin® (32)

b) There is a C > 0 such that for all o < ap, all 0 < min{%,
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5;:;;;9, 1/2psind} and all z € Ay (a,0)

| [P(®)(Hao (6) = 2)Pus(8)]) " Praa®)Ba(p)|| <

s£i9<1*ﬁﬁgjg§;;75f> (33)
{0n,1(a), on}

<

holds.

Proof.
a) We split the projection

Poa(8; R) = Poyn(8) @ 1¢ + Poy 1(0) @ 1¢ + P (0) @ Xt -

For r + R > p we estimate as follows: Im (—E,; + 2z —e ?(r + R)) > —0 +
sind(r + R) > %9. We used here o < 1/2psind and r + R > p. This shows
the claim together with (27) and (29) in Lemma 1.

b) As before, we split P, ;(0) = ﬁil L(a)®1f+Pél L l(9)®1f+P(a) (O)XH>p-

el,n,l
We start with

@ -1 5(a
| (PS040 @ Xtz (Ha(0) = 2)]) ' P1(0) @ X2 Bo <p>H

(r+p) (
supl LIPS O < g IR O]
where we used the inequality
_ . sin Ur
Im(—E,;+2z—e'r) > —0+sindr > 5 (34)

which follows from o < %ﬁ and p < r.

Using Equations (30) and (31) from the proof of Lemma 1 as well as Equation
(34) we obtain with some C' > 0 (independent of «)

Eny —Eni+e%(r+p) ’ < Enpy—Eni+e % e fr
B,y —2z+ e~ 9r | Enpy —z+ e~ 9r

sin 196”71(04) 2r r>p

sin 9r?

2
2% +p) | {—M:,l(a), r<p

4 p
< 1 .
_Csinﬂ( * 5nﬁl(a))

B, —En+e”? (r+p) |
E, —z+4+e=9r

Analogously, we obtain for n’ # n the estimate |
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Cang(1+ £). Eventually we find
| [Paise(@:0) (Ha0(6) — 2)] ™" Pasc(:0) Bo )|

z = En,l - eiep

<|| Paisc(c; 0)]| +supH —
" w20 Pusee(0; 0)(HS (0) — 2 + e=0(r + po))

max{d,,—,0n,+} +p < c
— 5n’

Paise(y; 9)H

<|| Py ;0
<|| Paise (ax )||+§1§8Re(,n,z)+c0sﬂr

using [25, Corollary 4]. O

Part b) of the above lemma and the following lemmas are preparations for the
proof of relative bounds on the interaction.

COROLLARY 1. Let 0 <9 < 6y. Then there is a C' > 0 such that for all oo < v,
all o < min{ Sn(@)sin® 5, sin g 1/2psind} and all z € Ay (e, 0)

2cos?¥ O’ 2cos??
/215 - -15 *11/2 c
11Bo(p) " [Pri(0) (Ha,0(8) = 2) Pra(0)] " Pni(60)|Bo (p)" |7l < ——5
holds.
Proof. We find
S p— _1_
1B6(0)| [Paa(0)(Ha0(8) = 2)Pus(8)] " Pa(6)|
= || Pra®)(Ha0(8) = 2)Pra(®)) " Pra(®)] Bolo)'l|

The claim follows by complex interpolation and using Lemma 2 b). O

LEMMA 3. Let 0 < ¢ < 0y. Then there is a C' > 0 such that for all 0 < a < g
and all p > 0 the following statements hold:

a)
romer< S o

b)
B0y < 50 (1+1) (36)

¢)
B | < o (37)
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Proof.
a) We estimate using [25, Corollary 4]

|| Passc (a; 8) Bo (p) ||
c c
dn

<sup

<
r>0 —1 — En,l + COSQg(T + p)

and note that analogously to the Formulas (30) and (31) we find for n’ < n
|En v — Eng+ e (r+ p)| = Im (e (z — Ey))
> —(cosV)o +sind(Ey,,; — Ep ) > sindd, (38)

and for n’ > n

|En’,l’ — En,l + 676(7" + p)| > Re (En’,l’ — En,l + 676(7" + p)) > 5n; (39)

which proves the claim.

b) In view of part a) it suffices to show the estimate on Ran Pe(la 7)1(9) We find
forall 1 <n’ <nandall 1 <l <n/,in particular for n’ = n,

|En’,l’(a) - En,l(a) + e—G(T + p)| Z Sinﬂ(r + p) Z pSinﬂa (40)

which proves the claim.
¢) Using Formula (40) we obtain for all 1 <n’ <fn and all 1 <1 <n'

r r 1
< <
|En (@) — Ep () + e~ 0(r+ p)] ~ sind(r+p) = sind’

which prove the claim on Ran Pyisc(c; 0). Using [25, Corollary 4] we find on
Ran Pyisc(c; 6)

H¢B 71Pisc ,9 <C =C '
[ HiBalo) ™ Pasc @i O] < € sup o = O s

Note that |sind| < cos for || < /4. O

COROLLARY 2. Let 0 < ¥ < 60y. Then there is a C' > 0 such that for all
0 < a<ay and all p > 0 the following estimates hold:

a)
-(a) —1/2 ¢ x1—1/2p(%) ¢
P, .(0)B < , B Py,0)] < —
PO Ba 2 < <= Balo) [P0 < <=
b)

—-1/2 c L *|—1/2 C L
11Bo(p) ”Sm<”¢ﬁ)’ 11Ba(p)" |3—_SM(1+W>
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1/2 ol C
|H? By (p)*| 72| <

1/2 _
|H? By (p)| V2| < —=
sind sin

:

Proof.
() _ () (@) _
a) We find HPeln( )IBe( )| 1/2H2 ([ Per,n (0 )HHPeln( )Bo(p) || as well as
) ()
[1Bo(p)* [ /2P @2 < [Bn(®)* [ Bo(p) ™ Pern(6)]. The claim follows

now from Lemma 3.

b) This follows immediately from the spectral theorem for self-adjoint opera-
tors.

¢) From Formula (37) in Lemma 3 we obtain for all ¢ € Dom(By(p)) the
estimate || Hs| < mﬂBg(p)i/)H . Taking the square root of this op-
erator inequality, the claim follows. The second inequality follows analogously
using the identity || HeBa(p) || = [[Bo(p)*) " Hell = | HeBo(p)) 1| O

In the last two lemmas in this section, we prove relative bounds on the in-
teraction. In comparison to the non-relativistic case, we have the additional
difficulty that the factor in front of the interaction is y/a only. To circumvent
this problem, we use the statements about the non-relativistic limit shown in
[25].

