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Abstract. We show that the p-adic Galois representations attached
to Hilbert modular forms of motivic weight are potentially semistable
at all places above p and are compatible with the local Langlands cor-
respondence at these places, proving this for those forms not covered
by the previous works of T. Saito and of D. Blasius and J. Rogawski.
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1 Introduction

Let F be a totally real extension of Q of degree d. Let F be an algebraic closure
of F and let GF := Gal(F/F ). Let I := HomQ(F,C) be the set of embeddings
of F into C. The set I indexes the archimedean places of F . For each finite
place v of F let F v be an algebraic closure of Fv and fix an F -embedding
F →֒ F v. These determine a choice of a decomposition group Dv ⊂ GF for
each v and an identification of Dv with Gal(F v/Fv). Let p be a rational prime
and fix an algebraic closure Qp of Qp and an isomorphism ι : C

∼
→ Qp. Via

composition with ι the set I is identified with the embeddings of F into Qp.

Let π be a cuspidal automorphic representation of GL2(AF ). Then π is a
restricted tensor product π = ⊗′πv with v running over all places of F . Assume
that each πi, i ∈ I, is a discrete series representation with Blattner parameter
ki ≥ 2 and central character x 7→ sgn(x)ki |x|−wi with w an integer independent
of i. We say that π has infinity type (k, w), k := (ki)i∈I . Assume also that each
ki ≡ w ( mod 2). In this case, π is an automorphic representation associated
with a Hilbert modular eigenform of weight k. We recall that attached to π
(and ι) is a two-dimensional semisimple Galois representation

ρπ : GF → GL2(Qp)
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such that
WD(ρπ |Dv )Fr-ss ∼= ιRecv(πv ⊗ | · |−1/2

v ) ∀v ∤ p∞. (1)

Here WD(σ) denotes the Weil-Deligne representation over Qp associated to a

continuous representation σ : Dv → GLn(Qp) for a place v ∤ p∞ (see [Ta,
(4.2.1)]), and the superscript ‘Fr-ss’ denotes its Frobenius semi-simplification.
Also, Recv(τ) denotes the Frobenius semi-simple Weil-Deligne representation
over C associated with an irreducible admissible representation τ of GLn(Fv) by
the local Langlands correspondence, and ιRecv(τ) is the Weil-Deligne represen-
tation over Qp obtained from Recv(τ) by change of scalars via the isomorphism
ι. We choose Recv so that when n = 1, Recv is the inverse of the Artin map
of local class field theory normalized so that uniformizers correspond to geo-
metric frobenius elements. The existence of a ρπ satisfying (1) was established
by Carayol [Ca2], Wiles [W], Blasius and Rogawski [BR], and Taylor [Tay1],
following the work of Eichler, Shimura, Deligne, Langlands, and others on the
Galois representations associated with elliptic modular eigenforms.

The purpose of this note is to complete the proof of the analog of (1) at places
v | p:

Theorem 1 Let v | p be a place of F . The representation ρπ|Dv is potentially

semistable with Hodge-Tate type (k, w) and satisfies

WD(ρπ |Dv )Fr-ss ∼= ιRecv(πv ⊗ | · |−1/2
v ). (2)

We recall that ρv := ρπ|Dv is potentially semistable if

Dpst(ρv) :=
⋃

L/Fv

(ρv ⊗Qp Bst)
Gal(Fv/L)

is a free Qp ⊗Qp F
ur
v,0-module of rank 2, where here L is ranging over all finite

extensions of Fv, F
ur
v,0 is the union of all absolutely unramified subfields of F v,

and Bst is Fontaine’s ring of semistable p-adic periods (the latter has a con-

tinuous action of Dv = Gal(F v/Fv) with the property that B
Gal(Fv/L)
st = L0,

the maximal absolutely unramified subfield of L). We also recall that the
module DHT (ρv) := (V ⊗Qp BHT )Dv is a graded Qp ⊗Qp Fv-module (recall

that BHT := ⊕n∈ZCFv (n), CFv := F̂ v, with the obvious action of Dv). By
ρπ|Dv having Hodge-Tate type (k, w), we mean that for j ∈ HomQp(Fv ,Qp)

the induced graded module DHT (ρv) ⊗Qp⊗QpF,j
Qp is non-zero in degrees

(w − ki(j))/2 and (w + ki(j) − 2)/2, where i(j) ∈ I is the induced embed-

ding of F into Qp. To make sense of the left-hand side of (2) we recall that
Fontaine has defined an action of the Weil-Deligne group on Dpst(ρv). Given
an embedding τ : Furv,0 →֒ Qp we obtain a Weil-Deligne representation over Qp

on WD(ρv)τ := Dpst(ρv)⊗Qp⊗QpF
ur
v,0,τ

Qp. This representation is independent

of τ up to equivalence, and we have denoted an element of its equivalence class
by WD(ρv). The right-hand side of (2) has the same meaning as in (1).
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p-adic Galois representations 243

Saito proved that Theorem 1 holds when either d is odd or there exists a
finite place w such that πw is square-integrable [Sa1, Sa2]; this builds on the
aforementioned work of Carayol. Under the same hypotheses or when d is
even and some ki is strictly larger than 2, Blasius and Rogawski proved that
ρ|Dv is potentially semistable of Hodge-Tate type (k, w), and when additionally
πp = ⊗v|pπv is unramified they essentially showed that the full conclusion of the
theorem holds [BR] (some additional, albeit minor, observations are required to
extend their arguments to all such cases). The theorem is of course also known
for those π that are the automorphic induction of a (necessarily) algebraic Hecke
character of an imaginary quadratic extension of F (such representations are
often called CM representations). In this case, Theorem 1 follows from the
results in [Se]. These results account for the cases where ρπ is known to arise
from a motive; the conclusion of the theorem then follows from various deep
comparison theorems between suitable cohomology theories.

