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ABSTRACT. Let k be an algebraically closed field of characteristic
p > 0, and G be a Barsotti-Tate over k. We denote by S the “algebraic”
local moduli in characteristic p of G, by G the universal deformation
of G over S, and by U C S the ordinary locus of G. The étale
part of G over U gives rise to a monodromy representation pg of the
fundamental group of U on the Tate module of G. Motivated by a
famous theorem of Igusa, we prove in this article that pg is surjective
if G is connected and HW-cyclic. This latter condition is equivalent
to saying that Oort’s a-number of G equals 1, and it is satisfied by all
connected one-dimensional Barsotti-Tate groups over k.
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1. INTRODUCTION

1.1. A classical theorem of Igusa says that the monodromy representation as-
sociated with a versal family of ordinary elliptic curves in characteristic p > 0
is surjective [Igu, Ka2]. This important result has deep consequences in the
theory of p-adic modular forms, and inpsired various generalizations. Faltings
and Chai [Ch2, FC]| extended it to the universal family over the moduli space
of higher dimensional principally polarized ordinary abelian varieties in char-
acteristic p, and Ekedahl [Eke] generalized it to the jacobian of the universal
n-pointed curve in characteristic p, equipped with a symplectic level structure.
Recently, Chai and Oort [CO] proved the maximality of the p-adic monodromy
over each “central leaf” in the moduli space of abelian varieties which is not
contained in the supersingular locus. We refer to Deligne-Ribet [DR] and Hida
[Hid] for other generalizations to some moduli spaces of PEL-type and their
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arithmetic applications. Though it has been formulated in a global setting, the
proof of Igusa’s theorem is purely local, and it has got also local generalizations.
Gross [Gro] generalized it to one-dimensional formal &-modules over a com-
plete discrete valuation ring of characteristic p, where & is the integral closure
of Z, in a finite extension of Q,. We refer to Chai [Ch2] and Achter-Norman
[AN] for more results on local monodromy of Barsotti-Tate groups. Motivated
by these results, it has been longly expected/conjectured that the monodromy
of a wversal family of ordinary Barsotti-Tate groups in characteristic p > 0 is
maximal. The aim of this paper is to prove the surjectivity of the monodromy
representation associated with the universal deformation in characteristic p of
a certain class of Barsotti-Tate groups.

1.2. To describe our main result, we introduce first the notion of HW-cyclic
Barsotti-Tate groups. Let k be an algebraically closed field of characteristic p >
0, and G be a Barsotti-Tate group over k. We denote by GV the Serre dual of G,
and by Lie(G") its Lie algebra. The Frobenius homomorphism of G (or dually
the Verschiebung of GV) induces a semi-linear endomorphism ¢ on Lie(GY),
called the Hasse-Witt map of G (2.6.1). We say that G is HW-cyclic, if ¢ =
dim(GY) > 1 and there is a v € Lie(GV) such that v, g (v), -, 95 ' (v) form
a basis of Lie(G") over k (4.1). We prove in 4.7 that G is HW-cyclic and non-
ordinary if and only if the a-number of G, defined previously by Oort, equals
1. Basic examples of HW-cyclic Barsotti-Tate groups are given as follows. Let
r,s be relatively prime integers such that 0 < s < 7 and r # 0, A = s/r, G*
be the Barsotti-Tate group over k whose (contravariant) Dieudonné module is
generated by an element e over the non-commutative Dieudonné ring with the
relation (F™~% — V*)-e =0 (4.10). It is easy to see that G* is HW-cyclic for
any 0 < A < 1. Any connected Barsotti-Tate group over k of dimension 1 and
height A is isomorphic to G/* [Dem, Chap.IV §8].
Let G be a Barsotti-Tate group of dimension d and height ¢+ d over k; assume
c > 1. We denote by S the “algebraic” local moduli of G in characteristic p, and
by G be the universal deformation of G over S (cf. 3.8). The scheme S is affine
of ring R ~ k[[(t; j)1<i<c,1<j<d]], and the Barsotti-Tate group G is obtained
by algebraizing the formal universal deformation of G over Spf(R) (3.7). Let
U be the ordinary locus of G (i.e. the open subscheme of S parametrizing the
ordinary fibers of G), and 7 a geometric point over the generic point of U. For
any integer n > 1, we denote by G(n) the kernel of the multiplication by p"
on G, and by

T,(G.7) = lim G (n) (7)
the Tate module of G at 7. This is a free Z,-module of rank ¢. We consider
the monodromy representation attached to the étale part of G over U

(1.2.1) pa (U, 7) — Autz, (T, (G, 7)) ~ GLc(Zy).

The aim of this paper is to prove the following :
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THEOREM 1.3. If G is connected and HW-cyclic, then the monodromy repre-
sentation pg is surjective.

Igusa’s theorem mentioned above corresponds to Theorem 1.3 for G = G'/2 (cf.
5.7). My interest in the p-adic monodromy problem started with the second
part of my PhD thesis [Til], where I guessed 1.3 for G = G* with 0 < A < 1
and proved it for G'/3. After I posted the manuscript on ArXiv [Ti2|, Strauch
proved the one-dimensional case of 1.3 by using Drinfeld’s level structures [Str,
Theorem 2.1]. Later on, Lau [Lau] proved 1.3 without the assumption that
G is HW-cyclic. By using the Newton stratification of the universal deforma-
tion space of G due to Oort, Lau reduced the higher dimensional case to the
one-dimensional case treated by Strauch. In fact, Strauch and Lau considered
more generally the monodromy representation over each p-rank stratum of the
universal deformation space. In this paper, we provide first a different proof of
the one-dimensional case of 1.3. Our approach is purely characteristic p, while
Strauch used Drinfeld’s level structure in characteristic 0. Then by following
Lau’s strategy, we give a new (and easier) argument to reduce the general case
of 1.3 to the one-dimensional case for HW-cyclic groups. The essential part
of our argument is a versality criterion by Hasse-Witt maps of deformations
of a connected one-dimensional Barsotti-Tate group (Prop. 4.11). This crite-
rion can be considered as a generalization of another theorem of Igusa which
claims that the Hasse invariant of a versal family of elliptic curves in charac-
teristic p has simple zeros. Compared with Strauch’s approach, our character-
istic p approach has the advantage of giving also results on the monodromy of
Barsotti-Tate groups over a discrete valuation ring of characteristic p.

1.4. Let A = Kk[[n]] be the ring of formal power series over k in the variable
m, K its fraction field, and v the valuation on K normalized by v(m) = 1. We
fix an algebraic closure K of K, and let K*°P be the separable closure of K
contained in K, I be the Galois group of K*% over K, I, C I be the wild inertia
subgroup, and I, = I/I, the tame inertia group. For every integer n > 1, there
is a canonical surjective character Opn 1 : Iy — Fp. (5.2), where Fpn is the
finite subfield of k£ with p™ elements.

We put S = Spec(A). Let G be a Barsotti-Tate group over S, GV be its Serre
dual, Lie(GV) the Lie algebra of GV, and ¢¢ the Hasse-Witt map of G, i.e.
the semi-linear endomorphism of Lie(G") induced by the Frobenius of G. We
define h(G) to be the valuation of the determinant of a matrix of ¢, and call
it the Hasse invariant of G (5.4). We see easily that h(G) = 0 if and only if G
is ordinary over S, and h(G) < oo if and only if G is generically ordinary. If G
is connected of height 2 and dimension 1, then h(G) = 1 is equivalent to that
G is versal (5.7).

PROPOSITION 1.5. Let S = Spec(A) be as above, G be a connected HW-cyclic
Barsotti-Tate group with Hasse invariant h(G) =1, and G(1) the kernel of the
multiplication by p on G. Then the action of I on G(1)(K) is tame; moverover,
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G(1)(K) is an Fpye-vector space of dimension 1 on which the induced action of
Iy is given by the surjective character Ope_q : Iy — IF;C.

This proposition is an analog in characteristic p of Serre’s result [Se3, Prop.
9] on the tameness of the monodromy associated with one-dimensional formal
groups over a trait of mixed characteristic. We refer to 5.8 for the proof of this
proposition and more results on the p-adic monodromy of HW-cyclic Barsotti-
Tate groups over a trait in characteristic p.