LEMMA 4. Let 0 < ¢ < 0y. Then there is a C' > 0 such that for all 0 < a < ag
and all p > 0 the estimate

1
[1Bo(o)* 72w @) (0) Ba(p)] /2| < - 19\/5[1+04<1+m>}

holds.

Proof. We split the projection according to A(at)l 5(0) = P1(0) + P2(0), where
Pi(6) = P (9)@1;, Po(8) = P

el,n el,n
works analogously, we consider A(G)(a:c) only. We find for ¢, ¢’ €
ASD S(0) L2 (R%CY @ F and i, € {1,2}

(9) ® 1¢. Since the estimate with A,(f)(ax)Jr

WWMHV%MaA<>P@%wH%M
dk |k(e™[k|)|

<
- M:ZLQ keR® o/ 4”2“{3

XWWM@WW“MMWMW@%wW%”

We have to make a case distinction:
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Case 1: i = j = 2. Using Corollary 2 a) we find |||Bg(p)*|~'/2P;(0)| < C.
Moreover | Pi(0)e - e, (k)e @k P;(0)|| < C. The r.h.s. of Formula (41) can be
estimated by

Cl NI 1Ba(o)] 2] < —==IIv'llI1¥ (42)

\/—
with a generic C' > 0, where we used Corollary 2 c) in the last step.

Case 2: All other combinations of i and j. ;jFrom [25, Lemma 10 or Theo-
rem 11] it follows that |Pi(0)c - £,(k)e' “F = P;(0)] < Ca(l + a|k|) and from

Corollary 2 a) and b) that |||By(p)*|~'/2Pi(0) \/T(l + 1/2) The r.h.s.
of Formula (41) can be estimated by
C / dk [k(e=?|k|)2(1 + alk])?
oO— 43
Vsind ( ) g Z keR? || ()

pn=1,2

C 1
4 —1/2|12 < 14— /
\/# > [ I P OB < 0 5 (1) e

in this case with a generic C' > 0. O

LEMMA 5. Let 0 < ¢ < 0. Then there is a C' > 0 such that for all 0 < a < ag
and all p > 0 the following estimates hold:

a)

[1Bs (o) 172 WS ) Pan(0)| <

Ln g (44)

C
Vsin ﬂg

PoaO)WS (0)1Bo(p) /2| <

b)

| 1Bty 17253 0)Pa(6) | <

C
— 7ngl/ 2 (45)

C
Vsin 9 P

1/2

Pos@)W(3 0)1Bo(p)| 2 <

Wi Ora©) <cop |

P OWS0)|| < Cop (46)
Proof. We begin with
o iz

< val|1Bolo) |7 2|| ALY, 500 - AL (02)- P 0)
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and find with [25, Theorem 11] similarly as in [4, Lemma IV.9.]
(0. A0 5 0)a - AP () Poa(6)e)|

2
dk |k(e=?|k|) a
> dk |s(e”"[E])] <q/), B 50 eu(k)e B P a (k)xmgp@‘

i1/keRs o/ 47r2 |k|
2

k(e ?k))[*(1 + alk|)?
< Ca Z/k<pdk k|2 Z |k|||au XHfS;ﬂPHQ

pn=1 pn=1,2

< apl|¢llll¥[l- - (47)

For ||Pnﬁl(9)W1(%) (0)|Ba(p)|~'/?|| one shows a similar estimate such that the
claim in b) follows from Corollory 2. Formula (47) and an analogous calculation

for Wl(%) (0) prove the claim in c).
To show a) we estimate similarly as in Formula (47)

(W', Paa(O)WSS(8)Bo (p)|~Y/20)

< Cvaally' ||| H?|Bo (o) "2l 100]) <

C
ve vl

The estimate on || |Bg(p)*|_1/2Wl(%) (0) P, 1(0)] follows analogously. O

5 EXISTENCE AND APPROXIMATION OF THE FESHBACH OPERATOR

We set now pg = ¢*/3 = a2 and oy = ¢°/% = a®/? and use the estimates from

Section 4 for p = pg and o = oy.

We apply the strategy from [5], but have to overcome additional difficulties.
First, we generalize [5, Lemma 3.14] to the relativistic case and show the exis-
tence of the inverse [Py, ;(0)(Hu () — 2)Pp.1(0)] L.

LEMMA 6. Let 0 <9 < 60y. Then there is a C > 0 such that for all sufficiently
small o > 0 the following holds: The operator Py, 1(0)(Ha(0) — 2)Pp(0) is for
all z € Ay, (o, 00) invertible on Ran P, 1(0), and we have

| P s(6) (Ha(6) — 2P s(8)] - Prs (0] < —C

sin® 9pg

Proof. The claim follows from the series expansion

% [~W O [P (0)(Ha0(0) — 2)Pra(0)] ' Pra(0)]”
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= iowe(pon”?
< |Bo(p0) [ /2 [Pra (0)(Hao(6) = 2)Pra(6)] ™ Pua(6)|Bo(po)"|
x| = 1Bo(po)*|~/2W ) (0)| By po) | 7/?
< [Balpo)| /2 [Pra(6) (oo (0) = 2)Pra(6)] ™ Pa®)lBolpo) /2]
< |Bo(po) |7
< [ 1Boteo) 772 || 1Bo o) 172

< [1Boo0) 772 [P s(0) (Ha0(6) — 2Ps(6)] " Pra(®)] Boloo) 1

< 3 [ [[1Batoo) 12w @ 0)1Ba o) 2|
n=0

% [ 1Bo(p0) F172 [P (0)(Ha0(6) = 2)Paa(8)] P (®)1Boloo)* 2 |
SSiHQﬂ\/p_O\/p_O nz:% [smw‘/a(l tall+ ﬁ))}
C < C "
~ sin? Ipo 7;) <sin2 ¥ \/a)

with a generic C' > 0 independent of z and a. We used Corollary 2 b),
Corollary 1 and Lemma 4. O

We turn now to the existence of the Feshbach operator and generalize [5,
Lemma 3.15].

