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Abstract. We develop an idempotent version of probabilistic po-
tential theory. The goal is to describe the set of max-plus harmonic
functions, which give the stationary solutions of deterministic optimal
control problems with additive reward. The analogue of the Martin
compactification is seen to be a generalisation of the compactification
of metric spaces using (generalised) Busemann functions. We define
an analogue of the minimal Martin boundary and show that it can
be identified with the set of limits of “almost-geodesics”, and also
the set of (normalised) harmonic functions that are extremal in the
max-plus sense. Our main result is a max-plus analogue of the Mar-
tin representation theorem, which represents harmonic functions by
measures supported on the minimal Martin boundary. We illustrate
it by computing the eigenvectors of a class of Lax-Oleinik semigroups
with nondifferentiable Lagrangian: we relate extremal eigenvector to
Busemann points of normed spaces.

2000 Mathematics Subject Classification: Primary 31C35; Secondary
49L20, 47175.

Keywords and Phrases: Martin boundary, metric boundary, potential
theory, Lax-Oleinik semigroup, weak KAM solutions, max-plus al-
gebra, dynamic programming, deterministic optimal control, Markov
decision process, eigenvalues, eigenvectors, Busemann functions, ex-
tremal generators.

This work was started during a post-doctoral stay of the third author at INRIA, sup-

ported by an ERCIM-INRIA fellowship

Documenta Mathematica 14 (2009) 195–240
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1 Introduction

There exists a correspondence between classical and idempotent analysis, which
was brought to light by Maslov and his collaborators [Mas87, MS92, KM97,
LMS01]. This correspondence transforms the heat equation to an Hamilton-
Jacobi equation, and Markov operators to dynamic programming operators.
So, it is natural to consider the analogues in idempotent analysis of harmonic
functions, which are the solutions of the following equation

ui = sup
j∈S

(Aij + uj) for all i ∈ S. (1)

The set S and the map A : S × S → R ∪ {−∞}, (i, j) 7→ Aij , which plays
the role of the Markov kernel, are given, and one looks for solutions u : S →
R ∪ {−∞}, i 7→ ui. This equation is the dynamic programming equation of
a deterministic optimal control problem with infinite horizon. In this context,
S is the set of states, the map A gives the weights or rewards obtained on
passing from one state to another, and one is interested in finding infinite
paths that maximise the sum of the rewards. Equation (1) is linear in the
max-plus algebra, which is the set R ∪ {−∞} equipped with the operations of
maximum and addition. The term idempotent analysis refers to the study of
structures such as this, in which the first operation is idempotent.
In potential theory, one uses the Martin boundary to describe the set of har-
monic and super-harmonic functions of a Markov process, and the final be-
haviour of its paths. Our goal here is to obtain analogous results for Equa-
tion (1).
The original setting for the Martin boundary was classical potential theory
[Mar41], where it was used to describe the set of positive solutions of Laplace’s
equation. Doob [Doo59] gave a probabilistic interpretation in terms of Wiener
processes and also an extension to the case when time is discrete. His method
was to first establish an integral representation for super-harmonic functions
and then to derive information about final behaviour of paths. Hunt [Hun60]
showed that one could also take the opposite approach: establish the results
concerning paths probabilistically and then deduce the integral representation.
The approach taken in the present paper is closest to that of Dynkin [Dyn69],
which contains a simplified version of Hunt’s method.
There is a third approach to this subject, using Choquet theory. However, at
present, the tools in the max-plus setting, are not yet sufficiently developed to
allow us to take this route.
Our starting point is the max-plus analogue of the Green kernel,

A∗
ij := sup{Ai0i1 + · · · +Ain−1in | n ∈ N, i0, . . . , in ∈ S, i0 = i, in = j} .

Thus, A∗
ij is the maximal weight of a path from i to j. We fix a map i 7→ σi,

from S to R ∪ {−∞}, which will play the role of the reference measure. We
set πj := supk∈S σk +A∗

kj . We define the max-plus Martin space M to be the
closure of the set of maps K := {A∗

·j − πj | j ∈ S} in the product topology,
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and the Martin boundary to be M \K . This term must be used with caution
however, since K may not be open in M (see Example 10.6). The reference
measure is often chosen to be a max-plus Dirac function, taking the value 0 at
some basepoint b ∈ S and the value −∞ elsewhere. In this case, πj = A∗

bj .
One may consider the analogue of an “almost sure” event to be a set of outcomes
(in our case paths) for which the maximum reward over the complement is
−∞. So we are lead to the notion of an “almost-geodesic”, a path of finite total
reward, see Section 7. The almost sure convergence of paths in the probabilistic
case then translates into the convergence of every almost-geodesic to a point
on the boundary.
The spectral measure of probabilistic potential theory also has a natural ana-
logue, and we use it to give a representation of the analogues of harmonic
functions, the solutions of (1). Just as in probabilistic potential theory, one
does not need the entire Martin boundary for this representation, a particular
subset, called the minimal Martin space, will do. The probabilistic version
is defined in [Dyn69] to be the set of boundary points for which the spectral
measure is a Dirac measure located at the point itself. Our definition (see Sec-
tion 4) is closer to an equivalent definition given in the same paper in which
the spectral measure is required only to have a unit of mass at the point in
question. The two definitions are not equivalent in the max-plus setting and
this is related to the main difference between the two theories: the representing
max-plus measure may not be unique.
Our main theorem (Theorem 8.1) is that every (max-plus) harmonic vector u
that is integrable with respect to π, meaning that supj∈S πj + uj <∞, can be
represented as

u = sup
w∈Mm

ν(w) + w, (2)

where ν is an upper semicontinuous map from the minimal Martin space M m

to R∪{−∞}, bounded above. The map ν is the analogue of the density of the
spectral measure.
We also show that the (max-plus) minimal Martin space is exactly the set of
(normalised) harmonic functions that are extremal in the max-plus sense, see
Theorem 8.3. We show that each element of the minimal Martin space is either
recurrent, or a boundary point which is the limit of an almost-geodesic (see
Corollary 7.7 and Proposition 7.8).
To give a first application of our results, we obtain in Corollary 11.3 an existence
theorem for non-zero harmonic functions of max-plus linear kernels satisfying
a tightness condition, from which we derive a characterisation of the spectrum
of some of these kernels (Corollary 11.4).
To give a second application, we obtain in Section 12 a representation of the
eigenvectors of the Lax-Oleinik semigroup [Eva98, §3.3]:

T tu(x) = sup
y∈Rn

−tL
(y − x

t

)

+ u(y) ,
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where L is a convex Lagrangian. This is the evolution semigroup of the
Hamilton-Jacobi equation

∂u

∂t
= L⋆(∇u) ,

where L⋆ denotes the Legendre-Fenchel transform of L. An eigenvector with
eigenvalue λ ∈ R is a function u such that T tu = λt + u holds for all t >
0. We compute the eigenvectors for a subclass of possibly nondifferentiable
Lagrangians (Corollary 12.3 and Theorem 12.5).
Results and ideas related to the ones of present paper have appeared in several
works: we now discuss them.
Max-plus harmonic functions have been much studied in the finite-dimensional
setting. The representation formula (2) extends the representation of harmonic
vectors given in the case when S is finite in terms of the critical and saturation
graphs. This was obtained by several authors, including Romanovski [Rom67],
Gondran and Minoux [GM77] and Cuninghame-Green [CG79, Th. 24.9]. The
reader may consult [MS92, BCOQ92, Bap98, GM02, AG03, AGW05] for more
background on max-plus spectral theory. Relations between max-plus spec-
tral theory and infinite horizon optimisation are discussed by Yakovenko and
Kontorer [YK92] and Kolokoltsov and Maslov [KM97, § 2.4]. The idea of
“almost-geodesic” appears there in relation with “Turnpike” theorems.
The max-plus Martin boundary generalises to some extent the boundary of a
metric space defined in terms of (generalised) Busemann functions by Gromov
in [Gro81] in the following way (see also [BGS85] and [Bal95, Ch. II]). (Note
that this is not the same as the Gromov boundary of hyperbolic spaces.) If
(S, d) is a complete metric space, one considers, for all y, x ∈ S, the function
by,x given by

by,x(z) = d(x, z) − d(x, y) for z ∈ S .

One can fix the basepoint y in an arbitrary way. The space C (S) can
be equipped with the topology of uniform convergence on bounded sets, as
in [Gro81, Bal95], or with the topology of uniform convergence on compact
sets, as in [BGS85]. The limits of sequences of functions by,xn ∈ C (S), where
xn is a sequence of elements of S going to infinity, are called (generalised)
Busemann functions.
When the metric space S is proper, meaning that all closed bounded subsets
of S are compact, the set of Busemann functions coincides with the max-plus
Martin boundary obtained by taking Azx = A∗

zx = −d(z, x), and σ the max-
plus Dirac function at the basepoint y. This follows from Ascoli’s theorem, see
Remark 7.10 for details. Note that our setting is more general since −A∗ need
not have the properties of a metric, apart from the triangle inequality (the case
when A∗ is not symmetrical is needed in optimal control).
We note that Ballman has drawn attention in [Bal95, Ch. II] to the analogy
between this boundary and the probabilistic Martin boundary.
The same boundary has recently appeared in the work of Rieffel [Rie02], who
called it the metric boundary. Rieffel used the term Busemann point to des-
ignate those points of the metric boundary that are limits of what he calls
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“almost-geodesics”. We shall see in Corollary 7.13 that these are exactly the
points of the max-plus minimal Martin boundary, at least when S is a proper
metric space. We also relate Busemann points to extremal eigenvectors of Lax-
Oleinik semigroups, in Section 12. Rieffel asked in what cases are all bound-
ary points Busemann points. This problem, as well as the relation between
the metric boundary and other boundaries, has been studied by Webster and
Winchester [WW06, WW05] and by Andreev [And04, And07]. However, rep-
resentation problems like the one dealt with in Theorem 8.1 do not seem to
have been treated in the metric space context.

Results similar to those of max-plus spectral theory have recently appeared in
weak-KAM theory. In this context, S is a Riemannian manifold and the kernel
A is replaced by a Lax-Oleinik semigroup, that is, the evolution semigroup
of a Hamilton-Jacobi equation. Max-plus harmonic functions correspond to
the weak-KAM solutions of Fathi [Fat97b, Fat97a, Fat08], which are essentially
the eigenvectors of the Lax-Oleinik semigroup, or equivalently, the viscosity
solutions of the ergodic Hamilton-Jacobi equation, see [Fat08, Chapter 8]. In
weak-KAM theory, the analogue of the Green kernel is called the Mañe po-
tential, the role of the critical graph is played by the Mather set, and the
Aubry set is related to the saturation graph. In the case when the manifold
is compact, Contreras [Con01, Theorem 0.2] and Fathi [Fat08, Theorem 8.6.1]
gave a representation of the weak-KAM solutions, involving a supremum of
fundamental solutions associated to elements of the Aubry set. The case of
non-compact manifolds was considered by Contreras, who defined an analogue
of the minimal max-plus Martin boundary in terms of Busemann functions,
and obtained in [Con01, Theorem 0.5] a representation formula for weak-KAM
solutions analogous to (2). Busemann functions also appear in [Fat03]. Other
results of weak-KAM theory concerning non-compact manifolds have been ob-
tained by Fathi and Maderna [FM02]. See also Fathi and Siconolfi [FS04]. Let
us point out that some results of weak-KAM theory with a discrete flavor were
established by MacKay, Slijepčević, and Stark [MSS00]. Extremality proper-
ties of the elements of the max-plus Martin boundary (Theorems 6.2 and 8.3
below) do not seem to have been considered in weak-KAM theory.

Despite the general analogy, the proofs of our representation theorem for har-
monic functions (Theorem 8.1) and of the corresponding theorems in [Con01]
and [Fat08] require different techniques. In order to relate both settings, it
would be natural to set A = Bs, where (Bt)t≥0 is the Lax-Oleinik semigroup,
and s > 0 is arbitrary. However, only special kernels A can be written in this
way, in particular A must have an “infinite divisibility” property. Also, not
every harmonic function of Bs is a weak-KAM solution associated to the semi-
group (Bt)t≥0. Thus, the discrete time case is in some sense more general than
the continuous-time case, but eigenvectors are more constrained in continuous
time, so both settings require distinct treatments. Nevertheless, in some spe-
cial cases, a representation of weak-KAM solutions follows from our results.
This happens for example in Section 12, where our assumptions imply that the
minimal Martin space of Bs is independent of s. We note that the Lagrangian
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there is not necessarily differentiable, a property which is required in [Fat08]
and [Con01].

The lack of uniqueness of the representing measure is examined in a further
work [Wal09], where it is shown that the set of (max-plus) measures represent-
ing a given (max-plus) harmonic function has a least element.

After the submission of the present paper, a boundary theory which has some
similarities with the present one was developed by Ishii and Mitake [IM07].
The results there are in the setting of viscosity solutions and are independent
of the present ones.

We note that the main results of the present paper have been announced in
the final section of a companion paper, [AGW05], in which max-plus spectral
theory was developed under some tightness conditions. Here, we use tightness
only in Section 11. We finally note that the results of the present paper have
been used in the further works [Wal07, Wal08].

Acknowledgements. We thank Albert Fathi for helpful comments, and in par-
ticular for having pointed out to us the work of Contreras [Con01]. We also
thank Arnaud de la Fortelle for references on the probabilistic Martin boundary
theory.

2 The max-plus Martin kernel and max-plus Martin space

To show the analogy between the boundary theory of deterministic optimal
control problems and classical potential theory, it will be convenient to use
max-plus notation. The max-plus semiring, Rmax, is the set R∪{−∞} equipped
with the addition (a, b) 7→ a ⊕ b := max(a, b) and the multiplication (a, b) 7→
a⊙ b := a+ b. We denote by 0 := −∞ and 1 := 0 the zero and unit elements,
respectively. We shall often write ab instead of a ⊙ b. Since the supremum
of an infinite set may be infinite, we shall occasionally need to consider the
completed max-plus semiring Rmax, obtained by adjoining to Rmax an element
+∞, with the convention that 0 = −∞ remains absorbing for the semiring
multiplication.

