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ABSTRACT. We consider the moduli space H, ,, of n-pointed smooth
hyperelliptic curves of genus g. In order to get cohomological in-
formation we wish to make S,-equivariant counts of the numbers of
points defined over finite fields of this moduli space. We find recur-
rence relations in the genus that these numbers fulfill. Thus, if we
can make S,-equivariant counts of H, , for low genus, then we can
do this for every genus. Information about curves of genus 0 and 1
is then found to be sufficient to compute the answers for H, ,, for all
g and for n < 7. These results are applied to the moduli spaces of
stable curves of genus 2 with up to 7 points, and this gives us the
Sp-equivariant Galois (resp. Hodge) structure of their ¢-adic (resp.
Betti) cohomology.
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1. INTRODUCTION

By virtue of the Lefschetz trace formula, counting points defined over finite
fields of a space gives a way of finding information on its cohomology. In
this article we wish to count points of the moduli space H,, of n-pointed
smooth hyperelliptic curves of genus g. On this space we have an action of the
symmetric group S,, by permuting the marked points of the curves. To take
this action into account we will make S, -equivariant counts of the numbers of
points of H, ,, defined over finite fields.

For every n we will find simple recurrence relations in the genus, for the equi-
variant number of points of H, , defined over a finite field. Thus, if we can
count these numbers for low genus, we will know the answer for every genus.
The hyperelliptic curves will need to be separated according to whether the
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260 JONAS BERGSTROM

characteristic is odd or even and the respective recurrence relations will in
some cases be different.

When the number of marked points is at most 7 we use the fact that the
base cases of the recurrence relations only involve the genus 0 case, which
is easily computed, and previously known S,,-equivariant counts of points of
M, to get equivariant counts for every genus. If we consider the odd and
even cases separately, then all these counts are polynomials when considered
as functions of the number of elements of the finite field. For up to five points
these polynomials do not depend upon the characteristic. But for six-pointed
hyperelliptic curves there is a dependence, which appears for the first time for
genus 3.

By the Lefschetz trace formula, the S,-equivariant count of points of H, , is
equivalent to the trace of Frobenius on the f-adic S,-equivariant Euler char-
acteristic of H, . But this information can also be formulated as traces of
Frobenius on the Euler characteristic of some natural local systems Vy on H,.
By Theorem 3.2 in [1] we can use this connection to determine the Euler char-
acteristic, evaluated in the Grothendieck group of absolute Galois modules, of
all Vy on Hy ® Q of weight at most 7. These result are in agreement with
the results on the ordinary Euler characteristic and the conjectures on the mo-
tivic Euler characteristic of V on Hs by Bini-van der Geer in [5], the ordinary
Euler characteristic of V) on Hs by Getzler in [16], and the Ss-equivariant
cohomology of H, » for all g > 2 by Tommasi in [20].

The moduli stack ﬂg,n of stable n-pointed curves of genus ¢ is smooth and
proper, which implies purity of the cohomology. If the S,,-equivariant count of
points of this space, when considered as a function of the number of elements
of the finite field, gives a polynomial, then using the purity we can determine
the Sp,-equivariant Galois (resp. Hodge) structure of its individual ¢-adic (resp.
Betti) cohomology groups (see Theorem 3.4 in [2] which is based on a result of
van den Bogaart-Edixhoven in [6]). All curves of genus 2 are hyperelliptic and
hence we can apply this theorem to ﬂgﬁn for all n < 7. These results on genus
2 curves are all in agreement with the ones of Faber-van der Geer in [9] and
[10]. Moreover, for n < 3 they were previously known by the work of Getzler
in [14, Section 8].
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OUTLINE

Let us give an outline of the paper, where x. denotes the section.
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In this section we define S,-equivariant counts of points of H, , over
a finite field &, and we formulate the counts in terms of numbers ay |4,
which are connected to the H'’s of the hyperelliptic curves.

The hyperelliptic curves of genus g, in odd characteristic, are realized
as degree 2 covers of P! given by square-free polynomials of degree
2g+2 or 2g+1. The numbers ay|, are then expressed in terms of these
polynomials in equation (3.2). The expression for ay|, is decomposed
into parts denoted ug, which are indexed by pairs of tuples of numbers
(n;r). The special cases of genus 0 and 1 are discussed in Section 3.1.
A recurrence relation is found for the numbers u, (Theorem 4.12).
The first step is to use the fact that any polynomial can be written
uniquely as a monic square times a square-free one. This results in an
equation which gives U, in terms of uj for h less than or equal to g,
where U, denotes the expression corresponding to ug, but in terms of
all polynomials instead of only the square-free ones. The second step
is to use that, if g is large enough, U, can be computed using a simple
interpolation argument.

The recurrence relations for the u,’s are put together to form a linear
recurrence relation for ay|y, whose characteristic polynomial is given
in Theorem 5.2.

It is shown how to compute ug for any pair (n;r).

Information on the cases of genus 0 and 1 is used to compute, for all g,
ug for tuples (n;r) of degree at most 5, and ay|, of weight at most 7.

The hyperelliptic curves are realized, in even characteristic, as pairs
(h, f) of polynomials fulfilling three conditions. The numbers u, and
U, are then defined to correspond to the case of odd characteristic.

In even characteristic, a recurrence relation is found for the numbers ug
(Theorem 9.11). Lemmas 9.6 and 9.7 show that one can do something
in even characteristic corresponding to uniquely writing a polynomial
as a monic square times a square-free one in odd characteristic. This
results in a relation between U, and uy for h less than or equal to g.
Then, as in odd characteristic, a simple interpolation argument is used
to compute U, for g large enough.

The same amount of information as in Section 7 is obtained in the
case of even characteristic. It is noted that a|, is independent of
the characteristic for weight at most 5 (Theorem 10.3). This does not
continue to hold for weight 6 where there is dependency for genus at
least 3 (see Example 10.6).

The counts of points of the previous sections are used to get cohomo-
logical information. This is, in particular, applied to ngn forn < 7.

In the first appendix, a more geometric interpretation is given of the
information contained in all the numbers u4 of at most a certain degree
(see Lemma 12.8).

In the second appendix, we find that for sufficiently large g we can
compute the Euler characteristic, with Gal(Q/Q)-structure, of the part
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of the cohomology of sufficiently high weight, of some local systems V
on ‘H,. We will also see that these results are, in a sense, stable in g.

2. EQUIVARIANT COUNTS

Let k£ be a finite field with ¢ elements and denote by k., a degree m extension.
Define H, ,, to be the coarse moduli space of Hgm@/% and let F' be the geometric
Frobenius morphism.

The purpose of this article is to make S,,-equivariant counts of the number of
points defined over £ of H,,. With this we mean a count, for each element
o € Sy, of the number of fixed points of Fo acting on Hy,. Note that these
numbers only depend upon the cycle type ¢(o) of the permutation o.

Define R, to be the category of hyperelliptic curves of genus g that are de-
fined over k together with marked points (py, ..., p,) defined over k such that
(Fo)(pi;) = p; for all . Points of H,,, are isomorphism classes of n-pointed
hyperelliptic curves of genus g defined over k. For any pointed curve X that
is a representative of a point in H;g, the set of fixed points of Fo acting on
H, ,, there is an isomorphism from X to the pointed curve (Fo)X. Using
this isomorphism we can descend to an element of R, (see [17, Lem. 10.7.5]).
Therefore, the number of k-isomorphism classes of the category R, is equal to
HEe.

Fix an element Y = (C,p1,...,pn) in Ry. We then have the following equality

(see [12] or [17]): '
2 R b

[X]eR /22K
XY

This enables us to go from k-isomorphism classes to k-isomorphism classes:

. B I I
HE= Y 1= X Y mess X Ranoon

[Y]eR, /25, [Y]eER, /225 [X]ER /22K [X1€Rs /22
XY

k
For any curve C over k, define C’(o) to be the set of n-tuples of distinct points
(p1,...,pn) in C(k) that fulfill (Fo)(p;) = p;.

NOTATION 2.1. A partition A of an integer m consists of a sequence of non-
negative integers A1,..., A, such that |\ := >0 i\, = m. We will write
A= 17

Say that 7 € S,, consists of one n-cycle. The elements of C (T) are then given

by the choice of p; € C(ky) such that p; ¢ C(k;) for every ¢ < n. By an
inclusion-exclusion argument it is then straightforward to show that

C(7)] = pn/d)|Cka)l,
d|n
where p is the Mdbius function. Say that A is any partition and that o € Sy
has the property ¢(o) = A. Since C(a) consists of tuples of distinct points it
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directly follows that

v Ai—1
(2.1) @) =111 (Z(u(z‘/d)|0(kd)| jz‘)>.
i=1 j=0 \ dli
Fix a curve C over k and let Xy,..., X, be representatives of the distinct k-
isomorphism classes of the subcategory of R, of elements (D, q1, ..., g,) where
D =, C. For each X; we can act with Auty(C) which gives an orbit lying in
R, and where the stabilizer of X is equal to Auty(X;). Together the orbits of

Xi,...,X,, will contain |C(U)| elements and hence we obtain
1 C (o)
2.2 HI| = —_— = —_—
D D R DI e (el
[X]ERs/=k (CleHy(k)/=k

We will compute slightly different numbers than |H ; 7|, but which contain
equivalent information. Let C be a curve defined over k. The Lefschetz trace
formula tells us that for all m > 1,
(2.3)

|C(km)| = |C{m| =1+¢" — a,(C) where a,,(C) = Tr(Fm,Hl(C,;,(@g)).

If we consider equations (2.1) and (2.2) in view of equation (2.3) we find that

1
|HFZ = 7f0(qva’ (C’),,an(C)),
) me?%)/uk [Aut, (C)] 1

where f,(zo,...,Zy,) is a polynomial with coefficients in Z. Give the variable
x; degree i. Then there is a unique monomial in f, of highest degree, namely
23 - 2)v. The numbers which we will pursue will be the following.

DEFINITION 2.2. For g > 2 and any partition A define

(2.4) = S mnlai(cw.

[CleHy (k) /=

This expression will be said to have weight |A|. Let us also define

1
aO|g T Z |Autk(c)|7

[CleHy(k)/=k

an expression of weight 0.

3. REPRESENTATIVES OF HYPERELLIPTIC CURVES IN ODD CHARACTERISTIC

Assume that the finite field k£ has an odd number of elements. The hyperelliptic
curves of genus g > 2 are the ones endowed with a degree 2 morphism to P1.
This morphism induces a degree 2 extension of the function field of P!. If we
consider hyperelliptic curves defined over the finite field k£ and choose an affine
coordinate z on P!, then we can write this extension in the form y? = f(x),
where f is a square-free polynomial with coefficients in k of degree 2g + 1 or
2g + 2. At infinity, we can describe the curve given by the polynomial f in the
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coordinate t = 1/z by y? = t2972 f(1/t). We will therefore let f(oc), which
corresponds to ¢ = 0, be the coefficient of f of degree 2¢g + 2.

DEFINITION 3.1. Let P, denote the set of square-free polynomials with coeffi-
cients in k and of degree 2g + 1 or 2g + 2, and let Pé C P, consist of the monic
polynomials. Write C¢ for the curve corresponding to the element f in Pj.