LEMMA 7. Let 0 < ¥ < 0y small enough. Then there is a C' > 0 such that for
all sufficiently small o > 0 and all z € Ay, (v, 00) the following estimates hold:

a)

| Paa (@)W () [P (0) (Ha (6) — 2)Pra(0)] Poa(0)]| < gm.
(48)
|Pi@)t1200) = 2P @) P W O PO < 9=
(49)
b) For all 1 <1,I',1” < n we have
’ Py ()W (0) Py 1(0)[Pr i (0)(Ho(0) — 2) Pra(6)] "
><Fn,lw)W(a)(e)pn,l,,(o)H < (Sifﬂ)Q 2 (50)
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¢) The Feshbach operator, defined in equation (17), exists for all z €
Ay (o, 00) and fulfills the equation

= [Pat(0) = Pua(0) (Pas(O) Ha ()P a(6) = 2) ™ Pra(O)W ) (0) P (0)]
[ lw)(Ha( > >]*1
% [Paa(0) = Pt @)W (0)P1(0) (P (0)Ha(0)Pra(0) — 2) Poa(0)]
+Fn,l<e> (Fn,zw)Ha(e)Fn,l(e) —2) " Pul0), (51)
where the Lh.s. exists if and only if the r.h.s. exists.

Proof.
a) We obtain as in the proof of Lemma 6

| o @)W 6P 1(0) [Pra (O)(Ha(6) — 2)Pua(0)]) ' Prs(6)
<[[Baa@W O)1Bo (o) |

x H|Be<p>|“/2 [Poa(8) (Hao(0) = 2)Pra (0)] " Pra(0)]Bo(p)
x Z [1Ba(p)* 1772w @) (0) Ba ()] 72|

X H|B@(p)|+1/2 [Pr.1(0)(Ha,o(0) — z)ﬁn,l(e)]_l 1(0)|By(p 1/2’”
|| Bo(p)*| 1|

c = c "
<
=9 Gin? 9\/Po ;O (sin2 19\/&> ’

where we used additionally Lemma 5 a) and b). The other estimate follows
analogously.

b) Follows similarly as in a).
c¢) This follows from Lemma 6 and Part a) of [4, Theorem IV.1]. O

Having shown the existence of the Feshbach operator, we can turn now to its
approximation by suitable other operators. The aim is to control its numerical
range and gain thus information about its invertability.

We define the operator

Q)= 3 [k Pu@)alkm) 91
p=1,2

" [ P 1(6; [k]) [wi0(k, ; 0) @ L¢Py, 1(0)

HS(0) + e=19 (He + |K|) —
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as operator on Ran P, ;(0) for 2 € A, (a,00). Futhermore, we define 0-
dependent versions of the operators Z,; +(a) (cf. [19, Equation (8)]). We
set for Im 6 #£ 0

Zuglei0) = 3 / ak P (0)wo (k. )P, (0)
pu=1,2 kER3

=—el,n,l el,n,l

—1
x [P (O HS (0) = Bu(a) + e lkl| P, (0w ok, 15 0) P (0)
dk (07 «@ @
+ Z /k 2o eTWPe(l,'r)z,l(e)wo,l(ka,U;Q)Pe(lﬂ)z,l(e)wl,o(kvﬂ;Q)Pe(lﬁ)z,l(o)-
n=1,2"7F~€

We have Z,1(c;0) = Ue1(0)Zn 1, — ()Uer(0)~F for Im6 > 0 and Z, (o 0) =
Ut (0) Z 1+ (@)U (0) 71 for ImO < 0. Moreover, we define the following re-
mainder terms:

Remo =
Pnﬁl(Q)W(O‘)(G) n, s
— P ()W (0)P,, 1(0) [Pt (0)(He0(0)—2)Pri(0)] 1P i (0)W ) (0) P, 1 (0)

=
>
~
Y
B
=
>
=
=
2
b
>
=
\
S
&
ol
2
=
=
=
L
ol
s
=
=
E
®
=
>
=
=0
=
=
S~—

Rem1 =
Py (0)W ) (0)Py1(8)[Prt(8)(Hao(8) — 2) Pt (8)] " Prna(0)W (@ (8) P, 1(6)
— Pt ()WY () Prt(8) [P (0) (Hao(8)—2)Prt(8)] " Pry(O)WLS) (8) P (6)
Rems :=
= Pt (O)W5 (0)Pru(0)[Proi(0)(Hao(8) — 2)Prt(0)] Pra(O)WLY (8) P (6)

Remg := P, 1(0)W ™) (0) P,1(6)
We generalize Lemma [5, Lemma 3.16] (see also [19, Lemma A.7]).

LEMMA 8. Let 0 < ¥ < 6y. Then there is a C' > 0 such that for all sufficiently
small @ > 0 and all z € A, 1(a, 00) the estimate

11 Fp, 0y (Ha(8)—2)— (HS(8) — 2+e  Hi— Q%) (2:0)) Poa(9)]]| <

el ' ~ sin*9

9*Va
holds.
Proof. We begin with the estimate on Remy:

IRemo | < 3 || Pa(O)W (0)]Bo (po) |/
n=1
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1B (00) [ [Pra(6) (Ho0(6) = 2P ()]~ Praa ()] Ba(po) [
| = 1Bolo)*[7/2W ) (6) By (po) |

% |Bo(po)| T2 [Pra(8)(Hao(8) — 2)Pra(6)] ' P

Pra(0)| Bo(po)' 2]
X | Bo(po)" |2 W ) (0) Pi(0)|

<[ Pa W 6) Baoo)| =211 Bo(p0) |/ 2W ) (6) P (6)

[Bo(p0)] ™72 [Prt(60) (He0(6) — 2)Pra(0)] *1Pn,l<e>|Be<po>*|“2H

x> [1Bs(po)*|~/>W () (8)[ By (o) /2|

n=1

X H|BG pO |+1/2 [_n1(9)(Ha,0(9)_z)ﬁn,l(9)]
2 c 5,
sm 19 Z (sm ) ) = sin4199 va

We used here Lemma 5 a) and b), Lemma 4 and Corollary 1. For Rem; we
find

" Pi(0)|Ba(po)*|2]"

IRem | <|[1Ba(o0) /2 [Pas(8) (Haw0(0) — 2)Poa(0)] ™ Pra(8)|Bolpo)" 2|
% (12O O)1Ba(po) /2|1 Bapo) [~/ WT 0) P (0)]

+ [Pt (O)WAT (0)| Bo(po) | =2 [ Bo(po)* |~/ * W5 (6) Pra(
+ [ Pas@OWST O)1Bo(00)] 2| [[1Bo o) |25 (0) Paa6)])

C 512 c
< = «
~ sin? 199 Po sin® 199

using Corollary 1 and Lemma 5 a) and b).
For Remy we use the pull-through formula [4, Lemma IV.8]: We have