The sums and products of matrices and vectors are defined in the natural
way. These operators will be denoted by ⊕ and concatenation, respectively.
For instance, if A ∈ RS×S

max , (i, j) 7→ Aij , denotes a matrix (or kernel), and if
u ∈ RS

max, i 7→ ui denotes a vector, we denote by Au ∈ RS
max, i 7→ (Au)i, the

vector defined by

(Au)i :=
⊕

j∈S

Aijuj ,

where the symbol ⊕ denotes the usual supremum.

We now introduce the max-plus analogue of the potential kernel (Green kernel).
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Given any matrix A ∈ RS×S
max , we define

A∗ = I ⊕A⊕A2 ⊕ · · · ∈ RS×S
max ,

A+ = A⊕A2 ⊕A3 ⊕ · · · ∈ RS×S
max

where I = A0 denotes the max-plus identity matrix, and Ak denotes the kth
power of the matrix A. The following formulae are obvious:

A∗ = I ⊕A+, A+ = AA∗ = A∗A, and A∗ = A∗A∗ .

It may be useful to keep in mind the graph representation of matrices: to any
matrix A ∈ RS×S

max is associated a directed graph with set of nodes S and an
arc from i to j if the weight Aij is different from 0. The weight of a path is
by definition the max-plus product (that is, the sum) of the weights of its arcs.
Then, A+

ij and A∗
ij represent the supremum of the weights of all paths from i

to j that are, respectively, of positive an nonnegative length.
Motivated by the analogy with potential theory, we will say that a vector
u ∈ RS

max is (max-plus) harmonic if Au = u and super-harmonic if Au ≤ u.
Note that we require the entries of a harmonic or super-harmonic vector to
be distinct from +∞. We shall say that a vector π ∈ RS

max is left (max-plus)
harmonic if πA = π, π being thought of as a row vector. Likewise, we shall say
that π is left (max-plus) super-harmonic if πA ≤ π. Super-harmonic vectors
have the following elementary characterisation.

Proposition 2.1. A vector u ∈ RS
max is super-harmonic if and only if u = A∗u.

Proof. If u ∈ RS
max is super-harmonic, then Aku ≤ u for all k ≥ 1, from which it

follows that u = A∗u. The converse also holds, since AA∗u = A+u ≤ A∗u.

From now on, we make the following assumption.

Assumption 2.2. There exists a left super-harmonic vector with full support,
in other words a row vector π ∈ RS such that π ≥ πA.

By applying Proposition 2.1 to the transpose of A, we conclude that π = πA∗.
Since π has no components equal to 0, we see that one consequence of the
above assumption is that A∗

ij ∈ Rmax for all i, j ∈ S. A fortiori, Aij ∈ Rmax

for all i, j ∈ S.
The choice of π we make will determine which set of harmonic vectors is the
focus of attention. It will be the set of harmonic vectors u that are π-integrable,
meaning that πu <∞. Of course, the boundary that we define will also depend
on π, in general. For brevity, we shall omit the explicit dependence on π of
the quantities that we introduce and shall omit the assumption on π in the
statements of the theorems. We denote by H and S , respectively, the set of
π-integrable harmonic and π-integrable super-harmonic vectors.
It is often convenient to choose π := A∗

b· for some b ∈ S. (We use the notation
Mi· and M·i to denote, respectively, the ith row and ith column of any matrix
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M .) We shall say that b is a basepoint when the vector π defined in this way
has finite entries (in particular, a basepoint has access to every node in S).
With this choice of π, every super-harmonic vector u ∈ RS

max is automatically
π-integrable since, by Proposition 2.1, πu = (A∗u)b = ub < +∞. So, in this
case, H coincides with the set of all harmonic vectors. This conclusion remains
true when π := σA∗, where σ is any row vector with finite support, that is,
with σi = 0 except for finitely many i.
We define the Martin kernel K with respect to π:

Kij := A∗
ij(πj)

−1 for all i, j ∈ S . (3)

Since πiA
∗
ij ≤ (πA∗)j = πj , we have

Kij ≤ (πi)
−1 for all i, j ∈ S . (4)

This shows that the columns K·j are bounded above independently of j. By
Tychonoff’s theorem, the set of columns K := {K·j | j ∈ S} is relatively
compact in the product topology of RS

max. The Martin space M is defined to
be the closure of K . We call B := M \ K the Martin boundary. From (3)
and (4), we get that Aw ≤ w and πw ≤ 1 for all w ∈ K . Since the set of
vectors with these two properties can be written

{w ∈ RS
max | Aijwj ≤ wi and πkwk ≤ 1 for all i, j, k ∈ S}

and this set is obviously closed in the product topology of RS
max, we have that

M ⊂ S and πw ≤ 1 for all w ∈ M . (5)

3 Harmonic vectors arising from recurrent nodes

Of particular interest are those column vectors of K that are harmonic. To
investigate these we will need some basic notions and facts from max-plus
spectral theory. Define the maximal circuit mean of A to be

ρ(A) :=
⊕

k≥1

(trAk)1/k ,

where trA =
⊕

i∈S Aii. Thus, ρ(A) is the maximum weight-to-length ratio for
all the circuits of the graph of A. The existence of a super-harmonic row vector
with full support, Assumption 2.2, implies that ρ(A) ≤ 1 (see for instance
Prop. 3.5 of [Dud92] or Lemma 2.2 of [AGW05]). Define the normalised
matrix Ã = ρ(A)−1A. The max-plus analogue of the notion of recurrence is
defined in [AGW05]:

Definition 3.1 (Recurrence). We shall say that a node i is recurrent if Ã+
ii = 1.

We denote by N r(A) the set of recurrent nodes. We call recurrent classes
of A the equivalence classes of N r(A) with the relation R defined by iRj if
Ã+

ijÃ
+
ji = 1.
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This should be compared with the definition of recurrence for Markov chains,
where a node is recurrent if one returns to it with probability one. Here, a
node is recurrent if we can return to it with reward 1 in Ã.
Since AA∗ = A+ ≤ A∗, every column of A∗ is super-harmonic. Only those
columns of A∗ corresponding to recurrent nodes yield harmonic vectors:

Proposition 3.2 (See [AGW05, Prop. 5.1]). The column vector A∗
·i is har-

monic if and only if ρ(A) = 1 and i is recurrent.

The same is true for the columns of K since they are proportional in the max-
plus sense to those if A∗.
The following two results show that it makes sense to identify elements in the
same recurrence class.

Proposition 3.3. Let i, j ∈ S be distinct. Then K·i = K·j if and only if
ρ(A) = 1 and i and j are in the same recurrence class.

Proof. Let i, j ∈ S be such that K·i = K·j. Then, in particular, Kii = Kij ,
and so A∗

ij = πj(πi)
−1. Symmetrically, we obtain A∗

ji = πi(πj)
−1. Therefore,

A∗
ijA

∗
ji = 1. If i 6= j, then this implies that A+

ii ≥ A+
ijA

+
ji = A∗

ijA
∗
ji = 1, in

which case ρ(A) = 1, i is recurrent, and i and j are in the same recurrence
class. This shows the “only if” part of the proposition. Now let ρ(A) = 1 and i
and j be in the same recurrence class. Then, according to [AGW05, Prop. 5.2],
A∗

·i = A∗
·jA

∗
ji, and so K·i = K·j(πi)

−1πjA
∗
ji. But since π = πA∗, we have that

πi ≥ πjA
∗
ji, and therefore K·i ≤ K·j. The reverse inequality follows from a

symmetrical argument.

Proposition 3.4. Assume that ρ(A) = 1. Then, for all u ∈ S and i, j in the
same recurrence class, we have πiui = πjuj.

Proof. Since π ∈ RS , we can consider the vector π−1 := (π−1
i )i∈S . That π

is super-harmonic can be expressed as πj ≥ πiAij , for all i, j ∈ S. This is
equivalent to (πi)

−1 ≥ Aij(πj)
−1; in other words, that π−1, seen as a column

vector, is super-harmonic. Proposition 5.5 of [AGW05] states that the restric-
tion of any two ρ(A)-super-eigenvectors of A to any recurrence class of A are
proportional. Therefore, either u = 0 or the restrictions of u and π−1 to any
recurrence class are proportional. In either case, the map i ∈ S 7→ πiui is
constant on each recurrence class.

Remark 3.5. It follows from these two propositions that, for any u ∈ S , the
map S → Rmax, i 7→ πiui induces a map K → Rmax, K·i 7→ πiui. Thus, a
super-harmonic vector may be regarded as a function defined on K .

Let u ∈ RS
max be a π-integrable vector. We define the map µu : M → Rmax by

µu(w) := lim sup
K·j→w

πjuj := inf
W∋w

sup
K·j∈W

πjuj for w ∈ M ,

where the infimum is taken over all neighbourhoods W of w in M . The reason
why the limsup above cannot take the value +∞ is that πjuj ≤ πu < +∞ for
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all j ∈ S. The following result shows that µu : M → Rmax is an upper semi-
continuous extension of the map from K to Rmax introduced in Remark 3.5.

Lemma 3.6. Let u be a π-integrable super-harmonic vector. Then, µu(K·i) =
πiui for each i ∈ S and µu(w)w ≤ u for each w ∈ M . Moreover,

u =
⊕

w∈K

µu(w)w =
⊕

w∈M

µu(w)w .

Proof. By Proposition 2.1, A∗u = u. Hence, for all i ∈ S,

ui =
⊕

j∈S

A∗
ijuj =

⊕

j∈S

Kijπjuj . (6)

We conclude that ui ≥ Kijπjuj for all i, j ∈ S. By taking the limsup with
respect to j of this inequality, we obtain that

ui ≥ lim sup
K·j→w

Kijπjuj ≥ lim inf
K·j→w

Kij lim sup
K·j→w

πjuj = wiµu(w) , (7)

for all w ∈ M and i ∈ S. This shows the second part of the first assertion of
the lemma. To prove the first part, we apply this inequality with w = K·i. We
get that ui ≥ Kiiµu(K·i). Since Kii = (πi)

−1, we see that πiui ≥ µu(K·i). The
reverse inequality follows from the definition of µu. The final statement of the
lemma follows from Equation (6) and the first statement.

4 The minimal Martin space

In probabilistic potential theory, one does not need the entire boundary to
be able to represent harmonic vectors, a certain subset suffices. We shall see
that the situation in the max-plus setting is similar. To define the (max-plus)
minimal Martin space, we need to introduce another kernel:

K♭
ij := A+

ij(πj)
−1 for all i, j ∈ S .

Note that K♭
·j = AK·j is a function of K·j. For all w ∈ M , we also define

w♭ ∈ RS
max:

w♭
i = lim inf

K·j→w
K♭

ij for all i ∈ S .

The following lemma shows that no ambiguity arises from this notation since
(K·j)

♭ = K♭
·j.

Lemma 4.1. We have w♭ = w for w ∈ B, and w♭ = K♭
·j = Aw for w = K·j ∈

K . For all w ∈ M , we have w♭ ∈ S and πw♭ ≤ 1.
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Proof. Let w ∈ B. Then, for each i ∈ S, there exists a neighbourhood W of w
such that K·i 6∈ W . So

w♭
i = lim inf

K·j→w
K♭

ij = lim inf
K·j→w

Kij = wi ,

proving that w♭ = w.
Now let w = K·j for some j ∈ S. Taking the sequence with constant value K·j,
we see that w♭ ≤ K♭

·j. To establish the opposite inequality, we observe that

w♭ = lim inf
K·k→w

AK·k ≥ lim inf
K·k→w

A·iKik = A·iwi for all i ∈ S ,

or, in other words, w♭ ≥ Aw. Therefore we have shown that w♭ = K♭
·j .

The last assertion of the lemma follows from (5) and the fact that π is super-
harmonic.

Next, we define two kernels H and H♭ over M .

H(z, w) :=µw(z) = lim sup
K·i→z

πiwi = lim sup
K·i→z

lim
K·j→w

πiKij

H♭(z, w) :=µw♭(z) = lim sup
K·i→z

πiw
♭
i = lim sup

K·i→z
lim inf
K·j→w

πiK
♭
ij .

Using the fact that K♭ ≤ K and Inequality (4), we get that

H♭(z, w) ≤ H(z, w) ≤ 1 for all w, z ∈ M .

If w ∈ M , then both w and w♭ are elements of S by (5) and Lemma 4.1.
Using the first assertion in Lemma 3.6, we get that

H(K·i, w) = πiwi (8)

H♭(K·i, w) = πiw
♭
i . (9)

In particular

H(K·i,K·j) = πiKij = πiA
∗
ij(πj)

−1 (10)

H♭(K·i,K·j) = πiK
♭
ij = πiA

+
ij(πj)

−1 . (11)

Therefore, up to a diagonal similarity, H and H♭ are extensions to M ×M of
the kernels A∗ and A+ respectively.

Lemma 4.2. For all w, z ∈ M , we have

H(z, w) =

{

H♭(z, w) when w 6= z or w = z ∈ B ,1 otherwise .
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Proof. If w ∈ B, then w♭ = w by Lemma 4.1, and the equality of H(z, w) and
H♭(z, w) for all z ∈ M follows immediately.
Let w = K·j for some j ∈ S and let z ∈ M be different from w. Then, there
exists a neighbourhood W of z that does not contain w. Applying Lemma 4.1
again, we get that w♭

i = K♭
ij = Kij = wi for all i ∈ W . We deduce that

H(z, w) = H♭(z, w) in this case also.
In the final case, we have w = z ∈ K . The result follows from Equation (10).

We define the minimal Martin space to be

M
m := {w ∈ M | H♭(w,w) = 1} .