1.6. This paper is organized as follows. In Section 2, we review some well
known facts on ordinary Barsotti-Tate groups. Section 3 contains some prelim-
inaries on the Dieudonné theory and the deformation theory of Barsotti-Tate
groups. In Section 4, after establishing some basic properties of HW-cyclic
groups, we give the fundamental relation between the versality of a Barsotti-
Tate group and the coefficients of its Hasse-Witt matrix (Prop. 4.11). Section
5 is devoted to the study of the monodromy of a HW-cyclic Barsotti-Tate group
over a complete trait of characteristic p. Section 6 is totally elementary, and
contains a criterion (6.3) for the surjectivity of a homomorphism from a profi-
nite group to GL,(Z,). Section 7 is the heart of this work, and it contains
a proof of Theorem 1.3 in the one-dimensional case. Finally in Section 8, we
follow Lau’s strategy and complete the proof of 1.3 by reducing the general
case to the one-dimensional case treated in Section 7.

The proof in Section 7 of 1.3 in the one-dimensional case is based on an induc-
tion on the height n +1 > 2 of G. The case n = 1 is just the classical Igusa’s
theorem (5.7). For n > 2, by lemmas 6.3 and 6.5, it suffices to prove the fol-
lowing two statements: (a) the image of reduction modulo p of pg contains a
non-split Cartan subgroup; (b) under a suitable basis, the image of pg contains
all matrix of the form g ? with B € GL,_1(Z,) and b € Mg,_1)x1(Zyp).
The first statement follows easily from 1.5 by considering a certain base change
of G to a complete discrete valuation ring. To prove (b), we consider the for-
mal completion Spec(R’) of the localization of the local moduli S = Spec(R)
of G at the generic point of the locus where the universal deformation G has
p-rank < 1 (7.4). The ring R’ is a complete regular ring of dimension n — 1,
and the Barsotti-Tate group 4’ = G ®r R’ has a connected part of height n
and an étale part of height 1. Let Ky be the residue field of R’, and K, an
algebraic closure of Ky. In order to apply the induction hypothesis, we con-
sider the set of k-algebra homomorphisms o : R — R/ = Ko[[t1, -+ ytn_1]]
lifting the natural inclusion Ky — K. The key point is that, the natural map
oYy = %'@Rggﬁ/’ gives a bijection between the set of such o’s and the set
of deformations of ¥ = G’ Qp Ko to ﬁ; moreover, we can compute explicitly
the Hasse-Witt map of the connected component %% . of % , (Lemma 7.8).

From the versality criterion for one-dimensional Barsotti-Tate groups in terms
of the Hasse-Witt map established in Section 4 (Prop. 4.11), it follows imme-
diately that there exists a ¢ such that the Barsotti-Tate group %% o which
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is connected and one-dimensional of height n, is the universal deformation of
its closed fiber. We fix such a 0. Then the set of all ¢/ with %% o = %% .

as deformations of their common closed fiber is actually a group isomorphic
to Ext%((@p/Zp,%%’a) (Prop. 3.10). Let oy be the element corresponding

’

to neutral element in Ext% (Qp/ Zp,%%ﬁg). Applying the induction hypothesis

to Y2 .0 We see that the monodromy group of gﬁ,m, hence that of G, con-
GL,-1(Zp) ©

0 1

(7.5.3). In order to conclude the proof, we need another o2 such that gﬁm

has the same connected component as %ﬁm, and that the induced extension

between the Tate module of the étale part of g~,10_2 and that of 541‘%,702 is non-

tains the subgroup under a suitable basis of the Tate module

trivial after reduction modulo p (see 7.5 and 7.5.4). To verify the existence of
such a o5, we reduce the problem to a similar situation over a complete trait of
characteristic p (see 7.9), and we use a criterion of non-triviality of extensions
by Hasse-Witt maps (5.12).

1.7. ACKNOWLEDGEMENT. This paper is an expanded version of the second
part of my Ph.D. thesis at University Paris 13. T would like to express my great
gratitude to my thesis advisor Prof. A. Abbes for his encouragement during
this work, and also for his various helpful comments on earlier versions of this
paper. I also thank heartily E. Lau, F. Oort and M. Strauch for interesting
discussions and valuable suggestions.

1.8. NotaTIONS. Let S be a scheme of characteristic p > 0. A BT-group
over S stands for a Barsotti-Tate group over S. Let G be a commutative
finite group scheme (resp. a BT-group) over S. We denote by GV its Cartier
dual (resp. its Serre dual), by wq the sheaf of invariant differentials of G over
S, and by Lie(G) the sheaf of Lie algebras of G. If S = Spec(A) is affine
and there is no risk of confusions, we also use wg and Lie(G) to denote the
corresponding A-modules of global sections. We put G®) the pull-back of G
by the absolute Frobenius of S, Fg: G — G®) the Frobenius homomorphism
and Vg : G®) — G the Verschiebung homomorphism. If G is a BT-group and
n an integer > 1, we denote by G(n) the kernel of the multiplication by p™ on
G; we have GY(n) = (GY)(n) by definition. For an Os-module M, we denote
by M®) = 05 @, M the scalar extension of M by the absolute Frobenius of
Os. If p: M — N be a semi-linear homomorphism of &s-modules, we denote
by @ : M) — N the linearization of ¢, i.e. we have G(A®@z) = X-¢(z), where
A (resp. x) is a local section of g (resp. of M).

Starting from Section 5, k£ will denote an algebraically closed field of charac-
teristic p > 0.

2. REVIEW OF ORDINARY BARSOTTI-TATE GROUPS

In this section, S denotes a scheme of characteristic p > 0.
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2.1. Let G be a commutative group scheme, locally free of finite type over S.
We have a canonical isomorphism of coherent &s-modules [Il1, 2.1]

(2.1.1) Lie(GY) = Homs,, (G, Gy,),

where 77 omg,, . is the sheaf of homomorphisms in the category of abelian

fppf-sheaves over S, and G, is the additive group scheme. Since G,(lp ) ~ G,
the Frobenius homomorphism of G, induces an endomorphism

(2.1.2) ¢g : Lie(GY) — Lie(GY),

semi-linear with respect to the absolute Frobenius map Fs : Os — Os; we call
it the Hasse- Witt map of G. By the functoriality of Frobenius, ¢ is also the
canonical map induced by the Frobenius of G, or dually by the Verschiebung
of GV.

2.2. By a commutative p-Lie algebra over S, we mean a pair (L, ), where L
is an Og-module locally free of finite type, and ¢ : L — L is a semi-linear
endomorphism with respect to the absolute Frobenius Fs : s — 5. When
there is no risk of confusions, we omit ¢ from the notation. We denote by
p-Lieg the category of commutative p-Lie algebras over S.

Let (L, ) be an object of p-Lieg. We denote by

% (L) = Sym(L) = ®p>0 Sym" (L),

the symmetric algebra of L over 0s. Let .#,(L) be the ideal sheaf of % (L)
defined, for an open subset V C S, by

L(V, 7p(L)) = {a®" — ¢(x) ; 2 e T(V, % (L))},

where z%? =2 ® 2 ®--- @z € I'(V,Sym?(L)). We put %,(L) = % (L)/ 7, (L),
and call it the p-enveloping algebra of (L, ). We endow %, (L) with the struc-
ture of a Hopf-algebra with the comultiplication given by A(z) = 1@z +2®1
and the coinverse given by i(z) = —z.

Let G be a commutative group scheme, locally free of finite type over S. We
say that G is of coheight one if the Verschiebung Vi : G® — @G is the zero
homomorphism. We denote by Vg the category of such objects. For an
object G of Vg, the Frobenius Fgv of GV is zero, so the Lie algebra Lie(G")
is locally free of finite type over Os ([DG] VII5 Théo. 7.4(iii)). The Hasse-Witt
map of G (2.1.2) endows Lie(GY) with a commutative p-Lie algebra structure
over S.

PROPOSITION 2.3 ([DG] VIIa, Théo. 7.2 et 7.4). The functor &Vg — p-Lieg
defined by G — Lie(GY) is an anti-equivalence of categories; a quasi-inverse is
given by (L, ) — Spec(%,(L)).

2.4. Assume S = Spec(A) affine. Let (L, ¢) be an object of p-Lieg such that
L is free of rank n over Og, (e1,--- ,en) be a basis of L over Os, (hij)i<i j<n
be the matrix of ¢ under the basis (e1,--- ,e,), i.e. p(e;) = > hije; for
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1 < j < n. Then the group scheme attached to (L, ¢) is explicitly given by

Spec(%p(l’)) = Spec (A[Xlﬂ T aXn]/(Xf o Z hini)lﬁjﬁn)a
i=1
with the comultiplication A(X;) =1® X; + X; ® 1. By the Jacobian criterion
of étaleness [EGA, IV 22.6.7], the finite group scheme Spec(%,(L)) is étale
over S if and only if the matrix (hi;)1<i j<n i invertible. This condition is
equivalent to that the linearization of ¢ is an isomorphism.