Remy =a / dk/ dk'P, 1 (0)a - GO (K, w)ay, (k')
keR3 'eR3

Hop'=1,2
PSL 1 © 1+ P(l 7)1 1 @ XHe+|k|+|k|>p0 o

GO (K, 1Yy, (k) Pt (6).
HY(0) + =0 (Hi + |k| + [K']) — 2 :

Using Lemma 2 (for the resolvent) and [25, Theorem 11] (for the expectation
values of the Dirac matrix) we obtain

Rl kD] [K(e K]
K%Remﬂb ‘<Co< Z /<p0 /k/<p0 dk N T

Hop' =1
e)a . eu(k/)e—lozz K P(a) (9)”

el,n,l

x| P @ eu(k)e = A0 SO0 5
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‘ Bil 21 (0)® 1+ B 7)1 1(0) @ X e+ k| +1k > po
HE(0) + e=0(Hy + [k] + [K]) — 2
X Hau(k)XHfSPowHHau’(kl)XHf<PowH
2 2
< Cy

(e °1KDI( + alk))
dk V |k
~sindpg uuz'_l /|k|<p0 /|k /|k_ | Hau XHfSP(ﬂ/)H

IR DI + alk'])
X /|k,<p dk/|’i( | |k|/ \/Wa| \/|_/Ha# k/ XHf<pU’l/} H
0 \/

Cy* 1/2 1/2

Ssinﬁpo (/k<p0d |k|2)HH XHf<po¢ HHH XHf<po¢H
Cg C 2 2

<Gl Il = 1l

with a generic C' > 0.
Finally, we consider Rems := P, ;(0)W (*) ()P, ;(#), where we show the esti-
mate with Ag})(aw)_ only. The other estimate works analogously. We find
using [25, Lemma 10]

Val (', PS (8) © X< poee- AD (az) - PS) 1(6) © Xrt<pot)]

2
k(e |k
<Va (LASa. L)
,u,uz’l [k[<po \/m
|| elnl (k) Ho kPela'r)zl ||Hw HHaM XHfSPOQ/JH

<Cyg /|k|< deHw IIHY X <po || < Capoll!10]] = Cv/ag? || [||4]]-
Spo

O
Note that the following Lemma 9 holds only for z € AS (o, 00), contrary to
Lemma 8. It generalizes [5, Lemma 3.16] (see also [19, Lemma A.8)).

LEMMA 9. Let 0 < ¥ < 0y. Then there is a C > 0 such that for all @ > 0
sufficiently small and all z € A;Z(Oé, 0o) the estimate

HQfﬁz)(Z;H) —Zn,z(a;H)H < g’

sin® 9
holds.
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Proof. We split ngfl)(z; 0) — Z1(a; 0) = Remy, + Remyy, with

Remy, := Z / dk Pn7l(9)[w071(k, s 9) ® ].f]
pu=1,2 kER3

Pe(la7)z 1(0) @ X Hy k| p0
H(0) + e~ (Hy + |k|) — 2

dk e X
- Z /k RS 676|k| Pe(lﬂ)l,l(e)wo 1(k 5 9) e(l 7)1 l(e)wl O(k/’ 5 G)Pe(l ’I’)l !
u=1,27k€

[wl,O(kv s 9) ® ]-f]Pn,l(9>

and

Remyy = 3 / dk Po1(0)wo.1 (k, 1 0) © 1]
=12 keR3
o l —2?211(9) ® 1¢
HY(0) + e (H; + |K|)

- Z /k Rddkpe(h)zl®XHf§P0w0,1(khu‘;0)
u=1,27k€

] [wl,O(kv s 9) ® ]-f]Pn,l(o)

[ P ()
X

(a)
H(la)(@)—Enz-l-e—ﬂk’J wlO(k :9) elnl(9)®XHfSpo'

We start with Remy,: As in the proof of Lemma 2 a) one shows for py < r+ |k
the inequalities

|Eni(a) + e 2(r +|k|) — 2)| > —00 +sind(r + |k|) > M (52)
and
in
[Bua(@) + ¢~ (r + k) = 2) = —o0 +sind(r + k) = B2, (53)

since we have gy < £2 52“”9 < (THkQ sind for sufficiently small o > 0.
As in the proof of Lemma 4 one obtains using [25, Lemma 10] the inequality

DL
VI

IPS) (0)wo,u (k, 1:0) S ,(0)]] < © (54)

We find after a little transformation of Remy,

|Remya || = H Z /€R3 dk Py, (0 wO,l(k7M;9)®1f]Pe(l7)zl(9)
p=1,2

(e7PHy + En () — 2) XHe+ k|3 po X Hi <po
(Eni(o) +e=?(Hy + [K]) — z) e~ 0|k
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x P (0)[wio(k, 13.0) © 1¢] P g(6)
- Z / dkPe(l'r)zl(9>w071(k7M;9)Pe(l7)Ll(9)
pu=1,2 kER3

XHi<poXHg+|k|<p .
S O,

C 5 1 (e ?|k|)? k(e ?|k|)?
<— ga+p)—/ dk7+/ A 1R
g ’ (PO IK|<po || |l po K[ )
+92/ dk |"<‘-‘(6_‘9|k|)|2
k|<po k|2

¢ 5 2 PO
—_— |
_sinﬂg (a 00 +a® = +Po)

2
«
s1n19g

Here, we split the integration in the first summand in the regions |k| < py and
|k| > po. We use inequality (53) in the first region, and inequality (52) in the
second region.

(@)

=—el,n,l T

The estimate on Remy; is more difficult. We split the projection P.J"
P(a) P( ) and obtain for P = P( «) P

eln T Leln, eLn as well as for P = P

| S [ R0 @ xeplun (k. 0) 914
u=1,2"k€

[ P®1;

[wi0(k, 1:0) ® LIPS 1 (0) @ xa,<
H§ﬁ>(9)+e—9(Hf+|k|)_Z] 10 el +<po

o Z /k RS dkpe(la'r)zl(e)®XHf§P0w0,1(k7/L;9>
u=1,27~€

l P®1
H(0) — Eng + e=0[k|

S / 4 [ RDI?
B u—=1,2 7 keR? |k|

X

] wi,0(k, 1 H)Pe(la'r)L 1(0) ® XH<po

HPela7)zl (0)ex - eu(k)e row kA(t)l 3 HHA -1 3 9)0"eu(k/)e_iw‘klpe(lofr)z,z(e)H
[ rek | u
+ e_G(Hf + |k|) H « En,z + 6_9|k:|
X (1Ent = 21 + | Hexrrespol)]
O / o s IRDP(L+ alk)?
kER3 |k|
P

H P®1;
H(0) + e=0(H; + |K]) —

H (0) — By + e0k|
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We used [25, Theorem 11]. Note that all estimates on || —m——"12 I
Hy ' (0)+e? (Hit|k|)—=

in Lemma 1 hold also for H[PHe(la) (0) — Ep + e 9k|]~LP||, since the operator
under the norm in the second expression is the projection of the operator in

the first expression on the vacuum sector with z = £, ;.