It remains to deal with the cases where ρπ is not known to arise from a motive,
namely those cases where each ki = 2, each πv is a principal series represen-
tation, and π is not a CM representation. In [Tay2] it is shown that if ρπ is
residually irreducible and πv, v|p, is unramified, then ρπ|Dv is crystalline with
the predicted Hodge-Tate weights. For p > 2 unramified in F , the same result
is proved in [Br] without the hypothesis that ρπ be residually irreducible. For
those ρπ that are residually irreducible, Kisin [Ki1] deduced Theorem 1 from
his results on potentially semistable deformation rings, Taylor’s construction
of the representations ρπ, and Saito’s results. In this paper, we prove Theo-
rem 1 by a different approach. A simple base change argument reduces the
theorem, in the cases not covered by Saito’s results, to that where d is even
and each πv, v|p, is unramified. From the automorphy of the symmetric square
Sym2π and the results of [Mo] it follows that Sym2ρv is crystalline1 and even
that WD(Sym2ρv) ∼= ιRecv(Sym2πv ⊗ | · |−1

v ). From results of Wintenberger
[Win1, Win2] we then deduce that ρv is crystalline up to a (possibly trivial)
quadratic twist and hence that WD(ρv) is isomorphic to a (possibly trivial)

quadratic twist of ιRecv(πv ⊗ | · |
−1/2
v ). There exists a suitable p-adic analytic

family of eigensystems of cuspidal representations of GL2(AF ) (essentially due
to Buzzard [Bu1] in the cases needed) that contains an eigensystem attached
to ρπ. For members of this family with sufficiently regular weights Theorem 1
is known by the work of Blasius and Rogawski. An appeal to a result of Kisin
then shows that WD(ρv) has at least one Dv-eigenspace predicted by (2), from
which we then conclude that (2) holds.

After completing the first draft of this paper, the author learned that Tong Liu
[L] has also proven Theorem 1, at least for p > 2, by an argument that is a
generalization of that of Kisin [Ki1].

Acknowledgements. The author’s work on this paper was inspired by a question

1As remarked at the end of 2.4.1, a similar use of the symmetric square yields a proof of
the Ramanujan conjecture for π. This conjecture has previously been established in [B2].
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about what was known regarding Theorem 1 asked by Henri Darmon at the
summer school on the stable trace formula, automorphic forms, and Galois
representations held at BIRS in August of 2008. The referee prodded the author
to write a note with more details. The author’s research is supported by grants
DMS-0701231 and DMS-0803223 from the National Science Foundation and by
a fellowship from the David and Lucile Packard Foundation.

2 The proof of Theorem 1

We keep to the notation from the introduction. We assume some familiarity
on the part of the reader with p-adic Hodge theory, particularly the theory of
Hodge-Tate weights and the notions of crystalline and semistable representa-
tions. A good reference is [Fo]. While p-adic Hodge theory is usually applied to
continuous representations of Gal(F v/Fv), v|p, defined over a finite extension
of Qp, we apply it to continuous representations over Qp. This should cause no
confusion as the latter are always defined over a finite extension of Qp. While
this is well-known, references seem rare, so we provide a quick proof.

Let Γ be a compact group and ρ : Γ → GLn(Qp) a continuous representation.

The subfields L of Qp that are finite over Qp form a countable set, and as

each GLn(L) is closed in GLn(Qp), the subgroups ΓL := ρ−1(GLn(L)) form a
countable set of closed subgroups of Γ whose union is Γ. Since Γ is compact, it
carries a Haar measure with total measure finite and non-zero. As the countable
union of measurable sets each having measure zero also has measure zero, it
follows that some ΓL must have non-zero measure and hence have finite index
in Γ. Write Γ = ⊔mi=1giΓL. Then ρ takes values in GLn(L

′) where L′ is the
finite extension of Qp generated by L and the entries of the ρ(gi).

2.1 Weil-Deligne representations over Qp for v|p

Let v|p be a place of F . Let BHT := ⊕n∈bZ
CFv(n) with the obvious action

of Dv. Let Bcris ⊂ Bst be Fontaine’s rings of crystalline and semistable p-
adic periods, respectively. Recall that the latter are naturally Furv,0-algebras

equipped with a continuous action of Dv such that B
Gal(Fv/L)
? = L0 for any

finite extension L/Fv, ? = cris, st, and that furthermore they are both equipped
with a compatible Furv,0-semilinear Frobenius morphism ϕ : B? → B? (that
is, ϕ(ax) = frobp(a)ϕ(x) for all a ∈ Furv,0, where frobp ∈ Gal(Furv,0/Qp) is
the absolute arithmetic Frobenius). Additionally, Bst is equipped with an
Furv,0-linear and Dv-equivariant monodromy operator N : Bst → Bst such that

Bcris = BN=0
st .

For a finite-dimensional Qp-vector space V with a continuous Qp-linear action
of Dv we put

DHT (V ) := (V ⊗Qp BHT )Dv , Dcris(V ) := (V ⊗Qp Bcris)
Dv ,
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and
DL
st(V ) := (V ⊗Qp Bst)

Gal(Fv/L), Dpst(V ) :=
⋃

L/Fv

DL
st(V ),

where L/Fv is a finite extension. Then DHT (V ) is a finite, graded Qp⊗Qp Fv-

module. Also, Dcris(V ) is a finite Qp ⊗Qp Fv,0-module, DL
st(V ) is a finite

Qp ⊗Qp L0-module, and Dpst(V ) is a finite Qp ⊗Qp F
ur
v,0-module, each of rank

at most dimQp
(V ). The action of ϕ induces a Qp-linear, Fv,0-semilinear (resp.

L0-semilinear) Frobenius operator on Dcris(V ) (resp. DL
st(V )) that we also

denote by ϕ. The action of the monodromy operator N on Bst induces a
Qp ⊗Qp L0-linear nilpotent operator on DL

st(V ) that we also denote by N and
which satisfies N ◦ϕ = pϕ ◦N . These are compatible with varying L, so ϕ and
N are defined on Dpst(V ) as well. Note that Dcris(V ) = DFv

st (V )N=0.

Let Wv ⊂ Dv be the Weil group of Fv. The action of Dv on V and Bst induces
a Qp-linear, Furv,0-semilinear action rsl of Wv on Dpst(V ). We define another

action r of Wv on Dpst(V ): for w ∈ WK we let r(w) = rsl(w) ◦ ϕν(w) with

ν(w) ∈ Z such that w acts on Furv,0 as frob−ν(w)
p . This also defines an action on

Dcris(V ). The action r is Qp ⊗Qp F
ur
v,0-linear, and we have

N ◦ r(w) = N ◦ rsl(w) ◦ ϕν(w) ◦N = rsl(w) ◦N ◦ ϕν(w) = pν(w)r(w) ◦N.

