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Abstract. We consider the moduli space Hg,n of n-pointed smooth
hyperelliptic curves of genus g. In order to get cohomological in-
formation we wish to make Sn-equivariant counts of the numbers of
points defined over finite fields of this moduli space. We find recur-
rence relations in the genus that these numbers fulfill. Thus, if we
can make Sn-equivariant counts of Hg,n for low genus, then we can
do this for every genus. Information about curves of genus 0 and 1
is then found to be sufficient to compute the answers for Hg,n for all
g and for n ≤ 7. These results are applied to the moduli spaces of
stable curves of genus 2 with up to 7 points, and this gives us the
Sn-equivariant Galois (resp. Hodge) structure of their ℓ-adic (resp.
Betti) cohomology.
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1. Introduction

By virtue of the Lefschetz trace formula, counting points defined over finite
fields of a space gives a way of finding information on its cohomology. In
this article we wish to count points of the moduli space Hg,n of n-pointed
smooth hyperelliptic curves of genus g. On this space we have an action of the
symmetric group Sn by permuting the marked points of the curves. To take
this action into account we will make Sn-equivariant counts of the numbers of
points of Hg,n defined over finite fields.
For every n we will find simple recurrence relations in the genus, for the equi-
variant number of points of Hg,n defined over a finite field. Thus, if we can
count these numbers for low genus, we will know the answer for every genus.
The hyperelliptic curves will need to be separated according to whether the
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characteristic is odd or even and the respective recurrence relations will in
some cases be different.
When the number of marked points is at most 7 we use the fact that the
base cases of the recurrence relations only involve the genus 0 case, which
is easily computed, and previously known Sn-equivariant counts of points of
M1,n, to get equivariant counts for every genus. If we consider the odd and
even cases separately, then all these counts are polynomials when considered
as functions of the number of elements of the finite field. For up to five points
these polynomials do not depend upon the characteristic. But for six-pointed
hyperelliptic curves there is a dependence, which appears for the first time for
genus 3.
By the Lefschetz trace formula, the Sn-equivariant count of points of Hg,n is
equivalent to the trace of Frobenius on the ℓ-adic Sn-equivariant Euler char-
acteristic of Hg,n. But this information can also be formulated as traces of
Frobenius on the Euler characteristic of some natural local systems Vλ on Hg.
By Theorem 3.2 in [1] we can use this connection to determine the Euler char-
acteristic, evaluated in the Grothendieck group of absolute Galois modules, of
all Vλ on Hg ⊗ Q of weight at most 7. These result are in agreement with
the results on the ordinary Euler characteristic and the conjectures on the mo-
tivic Euler characteristic of Vλ on H3 by Bini-van der Geer in [5], the ordinary
Euler characteristic of Vλ on H2 by Getzler in [16], and the S2-equivariant
cohomology of Hg,2 for all g ≥ 2 by Tommasi in [20].

The moduli stack Mg,n of stable n-pointed curves of genus g is smooth and
proper, which implies purity of the cohomology. If the Sn-equivariant count of
points of this space, when considered as a function of the number of elements
of the finite field, gives a polynomial, then using the purity we can determine
the Sn-equivariant Galois (resp. Hodge) structure of its individual ℓ-adic (resp.
Betti) cohomology groups (see Theorem 3.4 in [2] which is based on a result of
van den Bogaart-Edixhoven in [6]). All curves of genus 2 are hyperelliptic and
hence we can apply this theorem to M2,n for all n ≤ 7. These results on genus
2 curves are all in agreement with the ones of Faber-van der Geer in [9] and
[10]. Moreover, for n ≤ 3 they were previously known by the work of Getzler
in [14, Section 8].
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Outline

Let us give an outline of the paper, where ⋆· denotes the section.
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⋆2 In this section we define Sn-equivariant counts of points of Hg,n over
a finite field k, and we formulate the counts in terms of numbers aλ|g,
which are connected to the H1’s of the hyperelliptic curves.

⋆3 The hyperelliptic curves of genus g, in odd characteristic, are realized
as degree 2 covers of P1 given by square-free polynomials of degree
2g+2 or 2g+1. The numbers aλ|g are then expressed in terms of these
polynomials in equation (3.2). The expression for aλ|g is decomposed
into parts denoted ug, which are indexed by pairs of tuples of numbers
(n; r). The special cases of genus 0 and 1 are discussed in Section 3.1.

⋆4 A recurrence relation is found for the numbers ug (Theorem 4.12).
The first step is to use the fact that any polynomial can be written
uniquely as a monic square times a square-free one. This results in an
equation which gives Ug in terms of uh for h less than or equal to g,
where Ug denotes the expression corresponding to ug, but in terms of
all polynomials instead of only the square-free ones. The second step
is to use that, if g is large enough, Ug can be computed using a simple
interpolation argument.

⋆5 The recurrence relations for the ug’s are put together to form a linear
recurrence relation for aλ|g, whose characteristic polynomial is given
in Theorem 5.2.

⋆6 It is shown how to compute u0 for any pair (n; r).
⋆7 Information on the cases of genus 0 and 1 is used to compute, for all g,

ug for tuples (n; r) of degree at most 5, and aλ|g of weight at most 7.
⋆8 The hyperelliptic curves are realized, in even characteristic, as pairs

(h, f) of polynomials fulfilling three conditions. The numbers ug and
Ug are then defined to correspond to the case of odd characteristic.

⋆9 In even characteristic, a recurrence relation is found for the numbers ug

(Theorem 9.11). Lemmas 9.6 and 9.7 show that one can do something
in even characteristic corresponding to uniquely writing a polynomial
as a monic square times a square-free one in odd characteristic. This
results in a relation between Ug and uh for h less than or equal to g.
Then, as in odd characteristic, a simple interpolation argument is used
to compute Ug for g large enough.

⋆10 The same amount of information as in Section 7 is obtained in the
case of even characteristic. It is noted that aλ|g is independent of
the characteristic for weight at most 5 (Theorem 10.3). This does not
continue to hold for weight 6 where there is dependency for genus at
least 3 (see Example 10.6).

⋆11 The counts of points of the previous sections are used to get cohomo-
logical information. This is, in particular, applied to M2,n for n ≤ 7.

⋆12 In the first appendix, a more geometric interpretation is given of the
information contained in all the numbers ug of at most a certain degree
(see Lemma 12.8).

⋆13 In the second appendix, we find that for sufficiently large g we can
compute the Euler characteristic, with Gal(Q/Q)-structure, of the part
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of the cohomology of sufficiently high weight, of some local systems Vλ

on Hg. We will also see that these results are, in a sense, stable in g.

2. Equivariant counts

Let k be a finite field with q elements and denote by km a degree m extension.
Define Hg,n to be the coarse moduli space of Hg,n⊗k̄ and let F be the geometric
Frobenius morphism.
The purpose of this article is to make Sn-equivariant counts of the number of
points defined over k of Hg,n. With this we mean a count, for each element
σ ∈ Sn, of the number of fixed points of Fσ acting on Hg,n. Note that these
numbers only depend upon the cycle type c(σ) of the permutation σ.
Define Rσ to be the category of hyperelliptic curves of genus g that are de-
fined over k together with marked points (p1, . . . , pn) defined over k̄ such that
(Fσ)(pi) = pi for all i. Points of Hg,n are isomorphism classes of n-pointed
hyperelliptic curves of genus g defined over k̄. For any pointed curve X that
is a representative of a point in HFσ

g,n , the set of fixed points of Fσ acting on
Hg,n, there is an isomorphism from X to the pointed curve (Fσ)X . Using
this isomorphism we can descend to an element of Rσ (see [17, Lem. 10.7.5]).
Therefore, the number of k̄-isomorphism classes of the category Rσ is equal to
|HFσ

g,n |.
Fix an element Y = (C, p1, . . . , pn) in Rσ . We then have the following equality
(see [12] or [17]):

∑

[X]∈Rσ/∼=k
X∼=k̄Y

1

|Autk(X)| = 1.

This enables us to go from k̄-isomorphism classes to k-isomorphism classes:

|HFσ
g,n | =

∑

[Y ]∈Rσ/∼=k̄

1 =
∑

[Y ]∈Rσ/∼=k̄

∑

[X]∈Rσ/∼=k
X∼=k̄Y

1

|Autk(X)| =
∑

[X]∈Rσ/∼=k

1

|Autk(X)| .

For any curve C over k, define C
(
σ
)

to be the set of n-tuples of distinct points

(p1, . . . , pn) in C(k̄) that fulfill (Fσ)(pi) = pi.

Notation 2.1. A partition λ of an integer m consists of a sequence of non-
negative integers λ1, . . . , λν such that |λ| :=

∑ν
i=1 iλi = m. We will write

λ = [1λ1 , . . . , νλν ].

Say that τ ∈ Sn consists of one n-cycle. The elements of C
(
τ
)

are then given
by the choice of p1 ∈ C(kn) such that p1 /∈ C(ki) for every i < n. By an
inclusion-exclusion argument it is then straightforward to show that

|C
(
τ
)
| =

∑

d|n

µ(n/d) |C(kd)|,

where µ is the Möbius function. Say that λ is any partition and that σ ∈ S|λ|

has the property c(σ) = λ. Since C
(
σ
)

consists of tuples of distinct points it
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directly follows that

(2.1) |C
(
σ
)
| =

ν∏

i=1

λi−1∏

j=0

(
∑

d|i

(

µ(i/d) |C(kd)| − ji
)
)

.

Fix a curve C over k and let X1, . . . , Xm be representatives of the distinct k-
isomorphism classes of the subcategory of Rσ of elements (D, q1, . . . , qn) where
D ∼=k C. For each Xi we can act with Autk(C) which gives an orbit lying in
Rσ and where the stabilizer of Xi is equal to Autk(Xi). Together the orbits of
X1, . . . , Xm will contain |C

(
σ
)
| elements and hence we obtain

(2.2) |HFσ
g,n | =

∑

[X]∈Rσ/∼=k

1

|Autk(X)| =
∑

[C]∈Hg(k)/∼=k

|C
(
σ
)
|

|Autk(C)| .

We will compute slightly different numbers than |HFσ
g,n |, but which contain

equivalent information. Let C be a curve defined over k. The Lefschetz trace
formula tells us that for all m ≥ 1,
(2.3)

|C(km)| = |CF m

k̄ | = 1 + qm − am(C) where am(C) = Tr
(
Fm, H1(Ck̄, Qℓ)

)
.

If we consider equations (2.1) and (2.2) in view of equation (2.3) we find that

|HFσ
g,n | =

∑

[C]∈Hg(k)/∼=k

1

|Autk(C)| fσ(q, a1(C), . . . , an(C)),

where fσ(x0, . . . , xn) is a polynomial with coefficients in Z. Give the variable
xi degree i. Then there is a unique monomial in fσ of highest degree, namely
xλ1

1 · · ·xλν
ν . The numbers which we will pursue will be the following.

Definition 2.2. For g ≥ 2 and any partition λ define

(2.4) aλ|g :=
∑

[C]∈Hg(k)/∼=k

1

|Autk(C)|

ν∏

i=1

ai(C)λi .

This expression will be said to have weight |λ|. Let us also define

a0|g :=
∑

[C]∈Hg(k)/∼=k

1

|Autk(C)| ,

an expression of weight 0.

3. Representatives of hyperelliptic curves in odd characteristic

Assume that the finite field k has an odd number of elements. The hyperelliptic
curves of genus g ≥ 2 are the ones endowed with a degree 2 morphism to P1.
This morphism induces a degree 2 extension of the function field of P1. If we
consider hyperelliptic curves defined over the finite field k and choose an affine
coordinate x on P1, then we can write this extension in the form y2 = f(x),
where f is a square-free polynomial with coefficients in k of degree 2g + 1 or
2g + 2. At infinity, we can describe the curve given by the polynomial f in the
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coordinate t = 1/x by y2 = t2g+2 f(1/t). We will therefore let f(∞), which
corresponds to t = 0, be the coefficient of f of degree 2g + 2.

Definition 3.1. Let Pg denote the set of square-free polynomials with coeffi-
cients in k and of degree 2g + 1 or 2g + 2, and let P ′

g ⊂ Pg consist of the monic
polynomials. Write Cf for the curve corresponding to the element f in Pg.

By construction, there exists for each k-isomorphism class of objects in Hg(k)
an f in Pg such that Cf is a representative. Moreover, the k-isomorphisms
between curves corresponding to elements of Pg are given by k-isomorphisms of
their function fields. By the uniqueness of the linear system g1

2 on a hyperelliptic
curve, these isomorphisms must respect the inclusion of the function field of
P1. The k-isomorphisms are therefore precisely (see [16, p. 126]) the ones
induced by elements of the group G := GLop

2 (k) × k∗/D where

D := {(
( a 0

0 a

)

, ag+1) : a ∈ k∗} ⊂ GLop
2 (k) × k∗

and where an element

γ = [(
(

a b
c d

)

, e)] ∈ G

induces the isomorphism

(x, y) 7→
(

ax + b

cx + d
,

ey

(cx + d)g+1

)

.