Case 1: P = ng‘zﬂ We split the integration in the regions B; := {k €

R3||k| < po} and By := {k € R3||k| > po}. Using Formula (27) in Lemma 1 a),
the integral over B; can be estimated by

C 5,5 1 / C 5 95 C 5
a dk — < ——g°« = a”.
sin29? Oni(@)? Jeen, k| = sin29? Po= iz o?

With Formula (28) in Lemma 1 b) we estimate the integral over By by

O ot [ ap B0l
sin? 9 kEBs |k|3 ~ sin?

¢*a*1n pal.

(@)
1

el,n

Case 2: P=1P
the estimate

C 2 2/ k(e k)2 (1 + alk|)? C 2 9 C 2 o
- dk < - -
52sin? 07 " Jpers B = 2ane? © T 2o’

. We estimate the resolvents with Lemma 1 ¢) and obtain

The following Lemma generalizes [19, Corollary A.9]. Note, however, that we
do not remove the a-dependence of the real part.

LEMMA 10. There is a constant C' > 0 such that for all sufficiently small a > 0
the estimate

[Unr (™, 3;0) " Zy 14 (@)Unr (!, 3;0) = Yy 1 (a)| < Coa
holds.

Proof. We consider the case with the minus sign only. It suffices to show
[Unr (o™, 3;0) " m Zy i~ (a)Unr (a7, 350) = Znim| < CgPa

Because of [x,He(la)] =iala and |e!®** — 1] < alk||z| we obtain from [25,
Lemma 10 and Lemma 12]

[T Z,, 1 (@) — g°x > > / dw (B (@) — By (a))
n' U p=1,2 |wl=1
Enzyl/(a)<Enyl(a)
o FlBw (@) = Bnd@))? e

A2 el,n,zeu(w) ':CPe(I(,X'r)L’,l’eﬂ(w) 'zPe(lo,?z,lH < go
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The integral over w and the sum over the polarizations can be done in the same
way as in the non-relativistic case (see [19, Remark 1]). If we take additionally
into account that |E,, /(o) — E, ()| < Ca?, we obtain

2
[0 Zni (@) = g2 (Bw(@) ~ Bug(o))
n’,l':n'<n
(| En v (@) = Eng(@)])? o a
) Pe(l'r)z Pe(l 7)1' l"TPe(lﬂ)z,lH < g’

[25, Lemma 8] implies Uxr (o™, 3;0) "B, = P) tnr(a=?,3;0). The
claim follows together with [25, Lemma 7] [25 Equation (76) in Lemma 8]
and [25, Lemma 11]. Note that x admits an analytic continuation. O

6 ESTIMATES ON THE NUMERICAL RANGE
The estimates in Section 5 allow us to control the numerical range of the
Feshbach operator. But since Re Z, ;1 (o) depends on «, we have to prove
that Z,; +(a) is of order g*:
LEMMA 11. Let 0 < 9 < 6y and n > 2. Then the following holds:
a) There is a C' > 0 such that for all sufficiently small o > 0 the estimate
1 Zn s (@) < Cg?
holds.

b) There is a ¢ > 0 such that for all sufficiently small oo > 0 the estimates

Im Z,; —(a) > cg* + O(g*a)
Im Zp 1,4 (a) < —cg? + O(ga)

hold.

Proof.

b) follows immediately from Lemma 10, since by [19, Theorem B.1] there is a
¢ > 0 such that the estimates ImY,,; _(a) > cg® and ImY,, ; 4 () < —cg? hold
(cf. the Definition (22) of ImY,, ; 1+ () as well as the remark before Theorem

1).

a) As in the estimates on Remy, in the proof of Lemma 9 we find

H Z /k R3 6_9|k| el71l(o)wo’l(k’“;e)Pe(lnl(e)wl,o(k,u;m e(la'r)zl” <Cg”.
p=1,2"k€
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Moreover, we obtain
P> L AP0 @ s ki)

x E“’ (O (OH (0) — Epy+ e Ok

x P (0)wio(k, 150)PY (0) © Xrre<po || < Co.

=—el,n,l el,n,l

To see this, we proceed as in the estimate on Remy; in the proof of Lemma 9:
In Case 1 we can estimate the integral over By by

¢ 5 1 k(e IkDP(1 + alk])? C 5 99 2 9
— dk < =
sing? On,1(@) /keB1 |k| =sino? 0T Gz @
and the integral over By by
C kD21 + ak])? C
' gz/ LG )] (2 +olkl)” 2.
sin?”  Jiep, |k| sin ¢
In Case 2 we obtain the estimate
C [ apllTBPAra? O,
Opsin®”  Jypcps || Op, sin v
[25, Lemma 9] yields the claim. O

This lemma implies in particular that the numerical range of Z,, ; 1 () is con-
tained in a ball around 0 with radius O(g?). In particular, this holds for the real
part Re Z,, 1+ (o) = ReY,,; +(«). Asin [19], there are constants a,b > 0 such
that NumRanY,,; + (o) C g?A(c,a,b) with A(c,a,b) = ic+ ([— a,a] +1[0,0]).
As in the non-relativistic case, we set v := min{d, arctan(c/(2a))}. Since we
are interested only in n < n, we can choose the set A(c,a,b) and the angle v
independent of n and [.

Thus, we can control the inverse of the Feshbach operator Fp, ,g)(Ha(0) — 2)
for z € A5 (@, 09) analogously to the non-relativsitic case (see [19, Lemma 6])
as follows (see Figure 1):

LEMMA 12. Let 0 < ¥ < 6y and 0 < g < ¥ small enough. Then the following
estimates hold:

a) There are constants C1,Cy > 0 such that Fp, o)(Ha(0) — 2) has
bounded inverse for all z € Ay (a, 00) \ D(NumRan(Ey,i(a) — Y,(a)
1t + e %1y ® Hf)|RanP‘1°> l,C1 - g*Va) , and for X € [En(a) —

5n,l,7(a>; En,l(a)
+ On1,+ ()] the esimate

X o

17, o) (Ha () = V)7 < = — ()

holds.
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b) There are constants C1,Co > 0 such that for all z € C \
D(NumRan(E,, ;(a)

— Y . g2 E — —
n’l(a))lRanPc(l(?)n,L(O)’Cl g Oé) the opemtor ( n,l(a) z

Zn(@50))| g n p ©) defined on RanPéﬁ)ll(G) has a bounded inverse
el,n,l R
which fulfills the estimate

(Bni(0) = =~ Zua(030)lg i )7
- C
~ dist(2, NumRan(E, () — Yai(a)) g, pte

’ el,n,l

, (56)
)

and in particular (55).