It follows that the pair (r,N) defines an action of the Weil-Deligne group W ′
v

of Fv on Dpst(V ). Moreover, if τ : Furv,0 →֒ Qp is any embedding, then it also
follows that the induced action on

WD(V )τ := Dpst(V ) ⊗Qp⊗QpF
ur
v,0,τ

Qp

is a Weil-Deligne representation over Qp (the subscript τ on the tensor sign

means that we consider Qp as a Qp ⊗Qp F
ur
v,0-algebra via the homomor-

phism id ⊗ τ). Furthermore, d ⊗ x 7→ ϕ(d) ⊗ x defines an isomorphism
WD(V )τ◦frobp

∼
→ WD(V )τ of Weil-Deligne representations over Qp, hence the

equivalence class of WD(V )τ is independent of the choice of τ . We let WD(V )
be any member of this equivalence class.

We recall that V is potentially semistable if Dpst(V ) is a free Qp ⊗Qp F
ur
v,0-

module of rank equal to dimQp
V or, equivalently, dimQp

WD(V ) = dimQp
V .

Similarly, V is crystalline if Dcris(V ) is a free Qp ⊗Qp Fv,0-module of rank

dimQp
V . This is equivalent to (V ⊗Qp Bcris)

Iv being a free Qp ⊗Qp F
ur
0,v-

module of rank equal to dimQp
V , where Iv ⊂ Dv is the inertia subgroup.

Thus, V is crystalline if and only if V is potentially semistable and both N
and Iv act trivially on Dpst(V ). In particular, V is crystalline if and only if
dimQp

WD(V ) = dimQp
(V ), WD(V ) is unramified (i.e., N = 0 and the inertia

group Iv acts trivially). Consequently, for V crystalline the eigenvalues of
w ∈ Wv on WD(V )Fr-ss are just the roots of the characteristic polynomial of
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the Qp-endomorphism induced by ϕν(w). We also recall that for a crystalline

representation V there is Qp ⊗Qp Fv-filtration on Dcris(V ) ⊗Fv,0 Fv whose
associated graded module is just DHT (V ).

Suppose now that πv is unramified. From the preceding paragraph it follows
that (2) holds if ρv = ρπ|Dv is crystalline and if for all w ∈Wv

det(1 − Tϕν(w)|Dcris(V ) ⊗Qp⊗QpFv,0,τ
Qp) = det(1 − Tw|ιRecv(πv ⊗ | · |−1/2

v ))

(3)
for some (equivalently, each) embedding τ : Fv,0 →֒ Qp.

2.2 Reduction to d even and πv unramified

As mentioned in the introduction, Saito has proven Theorem 1 when the degree
d of F is odd or some πv is square-integrable [Sa1],[Sa2]. We may therefore
assume that d is even and that πv is a principal series representation for finite
places v. Theorem 1 then asserts that each ρv is potentially crystalline with
predicted Hodge-Tate weights. Clearly, this is true for ρv = ρπ|Dv if and only if
there is a finite extension F ′/F such that it is true for ρπ|Dv′

, v′|v the place of F ′

determined by the fixed embedding F →֒ F v. Additionally, if ρv is potentially
crystalline with the predicted Hodge-Tate weights, then to establish (2) it is
enough to show that

trace(w|WD(ρv)) = trace(w|ιRecv(πv ⊗ | · |−1/2
v )) (4)

for all w ∈ Wv with ν(w) > 0.

Let v|p. For a given w ∈ Wv such that ν(w) > 0 there exists an abelian
extension F ′/F such that (a) the base change π′ of π to GL2(AF ′) is cuspidal
and unramified at each place over p and (b) w ∈ Wv′ ⊆ Wv for v′|v the
place of F ′ determined by the fixed embedding F →֒ F v. That (a) can be
satisfied is a consequence of each local constituent of π being a principal series
representation (we are, of course, using that base change is known for GL2

for abelian extensions). That (b) can be simultaneously satisfied with (a) is a
simple consequence of ν(w) > 0. Note that the extension F ′/F may depend on
w. As ρπ′

∼= ρπ|GF ′
, it follows that WD(ρπ′ |Dv′

) ∼= WD(ρπ|Dv )|W ′

v′
. Similarly,

Recv′(πv′ ⊗ | · |
−1/2
v′ ) ∼= Recv(πv ⊗ | · |

−1/2
v )|W ′

v′
. Therefore if Theorem 1 holds

for π′, then ρv is potentially crystalline with the predicted Hodge-Tate weights
and (4) holds for the given w. This shows that if Theorem 1 holds whenever
the representation is unramifed at all primes above p then it also holds for π.
Consequently, it suffices to prove Theorem 1 under the assumption that each
πv, v|p, is unramified.

2.3 Galois representations in the cohomology of certain Shimura
varieties

As mentioned in the introduction, Blasius and Rogawski have essentially proved
Theorem 1 in the case where some ki > 2 and each πv, v|p, is unramified [BR].
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We explain this here, giving the necessary modifications required to make their
argument cover all such cases. We also record some additional consequences
for Galois representations associated with essentially self-dual representations
of GL3(AF ).

2.3.1 The Shimura varieties

Let E0 ⊆ F be an imaginary quadratic extension of Q in which p splits and set
E = FE0. Fix a place v0 of E0 above p. For convenience we assume that for
each place v|p of F the fixed embedding F →֒ F v induces the valuation v0 on
E0. Fix an embedding E0 →֒ C such that - again for convenience - composition
with ι also induces the valuation v0. Let φ be the CM type of E consisting of
those embeddings E →֒ C extending the fixed embedding of E0. For τ ∈ φ we
write τ̄ for the composition of τ with complex conjugation. Restriction to F
determines a bijection between φ and I, and we write τi for the element of φ
extending i ∈ I. Via composition with ι, φ determines a place of E above each
place v|p of F ; the fixed decomposition group Dv is also a decomposition group
for the place of E above p so determined, hence we also denote this place by v,
writing v̄ for its conjugate (note that each place v|p of F splits in E). If M is
an OE-module, then M∞ := M⊗C decomposes as M∞

∼=
∏
τ∈φMτ⊕Mτ̄ with

Mσ := M ⊗OE,σ C for any embedding σ : E →֒ C. Similarly, Mp := M ⊗ Zp
decomposes as Mp

∼=
∏
vMv ⊕Mv̄ with Mw := M ⊗OE OE,w for a place w|p

of E.