From Lemma 4.2, we see that

{w ∈ M | H(w,w) = 1} = M
m ∪ K . (12)

Lemma 4.3. Every w ∈ M m ∪ K satisfies πw = 1.
Proof. We have

πw = sup
i∈S

πiwi ≥ lim sup
K·i→w

πiwi = H(w,w) = 1.
By Equation (5), πw ≤ 1, and the result follows.

Proposition 4.4. Every element of M m is harmonic.

Proof. If K ∩ M m contains an element w, then, from Equation (11), we see
that ρ(A) = 1 and w is recurrent. It follows from Proposition 3.2 that w is
harmonic.
It remains to prove that the same is true for each element w of B ∩ M m. Let
i ∈ S be such that wi 6= 0 and assume that β > 1 is given. Since w ∈ B, w and
K·i will be different. We make two more observations. Firstly, by Lemma 4.2,
lim supK·j→w πjwj = 1. Secondly, limK·j→w Kij = wi. From these facts, we
conclude that there exists j ∈ S, different from i, such that1 ≤ βπjwj and wi ≤ βKij . (13)

Now, since i and j are distinct, we have A∗
ij = A+

ij = (AA∗)ij . Therefore, we
can find k ∈ S such that

A∗
ij ≤ βAikA

∗
kj . (14)

The final ingredient is thatA∗
kjwj ≤ wk because w is super-harmonic. From this

and the inequalities in (13) and (14), we deduce that wi ≤ β3Aikwk ≤ β3(Aw)i.
Both β and i are arbitrary, so w ≤ Aw. The reverse inequality is also true since
every element of M is super-harmonic. Therefore w is harmonic.
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5 Martin spaces constructed from different basepoints

We shall see that when the left super-harmonic vector π is of the special form
π = A∗

b· for some basepoint b ∈ S, the corresponding Martin boundary is
independent of the basepoint.

Proposition 5.1. The Martin spaces corresponding to different basepoints are
homeomorphic. The same is true for Martin boundaries and minimal Martin
spaces.

Proof. Let M and M ′ denote the Martin spaces corresponding respectively to
two different basepoints, b and b′. We set π = A∗

b· and π′ = A∗
b′·. We denote

by K and K ′ the Martin kernels corresponding respectively to π and π′. By
construction, Kbj = 1 holds for all j ∈ S. It follows that wb = 1 for all w ∈ M .
Using the inclusion in (5), we conclude that M ⊂ Sb := {w ∈ S | wb = 1},
where S denotes the set of π-integrable super-harmonic functions. Observe
that A∗

bi and A∗
b′j are finite for all i, j ∈ S, since both b and b′ are basepoints.

Due to the inequalities π′ ≥ A∗
b′bπ and π ≥ A∗

bb′π
′, π-integrability is equivalent

to π′-integrability. We deduce that M ′ ⊂ Sb′ := {w′ ∈ S | w′
b′ = 1}.

Consider now the maps φ and ψ defined by

φ(w) = w(wb′ )
−1, ∀w ∈ Sb ψ(w′) = w′(w′

b)
−1, ∀w′ ∈ Sb′ .

Observe that if w ∈ Sb, then wb′ ≥ A∗
b′bwb = A∗

b′b 6= 0. Hence, w 7→ wb′ does
not take the value 0 on Sb. By symmetry, w′ 7→ w′

b does not take the value
zero on Sb′ . It follows that φ and ψ are mutually inverse homeomorphisms
which exchange Sb and Sb′ . Since φ sends K·j to K ′

·j, φ sends the the Martin
space M , which is the closure of K := {K·j | j ∈ S}, to the Martin space
M ′, which is the closure of K ′ := {K ′

·j | j ∈ S}. Hence, φ sends the Martin
boundary M \ K to the Martin boundary M ′ \ K ′.
It remains to show that the minimal Martin space corresponding to π, M m, is
sent by φ to the minimal Martin space corresponding to π′, M ′m. Let

H ′♭(z′, w′) = lim sup
K′

·i→z′

lim inf
K′

·j→w′

A∗
b′iA

+
ij(A

∗
b′j)

−1 .

Since φ is an homeomorphism sending K·i to K ′
·i, a net (K·i)i∈I converges to

w if and only if the net (K ′
·i)i∈I converges to φ(w), and so

H ′♭(φ(z), φ(w)) = lim sup
K·i→z

lim inf
K·j→w

A∗
b′iA

+
ij(A

∗
b′j)

−1 = zb′w
−1
b′ H

♭(z, w) .

It follows that H♭(w,w) = 1 if and only if H ′♭(φ(w), φ(w)) = 1. Hence,
φ(M m) = M ′m.

Remark 5.2. Consider the kernel obtained by symmetrising the kernel H♭,

(z, w) 7→ H♭(z, w)H♭(w, z) .
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208 Marianne Akian, Stéphane Gaubert, and Cormac Walsh

The final argument in the proof of Proposition 5.1 shows that this symmetrised
kernel is independent of the basepoint, up to the identification of w and φ(w).
The same is true for the kernel obtained by symmetrising H ,

(z, w) 7→ H(z, w)H(w, z) .

6 Martin representation of super-harmonic vectors

In probabilistic potential theory, each super-harmonic vector has a unique rep-
resentation as integral over a certain set of vectors, the analogue of M m ∪K .
The situation is somewhat different in the max-plus setting. Firstly, according
to Lemma 3.6, one does not need the whole of M m ∪ K to obtain a repre-
sentation: any set containing K will do. Secondly, the representation will
not necessarily be unique. The following two theorems, however, show that
M m ∪ K still plays an important role.

Theorem 6.1 (Martin representation of super-harmonic vectors). For each
u ∈ S , µu is the maximal ν : M m ∪ K → Rmax satisfying

u =
⊕

w∈Mm∪K

ν(w)w , (15)

Any ν : M m ∪ K → Rmax satisfying this equation also satisfies

sup
w∈Mm∪K

ν(w) < +∞ (16)

and any ν satisfying (16) defines by (15) an element u of S .

Proof. By Lemma 3.6, u can be written as (15) with ν = µu. Suppose that
ν : M m ∪ K → Rmax is an arbitrary function satisfying (15). We have

πu =
⊕

w∈Mm∪K

ν(w)πw .

By Lemma 4.3, πw = 1 for each w ∈ M m ∪ K . Since πu < +∞, we deduce
that (16) holds.

Suppose that ν : M m∪K → Rmax is an arbitrary function satisfying (16) and
define u by (15). Since the operation of multiplication by A commutes with
arbitrary suprema, we have Au ≤ u. Also πu =

⊕

w∈Mm∪K
ν(w) < +∞. So

u ∈ S .
Let w ∈ M m ∪ K . Then ν(w)wi ≤ ui for all i ∈ S. So we have

ν(w)H(w,w) = ν(w) lim sup
K·i→w

πiwi ≤ lim sup
K·i→w

πiui = µu(w) .

Since H(w,w) = 1, we obtain ν(w) ≤ µu(w).
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We shall now give another interpretation of the set M m ∪ K . Let V be
a subsemimodule of RS

max, that is a subset of RS
max stable under pointwise

maximum and the addition of a constant (see [LMS01, CGQ04] for definitions
and properties of semimodules). We say that a vector ξ ∈ V \{0} is an extremal
generator of V if ξ = u ⊕ v with u, v ∈ V implies that either ξ = u or ξ = v.
This concept has, of course, an analogue in the usual algebra, where extremal
generators are defined for cones. Max-plus extremal generators are also called
join irreducible elements in the lattice literature. Clearly, if ξ is an extremal
generator of V then so is αξ for all α ∈ R. We say that a vector u ∈ RS

max is
normalised if πu = 1. If V is a subset of the set of π-integrable vectors, then
the set of its extremal generators is exactly the set of αξ, where α ∈ R and ξ
is a normalised extremal generator.

Theorem 6.2. The normalised extremal generators of S are precisely the el-
ements of M m ∪ K .

The proof of this theorem relies on a series of auxiliary results.

Lemma 6.3. Suppose that ξ ∈ M m ∪ K can be written in the form ξ =
⊕

w∈M
ν(w)w, where ν : M → Rmax is upper semicontinuous. Then, there

exists w ∈ M such that ξ = ν(w)w.

Proof. For all i ∈ S, we have ξi =
⊕

w∈M
ν(w)wi. As the conventional sum of

two upper semicontinuous functions, the function M → Rmax : w 7→ ν(w)wi

is upper semicontinuous. Since M is compact, the supremum of ν(w)wi is

attained at some w(i) ∈ M , in other words ξi = ν(w(i))w
(i)
i . Since H(ξ, ξ) = 1,

by definition of H , there exists a net (ik)k∈D of elements of S such that K·ik

converges to ξ and πik
ξik

converges to 1. The Martin space M is compact and
so, by taking a subnet if necessary, we may assume that (w(ik))k∈D converges
to some w ∈ M . Now, for all j ∈ S,

Kjik
πik

ξik
= A∗

jik
ξik

= A∗
jik
ν(w(ik))w

(ik)
ik

≤ ν(w(ik))w
(ik)
j ,

since w(ik) is super-harmonic. Taking the limsup as k → ∞, we get that
ξj ≤ ν(w)wj . The reverse inequality is true by assumption and therefore
ξj = ν(w)wj .

The following consequence of this lemma proves one part of Theorem 6.2.

Corollary 6.4. Every element of M m∪K is a normalised extremal generator
of S .

Proof. Let ξ ∈ M m ∪ K . We know from Lemma 4.3 that ξ is normalised.
In particular, ξ 6= 0. We also know from Equation (5) that ξ ∈ S . Suppose
u, v ∈ S are such that ξ = u⊕ v. By Lemma 3.6, we have u =

⊕

w∈M
µu(w)w

and v =
⊕

w∈M
µv(w)w. Therefore, ξ =

⊕

w∈M
ν(w)w, with ν = µu ⊕ µv.

Since µu and µv are upper semicontinuous maps from M to Rmax, so is ν. By
the previous lemma, there exists w ∈ M such that ξ = ν(w)w. Now, ν(w)
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must equal either µu(w) or µv(w). Without loss of generality, assume the first
case. Then ξ = µu(w)w ≤ u, and since ξ ≥ u, we deduce that ξ = u. This
shows that ξ is an extremal generator of S .

The following lemma will allow us to complete the proof of Theorem 6.2.

Lemma 6.5. Let F ⊂ RS
max have compact closure F̄ in the product topology.

Denote by V the set whose elements are of the form

ξ =
⊕

w∈F

ν(w)w ∈ RS
max, with ν : F → Rmax, sup

w∈F

ν(w) <∞ . (17)

Let ξ be an extremal generator of V , and ν be as in (17). Then, there exists
w ∈ F̄ such that ξ = ν̂(w)w, where

ν̂(w) := lim sup
w′→w, w′∈F

ν(w′).

Proof. Since ν ≤ ν̂, we have ξ ≤
⊕

w∈F
ν̂(w)w ≤

⊕

w∈F̄
ν̂(w)w. Clearly,

ν(w)wi ≤ ξi for all i ∈ S and w ∈ F . Taking the limsup as w → w′ for any
w′ ∈ F̄ , we get that

ξi ≥ ν̂(w′)w′
i.

Combined with the previous inequality, this gives us the representations

ξ =
⊕

w∈F

ν̂(w)w =
⊕

w∈F̄

ν̂(w)w . (18)

Consider now, for each i ∈ S and α < 1, the set

Ui,α := {w ∈ F̄ | ν̂(w)wi < αξi} ,

which is open in F̄ since the map w 7→ ν̂(w)wi is upper semicontinuous. Let
ξ ∈ V \{0} be such that ξ 6= ν̂(w)w for all w ∈ F̄ . We conclude that there exist
i ∈ S and α < 1 such that αξi > ν̂(w)wi, which shows that (Ui,α)i∈S,α<1 is
an open covering of F̄ . Since F̄ is compact, there exists a finite sub-covering
Ui1,α1

, . . . , Uin,αn .
Using (18) and the idempotency of the ⊕ law, we get

ξ = ξ1 ⊕ · · · ⊕ ξn with ξj =
⊕

w∈Uij,αj
∩F

ν̂(w)w , (19)

for j = 1 . . . , n. Since the supremum of ν̂ over F̄ is the same as that over F ,
the vectors ξ1, . . . , ξn all belong to V . Since ξ is an extremal generator of S ,
we must have ξ = ξj for some j. Then Uij ,αj ∩F is non-empty, and so ξij > 0.
But, from the definition of Uij ,αj ,

ξj
ij

=
⊕

w∈Uij,αj
∩F

ν̂(w)wij ≤ αij ξij < ξij .

This shows that ξj is different from ξ, and so Equation (19) gives the required
decomposition of ξ, proving it is not an extremal generator of V .
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We now conclude the proof of Theorem 6.2:

Corollary 6.6. Every normalised extremal generator of S belongs to M m ∪
K .

Proof. Take F = M m ∪ K and let V be as defined in Lemma 6.5. Then,
by definition, F̄ = M , which is compact. By Theorem 6.1, V = S . Let
ξ be a normalised extremal generator of S . Again by Theorem 6.1, ξ =
⊕w∈Fµξ(w)w. Since µξ is upper semicontinuous on M , Lemma 6.5 yields
ξ = µξ(w)w for some w ∈ M , with µξ(w) 6= 0 since ξ 6= 0. Note that
µαu = αµu for all α ∈ Rmax and u ∈ S . Applying this to the previous
equation and evaluating at w, we deduce that µξ(w) = µξ(w)µw(w). Thus,
H(w,w) = µw(w) = 1. In addition, ξ is normalised and so, by Lemma 4.3,1 = πξ = µξ(w)πw = µξ(w).

Hence ξ = w ∈ M m ∪ K .

7 Almost-geodesics

In order to prove a Martin representation theorem for harmonic vectors, we will
use a notion appearing in [YK92] and [KM97, § 2.4], which we will call almost-
geodesic. A variation of this notion appeared in [Rie02]. We will compare the
two notions later in the section.