COROLLARY 2.5. An object G of Vg is étale over S, if and only if the lin-
earization of its Hasse-Witt map (2.1.2) is an isomorphism.

Proof. The problem being local over S, we may assume S affine and L =
Lie(GY) free over 0s. By Theorem 2.3, G is isomorphic to Spec(%, (L)), and
we conclude by the last remark of 2.4. |

2.6. Let G be a BT-group over S of height ¢+ d and dimension d. The Lie al-
gebra Lie(G") is an @g-module locally free of rank ¢, and canonically identified
with Lie(GY(1))([BBM] 3.3.2). We define the Hasse- Witt map of G

(2.6.1) ¢c : Lie(GY) — Lie(GY)

to be that of G(1) (2.1.2).

2.7. Let k be a field of characteristic p > 0, G be a BT-group over k. Recall
that we have a canonical exact sequence of BT-groups over k

(2.7.1) 0-G° -G —G* =0

with G° connected and G étale ([Dem] Chap.II, §7). This induces an exact
sequence of Lie algebras

(2.7.2) 0 — Lie(G*"Y) — Lie(GY) — Lie(G°Y) — 0,
compatible with Hasse-Witt maps.

PROPOSITION 2.8. Let k be a field of characteristic p > 0, G be a BT-group
over k. Then Lie(G*) is the unique mazimal k-subspace V of Lie(G") with
the following properties:

(a) V is stable under pg;

(b) the restriction of g to V is injective.

Proof. Tt is clear that Lie(G*Y) satisfies property (a). We note that the Ver-
schiebung of G®*(1) vanishes; so G**(1) is in the category GVgpec(r) Since k
is a field, 2.5 implies that the restriction of g to Lie(G¢Y), which coincides
with @ge, is injective. This proves that Lie(GtY) verifies (b). Conversely, let
V be an arbitrary k-subspace of Lie(GY) with properties (a) and (b). We have
to show that V' C Lie(G*). Let o be the Frobenius endomorphism of k. If M
is a k-vector space, for each integer n > 1, we put M®") = k @, M, i.e. we
have 1 ® ax = 0™(a) ® x in k @,n M for a € k,x € M. Since pgly : V =V
is injective by assumption, the linearization @%|y qm : V") — V of @iy
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is injective (hence bijective) for any n > 1. We have V = Jg(v@”)). Since
G° is connected, there is an integer n > 1 such that the n-th iterated Frobe-
nius Fo gy G°(1) — G°(1)®") vanishes. Hence by definition, the linearized
n-iterated Hasse-Witt map ¢, : Lie(G°V)®") — Lie(G°Y) is zero. By the
compatibility of Hasse-Witt maps, we have @ (Lie(GY)®")) C Lie(GY); in
particular, we have V = %(V(l’")) C Lie(G®Y). This completes the proof. [

COROLLARY 2.9. Let k be a field of characteristic p > 0, G be a BT-group over
k. Then G is connected if and only if pg is nilpotent.

Proof. In the proof of the proposition, we have seen that the Hasse-Witt map
of the connected part of G is nilpotent. So the “only if” part is verified. Con-
versely, if ¢ is nilpotent, Lie(GtY) is zero by the proposition. Therefore G is
connected. O

DEFINITION 2.10. Let S be a scheme of characteristic p > 0, G be a BT-
group over S. We say that G is ordinary if there exists an exact sequence of
BT-groups over S

(2.10.1) 0—Gmlt G- G -0,
such that G™* is multiplicative and G is étale.

We note that when it exists, the exact sequence (2.10.1) is unique up to a
unique isomorphism, because there is no non-trivial homomorphisms between a
multiplicative BT-group and an étale one in characteristic p > 0. The property
of being ordinary is clearly stable under arbitrary base change and Serre duality.
If S is the spectrum of a field of characteristic p > 0, G is ordinary if and only
if its connected part G° is of multiplicative type.

PROPOSITION 2.11. Let G be a BT-group over S. The following conditions are
equivalent:

(a) G is ordinary over S.

(b) For every x € S, the fiber G, = G ®g k(z) is ordinary over k(x).

(c) The finite group scheme Ker Vi is étale over S.

(¢”) The finite group scheme Ker Fg is of multiplicative type over S.

(d) The linearization of the Hasse-Witt map pg is an isomorphism.

First, we prove the following lemmas.

LEMMA 2.12. Let T be a scheme, H be a commutative group scheme locally free
of finite type over T. Then H is étale (resp. of multiplicative type) over T if
and only if, for every x € T, the fiber H 71 k(x) is étale (resp. of multiplicative
type) over k(x).

Proof. We will consider only the étale case; the multiplicative case follows by
duality. Since H is T-flat, it is étale over T if and only if it is unramified
over T. By [EGA, TV 17.4.2], this condition is equivalent to that H ®r x(z) is
unramified over x(z) for every point « € T. Hence the conclusion follows. [
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LEMMA 2.13. Let G be a BT-group over S. Then Ker Vg is an object of the
category BV g, i.e. it is locally free of finite type over S, and its Verschiebung is
zero. Moreover, we have a canonical isomorphism (Ker Vi)Y ~ Ker Fgv, which
induces an isomorphism of Lie algebras Lie((Ker Vg)Y) ~ Lie(Ker Fgv) =
Lie(GY), and the Hasse-Witt map (2.1.2) of Ker Vg is identified with ¢
(2.6.1).

Proof. The group scheme Ker V¢ is locally free of finite type over S ([Ill] 1.3(b)),
and we have a commutative diagram

Vker
(Ker V)@ L Ker Vg

|

(GP)) @)

VQ(P)

G®)

By the functoriality of Verschiebung, we have Vi) = (Vo)® and Ker Vo) =
(Ker Vi)(®). Hence the composition of the left vertical arrow with Vg van-
ishes, and the Verschiebung of Ker Vi is zero.

By Cartier duality, we have (Ker V)Y = Coker(Fgv(1)). Moreover, the exact
sequence

. — Gv(l) Fav (Gv(l)) () Vov Gv(l) _— ...

)

induces a canonical isomorphism

(2.13.1) Coker(Fgv (1)) — Im(Vgv 1)) = Ker Fgv(1y = Ker Fgv.
Hence, we deduce that

(2.13.2) (Ker Vi)Y ~ Coker(Fgv (1)) = Ker Fgv — GY(1).

Since the natural injection Ker Fgv — GV (1) induces an isomorphism of Lie
algebras, we get

(2.13.3) Lie((Ker Vg)") = Lie(Ker Fgv) = Lie(GY (1)) = Lie(G").

It remains to prove the compatibility of the Hasse-Witt maps with (2.13.3). We
note that the dual of the morphism (2.13.2) is the canonical map F': G(1) —
Ker Vg = Im(Fg(1)) induced by Fg(p). Hence by (2.1.1), the isomorphism
(2.13.3) is identified with the functorial map

Homs,, (KerVg,G,) — Homs,, (G(1),G,)

induced by F, and its compatibility with the Hasse-Witt maps follows easily
from the definition (2.1.2). O

Proof of 2.11. (a)=(b). Indeed, the ordinarity of G is stable by base change.

(b)=(c). By Lemma 2.12, it suffices to verify that for every point = € S, the
fiber (Ker Vi) ®g x(x) ~ Ker Vi, is étale over x(x). Since G, is assumed to be
ordinary, its connected part (G, )° is multiplicative. Hence, the Verschiebung of
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(G.)° is an isomorphism, and Ker Vi, is canonically isomorphic to Ker Ve C
(GE)® ~ (GP)e 50 our assertion follows.

(¢) & (d). It follows immediately from Lemma 2.13 and Corollary 2.5.
(c)&(c¢’). By 2.12, we may assume that S is the spectrum of a field. So the
category of commutative finite group schemes over S is abelian. We will just
prove (c)=>(c’); the converse can be proved by duality. We have a fundamental
short exact sequence of finite group schemes

(2.13.4) 0 — Ker F — G(1) & Ker Vg — 0,

where F'is induced by Fg(1), That induces a commutative diagram

(p)
0— (Ker Fg) ¥ —= (G(1))") = (Ker Vg)” —=0

lv/ J/ch) lv”

0 — Ker I G(1) 4 KerVg ——0

where vertical arrows are the Verschiebung homomorphisms. We have seen
that V" = 0 (2.13). Therefore, by the snake lemma, we have a long exact
sequence

(2.13.5)
0 — Ker V' — Ker V(1) — (Ker Vg)(p) —

— Coker V' — Coker V(1) 2, Ker Vg — 0,
where the map « is the Frobenius of Ker Vi and 3 is the composed isomorphism
Coker(Vg(1y) ~ G(1)/ Ker Fg1y — Im(Fg(1)) ~ Ker V.