Fix i0 ∈ I. Let Φ be the Hermitian E-pairing on V := E3 (viewed as column
vectors) defined by the diagonal matrix J := diag(α, 1, 1) with α ∈ F× such
that τi0(α) < 0 and τi(α) > 0 for i 6= i0: Φ(x, y) = tx̄Jy. Then Φ has
signature (2, 1) with respect to τi0 and signature (3, 0) with respect to all
other τi. Let U(Φ)/Q be the unitary group of Φ and G := GU(Φ)/Q its
similitude group. We note that G(C) ∼= C× ×

∏
τ∈φGLC(Vτ ), where the

projection to the C×-factor is the similitude character, and the projection to
the second factor is via the corresponding projection of GLE⊗C(V∞). Similarly,
G(Qp) ∼= Q×

p ×
∏
v GLEv (Vv), where v runs over the place of F dividing p (or

the fixed places of E over these). Let ψ := traceE/QβΦ with β a totally
imaginary element of E0. Then there exists an OE-lattice Λ ⊂ V such that ψ
identifies Λp with its Zp-dual.

Let S := ResC/RGm, so S(R) = (C⊗R R)× for any R-algebra R. We identify
S(C) = (C ⊗ C)× with C× × C× via z ⊗ w 7→ (zw, z̄w). Let h : S → G/R be
the homomorphism such that for (z, w) ∈ S(C)

h(z, w) = (zw) ×
∏

τ∈φ

{
diag(z, w,w) τ = τi0
diag(w,w,w) τ 6= τi0 .

Let h(z) = h(z, z̄). We assume that β is such that ψ(x, h(i)x) is positive
definite for x ∈ V ⊗ R. As explained in [Ko], associated with E, V, ψ, and h
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is a family of PEL moduli spaces SK over2 E, K ⊂ G(Af ) being a neat open
compact subgroup: in the notation of [Ko, §5] we take3 B = E with ∗ the non-
trivial automorphism fixing F and (V, (−,−)) = (V, ψ); then C = EndE(V )
and the G of loc. cit. is the group G defined above, and we take for the ∗-
homomorphism C → C ⊗R the R-linear extension of z 7→ h(z). The varieties
SK are smooth over E and, being solutions to PEL moduli problems, are
equipped with ‘universal’ abelian varieties AK/SK . As explained in [Ko, §8],
SK is naturally identified with a disjoint union of a finite number of copies
of the canonical model ShK over E of the Shimura variety associated with G,
h−1, and K, indexed by the isomorphism classes of Hermitian E-spaces (V ′, ψ′)
that are everywhere locally isomorphic to (V, ψ). We identify ShK with the
copy corresponding to the class of (V, ψ) and let AK/ShK be the restriction of
the universal abelian variety.

Suppose K = KpK
p with Kp ⊆ G(Ap

f ) and Kp ⊂ G(Qp) identified with a

subgroup Z×
p ×

∏
v|pKv ⊆ Z×

p ×
∏
v GLOE,v̄ (Λv̄). Let v|p be a fixed place. If

Kv = GLOE,v(Λv), then an argument of Carayol [Ca1, §5] shows that AK and
SK have good reduction at v. A model of SK over OF,v = OE,v is obtained
by considering a moduli problem as in [Ca1, 5.2.2]. To be be precise, one
considers the functor from the category of locally Noetherian OF,v-schemes to
the category of sets that sends an OF,v-scheme R to the set of isomorphism
classes of quadruples (A, i, θ, k̄v) where (a) A is an abelian scheme over R of
relative dimension 3d and i : OE →֒ EndR(A) is an embedding such that
Lie(A)v is a locally free OR-module of rank one on which OF,v = OE,v acts
via the structure map OF,v → OR and such that Lie(A)v′ = 0 for all v′|p,
v′ 6= v; (b) θ is a prime-to-p polarization of A satisfying θ ◦ i(x) = i(x̄)∨ ◦ θ for
all x ∈ OE ; (c) k̄v is a K-level structure as4 in [Ca1, 5.2.2(c)] but with VZ in
the definition of W there replaced by Λ. That this functor is isomorphic over
Fv = Ev to that in [Ko, §5] defining SK/Ev

follows from the arguments in [Ca1,
2.4-2.6,5.2.2]. That it is representable by a smooth, projective scheme SK over
OF,v follows from the arguments in [Ca1, 5.3-5.5]. The p-divisible group Ap of
A decomposes under the action of OE,p = OE ⊗ Zp as Ap =

∏
v′|pAv′ × Av̄′ .

The condition on Lie(A)v′ in (a) then implies that Av′ is ind-étale if v′ 6= v,
and part of the level structure k̄v is a class modulo

∏
v′ 6=vKv′ of OE,p-linear

R-isomorphisms kvp :
∏
v′ 6=v A[pn]v′

∼
→

∏
v′ 6=v(p

−nΛ/Λ)v′ with n any integer
so large that Kv′ contains the kernel of the reduction map GLOE,v′

(Λv′) →
GLOE,v′

(Λv′/p
nΛv′) (see [Ca1, 5.2.3(ii)]). The condition that Λp is self-dual

ensures that over Fv this moduli problem is equivalent to one with a usual

2The reflex field in this case is τi0 (E) ⊂ C which we identify with E via τi0 .
3As we are only defining the moduli spaces over E at this point, the conditions at p in

[Ko, §5] are superfluous.
4When adapting the arguments of [Ca1] to the setting of this paper, the roles of the super-

scripts 1 and 2 in loc. cit. are switched. This is a result of our choice of the homomorphism h
and the identification of E with the reflex field. A homomorphism S → G/R more naturally
generalizing that in loc. cit. would be (z, w) 7→ h(w, z). We have chosen h here so that ShK
is the Shimura variety in [BR].
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K-level structure. The representability of this moduli problem by a scheme
SK over OF,v follows from the arguments in [Ca1, 5.3] and the properness from
those in [Ca1, 5.5]. The smoothness of this scheme follows exactly as in [Ca1,
5.4]. The key point is that for R a local artinian OF,v-module, the conditions
on the dimension of A and on Lie(A)v in (a) imply that Av is a divisible OF,v-
module of height 3 whose formal (or connected) part has height 1 (we are
keeping to the terminology in the Appendix of [Ca1]). The smoothness then
follows by the deformation argument given in loc. cit. Over Ev, SK is just SK ,
and AK is the base change of the universal abelian scheme AK/SK . Hence SK ,
ShK , and AK have good reduction at v.