Let u be a super-harmonic vector, that is u ∈ RS
max and Au ≤ u. Let α ∈ Rmax

be such that α ≥ 1. We say that a sequence (ik)k≥0 with values in S is an
α-almost-geodesic with respect to u if ui0 ∈ R and

ui0 ≤ αAi0i1 · · ·Aik−1ik
uik

for all k ≥ 0 . (20)

Similarly, (ik)k≥0 is an α-almost-geodesic with respect to a left super-harmonic
vector σ if σi0 ∈ R and

σik
≤ ασi0Ai0i1 · · ·Aik−1ik

for all k ≥ 0 .

We will drop the reference to α when its value is unimportant. Observe that, if
(ik)k≥0 is an almost-geodesic with respect to some right super-harmonic vector
u, then both uik

and Aik−1ik
are in R for all k ≥ 0. This is not necessarily true

if (ik)k≥0 is an almost-geodesic with respect to a left super-harmonic vector σ,
however, if additionally σik

∈ R for all k ≥ 0, then Aik−1ik
∈ R for all k ≥ 0.

Lemma 7.1. Let u, σ ∈ RS
max be, respectively, right and left super-harmonic

vectors and assume that u is σ-integrable, that is σu < +∞. If (ik)k≥0 is an
almost-geodesic with respect to u, and if σi0 ∈ R, then (ik)k≥0 is an almost-
geodesic with respect to σ.
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Proof. Multiplying Equation (20) by σik
(ui0)

−1, we obtain

σik
≤ ασik

uik
(ui0)

−1Ai0i1 · · ·Aik−1ik
≤ α(σu)(σi0ui0)

−1σi0Ai0i1 · · ·Aik−1ik
.

So (ik)k≥0 is a β-almost-geodesic with respect to σ, with β :=
α(σu)(σi0ui0)

−1 ≥ α.

Lemma 7.2. Let (ik)k≥0 be an almost-geodesic with respect to π and let β > 1.
Then, for ℓ large enough, (ik)k≥ℓ is a β-almost-geodesic with respect to π.

Proof. Consider the matrix Āij := πiAij(πj)
−1. The fact that (ik)k≥0 is an

α-almost-geodesic with respect to π is equivalent to

pk := (Āi0i1)
−1 · · · (Āik−1ik

)−1 ≤ α for all k ≥ 0 .

Since (Āiℓ−1iℓ
)−1 ≥ 1 for all ℓ ≥ 1, the sequence {pk}k≥1 is nondecreasing. The

upper bound then implies it converges to a finite limit. The Cauchy criterion
states that

lim
ℓ,k→∞, ℓ<k

Āiℓiℓ+1
· · · Āik−1ik

= 1 .

This implies that, given any β > 1, Āiℓiℓ+1
· · · Āik−1ik

≥ β−1 for k and ℓ large
enough, with k > ℓ. Writing this formula in terms of A rather than Ā, we see
that, for ℓ large enough, (ik)k≥ℓ is a β-almost-geodesic with respect to π.

Proposition 7.3. If (ik)k≥0 is an almost-geodesic with respect to π, then K·ik

converges to some w ∈ M m.

Proof. Let β > 1. By Lemma 7.2, (ik)k≥ℓ is a β-almost-geodesic with respect
to π, for ℓ large enough. Then, for all k > ℓ,

πik
≤ βπiℓ

A+
iℓik

≤ βπiℓ
A∗

iℓik
.

Since π is left super-harmonic, we have πiℓ
A∗

iℓik
≤ πik

. Dividing by βπik
the

former inequalities, we deduce that

β−1 ≤ πiℓ
K♭

iℓik
≤ πiℓ

Kiℓik
≤ 1 . (21)

Since M is compact, it suffices to check that all convergent subnets of K·ik

have the same limit w ∈ M m. Let (ikd
)d∈D and (iℓe)e∈E denote subnets of

(ik)k≥0, such that the nets (K·ikd
)d∈D and (K·iℓe

)e∈E converge to some w ∈ M

and w′ ∈ M , respectively. Applying (21) with ℓ = ℓe and k = kd, and taking
the limit with respect to d, we obtain β−1 ≤ πiℓe

wiℓe
. Taking now the limit

with respect to e, we get that β−1 ≤ H(w′, w). Since this holds for all β > 1,
we obtain 1 ≤ H(w′, w), thus H(w′, w) = 1. From Lemma 3.6, we deduce that
w ≥ µw(w′)w′ = H(w′, w)w′ = w′. By symmetry, we conclude that w = w′,
and so H(w,w) = 1. By Equation (12), w ∈ M m ∪ K . Hence, (K·ik

)k≥0

converges towards some w ∈ M m ∪ K .
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Assume by contradiction that w 6∈ M m. Then, w = K·j for some j ∈ S,
and H♭(w,w) < 1 by definition of M m. By (11), this implies that πjK

♭
jj =

A+
jj < 1. If the sequence (ik)k≥0 takes the value j infinitely often, then, we

can deduce from Equation (21) that A+
jj = 1, a contradiction. Hence, for k

large enough, ik does not take the value j, which implies, by Lemma 4.1, that
wik

= w♭
ik

. Using Equation (21), we obtain H♭(w,w) ≥ lim supk→∞ πik
w♭

ik
=

lim supk→∞ πik
wik

= 1, which contradicts our assumption on w. We have
shown that w ∈ M m.

Remark 7.4. An inspection of the proof of Proposition 7.3 shows that the same
conclusion holds under the weaker hypothesis that for all β > 1, we have
πik

≤ βπiℓ
A+

iℓik
for all ℓ large enough and k > ℓ.

Lemma 7.5. If (ik)k≥0 is an almost-geodesic with respect to π, and if w is the
limit of K·ik

, then
lim

k→∞
πik

wik
= 1 .

Proof. Let β > 1. By Lemma 7.2, (ik)k≥ℓ is a β-almost-geodesic with re-
spect to π for ℓ large enough. Hence, for all k ≥ ℓ, πik

≤ βπiℓ
A∗

iℓik
, and so1 ≤ βπiℓ

A∗
iℓik

π−1
ik

= βπiℓ
Kiℓik

. Since Kiℓik
converges to wiℓ

when k tends to
infinity, we deduce that 1 ≤ β lim infℓ→∞ πiℓ

wiℓ
, and since this holds for all

β > 1, we get 1 ≤ lim infℓ→∞ πiℓ
wiℓ

. Since πjwj ≤ 1 for all j, the lemma is
proved.

Proposition 7.6. Let u be a π-integrable super-harmonic vector. Then, µu

is continuous along almost-geodesics, meaning that if (ik)k≥0 is an almost-
geodesic with respect to π and if K·ik

tends to w, then,

µu(w) = lim
k→∞

µu(K·ik
) = lim

k→∞
πik

uik
.

Proof. Recall that πiui = µu(K·i) holds for all i, as shown in Lemma 3.6. It
also follows from this lemma that u ≥ µu(w)w, and so πiui ≥ πiwiµu(w) for
all i ∈ S. Hence,

lim inf
k→∞

πik
uik

≥ lim inf
k→∞

πik
wik

µu(w)

= µu(w) ,

by Lemma 7.5. Moreover, lim supk→∞ πik
uik

≤ µu(w), by definition of µu(w).

Combining Lemma 7.1 and Proposition 7.3, we deduce the following.

Corollary 7.7. If (ik)k≥0 is an almost-geodesic with respect to a π-integrable
super-harmonic vector, then K·ik

converges to some element of M m.

For brevity, we shall say sometimes that an almost-geodesic (ik)k≥0 converges
to a vector w when K·ik

converges to w. We state a partial converse to Propo-
sition 7.3.
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Proposition 7.8. Assume that M is first-countable. For all w ∈ M m, there
exists an almost-geodesic with respect to π converging to w.

Proof. By definition, H♭(w,w) = 0. Writing this formula explicitly in terms of
Aij and making the transformation Āij := πiAij(πj)

−1, we get

lim sup
K·i→w

lim inf
K·j→w

Ā+
ij = 1 .

Fix a sequence (αk)k≥0 in Rmax such that αk > 1 and α := α0α1 · · · < +∞.
Fix also a decreasing sequence (Wk)k≥0 of open neighbourhoods of w. We
construct a sequence (ik)k≥0 in S inductively as follows. Given ik−1, we choose
ik to have the following three properties:

a. K·ik
∈Wk,

b. lim infK·j→w Ā
+
ikj > α−1

k ,

c. Ā+
ik−1ik

> α−1
k−1.

Notice that it is possible to satisfy (c) because ik−1 was chosen to satisfy (b)
at the previous step. We require i0 to satisfy (a) and (b) but not (c). Since
M is first-countable, one can choose the sequence (Wk)k≥0 in such a way that
every sequence (wk)k≥0 in M with wk ∈ Wk converges to w. By (c), one can

find, for all k ∈ N, a finite sequence (iℓk)0≤ℓ≤Nk
such that i0k = ik, iNk

k = ik+1,
and

Āi0k,i1k
· · · Ā

i
Nk−1

k ,i
Nk
k

> α−1
k for all k ∈ N .

Since Āij ≤ 1 for all i, j ∈ S, we obtain

Āi0
k
,i1

k
· · · Āin−1

k ,in
k
> α−1

k for all k ∈ N, 1 ≤ n ≤ Nk .

Concatenating the sequences (iℓk)0≤ℓ≤Nk
, we obtain a sequence (jm)m≥0 such

that α−1 ≤ Āj0j1 · · · Ājm−1jm for all m ∈ N, in other words an α-almost-
geodesic with respect to π. From Lemma 7.3, we know that K·jm converges to
some point in M . Since (ik) is a subsequence of (jm) and K·ik

converges to w,
we deduce that K·jm also converges to w.

Remark 7.9. If S is countable, the product topology on M is metrisable. Then,
the assumption of Proposition 7.8 is satisfied.

Remark 7.10. Assume that (S, d) is a metric space, let Aij = A∗
ij = −d(i, j)

for i, j ∈ S, and let π = A∗
b· for any b ∈ S. We have K·j = −d(·, j) + d(b, j).

Using the triangle inequality for d, we see that, for all k ∈ S, the function
K·k is non-expansive, meaning that |Kik − Kjk| ≤ d(i, j) for all i, j ∈ S.
It follows that every map in M is non-expansive. By Ascoli’s theorem, the
topology of pointwise convergence on M coincides with the topology of uniform
convergence on compact sets. Hence, if S is a countable union of compact sets,
then M is metrisable and the assumption of Proposition 7.8 is satisfied.
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Example 7.11. The assumption in Proposition 7.8 cannot be dispensed with.
To see this, take S = ω1, the first uncountable ordinal. For all i, j ∈ S, define
Aij := 0 if i < j and Aij := −1 otherwise. Then, ρ(A) = 1 and A = A+. Also
A∗

ij equals 0 when i ≤ j and −1 otherwise. We take π := A∗
0·, where 0 denotes

the smallest ordinal. With this choice, πi = 1 for all i ∈ S, and K = A∗.
Let D be the set of maps S → {−1, 0} that are non-decreasing and take the
value 0 at 0. For each z ∈ D , define s(z) := sup{i ∈ S | zi = 0} ∈ S ∪ {ω1}.
Our calculations above lead us to conclude that

K = {z ∈ D | s(z) ∈ S and zs(z) = 0} .

We note that D is closed in the product topology on {−1, 0}S and contains
K . Furthermore, every z ∈ D \K is the limit of the net (A∗

·d)d∈D indexed by
the directed set D = {d ∈ S | d < sz}. Therefore the Martin space is given by
M = D . Every limit ordinal γ less than or equal to ω1 yields one point zγ in
the Martin boundary B := M \ K : we have zγ

i = 0 for i < γ, and zγ
i = −1

otherwise.
Since A+

ii = Aii = −1 for all i ∈ S, there are no recurrent points, and so
K ∩ M m is empty. For any z ∈ B, we have zd = 0 for all d < s(z). Taking
the limsup, we conclude that H(z, z) = 1, thus M m = B. In particular, the
identically zero vector zω1 is in M m.
Since a countable union of countable sets is countable, for any sequence (ik)k∈N

of elements of S, the supremum I = supk∈N ik belongs to S, and so its successor
ordinal, that we denote by I+1, also belongs to S. Since limk→∞KI+1,ik

= −1,
K·ik

cannot converge to zω1 , which shows that the point zω1 in the minimal
Martin space is not the limit of an almost-geodesic.

We now compare our notion of almost-geodesic with that of Rieffel [Rie02]
in the metric space case. We assume that (S, d) is a metric space and take
Aij = A∗

ij = −d(i, j) and πj = −d(b, j), for an some b ∈ S. The compactifica-
tion of S discussed in [Rie02], called there the metric compactification, is the
closure of K in the topology of uniform convergence on compact sets, which,
by Remark 7.10, is the same as its closure in the product topology. It thus
coincides with the Martin space M . We warn the reader that variants of the
metric compactification can be found in the literature, in particular, the refer-
ences [Gro81, Bal95] use the topology of uniform convergence on bounded sets
rather than on compacts.
Observe that the basepoint b can be chosen in an arbitrary way: indeed, for
all b′ ∈ S, setting π′ = A∗

b′·, we get π′ ≥ A∗
b′bπ and π ≥ A∗

bb′π
′, which implies

that almost-geodesics in our sense are the same for the basepoints b and b′.
Therefore, when speaking of almost-geodesics in our sense, in a metric space,
we will omit the reference to π.
Rieffel defines an almost-geodesic as an S-valued map γ from an unbounded
set T of real nonnegative numbers containing 0, such that for all ǫ > 0, for all
s ∈ T large enough, and for all t ∈ T such that t ≥ s,

|d(γ(t), γ(s)) + d(γ(s), γ(0)) − t| < ǫ .
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By taking t = s, one sees that |d(γ(t), γ(0)) − t| < ǫ. Thus, almost-geodesics
in the sense of Rieffel are “almost” parametrised by arc-length, unlike those in
our sense.