Proof. This can be shown using Lemmas 8, 9 and 10 exactly as in the proof of
[19, Lemma 6]. O

For | =1 or | = n, the set A<, (a, 0¢) is strictly interior of the set A, ;(a, 09),
such that we need a relativistic analogon of [19, Lemma 7] in this case.

LEMMA 13. Let 0 < 9 < g and 0 < g < ¥ small enough. Let moreover
Il =1 orl=mn. Then the following statements hold: The Feshbach operator
Fp, (0)(Ha(0) = 2) is bounded invertible for all z € Ay (o, 00) \ A5 (a, 00) and
there is a C' > 0 such that for A € [Ep, — 0p,—, En1(a) — 0n,1,— ()] respectively
X € [Enn(@) + 0pn+(@), En + 0n 4] the estimate

C

H,(0) —N)7Y <
1P, 0)(Ha(0) =) < sind|\ — B, (a)| — Cg?

holds with | = 1 or I = n, respectively. The same estimate holds for [E, («) —
A= Qo)

Proof. This follows analogously to the non-relativistic case (see the proof of [19,
Lemma 7]) from Lemma 7 b). For the claim on [E, (o) — X — leofl)()\; 0)]~1,
note additionally Lemma 8 and the proof thereof. O

COROLLARY 3. Let 0 < ¥ < g and 0 < g < ¥ small enough. The for all
1 <1 < n the following holds:

o(Hu(0)) N Api(a, 00)
C D(NumRan(E, () — V(o) @ 1t + e 14 ® Hf)|RanP(10) z’Cl - g%Va),

where C1 was defined in Lemma 12. In particular, [En — 0p,—, Ey + 0p 4] C
p(Ho(9))-

Proof. This follows because of Lemma 7 c¢) immediately from Lemma 12 and
Lemma 13. U
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REMARK 3. The estimates above hold as in the non-relativistic case (cf. [19,
Remark 5]) also for —0y < ¥ < 0, if one reflects the sets Ap (o, 00) and
AS (o, 00) about the real azis and replaces Yy, () = Yy — () by Yy 4 () for
the localization of the numerical range.

X E,.-8,. ()= X E, -5, (@)= _— . |
Efs, E.du[@  E,-ga E, Etga B 45 () Ewg? E,Egga Eafl@ EBuga B Egga  Ep..(0) Exy
X ¢ ¢ et erf
C: v@ Cu
A(wo) | A, (@o) A el ACa) A @0) | A@o)
o}

Figure 1: The integration contour in the relativistic model for the principal
quantum number n = 3.

7 LIFETIME OF EXCITED STATES

We are now able to prove Theorem 1 similarly as in the non-relativistic case.
The fine structure splitting induces some differences, however: Since a spectral
cutoff around the fine structure component considered would converge to zero
as a?, we introduce a spectral cutoff around all the fine structure components of
the corresponding principal quantum number so that additionally contributions

of the other components have to be estimated.

Proof of Theorem 1.

Step 1: We pick a function F € C$°(R) with F(x) = 0 for || > 1 and F(z) = 1
for || < 1/2 and define a cutoff function F(z) := F(6; ' (x — E,)). As in the
non-relativistic case (see step 1 in the proof of [19, Theorem 1]) one shows
[(6(0), e~ He F(Ha (@) — ((a), e~ *Herp(a))] < C/a uniformly in s > 0.
Step 2: We write

(@), e F(Ha)(@)
1 1 —iAs . )
:—%161&)1 d)e )\F()\)[f(o’)\_le)_f(o,)\+16)]
—— L [ axe ™ PO)I@ ) — 16, 0)],

Comi

where f(0,)) := (zb(a;?),mw(a;@)} with ¥(a;0) = ¢(o;0) @ Q and
d(a;0) := Ua(0)p(a). (We choose Im6# > 0.) In the first step, we used [36,
Theorem VII.13]. In the second step, we used the dilation analyticity of H,(6)
(see Theorem 3) and the fact that H,(6) has no spectrum in the interval
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[Ep, — 6n,—, En 4+ 9n,+/2] (see Corollary 3). We split the integration into several
intervals:

—5 [ AeTFFWFO,A) = £(0,))]

o (@) +6, 7 4 (@) . _
T omi { Z/ dA eﬂ)\s[f(ev A) — f(ev )\)]
=1

B, v (a@)=6, v, ()

n, 1(04 n 1, 7(01) —
n / dAe M FA)[f(0,0) = (6, \)]
Ep—6n,—

En+6n,+ .
+ / dxe M F(N)[F(@, ) — £(6, A)]}

Enn(a)+0n,n,+(@)

We used here F(A) =1 for A € [Ep1(a) — 0n,1,— (), By n(@)

+ O+ (@)] C[E, —0n/2, Ep + 6,/2].

Step 8: For X € [E,, (&) — 01— (), Ep () + 051+ ()] we observe that Equa-
tion (51) in Lemma 7 implies

(0 ), g5 006 00) = ((05D), Fr 0 (Ha(8) = 2) (e 0)
and find

FO.0) = (¥(as0), Fp, o) (Ha(0) — \) " (0 0))
=((c;0), [Eni(c) = X = Zn(0;0)] " d(c;0))
— (¥(0;0), [Ep (@) = A = Zn(a;0)) 7
X [Fp, 0y (Ha(0) = X) = (Ena(e) = A+ e 1a ® Hy — Zya(0;0)) P i (0)]
X Fp, ) (Ha(0) = X)""b(a; 0)) =: f(0, A) + B1(0,))

using the second resolvent equation. Here f (0, \) is the first term in the sum.
Using the dilation analyticity and the resolvent identity once again, we obtain

F(6,0) = (), [Bna(a )*A*Zn,z,—(a)]_lsb(a»
=(@(0), [En(a) = X —Unr(a™", 3;0) 7" Zn — (a)Unr (", 3;0)] 7 ¢(0))
=(3(0), [Bn (@) = A = Yy 1,— ()] 71 ¢(0))

—(9(0), [Eni(@) = A =Yy ()]