By construction, there exists for each k-isomorphism class of objects in Hy(k)
an f in P, such that Cy is a representative. Moreover, the k-isomorphisms
between curves corresponding to elements of P, are given by k-isomorphisms of
their function fields. By the uniqueness of the linear system g3 on a hyperelliptic
curve, these isomorphisms must respect the inclusion of the function field of
P!. The k-isomorphisms are therefore precisely (see [16, p. 126]) the ones
induced by elements of the group G := GL3P (k) x k* /D where

D={((§ ) ack) CGLE®H) x b

and where an element
a b
v=1(% ) elec
induces the isomorphism
@ (

This defines a left group action of G' on Py, where v € G takes f € P, to
f € Py, with

ar+b ey
cx +d’ (cx+ d)st?

(3.1) flz)=

NOTATION 3.2. Let us put I :=1/|G| = (¢ —q¢)" (¢ —1)"1.

(cx + d)?972 (ax + b).

e2 cx +d

DEFINITION 3.3. Let x2 ,, be the quadratic character on k,,. Recall that it is
the function that takes a € k,, to 1 if it is a square, to —1 if it is a nonsquare
and to 0 if it is 0. With a square or a nonsquare we will always mean a nonzero
element.

LEMMA 3.4. If Cy is the hyperelliptic curve corresponding to f € P, then

am(Cp) == > xam(f(a)).

a€P (k)

Proof: ~ The fiber of C; — P! over a € Al(k,,) will consist of two points
defined over k,, if f(«) is a square in k,,, no point if f(«) is a nonsquare in
km, and one point if f(a) = 0. By the above description of f in terms of the
coordinate t = 1/, the same holds for &« = oco. The lemma now follows from
equation (2.3). O
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We will now rephrase equation (2.4) in terms of the elements of P;. By what
was said above, the stabilizer of an element f in P, under the action of G is
equal to Auty(Cy) and hence

62 wly= ¥ Haz op)™

[flePy/G
v N
|G| Z Haz Cr)™ Z H(_ Z X2,i(f(0¢))) i
feP,i=1 fep, i=1 acPL(k:)

This can up to sign be rewritten as

(3.3) I Z Z H H X2, l am

fe€Py (a1,1,-..,00,2,,)€S =1 j=1

where S := [],_, P'(k;)*, in other words, a; ; € P(k;) for each 1 < i < v and
1 <j < A;. The sum (3. 3) will be split into parts for which we, in Section 4,
will find recurrence relations in g.

DEFINITION 3.5. For any tuplen = (nq,...,n,,) € N2, let the set A(n) consist
of the tuples a = (ay,...,ay) € [[1", P (kn,) such that for any 1 <i,j <m
and any s > 0,

Fé(a;) =a; = ny|lsandi=j.
Let us also define A'(n) := A(n) N[~ Al(ky,).

DEFINITION 3.6. Let A, denote the set of pairs (n;r) such that n =
(n1,...,nm) €ENZpand ¢ = (r1,...,7m) € {1,2}™.

DEFINITION 3.7. For any g > —1, (n;r) € N, and o = (aq,...,05,) € A(n)

define
m
Z [ D (fl0)”
€P, i=1
and
(m5r) . (n r)
CRE I
a€A(n
CONSTRUCTION-LEMMA 3.8. For each A, there are positive integers ci,...,Cs
and my,...,mg, and moreover pairs (n(z);r(z)) € No, for each 1 <i <s, such

that for any finite field k,

S

) (@
a,\|g:§ ciuén T,

i=1
Proof: The lemma will be proved by writing the set S as a disjoint union of
parts that only depend upon the partition A, and which therefore are indepen-
dent of the chosen finite field k.

For each positive integer i, let ¢ =d; 1 > ... > d; 5, = 1 be the divisors of ¢.
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* Foreach 1 <i<w,letT;,...,T;s bean ordered partition of the set
{1,...,\;} into (possibly empty) subsets.

x For each 1 <4 < v and each 1 < j < 4y, let Qi j1,...,Qijk,, be
an unordered partition (where k;; is arbitrary) of the set T;; into
non-empty subsets.

From such a choice of partitions we define a subset S = S({T; ;},{Qi j.x})
of S consisting of the tuples (a11,...,a,,) € S fulfilling the following two
properties.

* If . € T, j then: o; ; € kj and Vs < j, o » ¢ ks.

* If x € Qz’,j,k and z’ € Qilﬁjgk/ then:

s F* (e 0) = a0 <= (i, 5, k) = (@', ', k).
Define n to be equal to the tuple

K1,1 K1,2 K1,89 K21 Ru,8y,
(d171, .. .,dlyl,dlyg, .. .,dlyg, ey d1751, A ,d1’51,d2’1, A ,dg’l, .. ~7du,6,,7 A ,du,gu).

Let p; jx be equal to 2 if either i/d;; or |Q; ;x| is even, and 1 otherwise.
Define r to be equal to

(P1,1,1, P1,1,25 -5 P1L1k1,15 P1,2,15 -+« 5 PLS1,K1sy 0 P2,1,15 -+« Pu,(sy,nu,éu)-

The equality

v
w® = 1 3 3 [T T e(f(a)

fe€Py (1,15, oy n, )ES =1 j=1
is clear in view of the following three simple properties of the quadratic char-
acter.
* Say that a € P!(k,), then if §/s is even we have x2;(f(a)) =
)(2,S(f(a))2 and if §/s is odd we have x2,5(f(@)) = x2,s(f()).
* If for any a, B € P! we have F*(a) = /3 for some s, then y2;(f(a)) =
XQﬁi(f(ﬂ)) for all s.
% Finally, for any o € P! and any s, we have xg,s(f(a))T = X2,s (f(a))2
if r is even and xa,s(f(a))” = x2,5(f(a)) if r is odd.
The lemma now follows directly from the fact that the sets S({T; ;}, {Qi.j.x}) C

S (for different choices of partitions {7} ;} and {Q; ;x}) are disjoint and cover
S. ]

The set of data {(c;, (n(V;r())} resulting from the procedure given in the
proof of Construction-Lemma 3.8 is, after assuming the pairs (n(?;r(®) to be
distinct, unique up to simultaneous reordering of the elements of n(® and r(®)
for each ¢, and it will be called the decomposition of ax|g.

DEFINITION 3.9. For a partition A, the pair
)\1 )\2 )\1/
—— ——
. V,...,V

(m;r) = ((1,...,1,2,...,2,...,0,. D) (1,...,1))
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will appear in the decomposition of ay |, (corresponding to the partitions T; 1 =
{1,...; i} for 1 < i <w,and Qi1 = {k} for 1 < i,k < v) with coefficient
equal to 1, and it will be called the general case. All other pairs (n;r) appearing
in the decomposition of ay|, will be refered to as degenerations of the general
case.

DEFINITION 3.10. For any (n;r) € Ny, the number |n| := Y"  n; will be
called the degree of (n;r).

LEMMA 3.11. The general case is the only case in the decomposition of ax|,
which has degree equal to the weight of ax|,.

Proof: If (n;r) appears in the decomposition of ay|, and is associated to
the partitions {7 ;} and {Q; jx}, then |n| = Y7 | Z?;l Kijd; . Since \; =
Z?;l ki; and 1 < d;; < 4, the equality |A\| = |n| implies that x; 1 = A; and

LEMMA 3.12. If (n;r) appears in the decomposition of ax|g then > " rin; < ||
and these two numbers have the same parity.

Proof: If (n;r) appears in the decomposition of ay|, and is associated to the
. 3; i.j

partitions {T;;} and {Qijk}, then Y7, rimy = 3071 30501 320 piwdi -

Let us prove the lemma by induction on m, starting with the case that m =

>oi_1 Ai. In this case we must have |Q; x| =1foralll <i<w, 1<j<4g;

and 1 < k < k;,j, and hence p; ;1 is only equal to two if i/d; ; is even. This

directly tells us that p; ;rd;; <4, and that these two numbers have the same
5

parity. Since \; = Zjizl Kij, it follows that ! rmn; < |A| and that these
two numbers have the same parity.
Assume now that m = k and that the lemma has been proved for all pairs (f; T)
with m > k. Since m < Y_7_; A; we know that there exists numbers i, jo, ko
such that [Qsg jo,ke| = 2. Let us fix an element x € Qj, jo.k, and define a new
pair (n’;r’) associated to the partitions {77 ;} and {Q; ; ;} by putting:

* Tilyj:T%,j foralll<i<vand1l<j<d,,

* ng,jo,ko = Qio,joko \ {:C},
* "i;mjo = Kig,jo T L and ngﬁjm“éodo - {x},

* Q; jr = Qi in all other cases.
The pair (n’,r’) thus appears in the decomposition of A, and m’ = k + 1.

Moreover, we directly find that Y " rin; < Zzn, r'n) and that these two

=1"1"
numbers have the same parity. By the induction hypothesis the lemma is then

also true for (n;r). O
EXAMPLE 3.13. Let us decompose a[y2)|, starting with the general case:

aly =1 Y (- eaf@) 21X Y xealf@)f(@) =

fEP; acPl(ky) fE€Py a,BeP (k2)
— u§(2,2);(171)) + 2u§(2,1);(172)) + Qué@);(?)) + ué(l,l);(w)) + u§(1)5(2)).
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EXAMPLE 3.14. The decomposition of a1 9y, starting with the general case:
ap gy = —ué@1’1’1’1)?(1’1’1’1’1)) _ 6u(g(271,171);(1,271,1)) _ 3u§(2,171);(1,272))
_ 4u§(2,1,1);(1,1,1)) _ ug(](Q,l);(l,Q)) _ u§(1,1,1,1,1);(2,1,1,1,1)) _ 6u£(}(1,1,1,1);(2,2,1,1))

o 4u§(1,1,1,1),(1,1,1,1)) o 3u(g(1,1,1);(2,2,2)) o 22u§(1,1,1);(2,1,1))

1,1);(2,2 1,1);(1,1 1);(2
— 7u{(1Di(22) _ gy, (LDI1D) _ o (D32,

3.1. THE CASES OF GENUS 0 AND 1. We would like to have an equality of the
same kind as in equation (3.2), but for curves of genus 0 and 1. Every curve of
genus 0 or 1 has a morphism to P! of degree 2 and in the same way as for larger
genera, it then follows that every k-isomorphism class of curves of genus 0 or 1
has a representative among the curves coming from polynomials in Py and P;
respectively. But there is a difference, compared to the larger genera, in that
for curves of genus 0 or 1 the ga is not unique. In fact, the group G induces (in
the same way as for g > 2) all k-isomorphisms between curves corresponding
to elements of Py and P that respect their given morphisms to P! (i.e a fixed
g3), but not all k-isomorphisms between curves of genus 0 or 1 are of this form.
Let us, for all » > 0, define the category A, consisting of tuples (C, Qo, ..., Q)
where C' is a curve of genus 1 defined over k£ and the @Q); are, not necessarily
distinct, points on C' defined over k. The morphisms of A, are, as expected,
isomorphisms of the underlying curves that fix the marked points. Note that
Ay is isomorphic to the category M 1(k). We also define, for all » > 0, the
category B, consisting of tuples (C, L, Q1,...,Q,) of the same kind as above,
but where L is a g3. A morphism of B, is an isomorphism ¢ of the underlying
curves that fixes the marked points, and such that there is an isomorphism 7
making the following diagram commute:

c % .,

Ll lL’

P! "~ Pl
Consider P; as a category where the morphisms are given by the elements of
G. To every element of P, there corresponds, precisely as for g > 2, a curve
C} together with a g3 given by the morphism to P!, thus an element of B.
Since every morphism in By between objects corresponding to elements of Py
is induced by an element of G, and since for every k-isomorphism class of an
element in By there is a representative in P, the two categories P, and By are
equivalent.
For all > 1 there are equivalences of the categories A, and B, given by

