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Abstract. In this short note we study foliations on surfaes withrationally onneted leaves. Our main result is that on a surfae thereexists a polarisation suh that the Harder-Narasimhan �ltration of thetangent bundle with respet to this polarisation yields the maximalrationally onneted quotient of the surfae.2000 Mathematis Subjet Classi�ation: 14J26, 37F75
1 IntroductionLet X be a smooth projetive variety over the omplex numbers. In this notewe are interested in foliations with rationally onneted leaves. In [KSCT07℄ itis shown how to onstrut suh foliations from the Harder-Narasimhan �ltra-tion of the tangent bundle of the variety. This onstrution depends heavilyon a hosen polarisation, and therefore the question arises how this foliationvaries with the polarisation.There is another way to onstrut a �bration with rationally onneted �bers,the maximal rationally onneted quotient. This is a rational map whose �bersare rationally onneted. Almost every rational urve in X lies in a �ber ofthis map.We an ask if the Harder-Narasimhan �ltration of the tangent bundle alwaysindues the maximal rationally onneted quotient with respet to any polari-sation. The answer is negative already on surfaes as shown by an example ofThomas Ekl [Ek08℄.In this note we will prove that on surfaes there always exists a polarisation suhthat the Harder-Narasimhan �ltration yields the maximal rationally onnetedquotient.

Documenta Mathematica 14 (2009) 157–165



158 Sebastian Neumann

AcknowledgmentsThe author was supported in part by the Graduiertenkolleg �Globale Struk-turen in Geometrie und Analysis� of the Deutshe Forshungsgemeinshaft.The result is part of the author's forthoming Ph.D. thesis written under thesupervision of Stefan Kebekus. He would like to thank Stefan Kebekus, ThomasEkl and Sammy Barkowski for numerous disussions.The results in this note were presented at a Workshop in Grenoble in April2008. Similar results have been obtained independently in [SCT08℄.
2 Preliminary Results and NotationLet X be an n-dimensional projetive variety over the omplex numbers withan ample line bundle H . Given a torsion-free oherent sheaf F on X , we de�nethe slope of F with respet to H to be

µH(F) :=
c1(F) · Hn−1rk(F)

.We all F semistable with respet to H if for any nonzero proper subsheaf G of
F we have µH(G) ≤ µH(F).If there exists a nonzero subsheaf G ⊂ F suh that µH(G) > µH(F), we willall G a destabilizing subsheaf of F .
Theorem 2.1 ([Mar80, Proposition 1.5.℄). Let F be a torsion-free oherentsheaf on a smooth projetive variety and H be an ample line bundle on X.There exists a unique �ltration

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = Fof F depending on H, the Harder-Narasimhan �ltration or HN-�ltration, withthe following properties:(i) The quotients Gi := Fi/Fi−1 are torsion-free and semistable.(ii) The slopes of the quotients satisfy µH(G1) > . . . > µH(Gk).
Definition 2.2. Let F be a torsion-free oherent sheaf on a smooth projetivevariety. The unique sheaf F1 appearing in the Harder-Narasimhan �ltration of
F is alled the maximal destabilizing subsheaf of F .
Definition 2.3. Let F be a oherent torsion-free sheaf on a smooth projetivevariety with Harder-Narasimhan �ltration

0 = F0 ⊂ . . . ⊂ Fk = Fwith respet to an ample line bundle H . If the slope of the quotient Fi/Fi−1is positive with respet to H , then Fi is alled positive with respet to H .
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Remark 2.4. Note that the onstrution of the Harder-Narasimhan �ltrationnaturally extends to Q- and R-divisors, i.e. we do not need to assume that thehosen polarisation is integral.Obviously, the Harder-Narasimhan �ltration depends only on the numeriallass of the hosen ample bundle. In partiular it makes sense to ask how the�ltration of a given sheaf depends on the ample bundle sitting in the �nitedimensional vetor spae of all divisors modulo numerial equivalene.We an now state an important result originally formulated by Miyaoka andexpliitly shown in [KSCT07℄. For a survey on these and related results werefer the reader to [KSC06℄.
Theorem 2.5 ([KSCT07, Theorem 1℄). Let X be a smooth projetive varietyand let