This defines a left group action of G on Pg, where γ ∈ G takes f ∈ Pg to

f̃ ∈ Pg, with

(3.1) f̃(x) =
(cx + d)2g+2

e2
f
(ax + b

cx + d

)

.

Notation 3.2. Let us put I := 1/|G| = (q3 − q)−1(q − 1)−1.

Definition 3.3. Let χ2,m be the quadratic character on km. Recall that it is
the function that takes α ∈ km to 1 if it is a square, to −1 if it is a nonsquare
and to 0 if it is 0. With a square or a nonsquare we will always mean a nonzero
element.

Lemma 3.4. If Cf is the hyperelliptic curve corresponding to f ∈ Pg then

am(Cf ) = −
∑

α∈P1(km)

χ2,m

(
f(α)

)
.

Proof: The fiber of Cf → P1 over α ∈ A1(km) will consist of two points
defined over km if f(α) is a square in km, no point if f(α) is a nonsquare in
km, and one point if f(α) = 0. By the above description of f in terms of the
coordinate t = 1/x, the same holds for α = ∞. The lemma now follows from
equation (2.3). �
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We will now rephrase equation (2.4) in terms of the elements of Pg. By what
was said above, the stabilizer of an element f in Pg under the action of G is
equal to Autk(Cf ) and hence

(3.2) aλ|g =
∑

[f ]∈Pg/G

1

|StabG(f)|

ν∏

i=1

ai(Cf )λi =

=
1

|G|
∑

f∈Pg

ν∏

i=1

ai(Cf )λi = I
∑

f∈Pg

ν∏

i=1

(

−
∑

α∈P1(ki)

χ2,i

(
f(α)

))λi

.

This can up to sign be rewritten as

(3.3) I
∑

f∈Pg

∑

(α1,1,...,αν,λν )∈S

ν∏

i=1

λi∏

j=1

χ2,i

(
f(αi,j)

)
,

where S :=
∏ν

i=1 P1(ki)
λi , in other words, αi,j ∈ P1(ki) for each 1 ≤ i ≤ ν and

1 ≤ j ≤ λi. The sum (3.3) will be split into parts for which we, in Section 4,
will find recurrence relations in g.

Definition 3.5. For any tuple n = (n1, . . . , nm) ∈ Nm
≥1, let the set A(n) consist

of the tuples α = (α1, . . . , αm) ∈ ∏m
i=1 P1(kni

) such that for any 1 ≤ i, j ≤ m
and any s ≥ 0,

F s(αi) = αj =⇒ ni|s and i = j.

Let us also define A′(n) := A(n) ∩∏m
i=1 A1(kni

).

Definition 3.6. Let Nm denote the set of pairs (n; r) such that n =
(n1, . . . , nm) ∈ Nm

≥1 and r = (r1, . . . , rm) ∈ {1, 2}m.

Definition 3.7. For any g ≥ −1, (n; r) ∈ Nm and α = (α1, . . . , αm) ∈ A(n)
define

u(n;r)
g,α := I

∑

f∈Pg

m∏

i=1

χ2,ni

(
f(αi)

)ri

and

u(n;r)
g :=

∑

α∈A(n)

u(n;r)
g,α .

Construction-Lemma 3.8. For each λ, there are positive integers c1, . . . , cs

and m1, . . . , ms, and moreover pairs (n(i); r(i)) ∈ Nmi
for each 1 ≤ i ≤ s, such

that for any finite field k,

aλ|g =
s∑

i=1

ci u(n(i);r(i))
g .

Proof: The lemma will be proved by writing the set S as a disjoint union of
parts that only depend upon the partition λ, and which therefore are indepen-
dent of the chosen finite field k.
For each positive integer i, let i = di,1 > . . . > di,δi

= 1 be the divisors of i.
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⋆ For each 1 ≤ i ≤ ν, let Ti,1, . . . , Ti,δi
be an ordered partition of the set

{1, . . . , λi} into (possibly empty) subsets.
⋆ For each 1 ≤ i ≤ ν and each 1 ≤ j ≤ δi, let Qi,j,1, . . . , Qi,j,κi,j

be
an unordered partition (where κi,j is arbitrary) of the set Ti,j into
non-empty subsets.

From such a choice of partitions we define a subset S′ = S({Ti,j}, {Qi,j,k})
of S consisting of the tuples (α1,1, . . . , αν,λν

) ∈ S fulfilling the following two
properties.

⋆ If x ∈ Ti,j then: αi,x ∈ kj and ∀s < j, αi,x /∈ ks.
⋆ If x ∈ Qi,j,k and x′ ∈ Qi′,j′,k′ then:

∃s : F s(αi,x) = αi′,x′ ⇐⇒ (i, j, k) = (i′, j′, k′).

Define n to be equal to the tuple

(

κ1,1
z }| {

d1,1, . . . , d1,1,

κ1,2
z }| {

d1,2, . . . , d1,2, . . . ,

κ1,δ1
z }| {

d1,δ1 , . . . , d1,δ1 ,

κ2,1
z }| {

d2,1, . . . , d2,1, . . . ,

κν,δν
z }| {

dν,δν , . . . , dν,δν ).

Let ρi,j,k be equal to 2 if either i/di,j or |Qi,j,k| is even, and 1 otherwise.
Define r to be equal to

(ρ1,1,1, ρ1,1,2, . . . , ρ1,1,κ1,1 , ρ1,2,1, . . . , ρ1,δ1,κ1,δ1
, ρ2,1,1, . . . , ρν,δν ,κν,δν

).

The equality

u(n;r)
g = I

∑

f∈Pg

∑

(α1,1,...,αν,λν )∈S′

ν∏

i=1

λi∏

j=1

χ2,i

(
f(αi,j)

)

is clear in view of the following three simple properties of the quadratic char-
acter.

⋆ Say that α ∈ P1(ks), then if s̃/s is even we have χ2,s̃

(
f(α)

)
=

χ2,s

(
f(α)

)2
and if s̃/s is odd we have χ2,s̃

(
f(α)

)
= χ2,s

(
f(α)

)
.

⋆ If for any α, β ∈ P1 we have F s(α) = β for some s, then χ2,i

(
f(α)

)
=

χ2,i

(
f(β)

)
for all i.

⋆ Finally, for any α ∈ P1 and any s, we have χ2,s

(
f(α)

)r
= χ2,s

(
f(α)

)2

if r is even and χ2,s

(
f(α)

)r
= χ2,s

(
f(α)

)
if r is odd.

The lemma now follows directly from the fact that the sets S({Ti,j}, {Qi,j,k}) ⊂
S (for different choices of partitions {Ti,j} and {Qi,j,k}) are disjoint and cover
S. �

The set of data {(ci, (n
(i); r(i)))} resulting from the procedure given in the

proof of Construction-Lemma 3.8 is, after assuming the pairs (n(i); r(i)) to be
distinct, unique up to simultaneous reordering of the elements of n(i) and r(i)

for each i, and it will be called the decomposition of aλ|g.
Definition 3.9. For a partition λ, the pair

(n; r) =
(
(

λ1
︷ ︸︸ ︷

1, . . . , 1,

λ2
︷ ︸︸ ︷

2, . . . , 2, . . . ,

λν
︷ ︸︸ ︷
ν, . . . , ν); (1, . . . , 1)

)
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will appear in the decomposition of aλ|g (corresponding to the partitions Ti,1 =
{1, . . . , λi} for 1 ≤ i ≤ ν, and Qi,1,k = {k} for 1 ≤ i, k ≤ ν) with coefficient
equal to 1, and it will be called the general case. All other pairs (n; r) appearing
in the decomposition of aλ|g will be refered to as degenerations of the general
case.

Definition 3.10. For any (n; r) ∈ Nm, the number |n| :=
∑m

i=1 ni will be
called the degree of (n; r).

Lemma 3.11. The general case is the only case in the decomposition of aλ|g
which has degree equal to the weight of aλ|g.
Proof: If (n; r) appears in the decomposition of aλ|g and is associated to

the partitions {Ti,j} and {Qi,j,k}, then |n| =
∑ν

i=1

∑δi

j=1 κi,jdi,j . Since λi =
∑δi

j=1 κi,j and 1 ≤ di,j ≤ i, the equality |λ| = |n| implies that κi,1 = λi and
κi,j = 0 if j 6= 1. �

Lemma 3.12. If (n; r) appears in the decomposition of aλ|g then
∑m

i=1 rini ≤ |λ|
and these two numbers have the same parity.

Proof: If (n; r) appears in the decomposition of aλ|g and is associated to the

partitions {Ti,j} and {Qi,j,k}, then
∑m

i=1 rini =
∑ν

i=1

∑δi

j=1

∑κi,j

k=1 ρi,j,kdi,j .
Let us prove the lemma by induction on m, starting with the case that m =
∑ν

i=1 λi. In this case we must have |Qi,j,k| = 1 for all 1 ≤ i ≤ ν, 1 ≤ j ≤ δi

and 1 ≤ k ≤ κi,j , and hence ρi,j,k is only equal to two if i/di,j is even. This
directly tells us that ρi,j,kdi,j ≤ i, and that these two numbers have the same

parity. Since λi =
∑δi

j=1 κi,j , it follows that
∑m

i=1 rini ≤ |λ| and that these
two numbers have the same parity.
Assume now that m = k and that the lemma has been proved for all pairs (ñ; r̃)
with m̃ > k. Since m <

∑ν
i=1 λi we know that there exists numbers i0, j0, k0

such that |Qi0,j0,k0 | ≥ 2. Let us fix an element x ∈ Qi0,j0,k0 and define a new
pair (n′; r′) associated to the partitions {T ′

i,j} and {Q′
i,j,k} by putting:

⋆ T ′
i,j = Ti,j for all 1 ≤ i ≤ ν and 1 ≤ j ≤ δi,

⋆ Q′
i0,j0,k0

= Qi0,j0,k0 \ {x},
⋆ κ′

i0,j0
= κi0,j0 + 1 and Q′

i0,j0,κ′
i0,j0

= {x},
⋆ Q′

i,j,k = Qi,j,k in all other cases.

The pair (n′, r′) thus appears in the decomposition of λ, and m′ = k + 1.

Moreover, we directly find that
∑m

i=1 rini ≤ ∑m′

i=1 r′in
′
i and that these two

numbers have the same parity. By the induction hypothesis the lemma is then
also true for (n; r). �

Example 3.13. Let us decompose a[22]|g starting with the general case:

a[22]|g = I
∑

f∈Pg

(

−
∑

α∈P1(k2)

χ2,2

(
f(α)

))2

= I
∑

f∈Pg

∑

α,β∈P1(k2)

χ2,2

(
f(α)f(β)

)
=

= u((2,2);(1,1))
g + 2u((2,1);(1,2))

g + 2u((2);(2))
g + u((1,1);(2,2))

g + u((1);(2))
g .
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Example 3.14. The decomposition of a[14,2]|g, starting with the general case:

a[14,2]|g = −u((2,1,1,1,1);(1,1,1,1,1))
g − 6u((2,1,1,1);(1,2,1,1))

g − 3u((2,1,1);(1,2,2))
g

− 4u((2,1,1);(1,1,1))
g − u((2,1);(1,2))

g − u((1,1,1,1,1);(2,1,1,1,1))
g − 6u((1,1,1,1);(2,2,1,1))

g

− 4u((1,1,1,1),(1,1,1,1))
g − 3u((1,1,1);(2,2,2))

g − 22u((1,1,1);(2,1,1))
g

− 7u((1,1);(2,2))
g − 8u((1,1);(1,1))

g − u((1);(2))
g .

3.1. The cases of genus 0 and 1. We would like to have an equality of the
same kind as in equation (3.2), but for curves of genus 0 and 1. Every curve of
genus 0 or 1 has a morphism to P1 of degree 2 and in the same way as for larger
genera, it then follows that every k-isomorphism class of curves of genus 0 or 1
has a representative among the curves coming from polynomials in P0 and P1

respectively. But there is a difference, compared to the larger genera, in that
for curves of genus 0 or 1 the g1

2 is not unique. In fact, the group G induces (in
the same way as for g ≥ 2) all k-isomorphisms between curves corresponding
to elements of P0 and P1 that respect their given morphisms to P1 (i.e a fixed
g1
2), but not all k-isomorphisms between curves of genus 0 or 1 are of this form.

Let us, for all r ≥ 0, define the category Ar consisting of tuples (C, Q0, . . . , Qr)
where C is a curve of genus 1 defined over k and the Qi are, not necessarily
distinct, points on C defined over k. The morphisms of Ar are, as expected,
isomorphisms of the underlying curves that fix the marked points. Note that
A0 is isomorphic to the category M1,1(k). We also define, for all r ≥ 0, the
category Br consisting of tuples (C, L, Q1, . . . , Qr) of the same kind as above,
but where L is a g1

2 . A morphism of Br is an isomorphism φ of the underlying
curves that fixes the marked points, and such that there is an isomorphism τ
making the following diagram commute:

C
φ−−−−→ C′

L



y



yL′

P1 τ−−−−→ P1.