(CvQOa' "aQT) = (Ca |Q0 +Q1|5Q17"'7QT)5

with inverse

(C)L7Q1)"'7QT)'_) (C;|L_Q1|3Qla"'7Q7‘)'
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We therefore have the equality

Z | utk Haz o= Z |Autk }Ial

[X]eAn /=2y [Y]eBr /=y

The Riemann hypothesis tells us that |a,(C)| < 2g+/q7, for any finite field k
with ¢ elements and for any curve C' defined over k of genus g. For genus 1
this implies that |C(k)| > ¢ +1—2,/g > 0, and thus every genus 1 curve has a
point defined over k. There is therefore a number s such that 1 < |C(k)| < s
for all genus 1 curves C. As in the argument preceding equation (2.2) we can
take a representative (C, Qo, ..., Q) for each element of A,/ 2, and act with
Auti(C, Qo), respectively for each representative (C, L, Q1, ..., Q) of By/ =
act with Auty(C, L), and by considering the orbits and stabilizers we get

S " 1 v N S
J _ a;(C)Y = J a;(C
DU e TR CCARD WP o e D1
J=1 [X]€Ao/=, i=1 J=1  [Y]eBo/=
|C(k)|=j \C( =3
Since this holds for all » > 1 we can, by a Vandermonde argument, conclude
that we have an equality as above for each fixed j. We can therefore extend
Definition 2.2 to genus 1 in the following way:

(3.4) ax|1:= Z m :l_[aZ =

[(C.Qo)]e i=1
Mi1 (k)]
- Y ey Ho@r =15 [Tairr
[fleP/G a(f i=1 fepy i=1

which gives an agreement with equation (3.2).
All curves of genus 0 are isomorphic to P! and a,.(P') = 0 for all » > 1. In
this trivial case we just let equation (3.2) be the definition of a|o.

4. RECURRENCE RELATIONS FOR Ug IN ODD CHARACTERISTIC

This section will be devoted to finding, for a fixed finite field & with an odd
number of elements and for a fixed pair (n;r) € A,,, a recurrence relation for
ug. Notice that we will often suppress the pair (n;r) in our notation and for

instance write u, instead of u(n r).
Fix a nonsquare ¢ in k and an o = (aq,...,am) € A(n). Multiplying with the
element ¢ gives a fixed point free action on the set P, and therefore

(41) wge =1 3 T e (F@i)™ =1 3 T xem: (¢ £(0i)™ =

feP, i=1 feP, i=1

=1 Tz (07 Xz, (Fla)™ = (1) 20 rims g .

fep,i=1
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This computation and Lemmas 3.8 and 3.12 proves the following lemma.

LEMMA 4.1. For any g > —1, (n;r) € N, and a € A(n), if >i", rin; is odd
then ug o = 0. Consequently, ax|y is equal to 0 if it has odd weight.

Thus, the only interesting cases are those for which 2211 rin; is even.

REMARK 4.2. The last statement of Lemma 4.1 can also be found as a conse-
quence of the existence of the hyperelliptic involution.

We also see from equation (4.1) that

(4.2) Ugoa =1 (g —1) Z ngm (f(ai))” if Zrini is even.

fEPy i=1 i=1

DEFINITION 4.3. Let @, denote the set of all polynomials (that is, not neces-
sarily square-free) with coefficients in k and of degree 2g + 1 or 2g + 2, and let
Q; C Qg consist of the monic polynomials. For a polynomial h € Q4 we let
h(o0) be the coefficient of the term of degree 2g + 2 (which extends the earlier
definition for elements in P;). For any g > —1, (n;r) € N,, and a € A(n),

define .
=1 [[xem (h(e)™,
heQ, i=1
S UMD and UM = ZU(“)
a€A(n) i=—1

We will find an equation relating U, to u; for all —1 < ¢ < g. Moreover, for
g large enough we will be able to compute U,. Together, this will give us our
recurrence relation for ug.

With the same arguments as was used to prove equation (4.2) one shows that

(4.3) Uga=1(g—1) Z ng n; () ” if irini is even.

heQ, i=1 i=1
DEFINITION 4.4. For any a = (a1, ..., ay,) € A'(n), let b; = b2 be the number
of monic polynomlals l of degree j such that I(«;) is nonzero for all 7. Let us
also put b = bn = o b

LEMMA 4.5. For each j > 0 and n € N, we have the equality

(4.4) =@ +Y (DY @ T

=1 1§m1<...<mi§m
=1 m <j

from which it follows that b; does not depend upon the choice of o € A’'(n).

Proof: The numbers b; can be computed by inclusion-exclusion, where the
choice of 1 < m; < ... < m; < m corresponds to demanding the polynomial
to be 0 in the points qum,, ..., Qm,- 0

7
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NOTATION 4.6. For any a € A’(n), let p,, denote the minimal polynomial of
a; and put py 1= H:il Pa;-

LEMMA 4.7. For any o € A'(n) there is a one-to-one correspondence be-
tween polynomials f defined over k with deg(f) < |n| — 1, and tuples
(f(al)a cee ,f(Oém)) € H:il knz

Proof:  For any a € A’(n) we have deg(ps,) = n; and ged(pa,,Pa;) = 1 if
i # j. The lemma now follows from the Chinese remainder theorem, which
tells us that the morphism k[z]/pa — [[iv; k[z]/Pa; = T1iv) kn, given by
f(@)— (f(a1),..., f(am)) is an isomorphism. O

NOTATION 4.8. Let R; denote the set of polynomials of degree j and let Ré- be
the subset containing the monic polynomials.

We will divide into two cases.

4.1. THE CASE « € A'(n). Fix an element o € A'(n). Any nonzero polyno-
mial h can be written uniquely in the form h = fI? where f is a square-free
polynomial and ! is a monic polynomial. This statement translates directly
into the equality

s+1

Us,oz =1 Z Z Z HXQJH (f(ai))”XQ,ni (l(ai))Qm = ijus—j,ou
j=0

Jtk=slER] fePyi=1
because for any 8 € Al(ks), x2,s ((f12)(B)) = x2,s(f(B)) if {(8) # 0. Summing
this equality over all s between —1 and g gives

A g+1 ~
(45) Ug,a = ijug_j,a.
7=0

If r; = 2 for all 4, then it follows from equation (4.3) that

Usa=1(a=1) > [Txem (ha)” =1 (q=1)(bassa + bast)-
heq’ i=1

Summing this equality over all s between —1 and g gives
(4.6) Ugo =1(q—1)bogra for g > —1ifVi:r; =2.

In Ug,a we are summing over all polynomials h of degree less than or equal
to 2g + 2, and every h can uniquely be written on the form hy + pyhe, with
deghy < |n| — 1 and deghs < 29+ 2 — |n|. Hence if 2g + 2 > |n| — 1 we find
that

[n|—1 m

Ug,a _ Iq29+3—\n\ Z Z HXQ»’M (hl(ai))”.

s=1 hi€R,i=1
Using Lemma 4.7 we can reformulate this equality as

Ugo = 1?9510 > [T x2m (8"

(B1ye-sBm)ETTI kony =1
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For any j, half of the nonzero elements in k; are squares and half are nonsquares,
and thus if r; = 1 for some i, we can conclude from this equality that

(4.7 Uja=0 forg>(n|—-3)/2ifJi:r,=1.
4.2. THE CASE a € A(n) \ A'(n). Fix an element o € A(n) \ A'(n). We
can assume that ay = oo, and then & := (ag,...,q;) € A'(n) where n :=

(ng, N ,nm).

If h € Q, and f € P; such that h = f 2 for some monic polynomial [ (which is
then unique), then h(co) = f(00), because the coefficient of h of degree 2¢g + 2
must equal the coefficient of f of degree 2j + 2. As in Section 4.1 we get

(4.8)
g+1

Upo =1 > 3 3" £(00) [T xem () Xam, (1)) =" by
=2 =0

Jt+k=gleR] fePy

If > mn; is even, equation (4.3) and the definition of h(co) shows that

(4.9) Upa=T(g—=1) > []xem (h(c:)".

heRY, ,, =2

If r; = 2 for all 4, then equation (4.9) tells us that
(4.10) Uga =1(q—1)b5,,, forg>—1,Vi:r; =2

If 29 +2 > |n| — 1, an element h € R ,, can be written uniquely as h =
hi + paha, where deg(h1) < |n| — 2, deg(hs) > 0 and he monic. In the same
way as in Section 4.1 we can (if Y ., r;n; is even) use this together with
equation (4.9) and Lemma 4.7 to conclude that

(4.11) Uja=0 forg>(n|—-3)/2,J:r =1,
which of course also holds if Y_." | rin; is odd by Lemma 4.1 and equation (4.8).

REMARK 4.9. Fix an a € A(n). If there is an element 8 € Al(k) such that
B¢ {ar,...,an}, then T(a) := (T(a1),...,T(,)) is in A'(n), where T is the
projective transformation of P} defined by z — Bz /(z — ).

In the notation of equation (3.1), x2.n, (f(T(a;))) = ngni(f(ai)) (with e =
1). Since this induces a permutation of P, we find that ugy o = ug () and
similarily that Uy o = Ug r(a)- S0, if ¢ > |n|, then equations (4.5), (4.6) and
(4.7) will also hold for & € A(n) \ A'(n). By Lemma 4.10 in the next section,
we will see that this is true even if ¢ < |n|.

4.3. THE TWO CASES JOINED. In this section we will put the results of the two
previous sections together using the following lemma.

LEMMA 4.10. For any n = (na,...,nm), if n = (1,n9,...,0y) then l;;’ = bg’.
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Proof: Fix any tuple n = (nq,...,n,,) and put n:= |n|. If we let t;, = ¢" in
the formula

H(tifl):tl"'thrZ(*l)i Z tl"'tmtl ti’

i=1 i=1 1<my <...<m;<m m i

then the right hand side is equal to the right hand side of equation (4.4), and
hence

m
(4.12) [ -1 =0

i=1
Say that b% = Y27 c%,¢’ and b® = Y0 4" If i < j then equation (4.4)
implies that ¢f; = ¢} ,,; ; and hence ¢?; = >>)_ch ., .. By equation

(4.12) we know that ¢ — 1 divides b2, and if b2/(q — 1) = SI"J dig' then
& =dy14iej.

So, if ny = 1 and A = (ng,...,nym) then b7 /(g — 1) = b_; and thus &7, =

Ch—1n—1+i—j = C?z 0
NOTATION 4.11. Let us write J := I (¢ — 1) |A(n)|.

THEOREM 4.12. For any pair (n;r) € N,

& Jbogra ifViiri=2,9>—1;
ijug_j = . . . |n|—3
0 fJiry=1,92> 5.

Proof: The theorem follows from combining equations (4.5), (4.6), (4.7) and
equations (4.8), (4.10), (4.11), using Lemma 4.10. O

Note that with this theorem we can, for any (n;r) € N, such that r; = 2 for
all 4, compute uy for any g. Moreover, for any pair (n;r) we can compute ug
for any g, if we already know u, for all g < (Jn| — 3)/2.