0 = F0 ⊂ F1 ⊂ . . . ⊂ Fk = TXbe the Harder-Narasimhan �ltration of the tangent bundle with respet to a po-larisation H. Write µi := µH(Fi/Fi−1) for the slopes of the quotients. Assume
µ1 > 0 and set m := max {i ∈ N|µi > 0}. Then eah Fi with i ≤ m is a folia-tion, i.e. a saturated subsheaf of the tangent bundle losed under Lie braket.Furthermore the leaves of these foliations are algebrai and for general x ∈ Xthe losure of the leaf through x is rationally onneted.Let X be a smooth projetive variety and assume the onditions of Theorem(2.5) are ful�lled. Thus we obtain foliations F1, . . . ,Fk with algebrai andrationally onneted leaves. By setting

qi : X 99K Im(qi) ⊂ Chow(X)
x 7→ Fi-leaf through xwe obtain a rational map, suh that the losure of the general �bre is rationallyonneted, see [KSCT07℄ Setion 7.There is another map with this property alled the maximal rationally on-neted quotient, or MRC-quotient, for short based on a onstrution by Cam-pana [Cam81℄ [Cam94℄ and Kollár-Miyaoka-Mori [KMM92℄, see also [Kol96,Chapter IV, Theorem 5.2℄.

Theorem 2.6 ([KMM92, Theorem 2.7.℄). Let X be a smooth projetive variety.There exists a variety Z and a rational map φ : X 99K Z with the followingproperties:
• the �bers of φ are rationally onneted,
• a very general �ber of φ is an equivalene lass with respet to rationalonnetivity and
• up to birational equivalene the map φ and the variety Z are unique.In this paper we ask if the Harder-Narasimhan �ltration with respet to aertain polarisation yields the MRC-quotient. We will give a positive answerfor surfaes in the next setion.

Documenta Mathematica 14 (2009) 157–165



160 Sebastian Neumann

3 Rationally Connected Foliations on Surfaces and the MRC-
quotientIn this setion X denotes a smooth projetive surfae over the the �eld ofomplex numbers.We want to investigate the regions in the ample one whih indue the same HN-�ltration. More preisely we divide the ample one into parts, so that in eahpart we get the same HN-�ltration of the tangent bundle. With this at hand weare able to show that the MRC-quotient omes from the Harder-Narasimhan�ltration of the tangent bundle with respet to a ertain polarisation.In order to ompute the HN-�ltration of the tangent bundle on surfaes, weonly have to searh for a destabilizing subsheaf whose quotient is torsion-free.This is formulated in the next lemma.

Lemma 3.1. Let X be a smooth projetive surfae. If F ⊂ TX is a destabilizingsubsheaf with respet to a polarisation suh that TX/F is torsion-free, then theHarder-Narasimhan �ltration is given by 0 ⊂ F ⊂ TX.Proof. Let H be a polarisation and F a destabilizing subsheaf of TX withrespet to H . Consider the exat sequene
0 → F → TX → TX/F → 0.Using that the rank and the �rst Chern lass are additive in short exat se-quenes, we obtain

µH(TX) =
1

2
µH(TX/F) +

1

2
µH(F).Sine µH(F) > µH(TX), we therefore have µH(F) > µH(TX/F). That is,

0 ⊂ F ⊂ TXsatis�es the properties of the Harder-Narasimhan �ltration and by the unique-ness of the HN-�ltration we are done.
Notation 3.2. We write N1(X) for the Néron-Severi group and N1

Q(X) (resp.
N1

R(X)) for the vetor spae of Q�divisors (resp. R�divisors) modulo numerialequivalene on X . The onvex one of all ample R�divisors in N1
R(X) is denotedby AmpR(X).Now we de�ne the regions in AmpR(X) we are interested in. Let H ∈ N1

R(X)be an ample bundle. If TX is not semistable with respet to H , let F bethe maximal destabilizing subsheaf of TX with respet to H , i.e. the Harder-Narasimhan �ltration of TX with respet to H is given by 0 ⊂ F ⊂ TX. Weall
∆H :=

{

H̃ ∈ AmpR(X) |
(

c1(F) −
1

2
c1(TX)

)

· H̃ > 0

}the destabilizing hamber with respet to H .
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Remark 3.3. By Lemma (3.1) the ondition (c1(F)− 1

2c1(TX)) ·H̃ > 0 ensuresthat for all polarisations in ∆H we get the same HN-�ltration, namely 0 ⊂ F ⊂
TX . So we have indeed de�ned the regions in the ample one, in whih theHarder-Narasimhan �ltration of the tangent bundle remains onstant.Note that if the tangent bundle is semistable with respet to a ertain polar-isation, then we get a hamber suh that for all polarisations in this hamber
TX is semistable. This region is alled the semistable hamber.Conerning the struture of these hambers we prove the following lemma.
Lemma 3.4. Let X be a smooth projetive surfae. We have:(i) The destabilizing hambers and the semistable hamber are onvex onesin AmpR(X).(ii) The semistable hamber is losed in AmpR(X).(iii) The destabilizing hambers are open in AmpR(X).(iv) The destabilizing hambers and the semistable hamber give a deompo-sition of the ample one, i.e. the union of all hambers is the ample oneand the hambers are pairwise disjoint.Proof. The onvexity property of both the semistable hamber and the desta-bilizing hamber follows diretly from the linearity of the intersetion produt.Statement (iii) is a diret onsequene of the ontinuity of the intersetionprodut, sine for a maximal destabilizing subsheaf F ⊂ TX the ondition