Consider P1 as a category where the morphisms are given by the elements of
G. To every element of P1 there corresponds, precisely as for g ≥ 2, a curve
Cf together with a g1

2 given by the morphism to P1, thus an element of B0.
Since every morphism in B0 between objects corresponding to elements of P1

is induced by an element of G, and since for every k-isomorphism class of an
element in B0 there is a representative in P1, the two categories P1 and B0 are
equivalent.
For all r ≥ 1 there are equivalences of the categories Ar and Br given by

(C, Q0, . . . , Qr) 7→ (C, |Q0 + Q1|, Q1, . . . , Qr),

with inverse

(C, L, Q1, . . . , Qr) 7→ (C, |L − Q1|, Q1, . . . , Qr).
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We therefore have the equality

∑

[X]∈Ar/∼=k

1

|Autk(X)|

ν∏

i=1

ai(C)λi =
∑

[Y ]∈Br/∼=k

1

|Autk(Y )|

ν∏

i=1

ai(C)λi .

The Riemann hypothesis tells us that |ar(C)| ≤ 2g
√

qr, for any finite field k
with q elements and for any curve C defined over k of genus g. For genus 1
this implies that |C(k)| ≥ q + 1− 2

√
q > 0, and thus every genus 1 curve has a

point defined over k. There is therefore a number s such that 1 ≤ |C(k)| ≤ s
for all genus 1 curves C. As in the argument preceding equation (2.2) we can
take a representative (C, Q0, . . . , Qr) for each element of Ar/ ∼=k and act with
Autk(C, Q0), respectively for each representative (C, L, Q1, . . . , Qr) of B0/ ∼=k

act with Autk(C, L), and by considering the orbits and stabilizers we get

s∑

j=1

jr
∑

[X]∈A0/∼=k

|C(k)|=j

1

|Autk(X)|

ν∏

i=1

ai(C)λi =

s∑

j=1

jr
∑

[Y ]∈B0/∼=k

|C(k)|=j

1

|Autk(Y )|

ν∏

i=1

ai(C)λi .

Since this holds for all r ≥ 1 we can, by a Vandermonde argument, conclude
that we have an equality as above for each fixed j. We can therefore extend
Definition 2.2 to genus 1 in the following way:

(3.4) aλ|1 :=
∑

[(C,Q0)]∈
M1,1(k)/∼=k

1

|Autk(C, Q0)|

ν∏

i=1

ai(C)λi =

=
∑

[f ]∈P1/G

1

|StabG(f)|
ν∏

i=1

ai(Cf )λi = I
∑

f∈P1

ν∏

i=1

ai(Cf )λi ,

which gives an agreement with equation (3.2).
All curves of genus 0 are isomorphic to P1 and ar(P

1) = 0 for all r ≥ 1. In
this trivial case we just let equation (3.2) be the definition of aλ|0.

4. Recurrence relations for ug in odd characteristic

This section will be devoted to finding, for a fixed finite field k with an odd
number of elements and for a fixed pair (n; r) ∈ Nm, a recurrence relation for
ug. Notice that we will often suppress the pair (n; r) in our notation and for

instance write ug instead of u
(n;r)
g .

Fix a nonsquare t in k and an α = (α1, . . . , αm) ∈ A(n). Multiplying with the
element t gives a fixed point free action on the set Pg and therefore

(4.1) ug,α = I
∑

f∈Pg

m∏

i=1

χ2,ni

(
f(αi)

)ri
= I

∑

f∈Pg

m∏

i=1

χ2,ni

(
t f(αi)

)ri
=

= I
∑

f∈Pg

m∏

i=1

χ2,ni
(t)ri χ2,ni

(
f(αi)

)ri
= (−1)

Pm
i=1 rini ug,α.
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This computation and Lemmas 3.8 and 3.12 proves the following lemma.

Lemma 4.1. For any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n), if
∑m

i=1 rini is odd
then ug,α = 0. Consequently, aλ|g is equal to 0 if it has odd weight.

Thus, the only interesting cases are those for which
∑m

i=1 rini is even.

Remark 4.2. The last statement of Lemma 4.1 can also be found as a conse-
quence of the existence of the hyperelliptic involution.

We also see from equation (4.1) that

(4.2) ug,α = I (q − 1)
∑

f∈P ′
g

m∏

i=1

χ2,ni

(
f(αi)

)ri
if

m∑

i=1

rini is even.

Definition 4.3. Let Qg denote the set of all polynomials (that is, not neces-
sarily square-free) with coefficients in k and of degree 2g + 1 or 2g + 2, and let
Q′

g ⊂ Qg consist of the monic polynomials. For a polynomial h ∈ Qg we let
h(∞) be the coefficient of the term of degree 2g + 2 (which extends the earlier
definition for elements in Pg). For any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n),
define

U (n;r)
g,α := I

∑

h∈Qg

m∏

i=1

χ2,ni

(
h(αi)

)ri
,

U (n;r)
g :=

∑

α∈A(n)

U (n;r)
g,α and Û (n;r)

g :=

g
∑

i=−1

U
(n;r)
i .

We will find an equation relating Ug to ui for all −1 ≤ i ≤ g. Moreover, for
g large enough we will be able to compute Ug. Together, this will give us our
recurrence relation for ug.
With the same arguments as was used to prove equation (4.2) one shows that

(4.3) Ug,α = I (q − 1)
∑

h∈Q′
g

m∏

i=1

χ2,ni

(
h(αi)

)ri
if

m∑

i=1

rini is even.

Definition 4.4. For any α = (α1, . . . , αm) ∈ A′(n), let bj = bnj be the number

of monic polynomials l of degree j such that l(αi) is nonzero for all i. Let us

also put b̂j = b̂nj :=
∑j

i=0 bni .

Lemma 4.5. For each j ≥ 0 and n ∈ Nm
≥1, we have the equality

(4.4) bj = qj +

j
∑

i=1

(−1)i
∑

1≤m1<...<mi≤m
Pi

l=1 nml
≤j

qj−
Pi

l=1 nml

from which it follows that bj does not depend upon the choice of α ∈ A′(n).

Proof: The numbers bj can be computed by inclusion-exclusion, where the
choice of 1 ≤ m1 < . . . < mi ≤ m corresponds to demanding the polynomial
to be 0 in the points αm1 , . . . , αmi

. �
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Notation 4.6. For any α ∈ A′(n), let pαi
denote the minimal polynomial of

αi and put pα :=
∏m

i=1 pαi
.

Lemma 4.7. For any α ∈ A′(n) there is a one-to-one correspondence be-
tween polynomials f defined over k with deg(f) ≤ |n| − 1, and tuples
(f(α1), . . . , f(αm)) ∈ ∏m

i=1 kni
.

Proof: For any α ∈ A′(n) we have deg(pαi
) = ni and gcd(pαi

, pαj
) = 1 if

i 6= j. The lemma now follows from the Chinese remainder theorem, which
tells us that the morphism k[x]/pα → ∏m

i=1 k[x]/pαi
∼=
∏m

i=1 kni
given by

f(x) 7→ (f(α1), . . . , f(αm)) is an isomorphism. �

Notation 4.8. Let Rj denote the set of polynomials of degree j and let R′
j be

the subset containing the monic polynomials.

We will divide into two cases.

4.1. The case α ∈ A′(n). Fix an element α ∈ A′(n). Any nonzero polyno-
mial h can be written uniquely in the form h = f l2 where f is a square-free
polynomial and l is a monic polynomial. This statement translates directly
into the equality

Us,α = I
∑

j+k=s

∑

l∈R′
j

∑

f∈Pk

m∏

i=1

χ2,ni

(
f(αi)

)ri
χ2,ni

(
l(αi)

)2ri
=

s+1∑

j=0

bjus−j,α,

because for any β ∈ A1(ks), χ2,s

(
(fl2)(β)

)
= χ2,s

(
f(β)

)
if l(β) 6= 0. Summing

this equality over all s between −1 and g gives

(4.5) Ûg,α =

g+1
∑

j=0

b̂jug−j,α.

If ri = 2 for all i, then it follows from equation (4.3) that

Us,α = I (q − 1)
∑

h∈Q′
s

m∏

i=1

χ2,ni

(
h(αi)

)2
= I (q − 1)(b2s+2 + b2s+1).

Summing this equality over all s between −1 and g gives

(4.6) Ûg,α = I (q − 1)b̂2g+2 for g ≥ −1 if ∀i : ri = 2.

In Ûg,α we are summing over all polynomials h of degree less than or equal
to 2g + 2, and every h can uniquely be written on the form h1 + pαh2, with
deg h1 ≤ |n| − 1 and deg h2 ≤ 2g + 2 − |n|. Hence if 2g + 2 ≥ |n| − 1 we find
that

Ûg,α = I q2g+3−|n|

|n|−1
∑

s=1

∑

h1∈Rs

m∏

i=1

χ2,ni

(
h1(αi)

)ri
.

Using Lemma 4.7 we can reformulate this equality as

Ûg,α = I q2g+3−|n|
∑

(β1,...,βm)∈
Q

m
i=1 kni

m∏

i=1

χ2,ni
(βi)

ri .
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For any j, half of the nonzero elements in kj are squares and half are nonsquares,
and thus if ri = 1 for some i, we can conclude from this equality that

(4.7) Ûg,α = 0 for g ≥ (|n| − 3)/2 if ∃i : ri = 1.

4.2. The case α ∈ A(n) \ A′(n). Fix an element α ∈ A(n) \ A′(n). We
can assume that α1 = ∞, and then α̃ := (α2, . . . , αm) ∈ A′(ñ) where ñ :=
(n2, . . . , nm).
If h ∈ Qg and f ∈ Pj such that h = f l2 for some monic polynomial l (which is
then unique), then h(∞) = f(∞), because the coefficient of h of degree 2g + 2
must equal the coefficient of f of degree 2j + 2. As in Section 4.1 we get
(4.8)

Ug,α = I
∑

j+k=g

∑

l∈R′
j

∑

f∈Pk

f(∞)
m∏

i=2

χ2,ni

(
f(αi)

)ri
χ2,ni

(
l(αi)

)2ri
=

g+1
∑

j=0

bñj ug−j,α.

If
∑m

i=1 rini is even, equation (4.3) and the definition of h(∞) shows that

(4.9) Ug,α = I (q − 1)
∑

h∈R′
2g+2

m∏

i=2

χ2,ni

(
h(αi)

)ri
.

If ri = 2 for all i, then equation (4.9) tells us that

(4.10) Ug,α = I (q − 1)bñ2g+2 for g ≥ −1, ∀i : ri = 2.

If 2g + 2 ≥ |n| − 1, an element h ∈ R′
2g+2 can be written uniquely as h =

h1 + pα̃h2, where deg(h1) ≤ |n| − 2, deg(h2) ≥ 0 and h2 monic. In the same
way as in Section 4.1 we can (if

∑m
i=1 rini is even) use this together with

equation (4.9) and Lemma 4.7 to conclude that

(4.11) Ug,α = 0 for g ≥ (|n| − 3)/2, ∃i : ri = 1,

which of course also holds if
∑m

i=1 rini is odd by Lemma 4.1 and equation (4.8).

Remark 4.9. Fix an α ∈ A(n). If there is an element β ∈ A1(k) such that
β /∈ {α1, . . . , αn}, then T (α) := (T (α1), . . . , T (αn)) is in A′(n), where T is the
projective transformation of P1

k defined by x 7→ βx/(x − β).

In the notation of equation (3.1), χ2,ni

(
f(T (αi))

)
= χ2,ni

(
f̃(αi)

)
(with e =

1). Since this induces a permutation of Pg, we find that ug,α = ug,T (α) and
similarily that Ug,α = Ug,T (α). So, if q ≥ |n|, then equations (4.5), (4.6) and
(4.7) will also hold for α ∈ A(n) \ A′(n). By Lemma 4.10 in the next section,
we will see that this is true even if q < |n|.

4.3. The two cases joined. In this section we will put the results of the two
previous sections together using the following lemma.

Lemma 4.10. For any ñ = (n2, . . . , nm), if n = (1, n2, . . . , nm) then b̂nj = bñj .
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Proof: Fix any tuple n = (n1, . . . , nm) and put n := |n|. If we let ti = qni in
the formula

m∏

i=1

(ti − 1) = t1 · · · tm +

m∑

i=1

(−1)i
∑

1≤m1<...<mi≤m

t1 · · · tm
1

tm1

· · · 1

tmi

,

then the right hand side is equal to the right hand side of equation (4.4), and
hence

(4.12)

m∏

i=1

(qni − 1) = bnn.

Say that bnj =
∑j

i=0 cnj,iq
i and b̂nj =

∑j
i=0 ĉnj,iq

i. If i ≤ j then equation (4.4)

implies that cnj,i = cnn,n+i−j and hence ĉnj,i =
∑j

s=0 cnn,n+i−s. By equation

(4.12) we know that q − 1 divides bnn, and if bnn/(q − 1) =
∑n−1

i=0 diq
i then

ĉnj,i = dn−1+i−j .