2.3.2 Theorem 1 when some ki > 2 and each πv unramified

We can now explain how the arguments in [BR] yield Theorem 1 when d > 1,
some ki > 2, and each πv, v|p, is unramified. Without loss of generality we may
assume that w = maxi∈I ki; choosing a different w amounts to replacing ρπ by
a Tate-twist. We may assume that E0 has been chosen so that the base change
πE of π to GL2(AE) is cuspidal (equivalently, π is not a CM representation
associated to a Hecke character of E). Fix an algebraic Hecke character µ of
A×
E satisfying µ|A×

F
= ωE/F , the quadratic character of the extension E/F ,

and such that µ is unramified at each place over p. As explained5 in [BR,
Prop. 4.1.2], there exists a global L-packet τ on the quasi-split unitary group
U(2)/F such that its non-standard base change to GL2(AE) (with respect to µ)

is πE ⊗ η| · |
1/2
E with η an algebraic Hecke character of A×

E that is unramified at
each place above p. It follows from [BR, Lem. 4.2.1] that there exists a global
character θ of U(1)/F unramified at all places above p for which the L-packet
ρ = τ ⊗ θ of U(2)×U(1) is such that the endoscopic L-packet Π(ρf ) for U(Φ)
contains an element σf with d(σf ) := #{σ∞ ∈ Π(ρ∞) : ǫ(σ∞)ǫ(σf ) = 1} =
2. Let χ be an algebraic character of the center of G extending the central
character of Π(ρ) and unramified at all places above p (cf. [BR, §1.2]). The
pair (σf , χ) defines an admissible representation π(σf , χ) of G(A∞

Q ). From the
definition of σf it follows that σp is an unramified representation of U(Qp) ∼=∏
v GLEv̄(Vv̄) in the sense that it is a tensor product of unramified principal

series representations of each factor. In particular, as χ is unramified at each
place above p, π(σf , χ)K 6= 0 for K = KpK

p with Kp identified with Z×
p ×∏

v|pGLOE,v(Λv) and Kp sufficiently small.

As explained in the proof of [BR, Thm. 3.3.1], associated with π(σf , χ) is a
motive M = (AnK , e) with coefficients in a number field T ⊂ C (this motive is
denoted M0 in loc. cit.; n is some integer depending on the weights of π, µ, θ,
and χ, AnK is the n-fold self-product over the Shimura variety ShK , and e is an
idempotent in Zh(A

n
K ×AnK)) such that for any prime ℓ and any isomorphism

5The representations of GL2(AF ) in [BR] are normalized so that what is denoted by π

there equals π ⊗ | · |
1/2
F in this paper.
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ι′ : C
∼
→ Qℓ, the ℓ-adic realization Mℓ of M satisfies

Mℓ,ι′ := Mℓ ⊗T⊗Qℓ,ι′ Qℓ
∼= ρπ,ι′ |GE ⊗ ρηψ,ι′ , (5)

where the subscript ι′ denotes that the objects on the right-hand side are the
ℓ-adic Galois representations6 associated with the embedding ι′. Here ψ is the
Hecke character z 7→ χ(NE/E0

(z̄)) of A×
E . Equivalently,

WD(Mℓ,ι′|Dw ) ∼= ι′Recw(πE,w ⊗ ηwψw| · |
−1/2
w ) (6)

for all places w ∤ ℓ of E, Dw being any decomposition group for w. More
precisely, (6) is only shown in [BR, Thm. 3.3.1] for those w ∤ ℓ coprime to the
conductor of π and the absolute discriminant of E. But this together with the
existence of the ℓ-adic representations associated with π, ηψ, and ι′ implies (5),
from which (6) follows for all places w ∤ ℓ. This relies on more than is proved
in loc. cit.; it also requires the work of Carayol and Taylor on the existence of
the ℓ-adic representations.

As AK has good reduction at v|p, it follows - from the theorems of Faltings
and of Katz and Messing cited in [BR, §5] together with (5) and (6) - that for
a place v|p of F the representation Mp,ι is crystalline at v and for all w ∈ Wv

det(1 −Xϕν(w)|Dcris(Mp,ι|Dv ) ⊗Qp⊗QpFv,0,τ
Qp)

= det(1 −Xw|ιRecv(πv ⊗ ηvψv| · |
−1/2
v ).

(7)

As η and ψ are both unramified at all places above p, ρηψ|·|E is crystalline at v.

It then follows that ρv ∼= (Mp,ι⊗ ρ−1
ηψ)|Dv is crystalline, and so (3) follows from

(7). That ρv has Hodge-Tate type (k, w) is immediate from [BR, Thm. 2.5.1(ii)]
and Faltings’ proof of the deRham conjecture.

2.3.3 Essentially self-dual representations of GL3(AF )

Let Π = ⊗′Πv be a cuspidal automorphic representation of GL3(AF ) for which
each Πi, i ∈ I, is such that its corresponding representation Reci(Πi) of the
Weil group of Fi satisfies

Reci(Πi)|C×
∼= zai z̄bi ⊕ zbi z̄ai ⊕ (zz̄)(ai+bi)/2, ai 6= bi ∈ Z, ai + bi ∈ 2Z. (8)

Suppose also that Π∨ ∼= Π⊗ψ for some Hecke character ψ (then ψ is necessarily
algebraic). As explained in [B1, 4.1-4.6], it is a consequence of the results in
[Mo] that for each prime ℓ and each isomorphism ι′ : C

∼
→ Qℓ there is an

ℓ-adic Galois representation ρΠ,ι′ : GF → GL3(Qℓ) satisfying WD(ρΠ,ι′ |Dv ) ∼=

6For an algebraic Hecke character ψ of a number field, we denote by ρψ,ι′ the ℓ-adic
Galois representation associated with ψ and ι′, normalized so that the restriction of the
Galois character to the decomposition group at a place w ∤ ℓ is just the image of the local
character ψw under the inverse of the Artin map, composed with ι′.
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ι′Recv(Πv) for all places v ∤ ℓ that are prime to the conductor of Π and the
absolute discriminant of F .

The proof of the existence of ρΠ,ι′ follows the arguments in [BR]. In particular,
letting E be as in 2.3.2, if the base change of Π to E is still cuspidal then, as
explained in the proof of [B1, Thm. 4.2], there is a motive M = (AmK , e), K
small enough, such that the ℓ-adic realizations of M yield ρΠ|GE twisted by
a representation associated with an algebraic Hecke character of A×

E . If Π is
unramified at each v|p then one can take K = KpK

p with Kp identified with
Z×
p ×

∏
v|p GLOE,v(Λv) and the Hecke character can be taken unramified at

each v|p. Then arguing as in 2.3.2 shows that ρΠ := ρΠ,ι is crystalline at each
v|p and such that DHT (ρΠ|Dv ) ⊗Qp⊗QpFv,j

Qp, j ∈ HomQp(Fv,Qp), is non-

zero in degrees −ai(j),−bi(j), and −(ai(j) + bi(j))/2, i(j) ∈ I being the induced
embedding of F . Furthermore, if WD(ρΠ,ι′ |Dv ) ∼= ι′Recv(Πv) for some ℓ 6= p
(only an additional condition if p is not prime to the absolute discriminant of
F ), then these arguments also show that WD(ρΠ|Dv ) ∼= ιRecv(Πv).

