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ABSTRACT. We show that the p-adic Galois representations attached
to Hilbert modular forms of motivic weight are potentially semistable
at all places above p and are compatible with the local Langlands cor-
respondence at these places, proving this for those forms not covered
by the previous works of T. Saito and of D. Blasius and J. Rogawski.
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1 INTRODUCTION

Let F be a totally real extension of Q of degree d. Let F be an algebraic closure
of F and let G := Gal(F/F). Let I := Homgq(F, C) be the set of embeddings
of F' into C. The set I indexes the archimedean places of F. For each finite
place v of F' let F', be an algebraic closure of F, and fix an F-embedding
F — F,. These determine a choice of a decomposition group D, C G for
each v and an identification of D,, with Gal(F',/F,). Let p be a rational prime
and fix an algebraic closure Qp of Q, and an isomorphism ¢ : C = Qp. Via
composition with ¢ the set I is identified with the embeddings of F' into Qp.

Let m be a cuspidal automorphic representation of GLy(Ar). Then = is a
restricted tensor product # = ®’'m, with v running over all places of F'. Assume
that each m;, ¢ € I, is a discrete series representation with Blattner parameter
k; > 2 and central character z +— sgn(x)" |z|; " with w an integer independent
of i. We say that 7 has infinity type (k, w), k := (k;);c7. Assume also that each
k; = w( mod 2). In this case, 7 is an automorphic representation associated
with a Hilbert modular eigenform of weight k. We recall that attached to 7
(and ¢) is a two-dimensional semisimple Galois representation

pr: Gr — GL2(Q,)
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such that

WD (pe|p, )™ 2 iRec, (r, @ | - [;7/2) Vo { pos. (1)
Here WD(o) denotes the Weil-Deligne representation over Qp associated to a
continuous representation o : D, — GL,(Q,) for a place v { poo (see [Ta,
(4.2.1)]), and the superscript ‘Fr-ss’ denotes its Frobenius semi-simplification.
Also, Rec,(7) denotes the Frobenius semi-simple Weil-Deligne representation
over C associated with an irreducible admissible representation 7 of GL,, (F,) by
the local Langlands correspondence, and (Rec,, () is the Weil-Deligne represen-
tation over Qp obtained from Rec,(7) by change of scalars via the isomorphism
t. We choose Rec,, so that when n = 1, Rec, is the inverse of the Artin map
of local class field theory normalized so that uniformizers correspond to geo-
metric frobenius elements. The existence of a p, satisfying (1) was established
by Carayol [Ca2], Wiles [W], Blasius and Rogawski [BR], and Taylor [Tayl],
following the work of Eichler, Shimura, Deligne, Langlands, and others on the
Galois representations associated with elliptic modular eigenforms.

The purpose of this note is to complete the proof of the analog of (1) at places
v | p:

THEOREM 1 Let v | p be a place of F. The representation pr|p, is potentially
semistable with Hodge-Tate type (k,w) and satisfies

WD(ps|p, )™ = Ree, (m, @ | - [;1/2). (2)

We recall that p, := px|p, is potentially semistable if

Dyst(pv) := U (o ®q, Bar)AF/1)
L/F,

is a free Qp ®q, F,'p;-module of rank 2, where here L is ranging over all finite

extensions of Fy,, I is the union of all absolutely unramified subfields of F,,
and Bs; is Fontaine’s ring of semistable p-adic periods (the latter has a con-
tinuous action of D, = Gal(F,/F,) with the property that Bial(F“/L) = Lo,
the maximal absolutely unramified subfield of L). We also recall that the

module Dgr(p,) = (V ®q, Byr)P» is a graded Qp ®q, F,-module (recall
that Bgr = ®nezCr,(n), Cg, := F,, with the obvious action of Du)._By
px|p, having Hodge-Tate type (k,w), we mean that for j € Homq,(F,Q,)
the induced graded module Dpyr(py) ®6p®qp F.j Qp is non-zero in degrees
(w — kijy)/2 and (w + ki) — 2)/2, where i(j) € I is the induced embed-
ding of F into Qp. To make sense of the left-hand side of (2) we recall that
Fontaine has defined an action of the Weil-Deligne group on Dys¢(p,). Given
an embedding 7 : ' — Q,, we obtain a Weil-Deligne representation over Q,

on WD(py)r := Dpst(pv) Q. 9q Fur . Qp. This representation is independent
P p 0,00

of 7 up to equivalence, and we have denoted an element of its equivalence class
by WD(p,). The right-hand side of (2) has the same meaning as in (1).
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Saito proved that Theorem 1 holds when either d is odd or there exists a
finite place w such that m, is square-integrable [Sal, Sa2]; this builds on the
aforementioned work of Carayol. Under the same hypotheses or when d is
even and some k; is strictly larger than 2, Blasius and Rogawski proved that
plp, is potentially semistable of Hodge-Tate type (k, w), and when additionally
Tp = ®y|pTy is unramified they essentially showed that the full conclusion of the
theorem holds [BR] (some additional, albeit minor, observations are required to
extend their arguments to all such cases). The theorem is of course also known
for those 7 that are the automorphic induction of a (necessarily) algebraic Hecke
character of an imaginary quadratic extension of F' (such representations are
often called CM representations). In this case, Theorem 1 follows from the
results in [Se]. These results account for the cases where p, is known to arise
from a motive; the conclusion of the theorem then follows from various deep
comparison theorems between suitable cohomology theories.