Unr(a™,3;0) 7 Zp g - (@)Unr (@™, 3;0) = Vi, - ()]
[Eni(e) = A —Usr( !, 3;0) " Zn g (a)Usr (e, 350)] 1 6(0))
(A) + Ba, (),

X X

=: /-
where f_()\) is the first term in the sum. We set B(6, \) := By (6, \) + By, ()).
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Accordingly we obtain

>

(0,0) = (d(a), [Bni(a) = A = Zpn 1+ ()] o(a))
=(6(0), [Eni(@) = A = Yo+ ()] 19(0))
—(¢(0), [Eni(@) = A= Yo (a)] !
thvr(a™",3;0) " Zn 1 ()Unr (e, 3;0) — Vi ()]
[Eni(@) = A = Unr(a", 3;0) " Zn i1 (a)Unr (@, 350)] 1 6(0))
=: [1(N) + Ba (V)

O

X X

where fy () is the first term in the sum. We set B(6, \) := By (6, )+ Ba.4 (\).
As in the non-relativistic case, we move the contour for f+()\) and estimate the
terms B(6,\) and B(6, \) on the real axis. We find

n 1 (@) +0n 1,4 (@) . _
/ ANe T F(,0) — £(0,\)]

En,l(o‘)fan,l,f(a)

n,1 () +0n,1,4(a) . _
= / d\e 1*[B(0,\) — B(6, )]
E )

n,1(Q)=0n,1,— (0
1

“
Ci+

/ dz e = (2) = f(2)] - / dze==(f, (2) — F(2)],
Ca+C3+Cy Co

)
dze™*[f1(2) = f-(2)]

(
Cs

where C' := Cy 4+ Cy + C5 + Cy + C5 with Cy := [Ey () — dp1,— (@), Ep (o) —

S O[] Op = i) = by (0)/2, Fua(c) = b (002 = (@),
Cs = [Ent(0) = bni(0)/2 — 1000(0), Bt(0) + dni,(2)/2 — idna(a)],
Cy = [Eml(a) + 5n7l,+(a)/2 - i(SnJ( ) ,( ) + 5n,l,+( /2] and C5 :=
[Eni() + 0n1+(0)/2, By (@) + 651+ ()], Note that this contour lies par-
tially outside A, (o, 00) , which is possible since we do not consider any
integrals which contain fofl) (2;0). Cp is a suitable contour to pick a pole

contribution of f(#,z). We choose as in the non-relativistic case Cp =
[Eni() + g°(=(a + ¢/2) = ic/2), Bn (@) + ¢*((a + ¢/2) = ic/2)] + [Eni(a) +
9*((a+¢/2) —ic/2), Eni(a) + g*((a+¢/2) =i (b+3¢/2)] + [Eni(e) + g°((a +
¢/2) =i (b+3c/2)), En (@) +9*(—(a+¢/2) =i (b+3¢/2))] + [En (@) + g*(—(a+
¢/2) —i(b+3¢/2)), En(a) + g*(=(a +¢/2) —i(c/2))].

Estimates on the real axis: We show the estimate on By (#, A). Using Lemma

8, Lemma 9 and Lemma 12 we obtain By (0, )] < Cv~2 + 48— Tt

is easy to see that [ dA (Ew(ag)z_% is O(y/«@). The same estimates hold

for By (6, \). The estimates on Bs +(\) work analogously using Lemma 10 and
Lemma 12.

Estimates on the contour C: We estimate the integral fc|e_isz||f+(z) -
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f—(2)||dz|: Note that

1
— Y,
Epi(a)—z ™b (a) Epi(@) — 2 — Yo, _(a)

+((0), ¢(0))

holds. Accordingly, the leading terms of f_ (z) and f+(z) cancel, and it suffices
to show that the remaining terms are at least of order /. It follows from
Equation (22) and Lemma 11 that ||Y;,;+(a)|| < Cg? Thus we can estimate

1
Eni(a) — (A —10p,1(a))
1 g2

 Bo(@) — = 1ma(@)) — Yor—(@) "N = O @ A T (e

[{6(0),

le,_(a)

Since the contour Cs has length O(a?), we estimate the integral over the ex-
pression above by Ca. Similar estimates hold on Cy, C3, Cy and C5. The
integral over f+(z) can be estimated analogously.

Pole-Term: The integral along Cy over f_(z) yields the claimed leading term,
the integral over f(z) is zero.

Step 4: For A € [Enp(a) — dpp,—(a), Eny(a) 4+ 0np 4 (a)] with I # 1 we
observe that ¢(a) € Ran P(l 7)1 , implies

P (0)(00) = (P 1(0) © Xtz + P70 (0) @ )b (0.0) = (s 0)
and P, (0)(a; 0) = 0, which in turn shows

F(0.)) =
= (¥(58), Pp s (8) (P (9)Ha(0)Prpr (6) — A) ™ Pt (0)W @) (6) Py 1 ()
% [Fp, @ (Ha(0) = V] "

X Py (OYW ) (0)Pryp (0) (Pt (0)Ha(0) Py (8) — X) ™ Pryr (0)1(050))

+ (0(030), P (0) (P (0) Ha (0)Pr(6) — )~ P (00 0))
= fl((g, )\) + f2(97)‘)

using (51) in Lemma 7, where f1 (6, A) is the first summand. Using the resolvent
identity we find f1(0,A) = f1.4(0,\) + f1,5(0, A) + f1,c(0,A) with

Fr.a(0,0) = ((0:0), Pry 1 () (Proir (0) Hor 0 (0) Prtr () — A
X P ()W (0) Pyt (0)F (0 (Ha(0) — X) ™ Py (0)W ) (0) P, 1 (6)
X (Pt (0)Ho 0 (0) P (0) = \) T P is (0)0(; 0)),
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), Pt (0) (Pt (0) Ho0(0) P (0) — 3) "

VP (0) (P (0) Ho(0) P (0) = )

X P 1o (0)W ) (0) P (0) [Fp, L,w)( a(0) = N)] 7 P (O)W ) (0)P,, 1 (0)
X (P (0)Ha,o(0) P (6) — ) P (0)1(a; 0))

n,l
—(1(:8), Py (8) (P (6) Hao ()P (6) — A) ™
% Py (W (0) P (0)[Fp, 0y (Ha(0) = N)] ™ Par ()W @ (0)P,,.11(0)
% (Pt (0)Ha (0)Pry (0) = A) ™ Pry ()W (0)P,, 11 (0)
% (P (0) Hoo (0)Prir(8) = A) ™ Pror (0)(; 0))

Fr.e(0,7) := (0(0;0), Py (0) (Pr1s (0) Horo (0) P (8) — A) ™

FW (0) (Pt (0)Ho Prys (0) — A) ™
i (0)[Fp. (o) (H, (6’)—A)}_1 Py ()W ()P, 1 (6)
1 (0) = N) P (O) W (0)

X Fp, 0)(Ha(0) = N) 7" P (0)W(T (0)6(050).