Remark. Suppose Πv is unramified at each v|p. From the good reduction of the
Shimura variety ShK with Kp as in 2.3.2 or 2.3.3, it follows easily from the Weil
conjectures that the Frobenius-at-v eigenvalues of any ℓ-adic representation
ρΠ,ι′ , ℓ 6= p, have absolute value as predicted by the Ramanujan conjecture
for Πv when considered as elements of C via ι′. Therefore, if WD(ρΠ,ι′ |Dv ) ∼=
ι′Recv(Πv), then the Ramanujan conjecture is true for Πv. This argument
shows (at least) that if q is a prime such that Πw is unramified for all w|q,
then the Ramanujan conjecture is true for Πw, w|q, provided there is some
prime ℓ 6= q such that the ℓ-adic representation ρΠ,ι′ satisfies WD(ρΠ,ι′ |Dw ) ∼=
ι′Recw(Πw).

2.4 Theorem 1 for the remaining cases

As a consequence of the work of Saito [Sa1, Sa2], the remarks in 2.2, and the
results of [BR] as described in 2.3.2, to complete the proof of Theorem 1 it
remains to consider the case where d is even, each ki = 2, each πv, v|p, is
unramified, and π is not a CM representation. Replacing π by a twist by an
integral power of | · |F if necessary (which corresponds to twisting ρπ by a
power of the cyclotomic character), we may also assume that w = 2. Hereon
we assume we are in this case.

2.4.1 An application of the symmetric square

Let Π := Sym2π ⊗ | · |−1
F , with Sym2π the symmetric square lift of π to

GL3(AF ) (cf. [GJ]). As π is not a CM representation, Π is cuspidal. Since

Reci(πi)|C×
∼= (z̄/z)1/2⊕̄(z/z̄)1/2, Reci(Πi)|C×

∼= Sym2Reci(πi| · |
−1/2
i )|C× sat-

isfies (8) with ai = −2 and bi = 0. Furthermore, as π∨ ∼= π⊗ω−1, ω the central
character of π, it follows that Π∨ ∼= Π⊗ω−2| · |2F . Therefore, Π satisfies all the
hypotheses in 2.3.3. In particular, there exist associated ℓ-adic representations
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ρΠ,ι′ . Clearly ρΠ,ι′
∼= Sym2ρπ,ι′, so WD(ρΠ,ι′ |Dw ) ∼= ι′Recw(Sym2πw ⊗ | · |−1

w )
for all w ∤ ℓ. Since πv, and therefore Πv, is unramified at each v|p, as ex-
plained in 2.3.3 we can conclude from this that for each v|p: (i) Sym2ρπ|Dv

is crystalline for v|p, (ii) WD(Sym2ρπ|Dv ) ∼= ιRecv(Sym2πv ⊗ | · |−1
v ), and (iii)

DHT (Sym2ρπ|Dv ) ⊗Qp⊗QpFv ,j
Qp, j ∈ HomQp(Fv,Qp), is non-zero in degrees

2, 1, and 0.

Let v|p. By conclusion (iii) of the preceding paragraph, the graded module
DHT (Sym2ρv) is the symmetric square of the expected graded module for ρv. It
then follows from results of Wintenberger7 - Thm. 1.1.3, Prop. 1.2, and Remarks
1.1.4 of [Win1] or Thm. 2.2.2 of [Win2], applied to the isogeny GL2 → GL2/±1 -
that there is a crystalline representation ρ : Dv → GL2(Qp) such that Sym2ρ =

Sym2ρv. From this it follows that ρv is isomorphic to a (possibly trivial)
quadratic twist of ρ. In particular, ρv is potentially crystalline. Therefore
WD(Sym2ρv) ∼= Sym2WD(ρv), and it then follows from conclusion (ii) of the

preceding paragraph that Sym2WD(ρv) ∼= Sym2ιRecv(πv ⊗ | · |
−1/2
v ). From

this it follows that WD(ρv) is isomorphic to a (possibly trivial) quadratic twist

of ιRecv(πv ⊗ | · |
−1/2
v ). It also follows that ρv is of Hodge-Tate type (k, w)

(= ((2)i∈I , 2) in this case).

Remark. We can also use Sym2π to show that the Ramanujan conjecture holds
for π. We may assume that π is not a CM representation. Let q be a prime.
It then follows from the remark at the end of 2.3.3 that if πw is unramified at
each w|q, then the Ramanujan conjecture holds for each Sym2πw and hence
for πw. A simple base change argument like that in 2.2 then shows that the
Ramanujan conjecture holds at all places where π is a principal series. In
particular, this establishes the Ramanujan conjecture for those π for which
there is no finite place v with πv square-integrable. That the Ramanujan
conjecture is known when such a v exists follows from Carayol’s work [Ca2].
The Ramanujan conjecture has already been established for π by Blasius [B2].

2.4.2 The existence of a crystalline period

Recall that we are assuming that for each v|p, πv ∼= π(αv , βv) is an un-
ramified principal series8. As WD(ρv) is isomorphic to a (possibly trivial)

quadratic twist of ιRecv(πv ⊗ | · |
−1/2
v ), to prove (2) it suffices to show that

WD(ρv)
frobv=αv(̟v)q1/2

v 6= 0, where frobv is a geometric frobenius at v, ̟v is a
uniformizer at v, and qv is the order of the residue field at v. This is equivalent

to showing that Dcris(ρv|Dv )ϕ
fv =q1/2

v αv(̟v) is a Qp ⊗Qp Fv,0-module of rank

7Note that ‘weakly admissible = admissible’ has been proved by Colmez and Fontaine,
and ‘de Rham = potentially semistable’ has been proved (independently in some cases) by
André, Berger, Kedlaya, and Mebkhout, and so the hypotheses on which these results depend
are known to hold.