It remains to deal with the cases where p; is not known to arise from a motive,
namely those cases where each k; = 2, each m, is a principal series represen-
tation, and 7 is not a CM representation. In [Tay?2] it is shown that if p, is
residually irreducible and 7, v|p, is unramified, then p,|p, is crystalline with
the predicted Hodge-Tate weights. For p > 2 unramified in F', the same result
is proved in [Br] without the hypothesis that p, be residually irreducible. For
those pr that are residually irreducible, Kisin [Kil] deduced Theorem 1 from
his results on potentially semistable deformation rings, Taylor’s construction
of the representations p,, and Saito’s results. In this paper, we prove Theo-
rem 1 by a different approach. A simple base change argument reduces the
theorem, in the cases not covered by Saito’s results, to that where d is even
and each 7, v|p, is unramified. From the automorphy of the symmetric square
Sym?7 and the results of [Mo] it follows that Sym?p, is crystalline’ and even
that WD(Sym?p,) = tRec,(Sym?7, @ | - |;!). From results of Wintenberger
[Winl, Win2] we then deduce that p, is crystalline up to a (possibly trivial)
quadratic twist and hence that WD(p,) is isomorphic to a (possibly trivial)
quadratic twist of tRecy(m, @ | - v 1 %). There exists a suitable p-adic analytic
family of eigensystems of cuspidal representations of GLy(Ar) (essentially due
to Buzzard [Bul] in the cases needed) that contains an eigensystem attached
to pr. For members of this family with sufficiently regular weights Theorem 1
is known by the work of Blasius and Rogawski. An appeal to a result of Kisin
then shows that WD(p,,) has at least one D,-eigenspace predicted by (2), from
which we then conclude that (2) holds.

After completing the first draft of this paper, the author learned that Tong Liu
[L] has also proven Theorem 1, at least for p > 2, by an argument that is a
generalization of that of Kisin [Kil].

Acknowledgements. The author’s work on this paper was inspired by a question

1As remarked at the end of 2.4.1, a similar use of the symmetric square yields a proof of
the Ramanujan conjecture for 7. This conjecture has previously been established in [B2].
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about what was known regarding Theorem 1 asked by Henri Darmon at the
summer school on the stable trace formula, automorphic forms, and Galois
representations held at BIRS in August of 2008. The referee prodded the author
to write a note with more details. The author’s research is supported by grants
DMS-0701231 and DMS-0803223 from the National Science Foundation and by
a fellowship from the David and Lucile Packard Foundation.

2 THE PROOF OF THEOREM 1

We keep to the notation from the introduction. We assume some familiarity
on the part of the reader with p-adic Hodge theory, particularly the theory of
Hodge-Tate weights and the notions of crystalline and semistable representa-
tions. A good reference is [Fo]. While p-adic Hodge theory is usually applied to
continuous representations of Gal(F,/F,), v|p, defined over a finite extension
of Q,, we apply it to continuous representations over Qp. This should cause no
confusion as the latter are always defined over a finite extension of Q,. While
this is well-known, references seem rare, so we provide a quick proof.

Let I' be a compact group and p : I' — GL,(Q,,) a continuous representation.
The subfields L of Qp that are finite over Q, form a countable set, and as
cach GL,,(L) is closed in GL,(Q,), the subgroups I'y, := p~(GL,(L)) form a
countable set of closed subgroups of I' whose union is I'. Since I' is compact, it
carries a Haar measure with total measure finite and non-zero. As the countable
union of measurable sets each having measure zero also has measure zero, it
follows that some I';, must have non-zero measure and hence have finite index
in . Write I' = U™, ¢;',. Then p takes values in GL,(L’) where L’ is the
finite extension of Q,, generated by L and the entries of the p(g;).

2.1 WEIL-DELIGNE REPRESENTATIONS OVER Qp FOR v|p

Let v[p be a place of F. Let Byt := @, 5CF,(n) with the obvious action
of D,. Let B..;s C Bs be Fontaine’s rings of crystalline and semistable p-
adic periods, respectively. Recall that the latter are naturally F'{-algebras

equipped with a continuous action of D, such that B?G al(Fo/L) _ Lg for any

finite extension L/ F,,, ? = cris, st, and that furthermore they are both equipped
with a compatible F}'j-semilinear Frobenius morphism ¢ : By — B (that
is, p(ax) = frob,(a)p(z) for all a € F}j, where frob, € Gal(F};/Q,) is
the absolute arithmetic Frobenius). Additionally, Bs: is equipped with an

;‘,B—linear and D,-equivariant monodromy operator N : Bs; — By such that
Beris = Bé\t]:O-

For a finite-dimensional Qp—vector space V with a continuous Qp—linear action
of D, we put

DHT(V) = (V ®Qp BHT)DUa Dcris(V) = (V ®Qp Bcris)DUa
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and B
DL(V) = (V @q, Ba) /P, Du(V):= | DE
L/F,

where L/F, is a finite extension. Then Dy (V) is a finite, graded Qp ®q, Fu-
Eodule. Also, D¢ris(V) is a finite Qp ®QP_Fvﬁo—module, DEL(V) is a finite
Q, ®q, Lo-module, and D, (V) is a finite Q, ®q, F;'-module, each of rank
at most dimap (V). The action of ¢ induces a Q,-lincar, F,, g-semilinear (resp.
Lo-semilinear) Frobenius operator on D.;s(V) (resp. DL (V)) that we also
denote by ¢. The action of the monodromy operator N on By induces a
Q ®q, Lo-linear nilpotent operator on DL (V) that we also denote by N and

Wthh satisfies N oy = ppo N. These are compatible with varying L, so ¢ and
N are defined on D, (V) as well. Note that D,.;s(V) = DIy (V)N=0,

Let W, C D, be the Weil group of F,. The action of D, on V' and Bj; induces
a Q-linear, F'g-semilinear action rg of W, on D,s (V). We define another

action 7 of W, on Dp(V): for w € Wi we let 7(w) = rq(w) o ") with
v(w) € Z such that w acts on F}}'j) as frob;”(w). This also defines an action on
D¢ris(V). The action r is Qp ®q, F'p-linear, and we have

Nor(w)=Norg(w)oe" ™ oN =rg(w)oN o™ = p"®p(w)o N.