So, if n1 = 1 and ñ = (n2, . . . , nm) then bnn/(q − 1) = bñn−1 and thus ĉnj,i =

cñn−1,n−1+i−j = cñj,i. �

Notation 4.11. Let us write J := I (q − 1) |A(n)|.
Theorem 4.12. For any pair (n; r) ∈ Nm,

g+1
∑

j=0

b̂jug−j =

{

J b̂2g+2 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .

Proof: The theorem follows from combining equations (4.5), (4.6), (4.7) and
equations (4.8), (4.10), (4.11), using Lemma 4.10. �

Note that with this theorem we can, for any (n; r) ∈ Nm such that ri = 2 for
all i, compute ug for any g. Moreover, for any pair (n; r) we can compute ug

for any g, if we already know ug for all g < (|n| − 3)/2.

Lemma 4.13. For any n, q − 1 divides bn|n|, and if we write bn|n|/(q − 1) =
∑|n|−1

i=0 diq
i then b̂j − qb̂j−1 = d|n|−1−j.

Proof: The first claim is shown in the proof of Lemma 4.10. Using the notation

of that proof we find that b̂j − qb̂j−1 =
∑j

i=0 dn−1+i−jq
i −∑j−1

i=0 dn+i−jq
i+1 =

dn−1−j . Note that dn−1−j only depends upon n and not on q. �

Theorem 4.14. For any pair (n; r) ∈ Nm,

min(|n|−1,g+1)
∑

j=0

(b̂j − qb̂j−1)ug−j =

{

J (b̂2g+2 − qb̂2g) if ∀i : ri = 2, g ≥ 0;

0 if ∃i : ri = 1, g ≥ |n|−1
2 .

Proof: Let us temporarily put F (s) :=
∑s+1

j=0 b̂jus−j . From Lemma 4.13 we

find that b̂j − qb̂j−1 = 0 if j > |n|− 1. The theorem then follows from applying
Theorem 4.12 to the expression F (g) − qF (g − 1). �
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For g ≥ (|n| − 1)/2, Theorem 4.14 presents us with a linear recurrence relation
for ug which has coefficients that are independent of the finite field k.

Example 4.15. If (n; r) = ((2, 1, 1, 1); (1, 2, 1, 1)) then bn5/(q−1) = (q2−1)(q−
1)2 = q4 − 2q3 + 2q − 1. Applying Lemma 4.13 and then Theorem 4.14 we get

ug − 2ug−1 + 2ug−3 − ug−4 = 0 for g ≥ 3.

Example 4.16. Let us compute ug, for all g ≥ −1, when (n; r) =
((1, 1, 1), (2, 2, 2)). We have that u−1 = J = 1 and since ri = 2 for all i,
Theorem 4.14 gives the equality u0 = 2u−1 + J(q2 − 3q + 1) = q2 − 3q + 3.
Applying Theorem 4.14 again we get

ug − 2ug−1 + ug−2 = q2g−1(q − 1)3 for g ≥ 1.

Solving this recurrence relation gives

u((1,1,1);(2,2,2))
g =

q2g+3(q − 1) − (2g + 2)(q2 − 1) + 3q + 1

(q + 1)2
for g ≥ −1.

5. Linear recurrence relations for aλ|g
Remark 5.1. From a sequence vn that fulfills a linear recurrence relation with
characteristic polynomial C we can, for any polynomial D, in the obvious way
construct a linear recurrence relation for vn with characteristic polynomial CD.
Thus, from two sequences vn and wn that each fulfill linear recurence relation
with characteristic polynomial C and D respectively, we can construct a linear
recurence relation for the sequence vn + wn with characteristic polynomial
lcm(C, D).

Theorem 5.2. By applying Theorem 4.14 to each pair (n; r) appearing in the
decomposition (given by Lemma 3.8) of aλ|g, we get a linear recurrence relation
for aλ|g. The characteristic polynomial C(X) of this linear recurrence relation
equals

(5.1)
1

X − 1

ν∏

i=1

(X i − 1)λi .

Proof: Fix any pair (n; r) in the decomposition of aλ|g and put n = |n|.
Lemma 4.13 tells us that b̂j − qb̂j−1 is equal to the coefficient of qn−1−j

in bn/(q − 1). If g ≥ n − 1, then these numbers are also the coefficients
in the recurrence relation given by Theorem 4.14. By equation (4.12), the
characteristic polynomial C(n;r) of this linear recurrence relation is equal to

(
∏m

i=1(X
ni − 1))/(X − 1).

We find that the linear recurrence relation in the general case (see Defini-
tion 3.9) will have characteristic polynomial equal to C. Moreover, we find (by
their construction in the proof of Lemma 3.8) that if (n; r) is a degenerate case
then C(n;r)|C. The theorem now follows from Remark 5.1. �

Theorem 5.2 tells us that if we can compute aλ|g for g < |λ| − 1 then we can
compute it for every g. But note that by considering the individual cases in the

Documenta Mathematica 14 (2009) 259–296



Equivariant Counts of Points of the . . . 275

decomposition of aλ|g we will do much better in Section 7, in the sense that we
will be able to use information from curves of only genus 0 and 1 to compute
aλ|g for any λ such that |λ| ≤ 6.

Example 5.3. For λ = [14, 2] the characteristic polynomial equals (X−1)4(X+
1), so if Vg is a particular solution to the linear recurrence relation for a[14,2]|g
then

a[14,2]|g = Vg + A3g
3 + A2g

2 + A1g + A0 + B0(−1)g,

where A0, A1, A2, A3 and B0 do not depend upon g.

6. Computing u0

In this section we will see that we can compute u0 for any choice of a pair
(n; r) ∈ Nm. This is due to the fact that if C is a curve of genus 0 then, for
all r, |C(kr)| = 1 + qr or equivalently ar(C) = 0.

Construction-Lemma 6.1. For each (n; r) ∈ Nm, there are numbers
c1, . . . , cs and pairs (n(1); r(1)), . . . , (n(s); r(s)), where r(i) = (2, . . . , 2) for all
i, such that for any finite field k,

u
(n;r)
0 =

s∑

i=1

ciu
(n(i);r(i))
0 .

Proof: Fix a pair (n; r) ∈ Nm. We will use induction over the number n := |n|,
where the base case n = 0 is trivial.
Let us put (ñ; r̃) = ((n2, . . . , nm); (r2, . . . , rm)). For an α̃ = (α2, . . . , αm) ∈
A(ñ) let P̂1

α̃(ki) be the set of all points in P1(ki) \ {α2, . . . , αm} that are
not defined over a proper subfield of ki. The set of α1 ∈ P1(kn1) such that
(α1, . . . , αm) ∈ A(n) then equals

(6.1) P1(kn1) \
(⋃

i|n1

P̂1
α̃(ki)

⋃

ni|n1

{αi, . . . , F
ni−1αi}

)
.

Assume now that the lemma has been proved for all pairs of degree strictly less
than n. By reordering the elements of the pair (n; r) we can assume that r1 = 1,
because otherwise r = (2, . . . , 2) and we are done. By applying equation (6.1)
we get

(6.2) I
∑

α∈A(n)

m∏

i=1

χ2,ni

(
f(αi)

)ri
= I

∑

α̃∈A(ñ)

m∏

i=2

χ2,ni

(
f(αi)

)ri ·

·
(

−an1(Cf ) −
∑

i|n1

∑

β∈P̂
1
α̃(ki)

χ2,n1

(
f(β)

)
−
∑

ni|n1

ni χ2,n1

(
f(αi)

))

.

Let us put (n(i); r(i)) = ((i, n2, . . . , nm); (ni/i, r2, . . . , rm)) for all i that divides
ni and r̃(i) = (r2, . . . , ri−1, ri n1/ni, ri+1, . . . , rm) for all ni that divides n1.

Documenta Mathematica 14 (2009) 259–296



276 Jonas Bergström

Summing both sides of equation (6.2) over polynomials f ∈ P0 and using that
an1(Cf ) = 0 then gives

(6.3) u
(n;r)
0 = −

∑

i|n1

u
(n(i);r(i))
0 −

∑

ni|n1

niu
(ñ;r̃(i))
0 .

Since |ñ| < n and |n(i)| < n, the lemma follows by induction from equa-
tion (6.3). �

Example 6.2. In the case (n; r) = ((6, 6, 3, 1, 1); (1, 1, 2, 2, 2)), the first step in
the procedure in the proof of Lemma 6.1 equals

u
(n;r)
0 = −u

((6,3,3,1,1);(1,2,2,2,2))
0 − u

((6,3,2,1,1);(1,2,1,2,2))
0 − u

((6,3,1,1,1);(1,2,2,2,2))
0

− 5u
((6,3,1,1);(1,2,2,2))
0 − 6u

((6,3,1,1);(2,2,2,2))
0 .

Example 6.3. In the case (n; r) = ((4, 1, 1, 1); (1, 2, 1, 1)), the procedure in the
proof of Lemma 6.1 gives

u
(n;r)
0 = u

((2,1,1);(2,2,2))
0 +u

((1,1,1);(2,2,2))
0 +u

((1,1);(2,2))
0 −u

((2,1);(2,2))
0 −u

((1);(2))
0

7. Results for weight up to 7 in odd characteristic

We will in this section show that we, for any number g and any finite field k of
odd characteristic, can compute all aλ|g of weight at most 7. This is achieved
by decomposing aλ|g using Lemma 3.8 and employing the recurrence relation of
Theorem 4.12 on the different parts. This involves finding the necessary base
cases for the recurrence relations and that will be possible with the help of
results on genus 0 curves obtained in Section 6, and on genus 1 curves obtained
in the article [1].
We will write aλ|g,odd and ug,odd to stress that all results are in the case of odd
characteristic. See Section 10 for results in the case of even characteristic.

Example 7.1. Theorem 4.12 is applicable even if the degree is 0 (if considered

as a case when ri = 2 for all i) and with b̂j =
∑j

i=0 qi. From Theorem 4.12 we
find that a0|0,odd = Jq2 = q/(q2 − 1) and again from Theorem 4.12 that

a0|g,odd = J(q2g+2 − q2g) = q2g−1 for g ≥ 1.

This result can also be found in [7, Proposition 7.1].

7.1. Degree at most 3. When the degree of the pair (n; r) is at most 3 we
find using Theorem 4.12 that we do not need any base cases to compute ug for
every g.

Example 7.2. Let us consider (n; r) = ((2); (1)). We have u−1 = J = 1/(q+1)
and applying Theorem 4.12 we get u0 = −(q +1)u−1 = −1. Theorem 4.14 tells
us that ug = −ug−1 for g ≥ 1 and thus

u
((2);(1))
g,odd = (−1)g+1 for g ≥ 0.
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Example 7.3. The result for a[2]|g,odd is

a[2]|g,odd = −u((2);(1))
g − u((1);(2))

g = (−1)g − q2g for g ≥ 0.

Example 7.4. The result for a[12]|g,odd is

a[12]|g,odd = u((1,1);(1,1))
g + u((1);(2))

g = −1 + q2g for g ≥ 0.

Remark 7.5. The result for (q2 +1) a0|g,odd −a[2]|g,odd can be found in lecture
notes by Bradley Brock and Andrew Granville from 28 July 2003.

Example 7.6. Consider the case (n; r) = ((1, 1, 1); (2, 1, 1)). We have u−1 =
J = 1 and from Theorem 4.12 we get u0 = −(q−2)u−1 = −q+2. Theorem 4.14
gives the recurrence relation ug = 2ug−1 − ug−2 for g ≥ 1 and hence

u
((1,1,1);(2,1,1))
g,odd = g(−q + 1) − q + 2.

7.2. Degree 4 or 5. From Theorem 4.12 we find that when the degree of the
pair (n; r) is 4 or 5 we need the base case of genus 0. But the genus 0 case is
always computable using Lemma 6.1 and then Theorem 4.12, and hence the
same is true for ug for all g.

Example 7.7. For (n; r) = ((2, 1, 1); (1, 1, 1)) we have u−1 = q and from
Lemma 6.1 it follows that

u
((2,1,1);(1,1,1))
0 = −u

((2,1);(1,2))
0 = u

((1,1);(2,2))
0 + u

((1);(2))
0 = q.

Using Theorem 4.12 we get u1 = −(q − 1)u0 − (q2 − q − 1)u−1 = −q3 + 2q.
Solving the recurrence relation ug = ug−1−ug−2−ug−3 for g ≥ 2, coming from
Theorem 4.14, gives

u
((2,1,1);(1,1,1))
g,odd =

1

4
(q3 − q)(−2g + (−1)g − 1) + q.