8By π(α, β) we mean the usual principal series representation that is the induction to

GL2(Fv) of the character ( a ∗

0 d ) 7→ α(a)β(d)|a/d|
1/2
v of the upper-triangular Borel.
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at least one. To establish a lower bound on this rank, we make use of p-adic
analytic families of cuspidal representations.

Let O denote the integer ring of F and let Op := O ⊗ Zp
∼
→

∏
v|pOv. Let

Sp := {v|p} be the set of places of F over p and let Sπ be the set of finite places
of F at which π is ramified. Let S := Sπ ∪ Sp and KS :=

∏
v 6∈S,v∤∞ GL2(Ov).

Let HS be the abelian Hecke algebra

HS := Cc(GL2(A
S
F,f )//K

S).

For each v ∈ Sp let

Iv := {
(
a b
c d

)
∈ GL2(Ov) : ̟v|c}, Ip :=

∏

v|p

Iv,

and let Uv ⊂ Cc(GL2(Ov)//Iv) be the abelian subalgebra generated by the
characteristic functions

Uv := char(Ivdiag(̟v, 1)Iv).

Put
Up := ⊗v|pUp and TS := Up ⊗HS .

Then there exists an fπ ∈ πK
SIp that is an eigenvector for the (usual) ac-

tion of the Hecke ring TS such that char(Ivdiag(̟v, 1)Iv) acts with eigenvalue

q
1/2
v αv(̟v).

Let K ⊂ Qp be a finite extension of Qp containing each i(F ), i ∈ I, and

the eigenvalues for the action of TS on fπ. Let |K×| = {|x|p : x ∈ K×}.
For r ∈ |K×|, we denote by Br the usual closed rigid ball over K of radius

r (so Br(Cp) = {x ∈ Cp : |x|p ≤ r}, where Cp := Q̂p). Then O(B1) =
K < T >. Let Ar := O(Br); this is an affinoid K-algebra. From the work
of Buzzard [Bu1, Bu2] one can deduce that if r0 ∈ |K×| is sufficiently small,
then there exists a reduced finite torsion-free Ar0 -algebra R (so also an affinoid
K-algebra) and a homomorphism φ : TS → R satisfying (i)-(iii) below. For
x ∈ HomK(R,Qp) put φx := x ◦ φ. Then:

(i) if x is such that x(1 + T ) = (1 + q)nx , nx ∈ p(p− 1)Z>0 (q = p if p odd
and q = 4 if p = 2), then there exists a cuspidal representation πx of
GL2(AF ) with infinity type (kx, wx) = ((nx + 2)i∈I , nx + 2)) and which
is unramified at all v|p and such that φx : TS → Qp gives the eigenvalues

of the action of TS on an eigenvector fx ∈ π
KSIp
x ;

(ii) there exists x0 ∈ X (K) with x0(1 + T ) = 1 such that φx0
gives the

eigenvalues of the action of TS on fπ;

(iii) if φv := φ(Uv) ∈ R×, then |x(φv)|p is constant for all x;
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(iv) there exists a continuous representation

ρR : GF → GL2(R)

unramified away from S and such that for x as in (i) the representation
ρx : GF → GL2(Qp) induced from ρR by x is equivalent to ρπx and that
induced by x0 is equivalent to ρπ.

Assuming the existence of R and φ, we can complete the proof of Theorem 1.
Let Σ ⊂ HomK(R,Qp) be the set of x as in (i). Then Σ is Zariski dense by the
finiteness of R over Ar. As explained in 2.3.2 we know that Theorem 1 holds
for each πx, x ∈ Σ. Let v|p and x ∈ Σ. Then πx,v ∼= π(µx, λx), an unramified

principal series with x(φv) = µx(̟v)q
1/2
v . In particular, as Theorem 1 holds

for ρx ∼= ρπx we have that Dcris(ρx|Dv )ϕ
fv =x(φv) is a Qp ⊗Qp Fv,0-module

of rank at least one for all x ∈ Σ, where fv is the residue class degree of
Fv (so qv = pfv). As the Hodge-Tate type of ρx, x ∈ Σ, is (kx, wx), each
DHT (ρx|Dv )⊗Qp⊗QpFv ,j

Qp is non-zero in degrees 0 and nx+1. It then follows

easily from [Ki2, (5.15)] that9

Dcris(ρπ|Dv )ϕ
fv =q1/2

v αv(̟v) = Dcris(ρx0
|Dv )ϕ

fv =x0(φv)

is also a Qp ⊗Qp Fv,0-module of rank at least one.

While the existence of R and φ is essentially proved in the work of Buz-
zard, there is no convenient reference in [Bu1]. So we conclude by explain-
ing how their existence follows from this work. Let D be the quaternion
algebra over F that is split at all finite places and compact modulo the
center at all archimedean places. Fix a maximal order OD of D, and for
each finite place v of F fix an isomorphism OD,v

∼= M2(Ov). This identi-
fies GL2(AF,f ) with (D ⊗F AF,f )

×. Let n be the conductor of π and let

U0 ⊆ GL2(O⊗ Ẑ) be the subgroup of matrices with lower left entries in n⊗ Ẑ,
and let U = U0 ∩ Ip. Let J := {v|p}. For a ∈ ZJ>0 let Ua :=

∏
v∈J U

av
v . For

v ∈ J let σv := ordv(αv(̟v)q
1/2
v ), and let σa :=

∑
v∈J avσv.

For r ∈ |K×| with r ≤ 1 we define a homomorphism κ : O×
p ×O×

p → A×
r by

κ((xv), (yv)) =
∏

v∈Sp

∏

j∈HomQp (Fv,Qp)

j(yv)(1 + T )logp NmFv/Qp (xv).

9Proposition (5.14) and Corollary (5.15) of [Ki2] are only stated for representations of
GQp = Gal(Qp/Qp). But it is easily checked that the arguments extend to the case of the

representations of Dv = Gal(F v/Fv) under consideration here; the necessary results with
ϕ replaced by ϕfv (e.g., Corollary (3.7)) are easily deduced from those for ϕ. A key point
is that our hypotheses on the weights in the family X ensure that the polynomial P (X) ∈
(O(X )⊗Qp Fv)[X] provided by Sen’s theory as in [Ki2, (2.2)] is of the form P (X) = XQ(X)
with the constant coefficient of Q not a zero-divisor.
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Let W be the rigid analytic weight space over K defined in §8 of [Bu1]. Then
Br is identified with a reduced affinoid subspace of W such that κ is the induced
weight in the sense of loc. cit. Let m ∈ |K×| be so small that the Ar-Banach
module SDκ (U ;m) of overconvergent automorphic forms is defined (notation
as in [Bu1, §9]). This is equipped with an Ar-linear action of TS such that
each Uv is a completely continuous operator. For b ∈ Br(Qp) such that the

induced map eb : Ar → Qp sends 1 + T to (1 + q)nb with nb ∈ p(p − 1)Z≥0

we have a TS-equivariant inclusion of the classical forms of weight (kb,wb):
SDkb,wb

(U) ⊆ SDκ (U ;m) ⊗O(Br),eb
Qp, wb := (nb + 2)i∈I ∈ ZI (see [Bu1, §11]).