It follows that the pair (r, N) defines an action of the Weil-Deligne group w)
of F, on Dysi (V). Moreover, if 7 : Fi'j — Q,, is any embedding, then it also
follows that the induced action on

WD(V): := Dpst(V) ®q @y .7 Qp

is a Weil-Deligne representation over Qp (the subscript 7 on the tensor sign

means that we consider Qp as a Qp ®q, Fyo-algebra via the homomor-
phism id ® 7). Furthermore, d ® v — ¢(d) ® x defines an isomorphism
WD(V)7ofrob, = WD(V), of Weil-Deligne representations over Qp, hence the
equivalence class of WD(V) is independent of the choice of 7. We let WD(V)
be any member of this equivalence class.

We recall that V is potentially semistable if D, (V) is a free Qp ®q, Fy'o-
module of rank equal to dimg V' or, equivalently, dimg WD(V) = dimap V.
Similarly, V is crystalline if DCMS(V) is a free Qp ®Qp F, o-module of rank
dlm— V. This is equivalent to (V ®q, BC”-S)I” being a free QP ®q, Féf;-
module of rank equal to dlmQ V', where I, C D, is the inertia subgroup.
Thus, V is crystalline if and only if V' is potentially semistable and both N
and I, act trivially on Dps (V). In particular, V' is crystalline if and only if
dimg WD(V) = dimap(V), WD(V) is unramified (i.e., N = 0 and the inertia
group I, acts trivially). Consequently, for V crystalline the eigenvalues of
w € W, on WD(V)¥¥55 are just the roots of the characteristic polynomial of
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the Qp—endomorphism induced by ¢”(®). We also recall that for a crystalline
representation V' there is Qp ®q, Fy-iltration on D.pis(V) ®F,, F, whose
associated graded module is just Dyr (V).

Suppose now that m, is unramified. From the preceding paragraph it follows
that (2) holds if p, = px|p, is crystalline and if for all w € W,

det(1 — T@" )| Depis (V)

Q,) = det(1 — Tw|Rec, (m, @ | - [ /2))
(3)

®6,;®Qp Fy0,7

for some (equivalently, each) embedding 7 : F, o — Gp.

2.2 REDUCTION TO d EVEN AND 7, UNRAMIFIED

As mentioned in the introduction, Saito has proven Theorem 1 when the degree
d of F is odd or some m, is square-integrable [Sal],[Sa2]. We may therefore
assume that d is even and that m, is a principal series representation for finite
places v. Theorem 1 then asserts that each p, is potentially crystalline with
predicted Hodge-Tate weights. Clearly, this is true for p, = px|p, if and only if
there is a finite extension '/ F such that it is true for p,|p_,, v'[v the place of I
determined by the fixed embedding F' < F,. Additionally, if p, is potentially
crystalline with the predicted Hodge-Tate weights, then to establish (2) it is
enough to show that

trace(w|WD(p,)) = trace(w|tRec,(m, @ | - |7/?)) (4)
for all w € W, with v(w) > 0.

Let v|p. For a given w € W, such that v(w) > 0 there exists an abelian
extension F’/F such that (a) the base change 7’ of m to GL2(Ap-) is cuspidal
and unramified at each place over p and (b) w € W,, C W, for v'|v the
place of F’ determined by the fixed embedding F' < F,. That (a) can be
satisfied is a consequence of each local constituent of 7 being a principal series
representation (we are, of course, using that base change is known for GLq
for abelian extensions). That (b) can be simultaneously satisfied with (a) is a
simple consequence of v(w) > 0. Note that the extension F’/F may depend on

~

w. As pr = prlg,,, it follows that WD(px|p,,) = WD(px|p,)|w,. Similarly,

Recy (my @ | - |;,1/2) = Recy (my ® | - |;1/2)|WU//. Therefore if Theorem 1 holds
for 7/, then p, is potentially crystalline with the predicted Hodge-Tate weights
and (4) holds for the given w. This shows that if Theorem 1 holds whenever
the representation is unramifed at all primes above p then it also holds for .
Consequently, it suffices to prove Theorem 1 under the assumption that each
Ty, U|p, is unramified.

2.3  GALOIS REPRESENTATIONS IN THE COHOMOLOGY OF CERTAIN SHIMURA
VARIETIES
As mentioned in the introduction, Blasius and Rogawski have essentially proved

Theorem 1 in the case where some k; > 2 and each 7, v|p, is unramified [BR].
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We explain this here, giving the necessary modifications required to make their
argument cover all such cases. We also record some additional consequences
for Galois representations associated with essentially self-dual representations
of GL3 (AF)

2.3.1 THE SHIMURA VARIETIES

Let Ey C F be an imaginary quadratic extension of Q in which p splits and set
FE = FEy. Fix a place vg of Fy above p. For convenience we assume that for
each place v|p of F the fixed embedding F < F, induces the valuation vy on
FEy. Fix an embedding Ey — C such that - again for convenience - composition
with ¢ also induces the valuation vg. Let ¢ be the CM type of E consisting of
those embeddings E — C extending the fixed embedding of Ey. For 7 € ¢ we
write 7 for the composition of 7 with complex conjugation. Restriction to F'
determines a bijection between ¢ and I, and we write 7; for the element of ¢
extending ¢ € I. Via composition with ¢, ¢ determines a place of E above each
place v|p of F’; the fixed decomposition group D, is also a decomposition group
for the place of E above p so determined, hence we also denote this place by v,
writing o for its conjugate (note that each place v|p of F splits in F). If M is
an Og-module, then M, := M ® C decomposes as M, = HTE M. & M- with
My := M ®0,,0 C for any embedding o : F — C. Similarly, M, := M ® Z,
decomposes as M, = [[, M, ® My with M,, :== M ®0,, Op,., for a place w|p
of E.