Then condition (c) is equivalent to that « is an isomorphism; it implies that
Ker V' = Coker V! = 0, i.e. the Verschiebung of Ker F is an isomorphism,
and hence (c’).

(c)=(a). For every integer n > 0, we denote by F¢% the composed homomor-
phism

G Fo, g Few Feem el
and by V% the composed homomorphism
G@") Vown—1) q®" Vown=2) Ve, G;

FZ and V& are isogenies of BT-groups. From the relation V% o FZ = p", we
deduce an exact sequence

(2.13.6) 0 — Ker F — G(n) 7, Ker Va — 0,

DOCUMENTA MATHEMATICA 14 (2009) 397-440



p-ADIC MONODROMY OF A BARSOTTI-TATE GROUP 407

where F'™ is induced by F{i. For 1 < j < n, we have a commutative diagram

neg
a(®))

(2.13.7) ") — Ak
G.

One notices that Ker Vc’;_j = (Ker V5™’ )®) by the functoriality of Ver-

(»9)
schiebung . Since all maps in (2.13.7) are isogenies, we have an exact sequence

.13. — (Ker W) i geryn Pl KRer VI 0.
2.13.8 0 — (Ker V27" Ker V& % Ker Vi — 0

Therefore, condition (c) implies by induction that Ker V% is an étale group
scheme over S. Hence the j-th iteration of the Frobenius Ker Vg_j —
(Ker VA™9)®") is an isomorphism, and Ker V™7 is identified with a closed
subgroup scheme of Ker V% by the composed map

in_jmt Ker V2™ 2 (Ker V2—9) @) 22, Kepy,
We claim that the kernel of the multiplication by p"~7 on Ker V7 is Ker 14 =7,
Indeed, from the relation p"~7 - Idgom) = F~ 2 o V"7 we deduce a commu-

G ) GI)?
tative diagram (without dotted arrows)

(2.13.9) Ker V& G®™M _
N P &j)
Ker Vg4 ————+-—-—->qg0)
n—j e n—j
p - p /
- .
L7t Fowi
Ker V% G®".

It follows from (2.13.8) that the subgroup Ker V% of G(*") is sent by Vgij onto

@9)
Ker Vé. Therefore diagram (2.13.9) remains commutative when completed by
the dotted arrows, hence our claim. It follows from the claim that (Ker Vi%)n>1
constitutes an étale BT-group over S, denoted by G¢. By duality, we have an
exact sequence

(2.13.10) 0 — Ker FJ, — Ker Ft — (Ker Fi)®) — .

Condition (c¢’) implies by induction that Ker F{¥ is of multiplicative type. Hence
the j-th iteration of Verschiebung (Ker iy 7)#") — Ker F/; 7 is an isomor-
phism. We deduce from (2.13.10) that (Ker F),>; form a multiplicative BT-
group over S that we denote by G™. Then the exact sequences (2.13.6) give
a decomposition of G of the form (2.10.1). O
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COROLLARY 2.14. Let G be a BT-group over S, and S be the locus in S of
the points x € S such that G, = G ®s k() is ordinary over r(z). Then S°¢
is open in S, and the canonical inclusion S — S is affine.

The open subscheme S of S is called the ordinary locus of G.

3. PRELIMINARIES ON DIEUDONNE THEORY AND DEFORMATION THEORY

3.1. We will use freely the conventions of 1.8. Let S be a scheme of charac-
teristic p > 0, G be a Barsotti-Tate group over S, and M(G) = D(G)s,s) be
the coherent &s-module obtained by evaluating the (contravariant) Dieudonné
crystal of G at the trivial divided power immersion S < S [BBM, 3.3.6]. Recall
that M(G) is an @g-module locally free of finite type satisfying the following
properties:

(i) Let Fyy : M(G)®) — M(G) and Viy : M(G) — M(G)®) be the &s-linear
maps induced respectively by the Frobenius and the Verschiebung of G. We
have the following exact sequence:

-~ M(G)®) RN M(G) AN M(G)® — ...

(ii) There is a connection V : M(G) — M(G) Q¢4 QE/FP for which Fj; and
Vs are horizontal morphisms.

(iii) We have two canonical filtrations on M(G) by &s-modules locally free of
finite type:

(3.1.1) 0 — wg — M(GQ) — Lie(GY) — 0,

called the Hodge filtration on M(G) [BBM, 3.3.5], and the conjugate filtration
on M(G)

(3.1.2) 0 — Lie(GV)® 29 M(G) — WP o0,

which is obtained by applying the Dieudonné functor to the exact sequence of
finite group schemes 0 — Ker Fg — G(1) — Ker Vg — 0 [BBM, 4.3.1, 4.3.6,
4.3.11]. Moreover, we have the following commutative diagram (cf. [Kal, 2.3.2
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and 2.3.4])
(3.1.3)

0 0 0

w(p) we )( wg))
— M(G)® P M(G) Vir M(G)P) ——
/
Lie(GV)® —S - Lie(GY) Lie(GY)®)
0 0 0

where the columns are the Hodge filtrations and the anti-diagonal is the
conjugate filtration. By functoriality, we see easily that pg above is noth-
ing but the linearization of the Hasse-Witt map ¢g (2.6.1), and the mor-
phism ¢, : Lie(G)®) — Lie(G), which is obtained by applying the functor
Homes(_, 0s) 10 g, is identified with the linearization pgv of pav.

The formation of these structures on M(G) commutes with arbitrary base
changes of S. In the sequel, we will use (M(G), Fis, V) to emphasize these
structures on M(G).

3.2. In the reminder of this section, k will denote an algebraically closed field
of characteristic p > 0. Let S be a scheme formally smooth over k such that
le/]Fp = Q}S'/k is an Os-module locally free of finite type, e.g. S = Spec(A)
with A a formally smooth k-algebra with a finite p-basis over k. Let G be a
BT-group over S. We put KS to be the composed morphism

(32.1)  KS:wg — M(G) 5 M(G) @a, Q) 25 Lie(GY) @6, QY

which is Og-linear. We put Jg/, = %omﬁs(ﬂé/k,ﬁs), and define the
Kodaira-Spencer map of G

(3.2.2) Kod : g, — H# omeg(wa,Lie(GY))

to be the morphism induced by KS. We say that G is versal if Kod is surjective.
3.3. Let r be an integer > 1, R = kl[[t1, - ,t.]], m be the maximal ideal
of R. We put ¥ = Spf(R), S = Spec(R), and for each integer n > 0,
S, = Spec(R/m"*1). By a BT-group ¢ over the formal scheme .¥, we mean

a sequence of BT-groups (G, )n>0 over (Sp)n>0 equipped with isomorphisms
Gn+1 X5n+1 Sn ~ Gn
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According to [deJ, 2.4.4], the functor G — (G X g Sp)n>0 induces an equivalence
of categories between the category of BT-groups over S and the category of BT-
groups over .. For a BT-group ¥ over ., the corresponding BT-group G
over S is called the algebraization of 4. We say that ¢ is versal over .7, if its
algebraization G is versal over S. Since S is local, by Nakayama’s Lemma, ¢
or (G is versal if and only if the reduction of Kod modulo the maximal ideal

(3.3.1) Kodg : Ts/x ®es k — Homy(wg,, Lie(Gy))
is surjective.

3.4. We recall briefly the deformation theory of a BT-group. Let 2ALj be the
category of local artinian k-algebras with residue field k. We notice that all
morphisms of AL, are local. A morphism A’ — A in ALy is called a small
extension, if it is surjective and its kernel I satisfies I - m4 = 0, where my/ is
the maximal ideal of A’.

Let Go be a BT-group over k, and A an object of AL;. A deformation of
Go over A is a pair (G, ¢), where G is a BT-group over Spec(A) and ¢ is
an isomorphism ¢ : G ®4 k = Gy. When there is no risk of confusions, we
will denote a deformation (G, ¢) simply by G. Two deformations (G, ¢) and
(G',¢") over A are isomorphic if there exists an isomorphism of BT-groups
1 : G = G’ over A such that ¢ = ¢’ o (1) ®4 k). Let’s denote by D the functor
which associates with each object A of ALy the set of isomorphsm classes of
deformations of Gy over A. If f : A — B is a morphism of 2Ly, then the
map D(f) : D(A) — D(B) is given by extension of scalars. We call D the
deformation functor of Gy over ALy.