Proposition 7.12. Any almost-geodesic in the sense of Rieffel has a subse-
quence that is an almost-geodesic in our sense. Conversely, any almost-geodesic
in our sense that is not bounded has a subsequence that is an almost-geodesic
in the sense of Rieffel.

Proof. Let γ : T → S denote an almost-geodesic in the sense of Rieffel. Then,
for all β > 1, we have

A∗
γ(0),γ(t) ≤ βA∗

γ(0),γ(s)A
∗
γ(s)γ(t) (22)

for all s ∈ T large enough and for all t ∈ T such that t ≥ s. Since the
choice of the basepoint b is irrelevant, we may assume that b = γ(0), so that
πγ(s) = A∗

γ(0),γ(s). As in the proof of Lemma 7.2 we set Āij = πiA
∗
ijπ

−1
j . We

deduce from (22) that

β−1 ≤ Āγ(s)γ(t) ≤ 1 .

Let us choose a sequence β1, β2, . . . ≥ 1 such that the product β1β2 . . . converges
to a finite limit. We can construct a sequence t0 < t1 < . . . of elements of T
such that, setting ik = γ(tik

),

Āikik+1
≥ β−1

k .

Then, the product Āi0i1 Āi1i2 · · · converges, which implies that the sequence i0,
i1, . . . is an almost-geodesic in our sense.
Conversely, let i0, i1, . . . be an almost-geodesic in our sense, and assume that
tk = d(b, ik) is not bounded. After replacing ik by a subsequence, we may
assume that t0 < t1 < . . .. We set T = {t0, t1, . . .} and γ(tk) = ik. We choose
the basepoint b = i0, so that t0 = 0 ∈ T , as required in the definition of Rieffel.
Lemma 7.2 implies that

A∗
bik

≤ βA∗
biℓ
A∗

iℓik

holds for all ℓ large enough and for all k ≥ ℓ. Since t−1
k = A∗

bik
, γ is an

almost-geodesic in the sense of Rieffel.

Rieffel called the limits of almost-geodesics in his sense Busemann points.

Corollary 7.13. Let S be a proper metric space. Then the minimal Martin
space is the disjoint union of K and of the set of Busemann points of S.

Proof. Since A+
ii = −d(i, i) = 0 for all i, the set K is included in the minimal

Martin space M m. We next show that M m\K is the set of Busemann points.
Let w ∈ M be a Busemann point. By Proposition 7.12 we can find an almost-
geodesic in our sense i0, i1, . . . such that K·ik

converges to w and d(b, ik) is
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unbounded. We know from Proposition 7.3 that w ∈ M m. It remains to check
that w 6∈ K . To see this, we show that for all z ∈ M ,

lim
k→∞

H(K·ik
, z) = H(w, z) . (23)

Indeed, for all β > 1, letting k tend to infinity in (21) and using (8), we get

β−1 ≤ πiℓ
wiℓ

= H(K·iℓ
, w) ≤ 1 ,

for ℓ large enough. Hence, limℓ→∞H(K·iℓ
, w) = 1. By Lemma 3.6,

z ≥ H(w, z)w. We deduce that H(K·iℓ
, z) ≥ H(w, z)H(K·iℓ

, w), and so
lim infℓ→∞H(K·iℓ

, z) ≥ H(w, z). By definition of H , lim supℓ→∞H(K·iℓ
, z) ≤

lim supK·j→w H(K·j, z) = H(w, z), which shows (23). Assume now that
w ∈ K , that is, w = K·j for some j ∈ S, and let us apply (23) to z = K·b. We
have H(K·ik

, z) = A∗
bik
A∗

ikb = −2 × d(b, ik) → −∞. Hence, H(w, z) = −∞.
But H(w, z) = A∗

bjA
∗
jb = −2 × d(b, j) > −∞, which shows that w 6∈ K .

Conversely, let w ∈ M m \K . By Proposition 7.8, w is the limit of an almost-
geodesic in our sense. Observe that this almost-geodesic is unbounded. Oth-
erwise, since S is proper, ik would have a converging subsequence, and by
continuity of the map i 7→ K·i, we would have w ∈ K , a contradiction. It
follows from Proposition 7.12 that w is a Busemann point.

8 Martin representation of harmonic vectors

Theorem 8.1 (Poisson-Martin representation of harmonic vectors). Any ele-
ment u ∈ H can be written as

u =
⊕

w∈Mm

ν(w)w , (24)

with ν : M m → Rmax, and necessarily,

sup
w∈Mm

ν(w) < +∞ .

Conversely, any ν : M m → Rmax satisfying the latter inequality defines by (24)
an element u of H . Moreover, given u ∈ H , µu is the maximal ν satisfy-
ing (24).

Proof. Let u ∈ H . Then u is also in S and so, from Lemma 3.6, we obtain
that

u =
⊕

w∈M

µu(w)w ≥
⊕

w∈Mm

µu(w)w . (25)

To show the opposite inequality, let us fix some i ∈ S such that ui 6= 0. Let
us also fix some sequence (αk)k≥0 in Rmax such that αk > 1 for all k ≥ 0 and
such that α := α0α1 · · · < +∞. Since u = Au, one can construct a sequence
(ik)k≥0 in S starting at i0 := i, and such that

uik
≤ αkAikik+1

uik+1
for all k ≥ 0 .
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218 Marianne Akian, Stéphane Gaubert, and Cormac Walsh

Then,

ui0 ≤ αAi0i1 · · ·Aik−1ik
uik

≤ αA∗
i0ik

uik
for all k ≥ 0 , (26)

and so (ik)k≥0 is an α-almost-geodesic with respect to u. Since u is π-integrable,
we deduce using Corollary 7.7 thatK·ik

converges to some w ∈ M m. From (26),
we get ui ≤ αKiik

πik
uik

, and letting k go to infinity, we obtain ui ≤ αwiµu(w).
We thus obtain

ui ≤ α
⊕

w∈Mm

µu(w)wi .

Since α can be chosen arbitrarily close to 1, we deduce the inequality opposite
to (25), which shows that (24) holds with ν = µu.
The other parts of the theorem are proved in a manner similar to Theorem 6.1.

Remark 8.2. The maximal representing measure µu at every point that is the
limit of an almost geodesic can be computed by taking the limit of πiui along
any almost-geodesic converging to this point. See Proposition 7.6.

In particular, H = {0} if and only if M m is empty. We now prove the analogue
of Theorem 6.2 for harmonic vectors.

Theorem 8.3. The normalised extremal generators of H are precisely the
elements of M m.

Proof. We know from Theorem 6.2 that each element of M m is a normalised
extremal generator of S . Since H ⊂ S , and M m ⊂ H (by Proposition 4.4),
this implies that each element of M m is a normalised extremal generator of
H .
Conversely, by the same arguments as in the proof of Corollary 6.6, taking
F = M m in Lemma 6.5 and using Theorem 8.1 instead of Lemma 3.6, we get
that each normalised extremal generator ξ of H belongs to M m ∪ K . Since,
by Proposition 3.2, no element of K \ M m can be harmonic, we have that
ξ ∈ M m.

Remark 8.4. Consider the situation when there are only finitely many recur-
rence classes and only finitely many non-recurrent nodes. Then K is a finite
set, so that B is empty, M = K , and M m coincides with the set of columns
K·j with j recurrent. The representation theorem (Theorem 8.1) shows in this
case that each harmonic vector is a finite max-plus linear combination of the
recurrent columns of A∗, as is the case in finite dimension.

9 Product Martin spaces

In this section, we study the situation where the set S is the Cartesian product
of two sets, S1 and S2, and A and π can be decomposed as follows:

A = A1 ⊗ I2 ⊕ I1 ⊗A2 , π = π1 ⊗ π2 . (27)
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Here, ⊗ denotes the max-plus tensor product of matrices or vectors, Ai is an
Si×Si matrix, πi is a vector indexed by Si, and Ii denotes the Si×Si max-plus
identity matrix. For instance, (A1 ⊗ I2)(i1,i2),(j1,j2) = (A1)i1j1(I2)i2j2 , which is
equal to (A1)i1j1 if i2 = j2, and to 0 otherwise. We shall always assume that
πi is left super-harmonic with respect to Ai, for i = 1, 2. We denote by Mi the
corresponding Martin space, by Ki the corresponding Martin kernel, etc.
We introduce the map

ı : RS1

max × RS2

max → RS
max, ı(w1, w2) = w1 ⊗ w2 ,

which is obviously continuous for the product topologies. The restriction of
ı to the set of (w1, w2) such that π1w1 = π2w2 = 1 is injective. Indeed,
if w1 ⊗ w2 = w′

1 ⊗ w′
2, applying the operator I1 ⊗ π2 on both sides of the

equality, we get w1 ⊗ π2w2 = w′
1 ⊗ π2w

′
2, from which we deduce that w1 = w′

1

if π2w2 = π2w
′
2 = 1.

Proposition 9.1. Assume that A and π are of the form (27), and that πiwi =1 for all wi ∈ Mi and i = 1, 2. Then, the map ı is a homeomorphism from
M1 × M2 to the Martin space M of A, and sends K1 × K2 to K . Moreover,
the same map sends

M
m
1 × (K2 ∪ M

m
2 ) ∪ (K1 ∪ M

m
1 ) × M

m
2

to the minimal Martin space M m of A.

The proof of Proposition 9.1 relies on several lemmas.

Lemma 9.2. If A is given by (27), then, A∗ = A∗
1 ⊗A∗

2 and

A+ = A+
1 ⊗A∗

2 ⊕A∗
1 ⊗A+

2 .

Proof. Summing the equalities Ak =
⊕

1≤ℓ≤k A
ℓ
1⊗A

k−ℓ
2 , we obtain A∗ = A∗

1 ⊗

A∗
2. Hence, A+ = AA∗ = (A1⊗I2⊕I1⊗A2)(A

∗
1⊗A

∗
2) = A+

1 ⊗A∗
2⊕A

∗
1⊗A

+
2 .

We define the kernelH◦ı from (M1×M2)
2 to Rmax, byH◦ı((z1, z2), (w1, w2)) =

H(ı(z1, z2), ı(w1, w2)). The kernel H♭ ◦ ı is defined from H♭ in the same way.

Lemma 9.3. If A∗ = A∗
1 ⊗ A∗

2 and π = π1 ⊗ π2, then K = ı(K1 × K2) and
ı(M1 × M2) = M . Moreover, if πiwi = 1 for all wi ∈ Mi and i = 1, 2, then ı
is an homeomorphism from M1 × M2 to M , and H ◦ ı = H1 ⊗H2.

Proof. Observe that K = K1 ⊗K2. Hence, K = ı(K1 × K2). Let X denote
the closure of any set X . Since Ki = Mi, we get K1 × K2 = M1 × M2, and
so K1 × K2 is compact. Since ı is continuous, we deduce that ı(K1 × K2) =
ı(K1 × K2). Hence, ı(M1×M2) = K = M . Assume now that πiwi = 1 for all
wi ∈ Mi and i = 1, 2, so that the restriction of ı to M1×M2 is injective. Since
M1 × M2 is compact, we deduce that ı is an homeomorphism from M1 × M2

to its image, that is, M . Finally, let z = ı(z1, z2) and w = ı(w1, w2), with
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z1, w1 ∈ M1 and z2, w2 ∈ M2. Since ı is an homeomorphism from M1 ×M2 to
M , we can write H(z, w) in terms of limsup and limit for the product topology
of M1 × M2:

H(z, w) = lim sup
(K1)·i1→z1

(K2)·i2→z2

lim
(K1)·j1→w1

(K2)·j2→w2

π(i1,i2)K(i1,i2),(j1,j2) . (28)

Since A∗ = A∗
1 ⊗ A∗

2 and π = π1 ⊗ π2, we can write the right hand side term
of (28) as the product of two terms that are both bounded from above:

π(i1,i2)K(i1,i2),(j1,j2) = ((π1)i1(K1)i1,j1) ((π2)i2(K2)i2,j2) .

Hence, the limit and limsup in (28) become a product of limits and limsups,
respectively, and so H(z, w) = H1(z1, w1)H2(z2, w2).

Lemma 9.4. Assume that A and π are of the form (27) and that πiwi = 1 for
all wi ∈ Mi and i = 1, 2. Then

H♭ ◦ ı = H♭
1 ⊗H2 ⊕H1 ⊗H♭

2 . (29)

Proof. By Lemma 9.2, A+ = A+
1 ⊗A∗

2 ⊕A∗
1 ⊗ A+

2 , and so

K♭ = K♭
1 ⊗K2 ⊕K1 ⊗K♭

2 .

Let z = ı(z1, z2) and w = ı(w1, w2), with z1, w1 ∈ M1, z2, w2 ∈ M2. In a way
similar to (28), we can write H♭ as

H♭(z, w) = lim sup
(K1)·i1→z1

(K2)·i2→z2

lim inf
(K1)·j1→w1

(K2)·j2→w2

π(i1,i2)K
♭
(i1,i2),(j1,j2) .

The right hand side term is a sum of products:

π(i1,i2)K
♭
(i1,i2),(j1,j2)

= (π1)i1(K
♭
1)i1j1(π2)i2(K2)i2j2 ⊕ (π1)i1(K1)i1j1(π2)i2(K

♭
2)i2j2 .

We now use the following two general observations. Let (αd)d∈D, (βe)e∈E ,
(γd)d∈D, (δe)e∈E be nets of elements of Rmax that are bounded from above.
Then,

lim sup
d,e

αdβe ⊕ γdδe = (lim sup
d

αd)(lim sup
e

βe) ⊕ (lim sup
d

γd)(lim sup
e

δe) .

If additionally the nets (βe)e∈E and (γd)d∈D converge, we have

lim inf
d,e

αdβe ⊕ γdδe = (lim inf
d

αd)(lim
e
βe) ⊕ (lim

d
γd)(lim inf

e
δe) .