Example 7.8. The result for a[12,2]|g,odd is

a[12,2]|g,odd = −u((2,1,1);(1,1,1))
g − u((2,1);(1,2))

g − u((1,1,1);(2,1,1))
g

− u((1,1);(2,2))
g − 2u((1,1);(1,1))

g − u((1);(2))
g =

= −q2g+2 − 1

q + 1
− q2g +

1

2
g(q3 + q − 2) +

1

2

{

2q if g ≡ 0 mod 2

q3 − q − 2 if g ≡ 1 mod 2

7.3. Weight 6. We will not be able to compute ug for all pairs (n; r) of de-
gree 6. But we will be able to compute ug for all pairs (n; r) that are general
cases in the decomposition of aλ|g for λ’s of weight 6. This will be sufficient
to compute all aλ|g of weight 6, because we saw in Lemma 3.11 that only the
general case will have degree 6 and therefore all degenerate cases are covered
in Sections 7.1 and 7.2.
Let ug be the general case in the decomposition of aλ|g. When the degree is
equal to 6 we see from Theorem 4.12 that we need the base cases of genus 0
and 1 to compute ug for all g. As we know, we can always compute u0 using
Lemma 6.1. For genus 1, the numbers aλ|1 have been computed for weight up
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to 6 by the author. This was done by embedding every genus 1 curve with a
given point as a plane cubic curve, see [1, Section 15]. Since we know all the
degenerate cases in the decomposition of aλ|1 we can then compute the general
case u1.

Example 7.9. Let us deal with (n; r) = ((6); (1)) which is the generic case in
the decomposition of a[6]|g,odd and for which we have u−1 = J = q3 + q − 1.
Using Lemma 6.1 we get

u
((6);(1))
0 = −u

((3);(2))
0 − u

((2);(1))
0 − u

((1);(2))
0 = −u

((3);(2))
0 = −q2.

Using the results of [1, Section 15] we find that a[6]|1 = q − 1. Decomposing

a[6]|g gives a[6]|1 = −u
((6);(1))
1 − u

((3);(2))
1 − u

((2);(1))
1 − u

((1);(2))
1 . Thus, using

Example 7.2, we get u1 = −(q − 1)− (q4 − q2 − q − 1)− 1− q2 = −q4 + 1. We
can now apply Theorem 4.12 which gives u2 = −(q + 1)u1 − (q2 + q + 1)u0 −
(q3 + q2 + q + 1)u−1 = −q6 + q2 − q, u3 = −u2 − u1 − u0 − u−1 = q6 + q4 − q3

and u4 = −u3 − u2 − u1 − u0 − u−1 = 0. If we then multiply the characteristic
polynomial for the linear recurrence relation of ug by X − 1 we get ug = ug−6

for all g ≥ 5.

Example 7.10. The result for a[6]|g,odd is

a[6]|g,odd = −u
((6);(1))
g − u

((3);(2))
g − u

((2);(1))
g − u

((1);(2))
g = −q

2g −
q2g+3(q − 1)

q2 − q + 1
+

+
1

q2 − q + 1

8

><

>:

q2 if g ≡ 0 mod 3

−q2 − 1 if g ≡ 1 mod 3

1 if g ≡ 2 mod 3

+

8

>>>>>>>><

>>>>>>>>:

q2 + 1 if g ≡ 0 mod 6

q4 − 2 if g ≡ 1 mod 6

q6 − q2 + q + 1 if g ≡ 2 mod 6

−q6 − q4 + q3 − 1 if g ≡ 3 mod 6

1 if g ≡ 4 mod 6

−q3 − q if g ≡ 5 mod 6

Remark 7.11. For any choice of λ and g, consider aλ|g,odd as a function of the
number q of elements of the finite field k of odd characteristic. If λ is of weight
at most 7 it follows from our computations that this function is a polynomial
in the variable q.
This will not continue to hold when considering for instance a[16]|3, that is, also
including finite fields of even characteristic, see Example 10.6. But it will also
not hold for instance for a[110]|1,odd, which for prime fields will be a polynomial
function minus the Ramanujan τ -function, compare [15, Corollary 5.4].

8. Representatives of hyperelliptic curves in even characteristic

Let k be a finite field with an even number of elements. We will again describe
the hyperelliptic curves of genus g ≥ 2 defined over k by their degree 2 mor-
phism to P1. If we choose an affine coordinate x on P1 we can write the induced
degree 2 extension of the function field of P1 in the form y2 +h(x)y+f(x) = 0,

Documenta Mathematica 14 (2009) 259–296



Equivariant Counts of Points of the . . . 279

where h and f are polynomials defined over k that fulfill the following condi-
tions:

2g + 1 ≤ max
(
2 deg(h), deg(f)

)
≤ 2g + 2;(8.1)

gcd(h, f ′2 + fh′2) = 1;(8.2)

t ∤ gcd(h∞, f ′2
∞ + f∞h′2

∞).(8.3)

The last condition comes from the nonsingularity of the point(s) in infinity,
around which the curve can be described in the variable t = 1/x as y2 +
h∞(t)y + f∞(t) = 0, where h∞ := tg+1h(1/t) and f∞ := t2g+2f(1/t). We
therefore define h(∞) and f(∞) to be equal to the degree g + 1 and 2g + 2
coefficient respectively. For a reference see for instance [19, p. 294].

Definition 8.1. Let Pg denote the set of pairs (h, f) of polynomials defined
over k, where h is nonzero, that fulfill all three conditions (8.1), (8.2) and (8.3).
Write C(h,f) for the curve corresponding to the element (h, f) in Pg.

To each k-isomorphism class of objects in Hg(k) there is a pair (h, f) in Pg

such that C(h,f) is a representative. All k-isomorphisms between the curves
represented by elements of Pg are given by k-isomorphisms of their function
fields, and since the g1

2 of a hyperelliptic curve is unique the k-isomorphisms
must respect the inclusion of the function field of P1.
Identify the set of polynomials l(x) defined over k and of degree at most g + 1
with kg+2, and define the group homomorphism

φg : GLop
2 (k) × k∗ → Aut(kg+2), φg(

( a b
c d

)

, e)
(
l(x)

)
:=

e−1(cx + d)g+1l
(ax + b

cx + d

)

.

Now define the group Gg :=
(
kg+2 ⋊φg

(GLop
2 (k) × k∗)

)
/D where

D := {(0,
( a 0

0 a

)

, ag+1) : a ∈ k∗} ⊂ kg+2 ⋊φg
(GLop

2 (k) × k∗).

The k-isomorphisms between curves corresponding to elements of Pg are then
precisely the ones induced by elements of Gg by letting

γ = [(l(x),
(

a b
c d

)

, e)] ∈ Gg

induce the isomorphism

(x, y) 7→
(

ax + b

cx + d
,
e
(
y + l(x)

)

(cx + d)g+1

)

.

This defines a left group action of Gg on Pg, where γ = [(l, Λ, e)] ∈ Gg takes

(h, f) ∈ Pg to (h̃, f̃) ∈ Pg, with

(h̃, f̃) = (φg(Λ, e)(h), e−1φ2g(Λ, e)(f) + l φg(Λ, e)(h) + l2).
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Definition 8.2. Let τm be the function that takes (a, b) ∈ k2
m to 1 if the

equation y2 + ay + b has two roots defined over km, 0 if it has one root and −1
if it has none.

Lemma 8.3. If C(h,f) is the hyperelliptic curve corresponding to (h, f) ∈ Pg

then

am(C(h,f)) = −
∑

α∈P1(km)

τm

(
h(α), f(α)

)
.

Proof: Follows in the same way as Lemma 3.4. �

Notation 8.4. Let us put Ig := 1/|Gg| = q−(g+2)(q3 − q)−1(q − 1)−1.

In the same way as in the case of odd characteristic we get the equality

aλ|g = Ig

∑

(h,f)∈Pg

ν∏

i=1

(

−
∑

α∈P1(ki)

τi

(
h(α), f(α)

))λi

.

All results of Section 3.1 are independent of the characteristic and hence we
extend the definition of aλ|g to genus 0 and 1 in the same way as in that section.

Definition 8.5. For any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n) define

u(n;r)
g,α := Ig

∑

(h,f)∈Pg

m∏

i=1

τni

(
h(αi), f(αi)

)ri

and

u(n;r)
g :=

∑

α∈A(n)

u(n;r)
g,α .

Construction-Lemma 8.6. For each λ we have (in even characteristic) the
same decomposition of aλ|g as given by Construction-Lemma 3.8.

Proof: The following properties of τm for (h, f) ∈ Pg correspond precisely to
the ones for the quadratic character.

⋆ Say that α ∈ P1(ks), then τs̃

(
h(α), f(α)

)
= τs

(
h(α), f(α)

)2
if s̃/s is

even, and τs̃

(
h(α), f(α)

)
= τs

(
h(α), f(α)

)
if s̃/s is odd.

⋆ If for any α, β ∈ P1 we have F s(α) = β for some s, then
τi

(
h(α), f(α)

)
= τi

(
h(α), f(β)

)
for all i.

⋆ Finally, for any α ∈ P1 and any s, τ,s

(
h(α), f(α)

)r
= τs

(
h(α), f(α)

)2

if r is even and τs

(
h(α), f(α)

)r
= τs

(
h(α), f(α)

)
if r is odd.

With this established we can use the same proof as for Construction-Lemma 3.8.
�

Since the decompositions are the same, Lemmas 3.11 and 3.12 also hold in even
characteristic.
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9. Recurrence relations for ug in even characteristic

Analogously to Section 4, this section will be devoted to finding for a fixed pair
(n; r) ∈ Nm, a recurrence relation for ug. Fix an s ∈ k which does not lie in the
set {r2 +r : r ∈ k}, that is, such that τ1(1, s) = −1. We define an involution on
Pg sending (h, f) to (h, f + s h2). This involution is fixed point free and hence

ug,α = Ig

∑

(h,f)∈Pg

m∏

i=1

τni

(
h(αi), f(αi)

)ri
=

= Ig

∑

(h,f)∈Pg

m∏

i=1

τni

(
h(αi), f(αi) + s h2(αi)

)ri
= (−1)

Pm
i=1 riniug,α.

Thus, Lemma 4.1 also holds in the case of even characteristic.

Definition 9.1. Let Qg denote the set of pairs (h, f) of polynomials over k,
where h is nonzero and h, f are of degree at most g + 1, 2g + 2 respectively.
Extending the definition for Pg above to a pair (h, f) ∈ Qg, let h(∞) and f(∞)
be equal to the degree g + 1 and 2g + 2 coefficient of h and f respectively. For
any g ≥ −1, (n; r) ∈ Nm and α ∈ A(n) define

Û (n;r)
g,α := Ig

∑

(h,f)∈Qg

m∏

i=1

τni

(
h(αi), f(αi)

)ri

and

Û (n;r)
g :=

∑

α∈A(n)

Û (n;r)
g,α .

Remark 9.2. The connection between the sets Qg and Pg which we will present
below is due to Brock and Granville and can be found in an early version of
[7]. There the connection is used to count the number of hyperelliptic curves
in even characteristic, which is a0|g,even in our terminology.

Lemma 9.3. Let h and f be polynomials over k. For any irreducible polynomial
m over k, the following two statements are equivalent:

⋆ m| gcd(h, f ′2 + fh′2);
⋆ there is a polynomial l over k, such that m|h and m2|f + hl + l2.

Proof: Say that α ∈ kn is a root of an irreducible polynomial m and of the

polynomial gcd(h, f ′2+fh′2). Let l be equal to f qn/2. Working modulo (x−α)2

we then get

f + hl + l2 = f + hf qn/2 + f qn

≡ f(α) + f ′(α)(x − α) + h′(α)f(α)qn/2(x − α) + f(α)qn

≡ (x − α)(f ′(α) + h′(α)f(α)qn/2) ≡ (x − α)(f ′(α)2 + h′(α)2f(α))1/2 = 0,

which tells us that m2|f +hl+ l2. For the other direction, assume that we have
an irreducible polynomial m and a polynomial l such that m|h and m2|f+hl+l2.
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Differentiating the polynomial f + hl + l2 gives m2|f ′ + h′l + hl′, and thus
m|f ′ + h′l. Taking squares we get m2|f ′2 + h′2l2 and then it follows that
m2|f ′2 + h′2(f + hl) and hence m|f ′2 + h′2f . �

Let (h, f) be an element of Qg. In the first part of the proof of Lemma 9.3,

we may take for l any representative of f qn/2 modulo h, because for these l we
have f + hl + l2 ≡ f + hf qn/2 + f qn

modulo (x − α)2. In the second part it
does not matter which degree l has. We conclude from this that Lemma 9.3
also holds if we assume that l is of degree at most g + 1.
Choose g ≥ −1 and let (h, f) ∈ Qg. Lemma 9.3 gives the following alternative
formulation of the conditions (8.1), (8.2) and (8.3). For all polynomials l of
degree at most g + 1:

m|h, m2|f + hl + l2 =⇒ deg(m) = 0;(9.1)

deg(h) = g + 1 or deg(f + hl + l2) ≥ 2g + 1.(9.2)

Here we used that t| gcd(h∞, f ′2
∞ + f∞h′2

∞) if and only if t|h∞ and there exists
a polynomial l∞ such that deg(l∞) ≤ g + 1 and t2|f∞ + h∞l∞ + l2∞. In turn,
this happens if and only if deg(h) ≤ g and there exists a polynomial l of degree
at most g +1 such that deg(f +hl + l2) ≤ 2g, where we connect l and l∞ using
the definitions l := xg+1l∞(1/x) and l∞ := tg+1l(1/t).
This reformulation leads us to making the following definition.