PROPOSITION 3.5 ([Il], 4.8). Let Gy be a BT-group over k of dimension d and
height ¢ + d, D be the deformation functor of Gy over ALy.
(i) Let A — A be a small extension in ALy with ideal I, 2 = (G, o)
be an element in D(A), D,(A’") be the subset of D(A’") with image z in
D(A). Then the set D, (A’) is a nonempty homogenous space under the group
Homy, (wGO, Lle(G(\)/)) Q1.
(ii) The functor D is pro-representable by a formally smooth formal scheme
over k of relative dimension cd, i.e. . = Spf(R) with R ~ k[[(tij)1<i<c.1<i<dll,
and there exists a unique deformation (4,v) of Gy over # such that, for any
object A of ALy and any deformation (G, d) of Gy over A, there is a unique
homomorphism of local k-algebras ¢ : R — A with (G, ¢) = D(p)(¥, ).
(iii) Let Tk (0) = To /1 Qe k be the tangent space of 7 at its unique closed
point,

Kody : T /1,(0) — Homy (wg,, Lie(Gy))
be the Kodaira-Spencer map of 4 evaluated at the closed point of .. Then Kodg
is bijective, and it can be described as follows. For an element f € T ,,(0), i.e.
a homomorphism of local k-algebras f : R — k[e]/e2, Kodo(f) is the difference
of deformations

% @r (klel/€2)] — [Go @ (klel/€)],

which is a well-defined element in Homy (wg,, Lie(GY)) by (1).

DOCUMENTA MATHEMATICA 14 (2009) 397-440



p-ADIC MONODROMY OF A BARSOTTI-TATE GROUP 411

REMARK 3.6. Let (e;)1<;<q4 be a basis of wg,, (fi)1<i<c be a basis of Lie(Gy).

B

such that

0
KOdO ( Ot
)

where (€})1<j<a is the dual basis of (e;)1<;j<a. Moreover, if m is the maximal

):e;®fi;

ideal of R, the parameters t;; are determined uniquely modulo m?.

COROLLARY 3.7 (ALGEBRAIZATION OF THE UNIVERSAL DEFORMATION). The
assumptions being those of (3.5), we put moreover S = Spec(R) and G the
algebraization of the universal formal deformation . Then the BT-group G
is versal over S, and satisfies the following universal property: Let A be a
noetherian complete local k-algebra with residue field k, G be a BT-group over
A endowed with an isomorphism G @4 k ~ Go. Then there exists a unique
continuous homomorphism of local k-algebras ¢ : R — A such that G ~ GRRrA.

Proof. By the last remark of 3.3, G is clearly versal. It remains to prove that it
satisfies the universal property in the corollary. Let G be a deformation of Gg
over a noetherian complete local k-algebra A with residue field k. We denote
by m4 the maximal ideal of A, and put A, = A/m’j;rl for each integer n > 0.
Then by 3.5(b), there exists a unique local homomorphism ¢,, : R — A,, such
that G ® A, ¥~ G ®pr A,. The ¢,,’s form a projective system (¢y,)n>0, whose
projective limit ¢ : R — A answers the question. O

DEFINITION 3.8. The notations are those of (3.7). We call S the local moduli in
characteristic p of Gg, and G the universal deformation of G in characteristic
p.

If there is no confusions, we will omit “in characteristic p” for short.

3.9. Let G be a BT-group over k, G° be its connected part, and G** be its
étale part. Let r be the height of G¢. Then we have G¢ ~ (Q,/Z,)", since
k is algebraically closed. Let Dg (resp. Dgo) be the deformation functor of G
(resp. G°) over 2Lj. If A is an object in 2L and ¢ is a deformation of G
(resp. G°) over A, we denote by [¢] its isomorphism class in Dg(A) (resp. in
DGO (A)).

ProprosITION 3.10. The assumptions are as above, let © : Dg — Dgo be the
morphism of functors that maps a deformation of G to its connected component.
(i) The morphism © is formally smooth of relative dimension r.

(ii) Let A be an object of ALy, and 4° be a deformation of G° over A. Then the
subset ©,1([9°]) of Dg(A) is canonically identified with Extl(Q,/Z,,9°)",
where Exti, means the group of extensions in the category of abelian fppf-
sheaves on Spec(A).

Proof. (i) Since D¢ and Dgo are both pro-representable by a noetherian local
complete k-algebra and formally smooth over k (3.5), by a formal completion
version of [EGA, IV 17.11.1(d)], we only need to check that the tangent map

Ojey/e2 : D (kle]/€%) — Dgo (kle]/€?)
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is surjective with kernel of dimension r over k. By 3.5(iii), Dg(kle]/€?)
(resp. Dgo(kle]/€?)) is isomorphic to Homy(wg,Lie(GY)) (resp.
Homy (wge, Lie(G°V))) by the Kodaira-Spencer morphism. In view of the
canonical isomorphism wg ~ wge, O/ corresponds to the map

Ofe/ez * Homg(wg, Lie(GY)) — Homg (wg, Lie(G®))

induced by the canonical surjection Lie(GY) — Lie(G°Y). It is clear that
Ol e2 is surjective of kernel Homy, (wg, Lie(G¢*Y)), which has dimension r
over k.
(i) Since G is isomorphic to (Q,/Z,)", every element in Ext!(Q,/Z,,%°)"
defines clearly an element of D (A) with image [¢°] in Do (A). Conversely, for
any ¢ € Dg(A) with connected component isomorphic to ¢°, the isomorphism
G ~ (Qp/Zp)" lifts uniquely to an isomorphism ¥ ~ (Q,/Z,)" because A is
henselian. The canonical exact sequence 0 — ¥° — ¢ — 4% — () shows that
& comes from an element of Ext!,(Q,/Z,,%°)".

g

4. HW-cycLic BARSOTTI-TATE GROUPS

DEFINITION 4.1. Let S be a scheme of characteristic p > 0, G be a BT-group
over S such that ¢ = dim(G") is constant. We say that G is HW-cyclic, if ¢ > 1
and there exists an element v € I'(S, Lie(G")) such that

v, SDG(/U)a Y SDCG_l(’U)
generate Lie(GY) as an Og-module, where ¢ is the Hasse-Witt map (2.6.1) of
G.

REMARK 4.2. Tt is clear that a BT-group G over S is HW-cyclic, if and only
if Lie(GY) is free over Og and there exists a basis of Lie(G") over 0s under
which g is expressed by a matrix of the form

00 -+ 0 —a

1 0 0 —as
(4.2.1) 01 - 0 —az|,

0O 0 -+ 1 —a

where a; € T'(S, Og) for 1 <i <ec.

LEMMA 4.3. Let R be a local ring of characteristic p > 0, k be its residue field.
(i) A BT-group G over R is HW-cyclic if and only if so is G Q k.

(ii) Let 0 = G' — G — G"” — 0 be an exact sequence of BT-groups over R. If
G is HW-cyclic, then so is G'. In particular, if R is henselian, the connected
part of a HW-cyclic BT-group over R is HW-cyclic.

Proof. (i) The property of being HW-cyclic is clearly stable under arbitrary
base changes, so the “only if” part is clear. Assume that Go = G ® k
is HW-cyclic. Let T be an element of Lie(Gy) = Lie(GY) ® k such that
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(U, pa, (V), - ,cpg_ol(ﬁ)) is a basis of Lie(GY ). Let v be any lift of v in Lie(G").
Then by Nakayama’s lemma, (v, pc(v), - ,¢% '(v)) is a basis of Lie(GV).
(ii) By statement (i), we may assume R = k. The exact sequence of BT-groups
induces an exact sequence of Lie algebras

(4.3.1) 0 — Lie(G"Y) — Lie(GY) — Lie(G") — 0,

and the Hasse-Witt map g is induced by ¢g by functoriality. Assume that
G is HW-cyclic and G¥ has dimension c. Let u be an element of Lie(G") such
that

u, SDG(U)) Ty tpcGil(u)
form a basis of Lie(GV) over k. We denote by u’ the image of u in Lie(G"Y).
Let r < ¢ be the maximal integer such that the vectors
ula SDG’(UI)’ Ty @TGjl(ul)
are linearly independent over k. It is easy to see that they form a basis of the

k-vector space Lie(G'Y). Hence G’ is HW-cyclic. O

LEMMA 4.4. Let S = Spec(R) be an affine scheme of characteristic p > 0, G
be a HW-cyclic BT-group over R with ¢ = dim(GV) constant, and

0O 0 -+ 0 —a
1 0 -+ 0 —ag
0 1 e 0 —as c MCXC(R))
00 -+ 1 —a

be a matriz of G. Put acy1 =1, and P(X) =30 ja;+1XP € R[X].