Fix ig € I. Let ® be the Hermitian E-pairing on V := E* (viewed as column
vectors) defined by the diagonal matrix J := diag(a, 1,1) with @ € F* such
that 7;,(a) < 0 and 7;(a) > 0 for i # ip: ®(z,y) = 'ZJy. Then ® has
signature (2,1) with respect to 7;, and signature (3,0) with respect to all
other 7;. Let U(®),q be the unitary group of ® and G := GU(®),q its
similitude group. We note that G(C) = C* x [[ ., GLc(Vr), where the
projection to the C*-factor is the similitude character, and the projection to
the second factor is via the corresponding projection of GLggc(Vao). Similarly,

G(Qp) = Q, x[[,GLg,(V,), where v runs over the place of F' dividing p (or
the fixed places of E over these). Let ¢ := traceg,qB® with 3 a totally
imaginary element of Fy. Then there exists an Og-lattice A C V such that ¢
identifies A, with its Z,-dual.

Let S := Resc/rGm, so S(R) = (C®r R)* for any R-algebra R. We identify
S(C) = (C® C)* with C* x C* via z @ w — (2w, zZw). Let h: S — G /g be
the homomorphism such that for (z,w) € S(C)

hz, (2w XH{dlagzww) T =T

diag(w, w,w) 7 # 7.

Let h(z) = h(z,2). We assume that § is such that (z, h(i)z) is positive
definite for z € V ® R. As explained in [Ko], associated with E,V,«, and h
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is a family of PEL moduli spaces Sk over? E, K C G(Ay) being a neat open
compact subgroup: in the notation of [Ko, §5] we take® B = E with * the non-
trivial automorphism fixing F and (V,(—,—)) = (V,4); then C = Endg(V)
and the G of loc. cit. is the group G defined above, and we take for the *-
homomorphism C — C' ® R the R-linear extension of z — h(z). The varieties
Sk are smooth over F and, being solutions to PEL moduli problems, are
equipped with ‘universal’ abelian varieties Ax/Sk. As explained in [Ko, §8],
Sk is naturally identified with a disjoint union of a finite number of copies
of the canonical model Shi over E of the Shimura variety associated with G,
h~1, and K, indexed by the isomorphism classes of Hermitian E-spaces (V', )
that are everywhere locally isomorphic to (V,v). We identify Shyx with the
copy corresponding to the class of (V) and let Ax/Shk be the restriction of
the universal abelian variety.

Suppose K = K,K? with K? C G(A?) and K, C G(Q,) identified with a
subgroup Z; x [[,, Ko € Z; x ][, GLoy ,(As). Let v|p be a fixed place. If
K, = GLo ,(Ay), then an argument of Carayol [Cal, §5] shows that Ax and
Sk have good reduction at v. A model of Sk over Op, = O, is obtained
by considering a moduli problem as in [Cal, 5.2.2]. To be be precise, one
considers the functor from the category of locally Noetherian OF ,-schemes to
the category of sets that sends an Op ,-scheme R to the set of isomorphism
classes of quadruples (4,14, 6, k") where (a) A is an abelian scheme over R of
relative dimension 3d and ¢ : Op — Endg(A) is an embedding such that
Lie(A), is a locally free Or-module of rank one on which Op, = Og,, acts
via the structure map Op, — Opg and such that Lie(A4),, = 0 for all v'|p,
v' # v; (b) 6 is a prime-to-p polarization of A satisfying 6 o i(z) = i(z)¥ o 6 for
all x € Op; (c) k¥ is a K-level structure as* in [Cal, 5.2.2(c)] but with Vz in
the definition of W there replaced by A. That this functor is isomorphic over
F, = B, to that in [Ko, §5] defining Sk /5, follows from the arguments in [Cal,
2.4-2.6,5.2.2]. That it is representable by a smooth, projective scheme Sk over
Op, follows from the arguments in [Cal, 5.3-5.5]. The p-divisible group A, of
A decomposes under the action of O ), = Op ® Z, as A, = Hv,|p Ay X Ay
The condition on Lie(A), in (a) then implies that A, is ind-étale if v' # v,
and part of the level structure k¥ is a class modulo HU, £v K, of O p-linear
R-isomorphisms kp : [],2, A[p"]o = [l,,(p~"A/A)y with n any integer
so large that K,/ contains the kernel of the reduction map GLo, ,(Av) —
GLo, ,, (Aw /p"Ay) (see [Cal, 5.2.3(ii)]). The condition that A, is self-dual
ensures that over F, this moduli problem is equivalent to one with a usual

2The reflex field in this case is 7;,(E) C C which we identify with E via ;.

3As we are only defining the moduli spaces over E at this point, the conditions at p in
[Ko, §5] are superfluous.

4When adapting the arguments of [Cal] to the setting of this paper, the roles of the super-
scripts 1 and 2 in loc. cit. are switched. This is a result of our choice of the homomorphism h
and the identification of E with the reflex field. A homomorphism S — G, g more naturally
generalizing that in loc. cit. would be (z,w) — h(w, z). We have chosen h here so that Shx
is the Shimura variety in [BR].
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K-level structure. The representability of this moduli problem by a scheme
Sk over O, follows from the arguments in [Cal, 5.3] and the properness from
those in [Cal, 5.5]. The smoothness of this scheme follows exactly as in [Cal,
5.4]. The key point is that for R a local artinian O ,-module, the conditions
on the dimension of A and on Lie(A), in (a) imply that A, is a divisible Op,,-
module of height 3 whose formal (or connected) part has height 1 (we are
keeping to the terminology in the Appendix of [Cal]). The smoothness then
follows by the deformation argument given in loc. cit. Over E,, Sk is just Sk,
and Af is the base change of the universal abelian scheme Ak /Sk. Hence Sk,
Shy, and Ax have good reduction at v.