Using both identities, we deduce that H♭ is given by (29).
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Proof of Proposition 9.1. We know from Lemma 9.2 that A∗ = A∗
1⊗A

∗
2, and so,

by Lemma 9.3, ı is an homeomorphism from M1×M2 to M . Since the kernels
H1, H

♭
1, H2 and H♭

2 all take values less than or equal to 1, we conclude from (29)
that, when z = ı(z1, z2), H

♭(z, z) = 1 if and only if H♭
1(z1, z1) = H2(z2, z2) = 1

or H1(z1, z1) = H♭
2(z2, z2) = 1. Using Equation (12) and the definition of the

minimal Martin space, we deduce that

M
m = ı

(

M
m
1 × (K2 ∪ M

m
2 ) ∪ (K1 ∪ M

m
1 ) × M

m
2

)

.

Remark 9.5. The assumption that πiwi = 1 for all wi ∈ Mi is automatically
satisfied when the left super-harmonic vectors πi originate from basepoints, that
is, when πi = (Ai)

∗
bi,·

for some basepoint bi. Indeed, we already observed in the
proof of Proposition 5.1 that every vector wi ∈ Mi satisfies (πi)bi(wi)bi = 1.
By (5), πiwi ≤ 1. We deduce that πiwi = 1.
Remark 9.6. Rieffel [Rie02, Prop. 4.11] obtained a version of the first part of
Lemma 9.3 for metric spaces. His result states that if (S1, d1) and (S2, d2)
are locally compact metric spaces, and if their product S is equipped with the
sum of the metrics, d((i1, i2), (j1, j2)) = d1(i1, j1) + d2(i2, j2), then the metric
compactification of S can be identified with the Cartesian product of the metric
compactifications of S1 and S2. This result can be re-obtained from Lemma 9.3
by taking (A1)i1,ji = −d1(i1, j1), (A2)i2,j2 = −d2(i2, j2), πi1 = −d1(i1, b1), and
πi2 = −d(i2, b2), for arbitrary basepoints b1, b2 ∈ Z. We shall illustrate this in
Example 10.4.

10 Examples and Counter-Examples

We now illustrate our results and show various features that the Martin space
may have.

Example 10.1. Let S = N, Ai,i+1 = 0 for all i ∈ N, Ai,0 = −1 for all i ∈ N\{0}
and Aij = −∞ elsewhere. We choose the basepoint 0, so that π = A∗

0,·. The
graph of A is:

0 0 0

−1
−1

0

−1

States (elements of S) are represented by black dots. The white circle represents
the extremal boundary element ξ, that we next determine. In this example,
ρ(A) = 1, and A has no recurrent class. We have A∗

ij = 1 for i ≤ j and
A∗

ij = −1 for i > j, so the Martin space of A corresponding to π = A∗
0· consists

of the columns A∗
·j , with j ∈ N, together with the vector ξ whose entries are

all equal to 1. We have B = {ξ}. One can easily check that H(ξ, ξ) = 1.
Therefore, M m = {ξ}. Alternatively, we may use Proposition 7.3 to show that
ξ ∈ M m, since ξ is the limit of the almost-geodesic 0, 1, 2, . . .. Theorem 8.1
says that ξ is the unique (up to a multiplicative constant) non-zero harmonic
vector.
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Example 10.2. Let us modify Example 10.1 by setting A00 = 0, so that the
previous graph becomes:

0 0 0

−1
−1

0

−1

0

We still have ρ(A) = 1, the node 0 becomes recurrent, and the minimal Martin
space is now M m = {K·0, ξ}, where ξ is defined in Example 10.1. Theorem 8.1
says that every harmonic vector is of the form αK·0 ⊕ βξ, that is sup(α +
K·0, β + ξ) with the notation of classical algebra, for some α, β ∈ R ∪ {−∞}.

Example 10.3. Let S = Z, Ai,i+1 = Ai+1,i = −1 for i ∈ Z, and Aij = 0
elsewhere. We choose 0 to be the basepoint, so that π = A∗

0,·. The graph of A
is:

We are using the same conventions as in the previous examples, together with
the following additional conventions: the arrows are bidirectional since the
matrix is symmetric, and each arc has weight −1 unless otherwise specified.
This example and the next were considered by Rieffel [Rie02].

We have ρ(A) = −1 < 1, which implies there are no recurrent nodes. We have
A∗

i,j = −|i − j|, and so Ki,j = |j| − |i − j|. There are two Martin boundary

points, ξ+ = limj→∞K·j and ξ− = limj→−∞K·j, which are given by ξ+i = i
and ξ−i = −i. Thus, the Martin space M is homeomorphic to Z := Z ∪ {±∞}
equipped with the usual topology. Since both ξ+ and ξ− are limits of almost-
geodesics, M m = {ξ+, ξ−}. Theorem 8.1 says that every harmonic vector is of
the form αξ+ ⊕ βξ−, for some α, β ∈ Rmax.

Example 10.4. Consider S := Z×Z and the operator A given by A(i,j),(i,j±1) =
−1 and A(i,j),(i±1,j) = −1, for each i, j ∈ Z, with all other entries equal to −∞.
We choose the basepoint (0, 0). We represent the graph of A with the same
conventions as in Example 10.3:
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For all i, j, k, l ∈ Z,

A∗
(i,j),(k,l) = −|i− k| − |j − l| .

Note that this is the negative of the distance in the ℓ1 norm between (i, j) and
(k, l). The matrix A can be decomposed as A = A1 ⊗ I ⊕ I ⊗A2, where A1, A2

are two copies of the matrix of Example 10.3, and I denotes the Z×Z identity
matrix (recall that ⊗ denotes the tensor product of matrices, see Section 9
for details). The vector π can be written as π1 ⊗ π2, with π1 = (A1)

∗
0,· and

π2 = (A2)
∗
0,·. Hence, Proposition 9.1 shows that the Martin space of A is

homeomorphic to the Cartesian product of two copies of the Martin space of
Example 10.3, in other words, that there is an homeomorphism from M to
Z × Z. Proposition 9.1 also shows that the same homeomorphism sends K to
Z×Z and the minimal Martin space to ({±∞}×Z) ∪ (Z×{±∞}). Thus, the
Martin boundary and the minimal Martin space are the same. This example
may be considered to be the max-plus analogue of the random walk on the 2-
dimensional integer lattice. The Martin boundary for the latter (with respect
to eigenvalues strictly greater than the spectral radius) is known [NS66] to be
the circle.

Example 10.5. Let S = Q and Aij = −|i− j|. Choosing 0 to be the basepoint,
we get Kij = −|i− j| + |j| for all j ∈ Q. The Martin boundary B consists of
the functions i 7→ −|i − j| + |j| with j ∈ R \ Q, together with the functions
i 7→ i and i 7→ −i. The Martin space M is homeomorphic to R := R ∪ {±∞}
equipped with its usual topology.

Example 10.6. We give an example of a complete locally compact metric space
(S, d) such that the canonical injection from S to the Martin space M is not
an embedding, and such that the Martin boundary B = M \K is not closed.
Consider S = {(i, j) | i ≥ j ≥ 1} and the operator A given by

A(i,j),(i+1,j) = A(i+1,j),(i,j) = −1, for i ≥ j ≥ 1,
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A(i,j),(i,j+1) = A(i,j+1),(i,j) = −2, for i− 1 ≥ j ≥ 1,

A(1,1),(i,i) = A(i,i),(0,0) = −1/i, for i ≥ 2,

with all other entries equal to −∞. We choose the basepoint (1, 1). The graph
of A is depicted in the following diagram:

−1/2

−1/3

−1/4

We are using the same conventions as before. The arcs with weight −2 are
drawn in bold. One can check that

A∗
(i,j),(k,ℓ) = max

(

− |i− k| − 2|j − ℓ|,−(i− j) − (k − ℓ) − φ(j) − φ(ℓ)
)

where φ(j) = 1/j if j ≥ 2, and φ(j) = 0 if j = 1. In other words, an optimal
path from (i, j) to (k, ℓ) is either an optimal path for the metric of the weighted
ℓ1 norm (i, j) 7→ |i| + 2|j|, or a path consisting of an horizontal move to the
diagonal point (j, j), followed by moves from (j, j) to (1, 1), from (1, 1) to (ℓ, ℓ),
and by an horizontal move from (ℓ, ℓ) to (k, ℓ). Since A is symmetric and A∗ is
zero only on the diagonal, d((i, j), (k, ℓ)) := −A∗

(i,j),(k,ℓ) is a metric on S. The

metric space (S, d) is complete since any Cauchy sequence is either ultimately
constant or converges to the point (1, 1). It is also locally compact since any
point distinct from (1, 1) is isolated, whereas the point (1, 1) has the basis of
neighbourhoods consisting of the compact sets Vj = {(i, i) | i ≥ j} ∪ {(1, 1)},
for j ≥ 2.
If ((im, jm))m≥1 is any sequence of elements of S such that both im and jm
tend to infinity, then, for any (k, ℓ) ∈ S,

A∗
(k,ℓ),(im,jm) = A∗

(k,ℓ),(1,1)A
∗
(1,1),(im,jm) for m large enough.

(Intuitively, this is related to the fact that, for m large enough, every optimal
path from (k, ℓ) to (im, jm) passes through the point (1, 1)). It follows that
K·,(im,jm) converges to K·,(1,1) as m → ∞. However, the sequence (im, jm)
does not converge to the point (1, 1) in the metric topology unless im = jm for
m large enough. This shows that the map (i, j) → K·,(i,j) is not an homeomor-
phism from S to its image.
The Martin boundary consists of the points ξ1, ξ2, . . ., obtained as limits of
horizontal half-lines, which are almost-geodesics. We have

ξℓ
(i,j) := lim

k→∞
K(i,j),(k,ℓ) = max

(

i− ℓ− 2|j − ℓ| + φ(ℓ),−(i− j) − φ(j)
)

.
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The functions ξℓ are all distinct because i 7→ ξℓ
(i,i) has a unique maximum

attained at i = ℓ. The functions ξℓ do not belong to K because ξℓ
(3j,j) =

j + ℓ + φ(ℓ) ∼ j as j tends to infinity, whereas for any w ∈ K , w(3j,j) =

−2j − φ(j) ∼ −2j as j tends to infinity,. The sequence ξℓ converges to K·,(1,1)

as ℓ tends to infinity, which shows that the Martin boundary B = M \ K is
not closed.

Example 10.7. We next give an example of a Martin space having a boundary
point which is not an extremal generator. The same example has been found
independently by Webster and Winchester [WW06]. Consider S := N×{0, 1, 2}
and the operator A given by

A(i,j),(i+1,j) = A(i+1,j),(i,j) = A(i,1),(i,j) = A(i,j),(i,1) = −1,

for all i ∈ N and j ∈ {0, 2}, with all other entries equal to −∞. We choose
(0, 1) as basepoint, so that π := A∗

(0,1),· is such that π(i,j) = −(i+ 1) if j = 0

or 2, and π(i,j) = −(i + 2) if j = 1 and i 6= 0. The graph associated to the
matrix A is depicted in the following diagram, with the same conventions as in
the previous example.

There are three boundary points. They may be obtained by taking the limits

ξ0 := lim
i→∞

K·,(i,0), ξ1 := lim
i→∞

K·,(i,1), and ξ2 := lim
i→∞

K·,(i,2).

Calculating, we find that

ξ0(i,j) = i− j + 1, ξ2(i,j) = i+ j − 1, and ξ1 = ξ0 ⊕ ξ2.

We have H(ξ0, ξ0) = H(ξ2, ξ2) = H(ξ2, ξ1) = H(ξ0, ξ1) = 0. For all other
pairs (ξ′, ξ) ∈ B × B, we have H(ξ′, ξ) = −2. Therefore, the minimal Martin
boundary is M m = {ξ0, ξ2}, and there is a non-extremal boundary point, ξ1,
represented above by a gray circle. The sequences ((i, 0))i∈N and ((i, 2))i∈N are
almost-geodesics, while it should be clear from the diagram that there are no
almost-geodesics converging to ξ1. So this example provides an illustration of
Propositions 7.3 and 7.8.

Example 10.8. Finally, we will give an example of a non-compact minimal
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Martin space. Consider S := N × N × {0, 1} and the operator A given by

A(i,j,k),(i,j+1,k) =A(i,j+1,k),(i,j,k) =−1, for all i, j ∈ N and k ∈ {0, 1},

A(i,j,k),(i,j,1−k) =−1, for all i ∈ N, j ∈ N\{0} and k ∈ {0, 1},

A(i,0,k),(i,0,1−k) =−2, for all i ∈ N and k ∈ {0, 1},

A(i,0,k),(i+1,0,k) =A(i+1,0,k),(i,0,k) =−1, for all i ∈ N and k ∈ {0, 1},

with all other entries equal to −∞. We take π := A∗
(0,0,0),·. With the same

conventions as in Examples 10.4 and 10.7, the graph of A is

Recall that arcs of weight −1 are drawn with thin lines whereas those of weight
−2 are drawn in bold.
For all (i, j, k), (i′, j′, k′) ∈ S,

A∗
(i,j,k),(i′,j′,k′) = −|k′−k|− |i′− i|− |j′− j|χi=i′ − (j+ j′)χi6=i′ −χj=j′=0, k 6=k′ ,

where χE takes the value 1 when condition E holds, and 0 otherwise. Hence,

K(i,j,k),(i′,j′,k′) =k′ − |k′ − k| + i′ − |i′ − i| + j′ − |j′ − j|χi=i′ − (j + j′)χi6=i′

+ χj′=0,k′=1 − χj=j′=0, k 6=k′ .