LEMMA 4.13. For any n, ¢ — 1 divides b‘nn‘, and if we write b|“n|/(q -1) =
Z‘li‘o_l diqi then E)j - qB]—,l = d\n\—l—j-

Proof: 'The first claim is shown in the proof of Lemma 4.10. Using the notation
of that proof we find that b; — gbj—1 = 327 dn_11i—jq" — 3020 dpriejg™ =
dp—1—j. Note that d,,—1—; only depends upon n and not on g. O

THEOREM 4.14. For any pair (n;r) € Ny,

min(|n|—1,g+1)

. J (bagyo — qbog) if Viir; =2, g >0;
S (b —gbj1)ug; = {0 ! ! fFir=1,g> Rt
= iry=1, g > BL

Proof: Let us temporarily put F(s) := Zjié l;jus,j. From Lemma 4.13 we
find that l;j - ql;j,l =01if j > |n|— 1. The theorem then follows from applying
Theorem 4.12 to the expression F(g) — ¢F (g — 1). O

DOCUMENTA MATHEMATICA 14 (2009) 259-296



274 JONAS BERGSTROM

For g > (|n| —1)/2, Theorem 4.14 presents us with a linear recurrence relation
for ug which has coefficients that are independent of the finite field k.

EXAMPLE 4.15. If (n;r) = ((2,1,1,1);(1,2,1,1)) then b2/(¢—1) = (¢>—1)(q¢—
1)2 = ¢* — 2¢® +2q — 1. Applying Lemma 4.13 and then Theorem 4.14 we get
Ug — 2Ug_1 + 2ug_3 —Uug—4 =0 for g > 3.

EXAMPLE 4.16. Let us compute w4, for all ¢ > —1, when (n;r) =
((1,1,1),(2,2,2)). We have that u_; = J = 1 and since r; = 2 for all ¢,

Theorem 4.14 gives the equality ug = 2u_1 + J(¢*> — 3¢+ 1) = ¢*> — 3¢ + 3.
Applying Theorem 4.14 again we get

Uy — g1 +ug—2 = q* 9" (g —1)* for g >1.
Solving this recurrence relation gives

1,1,1);(2,2,2)) _ P93 (q—1)— (29+2)(¢> — 1)+ 3¢+ 1
(g+1)2

5. LINEAR RECURRENCE RELATIONS FOR 3|4

ug( for g > —1.

REMARK 5.1. From a sequence v,, that fulfills a linear recurrence relation with
characteristic polynomial C' we can, for any polynomial D, in the obvious way
construct a linear recurrence relation for v,, with characteristic polynomial C'D.
Thus, from two sequences v, and w, that each fulfill linear recurence relation
with characteristic polynomial C' and D respectively, we can construct a linear
recurence relation for the sequence v, + w, with characteristic polynomial

lem(C, D).

THEOREM 5.2. By applying Theorem 4.1/ to each pair (n;r) appearing in the
decomposition (given by Lemma 3.8) of ax|q, we get a linear recurrence relation
for axly. The characteristic polynomial C(X) of this linear recurrence relation
equals

174

1 i Ai

(5.1) v [ =
i=1

Proof:  Fix any pair (n;r) in the decomposition of ay|y and put n = |n|.
Lemma 4.13 tells us that IA)j — qgj_l is equal to the coefficient of ¢?~'17J
in b,/(¢q —1). If ¢ > n — 1, then these numbers are also the coefficients
in the recurrence relation given by Theorem 4.14. By equation (4.12), the
characteristic polynomial C(y,) of this linear recurrence relation is equal to
(T, (X = 1)) /(X = 1).
We find that the linear recurrence relation in the general case (see Defini-
tion 3.9) will have characteristic polynomial equal to C. Moreover, we find (by
their construction in the proof of Lemma 3.8) that if (n;r) is a degenerate case
then Ciy,r)|C. The theorem now follows from Remark 5.1. O

Theorem 5.2 tells us that if we can compute ay|y for g < |A\| — 1 then we can
compute it for every g. But note that by considering the individual cases in the
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decomposition of ay|, we will do much better in Section 7, in the sense that we
will be able to use information from curves of only genus 0 and 1 to compute
ax|g for any A such that |A| <6.

EXAMPLE 5.3. For A = [14, 2] the characteristic polynomial equals (X —1)*(X +
1), so if V is a particular solution to the linear recurrence relation for aj;4 4|y
then

aps g lg = Vg + Azg® + Aag® + Arg + Ao + Bo(—1)7,
where Ag, A1, A2, Az and By do not depend upon g.

6. COMPUTING ug

In this section we will see that we can compute ug for any choice of a pair
(n;r) € M,,. This is due to the fact that if C' is a curve of genus 0 then, for
all 7, |C(kr)| = 1+ ¢" or equivalently a,(C) = 0.

CONSTRUCTION-LEMMA 6.1. For each (n;r) € N, there are numbers
c1,...,cs and pairs (nW:rM) . (0n®);r) where v = (2,...,2) for all
i, such that for any finite field k,

S
. (i) . p(9)
uén’r) = E Ciu(()n x ).

i=1
Proof: Fix a pair (n;r) € N,,. We will use induction over the number n := |n|,
where the base case n =0 is trivial.
Let us put (n;7) = ((n2,...,mm);(r2,...,7m)). For an & = (ag,...,qm) €

A(n) let PL(k;) be the set of all points in P'(k;) \ {az,...,,} that are
not defined over a proper subfield of k;. The set of ay € P(k,,) such that
(o1,...,0m) € A(n) then equals

(6.1) P (ko )\ (I Ph(ki) | {eur.. ., Fas}).
i|lny ni|ny

Assume now that the lemma has been proved for all pairs of degree strictly less
than n. By reordering the elements of the pair (n;r) we can assume that r; = 1,

because otherwise r = (2,...,2) and we are done. By applying equation (6.1)
we get
(6.2) I Z HX2,ni (f(%‘))n =1 Z HXz,ni (f(Oéi))n'
a€A(n)i=1 &EA(R) i=2
: (_am CH=> > xem(fB) = D nixam (f(ai)))-
iln1 BePL (k;) ni|na

Let us put (n®;r®) = ((i,na,...,nm); (ni/i,ro,...,7m)) for all i that divides
n; and ¥ = (rg,... .7 1,701 /N, Tix1, .., Tm) for all n; that divides nj.
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Summing both sides of equation (6.2) over polynomials f € Py and using that
an, (C¢) = 0 then gives

nor n(@ . p(® a0
(6.3) ué’):—Zué ) anug ),
ilny ni|ny
Since || < n and [n®| < n, the lemma follows by induction from equa-

tion (6.3). O

EXAMPLE 6.2. In the case (n;r) = ((6,6,3,1,1);(1,1,2,2,2)), the first step in
the procedure in the proof of Lemma 6.1 equals

(nyr) ((6,3,3,1,1);(1,2,2,2,2)) ((6,3,2,1,1);(1,2,1,2,2)) ((6,3,1,1,1);(1,2,2,2,2))
U = —u —u —u
0 0 0 0
6,3,1,1);(1,2,2,2 6,3,1,1);(2,2,2,2
_ 5u(()( )5( ) Guf)( )5( ).

EXAMPLE 6.3. In the case (n;r) = ((4,1,1,1);(1,2,1,1)), the procedure in the
proof of Lemma 6.1 gives

W) (2 2:2.2)) 4 (LLD:2:2.2)) 4 (LD:22) | (@):(22)_ (052)

7. RESULTS FOR WEIGHT UP TO 7 IN ODD CHARACTERISTIC

We will in this section show that we, for any number g and any finite field k£ of
odd characteristic, can compute all ay|, of weight at most 7. This is achieved
by decomposing ay |, using Lemma 3.8 and employing the recurrence relation of
Theorem 4.12 on the different parts. This involves finding the necessary base
cases for the recurrence relations and that will be possible with the help of
results on genus 0 curves obtained in Section 6, and on genus 1 curves obtained
in the article [1].

We will write ax|g,0da and ug 0qa to stress that all results are in the case of odd
characteristic. See Section 10 for results in the case of even characteristic.

EXAMPLE 7.1. Theorem 4.12 is applicable even if the degree is 0 (if considered

as a case when r; = 2 for all 4) and with b; = >7_, ¢'. From Theorem 4.12 we

find that aglo.eaa = J¢* = q/(¢*> — 1) and again from Theorem 4.12 that
aolgoas = J(¢*91? = ¢*9) = ¢*971 forg>1.

This result can also be found in [7, Proposition 7.1].

7.1. DEGREE AT MOST 3. When the degree of the pair (n;r) is at most 3 we

find using Theorem 4.12 that we do not need any base cases to compute u, for
every g.

EXAMPLE 7.2. Let us consider (n;r) = ((2); (1)). Wehaveu_1 =J =1/(¢+1)
and applying Theorem 4.12 we get uop = —(¢+1)u—; = —1. Theorem 4.14 tells
us that ug = —uy_; for g > 1 and thus

uf i = (1) for g2 0.
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EXAMPLE 7.3. The result for ajg|g,odd is

ap)lg,odd = _u§(2);(1)) _ u§(1);(2)) = (~1)9 — ¢ for g > 0.
ExXAMPLE 7.4. The result for a[12]|gyodd is

ap2lg,0dd = u§(1,1);(1,1)) + ug(l);(Q)) — —14+¢% forg>0.

REMARK 7.5. The result for (¢* + 1) ag|g,0dd — @[2]|g,0dd can be found in lecture
notes by Bradley Brock and Andrew Granville from 28 July 2003.

EXAMPLE 7.6. Consider the case (n;r) = ((1,1,1);(2,1,1)). We have u_y =
J =1 and from Theorem 4.12 we get ug = —(¢—2)u_; = —g+2. Theorem 4.14
gives the recurrence relation uy = 2ug_1 — ug—2 for g > 1 and hence

ulba D) = g(—q 1) — g+ 2.

7.2. DEGREE 4 OR 5. From Theorem 4.12 we find that when the degree of the
pair (n;r) is 4 or 5 we need the base case of genus 0. But the genus 0 case is
always computable using Lemma 6.1 and then Theorem 4.12, and hence the
same is true for u, for all g.

EXAMPLE 7.7. For (m;r) = ((2,1,1);(1,1,1)) we have u_; = ¢ and from
Lemma 6.1 it follows that
W(GADILD) __ (20:02) _ (@i22) | () _ o

Using Theorem 4.12 we get u; = —(q — 1)ug — (¢*> — ¢ — Du_1 = —¢> + 2¢.
Solving the recurrence relation uy = ug—1 —ug—2 —ug—3 for g > 2, coming from
Theorem 4.14, gives

‘ 1
uf{B D) = 1 (> —a)(=29+ (-1)? = 1) +¢.

EXAMPLE 7.8. The result for a2 9)|g,0da is

a2 2 lgsoaa = —u{EHDIGLD) 4 (21:0,2) _ (L1111
— {Di22) _ g (LDHLD) _ (i) -
292 1 12 if g = 0 mod 2
q 2g 3 q g
= — ¢+ = +q—2)+=
e A TAC B A 2{q3q2 if g =1 mod 2

7.3. WEIGHT 6. We will not be able to compute u, for all pairs (n;r) of de-
gree 6. But we will be able to compute uy for all pairs (n;r) that are general
cases in the decomposition of ay|, for A’s of weight 6. This will be sufficient
to compute all ay|, of weight 6, because we saw in Lemma 3.11 that only the
general case will have degree 6 and therefore all degenerate cases are covered
in Sections 7.1 and 7.2.