2.3.2 THEOREM 1 WHEN SOME k; > 2 AND EACH 7, UNRAMIFIED

We can now explain how the arguments in [BR] yield Theorem 1 when d > 1,
some k; > 2, and each 7, v|p, is unramified. Without loss of generality we may
assume that w = max;cs k;; choosing a different w amounts to replacing p, by
a Tate-twist. We may assume that Ey has been chosen so that the base change
g of m to GLa(Ag) is cuspidal (equivalently, 7 is not a CM representation
associated to a Hecke character of F). Fix an algebraic Hecke character u of
A} satisfying M|A; = wg/p, the quadratic character of the extension E/F,

and such that g is unramified at each place over p. As explained® in [BR,
Prop. 4.1.2], there exists a global L-packet 7 on the quasi-split unitary group
U(2),r such that its non-standard base change to GL2(Ag) (with respect to 1)

isTg®n|- |}5/2 with 7 an algebraic Hecke character of A that is unramified at
each place above p. It follows from [BR, Lem. 4.2.1] that there exists a global
character 6 of U(1),r unramified at all places above p for which the L-packet
p=T17®60 of U(2) x U(1) is such that the endoscopic L-packet II(p;) for U(P)
contains an element oy with d(oy) := #{0w € I(po) : €(0xc)e(oy) =1} =
2. Let x be an algebraic character of the center of G extending the central
character of II(p) and unramified at all places above p (cf. [BR, §1.2]). The
pair (o, x) defines an admissible representation (o, x) of G(Ag). From the
definition of o it follows that o, is an unramified representation of U(Q,) &
[I, GLE,(V5) in the sense that it is a tensor product of unramified principal
series representations of each factor. In particular, as x is unramified at each
place above p, m(os, X)X # 0 for K = K,K? with K,, identified with Z; x
[1., GLog.,(Av) and K7 sufficiently small.

As explained in the proof of [BR, Thm. 3.3.1], associated with m(of,x) is a
motive M = (A%, e) with coefficients in a number field ' C C (this motive is
denoted My in loc. cit.; n is some integer depending on the weights of 7, u, 6,
and y, A} is the n-fold self-product over the Shimura variety Shg, and e is an
idempotent in Z5 (A% x A% )) such that for any prime ¢ and any isomorphism

5The representations of GL2(A ) in [BR] are normalized so that what is denoted by 7
1/2 . .
there equals m ® | - |~ in this paper.
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/:C 5 Q the f-adic realization M, of M satisfies

My, i= My @70Q,.0 Qp = prvlar @ poy.s (5)

where the subscript «/ denotes that the objects on the right-hand side are the
(-adic Galois representations® associated with the embedding /. Here ) is the
Hecke character z — X(Ng,g,(2)) of Af,. Equivalently,

WD(M&L’lDw) = /'Recy, (7TE,w ® Nww - |;1/2) (6)

for all places w t ¢ of E, D, being any decomposition group for w. More
precisely, (6) is only shown in [BR, Thm. 3.3.1] for those w t £ coprime to the
conductor of 7 and the absolute discriminant of . But this together with the
existence of the ¢-adic representations associated with m, 0, and ' implies (5),
from which (6) follows for all places w t ¢. This relies on more than is proved
in loc. cit.; it also requires the work of Carayol and Taylor on the existence of
the f-adic representations.

As Ak has good reduction at v|p, it follows - from the theorems of Faltings
and of Katz and Messing cited in [BR, §5] together with (5) and (6) - that for
a place v|p of F' the representation M, is crystalline at v and for all w € W,

det(1 — X" |Dyis(Myo|p, ) DG, @a, Foor Q,)
= det(1 — Xw|tRec, (1, @ 0oty - [51/2).

v

(7)

As n and ¢ are both unramified at all places above p, p, /.|, is crystalline at v.
It then follows that p, = (M, , ® p;$)| D, is crystalline, and so (3) follows from
(7). That p, has Hodge-Tate type (k, w) is immediate from [BR, Thm. 2.5.1(ii)]
and Faltings’ proof of the deRham conjecture.

2.3.3 ESSENTIALLY SELF-DUAL REPRESENTATIONS OF GL3(Ap)

Let II = ®'TI, be a cuspidal automorphic representation of GL3(A ) for which
each II;, i € I, is such that its corresponding representation Rec;(II;) of the
Weil group of F; satisfies

Rec;(IL;)|ox 2 2%2% @ 2% 2% @ (22)@H0)/2 a4 b € Z,a; + b; € 2Z. (8)

Suppose also that IV = TI®1) for some Hecke character 1 (then 1) is necessarily
algebraic). As explained in [B1, 4.1-4.6], it is a consequence of the results in
[Mo] that for each prime ¢ and each isomorphism +/ : C = Q, there is an
¢-adic Galois representation pr,/ : Gr — GL3(Q,) satisfying WD (pm,/|p, ) =

6For an algebraic Hecke character 1 of a number field, we denote by Py, the fL-adic
Galois representation associated with 1 and ./, normalized so that the restriction of the
Galois character to the decomposition group at a place w { £ is just the image of the local
character 1, under the inverse of the Artin map, composed with ¢’
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'Recy (I1,,) for all places v t £ that are prime to the conductor of II and the
absolute discriminant of F'.

The proof of the existence of pr,,s follows the arguments in [BR]. In particular,
letting E be as in 2.3.2, if the base change of II to F is still cuspidal then, as
explained in the proof of [B1, Thm. 4.2], there is a motive M = (A%, e), K
small enough, such that the ¢-adic realizations of M yield pr|g, twisted by
a representation associated with an algebraic Hecke character of A%. If II is
unramified at each v|p then one can take K = K,K? with K, identified with
Z; x Hv‘p GLoy ,(Ay) and the Hecke character can be taken unramified at
each v|p. Then arguing as in 2.3.2 shows that pr := pm,, is crystalline at each
v|p and such that Dyr(pn|p,) DQ,q, Fu.j Qp, J € Homgq, (Fv,ﬁp), is non-
zero in degrees —a;(;), —bi(;), and —(a;(;) + bi(;))/2, i(j) € I being the induced
embedding of F. Furthermore, if WD(pm,./|p,) = ¢'Rec,(IL,) for some £ # p
(only an additional condition if p is not prime to the absolute discriminant of
F), then these arguments also show that WD (pn|p, ) = tRec, (IL,).