Lemma 5 c) and Lemma 12 a) imply

1 9*p3
a(0,0)] < ,
e TR Py B VR

which shows
E, 11(a)+d, 1 4 (a) p2
/ dA [f1,0(0,0)] < =% = O(a?).
En,,z’(a)*‘sn,z’,f(a) @

In order to estimate f15(0, A) it suffices to consider the first summand, which
can be estimated according to
(s )
[Baa(a) = AP
X Py (0)W' ) (0)P,, 10 (0) (P (0) Ho (0) Py (0) — N)
1 «
X [Fr, o0 (Ha(0) = V)] Puy ()WT (0)¢(a: 0))]

< c 9%9po
T Epi(a)=A2 g2

—1—=

Py ()W (9) P, 11 (0)
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where we used Lemma 5 c), Lemma 12 a) and Lemma 7 b) in the last step. It
follows that

o1 (@) 40, 17 4 (@)
/ a0 )] < 022 = 0(g) = 00",
En,l’(a)_én,l’,f(a)

Eventually, we obtain by Lemma 12 a) and Lemma 7 b)

f1,0(0,0)] = [(¥(c; 8), Poy (0)W ) (0) P (6)

_1_

[En,i(a) — A2
X (P (0)Ho(0) P (6) — X)
X []'—Pn,y(e)( a(0) — )]

X Py (0)W ) (0)P,,10(0)
X (Pt (0)Ho Pryr () — X) ' Py s (O)W (@ (0) Py 1 (8)¢h(; 6))

Py (0)W ) (0) Py e ()

ntr (0

1 g*
<07_
T [Bpi(a) = AP g%

Integration yields
i (@) +6,, 1 4 () g2
/ A [fr.0.0)] < CL = 0(a).
E, (a)=6, 1 _(a) @

Now, we have to treat the term f2(6, ). Using the resolvent identity we find
f2(0,N) = f2,4(0,N) + f2.5(0,A) + f3..(0,\), with

F2,0(0, ) :=(0(; 0), P 1 () (P (0) Hoo (0) Pt (6) — N)
= — (¥(;0), Ppov(0) (P (0) Hao (0
X Py ()W (0)P,, 11(0)
X (P (0)Hao(0)Prir (0) — X)~ Prir ()85 0))

-1

P (0)(050)),
VP (8) = N) "

and

f2,c(97 >‘) = W(OZ, 9_)5 ﬁn,l/ (9> (ﬁn l/(e)Ha O(Q)Pn 14 (9) - )\)
X Pryyr ()W (0) Py 11 (0) (Pro (0) Ho () P (6) = A) ™
X Pry i ()W ()P, 11 () (Pror (0) Hov 0 (0) Py (0) — \) ™ P is (0))(cx; 0)).

Using the dilation analyticity we obtain

-1

0)
0)

—_— o~

f2.a(0,) = 5 (¥(@;0),9(as; 0)),

Enﬁl(oz) —
which implies fa 4(6,\) — f2..(6,\) = 0. Moreover, we have

! = (¥(0; 0), W (0)(a; 0)) = 0

R0 = =
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and
1 _ o _
|f2,c(0,\)] = m“iﬁ(a; 0), Pt ()W ) ()P 10 (0)
X (ﬁn,l’ (9>Ha (Q)Fn,l’ (9) - /\)_1_n 4 (9>W(a) (9) n,l(e)"/)(a; 9)>|
92
= i) = AP

where we used Lemma 7 b) in the last step. Integration yields

E, 1 (a)+6,, 1 4 () 92
/ A fae(0, )] < CL = O(a).
En,l’(a)76n,,l’,—(a) a

Step 5: For A € [Epn(@) + dpn+(a),En + 6, 4] and also for A € [E, —
On,—y En1(a)—=dp,1,— ()] we have to proceed somewhat differently: We consider
the first case only and make a case distinction.

1st Case: 1 <1< n. Lemma 13 with ' = 1 implies ||Fp_,9)(Ha(0) 271 <
sin19|)\—Enc;/(oz)\—Cg2 < %, which we use to estimate f1(6,)). f2(0,\) can be
estimated as in Step 4. Note that for both the estimates on f1(6,A) and on

f2(6, \) the integration limits have to be changed accordingly. Thus, we obtain
as in Step 4

n1 (@) =81~ (@) . _
| e PO, — £(0, V)] = O(a).

2nd case: | = 1. Using the resolvent identity we find

F(0,0) = ((a58), Fp, ,(6) (Ha(8) — A) (e 0))

=((a;0), [Eni(0) — X — Q4 (N )] "1 (050))

— (1 0), [Ena(a) = X — QL (X 0)] !

% [Fp, o) (Ha(0) = N) = (Ena(@) = A+ e "La @ H — Q') (X 0))Po1(6)]

) —
X [Fpo0)(Ha(0) = )]~ 0(a:0)) =: F(0,\) + B(9,\),

where f(A,)\) is the first summand. Lemma 13 yields the estimate

| Fp, .0y (Ha(8) — N7 < ST Encl(a)\—cg2 and the same estimate for
[Eni(a) =X — Qnafl)()\; 6)]~!. Thus, Lemma 8 implies
Cg*Va

B0, \)] <
|1BO, M) = (sin|A — By 1(a)] — Cg?)?
and finally

n,1(0)=0n,1,—(a)
/ DAFO)|B6.N)] = O(g) = 0(a®?)
JoR S
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with the same reasoning as in the non-relativistic case (Proof of [19, Theorem
1], Step 2). The same holds for B(6, \).
To estimate f (0, \),we use

f(ov >‘) = <"/)(O‘; 9_)7 [En,l(a) - )‘]_11/}(04; 9)>+
+ (W(:0), [Eng(@) = NN 0)[Eni (@) — A — Q) (X 0)] (a3 0)).

The first summand cancels with the corresponding summand of f (0,\). The
second summand can be estimated by ¢ B (@)= (5in 19(\]/\—En,l(a)\—cg2)v which

implies

Eni(a)=0n,1,—(a) - ~ _
/ AAF)IF(6,0) — F(8,0)] = 0(?) = O(a)

Ep—6n._
as above. O
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