Let ug be the general case in the decomposition of ax|g. When the degree is
equal to 6 we see from Theorem 4.12 that we need the base cases of genus 0
and 1 to compute uy for all g. As we know, we can always compute v using
Lemma 6.1. For genus 1, the numbers ay|; have been computed for weight up
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to 6 by the author. This was done by embedding every genus 1 curve with a
given point as a plane cubic curve, see [1, Section 15]. Since we know all the
degenerate cases in the decomposition of ay|; we can then compute the general
case uj.

EXAMPLE 7.9. Let us deal with (n;r) = ((6); (1)) which is the generic case in
the decomposition of ajg|g,0aa and for which we have u_; = J = @ +q-1.
Using Lemma 6.1 we get

ué(ﬁ);(l)) - —ué@);@)) _ ué@);(l)) _ ug(l);@)) _ 7ué(3);(2)) —_—

Using the results of [1, Section 15] we find that ag|1 = ¢ — 1. Decomposing
aggly gives agly = —ul@ W) (@) _ (@) _ () Ty, using
Example 7.2, we get u1 = —(¢q—1) — (¢* —¢* —q—1)—1—-¢* = —¢* +1. We
can now apply Theorem 4.12 which gives us = —(q + 1)us — (¢*> + ¢ + 1)ug —
@+ +a+Dur=—¢"+¢* —q,us = —up —uy —up —u_1 = ¢° +¢* — ¢*
and ug = —u3z — us —u; — ug — u_1 = 0. If we then multiply the characteristic
polynomial for the linear recurrence relation of uy by X — 1 we get uy = ugy_g
for all g > 5.

EXAMPLE 7.10. The result for ajg)|g,0da is

2g+3
6);(1 3);(2 2);(1 1);(2 2 q (¢g—1)
a[61|g’odd:7ué()())7ué()())7u£]()())7ug()()):7q97 pep— +
¢ +1 if g=0mod 6
‘-2 if g=1mod 6
7> if g=0mod 3 q6 2 .g
1 9 e ¢ —q¢ +qg+1 if g=2mod 6
+—5———=3-¢ -1 ifg=1mod3 + 6 4 3 .
?—q+1 ) —q¢ —q¢ +¢ —1 ifg=3mod6
1 if g =2 mod 3 .
1 if g=4 mod 6
- —q if g =5 mod 6

REMARK 7.11. For any choice of A and g, consider a|g,04q as a function of the
number ¢q of elements of the finite field k of odd characteristic. If A is of weight
at most 7 it follows from our computations that this function is a polynomial
in the variable q.

This will not continue to hold when considering for instance a;e 3, that is, also
including finite fields of even characteristic, see Example 10.6. But it will also
not hold for instance for afy10y|1,04a, which for prime fields will be a polynomial
function minus the Ramanujan 7-function, compare [15, Corollary 5.4].

8. REPRESENTATIVES OF HYPERELLIPTIC CURVES IN EVEN CHARACTERISTIC

Let k be a finite field with an even number of elements. We will again describe
the hyperelliptic curves of genus g > 2 defined over k by their degree 2 mor-
phism to P'. If we choose an affine coordinate z on P! we can write the induced
degree 2 extension of the function field of P! in the form 32+ h(x)y + f(x) = 0,
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where h and f are polynomials defined over k that fulfill the following condi-
tions:

(8.1) 29 + 1 < max(2deg(h),deg(f)) < 29 + 2;

(8.2) ged(h, f2 + fh'?) =1,

(8:3) £ ged(ho, f2 + fochl2).

The last condition comes from the nonsingularity of the point(s) in infinity,
around which the curve can be described in the variable t = 1/z as y? +

hoo(#)y + foo(t) = 0, where ho = t9T1A(1/t) and foo := t29F2f(1/t). We
therefore define h(oo) and f(oco) to be equal to the degree g + 1 and 2g + 2
coefficient respectively. For a reference see for instance [19, p. 294].

DEFINITION 8.1. Let P, denote the set of pairs (h, f) of polynomials defined
over k, where h is nonzero, that fulfill all three conditions (8.1), (8.2) and (8.3).
Write C(y, 5y for the curve corresponding to the element (h, f) in P,.

To each k-isomorphism class of objects in Hy(k) there is a pair (h, f) in P,
such that C, sy is a representative. All k-isomorphisms between the curves
represented by elements of P, are given by k-isomorphisms of their function
fields, and since the g2 of a hyperelliptic curve is unique the k-isomorphisms
must respect the inclusion of the function field of P'.

Identify the set of polynomials I(x) defined over k and of degree at most g + 1
with k972, and define the group homomorphism

By - GLE(k) x k* — Aus(k+), o5(( ¢ 1), e)(1(a)) =
1 g+1,(aT+0b
e (cx+d)+l(—cx+d).

Now define the group Gy := (k972 x4, (GLP(k) x k*)) /D where

D = {(0, ( 0 2 ),a9+1> ta € k') C k92 xy, (GLP(K) x k7).

The k-isomorphisms between curves corresponding to elements of P, are then
precisely the ones induced by elements of G, by letting

1=l (¢ ))eled,

induce the isomorphism

(2.4) <az+b e(y +1(z)) ) .

cx +d’ (cx+ d)sti

This defines a left group action of G4 on Py, where v = [(I, A, e)] € G, takes
(h, f) € Py to (h, f) € P,, with

(h, ) = (g(A, €)(h), e hag (A, €)(f) + Ldg (A, €)(h) +17).
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DEFINITION 8.2. Let 7, be the function that takes (a,b) € k2, to 1 if the
equation y2 + ay + b has two roots defined over k,,, 0 if it has one root and —1
if it has none.

LeEMMA 8.3. If Cyy, 5y is the hyperelliptic curve corresponding to (h, f) € P,
then

an(Cnp) == D Tm(h(a), f().

a€P (k)

Proof: Follows in the same way as Lemma 3.4. 0

NOTATION 8.4. Let us put I, := 1/|G,| = ¢~ (¢® — q) "1 (g — 1)~}
In the same way as in the case of odd characteristic we get the equality
v X
alh=1, Y TI(- X w(he) @)
(h,f)ePy i=1 aePl(k;)

All results of Section 3.1 are independent of the characteristic and hence we
extend the definition of ay |, to genus 0 and 1 in the same way as in that section.

DEFINITION 8.5. For any g > —1, (n;r) € N;, and a € A(n) define

g =1y >[I (rlea), fa)"
(h,f)ePy i=1
and
U(n r) _ Z u(n r)
a€A(n)

CONSTRUCTION-LEMMA 8.6. For each A\ we have (in even characteristic) the
same decomposition of ax|g as given by Construction-Lemma 3.8.

Proof: The following properties of 7,,, for (h, f) € P, correspond precisely to
the ones for the quadratic character.

* Say that a € P(k,), then 75(h ( ) f@) = 75(h(@), f())? it §/s is
even, and 75(h(a), f(a)) =75 (h(e), f(a)) if §/s is odd.

x If for any o, € P! we have Fé(a) = [ for some s, then
7i(h(a), f(a)) = 7 (h(a), f(B)) for all i.

* Finally, for any a € P! and any s, 7, (h(a), f(a))" =7, (h(a),f(a))2
if 7 is even and 7, (h(c), f(oz))r = 75(h(a), f(a)) if r is odd.

With this established we can use the same proof as for Construction-Lemma 3.8.
O

Since the decompositions are the same, Lemmas 3.11 and 3.12 also hold in even
characteristic.
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9. RECURRENCE RELATIONS FOR Ug IN EVEN CHARACTERISTIC

Analogously to Section 4, this section will be devoted to finding for a fixed pair
(n;r) € N,p, a recurrence relation for u,. Fix an s € k which does not lie in the
set {r?+7r:r € k}, that is, such that 71 (1, s) = —1. We define an involution on
Py sending (h, f) to (h, f + sh?). This involution is fixed point free and hence

Ug,a = Ig Z HTni (h(az)a f(ai))n =

(h,f)ePy i=1

=1, Y [T (bl flaw) + shP(an)) "™ = (1) ==y,
(h,f)ePy i=1
Thus, Lemma 4.1 also holds in the case of even characteristic.
DEFINITION 9.1. Let @, denote the set of pairs (h, f) of polynomials over k,
where h is nonzero and h, f are of degree at most g + 1, 2g + 2 respectively.
Extending the definition for P, above to a pair (h, f) € Qy, let h(oco) and f(o0)

be equal to the degree g + 1 and 2¢g + 2 coefficient of A and f respectively. For
any g > —1, (n;r) € N, and o € A(n) define

Ugg?cr,r) = Ig Z HTni (h(az)a f(o‘/‘z))rI

(h,f)€Qq =1
and
r(nsr) L 7(nr)
Ug( )= Z Ugya )
a€A(n)

REMARK 9.2. The connection between the sets (), and P, which we will present
below is due to Brock and Granville and can be found in an early version of
[7]. There the connection is used to count the number of hyperelliptic curves
in even characteristic, which is aglg,cven in our terminology.

LEMMA 9.3. Let h and f be polynomials over k. For any irreducible polynomial
m over k, the following two statements are equivalent:

* m|ged(h, f° + fI/°);
x there is a polynomial | over k, such that m|h and m?|f + hl + 2.

Proof: Say that o € k, is a root of an irreducible polynomial m and of the
polynomial ged(h, f>+ fh'*). Let I be equal to f7"/2. Working modulo (z—a)?
we then get
fHhl+12=f+nf"/2 4 f0"
= f(a) + f'(a) (@ = a) + W (a) ()" (z — @) + f(a)”"
= (¢ — a)(f'(@) + (@) f(@)" /) = (& — a)(f (@)® + W (a)* f(a))/* = 0,

which tells us that m?|f + hl+12. For the other direction, assume that we have
an irreducible polynomial m and a polynomial [ such that m|h and m?| f+hl+I>.
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Differentiating the polynomial f + hl + % gives m?2|f’ + h/l + hl’, and thus
m|f' + h'l. Taking squares we get m?|f’? + h’2[?> and then it follows that
m?2|f”? + h'2(f + hl) and hence m|f"? + h'2f. O

Let (h, f) be an element of Q4. In the first part of the proof of Lemma 9.3,
we may take for [ any representative of f¢"/2 modulo h, because for these I we
have f + hl +12 = f + hf?"/? + f7" modulo (z — a)?. In the second part it
does not matter which degree [ has. We conclude from this that Lemma 9.3
also holds if we assume that [ is of degree at most g + 1.

Choose g > —1 and let (h, f) € Q4. Lemma 9.3 gives the following alternative
formulation of the conditions (8.1), (8.2) and (8.3). For all polynomials [ of
degree at most g + 1:

(9.1) mlh, m?|f +hl+ 1> = deg(m) = 0;
(9.2) deg(h) =g+1 or deg(f+hl+1%) >2g+1.

Here we used that t| ged(hoo, f72 + fooh’2) if and only if t|he and there exists
a polynomial I, such that deg(loo) < g+ 1 and 2| foo + hooloo + 1%, In turn,
this happens if and only if deg(h) < g and there exists a polynomial ! of degree
at most g+ 1 such that deg(f + hl +1?) < 2g, where we connect [ and [, using
the definitions [ := 2971 (1/2) and I = t9FT1(1/t).

This reformulation leads us to making the following definition.

DEFINITION 9.4. Let ~ be the relation on Q, given by (h, f) ~4 (h, f+hl+1?)
if [ is a polynomial of degree at most g + 1. This is an equivalence relation
and since (h, f) = (h, f + hl + 1?) if and only if [ = 0 or [ = h, the number of
elements of each equivalence class [(h, f)], is ¢?T2/2. If (h, f) € P, C Q, then
[(h, f)]g C Py and we get an induced equivalence relation on P, which we also
denote ~g.