(

c1(F) −
1

2
c1(TX)

)

· H > 0is an open ondition.To prove (iv) note that by de�nition of the hambers, eah polarisation appearsin at least one hamber. Sine for a given polarisation the assoiated maximaldestabilizing subsheaf of TX is unique, the polarisation appears in exatly onehamber.Statement (ii) is a diret onsequene of (iii) and (iv).In the proof of our main result, we will use the following orollary.
Corollary 3.5. Let X be a smooth projetive surfae. Let ℓ be a line segmentin AmpR(X), suh that ℓ does not interset the semistable hamber. Then ℓ isontained in a single destabilizing hamber.Proof. Assume ℓ intersets at least two destabilizing hambers. By Lemma(3.4) we get a partition of ℓ into disjoint open sets. This is impossible beause
ℓ is onneted.
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162 Sebastian NeumannTo prove semistability of the tangent bundle on ertain surfaes having manyautomorphisms, we will give a useful lemma. Let σ ∈ Aut(X) and F ⊂ TX .By means of the di�erential of σ, we an identify TX and σ∗TX . Thus we aninterpret σ∗(F) as a subsheaf of TX . For instane, if p ∈ X and F := TX⊗Ip,then σ∗(F) is identi�ed with TX ⊗ Iσ−1(p) ⊂ TX .
Lemma 3.6. Let X be a smooth projetive surfae and let σ ∈ Aut0(X). Let
F be the maximal destabilizing subsheaf of TX with respet to some polarisa-tion. We then have σ∗F = F . In partiular: If F is a foliation then theautomorphism σ maps eah leaf of F to another leaf of F .Proof. Let H ∈ AmpR(X) and let F be the maximal destabilizing subsheaf of
TX with respet to H . We ompute the slope of σ∗(F) ⊂ TX :

µH

(

σ∗(F)
)

= H ·
(

c1(σ
∗(F))

)

= H · σ∗(c1(F))
= H · c1(F)
> 1

2c1(TX) · H.We give an explanation of the third equality. Reall that the group of auto-morphisms ats on the Néron-Severi group. Sine N1(X) is disrete, Aut0(X)ats trivially on N1(X), i.e. σ∗(c1(F)) = c1(F).We therefore have shown that σ∗(F) is a destabilizing subsheaf of TX . ByLemma (3.1) and the uniqueness of the maximal destabilizing subsheaf of TX ,we onlude that σ∗F = F .
Example 3.7. Hirzebruh SurfaesLet Σn be the n-th Hirzebruh surfae and let π : Σn −→ P1 be the projetiononto the projetive line. We denote the �ber under the projetion by f andthe distinguished setion with sel�ntersetion −n by C0. Reall (see [Har77℄,hapter V.2) that N1

R(Σn) =< C0, f > and a divisor D ≡num aC0 + bf isample if and only if a > 0 and b > an. The anonial bundle is given by
−KΣn = 2C0+(2+n)f . The relative tangent bundle of π is a natural andidatefor a destabilizing subbundle. We have the sequene

0 → TΣn/P1 → TΣn → π∗TP1 → 0Let H := xC0 + yf be a polarisation. Then one an ompute that TΣn/P1 isdestabilizing if and only if −2x − nx + 2y > 0. In partiular we ompute for
n ≥ 2:

−2x − nx + 2y > −2x − nx + 2nx = −2x + nx ≥ 0.Therefore, for n ≥ 2 the HN-�ltration is given by
0 ⊂ TX/P1 ⊂ TX
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Figure 1: The ample one of X = Σ0 and the hamber struture. Here T 1

X/P1and T 2
X/P1 denote the relative tangent bundle of the �rst and seond projetion.