(i) Let Vg : G®) — G be the Verschiebung homomorphism of G. Then Ker Vg
is isomorphic to the group scheme Spec(R[X]/P(X)) with comultiplication
given by X — 1 X+ X ®1.

(ii) Let x € S, and G, be the fibre of G at x. Put

(4.4.1) io(x) = 01;1326{1'; ai+1(z) # 0},

where a;(x) denotes the image of a; in the residue field of . Then the étale part
of G, has height ¢ — ig(x), and the connected part of Gy has height d + io(z).
In particular, G, is connected if and only if a;(x) =0 for 1 <i<ec.

Proof. (i) By 2.3 and 2.13, Ker V¢ is isomorphic to the group scheme

Spec (R[Xl, X/ (XY =Xy XY - X XP Xy 4+ aCXC)>
with comultiplication A(X;) = 1® X; + X; ® 1 for 1 < ¢ < ¢. By sending
(X1, X9, , Xe) — (X, XP,--- ,kal), we see that the above group scheme
is isomorphic to Spec(R[X]/P(X)) with comultiplication A(X) = 1@ X+ X ®1.
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(ii) By base change, we may assume that S = x = Spec(k) and hence G = G,.
Let G(1) be the kernel of the multiplication by p on G. Then we have an exact
sequence

0 — Ker Fg — G(1) = Ker Vg — 0.

Since Ker Fi is an infinitesimal group scheme over k, we have G(1)(k) =
(Ker V) (k), where k is an algebraic closure of k. By the definition of io(x), we
have P(X) = Q(X plo ), where Q(X) is an additive sepearable polynomial in
k[X] with deg(Q) = p°~"(*). Hence the roots of P(X) in k form an F,-vector
space of dimension ¢ — ig(x). By (i), (Ker Vg)(k) can be identified with the
additive group consisting of the roots of P(X) in k. Therefore, the étale part
of G has height ¢ —ip(z), and the connected part of G has height d+ig(x). O

4.5. Let k be a perfect field of characteristic p > 0, and «, = Spec(k[X]/X?) be
the finite group scheme over k with comultiplication map A(X) = 1@ X+ X®1.
Let G be a BT-group over k. Following Oort, we call

a(G) = dimg Homy,, (ap, G)

the a-number of G, where Homy, . means the homomorphisms in the cate-
gory of abelian fppf-sheaves over k. Since the Frobenius of o, vanishes, any
morphism of «, in G factorize through Ker(Fg). Therefore we have

Homy, (o, G) = Homy,_ g, (p, Ker(Fe))

= Homy,—_,, (Ker(Fg)", o)

= Hom,. gie, (Lie(ap), Lie(Ker(Fg))),
where Homy,_ g, denotes the homomorphisms in the category of commutative
group schemes over k, and the last equality uses Proposition 2.3. Since we have
a canonical isomorphism Lie(Ker(F¢)) ~ Lie(G) and Lie(w,) has dimension one
over k with ¢,, = 0, we get
(4.5.1) a(G) = dimy{z € Lie(G)|pav (z) = 0} = dimy, Ker(pgv).
Due to the perfectness of k, we have also a(G) = dimy, Ker(ogv), where ogv

is the linearization of pgv. By Proposition 2.11, we see that a(G) = 0 if and
only if G is ordinary.

LEMMA 4.6. Let G be a BT-group over k, and GV its Serre dual. Then we
have a(G) = a(GV).

Proof. Let ¥g : wg — wg ) be the k-linear map induced by the Verschiebung
of G. Then v, the morphism obtained by applying the functor Homy(_, k)
to g, is identified with pgv. By (4.5.1) and the exactitude of the functor
Homy(_, k), we have a(G) = dimy Ker(¢f) = dimj Coker(yg). Using the
additivity of dimy, we get finally a(G) = dimy Ker(¢¢). By considering the
commutative diagram (3.1.3), we have

a(G) = dimy, (w N ¢G(Lie(GV)<P>)>.
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On the other hand, it follows also from (3.1.3) that

a(GY) = dimy, Ker(pg) = dimy, ((bg(Lie(Gv)(p)) N wg) .

The lemma now follows immediately.
O

PROPOSITION 4.7. Let k be a perfect field of characteristicp > 0, G a BT-group
over k. Consider the following conditions:

(i) G is HW-cyclic and non-ordinary;

(i) the connected part G° of G is HW-cyclic and not of multiplicative type;
(iii) a(GY) = a(G) = 1.

We have (i) = (ii) & (iii). If k is algebraically closed, we have moreover

(ii) = (i).

REMARK 4.8. In [Ool, Lemma 2.2], Oort proved the following assertion, which
is a generalization of (iii) = (ii): Let k be an algebraically closed field of
characteristic p > 0, and G be a connected BT-group with a(G) = 1. Then
there exists a basis of the Dieudonné module M of G over W (k), such that the
action of Frobenius on M is given by a display-matrix of “normal form” in the
sense of [Ool, 2.1].

Proof. (i) = (ii) follows from 4.3(ii).

(ii) = (iii). First, we note that a(G) = a(G®), so we may assume G connected.
Since G is not of multiplicative type, we have ¢ = dim(GY) > 1. By Lemma
4.4(ii), there exists a basis of Lie(G") over k under which ¢ is expressed by

00 --- 00

10 -+ 0 O

0 1 0 0 c Mcxc(k)-

00 --- 10
According to (4.5.1), a(GY) equals to dimy Ker(pg), i.e. the k-dimension of
the solutions of the equation system in (z1,- - ,z.)

00 - 0 0\ [

10 - 0 0|

. ) . .| =0

00 - 1 0) \a?
The solutions (x1,- - ,x.) form clearly a vector space over k of dimension 1,

i.e. we have a(GY) = 1.

(iii) = (ii). Let G* be the étale part of G. Since k is perfect, the exact
sequence (2.7.1) splits [Dem, Chap. II §7]; so we have G ~ G° x G¢*. We put
M = Lie(GY), M; = Lie(G°V) and My = Lie(G¢*V) for short. By 2.8 and 2.9,
we have a decomposition M = M; & Ms, such that M;, Ms are stable under
va, and the action of ¢ is nilpotent on M; and bijective on Ms. We note
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that a(G°Y) = a(G°) = a(G) = 1. By the last remark of 4.5, G° is not of
multiplicative type, hence dimy M; = dim(G°Y) > 1. It remains to prove that
G° is HW-cyclic. Let n be the minimal integer such that ¢ (M;) = 0. We
have a strictly increasing filtration

0 Ker(pg) G - & Ker(pfy) = My,

If n = 1, then M; is one-dimensional, hence G° is clearly HW-cyclic. Assume
n > 2. For 2 <m < n, @g_l induces an injective map

m—1

o8 Ker(g)/ Ker(plh ™) — Ker(p).

Since dimy, Ker(pg) = a(G°V) = 1, ¢~ " is necessarily bijective. So we have
dimy Ker(p) = m for 1 < m < n. Let v be an element of M; but not in
Ker(gagfl). Then v, pg(v), - 7902;1(1)) are linearly independant, hence they
form a basis of M; over k. This proves that G° is HW-cyclic.

Assume k algebraically closed. We prove that (ii) = (i). Noting that G is
ordinary if and only if G° is of multiplicative type, we only need to check that
G is HW-cyclic. We conserve the notations above. Since ¢ is bijective on My
and k algebraically closed, there exists a basis (e1,- - ,en,) of My such that
vele;) = ¢ for 1 <i <m. Let v € My but not in Ker(gagfl) as above, and
put u = v+ Are; + - Apem, where A;(1 < i < m) are some elements in k to
be determined later. Then we have

() A v el

cemw) e ) e
Let L(A1, -+, Am) € k[A1, -+, Am] be the determinant polynomial of the ma-
trix on the right side. An elementary computation shows that the polyno-
mial L(A1, -+, Ap) is not null. We can choose A1+, A\, € k such that

L(A1,-++ , Am) # 0 because k is algebraically closed. So ¢ (u), -+, o5t (u)
form a basis of M, over k. Since
oh(u) = o5(v) mod My for 0<i<n,

by the choice of u, we see that {u,pc(u), -, 5™ *(u)} form a basis of

M = Lie(GY) over k. O
By combining 4.6 and 4.7, we obtain the following

COROLLARY 4.9. Let k be an algebraically closed field of characteristic p > 0.
Then a BT-group over k is HW-cyclic if and only if so is its Serre dual.