Definition 9.4. Let ∼g be the relation on Qg given by (h, f) ∼g (h, f +hl+l2)
if l is a polynomial of degree at most g + 1. This is an equivalence relation
and since (h, f) = (h, f + hl + l2) if and only if l = 0 or l = h, the number of
elements of each equivalence class [(h, f)]g is qg+2/2. If (h, f) ∈ Pg ⊂ Qg then
[(h, f)]g ⊂ Pg and we get an induced equivalence relation on Pg which we also
denote ∼g.

We will now construct all ∼g equivalence classes of elements of Qg in terms of
the ∼i equivalence classes of the elements in Pi, where i is between −1 and g.
This is the counterpart of factoring a polynomial into a square-free part and a
squared part in the case of odd characteristic.

Definition 9.5. For z := [(h, f)]i ∈ Pi/ ∼i let Vz be the set of all equiva-
lence classes [(mh, m2f)]g in Qg for all monic polynomials m of degree at most
g − i. This is well defined since if (h1, f1) ∼i (h2, f2) then (mh1, m

2f1) ∼g

(mh2, m
2f2).

Lemma 9.6. The sets Vz for all z ∈ Pi/ ∼i where −1 ≤ i ≤ g are disjoint.

Proof: Say that for some z1 and z2 the intersection Vz1 ∩ Vz2 is nonempty.
That is, there exist (h1, f1) ∈ Pi1 , (h2, f2) ∈ Pi2 and monic polynomials m1,
m2 such that m1h1 = m2h2 and m2

1f1 = m2
2f2 + m2h2l + l2. If for some

irreducible polynomial r we have r|m1 but r ∤ m2, it follows that r|h2 and
r2|m2

2f2 + m2h2l + l2. By the equivalence of conditions (8.2) and (9.1), this
implies that r|(m2

2f2)
′2+m2

2f2(m2h2)
′2 which in turn implies that r|f ′2

2 +f2h
′2
2 .

Since (h2, f2) ∈ Pi2 we see that r must be constant. Hence every irreducible
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factor of m1 is a factor of m2. The situation is symmetric and therefore the
converse also holds.
So far we have not ruled out the possibility that a factor in m1 appears with
higher multiplicity than in m2, or vice versa. Let m be the product of all
irreducible factors of m1 and put m̃1 := m1/m, m̃2 := m2/m and l̃ := l/m.
We are then in the same situation as above, that is m̃1h1 = m̃2h2 and m̃2

1f1 =

m̃2
2f2 + m̃2h2 l̃ + l̃2. Thus, if r is an irreducible polynomial such that r|m̃1 but

r ∤ m̃2 we can argue as above to conclude that r is constant. By a repeated
application of this line of reasoning we can conclude that m1 and m2 must be
equal.
It now follows that h1 = h2 and that m2|l, thus (h1, f1) ∼i1 (h2, f2). This tells
us that Vz1 ∩ Vz2 is only nonempty when z1 = z2. �

Lemma 9.7. The sets Vz for all z ∈ Pi/ ∼i where −1 ≤ i ≤ g cover Qg/ ∼g.

Proof: Pick any element (h1, f1) ∈ Qg and put g1 := g. We define a procedure,
where at the ith step we ask if there are any polynomials mi and li such that
deg(mi) > 0, deg(li) ≤ gi + 1, mi|hi and m2

i |fi + hili + l2i . If so, take any
such polynomials mi, li and define hi+1 := hi/mi, fi+1 := (fi + hili + l2i )/m2

i

and gi+1 := gi − deg(mi). This procedure will certainly stop. Assume that the
procedure has been carried out in some way and that it has stopped at the jth
step, leaving us with some pair of polynomials (hj , fj).
Next, we take (hj , fj+1) to be any element of the set [(hj , fj)]gj

for which

deg(fj+1) is minimal. Say that fj+1 = fj + hj lj + l2j where deg(lj) ≤
gj + 1 and let us define gj+1 to be the number such that 2gj+1 + 1 ≤
max

(
2 deg(hj), deg(fj+1)

)
≤ 2gj+1 + 2. The claim is now that (hj , fj+1) ∈

Pgj+1 . By definition, condition (8.1) holds for (hj , fj+1). If there were polyno-

mials mj+1 and lj+1 such that mj+1|hj and m2
j+1|fj+1 +hjlj+1 + l2j+1 then the

pair of polynomials mj+1 and lj + lj+1 would contradict that the process above
stopped at the jth step. Hence condition (9.1) is fulfilled for (hj , fj+1). Condi-
tion (9.2) is fulfilled if 2 deg(hj) ≥ deg(fj+1) because then deg(hj) = gj+1 + 1.
On the other hand, if 2 deg(hj) < deg(fj+1) and there were a polynomial
lj+1 such that deg(lj+1) ≤ gj+1 + 1 and deg(fj+1 + hj lj+1 + l2j+1) ≤ 2gj+1

then this would contradict the minimality of deg(fj+1). We conclude that
(hj , fj+1) ∈ Pgj+1 .

Finally we see that if we put m̂r :=
∏r−1

i=1 mi and l :=
∑j

i=1 m̂ili, then deg(l) ≤
g + 1, h1 = m̂jhj and f1 = m̂2

jfj+1 + h1l + l2. This shows that Vz contains
[(h1, f1)]g where z := [(hj , fj+1)]gj+1 ∈ Pgj+1/ ∼gj+1 . �

Using the lemmas above we will be able to write Ûg in terms of ui for i between

−1 and g. After this we will determine Ûg for large enough values of g. We
divide into two cases.

Notation 9.8. Let Sj denote all polynomials of degree at most j, and let
S′

j ⊂ Sj consist of the monic polynomials.
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9.1. The case α ∈ A′(n). Fix an element α ∈ A′(n). It follows from
Lemma 9.6 and Lemma 9.7 that

(9.3) Ûg,α =
Ig

2

∑

l∈Sg+1

g
∑

j=−1

∑

z∈Pj/∼j

∑

[(h,f)]j∈Vz

m∏

i=1

τni

(
h(αi), (f+hl+l2)(αi)

)ri
.

Lemma 9.9. Choose any s ≥ 1 and t1, t2 in ks. We then have

τs(vt1, v
2t2) = τs(t1, t2) for all v 6= 0 ∈ ks;

τs(t1, t2 + vt1 + v2) = τs(t1, t2) for all v ∈ ks.

Proof: Clear. �

Fix elements z = [(h0, f0)]i ∈ Pi/ ∼i and β ∈ A1(ks) and define V ′
z to be the

subset of Vz of classes [(m̃h0, m̃
2f0)]g, where m̃ is a monic polynomial with

m̃(β) 6= 0. Lemma 9.9 shows that τs(h(β), f(β)) is constant for all s and
(h, f) such that [(h, f)]g ∈ V ′

z . Applying this to equation (9.3) after recalling
Definition 4.4 we find that

(9.4) Ûg,α = Ig
qg+1

2

g
∑

j=−1

∑

z∈Pj/∼j

∑

m̃∈S′
g−j

m∏

i=1

τni

(
(m̃h)(αi), (m̃

2f)(αi)
)ri

=

= Ig
qg+1

2

g
∑

j=−1

b̂g−juj,α
2

qj+1Ij
=

g+1
∑

i=0

b̂iug−i,α,

where we have taken into account that the group of isomorphisms depends
upon g and that the numbers of elements of the equivalence classes of the
relations ∼g−j and ∼g differ by a factor qj . From the definitions we see that
qg−j Ig/Ij = 1.
For any g ≥ −1 and any h0 ∈ Sg+1 it is clear that
(9.5)

∑

(h0,f)∈Qg

m∏

i=1

τni

(
h0(αi), f(αi)

)ri
=

{

0 if ∀i : ri = 2, ∃j : h0(αj) = 0;

q2g+3 if ∀i : ri = 2, ∀j : h0(αj) 6= 0.

For any g such that 2g + 2 ≥ |n| − 1, and any nonzero polynomial h0 of degree
at most g + 1, Lemma 4.7 tells us that

(9.6)
∑

(h0,f1+pαf2)∈Qg

m∏

i=1

τni

(
h0(αi), (f1 + pαf2)(αi)

)ri
=

= q2g+3−|n|
∑

f1∈S|n|−1

m∏

i=1

τni

(
h0(αi), f1(αi)

)ri
=

= q2g+3−|n|
∑

(β1,...,βm)∈
Q

m
i=1 kni

m∏

i=1

τni

(
h0(αi), βi

)ri
= 0 if ∃i : ri = 1,

because for all a ∈ ks there are as many b ∈ ks for which τs(a, b) = 1 as there
are b ∈ ks for which τs(a, b) = −1.
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Summing equations (9.5) and (9.6) over all h0 ∈ Sg+1 and using that q2g+3Ig =
Iqg+1 we get

(9.7) Ûg,α =

{

I (q − 1)qg+1b̂g+1 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .

9.2. The case α ∈ A(n) \ A′(n). Fix an α ∈ A(n) \ A′(n). We can assume
that α1 = ∞, and then α̃ := (α2, . . . , αm) ∈ A′(ñ) where ñ := (n2, . . . , nm).

Lemma 9.10. For any element (h, f) ∈ P ′
i and any monic polynomial m of

degree g − i,

τs((mh)(∞), (m2f)(∞)) = τs(h(∞), f(∞));

τs((mh)(∞), (f + lh + l2)(∞)) = τs(h(∞), f(∞)).

Proof: Clear. �

For any (h, f) ∈ Qg it holds that if deg(h) < g+1 then τs(h(∞), f(∞)) = 0 for
all s. Define therefore P ′

g and Q′
g to be the subsets of Pg and Qg respectively,

that consist of pairs (h, f) such that deg(h) = g+1. We get an induced relation
∼i on P ′

i and Q′
i and we let V ′′

z be the set of all equivalence classes [(mh, m2f)]g
in Q′

g for all monic polynomials m of degree g−i, where z := [(h, f)]i ∈ P ′
i/ ∼i.

In the same way as in Lemma 9.6 and 9.7 we see that the sets V ′′
z for all

z ∈ P ′
i/ ∼i, where −1 ≤ i ≤ g, are disjoint and cover Q′

g/ ∼g. Using this
together with Lemma 9.10 and the arguments showing equation (9.4) we find
that

(9.8) Ûg,α =
Ig

2

X

l∈Sg+1

X

z∈Q′
g/∼g

mY

i=1

τni

`
h(αi), (f + hl + l

2)(αi)
´ri =

= Ig
qg+1

2

gX

j=−1

X

z∈P ′
j
/∼j

X

m̃∈R′
g−j

mY

i=1

τni

`
(m̃h)(αi), (m̃

2
f)(αi)

´ri =

g+1X

i=0

b
ñ

i ug−i,α.

If we choose g such that 2g + 2 ≥ |n| − 1, h0 ∈ Rg+1 and we put pα(x) := x pα̃,
then we find in the same way as for equation (9.6) that

(9.9)
∑

(h0,f1+pαf2)∈Qg

m∏

i=1

τni

(
h0(αi), (f1 + pαf2)(αi)

)ri
=

= q2g+3−|n|
∑

(β1,...,βm)∈
Q

m
i=1 kni

m∏

i=1

τni

(
h0(αi), βi

)ri
= 0 if ∃i : ri = 1.

Since equation (9.5) also hold for α ∈ A(n) \ A′(n) we find, by summing over
all polynomials h0 ∈ Rg+1, that

(9.10) Ûg,α =

{

I (q − 1)qg+1bñg+1 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .
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9.3. The two cases joined. Recall that J = (q − 1) I |A(n)|.

Theorem 9.11. For any pair (n; r) ∈ Nm,

g+1
∑

j=0

b̂jug−j =

{

J qg+1b̂g+1 if ∀i : ri = 2, g ≥ −1;

0 if ∃i : ri = 1, g ≥ |n|−3
2 .

Proof: The theorem follows from combining equations (9.4), (9.7), (9.8) and
(9.10), using Lemma 4.10. �

Theorem 9.12. For any pair (n; r) ∈ Nm,

min(|n|−1,g+1)
∑

j=0

(b̂j − qb̂j−1)ug−j =

{

J qg+1(b̂g+1 − b̂g) if ∀i : ri = 2, g ≥ 0;

0 if ∃i : ri = 1, g ≥ |n|−1
2 .

Proof: In the notation of the proof of Theorem 4.14, the theorem follows from
applying Theorem 9.11 to the expression F (g) − qF (g − 1). �

Theorem 9.13. By applying Theorem 9.12 to each pair (n; r) appearing in
the decomposition (given by Lemma 8.6) of aλ|g,even we get a linear recurrence
relation for aλ|g,even. The characteristic polynomial of this linear recurrence
relation equals (5.1).