Remark. Suppose II,, is unramified at each v|p. From the good reduction of the
Shimura variety Shx with K, as in 2.3.2 or 2.3.3, it follows easily from the Weil
conjectures that the Frobenius-at-v eigenvalues of any f-adic representation
p., £ # p, have absolute value as predicted by the Ramanujan conjecture
for II,, when considered as elements of C via ¢/. Therefore, if WD(pm,./|p,) =
{'Recy(I1,,), then the Ramanujan conjecture is true for II,. This argument
shows (at least) that if ¢ is a prime such that II,, is unramified for all w|gq,
then the Ramanujan conjecture is true for II,,, w|q, provided there is some
prime ¢ # g such that the ¢-adic representation pr,,/ satisfies WD(pm,/|p,, ) =
t'Recy, (Iy,).

2.4 THEOREM 1 FOR THE REMAINING CASES

As a consequence of the work of Saito [Sal, Sa2], the remarks in 2.2, and the
results of [BR] as described in 2.3.2, to complete the proof of Theorem 1 it
remains to consider the case where d is even, each k; = 2, each m,, v|p, is
unramified, and 7 is not a CM representation. Replacing w by a twist by an
integral power of | - |p if necessary (which corresponds to twisting p, by a
power of the cyclotomic character), we may also assume that w = 2. Hereon
we assume we are in this case.

2.4.1 AN APPLICATION OF THE SYMMETRIC SQUARE

Let 1T := Sym?r ® | - |z!, with Sym?n the symmetric square lift of 7 to
GL3(Ar) (cf. [GJ]). As 7 is not a CM representation, II is cuspidal. Since
Rec; (m)|ox 2 (2/2)Y/23(2/2)Y/2, Rec; (IL)|ox 22 Sym®Rec; (m]-|;/%)|ox sat-
isfies (8) with a; = —2 and b; = 0. Furthermore, as 7¥ & 1®@w ™!, w the central
character of m, it follows that [TV = I ® w™?2|- |%. Therefore, II satisfies all the
hypotheses in 2.3.3. In particular, there exist associated ¢-adic representations
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pr.. Clearly pr., = Sym®p, ./, so WD(pm..|p, ) = ¢'Recy, (Sym*m, @ | - |31)
for all w 1 . Since m,, and therefore IL,, is unramified at each v|p, as ex-
plained in 2.3.3 we can conclude from this that for each v|p: (i) Sym?p,|p,
is crystalline for v|p, (ii) WD(S_mepW|DU) = (Rec, (_Smeﬂ'U ®|-];1), and (iii)
Dyr(Sym?px|p,) ®Q,0a, Fu.j Q,, j € Homgq, (F,,Q,), is non-zero in degrees
2, 1, and 0.

Let v|p. By conclusion (iii) of the preceding paragraph, the graded module
Dgr(Sym?p,) is the symmetric square of the expected graded module for p,. It
then follows from results of Wintenberger” - Thm. 1.1.3, Prop. 1.2, and Remarks
1.1.4 of [Win1] or Thm. 2.2.2 of [Win2], applied to the isogeny GLy — GLg2/=+1 -
that there is a crystalline representation p : D, — GLQ(QP) such that Sym?p =

Sym?p,. From this it follows that p, is isomorphic to a (possibly trivial)
quadratic twist of p. In particular, p, is potentially crystalline. Therefore
WD(Sym?p,) = Sym*WD(p,,), and it then follows from conclusion (ii) of the
preceding paragraph that Sym*WD(p,) = Sym*Rec, (7, ® | - ;1/2). From
this it follows that WD(p,) is isomorphic to a (possibly trivial) quadratic twist
of tRecy(my ® | - |;1/2). It also follows that p, is of Hodge-Tate type (k,w)
(= ((2)ier1,2) in this case).

Remark. We can also use Sym?7 to show that the Ramanujan conjecture holds
for m. We may assume that 7 is not a CM representation. Let ¢ be a prime.
It then follows from the remark at the end of 2.3.3 that if 7, is unramified at
each w|g, then the Ramanujan conjecture holds for each Sym?m,, and hence
for m,. A simple base change argument like that in 2.2 then shows that the
Ramanujan conjecture holds at all places where 7 is a principal series. In
particular, this establishes the Ramanujan conjecture for those m for which
there is no finite place v with m, square-integrable. That the Ramanujan
conjecture is known when such a v exists follows from Carayol’s work [Ca2].
The Ramanujan conjecture has already been established for = by Blasius [B2].

2.4.2 'THE EXISTENCE OF A CRYSTALLINE PERIOD
Recall that we are assuming that for each v|p, m, = 7(ay,[y) is an un-

ramified principal series®. As WD(p,) is isomorphic to a (possibly trivial)

quadratic twist of tRec,(m, ® | - ;1/2), to prove (2) it suffices to show that

\ZVD(pU)fmb”:O‘v(wv)q«l/2 # 0, where frob, is a geometric frobenius at v, w, is a
uniformizer at v, and ¢, is the order of the residue field at v. This is equivalent

to showing that DCMS(pU|Dv)WfU =0,/ 200 (@) g 5 Qp ®q, Fyo-module of rank

"Note that ‘weakly admissible = admissible’ has been proved by Colmez and Fontaine,
and ‘de Rham = potentially semistable’ has been proved (independently in some cases) by
André, Berger, Kedlaya, and Mebkhout, and so the hypotheses on which these results depend
are known to hold.