4.10. EXAMPLES. Let k be a perfect field, W (k) be the ring of Witt vectors
with coefficients in &, and o be the Frobenius automorphism of W (k). Let
s,r be relatively prime integers such that 0 < s < r and r # 0; put A = 2.
We consider the Dieudonné module M* ~ W (k)[F,V]/(F"~* — V*), where
W (k)[F, V] is the non-commutative ring with relations FV = VF = p, Fa =
o(a)F and Vo(a) = aV for all a € W (k). We note that M?* is free of rank
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r over W(k) and M*/VM* ~ k[F]/F"=%. By the contravariant Dieudonné
theory, M* corresponds to a BT-group G over k of height r with Lie(GY) =
M?*/V M?*. We see easily that G is HW-cyclic, and we call it the elementary
BT-group of slope X\. We note that G° ~ Q,,/Z,, G' ~ =, and (G*)V ~ G*~*
for 0 <A< 1.

Assume k algebraically closed. Then by the Dieudonné-Manin’s classification
of isocrystals [Dem, Chap.IV §4|, any BT-group over k is isogenous to a fi-
nite product of G*’s; moreover, any connected one-dimensional BT-group over
k of height 7 is necessarily isomorphic to G'/" [Dem, Chap.IV §8], hence in
particular HW-cyclic.

PROPOSITION 4.11. Let k be an algebraically closed field of characteristic p > 0,
R be a noetherian complete reqular local k-algebra with residue field k, and
S = Spec(R). Let G be a connected HW-cyclic BT-group over R of dimension
d > 1 and height ¢+ d,

0 0 0 —ay
1 0 0 —asg
b: o1 --- 0 —as GMCxC(R)

0 0 -+ 1 —a
be a matriz of pg.
(i) If G is versal over S, then {a1,--- ,a.} is a subset of a regular system of
parameters of R.
(ii) Assume that d = 1. The converse of (i) is also true, i.e. if {a1, -+ ,a.}

is a subset of a regular system of parameters of R then G is versal over S.
Furthermore, G is the universal deformation of its special fiber if and only if
{a1,-+- ,ac.} is a system of regular parameters of R.

Proof. Let (M(G), Far, V) be the finite free &s-module equipped with a semi-
linear endomorphism F; and a connection V : M(G) — M(G) ®a5 Qf ..
obtained by evaluating the Dieudonné crystal of G at the trivial immersion
S < S (cf. 3.1). Recall that we have a commutative diagram

(4.11.1) M(G)») — > M(G)

T

Lie(GV)®) —*< Lie(GY),

where ¢¢ is universally injective (3.1.3). Let {v1, -+, v} be a basis of Lie(G")
over Ug under which g is expressed by b, i.e. we have golg_l(vl) = wv; for
1 <i<cand gi(v1) = pa(ve) = — Y i aiv;. Let fi be a lift of vy to

I'(S,M(Q)), and put f;y1 = d)G(’ng)) for 1 <i < c¢—1, where vgp) =1y <€
I'(S,Lie(GY)®). The image of f; in I'(S,Lie(G")) is thus v; for 1 <i < ¢ by
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(4.11.1). We put

(4.11.2) er=¢g(WP) +arfi + -+ acfe € T(S, M(G)).
The image of e; in I'(S,Lie(GY)) is o (ve) + D51 a;v; = 0; so we have e; €
I'(S,wg). By 4.4(ii), we notice that aj,---,a. belong to the maximal ideal

mpg of R, as GG is connected. Hence, we have e; = ¢G(u£p )), where for a R-
module M and z € M, we denote by T the canonical image of x in M ® k.
Since ¢ commutes with base change and is universally injective, we get €1 =
b (0P = paor(w?) # 0. Therefore, we can choose ea, -+, eq € T'(S,we)
such that (eq,- -, eq) becomes a basis of wg over Os, so (e1, - ,eq, f1, * , fe)
is a basis of M(G). Since F) is horizontal for the connection V (cf. 3.1(ii)),
we have
V(e (vl) = V(Fu(f)) = 0.

In view of (4.11.2), we get

Viel) = Z fi ® da; + Z aiV(fi)
=1 =1

(4.11.3) => fi®da; (modmp).
=1

Let KSp and Kodg be respectively the reductions modulo mpg of (3.2.1) and
(3.2.2). Since (T7)1<i<c is a base of Lie(GY) ® k, we can write
KSo(e;) =Y mi@0;; forl<j<d,
i=1
where 0; ; € Qg/p ® k. From (4.11.3), we deduce that 6;1 = da;. By the
definition of Kodg, we have
d c

(4.11.4) Kodg(9) =Y Y <0,0i; >5" @1;

j=1i=1
where 0 € T/, @ k, < e, e > is the canonical pairing between 5/, ® k and
le/k ®k, and (&;*)1<i<q denotes the dual basis of (€;)1<;<q. Now assume that

G is versal over S, i.e. Kody is surjective by definition (3.2). In particular,
there are 01,---,0. € Jg/, ® k such that Kodo(9;) =e1* ®v; for 1 <i < ¢,
i.e. we have

1 ifi=j
4.11.5 < 0;,da; >= for 1 <4,j<c,
(4.11.5) ’ {o i =/
and
<ai,9j,g>:0 for 1 <i,j<¢2</4<d.
From (4.11.5), we see easily that dai, - - - , da. are linearly independent in Qg/,®
k ~ mp/m%; therefore, (a1, ,a.) is a part of a regular system of parameters

of R. Statement (i) is proved.
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For statement (ii), we assume d = 1 and that (a1, - ,a.) is a part of a regular
system of parameters of R. Then the formula (4.11.4) is simplified as

Kody(9) =Y < 0,da; > & @7;.
i=1

Since day, - - - , da are linearly independent in Q}g/k@)k, there exist 01,--- ,0. €
Ts /i @k such that (4.11.5) holds, i.e. (€1 ®7;)1<i<. are in the image of Kodo.
But the elements (€1*®7;)1<i<. form already a basis of # om g, (wg, Lie(GY))®
k. So Kody is surjective, and hence G is versal over S by Nakayama’s lemma.
Let G be the special fiber of G. It remains to prove that when d = 1, G is the
universal deformation of Gy if and only if dim(S) = ¢ and G is versal over S.
Let S be the local moduli in characteristic p of Gg. By the universal property
of G (3.7), there exists a unique morphism f : S — S such that G ~ G xg S.
Since S and S are local complete regular schemes over k with residue field & of
the same dimension, f is an isomorphism if and only if the tangent map of f at
the closed point of S, denoted by T%, is an isomorphism. By the functoriality
of Kodaira-Spencer maps (3.2.2), we have a commutative diagram

Kodj
cgS/k ®ﬁs k % Homk(wGoaLie(GB/)) P
Tfl/ ‘
Kod$

Ts/k ®os K —————— Homy, (wg,, Lie(Gy))

where horizontal arrows are the Kodaira-Spencer maps evaluated at the closed
points (3.3.1). Since Kod; and Kod§ are isomorphisms according to the first
part of this propostion, we deduce that so is T'y. This completes the proof. [

5. MONODROMY OF A HW-cvycLIic BT-GROUP OVER A COMPLETE TRAIT
OF CHARACTERISTIC p > 0

5.1. Let k be an algebraically closed field of characteristic p > 0, A be a com-
plete discrete valuation ring of characteristic p, with residue field k& and fraction
field K. We put S = Spec(A4), and denote by s its closed point, by 7 its generic
point. Let K be an algebraic closure of K, K be the maximal separable
extension of K contained in K, K* be the maximal tamely ramified extension
of K contained in K*?. We put I = Gal(K**?/K), I, = Gal(K**?/K") and
I, =1/I, = Gal(K'/K).