By the Jacquet-Langlands correspondence, there exists f0 ∈ S2,2(U) having
the same TS-eigenvalues as fπ. Recall that by the theory of Fredholm series
and orthonormalizable Banach modules as developed by Coleman, Ash and
Stevens, and Buzzard, if r is small enough then there is a finite Ar-direct
summand N ⊂ SDκ (U ;m) that is stable under TS and such that for each
a ∈ ZJ>0 the Fredholm series for Ua on N is a factor of the slope σa part of
the Fredholm series Pa(X) ∈ Ar{X} associated to the completely continuous
operator Ua on SDκ (U ;m) (the latter is well-defined for r small enough), and
furthermore is such that f0 ∈ N ⊗Ar,e0 K. If r is sufficiently small then for
any b ∈ Ar with nb ∈ p(p − 1)Z>0 it follows from the arguments in [Bu2, §7]
(see also the comment at the end of §11 of [Bu1]) that Nb := N ⊗Ar,eb

Qp is

comprised of classical forms in SDnb+2,nb+2(U) (nb is divisible by a high power
of p; the smaller r is, the larger the power of p). By the definition of N , any
TS-eigenform in Nb is such that the eigenvalue of Uv has slope σv, and so if
r is small enough relative to σv then it is easily seen that the v-constituent of
the irreducible representation of GL2(AF,f ) generated by f is not special and
therefore must be an unramified principal series.

Let R be the Ar-algebra generated by the image of TS in EndAr (N ); this is
a finite torsion-free Ar-algebra and so an affinoid K-algebra. Note that there
exists a K-homomorphism φ0 : R → K giving the eigenvalues of the TS-action
on f0. Let A be the normalization of the quotient of R by a minimal prime
containing the kernel of φ0. This is a reduced finite torsion-free Ar-algebra and
so also an affinoidK-algebra. Let φ : TS → A be the canonical homomorphism.
It follows from the definitions that (i), (ii), and (iii) hold with R replaced by
A. For each x ∈ HomK(A,Qp) as in (i), let Tx : GF → Qp be the continuous
pseudo-representation associated with ρπx (so Tx = trace ρπx). Since for a
place w ∤ np, Tx(frobw) = x◦φ(char(GL2(Ow)diag(̟w, 1)GL2(Ow)), ̟w ∈ Ow

a uniformizer, it follows easily from the Cebotarev density theorem and the
Zariski density of the set ΣA of x ∈ HomK(A,Qp) as in (i) that there is a
continuous pseudo-representation T : GF → A such that Tx = x ◦ T . From
the general theory of pseudo-representations (cf. [Tay3]) there is a semisimple
Galois representation ρA : GF → GL2(FA), FA the field of fractions of A, such
that T = trace ρA. It is easy to see that there is a finite A-module M ⊂ F 2

A on
which GF acts continuously and such that Vx := Mx ⊗Ax,x Qp is isomorphic
to the representation ρπx , x ∈ ΣA or x any extension of φ0 to A (here the

Documenta Mathematica 14 (2009) 241–258



256 Christopher Skinner

subscript x on M and A denotes the localization at the kernel of x). Such
a module M is given explicitly as follows. Fix a basis of ρA such that for
some i ∈ I the corresponding complex conjugation in GF is diagonalized (with
eigenvalues 1 and −1). Writing ρA(σ) =

(
aσ bσ

cσ dσ

)
, we have aσ, dσ, bσcσ′ ∈ A

for all σ, σ′ ∈ GF and that these define continuous functions of σ and σ′. It
follows that the A-submodules B and C of FA generated by {bσ : σ ∈ GF }
and {cσ : σ ∈ GF }, respectively, are fractional ideals of A satisfying CB ⊆ A
(note that by the semisimplicity of ρA and the diagonalization of the chosen
complex conjugation, B = 0 if and only of C = 0). We can then take M =
A ⊕ A if C = 0 and M = A ⊕ C otherwise. Being a finite A-module, M
is a Banach A-module and the continuity of the action of GF on M is clear
from the continuity of the functions aσ, dσ, and bσcσ′ . As A is normal, for any
x ∈ HomK(A,Qp) the localization Ax is a DVR, and so Mx is a free Ax-module
of rank two. The representation Vx is then two-dimensional and its associated
pseudo-representation is x ◦ T . Therefore if x ∈ ΣA or x any extension of φ0

to A, the pseudo-representation associated with Vx equals that associated with
ρπx . As the latter representation is irreducible (this irreducibility is well-known,
but see also the remark below) it follows that Vx ∼= ρπx . As A is normal and
finite over Ar, there is an f 6∈ TAr (in fact one can pick f not to be zero on
any given finite set of points of Br) such that Mf is free over Af . Let r0 ≤ r
be so small that f ∈ A×

r0 . Then (i)-(iv) hold with R the quotient of A⊗Ar Ar0
by any minimal prime (a finite Ar0 -algebra and so an affinoid K-algebra) and
with ρR the representation of GF on the free R-module M ⊗A R.

Remark. We recall that there is a quick proof of the irreducibility of ρπ using
that it is potentially semistable (really only that it is Hodge-Tate), which was
established in 2.4.1. If ρπ ∼= χ1⊕χ2, then each χi is potentially semistable and
hence is the Galois representation associated to an algebraic Hecke character
ψi of F (cf. [Se], esp. III,2.3-2.4). It then follows that L(π ⊗ ψ−1

2 , s − 1/2) =
L(ψ1/ψ2, s)ζF (s). As ψi = ψ′

i| · |
ai

F with ai ∈ Z and ψ′
i finite and since we may

assume a1 ≥ a2, L(ψ1/ψ2, 1) = L(ψ′
1/ψ

′
2, a1 − a2 + 1) 6= 0. But this implies

that L(π ⊗ ψ−1
2 , s) has a pole at s = 1, contradicting the cuspidality of π.
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