8By m(a, 8) we mean the usual principal series representation that is the induction to

GL2(Fy) of the character (§ ) — oz(a)ﬁ(d)|a/cl|11/2 of the upper-triangular Borel.
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at least one. To establish a lower bound on this rank, we make use of p-adic
analytic families of cuspidal representations.

Let O denote the integer ring of F and let O, := O ® Z, = Hvlp O,. Let
Sp := {v|p} be the set of places of F' over p and let Sy be the set of finite places
of F at which 7 is ramified. Let S := S, U S, and K9 := [1o¢s,0r00 GL2(O0).
Let H® be the abelian Hecke algebra

H® = C.(GL2(A% ) [/ K¥).

For each v € S}, let

I:={(2}) € GLa(0,) : wyle}, I,:==]]L,

vlp

and let U, C C.(GL2(0,)//I,) be the abelian subalgebra generated by the
characteristic functions

U, := char(I,diag(w,, 1)I,).

Put
Uy = @,,U, and T :=U, > H".

Then there exists an f, € 75 % that is an eigenvector for the (usual) ac-

tion of the Hecke ring T such that char(I,diag(w,, 1)I,) acts with eigenvalue
1/2

Q' "0y (wy).

Let K C Qp be a finite extension of Q, containing each i(F'), ¢ € I, and
the eigenvalues for the action of T on fr. Let |[K*| = {|z[, : = € K*}.
For r € |K*|, we denote by B, the usual closed rigid ball over K of radius
r (so B.(Cp) = {x € C, : |z[, < r}, where C, := Q,). Then O(B;) =
K < T >. Let A, := O(B,); this is an affinoid K-algebra. From the work
of Buzzard [Bul, Bu2] one can deduce that if rq € |K*| is sufficiently small,
then there exists a reduced finite torsion-free A,,-algebra R (so also an affinoid
K-algebra) and a homomorphism ¢ : TS — R satisfying (i)-(iii) below. For
z € Homg (R, Q,) put ¢ := x 0 ¢. Then:

(i) if « is such that (1 +T) = (1 + q)", n, € p(p — 1)Z~o (¢ = p if p odd
and ¢ = 4 if p = 2), then there exists a cuspidal representation 7, of
GL2(AF) with infinity type (ki, ws) = ((ns + 2)ier, ne +2)) and which
is unramified at all v|p and such that ¢, : TS — Q,, gives the eigenvalues

S
of the action of T on an eigenvector f, € 7T£( Ip;

(ii) there exists g € X(K) with z¢(1 +7T) = 1 such that ¢, gives the
eigenvalues of the action of T on fy;

(ili) if ¢y, := ¢(Uy) € R™, then |z(¢y)|p is constant for all z;
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(iv) there exists a continuous representation
PR : GF — GLQ(R)

unramified away from S and such that for x as in (i) the representation

pz : Gr — GL2(Q,) induced from pr by z is equivalent to pr, and that
induced by z¢ is equivalent to p.

Assuming the existence of R and ¢, we can complete the proof of Theorem 1.
Let ¥ C Homg (R, Q,) be the set of z as in (i). Then X is Zariski dense by the
finiteness of R over A,. As explained in 2.3.2 we know that Theorem 1 holds

for each 7, x € . Let v|p and z € X. Then 7, = 7(lg, ), an unramified
principal series with z(¢,) = ui(wv)qi/ 2 In particular, as Theorem 1 holds
for p, = pp, we have that DCTis(pz|Dv)‘/’f”:z(¢“) is a Qp ®q, Fuv,o-module
of rank at least one for all z € X, where f, is the residue class degree of
F, (so ¢, = p'). As the Hodge-Tate type of p,, z € X, is (ks,w,), each
Dyr(pz|p,) ®6p®Qp Py Q, is non-zero in degrees 0 and n, + 1. It then follows
easily from [Ki2, (5.15)] that®

Deria(pr|p,)?" =0 ) = Depio(pry|p, )¢ =20()

is also a Qp ®q, Fv,0-module of rank at least one.

While the existence of R and ¢ is essentially proved in the work of Buz-
zard, there is no convenient reference in [Bul]. So we conclude by explain-
ing how their existence follows from this work. Let D be the quaternion
algebra over F' that is split at all finite places and compact modulo the
center at all archimedean places. Fix a maximal order Op of D, and for
each finite place v of F fix an isomorphism Op, = M>(0O,). This identi-
fies GLa(Ap, ) with (D ®p Ap)*. Let n be the conductor of 7 and let
Up C GL2(0O® 2) be the subgroup of matrices with lower left entries in n ® 2,

and let U = Uy N I,. Let J := {v|p}. For a € ZZ, let Uy := [],, Udv. For

veJlet o, = ordv(av(wv)qim), and let o4 := ) _;ay,0,.

For r € |[K*| with 7 <1 we define a homomorphism x : O x O — AX by

H((xv)v(yv)) = H H ](yv)(l +T)logp Nmpv/Qp(zu).

veS j€Homq,, (Fy ,ap)

9Proposition (5.14) and Corollary (5.15) of [Ki2] are only stated for representations of
Gq, = Gal(ép/Qp). But it is easily checked that the arguments extend to the case of the
representations of D, = Gal(fv /Fy) under consideration here; the necessary results with
¢ replaced by ¢fv (e.g., Corollary (3.7)) are easily deduced from those for ¢. A key point
is that our hypotheses on the weights in the family X ensure that the polynomial P(X) €
(O(X)®q, Fv)[X] provided by Sen’s theory as in [Ki2, (2.2)] is of the form P(X) = XQ(X)
with the constant coefficient of @ not a zero-divisor.