We will now construct all ~,4 equivalence classes of elements of @), in terms of
the ~; equivalence classes of the elements in P;, where 7 is between —1 and g.
This is the counterpart of factoring a polynomial into a square-free part and a
squared part in the case of odd characteristic.

DEFINITION 9.5. For z := [(h, f)]; € Pi/ ~; let V, be the set of all equiva-
lence classes [(mh, m?f)], in Qg for all monic polynomials m of degree at most
g — i. This is well defined since if (hi, f1) ~i (ha, f2) then (mhy,m?fi) ~,
(mha, m?f3).

LEMMA 9.6. The sets V, for all z € P;/ ~; where —1 < i < g are disjoint.

Proof: Say that for some z; and 29 the intersection V., NV,, is nonempty.
That is, there exist (hi, f1) € Pi,, (h2, f2) € Pi, and monic polynomials my,
mo such that mih; = mohs and m%fl = m%fg + mohsl + (2. If for some
irreducible polynomial » we have r|m; but r { ma, it follows that r|he and
r?|m3 fa + mahal 4+ [?. By the equivalence of conditions (8.2) and (9.1), this
implies that 7|(m3 f2)"2 +m3 f2(mahs2)"? which in turn implies that r| 52 + f2h%.
Since (hg, f2) € P;, we see that r must be constant. Hence every irreducible
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factor of my is a factor of msy. The situation is symmetric and therefore the
converse also holds.

So far we have not ruled out the possibility that a factor in m; appears with
higher multiplicity than in mq, or vice versa. Let m be the product of all
irreducible factors of my and put my := my/m, ma := ma/m and [ = I/m.
We are then in the same situation as above, that is mi1h; = mohs and ﬁﬁfl =
m%fg + m2h2i+ 12, Thus, if r is an irreducible polynomial such that r|m; but
r 1 Mg we can argue as above to conclude that r is constant. By a repeated
application of this line of reasoning we can conclude that m; and mo must be
equal.

It now follows that hy; = hg and that mall, thus (hy, f1) ~i, (ha, f2). This tells
us that V,, NV, is only nonempty when z; = z». O

LEMMA 9.7. The sets V, for all z € P;/ ~; where —1 <i < g cover Qg/ ~y.

Proof: Pick any element (h1, f1) € Q4 and put g; := g. We define a procedure,
where at the ith step we ask if there are any polynomials m; and [; such that
deg(m;) > 0, deg(l;) < g; + 1, m;|h; and m?|f; + hil; + (2. If so, take any
such polynomials m;, I; and define h; 1 := h;/my, fix1 = (fi + hil; +12)/m?
and g;+1 := g; — deg(m;). This procedure will certainly stop. Assume that the
procedure has been carried out in some way and that it has stopped at the jth
step, leaving us with some pair of polynomials (h;, f;).

Next, we take (hj, fj4+1) to be any element of the set [(hj, fj)]g, for which
deg(fj1) is minimal. Say that fji1 = f; 4+ hyl; + I3 where deg(l;) <
g; + 1 and let us define g;11 to be the number such that 2g;41 +1 <
max (2 deg(h;),deg(fj+1)) < 2gj4+1 + 2. The claim is now that (hj, fj4+1) €
Py, ... By definition, condition (8.1) holds for (h;, fj+1). If there were polyno-
mials mj41 and ljJrl such that mj+1|h]— and m?+1|f]—+1 +hjlj+1 +lj2-+1 then the
pair of polynomials m;41 and l; +1;41 would contradict that the process above
stopped at the jth step. Hence condition (9.1) is fulfilled for (h;, f;+1). Condi-
tion (9.2) is fulfilled if 2 deg(h;) > deg(f;+1) because then deg(h;) = gj+1 + 1.
On the other hand, if 2deg(h;) < deg(fj+1) and there were a polynomial
lj+1 such that deg(lj+1) < gj+1 + 1 and deg(fj+1 + hjlj+1 + lj2-+1) < 29j+1
then this would contradict the minimality of deg(f;j+1). We conclude that
(hj, fi+1) € Py )

Finally we see that if we put m,. := H:;ll m; and [ :=Y_7_, m;l;, then deg(l) <
g+ 1, hy = 1h; and fi = 73 fi11 + hal + 1>, This shows that V. contains
[(hla fl)]g where z := [(h‘j’ fj+1)]gj+1 € ng+1/ ~gjt1- U

Using the lemmas above we will be able to write Ug in terms of u; for i between

—1 and g. After this we will determine Ug for large enough values of g. We
divide into two cases.

NoTATION 9.8. Let S; denote all polynomials of degree at most j, and let
S% C Sj consist of the monic polynomials.
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9.1. THE CASE a € A'(n). Fix an element a € A'(n). It follows from
Lemma 9.6 and Lemma 9 7 that

(9.3) Ugo = 9 > Z > > Hfm (FHR2) ()"
l€5g+1 J==12€P;/~; [(h,f)];€V: i=1
LEMMA 9.9. Choose any s > 1 and t1,ts in ks. We then have
TS(’Utl,’U2t2) = 14(t1,t2) for allv#0 € kg;
Ts(t1, to + vty +v2) = 14(t1,ta)  for all v € k.
Proof: Clear. O

Fix elements z = [(ho, fo)]s € P;/ ~i and 8 € A'(ks) and define V/ to be the
subset of V. of classes [(1ho,m?fy)]y, where /m is a monic polynomial with
m(B) # 0. Lemma 9.9 shows that 75(h(8), f(8)) is constant for all s and
(h, f) such that [(h, )]y € V.. Applying this to equation (9.3) after recalling
Definition 4.4 we find that

qg+ 5

(9.4) Uyo = >y N Hm ((mh)(ai), (7° f)(i)) "™ =
Jj=—1zeP;/~;meS,_;i=1
qg+1 . . gt!
=1, ) Zbgjm j+1] Zbug”“
j=—1

where we have taken into account that the group of isomorphisms depends
upon g and that the numbers of elements of the equivalence classes of the
relations ~,_; and ~, differ by a factor ¢/. From the definitions we see that
qg—j Ig/lj =1.

For any g > —1 and any hg € Sg41 it is clear that

(9.5)

M r O i Vi v =2, 35 : ho(ay) = 0;
> I (holas), f(o) :{ 2045 i < = 2. holay) £ 0
(ho,f)EQ, i=1 q 1T » V9t ho(ay .

For any g such that 29 4+ 2 > |n| — 1, and any nonzero polynomial hg of degree
at most g + 1, Lemma 4.7 tells us that

(9.6) S I (holas), (1 + pafa)(ei)™ =

(ho,f1+pa f2)EQq =1

_ g2o+3-In] Z HTm(hO(ai)afl(ai))”:

f1€S|n|—1 =1

= ¢?t3nl Z H’Tni (ho(ai),ﬂi)ri =0 ifFi:r, =1,
(B ,Bm) ETTI Fon, =1

because for all a € ks there are as many b € ks for which 75(a,b) = 1 as there
are b € k; for which 74(a,b) = —
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Summing equations (9.5) and (9.6) over all hy € Sy4+1 and using that ¢*9731, =
Ig9t! we get

(9 7) U _ {I (q - 1)q9+1l;g+1 if Vi : Ty = 2, q Z 71,
. g =

0 if3i:m=1,9> 222

9.2. THE CASE o € A(n) \ A'(n). Fix an a € A(n) \ A’(n). We can assume
that ap = oo, and then & := (ag, ..., ) € A'() where i := (na,...,Npy).

LEMMA 9.10. For any element (h, f) € P! and any monic polynomial m of
degree g — 1,

Ts((mh)(00), (m? f)(00)) = 7s(h(00), f(00));
To((mh)(00), (f + 1h +1%)(00)) = 7s(h(c0), f(0)).
Proof: Clear. O

For any (h, f) € Qg it holds that if deg(h) < g+1 then 75(h(o0), f(c0)) = 0 for
all s. Define therefore P, and @} to be the subsets of P, and @, respectively,
that consist of pairs (h, f) such that deg(h) = g+1. We get an induced relation
~; on P/ and Q' and we let V’ be the set of all equivalence classes [(mh, m?f)],
in @y, for all monic polynomials m of degree g —i, where z := [(h, f)]; € P/ ~i.
In the same way as in Lemma 9.6 and 9.7 we see that the sets V' for all
z € P}/ ~;, where —1 < i < g, are disjoint and cover Q/ ~,. Using this
together with Lemma 9.10 and the arguments showing equation (9.4) we find
that

08) Opa=2 3 3 [Irmi(hlon), (7 +hi+ B)a)" =

€Sy 11 2€Q) /~g i=1

g+1 9 m g+1

2 S T r(Gan) e, @0 (@)™ = 3 by

=1 "o mER! =1
zEPj/ jmMER] 1

=1,7

If we choose g such that 2942 > |n| — 1, hg € Ry41 and we put p,(x) := x pa,
then we find in the same way as for equation (9.6) that

(9.9) Yoo I (hola), (fi +pafo)(e)™ =

(ho,f14+Pa f2)EQ, i=1
m

= g2 > I (o), 8:)" =0 it 3i:ry = 1.
(B1ye-sBm)ETTT by =1

Since equation (9.5) also hold for & € A(n) \ A’(n) we find, by summing over
all polynomials hg € Ry11, that

U _ {I(q - 1)qg+1b2+1 if Vi : T = 2, g Z _1’

9.10 o= _
( ) 7 0 ifﬂi:rizl,me'Tg.
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9.3. THE TWO CASES JOINED. Recall that J = (¢ — 1) I|A(n)|.

THEOREM 9.11. For any pair (n;r) € Ny,

g, Ta e ifViini=2,9> -1
§ : jUg—j = 0 ifdir=1,9> [n|-3
=0 B ) = 5 -

Proof: The theorem follows from combining equations (9.4), (9.7), (9.8) and
(9.10), using Lemma 4.10. O

THEOREM 9.12. For any pair (n;r) € Ny,

min(|n|—1,9+1) qu-i-l(l;ngl _ l;g) ifViir, =2, g>0;
o jnj—1

0 ifdiiri=1,9> ——.

(bj — abj—1)ug—; = {

Jj=0

Proof: In the notation of the proof of Theorem 4.14, the theorem follows from
applying Theorem 9.11 to the expression F(g) — ¢F (g — 1). O

THEOREM 9.13. By applying Theorem 9.12 to each pair (n;r) appearing in
the decomposition (given by Lemma 8.6) of ax|g,even we get a linear recurrence
relation for axlgeven- The characteristic polynomial of this linear recurrence
relation equals (5.1).

Proof: We know that the decomposition of ay|4 is independent of character-
istic, and since the left hand side of the equation in Theorem 9.12 is the same
as the left hand side of the equation of Theorem 4.14 this theorem follows in
the same way as Theorem 5.2. O

10. RESULTS FOR WEIGHT UP TO 7 IN EVEN CHARACTERISTIC

In this section we compute, for any number g and any finite field k of even char-
acteristic, all ax|g,even Of weight at most 7. First we will exploit the similarities
of Theorems 4.12 and 9.11.