By computing the limits of K·,(i′,j′,k′) when i′ and/or j′ go to +∞, we readily
check that the Martin boundary is composed of the vectors

ξi′,∞,k′

:= lim
j′→∞

K·,(i′,j′,k′),

ξ∞,∞,k′

:= lim
i′,j′→∞

K·,(i′,j′,k′)

ξ∞,0,k′

:= lim
i′→∞

K·,(i′,0,k′).
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where the limit in i and j′ in the second line can be taken in either order. Note
that limi′→∞K·,(i′,j′,k′) = ξ∞,∞,k′

for any j′ ∈ N \ {0} and k′ ∈ {0, 1}. The

minimal Martin space is composed of the vectors ξi′,∞,k′

and ξ∞,0,k′

with i′ ∈ N

and k′ ∈ {0, 1}. The two boundary points ξ∞,∞,0 and ξ∞,∞,1 are non-extremal
and have representations

ξ∞,∞,0 = ξ∞,0,0 ⊕−3ξ∞,0,1 ,

ξ∞,∞,1 = ξ∞,0,0 ⊕−1ξ∞,0,1.

For k′ ∈ {0, 1}, the sequence (ξi′,∞,k′

)i∈N converges to ξ∞,∞,k′

as i goes to
infinity. Since this point is not in M m, we see that M m is not compact.

11 Tightness and existence of harmonic vectors

We now show how the Martin boundary can be used to obtain existence results
for eigenvectors. As in [AGW05], we restrict our attention to the case where
S is equipped with the discrete topology. We say that a vector u ∈ RS

max is
A-tight if, for all i ∈ S and β ∈ R, the super-level set {j ∈ S | Aijuj ≥ β} is
finite. We say that a family of vectors {uℓ}ℓ∈L ⊂ RS

max is A-tight if supℓ∈L u
ℓ

is A-tight. The notion of tightness is motivated by the following property.

Lemma 11.1. If a net {uℓ}ℓ∈L ⊂ RS
max is A-tight and converges pointwise to

u, then Auℓ converges pointwise to Au.

Proof. This may be checked elementarily, or obtained as a special case of gen-
eral results for idempotent measures [Aki95, AQV98, Aki99, Puh01] or, even
more generally, capacities [OV91]. We may regard u and ul as the densities of
the idempotent measures defined by

Qu(J) = sup
j∈J

uj and Qul(J) = sup
j∈J

ul
j ,

for any J ⊂ S. When S is equipped with the discrete topology, pointwise
convergence of (uℓ)ℓ∈L is equivalent to convergence in the hypograph sense of
convex analysis. It is shown in [AQV98] that this is then equivalent to conver-
gence of (Qul)ℓ∈L in a sense analogous to the vague convergence of probability
theory. It is also shown that, when combined with the tightness of (ul)ℓ∈L,
this implies convergence in a sense analogous to weak convergence. The result
follows as a special case.

Proposition 11.2. Assume that S is infinite and that the vector π−1 :=
(π−1

i )i∈S is A-tight. Then, some element of M is harmonic and, if 0 6∈ M ,
then M m is non-empty. Furthermore, each element of B is harmonic.

Proof. Since S is infinite, there exists an injective map n ∈ N 7→ in ∈ S.
Consider the sequence (in)n∈N. Since M is compact, it has a subnet (jk)k∈D,
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jk := ink
such that {K·jk

}k∈K converges to some w ∈ M . Let i ∈ S. Since
(AA∗)ij = A+

ij = A∗
ij for all j 6= i, we have

(AK·jk
)i = Kijk

when jk 6= i. But, by construction, the net (jk)k∈D is eventually in S\{i}
and so we may pass to the limit, obtaining limk∈K AK·jk

= w. Since π−1 is
A-tight, it follows from (4) that the family (K·j)j∈S is A-tight. Therefore, by
Lemma 11.1, we get w = Aw. If 0 6∈ M , then H contains a non-zero vector,
and applying the representation formula (24) to this vector, we see that M m

cannot be empty.
It remains to show that B ⊂ H . Any w ∈ B is the limit of a net {K·jk

}k∈D.
Let i ∈ S. Since w 6= K·i, the net {K·jk

}k∈D is eventually in some neighbour-
hood of w not containing K·i. We deduce as before that w is harmonic.

Corollary 11.3 (Existence of harmonic vectors). Assume that S is infinite,
that π = A∗

b· ∈ RS for some b ∈ S, and that π−1 is A-tight. Then, H contains
a non-zero vector.

Proof. We have Kbj = 1 for all j ∈ S and hence, by continuity, wb = 1 for
all w ∈ M . In particular, M does not contain 0. The result follows from an
application of the proposition.

We finally derive a characterisation of the spectrum of A. We say that λ is a
(right)-eigenvalue of A if Au = λu for some vector u such that u 6= 0.
Corollary 11.4. Assume that S is infinite, A is irreducible, and for each
i ∈ S, there are only finitely many j ∈ S with Aij > 0. Then the set of right
eigenvalues of A is [ρ(A),∞[.

Proof. Since A is irreducible, no eigenvector of A can have a component equal
to 0. It follows from [Dud92, Prop. 3.5] that every eigenvalue of A must be
greater than or equal to ρ(A).
Conversely, for all λ ≥ ρ(A), we have ρ(λ−1A) ≤ 1. Combined with the
irreducibility of A, this implies [AGW05, Proposition 2.3] that all the entries
of (λ−1A)∗ are finite. In particular, for any b ∈ S, the vector π := (λ−1A)∗b· is
in RS . The last of our three assumptions ensures that π−1 is (λ−1A)-tight and
so, by Corollary 11.3, (λ−1A) has a non-zero harmonic vector. This vector will
necessarily be an eigenvector of A with eigenvalue λ.

Example 11.5. The following example shows that when π−1 is not A-tight, a
Martin boundary point need not be an eigenvector. Consider S := N and the
operator A given by

Ai,i+1 = Ai+1,i := −1 and A0i := 0 for all i ∈ N,

with all other entries of equal to −∞. We take π := A∗
0,·. With the same

conventions as in Example 10.7, the graph of A is
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0
0

0

We have A∗
i,j = max(−i,−|i− j|) and πi = 0 for all i, j ∈ N. There is only one

boundary point, b := limk→∞K·k, which is given by bi = −i for all i ∈ N. One
readily checks that b is not an harmonic vector and, in fact, A has no non-zero
harmonic vectors.

12 Eigenvectors of Lax-Oleinik semigroups and Busemann points
of normed spaces

We now use the Martin boundary to solve a class of continuous-time determin-
istic optimal control problems. Consider the value function v defined by:

v(t, x) := sup
X(·), X(0)=x

φ(X(t)) −

∫ t

0

L(Ẋ(s)) ds .

Here, x is a point in Rn, t is a nonnegative real number, the Lagrangian L is
a Borel measurable map Rn → R ∪ {+∞}, bounded from below, the terminal
reward φ is an arbitrary map Rn → R∪{−∞}, and the supremum is taken over
all absolutely continuous functions X : [0, t] → Rn such that X(0) = x. This
is a special case of the classical Lagrange problem of calculus of variations.

The Lax-Oleinik semigroup (T t)t≥0 is composed of the maps T t sending the
value function at time 0, v(0, ·) = φ to the value function at time t, v(t, ·). The
semigroup property T t+s = T t ◦ T s follows from the dynamic programming
principle. The kernel of the operator T t is given by

(x, y) 7→ T t
x,y = sup

X(·), X(0)=x, X(t)=y

−

∫ t

0

L(Ẋ(s)) ds ,

where the supremum is taken over all absolutely continuous functions X :
[0, t] → Rn such that X(0) = x and X(t) = y.

The classical Hopf-Lax formula states that

T t
x,y = −t coL

(y − x

t

)

, for t > 0 ,

where coL denotes the convex lower semicontinuous hull of L. This is proved,
for instance, in [Eva98, §3.3, Th. 4] when L is convex and finite valued, and
when the curves X(·) are required to be continuously differentiable. The ex-
tension to the present setting is not difficult.

Since T t only depends on coL, we shall assume that L is convex, lower semi-
continuous, and bounded from below. Moreover, we shall always assume that
L(0) is finite.
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We say that a function u : Rn → R ∪ {−∞}, not identically −∞, is an eigen-
vector of the semigroup (T t)t≥0 with eigenvalue λ if

T tu = u+ λt, for all t > 0 .

We shall say that u is extremal if it is an extremal generator of the eigenspace
of the semigroup (T t)t≥0 with eigenvalue λ, meaning that u cannot be written
as the supremum of two eigenvectors with the same eigenvalue that are both
different from it.
One easily checks, using the convexity of L, that for all t > 0, the maximal
circuit mean of the operator T t is given by

ρ(T t) = −tL(0) .

By Proposition 3.5 of [Dud92] or Lemma 2.2 of [AGW05], any eigenvalue µ of
T t must satisfy µ ≥ ρ(T t), and so any eigenvalue λ of the semigroup (T t)t≥0

satisfies
λ ≥ −L(0) .

We denote by ζ(x) the one sided directional derivative of L at the origin in the
direction x:

ζ(x) = lim
t→0+

t−1(L(tx) − L(0)) = inf
t>0

t−1(L(tx) − L(0)) ∈ R ∪ {±∞} , (30)

which always exists since L is convex.

Proposition 12.1. Assume that ζ does not take the value −∞. Then, the
eigenvectors of the Lax-Oleinik semigroup (T t)t≥0 with eigenvalue −L(0) are
precisely the functions u : Rn → R ∪ {−∞}, not identically −∞, such that

−ζ(y − x) + u(y) ≤ u(x) , for all x, y ∈ Rn . (31)

Moreover, when ζ only takes finite values, the extremal eigenvectors with eigen-
value −L(0) are of the form c+ w, where c ∈ R and w belongs to the minimal
Martin space of the kernel (x, y) 7→ −ζ(y − x) with respect to any basepoint.

Proof. Let us introduce the kernels

As := T s + sL(0), for all s ≥ 0.

Using the Hopf-Lax formula, we get

(As)
+
xy = sup

k∈N\{0}

−ksL
(y − x

ks

)

+ ksL(0) .

Using (30) and the fact that ζ(0) = 0, we deduce that

(As)
∗
xy = (As)

+
xy = −ζ(y − x) . (32)
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The eigenvectors of the semigroup (T t)t≥0 are precisely the functions that are
harmonic with respect to all the kernels As, with s > 0. Since (As)xx = 0 for all
x ∈ Rn, the harmonic and super-harmonic functions of As coincide. It follows
from Proposition 2.1 that u is a super-harmonic function of As if and only if
u ≥ A∗

su. Since the latter condition can be written as (31) and is independent
of s, the first assertion of the corollary is proved.
By (32), when ζ is finite, any point can be taken as the basepoint. The kernels
As and (x, y) 7→ −ζ(y − x) have the same Martin and minimal Martin spaces
with respect to any given basepoint, and so the final assertion of the corollary
follows from Theorem 6.2.

Remark 12.2. When ∂L(0), the subdifferential of L at the origin, is non-empty,
ζ does not take the value −∞. This is the case when the origin is in the relative
interior of the domain of L. Then, ζ coincides with the support function of
∂L(0):

ζ(x) = sup
y∈∂L(0)

y · x, for all x ∈ Rn ,

see [Roc70, Th. 23.4]. If in addition the origin is in the interior of the domain of
L, then ∂L(0) is non-empty and compact, and so the function ζ is everywhere
finite.

Corollary 12.3. When ζ is a norm on Rn, the extremal eigenvectors with
eigenvalue −L(0) of the Lax-Oleinik semigroup (T t)t≥0 are precisely the func-
tions x 7→ c − ζ(y − x), where c ∈ R and y ∈ Rn, together with the functions
c+ w, where c ∈ R and w is a Busemann point of the normed space (Rn, ζ).

Proof. This follows from Proposition 12.1 and Corollary 7.13.

Remark 12.4. The map ζ is a norm when the origin is in the interior of the
domain of L and the subdifferential ∂L(0) is symmetric, meaning that p ∈
∂L(0) implies −p ∈ ∂L(0). When ζ is a norm, condition (31) means that u is
Lipschitz-continuous with respect to ζ or that u is identically −∞.

We next study the eigenspace of (T t)t≥0 for an eigenvalue λ > −L(0) in the
special case where L is of the form

L(x) =
‖x‖

p

p

,

where ‖ · ‖ is an arbitrary norm on Rn and p > 1. For all λ > 0, we set

ϑλ := (qλ)
1
q where

1

p
+

1

q
= 1 .

Theorem 12.5. Let s > 0 and λ > 0. Any eigenvector of T s with eigenvalue
λs is an eigenvector of the Lax-Oleinik semigroup (T t)t≥0 with eigenvalue λ.
Such an eigenvector can be written as

u = sup
w∈Mbu

ν(w) + ϑλw , (33)

Documenta Mathematica 14 (2009) 195–240



232 Marianne Akian, Stéphane Gaubert, and Cormac Walsh

where Mbu denotes the set of Busemann points of the normed space (Rn, ‖ · ‖)
and ν is an arbitrary map Mbu → R∪{−∞} bounded from above. The maximal
map ν satisfying (33) is given by µu. Moreover, the extremal eigenvectors with
eigenvalue λ are of the form c+ ϑλw, where c ∈ R and w ∈ Mbu.

This theorem follows from Theorem 8.1, Theorem 8.3, and the next lemma.

Lemma 12.6. For all s > 0, the minimal Martin space of the kernel As :=
T s − sλ, with respect to any basepoint, coincides with the set of functions ϑλw,
where w is a Busemann point of the normed space (Rn, ‖ · ‖) equipped with the
same basepoint.

Proof. For all x, y ∈ Rn, we set

ψ(t) := −t1−pL(y − x) − tλ .

It follows from the Hopf-Lax formula that

(As)
+
xy = sup

k∈N\{0}

ψ(ks) . (34)

Since ψ is concave, the supremum of ψ(t) over all t > 0 is attained at the point
t̄ such that

ψ′(t̄) = t̄−p(p− 1)L(y − x) − λ = 0 .