DOCUMENTA MATHEMATICA 14 (2009) 241-258



p-ADIC GALOIS REPRESENTATIONS 255

Let W be the rigid analytic weight space over K defined in §8 of [Bul]. Then
B, is identified with a reduced affinoid subspace of W such that x is the induced
weight in the sense of loc. cit. Let m € |K*| be so small that the A,-Banach
module SP(U;m) of overconvergent automorphic forms is defined (notation
as in [Bul, §9]). This is equipped with an A,-linear action of T* such that

each U, is a completely continuous operator. For b € B,(Q,,) such that the
induced map ¢ : A, — Qp sends 1 + T to (1 + ¢)™ with ny € p(p — 1)Z>o
we have a T*-equivariant inclusion of the classical forms of weight (kj, wy):
Sier w, (U) S S2(U;m) @0(8,).e, Qpr Wb = (16 + 2)icr € Z" (see [Bul, §11]).
By the Jacquet-Langlands correspondence, there exists fo € S22(U) having
the same T®-eigenvalues as fr. Recall that by the theory of Fredholm series
and orthonormalizable Banach modules as developed by Coleman, Ash and
Stevens, and Buzzard, if r is small enough then there is a finite A,-direct
summand A C SP(U;m) that is stable under TS and such that for each
a € ZZ, the Fredholm series for U, on A is a factor of the slope o, part of
the Fredholm series P,(X) € A,{X} associated to the completely continuous
operator U, on SP(U;m) (the latter is well-defined for » small enough), and
furthermore is such that fo € N ®a4, ., K. If r is sufficiently small then for
any b € A, with ny € p(p — 1)Z~¢ it follows from the arguments in [Bu2, §7]
(see also the comment at the end of §11 of [Bul]) that Ny := N ®a4,.c, Q,, is
comprised of classical forms in S ., . . o(U) (ny is divisible by a high power
of p; the smaller r is, the larger the power of p). By the definition of N, any
TS—eigenform in Ny is such that the eigenvalue of U, has slope o,, and so if
r is small enough relative to o, then it is easily seen that the v-constituent of
the irreducible representation of GLa(Ap r) generated by f is not special and
therefore must be an unramified principal series.

Let R be the A,-algebra generated by the image of T in Enda, (NV); this is
a finite torsion-free A,-algebra and so an affinoid K-algebra. Note that there
exists a K-homomorphism ¢ : R — K giving the eigenvalues of the T*-action
on fy. Let A be the normalization of the quotient of R by a minimal prime
containing the kernel of ¢9. This is a reduced finite torsion-free A,-algebra and
so also an affinoid K-algebra. Let ¢ : TS — A be the canonical homomorphism.
It follows from the definitions that (i), (ii), and (iii) hold with R replaced by
A. For each x € Homg (A, Q,) as in (i), let T, : Gr — Q, be the continuous
pseudo-representation associated with p,_  (so T, = tracep,, ). Since for a
place w 1 np, T(frob,,) = x o @(char(GL2(Oy, )diag(wy, 1)GL2(Oy)), @y € Oy
a uniformizer, it follows easily from the Cebotarev density theorem and the
Zariski density of the set ¥4 of z € HomK(A,Qp) as in (i) that there is a
continuous pseudo-representation T : Gp — A such that T, = z oT. From
the general theory of pseudo-representations (cf. [Tay3]) there is a semisimple
Galois representation p4 : Gp — GLo(F4), F4 the field of fractions of A, such
that T' = trace pa. It is easy to see that there is a finite A-module M C F3 on
which Gr acts continuously and such that V, := M, ®a4, + Qp is isomorphic
to the representation p, , * € ¥4 or x any extension of ¢g to A (here the
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subscript z on M and A denotes the localization at the kernel of z). Such
a module M is given explicitly as follows. Fix a basis of p4 such that for
some i € I the corresponding complex conjugation in G is diagonalized (with
eigenvalues 1 and —1). Writing pa(c) = ('Z: ZZ), we have ay,dy,bycer € A
for all 0,0’ € G and that these define continuous functions of o and o’. It
follows that the A-submodules B and C of Fa generated by {b, : o € G}
and {c¢, : 0 € G}, respectively, are fractional ideals of A satisfying CB C A
(note that by the semisimplicity of ps and the diagonalization of the chosen
complex conjugation, B = 0 if and only of C = 0). We can then take M =
A Aif C = 0and M = A @ C otherwise. Being a finite A-module, M
is a Banach A-module and the continuity of the action of G on M is clear
from the continuity of the functions a,, d,, and byc,. As A is normal, for any
x € Hompg (A, Qp) the localization A, is a DVR, and so M, is a free A,-module
of rank two. The representation V,, is then two-dimensional and its associated
pseudo-representation is o T'. Therefore if x € ¥4 or x any extension of ¢g
to A, the pseudo-representation associated with V,, equals that associated with
pr,- Asthe latter representation is irreducible (this irreducibility is well-known,
but see also the remark below) it follows that V,, = pr_ . As A is normal and
finite over A,, there is an f ¢ T A, (in fact one can pick f not to be zero on
any given finite set of points of B,) such that My is free over Ay. Let ro <7
be so small that f € A)X. Then (i)-(iv) hold with R the quotient of A®4, A,
by any minimal prime (a finite A, -algebra and so an affinoid K-algebra) and
with pr the representation of G on the free R-module M ®4 R.

Remark. We recall that there is a quick proof of the irreducibility of p, using
that it is potentially semistable (really only that it is Hodge-Tate), which was
established in 2.4.1. If p; = x1 @ x2, then each x; is potentially semistable and
hence is the Galois representation associated to an algebraic Hecke character
¥; of F (cf. [Se], esp. 111,2.3-2.4). Tt then follows that L(m @ ¢5 ', s — 1/2) =
L1 /12, s)Cr(s). As ¢, =} - |% with a; € Z and 9] finite and since we may
assume a1 > ag, L(Y1/v2,1) = LY} /¢h, a1 — az + 1) # 0. But this implies
that L(m @5 ", s) has a pole at s = 1, contradicting the cuspidality of .
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