LEMMA 10.1. If g > n — 2 then bogio = 9 byt1.
Proof: Fix a pair (n;r) € V,,. Lemma 4.13 tells us that l;j = qgj_l +djn|—1-j;
so if j > |n| then b; = gb;_; and thus b; = qj“_‘n‘l;‘n‘,l. O

REMARK 10.2. If r; = 1 for some i and g > (|n| — 3)/2, then the recursive
relations of Theorems 9.11 and 4.12 are equal. On the other hand, if r; = 2
for all ¢ we see from Lemma 10.1 that the recursive relations of Theorems 9.11
and 4.12 are equal if g > |n| — 2.

THEOREM 10.3. For weight less than or equal to 5, ax|geven = arlg,0dd GS
functions (in this case polynomials) in q.
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Proof: Consider any ay |, with |A| < 5. By Lemma 3.12 it suffices to show that
ug is independent of characteristic when (n;r) € Ay, is such that > ;" | ngr; < 5.
Clearly u_; = J is always independent of characteristic. Clearly, Lemma 6.1
also holds in even characteristic. We can therefore assume that r; = 2 for all
i in the case of genus 0. But if ; = 2 for all ¢ then |n| < 2 and hence, by
Remark 10.2, ug will be independent of characteristic.

This takes care of the base cases of the recurrence relations for u, when g > 1,
given by Theorems 4.12 and 9.11. Again by Remark 10.2 we see that (both
in the case when r; = 2 for all i, and when r; = 1 for some ¢) when g > 1
these recurrence relations are the same. We can therefore conclude that ug4 is
independent of characteristic for all g. O

We will now compute ax|g,cven for weight 6 in the same way as in Section 7.3.
To compute u, of degree at most 5 using Theorem 9.11 we need to find the base
case ug. But when the genus is 0 we can use Lemma 6.1 (which also holds in
even characteristic) to reduce to the case that r; = 2 for all 4, which is always
computable using Theorem 9.11.

What is left is the general case of the decomposition of ax|g even. We then need
the base cases of genus 0 and 1. Again, the genus 0 part is no problem. The
computation of ax|; in [1] is independent of characteristic. We can therefore
compute the genus 1 part (compare Section 7.3).

REMARK 10.4. As in the case of odd characteristic, for all g and all A such that
|Al <7, axlg,even is @ polynomial when considered as a function in the number
q (compare Remark 7.11) of elements of the finite field k of even characteristic.
In Theorem 10.3 we saw that the polynomial functions ax|g odd and axlg even
are equal (for a fixed g), if |A\| < 5. But for weight 6 there are A such that
the two polynomials are different, this occurs for the first time for genus 3, see
Example 10.6.

EXAMPLE 10.5. Let us compute g even, when (n;r) = ((1,1);(2,2,2)). We see
that u_; = 1 and Theorem 9.11 gives ug = ¢? — 3¢ + 2. This result is different
from the 1 in the case of odd characteristic, see Example 4.16. Continued use
of Theorem 9.11 gives u; = ¢* — 3¢> + 5¢°> — 6¢ + 3 and then Theorem 9.12
gives

Uy =2ug_1 —Ug—2 +q*9 (g —1)* for g > 2.

Solving this leaves us with

w(L113(2,2,2) — (=" +9(¢> = 1) =3¢ —2)
g,even (q+ 1)2

EXAMPLE 10.6. The result for aji6)|g,cven is

5
a19)lg.cven = apsilgoaa — g 9(9 = 1)(g — 2)((9—3)(g—1) —4).
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EXAMPLE 10.7. The result for a2 4lg,cven is

glg—1) if g =0 mod 4;

1J(g—D(g-1) if g =1 mod 4;

a2 alg.even = (12, 41lg.00 — 4 (9—2)(g—1) if g =2 mod 4;
(9—3)(¢g—1)—4 if g=3mod 4.

11. COHOMOLOGICAL RESULTS

11.1. COHOMOLOGICAL RESULTS FOR H,,. Define the local system V :=
R'm.(Qg) where m : M,1 — M, is the universal curve. For every par-
tition (note that in this section we use a different notation for partitions)
A= (M > ... > Xy > 0) there is an irreducible representation of GSp(2g)
with highest weight (A1 — X2)y1 + ... + Agyg — |A|n, where the ; are suitable
fundamental roots and 7 is the multiplier representation, and we define Vy to
be the corresponding local system. Let us also denote by V its restriction to
‘Hg. In Lemma 13.5 below we will see that making an Sj-equivariant count of
points of Hy 5 over a finite field k, for all 7 < n, is equivalent to computing
the trace of Frobenius on the compactly supported f-adic Euler characteristic
e.(H, ® k, V), for every A with |A\| < n (where £ { |k|). For more details, see
[14] and [15].

Thus, we can use the results of Section 7 together with Theorem 3.2 in [1]
to compute the f-adic Euler characteristic e.(H, ® Q,V,) in Ky(Galg), the
Grothendieck group of Gal(Q/Q)-representations, for every A with |\ < 7.
Specifically, Theorem 3.2 in [1] tells us that if there is a polynomial P such
that Tr(F,e.(H, ® k,V,)) = P(q) for all finite fields k, possibly with the
exception of a finite number of characteristics, then e.(H, ® Q,V,) = P(q),
where q is the class of Qg(—1) in Ky(Galg). By excluding even characteristic,
Section 7 (see Remark 7.11) and Lemma 13.5 shows that there is indeed such
a polynomial for all g and all [A| < 7.

EXAMPLE 11.1. For g =8 and A = (5,1) we have
e.(Hy, ®Q,V,) =5q° — 28q* + 4q® + 96 — 34q — 88.

11.2. COHOMOLOGICAL RESULTS FOR ﬂgm AND M, ,,. Using the stratifica-
tion of ﬂg,n we can make an S,,-equivariant count of its number of points using
the Sp-equivariant counts of the points of Mj 5 for all § < gand 7 < n+2(g—g)
(see [13, Thm 8.13] and also [2]). Since all curves of genus 2 are hyperelliptic,
Moy, is equal to Ha . Above, we have made S,-equivariant counts of Hs
for n < 7 and they were all found to be polynomial in ¢q. These S,,-equivariant
counts can now be complemented with ones of M, ,, for n <9 (see [1, Section
15]) and of My, for n < 11 (see [18, Prop 2.7]), which are also found to be
polynomial in g. We can then apply Theorem 3.4 in [2] to conclude, for all
n < 7, the S,-equivariant Galg (resp. Hodge) structure of the ¢-adic (resp.
Betti) cohomology of Ma .
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In the theorems below we give the S,-equivariant Hodge Euler characteristic
(which by purity is sufficient to conclude the Hodge structure) in terms of the
Schur polynomials and L, the class of the Tate Hodge structure of weight 2
in Ko(HSq), the Grothendieck group of rational Hodge structures. That is,
the action of S,, on My, induces an action on its cohomology, and hence
H'(Ms,, ® C,Q) may be written as a direct sum of H}(Maz,, ® C,Q), which
correspond to the irreducible representations of S,, indexed by A F n and with
characters x. In terms of this, the coefficient of the Schur polynomial s is
equal to 1/x(id) - 3, (=1){[Hi(Ma,, ® C,Q)]. The results for n < 3 were
previously known by the work of Getzler in [14, Section 8§].

THEOREM 11.2. The S, -equivariant Hodge Euler characteristic ofﬂm is equal
to

(L7 + 8L® + 33L° + 67L* + 67L% + 33L + 8L + 1)s4
+(4L° + 26L° + 60L* 4 60L® + 26L? + 4L)s3;
+(2L°% 4 12L° + 28L* + 28L? + 12L* + 2L) sy
+(3L5 4+ 10L* 4 10L? + 3L?)s9;2
THEOREM 11.3. The S, -equivariant Hodge Euler characteristic OfMQ75 s equal
to
(L® 4+ 9L7 + 4915 + 128L° 4 181L* + 128L3 + 49L2 + 9L + 1)s5
+(6L7 4 48L° + 156L° + 227L* + 156L? 4 48L? + 6L)s4;
+(3L7 4 31LS + 106L° 4 159L* + 106L> + 31L? + 3L)s32
+ (8L + 4215 4 65L* + 4213 + 8L?)s3;2
+(6L° 4 26L5 + 43L* + 2613 + 6L%)s42,
+(L5 4 3L* 4+ L) 5518
THEOREM 11.4. The S, -equivariant Hodge Euler characteristic ofﬂgﬁ s equal
to
(LY + 11L8 4- 68L” + 229L5 + 420L° + 420L* + 229L3 + 68L2 4 11L + 1)s
+(7L® 4 75L7 + 317L° 4 641L° 4 641L* + 317L? + 75L? + 7L)s51
+(5L® + 62L7 + 292L° + 615L° + 615L* + 292L° + 62L* + 5L)s42
(L8 4 21L7 + 108LS + 236L° 4 236L* + 108L? + 21L? + L)s3:
+(17L7 4 118L° 4 278L° 4 278L* 4 118L3 4 17L?)s,>
+(16L7 + 115L8 + 27715 + 277L* 4 115L? + 16L?)s301
+(3L" + 22L° + 53L° + 53L* + 2213 + 3L%)s,s
+(9LS + 29L° + 29L* + 9L3)s3;3
+(6LS + 21L5 4 21L* + 6L%)s52,2

DOCUMENTA MATHEMATICA 14 (2009) 259-296



290 JONAS BERGSTROM

THEOREM 11.5. The S, -equivariant Hodge Euler characteristic of Mm s equal to

(L' + 12L° + 90L® + 363L" + 854L° 4 1125L° + 854L" + 363L°% + 90L> + .. .)s7
+(9L° 4 109L® + 580L" + 1529L° + 2109L° + 1529L* + 580L* + 109L> + 9L)s¢:
+(6L° 4 100L® + 606L" + 1728L° + 2430L° + 1728L" + 606L> + 100L° 4 6L)ss2
+(3L° 4 58L° + 389L7 4 1153L° + 1647L° + 1153L* + 389L° 4 58L° + 3L)s43
+(28L® + 258L7 + 831L° + 1221L° + 831L* + 258L° + 28L%)s;,2
+(34L% + 331L7 + 1133L° + 1675L° + 1133L* + 331L° + 34L°)s401
+(12L° + 140L7 + 489L° 4 738L° + 489L* 4 140L° + 12L7%)s32,
+(8LE + 91L7 + 335L° + 502L° + 335L* + 91L* + 8L?)s;,2
+(28L7 + 143L° + 228L° + 143L* + 28L°)s4ys
+(34L" + 170L° + 275L° 4+ 170L* + 34L°)s35,2
+(10L7 + 47L° + 77L% 4 47L* + 10L%) 53,
+(4L°% 4+ 7L + 4L%) 54,4
+(2L° 4 6L° + 2L")s5525
In Table 1 we present the nonequivariant informatigl (remember that all co-
homology is Tate) in the form of Betti numbers of My, for all n < 7. Notice
that the table only contains as many numbers as we need to be able to fill in

the missing ones using Poincaré duality. These results agree with Table 2 of
ordinary Euler characteristics for M ,, for n < 6 found in [4].

TABLE 1. Dimensions of H'(Ms, ® C,Q) for n < 7.