It follows that
ψ(t̄) = −ϑλ‖y − x‖ .

Since ψ is concave, we have ψ(t) ≥ ψ(t̄) + ψ′(t)(t − t̄), and so, for t ≥ t̄,

ψ(t) − ψ(t̄) = ψ(t) − ψ(t̄) − ψ′(t̄)(t− t̄)

≥ (ψ′(t) − ψ′(t̄))(t− t̄) ≥ ψ′′(t̄)(t− t̄)2

since ψ′ is convex. Let k denote the smallest integer such that t̄ ≤ ks, and let
t = ks. We deduce that

0 ≥ ψ(t) − ψ(t̄) ≥ −p(p− 1)L(y − x)t̄−1−p(t− t̄)2 = −pλt̄−1(t− t̄)2 .

Since t̄ ≤ t ≤ t̄+ s, since t̄ = (qλ)−1/p‖y − x‖, and since

ψ(t̄) ≥ (As)
∗
xy ≥ (As)

+
xy ≥ ψ(t) ,

we get

(As)
∗
xy = −ϑλ‖y − x‖ + ǫ(‖y − x‖) , (35)

where ǫ is a function tending to 0 at infinity. Observe that the supremum
in (34) is always attained by an integer k which can be bounded by an increasing
function of ‖y−x‖. Hence, for all x ∈ Rn and every compact set C, we can find
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an integer N such that (As)
+
xy = sup1≤k≤N ψ(ks) for all y ∈ C. Since every

ψ(ks) is a continuous function of y− x, we deduce that the map y 7→ (As)
+
xy is

continuous.
Denote by K the Martin kernel of As with respect to this basepoint and denote
by M , M m, and K , the corresponding Martin space, minimal Martin space,
and set of columns of the Martin kernel. Also, we denote by H the kernel
constructed from K as in Section 4. Define the kernel A′ : (x, y) 7→ −ϑλ‖y −
x‖. We use K ′,M ′,M ′m,K ′ and H ′ to denote the corresponding objects
constructed from A′.
We next show that M m = M ′m \ K ′.
An element w of M m is the limit of a net (K·yd

)d∈D. If the net (yd)d∈D had
a bounded subnet, it would have a subnet converging to some y ∈ Rd. Then,
by continuity of the map z 7→ (As)

+
·z, the element w would be proportional in

the max-plus sense either to f := (As)
∗
·y or to g := (As)

+
·y (the first case arises

if the subnet is ultimately constant). Both cases can be ruled out: we know
from Proposition 4.4 that an element of the minimal Martin space is harmonic,
but fy = 0 6= gy = (Asf)y = −sλ 6= (Asg)y = −2sλ, and so f and g are not
harmonic. This shows that (yd)d∈D tends to infinity.
By (35), we deduce that K ′

·yd
tends to w. Thus, any net (yd)d∈D such that K·yd

tends to w is such that yd tends to infinity and K ′
·yd

tends to w. We deduce
that w ∈ M ′ and H ′(w,w) ≥ H(w,w) = 1, and so, by (12), M m ⊂ M ′m∪K ′.
We proved that the columns of (As)

∗ are not harmonic, and so M m ⊂ M \K .
We claim that M m ⊂ M ′m \K ′. Indeed, if a net K·yd

converges to w ∈ M m,
we showed that (yd)d∈D tends to infinity, and that K ′

·yd
tends to w. But K ′

·yd

cannot converge to an element K ′
·y ∈ K ′ because the map sending an element

of a finite-dimensional normed space to its column of the Martin kernel is an
embedding (see [Bal95, Ch. II,§1] for a more general result). So w 6∈ K ′.
Let us take now w′ ∈ M ′m \K ′. Then, w′ is the limit of some net (K ′

·y′

d
)d∈D′ ,

where (y′d)d∈D′ necessarily tends to infinity, since otherwise, there would be a
subnet of (y′d)d∈D′ converging to some z ∈ Rn, and so we would have w′ =
K ′

·z ∈ K ′. It follows from (35) that w′ is the limit of K·y′

d
, and hence w′ ∈ M .

These properties also imply that H ′(w′, w′) ≤ H(w′, w′). Since w′ ∈ M ′m,
we have H ′(w′, w′) = 1, and so H(w′, w′) = 1, and by (12), w′ ∈ M m ∪ K .
Observe that the map z 7→ w′

z is continuous because it is a pointwise limit of
elements of K ′, all of which are Lipschitz continuous with constant ϑλ with
respect to the norm ‖ · ‖. For all y ∈ Rn, the map x 7→ A∗

xy takes the value 0
when x = y and the value (As)

+
xy ≤ −sλ < 0 when x 6= y. Thus, the elements of

K are not continuous, and so, w′ 6∈ K . It follows that w′ ∈ M m \K = M m.
We have shown that M m = M ′m \ K ′.
By Corollary 7.13, M ′m \ K ′ is the set of Busemann points of the normed
space (Rn, ϑλ‖ · ‖). These are precisely the functions of the form ϑλw, where
w is a Busemann point of (Rn, ‖ · ‖).

Remark 12.7. Lemma 12.6 identifies a special situation where the minimal
Martin space of T s − sλ is independent of s. This seems related to the fact
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that the set of functions of the form x 7→ a‖x‖p with a > 0 is stable by inf-
convolution. One may still obtain a representation of the eigenvectors for more
general semigroups (T t)t≥0, but this requires adapting some of the present
results to the continuous-time setting. We shall present this elsewhere.

Example 12.8. Consider the Euclidean norm on Rn, ‖x‖ := (x · x)1/2, and
L(x) := ‖x‖p/p with p > 1. The set of Busemann points of the normed space
(Rn, ‖ · ‖), with respect to the basepoint 0, coincides with the set of functions

w : x 7→ x · y ,

where y is an arbitrary vector of norm 1. It follows from Theorem 12.5 that
the extremal eigenvectors with eigenvalue λ > 0 of the Lax-Oleinik semigroup
are of the form c+ ϑλw, with c ∈ R, and that any eigenvector with eigenvalue
λ is a supremum of maps of this form. In particular, when n = 1, there are
two Busemann points, w±(x) = ±ϑλx, and any eigenvector u with eigenvalue
λ can be written as

x 7→ max(c+ + ϑλx, c
− − ϑλx) ,

with c± ∈ R∪{−∞}. The Busemann points w± are the limits of the geodesics
t 7→ ±t, from [0,∞[ to R. Hence, Proposition 7.6 allows us to determine the
maximal representing measure µu, or equivalently, the maximal value of the
scalars c±, as follows:

c± = lim
t→±∞

u(t) ∓ ϑλt .

In this special case, the representing measure is unique.

In order to give another example, we characterise the Busemann points of a
polyhedral norm. We call proper face of a polytope the intersection of this
polytope with a supporting half-space.

Proposition 12.9. Let ‖ · ‖ denote a polyhedral norm on Rn, so that

‖x‖ = max
i∈I

x′i · x ,

where (x′i)i∈I is the finite family of the extreme points of the dual unit ball.
The Martin boundary of the kernel (x, y) 7→ −‖x− y‖, taking the origin as the
basepoint, is precisely the set of functions of the form

x 7→ min
j∈J

x′j · (x−X) + max
j∈J

x′j ·X , (36)

where X ∈ Rn and (x′j)j∈J is the set of extreme points of a proper face of the
dual unit ball. Moreover, all the points of the Martin boundary are Busemann
points.

Proof. Any point f of the Martin boundary is the limit of a sequence of func-
tions

x 7→ fk(x) = ‖Xk‖ − ‖Xk − x‖ ,
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where Xk ∈ Rn and ‖Xk‖ → ∞ when k → ∞. Consider the sequence of
vectors

uk = (x′i ·X
k − ‖Xk‖)i∈I .

These vectors lie in [−∞, 0]I , which is compact and metrisable, and so, we may
assume, by taking a subsequence if necessary, that uk converges to some vector
u ∈ [−∞, 0]I . Since I is finite, we may also assume, again taking a subsequence
if necessary, that there exists an index j0 ∈ I such that x′j0 ·X

k = ‖Xk‖ for all
k. Let J := {i ∈ I | ui > −∞}. Observe that J is non-empty since uj0 = 0.
We have

f(x) = lim
k→∞

fk(x) = lim
k→∞

−max
i∈I

(x′i ·X
k − ‖Xk‖ − x′i · x)

= −max
j∈J

(uj − x′j · x) .

Observe that the set E := {((x′j −x
′
j0

) ·X)j∈J | X ∈ Rn} is closed, since it is a

finite-dimensional vector space. Since the vector (uk)j∈J belongs to E and has
a finite limit when k → ∞, this limit belongs to E, and so there exists some
X ∈ Rn such that uj = x′j ·X − x′j0 ·X for all j ∈ J . Thus,

f(x) = −max
j∈J

x′j · (X − x) + x′j0 ·X .

Since f(0) = 0, we have maxj∈J x
′
j ·X = x′j0 ·X , and so

f(x) = −max
j∈J

x′j · (X − x) + max
j∈J

x′j ·X ,

which is of the form (36).
We now have to show that (x′j)j∈J is the set of extreme points of a face of the

dual unit ball. Let E′ denote the set of vectors x′ ∈ Rn such that x′ ·Xk−‖Xk‖
remains bounded when k tends to infinity. This is an affine space. Let B′ denote
the dual unit ball. We claim that F ′ := E′ ∩ B′ is an extreme subset of B′,
meaning that

αx′ + (1 − α)y′ ∈ F ′ =⇒ x′, y′ ∈ F ′, for all x′, y′ ∈ B′ and 0 < α < 1.
(37)

Indeed, let x′, y′ ∈ B′ and 0 < α < 1. Since x′ ∈ B′, we have x′·X ≤ ‖X‖ for all
X ∈ Rn. In particular, x′ ·Xk−‖Xk‖ ≤ 0 for all k. Similarly, y′ ·Xk−‖Xk‖ ≤ 0
for all k. Since

(αx′ + (1 − α)y′) ·Xk − ‖Xk‖

= α(x′ ·Xk − ‖Xk‖) + (1 − α)(y′ ·Xk − ‖Xk‖)

≤ α(x′ ·Xk − ‖Xk‖)

≤ 0 ,
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we deduce that x′ ·Xk − ‖Xk‖ is bounded if αx′ + (1 − α)y′ ∈ F ′. Similarly,
y′ ·Xk − ‖Xk‖ is bounded. This shows (37).

Let z denote any accumulation point of the sequence ‖Xk‖−1Xk. We have
F ′ ⊂ {x′ ∈ B′ | x′ · z = 1}, and so, F ′ 6= B′.

Since the dual ball B′ is a polytope, the convex extreme subset F ′ 6= B′ is a
proper face of B′. Therefore, the vectors x′i, with i ∈ I, such that x′i ·X

k−‖Xk‖
remains bounded are precisely the x′i that belong to the proper face F ′. Hence,
these x′i are the extreme points of the proper face F ′.

Every proper face F ′ of the dual ball is the intersection of the dual ball with
a supporting hyperplane, so F ′ = {x′ ∈ B′ | x′ · y = 1} for some y ∈ B.
Observe that the set J of x′i such that x′i · y = 1 is precisely the set of extreme
points of F ′. Consider now X ∈ Rn and the ray t 7→ X + ty, which is a
geodesic, and a fortiori an almost-geodesic. One readily checks that the function
x 7→ ‖X + ty‖ − ‖X + ty − x‖ converges to the function (36) when t tends to
+∞, and so, every point of the Martin boundary is a Busemann point.

Remark 12.10. Karlsson, Metz, and Noskov [KMN06] have shown previously
that every boundary point of a polyhedral normed space is the limit of a
geodesic, and hence a Busemann point. They did this by characterising the
sequences which converge to a boundary point.

Example 12.11. Consider now L(x) := ‖x‖p
∞/p with ‖x‖∞ :=

max(|x1|, · · · , |xn|) and p > 1. By Proposition 12.9, the Busemann points of
(Rn, ‖ · ‖∞) with respect to the basepoint 0 are of the form:

w : x 7→ min
i∈I

ǫi(xi −Xi) + max
i∈I

ǫiXi ,

where I is a non-empty subset of {1, . . . , n}, ǫi = ±1, and the Xi are arbitrary
reals. Theorem 12.5 shows that any eigenvector with eigenvalue λ > 0 of the
Lax-Oleinik semigroup can be written as a supremum of maps c+ ϑλw, where
c ∈ R ∪ {−∞} and w is of the above form. For instance, when n = 2, the
functions w are of one of the following forms:

ǫ1x1, ǫ2x2, or min(ǫ1(x1 −X1), ǫ2(x2 −X2)) + max(ǫ1X1, ǫ2X2) ,

with X1, X2 ∈ R and ǫ1 = ±1, ǫ2 = ±1.

Remark 12.12. It is natural to ask whether the eigenvectors of the Lax-Oleinik
semigroup (T t)t≥0 coincide with the viscosity solutions of the ergodic Hamilton-
Jacobi equation

L⋆(∇u) = λ ,

where L⋆ denotes the Legendre-Fenchel transform of L. This is proved
in [Fat08, Chapter 7] in the different setting where the space is a compact
manifold and the Lagrangian L can depend on both the position and the speed
but must satisfy certain regularity and coercivity conditions.
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CMAP, École Polytechnique
91128 Palaiseau Cedex
France
cormac.walsh@inria.fr

Documenta Mathematica 14 (2009) 195–240

http://www.arXiv.org/abs/math.MG/0503716

	Introduction
	The max-plus Martin kernel and max-plus Martin space
	Harmonic vectors arising from recurrent nodes
	The minimal Martin space
	Martin spaces constructed from different basepoints
	Martin representation of super-harmonic vectors
	Almost-geodesics
	Martin representation of harmonic vectors
	Product Martin spaces
	Examples and Counter-Examples
	Tightness and existence of harmonic vectors
	Eigenvectors of Lax-Oleinik semigroups and Busemann points of normed spaces