Proof: We know that the decomposition of aλ|g is independent of character-
istic, and since the left hand side of the equation in Theorem 9.12 is the same
as the left hand side of the equation of Theorem 4.14 this theorem follows in
the same way as Theorem 5.2. �

10. Results for weight up to 7 in even characteristic

In this section we compute, for any number g and any finite field k of even char-
acteristic, all aλ|g,even of weight at most 7. First we will exploit the similarities
of Theorems 4.12 and 9.11.

Lemma 10.1. If g ≥ n − 2 then b̂2g+2 = qg+1b̂g+1.

Proof: Fix a pair (n; r) ∈ Nm. Lemma 4.13 tells us that b̂j = qb̂j−1 +d|n|−1−j,

so if j ≥ |n| then b̂j = qb̂j−1 and thus b̂j = qj+1−|n|b̂|n|−1. �

Remark 10.2. If ri = 1 for some i and g ≥ (|n| − 3)/2, then the recursive
relations of Theorems 9.11 and 4.12 are equal. On the other hand, if ri = 2
for all i we see from Lemma 10.1 that the recursive relations of Theorems 9.11
and 4.12 are equal if g ≥ |n| − 2.

Theorem 10.3. For weight less than or equal to 5, aλ|g,even = aλ|g,odd as
functions (in this case polynomials) in q.

Documenta Mathematica 14 (2009) 259–296



Equivariant Counts of Points of the . . . 287

Proof: Consider any aλ|g with |λ| ≤ 5. By Lemma 3.12 it suffices to show that
ug is independent of characteristic when (n; r) ∈ Nm is such that

∑m
i=1 niri ≤ 5.

Clearly u−1 = J is always independent of characteristic. Clearly, Lemma 6.1
also holds in even characteristic. We can therefore assume that ri = 2 for all
i in the case of genus 0. But if ri = 2 for all i then |n| ≤ 2 and hence, by
Remark 10.2, u0 will be independent of characteristic.
This takes care of the base cases of the recurrence relations for ug when g ≥ 1,
given by Theorems 4.12 and 9.11. Again by Remark 10.2 we see that (both
in the case when ri = 2 for all i, and when ri = 1 for some i) when g ≥ 1
these recurrence relations are the same. We can therefore conclude that ug is
independent of characteristic for all g. �

We will now compute aλ|g,even for weight 6 in the same way as in Section 7.3.
To compute ug of degree at most 5 using Theorem 9.11 we need to find the base
case u0. But when the genus is 0 we can use Lemma 6.1 (which also holds in
even characteristic) to reduce to the case that ri = 2 for all i, which is always
computable using Theorem 9.11.
What is left is the general case of the decomposition of aλ|g,even. We then need
the base cases of genus 0 and 1. Again, the genus 0 part is no problem. The
computation of aλ|1 in [1] is independent of characteristic. We can therefore
compute the genus 1 part (compare Section 7.3).

Remark 10.4. As in the case of odd characteristic, for all g and all λ such that
|λ| ≤ 7, aλ|g,even is a polynomial when considered as a function in the number
q (compare Remark 7.11) of elements of the finite field k of even characteristic.
In Theorem 10.3 we saw that the polynomial functions aλ|g,odd and aλ|g,even

are equal (for a fixed g), if |λ| ≤ 5. But for weight 6 there are λ such that
the two polynomials are different, this occurs for the first time for genus 3, see
Example 10.6.

Example 10.5. Let us compute ug,even when (n; r) = ((1, 1); (2, 2, 2)). We see
that u−1 = 1 and Theorem 9.11 gives u0 = q2 − 3q + 2. This result is different
from the 1 in the case of odd characteristic, see Example 4.16. Continued use
of Theorem 9.11 gives u1 = q4 − 3q3 + 5q2 − 6q + 3 and then Theorem 9.12
gives

ug = 2ug−1 − ug−2 + q2g−1(q − 1)3 for g ≥ 2.

Solving this leaves us with

u((1,1,1);(2,2,2))
g,even =

(q − 1)(q2g+3 + g(q2 − 1) − 3q − 2)

(q + 1)2
.

Example 10.6. The result for a[16]|g,even is

a[16]|g,even = a[16]|g,odd − 5

8
g(g − 1)(g − 2)

(
(g − 3)(q − 1) − 4

)
.
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Example 10.7. The result for a[12,4]|g,even is

a[12,4]|g,even = a[12,4]|g,odd − 1

4







g(q − 1) if g ≡ 0 mod 4;

(g − 1)(q − 1) if g ≡ 1 mod 4;

(g − 2)(q − 1) if g ≡ 2 mod 4;

(g − 3)(q − 1) − 4 if g ≡ 3 mod 4.

11. Cohomological results

11.1. Cohomological results for Hg,n. Define the local system V :=
R1π∗(Qℓ) where π : Mg,1 → Mg is the universal curve. For every par-
tition (note that in this section we use a different notation for partitions)
λ = (λ1 ≥ . . . ≥ λg ≥ 0) there is an irreducible representation of GSp(2g)
with highest weight (λ1 − λ2)γ1 + . . . + λgγg − |λ|η, where the γi are suitable
fundamental roots and η is the multiplier representation, and we define Vλ to
be the corresponding local system. Let us also denote by Vλ its restriction to
Hg. In Lemma 13.5 below we will see that making an Sñ-equivariant count of
points of Hg,ñ over a finite field k, for all ñ ≤ n, is equivalent to computing
the trace of Frobenius on the compactly supported ℓ-adic Euler characteristic
ec(Hg ⊗ k̄, Vλ), for every λ with |λ| ≤ n (where ℓ ∤ |k|). For more details, see
[14] and [15].
Thus, we can use the results of Section 7 together with Theorem 3.2 in [1]
to compute the ℓ-adic Euler characteristic ec(Hg ⊗ Q, Vλ) in K0(GalQ), the
Grothendieck group of Gal(Q̄/Q)-representations, for every λ with |λ| ≤ 7.
Specifically, Theorem 3.2 in [1] tells us that if there is a polynomial P such
that Tr(F, ec(Hg ⊗ k̄, Vλ)) = P (q) for all finite fields k, possibly with the

exception of a finite number of characteristics, then ec(Hg ⊗ Q, Vλ) = P (q),
where q is the class of Qℓ(−1) in K0(GalQ). By excluding even characteristic,
Section 7 (see Remark 7.11) and Lemma 13.5 shows that there is indeed such
a polynomial for all g and all |λ| ≤ 7.

Example 11.1. For g = 8 and λ = (5, 1) we have

ec(Hg ⊗ Q, Vλ) = 5q5 − 28q4 + 4q3 + 96q2 − 34q− 88.

11.2. Cohomological results for M2,n and M2,n. Using the stratifica-

tion of Mg,n we can make an Sn-equivariant count of its number of points using
the Sn-equivariant counts of the points of Mg̃,ñ for all g̃ ≤ g and ñ ≤ n+2(g−g̃)
(see [13, Thm 8.13] and also [2]). Since all curves of genus 2 are hyperelliptic,
M2,n is equal to H2,n. Above, we have made Sn-equivariant counts of H2,n

for n ≤ 7 and they were all found to be polynomial in q. These Sn-equivariant
counts can now be complemented with ones of M1,n for n ≤ 9 (see [1, Section
15]) and of M0,n for n ≤ 11 (see [18, Prop 2.7]), which are also found to be
polynomial in q. We can then apply Theorem 3.4 in [2] to conclude, for all
n ≤ 7, the Sn-equivariant GalQ (resp. Hodge) structure of the ℓ-adic (resp.

Betti) cohomology of M2,n.
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In the theorems below we give the Sn-equivariant Hodge Euler characteristic
(which by purity is sufficient to conclude the Hodge structure) in terms of the
Schur polynomials and L, the class of the Tate Hodge structure of weight 2
in K0(HSQ), the Grothendieck group of rational Hodge structures. That is,

the action of Sn on M2,n induces an action on its cohomology, and hence

Hi(M2,n ⊗ C, Q) may be written as a direct sum of Hi
λ(M2,n ⊗ C, Q), which

correspond to the irreducible representations of Sn indexed by λ ⊢ n and with
characters χλ. In terms of this, the coefficient of the Schur polynomial sλ is
equal to 1/χλ(id) ·∑i(−1)i[Hi

λ(M2,n ⊗ C, Q)]. The results for n ≤ 3 were
previously known by the work of Getzler in [14, Section 8].

Theorem 11.2. The Sn-equivariant Hodge Euler characteristic of M2,4 is equal
to

(L7 + 8L6 + 33L5 + 67L4 + 67L3 + 33L2 + 8L + 1)s4

+(4L6 + 26L5 + 60L4 + 60L3 + 26L2 + 4L)s31

+(2L6 + 12L5 + 28L4 + 28L3 + 12L2 + 2L)s22

+(3L5 + 10L4 + 10L3 + 3L2)s212

Theorem 11.3. The Sn-equivariant Hodge Euler characteristic of M2,5 is equal
to

(L8 + 9L7 + 49L6 + 128L5 + 181L4 + 128L3 + 49L2 + 9L + 1)s5

+(6L7 + 48L6 + 156L5 + 227L4 + 156L3 + 48L2 + 6L)s41

+(3L7 + 31L6 + 106L5 + 159L4 + 106L3 + 31L2 + 3L)s32

+(8L6 + 42L5 + 65L4 + 42L3 + 8L2)s312

+(6L6 + 26L5 + 43L4 + 26L3 + 6L2)s221

+(L5 + 3L4 + L3)s213

Theorem 11.4. The Sn-equivariant Hodge Euler characteristic of M2,6 is equal
to

(L9 + 11L8 + 68L7 + 229L6 + 420L5 + 420L4 + 229L3 + 68L2 + 11L + 1)s6

+(7L8 + 75L7 + 317L6 + 641L5 + 641L4 + 317L3 + 75L2 + 7L)s51

+(5L8 + 62L7 + 292L6 + 615L5 + 615L4 + 292L3 + 62L2 + 5L)s42

+(L8 + 21L7 + 108L6 + 236L5 + 236L4 + 108L3 + 21L2 + L)s32

+(17L7 + 118L6 + 278L5 + 278L4 + 118L3 + 17L2)s412

+(16L7 + 115L6 + 277L5 + 277L4 + 115L3 + 16L2)s321

+(3L7 + 22L6 + 53L5 + 53L4 + 22L3 + 3L2)s23

+(9L6 + 29L5 + 29L4 + 9L3)s313

+(6L6 + 21L5 + 21L4 + 6L3)s2212
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Theorem 11.5. The Sn-equivariant Hodge Euler characteristic of M2,7 is equal to

(L10 + 12L9 + 90L8 + 363L7 + 854L6 + 1125L5 + 854L4 + 363L3 + 90L2 + . . .)s7

+(9L9 + 109L8 + 580L7 + 1529L6 + 2109L5 + 1529L4 + 580L3 + 109L2 + 9L)s61

+(6L9 + 100L8 + 606L7 + 1728L6 + 2430L5 + 1728L4 + 606L3 + 100L2 + 6L)s52

+(3L9 + 58L8 + 389L7 + 1153L6 + 1647L5 + 1153L4 + 389L3 + 58L2 + 3L)s43

+(28L8 + 258L7 + 831L6 + 1221L5 + 831L4 + 258L3 + 28L2)s512

+(34L8 + 331L7 + 1133L6 + 1675L5 + 1133L4 + 331L3 + 34L2)s421

+(12L8 + 140L7 + 489L6 + 738L5 + 489L4 + 140L3 + 12L2)s321

+(8L8 + 91L7 + 335L6 + 502L5 + 335L4 + 91L3 + 8L2)s322

+(28L7 + 143L6 + 228L5 + 143L4 + 28L3)s413

+(34L7 + 170L6 + 275L5 + 170L4 + 34L3)s3212

+(10L7 + 47L6 + 77L5 + 47L4 + 10L3)s231

+(4L6 + 7L5 + 4L4)s314

+(2L6 + 6L5 + 2L4)s2213

In Table 1 we present the nonequivariant information (remember that all co-
homology is Tate) in the form of Betti numbers of M2,n for all n ≤ 7. Notice
that the table only contains as many numbers as we need to be able to fill in
the missing ones using Poincaré duality. These results agree with Table 2 of
ordinary Euler characteristics for M2,n for n ≤ 6 found in [4].

Table 1. Dimensions of Hi(M2,n ⊗ C, Q) for n ≤ 7.

H0 H2 H4 H6 H8 H10

M2 1 2

M2,1 1 3 5

M2,2 1 6 14

M2,3 1 12 44 67

M2,4 1 24 144 333

M2,5 1 48 474 1668 2501

M2,6 1 96 1547 8256 18296

M2,7 1 192 4986 39969 129342 189289

The theorem used above also gives the corresponding results for M2,n for n ≤ 7,
which we will present in terms of local systems Vλ defined as above, but starting
from V := R1π∗Q. See [14, Section 8] for the results on ec(M2 ⊗ C, Vλ), for
all λ of weight at most 3.
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Theorem 11.6. The Hodge Euler characteristics of the local systems Vλ on
M′

2 := M2 ⊗ C of weight 4 or 6 are equal to

ec(M′
2, V(4,0)) = 0, ec(M′

2, V(3,1)) = L2 − 1, ec(M′
2, V(2,2)) = −L4,

ec(M′
2, V(6,0)) = −1, ec(M′

2, V(5,1)) = L2 − L − 1,

ec(M′
2, V(4,2)) = L3, ec(M′

2, V(3,3)) = −L− 1.