HO H2 H4 HG HS HlO
My 1 2
My | 1 5
Mas | 1 14
Moz | 1 | 12 | 44 67
Moy | 1 | 24 | 144 | 333
Maos | 1 | 48 | 474 | 1668 | 2501
Mag | 1 | 96 | 1547 | 8256 | 18296
Moz | 1 [ 192 | 4986 | 39969 | 129342 | 189289

The theorem used above also gives the corresponding results for My ,, forn <7,
which we will present in terms of local systems V) defined as above, but starting
from V := R7,Q. See [14, Section 8] for the results on e.(Mz ® C,V,), for
all \ of weight at most 3.
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THEOREM 11.6. The Hodge FEuler characteristics of the local systems V) on
M} = Mo @ C of weight 4 or 6 are equal to
ec(Mh, Vig) =0, e(Mh, Vi) =L>—1, e(M), Vo)) =—-L"
ec( IQ,V(Gyo)) = —1, eC(MIQ,V(&l)) :L2—L—1,
eC(M’Q,V(472)) = LS7 eC(MIQ,V(g,3)) =-L-1.

12. APPENDIX: INTRODUCING b;, ¢; AND 7;

This section will give an interpretation of the information carried by the u,’s.
It will be in terms of counts of hyperelliptic curves together with prescribed
inverse images of points on P! under their unique degree 2 morphism.

DEFINITION 12.1. Let C, be a curve defined over k together with a separable
degree 2 morphism ¢ over k from C to P!. We then define

bi(Cp) = {a € A(3) : [o (@) = 2,07 () € Clka)},
ci(Cy) = Ha € A[) : [ ()] = 2,97 () £ C(k:)}
and put 7;(Cy) = b;(Cy) + ¢;(Cy).
The number of ramification points of f that lie in A(¢) is then equal to |A(7)| —

r;(C,). Let \; denote the partition of ¢ consisting of one element. We then find
that

) 2¢;/9(Cy) if i is even;
Co(\)| = A bi(C,) — ¢ (C Y2 ’
[Co (M) = [AQ@)] + bi(Cy) — cil ¢)+{0 s odd.

and thus
an(Cy) = Z (Ci(qo) - bi(cap)) + Z (*bi(cap) - Ci(cw))-
iln: 2ifn 4:2i|n
DEFINITION 12.2. For partitions p and v, g > 2 and odd characteristic, define
1) I(v)

1
buculg == _ b (Ce)H (O )5
uColg > |Auty (Cy)] - (Cr) HCJ( r)
[CrleH (k) /= i=1 j=1

The number |u| + |v| will be called the weight of this expression.

REMARK 12.3. We can, in the obvious way, also define axb,c,|q, but from
the relation between a;(Cy), b;(Cr) and ¢;(Cy) we see that this gives no new
phenomena.

Directly from the definitions we get the following lemma.

LEMMA 12.4. Let the characteristic be odd and let f be an element of P,. We
then have

b0 =5 3 (i) +xeilr@))

acA()
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and )
2
Ci(Cf) = 9 Z (X2,i(f(04>) — X2, (f(a))).
a€A(i)
If the characteristic is odd we then use the same arguments as in Section 3 to
conclude that

()

bucylg = ﬁ Z H( Z x2,i (f(@)) + X2, (f(a))2)

fEP, i=1 acA()
I(v)

T s lr@) —xas (7(@)’)

J=1 a€cA(j)

Hi
Vj

Note that this expression is defined for all ¢ > —1. It can be decomposed in
terms of ugy’s (that is, we can find a result corresponding to Lemma 3.8) for
tuples (n;r) € N, such that

(12.1) | < [ul +[v].

REMARK 12.5. The corresponding results clearly hold for elements (h, f) in
P, in even characteristic and the decomposition of b,c,|, is independent of
characteristic.

ExAMPLE 12.6. For each N we have the decomposition:

1 , . 1 ‘ ‘
biwily = 5 () 4wV and eppgly = 5 (D) — u GO,

EXAMPLE 12.7. Let us decompose bji2)cjg|y into ug’s:

1 . . .
buzicply = §(“§(2’171)7(2’272)) n u(g(2,1,1),(2,1,1)) i 2u§(2,1),(2,2))

_ g, ((2,1,1)5(1,2,2)) _ , ((2,1,1)5(1,1,1)) _ 2,1);(1,2))

Ué( ( ul ) ) 2u§]( ) ).
In this expression we have removed the uy’s for which 221 rin; is odd, since
they are always equal to 0.

LEMMA 12.8. For each N, the following information is equivalent:

(1) all ug’s of degree at most N;
(2) all bucy|g of weight at most N.

Proof: ~ From property (12.1) of the decomposition of b,c, |y into ug,’s we
directly find that if we know (1) we can compute (2). For the other direction
we note on the one hand that

(12.2) 1Y TT®i(Cr) = ei(Cp)) ™ (b:(Cp) + eslCp)) ™

fep,i=1

can be formulated in terms of bucl,|g’s of weight at most

i=1
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If we on the other hand decompose (12.2) into uy’s we find that there is a unique
ug of degree S. The corresponding pair (n;r) contains, for each ¢, precisely s;
entries of the form i' and ¢; entries of the form i?. Every u, of degree S can
be created in this way and hence if we know (2) we can compute (1). O

REMARK 12.9. From the definitions of a;(C) and r;(Cy) we see that knowing
(1) and (2) in Lemma 12.8 is also equivalent to knowing

(3) all axrel|g of weight at most N,
where axrelq is defined in the obvious way. Moreover, axre|s = 0 if |A| is odd.

13. APPENDIX: THE STABLE PART OF THE COUNTS

REMARK 13.1. All results in this section are independent of characteristic.

DEFINITION 13.2 ([8, Def. 1.2.1, 1.2.2]). Let F be a constructible (¢-adic)
sheaf on a scheme X of finite type over Z. The sheaf F is said to be pure
of weight m if, for every closed point z in X and eigenvalue « of Frobenius
F (relative to k = k(z)) acting on Fz, « is an algebraic integer of weight
equal to m, i.e., such that all its conjugates have absolute value equal to ¢"/2.
The sheaf F is said to be mized of weight < m if there exists a filtration
0=F_1CFyC...CFn=7F of constructible subsheaves such that, for all
J, Fj/Fj—1 is pure of weight j.

THEOREM 13.3 ([8, Cor. 3.3.3, 3.3.4]). Let X 1, 7 be a scheme of finite type,
and F a constructible sheaf mized of weight < m. Then R'fiF is mized of
weight < m +i. Thus, for every finite field k, there is a filtration 0 = W_1 C
Wo C ... C Wiy = HY(X}, F) of Gal(k/k)-representations such that, for all
J, Wi /W;_1 is pure of weight j.

DEFINITION 13.4. Let Ko(Galy) be the Grothendieck group of Gal(k/k)-repre-
sentations. In this category, and with the notation of Theorem 13.3, we have
[Hi(X;, F)] = Z;:gf[Wj/Wj_l]. For any w > 0, let us define [Hi (X}, F)|¥ :=
ST Wi/ Wiaa] and e (X5, F) = 3050 (— 1) [HA(Xg, F)* in Ko(Galy). We
make the corresponding definition of ey’ (Xg, F) in Ko(Galg).

Recall the definition in Section 11.1, for a prime £ 1 ¢, of the f-adic local system
Vi on ‘Hy. If 7 is the canonical morphism from Hg®l?: to Hy, we put V§ = 7, V.
This is a constructible sheaf pure of weight |A|.

In this section we will see that if g and w are large enough we can compute the
trace of Frobenius on e?(H, ® k, V), which by definition (cf. Section 2 in [3])
is equal to e¥ (H,, V). We first make the connection to S,-equivariant counts
of points of Hy , explicit.

LEMMA 13.5. Let the symmetric polynomial s<y~ be the Schur polynomial
in the symplectic case (see [11, A.45]), and px the power sum. If scys =

2 |ul <A M Py then

(13.1) Tr(F e.(Hy ® k,VY)) = Z my g2 M= g |
ul<IAl
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From Theorems 4.14 and 9.12 we see that only the uy’s with all 7; = 2 have
inhomogeneous recurrence relations. Theorem 5.2 dealt with the homogeneous
part of the linear recurrence relations for ay|,. The following lemma, which is
a direct consequence of Theorems 4.14, 9.12 and 5.2, deals with the “inhomo-
geneities”.

LEMMA 13.6. Denote by t, the coefficient of u,gn;(Q""g)) in the decomposi-
tion of ax|g (given in Construction-Lemma 3.8). Each value of |n| for a pair
(n;(2,...,2)) appearing in this decomposition of axlg is at most equal to |A|/2.
Define the polynomial

m

fale) = ([ — 1)/ - 1).

i=1
For g > 0, let Rx(q)|g be the sum, over the pairs (n;(2,...,2)) that occur in
the decomposition of ax|y, of the polynomial quotients of,

(13.2) tn @RI (= 1) fala) by fuld®),

which is of degree at most (|A|[4+4g—2)/2. The polynomial Rx(q)|g is a particular
solution to the recurrence relation, described in Section 5, for axl,.

Since the power sums form a rational basis of the ring of symmetric polynomials,
equation (13.1) and Theorem 13.3 show that ay|y is of the form ; zja; for a
finite set of rational numbers z; and distinct algebraic integers «; of weight at
most |A| +4g — 2 (note that 2¢g — 1 is the dimension of Hy). If our base field &
is replaced by an extension ky, of degree m then a, |, is equal to > ; zjat. For
g > |A] — 1, the linear recurrence relation for ay|, (see Section 5) shows that it
can be written as the particular solution Ry(q)|, plus the homogeneous part,
an integer sum of ax|z — Ra(g)|5 for § < |A| —2. We then see that if g > |A\| -1
and w = 5 [A\| =9, the homogeneous part of the solution to the linear recurrence
relation for ay|, does not contribute to Tr(F, e’(Hy ® ]_f,Vl)\)). To conclude
this we used the fact that >, z;a” = 0 for all m implies that z; = 0 for all ¢,
where the z; and «; are complex numbers and the «a; are distinct and nonzero.
We can now summarize using Theorem 3.2 in [1].

DEFINITION 13.7. For a polynomial f(z) = Y=, fiz* put f*(z) := 3,5, fiz".

THEOREM 13.8. Let q denote the class of Q¢(—1) in Ko(Galg). For g > |A\—1
and w = 5|\ — 9 we have an equality in Ko(Galg),

eV (H, ®Q,V)) = Z m,, qz (A=1eh R;f_"\'*‘“‘(qﬂg.
[ <IA|
EXAMPLE 13.9. In the case A = (4,2,2), for w = 31 and g > 7, we find that
Tr(F, el(Hy® E,VA)) is equal to f;’(g), where f, is the polynomial quotient
of ¢*9**(3¢* + 3¢ +2) by (¢* + 1)*(¢ + 1)>.
REMARK 13.10. By Poincaré duality (cf. Section 2 in [3]) we find that there is

a filtration 0 = W/ C Wy C .- C Wy y = H'(Hy ® k,Vy)

i+ A1 2g—1+|A|
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of Gal(k/k)-representations such that WI/W;_, is pure of weight j. Let
us define [H'(Hy ® k, V)] = 225, 1\ [Wj/Wj_1] and e, (Hy @ k,Vy) =
Yoiso(m1)'H (Hy @k, V))]w in Ko(Galg) and similarily e, (Hy ® Q, Vy). The-
orem 13.8 shows that, for g > § > |A\| — 1 and w = 4g — 3|A| + 7, one has that
ey(Hy ® Q,V)) is stable, in the sense that it is independent of g.

Computations for A’s of low weight lead us to make a conjecture, which is true
for |A] < 30.

CONJECTURE 13.11. For g > [A\|-1 and w = 5|\| -9, we have e? (H,2Q, V) =
0 for all A such that Ay > |A|/2.
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