0 ⊂ T1

X/P1
⊂ TX

0 ⊂ T2

X/P1
⊂ TX

y

x

for all polarisations. In other words we obtain only one destabilizing hamber.For n = 0 we have Σ0 = P1×P1 and we get three hambers. The two destabiliz-ing hambers orrespond to the two relative tangent bundles of the projetions.They are ut out by the inequalities x > y and x < y. There is a hamber ofsemistability, whih is determined by the equation x = y.For n = 1 we see that for x > 3
2y the relative tangent bundle is destabilizing.Sine Σ1 is the projetive plane blown up at a point p, the group of automor-phisms is the automorphism group of the projetive plane leaving p �xed. Thedestabilizing foliation orresponds to the radial foliation through p in the plane.So if there were another foliation F oming from the Harder-Narasimhan �l-tration of TΣ1, we ould deform the leaves with these automorphisms. Thenwe would again obtain leaves of this foliation by Lemma (3.6). So unless F isthe foliation given by the relative tangent bundle of the projetion morphism,we ould deform eah leaf of F while leaving a point on the leaf not lying on

C0 �xed. Thus the foliation indued by F would have singularities on a denseopen subset of Σ1 whih is absurd. So the tangent bundle is semistable for
x ≤ 3

2y.Now we want to answer the question if there always exists a polarisation, suhthat the Harder-Narasimhan �ltration gives rise to the MRC-quotient.
Theorem 3.8. Let X be a uniruled projetive surfae. Then there exists apolarisation, suh that the maximal rationally onneted quotient of X is givenby the foliation assoiated to highest positive term in the Harder-Narasimhan�ltration with respet to this polarisation.Proof. To start, observe that there is always a polarisation A suh that c1(TX)·
A > 0. Indeed, there exists a free rational urve f : P1 → X . See [Deb01,Corollary 4.11℄ for a proof of the existene of suh a urve. Writing

f∗(TX) = O(a1) ⊕O(a2)
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164 Sebastian Neumannwith a1 + a2 ≥ 2, we ompute
−KX · f∗P

1 = a1 + a2 ≥ 2.Write ℓ := f∗P
1 for this urve. Sine ℓ is movable, it is in partiular nef. So foran ample lass H , the lass ℓ + ǫH will be ample. Thus for su�iently small ǫthe lass ℓ + ǫH will interset −KX positively.First let us assume that X is not rationally onneted. As we have just seen,we an �nd a polarisation H with c1(TX) ·H > 0. There exists a destabilizingsubsheaf F of TX , sine otherwise X would be rationally onneted by Theorem(2.5). Furthermore the slope of F has to be bigger than c1(TX)·H and thereforepositive. So this sheaf will give a foliation with rationally onneted leaves andhene the maximal rationally onneted quotient.Now we onsider the ase where X is rationally onneted. We then �x a veryfree rational urve ℓ on X . For a proof of the existene of a very free rationalurve see [Deb01, Corollary 4.17℄. This means that TX |ℓ is ample. So we knowthat eah quotient of TX |ℓ has stritly positive degree.Sine ℓ is movable, it is in partiular nef. Let H be an ample lass. Beause ℓis nef, we know that Hǫ := ℓ + ǫH is ample in N1

Q(X) for any ǫ > 0. Observethat c1(TX) · Hǫ > 0 for su�iently small ǫ, say for 0 < ǫ < ǫ0. If TX issemistable with respet to a ertain polarisation Hǫ with 0 < ǫ < ǫ0, the laimfollows sine TX has positive slope and indues a trivial foliation whih givesthe rationally onneted quotient. If TX is not semistable for all polarisations
Hǫ with 0 < ǫ < ǫ0, let Fǫ be the maximal destabilizing subsheaf of TX withrespet to Hǫ. Beause of Corollary (3.5) the ray Hǫ stays in one destabilizinghamber and Remark (3.3) ensures that F := Fǫ remains onstant.Now it is lear that for su�iently small ǫ both the slope of F and the slope of
TX/F will be positive with respet to Hǫ. Therefore the HN-�ltration of TXwith respet to Hǫ yields the maximal rationally onneted quotient.
References[Cam81℄ Frédéri Campana. Corédution algébrique d'un espae analytiquefaiblement kählérien ompat. Invent. Math., 63(2):187�223, 1981.[Cam94℄ Frédéri Campana. Remarques sur le revêtement universel des var-iétés kählériennes ompates. Bull. So. Math. Frane, 122(2):255�284, 1994.[Deb01℄ Olivier Debarre. Higher-dimensional algebrai geometry. Universi-text. Springer-Verlag, New York, 2001.[Ek08℄ Thomas Ekl. Lower bounds for Seshadri onstants. Math. Nahr.,281(8):1119�1128, 2008.[Har77℄ Robin Hartshorne. Algebrai geometry. Springer-Verlag, New York,1977. Graduate Texts in Mathematis, No. 52.
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