12. Appendix: Introducing bi, ci and ri

This section will give an interpretation of the information carried by the ug’s.
It will be in terms of counts of hyperelliptic curves together with prescribed
inverse images of points on P1 under their unique degree 2 morphism.

Definition 12.1. Let Cϕ be a curve defined over k together with a separable
degree 2 morphism ϕ over k from C to P1. We then define

bi(Cϕ) := |{α ∈ A(i) : |ϕ−1(α)| = 2, ϕ−1(α) ⊆ C(ki)}|,
ci(Cϕ) := |{α ∈ A(i) : |ϕ−1(α)| = 2, ϕ−1(α) * C(ki)}|

and put ri(Cϕ) := bi(Cϕ) + ci(Cϕ).

The number of ramification points of f that lie in A(i) is then equal to |A(i)|−
ri(Cϕ). Let λi denote the partition of i consisting of one element. We then find
that

|Cϕ(λi)| = |A(i)| + bi(Cϕ) − ci(Cϕ) +

{

2ci/2(Cϕ) if i is even;

0 if i is odd.

and thus

an(Cϕ) =
∑

i|n : 2i∤n

(
ci(Cϕ) − bi(Cϕ)

)
+
∑

i:2i|n

(
−bi(Cϕ) − ci(Cϕ)

)
.

Definition 12.2. For partitions µ and ν, g ≥ 2 and odd characteristic, define

bµcν |g :=
∑

[Cf ]∈Hg(k)/∼=k

1

|Autk(Cf )|

l(µ)
∏

i=1

bi(Cf )µi

l(ν)
∏

j=1

cj(Cf )νj .

The number |µ| + |ν| will be called the weight of this expression.

Remark 12.3. We can, in the obvious way, also define aλbµcν |g, but from
the relation between ai(Cf ), bi(Cf ) and ci(Cf ) we see that this gives no new
phenomena.

Directly from the definitions we get the following lemma.

Lemma 12.4. Let the characteristic be odd and let f be an element of Pg. We
then have

bi(Cf ) =
1

2

∑

α∈A(i)

(

χ2,i

(
f(α)

)2
+ χ2,i

(
f(α)

))
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and

ci(Cf ) =
1

2

∑

α∈A(i)

(

χ2,i

(
f(α)

)2 − χ2,i

(
f(α)

))

.

If the characteristic is odd we then use the same arguments as in Section 3 to
conclude that

bµcν |g =
I

2|µ|+|ν|

∑

f∈Pg

l(µ)
∏

i=1

( ∑

α∈A(i)

χ2,i

(
f(α)

)
+ χ2,i

(
f(α)

)2
)µi

·

·
l(ν)
∏

j=1

( ∑

α∈A(j)

χ2,j

(
f(α)

)
− χ2,j

(
f(α)

)2
)νj

.

Note that this expression is defined for all g ≥ −1. It can be decomposed in
terms of ug’s (that is, we can find a result corresponding to Lemma 3.8) for
tuples (n; r) ∈ Nm such that

(12.1) |n| ≤ |µ| + |ν|.
Remark 12.5. The corresponding results clearly hold for elements (h, f) in
Pg in even characteristic and the decomposition of bµcν |g is independent of
characteristic.

Example 12.6. For each N we have the decomposition:

b[N ]|g =
1

2
(u((N);(2))

g + u((N);(1))
g ) and c[N ]|g =

1

2
(u((N);(2))

g − u((N);(1))
g ).

Example 12.7. Let us decompose b[12]c[2]|g into ug’s:

b[12]c[2]|g =
1

8
(u((2,1,1);(2,2,2))

g + u((2,1,1);(2,1,1))
g + 2u((2,1);(2,2))

g

− u((2,1,1);(1,2,2))
g − u((2,1,1);(1,1,1))

g − 2u((2,1);(1,2))
g ).

In this expression we have removed the ug’s for which
∑m

i=1 rini is odd, since
they are always equal to 0.

Lemma 12.8. For each N , the following information is equivalent:

(1) all ug’s of degree at most N ;
(2) all bµcν |g of weight at most N .

Proof: From property (12.1) of the decomposition of bµcν |g into ug’s we
directly find that if we know (1) we can compute (2). For the other direction
we note on the one hand that

(12.2) I
∑

f∈Pg

j
∏

i=1

(
bi(Cf ) − ci(Cf )

)si
(
bi(Cf ) + ci(Cf )

)ti

can be formulated in terms of bµcν |g’s of weight at most

S :=

j
∑

i=1

i (si + ti).
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If we on the other hand decompose (12.2) into ug’s we find that there is a unique
ug of degree S. The corresponding pair (n; r) contains, for each i, precisely si

entries of the form i1 and ti entries of the form i2. Every ug of degree S can
be created in this way and hence if we know (2) we can compute (1). �

Remark 12.9. From the definitions of ai(Cf ) and ri(Cf ) we see that knowing
(1) and (2) in Lemma 12.8 is also equivalent to knowing

(3) all aλrξ|g of weight at most N ,

where aλrξ|g is defined in the obvious way. Moreover, aλrξ|g = 0 if |λ| is odd.

13. Appendix: The stable part of the counts

Remark 13.1. All results in this section are independent of characteristic.

Definition 13.2 ([8, Def. 1.2.1, 1.2.2]). Let F be a constructible (ℓ-adic)
sheaf on a scheme X of finite type over Z. The sheaf F is said to be pure
of weight m if, for every closed point x in X and eigenvalue α of Frobenius
F (relative to k = k(x)) acting on Fx̄, α is an algebraic integer of weight
equal to m, i.e., such that all its conjugates have absolute value equal to qm/2.
The sheaf F is said to be mixed of weight ≤ m if there exists a filtration
0 = F−1 ⊂ F0 ⊂ . . . ⊂ Fm = F of constructible subsheaves such that, for all
j, Fj/Fj−1 is pure of weight j.

Theorem 13.3 ([8, Cor. 3.3.3, 3.3.4]). Let X
f−→ Z be a scheme of finite type,

and F a constructible sheaf mixed of weight ≤ m. Then Rif!F is mixed of
weight ≤ m + i. Thus, for every finite field k, there is a filtration 0 = W−1 ⊂
W0 ⊂ . . . ⊂ Wi+m = Hi

c(Xk̄,F) of Gal(k̄/k)-representations such that, for all
j, Wj/Wj−1 is pure of weight j.

Definition 13.4. Let K0(Galk) be the Grothendieck group of Gal(k̄/k)-repre-
sentations. In this category, and with the notation of Theorem 13.3, we have

[Hi
c(Xk̄,F)] =

∑i+m
j=0 [Wj/Wj−1]. For any w ≥ 0, let us define [Hi

c(Xk̄,F)]w :=
∑i+m

j=w [Wj/Wj−1] and ew
c (Xk̄,F) :=

∑

i≥0(−1)i[Hi
c(Xk̄,F)]w in K0(Galk). We

make the corresponding definition of ew
c (XQ,F) in K0(GalQ).

Recall the definition in Section 11.1, for a prime ℓ ∤ q, of the ℓ-adic local system
Vλ on Hg. If τ is the canonical morphism from Hg⊗k̄ to Hg, we put V′

λ = τ∗Vλ.
This is a constructible sheaf pure of weight |λ|.
In this section we will see that if g and w are large enough we can compute the
trace of Frobenius on ew

c (Hg ⊗ k̄, Vλ), which by definition (cf. Section 2 in [3])
is equal to ew

c (Hg, V′
λ). We first make the connection to Sn-equivariant counts

of points of Hg,n explicit.

Lemma 13.5. Let the symmetric polynomial s<λ> be the Schur polynomial
in the symplectic case (see [11, A.45]), and pλ the power sum. If s<λ> =
∑

|µ|≤|λ| mµ pµ then

(13.1) Tr
(
F, ec(Hg ⊗ k̄, V′

λ)
)

=
∑

|µ|≤|λ|

mµ q
1
2 (|λ|−|µ|) aµ|g.
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From Theorems 4.14 and 9.12 we see that only the ug’s with all ri = 2 have
inhomogeneous recurrence relations. Theorem 5.2 dealt with the homogeneous
part of the linear recurrence relations for aλ|g. The following lemma, which is
a direct consequence of Theorems 4.14, 9.12 and 5.2, deals with the “inhomo-
geneities”.

Lemma 13.6. Denote by tn the coefficient of u
(n;(2,...,2))
g in the decomposi-

tion of aλ|g (given in Construction-Lemma 3.8). Each value of |n| for a pair
(n; (2, . . . , 2)) appearing in this decomposition of aλ|g is at most equal to |λ|/2.
Define the polynomial

fn(x) :=
(

m∏

i=1

(xni − 1)
)
/(x − 1).

For g ≥ 0, let Rλ(q)|g be the sum, over the pairs (n; (2, . . . , 2)) that occur in
the decomposition of aλ|g, of the polynomial quotients of,

(13.2) tn q2g+|n| J (q − 1) fn(q) by fn(q2),

which is of degree at most (|λ|+4g−2)/2. The polynomial Rλ(q)|g is a particular
solution to the recurrence relation, described in Section 5, for aλ|g.
Since the power sums form a rational basis of the ring of symmetric polynomials,
equation (13.1) and Theorem 13.3 show that aλ|g is of the form

∑

j zjαj for a
finite set of rational numbers zj and distinct algebraic integers αi of weight at
most |λ|+ 4g − 2 (note that 2g − 1 is the dimension of Hg). If our base field k
is replaced by an extension km of degree m then aλ|g is equal to

∑

j zjα
m
j . For

g ≥ |λ| − 1, the linear recurrence relation for aλ|g (see Section 5) shows that it
can be written as the particular solution Rλ(q)|g plus the homogeneous part,
an integer sum of aλ|g̃ −Rλ(q)|g̃ for g̃ ≤ |λ|− 2. We then see that if g ≥ |λ|− 1
and w = 5 |λ|−9, the homogeneous part of the solution to the linear recurrence
relation for aλ|g does not contribute to Tr

(
F, ew

c (Hg ⊗ k̄, V′
λ)
)
. To conclude

this we used the fact that
∑

i ziα
m
i = 0 for all m implies that zi = 0 for all i,

where the zi and αi are complex numbers and the αi are distinct and nonzero.
We can now summarize using Theorem 3.2 in [1].

Definition 13.7. For a polynomial f(x) =
∑

i fix
i put fw(x) :=

∑

i≥w fix
i.

Theorem 13.8. Let q denote the class of Qℓ(−1) in K0(GalQ). For g ≥ |λ|−1
and w = 5 |λ| − 9 we have an equality in K0(GalQ),

ew
c (Hg ⊗ Q, Vλ) =

∑

|µ|≤|λ|

mµ q
1
2 (|λ|−|µ|) Rw−|λ|+|µ|

µ

(
q
)
|g.

Example 13.9. In the case λ = (4, 2, 2), for w = 31 and g ≥ 7, we find that
Tr
(
F, ew

c (Hg ⊗ k̄, Vλ)
)

is equal to fw
g (q), where fg is the polynomial quotient

of q2g+4(3q2 + 3q + 2) by (q2 + 1)2(q + 1)3.

Remark 13.10. By Poincaré duality (cf. Section 2 in [3]) we find that there is
a filtration 0 = W ′

i+|λ|−1 ⊂ W ′
i+|λ| ⊂ . . . ⊂ W ′

2(2g−1+|λ|) = Hi(Hg ⊗ k̄, Vλ)
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of Gal(k̄/k)-representations such that W ′
j/W ′

j−1 is pure of weight j. Let

us define [Hi(Hg ⊗ k̄, Vλ)]w :=
∑w

j=i+|λ|[W
′
j/W ′

j−1] and ew(Hg ⊗ k̄, Vλ) :=
∑

i≥0(−1)i[Hi(Hg ⊗ k̄, Vλ)]w in K0(Galk) and similarily ew(Hg ⊗Q, Vλ). The-

orem 13.8 shows that, for g ≥ g̃ ≥ |λ| − 1 and w = 4g̃ − 3 |λ| + 7, one has that
ew(Hg ⊗ Q, Vλ) is stable, in the sense that it is independent of g.

Computations for λ’s of low weight lead us to make a conjecture, which is true
for |λ| ≤ 30.

Conjecture 13.11. For g ≥ |λ|−1 and w = 5 |λ|−9, we have ew
c (Hg⊗Q, Vλ) =

0 for all λ such that λ1 > |λ|/2.
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locaux sur les espaces de modules des courbes de genre 2 et des surfaces
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