Let 7 be a uniformizer of A4; so we have A ~ k[[x]]. Let v be the valuation on
K normalized by v(7) = 1; we denote also by v the unique extension of v to K.
For every a € Q, we denote by m,, (resp. by m}) the set of elements x € K5
such that v(z) > « (resp. v(z) > «). We put

(5.1.1) Vo = ma/mf,
which is a k-vector space of dimension 1 equipped with a continuous action of

the Galois group 1.
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5.2. First, we recall some properties of the inertia groups I, and I; [Sel, Chap.
IV]. The subgroup I,,, called the wild inertia subgroup, is the unique maximal
pro-p-group contained in I and hence normal in I. The quotient I; = I/I,
is a commutative profinite group, called the tame inertia group. We have a
canonical isomorphism

(5.2.1) 6:1, = lim  pa,

(d;p)=1
where the projective system is taken over positive integers prime to p, uq is the
group of d-th roots of unity in &, and the transition maps p,, — g are given
by ¢ — (™4 whenever d divides m. We denote by 64 : I, — pq the projection
induced by (5.2.1). Let ¢ be a power of p, Fy be the finite subfield of k with ¢
elements. Then p,—1 = F;, and we can write 6,1 : Iy — F7. The character
04 is characterized by the following property.

PROPOSITION 5.3 ([Se3] Prop.7). Let a,d be relatively prime positive integers
with d prime to p. Then the natural action of I, on the k-vector space V;q
(5.1.1) is trivial, and the induced action of Iy on 'V, ,q is given by the character
(0a)® : It — pa. In particular, if q is a power of p, the action of Iy on Vy;4_1)
is given by the character 041 : Iy — F; and any I-equivariant F,-subspace of
Vi/(q—1) s an Fq-vector space.

5.4. Let G be a BT-group over S. We define h(G) to be the valuation of the
determinant of a matrix of ¢ if dim(GY) > 1, and h(G) = 0 if dim(GY) = 0.
We call h(G) the Hasse invariant of G.
(a) h(G) does not depend on the choice of the matrix representing ¢¢. Indeed,
let ¢ be the rank of Lie(GV) over A, h € M¢x.(4) be a matrix of pg. Any
other matrix representing ¢ can be written in the form U~! - b - U®) | where
U € GL.(A), U~ is the inverse of U, and U is the matrix obtained by
applying the Frobenius map of A to the coefficients of U.
(b) By 2.11, the generic fiber G, is ordinary if and only if hA(G) < oo; G is
ordinary over T if and only h(G) = 0.
(c) Let 0 » G’ — G — G” — 0 be a short exact sequence of BT-groups over T,
then we have h(G) = h(G’) + h(G"). Indeed, the exact sequence of BT-groups
induces a short exact sequence of Lie algebras (cf. [BBM] 3.3.2)

0 — Lie(G"Y) — Lie(GY) — Lie(G"Y) — 0,
from which our assertion follows easily.
PROPOSITION 5.5. Let G be a BT-group over S. Then we have h(G) = h(G").
Proof. The proof is very similar to that of Lemma 4.6. First, we have

h(G) = leng(Lie(G")/pg (Lie(G¥) ")),

where p¢ is the linearization of ¢g, and “leng” means the length of a finite
A-module (note that this formulae holds even if dim(GY) = 0). By the com-
mutative diagram (3.1.3), we have

h(G) = leng M(G) /(¢ (Lie(GY) ) + we).
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On the other hand, by applying the functor Hom4(_, A) to the A-linear map
@cv : Lie(G)®) — Lie(G), we obtain a map ¢g : wg — wg). If U is a matrix
of pGv, then the transpose of U, denoted by U?, is a matrix of 1. So we have

WGY) = v(det(U)) = v(det(U")) = leng(w®’ /1ba (we)).
By diagram 3.1.3, we get
hGY) =leng M(G)/(¢a(Lie(GY)P) + wa) = h(G).

5.6. Let G be a BT-group over S, ¢ = dim(GV). We put
(5.6.1) T,(G) = lim G(n)(K)

n

the Tate module of G, where G(n) is the kernel of p” : G — G. It is a free
Z,-module of rank < ¢, and the equality holds if and only if the generic fiber G,
is ordinary. The Galois group I acts continuously on T, (G). We are interested
in the image of the monodromy representation

(5.6.2) p:1=Gal(K*?/K) — Autz, (T,(G)).
We denote by

(5.6.3) p:1=Gal(K*/K) — Autg, (G(1)(K))
its reduction mod p.

THEOREM 5.7 (Reformulation of Igusa’s theorem). Let G be a connected BT-
group over S of height 2 and dimension 1. Then G is versal (3.2) if and only if
h(G) = 1; moreover, if this condition is satisfied, the monodromy representation
p: I — Auty, (T,(G)) ~ Z) is surjective.

Proof. Since Lie(G") is an &s-module free of rank 1, the condition that h(G) =
1 is equivalent to that any matrix of ¢ is represented by a uniformizer of A.
Hence the first part of this theorem follows from Proposition 4.11(ii).

We follow [Ka2, Thm 4.3] to prove the surjectivity of p under the assumption
that h(G) = 1. For each integer n > 1, let

P+ I — Autypnz(G(n)(K)) ~ (Z/p"Z)*

be the reduction mod p™ of p, K, be the subfield of K5 fixed by the kernel
of p,,. Then p,, induces an injective homomorphism Gal(K,,/K) — (Z/p"Z)*.
By taking projective limits, we are reduced to proving the surjectivity of p,, for
every n > 1. It suffices to verify that

[ Tm(pn)| = [Kn : K] > p" 7 (p = 1)

(then the equality holds automatically).
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We regard G as a formal group over S. Then by [Ka2, 3.6], there exists a
parameter X of the formal group G normalized by the condition that [£](X) =
&(X) for all (p — 1)-th root of unity £ € Z,. For such a parameter, we have

[pl(X) = a1 XP + aXx? + Z e XPAFm(r=1) ¢ Al[X]),
m>2

where we have v(a1) = h(G) =1 by [Ka2, 3.6.1 and 3.6.5], and v(a) =0, as G
is of height 2. For each integer ¢ > 0, we put

V(pi)(X) = afl’iX +af XP + Z cf,iXHm(p*l) € A[[X]];

m>2

then we have [p"](X) = VE ) o V") o ... o V(XP"). Hence each point
of G(n)(K) is given by a sequence yi, - ,y, € K*P (or simply an element
yn € K®°P) satisfying the equations

V(y1) = aiys +ayf +--- =05

V) (yy) = alys + aPyf + -+ = yn;

Ve — PR L

(yn) = a; Yn + v Yn + = Yn—1-

Let y, € K®P be such that y; # 0. By considering the Newton polygons of
the equations above, we verify that

1
ptp—1)
In particular, the ramification index e(K, /K) is at least p"~!(p — 1). By the
definition of K, the Galois group Gal(K*®*P/K,) must fix y, € K*P, i.e. K,
is an extension of K(y,). Therefore, we have [K,, : K| > [K(y,) : K| >
e(K(yn)/K) = p"Hp— 1) O

ProOPOSITION 5.8. Let G be a HW-cyclic BT-group over S of height ¢+ d and
dimension d such that G ® K is ordinary,

v(y;) = forl1<i<n.

0 0 0 —a
1 0 0 —asg
b — 0 1 0 —as
00 --- 1 —ae

be a matriz of . Put ¢ =p°, aci1 =1, and P(X) =37 ,ait1 XP € A[X].
(i) Assume that G is connected and the Hasse invariant h(G) = 1. Then the
representation p (5.6.3) is tame, G(1)(K) is endowed with the structure of an
Fy-vector space of dimension 1, and the induced action of I, is given by the
character Oq—1 : Iy — F.

(ii) Assume that ¢ > 1, v(a;) > 2 for 1 <i < c¢—1 and v(a.) = 1. Then the
order of Im(p) is divisible by p°~1(p — 1).
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(iii) Put ip = ming<i<c{?;v(a;y1) = 0}. Assume that there ezxists o € k such
that v(P(«)) = 1. Then we have iy < ¢ — 1 and the order of Im(p) is divisible
by p.

Proof. Since G is generically ordinary, we have a1 # 0 by 2.11(d). Hence
P(X) € K[X] is a separable polynomial. By 4.4, G(1)(K) ~ (Ker Vg)(K*P)
is identified with the additive group consisting of the roots of P(X) in K®°P.
(i) By definition of the Hasse invariant, we have v(a1) = h(G) = 1. By 4.4(ii),
the assumption that G is connected is equivalent to saying v(a;) > 1 for 1 <
i < c¢. From the Newton polygon of P(X), we deduce that all the non-zero
roots of P(X) in K®P have the same valuation 1/(¢ — 1). We denote by

U G)(K) = Vijg-1
the map which sends each root z € K of P(X) to the class of x in V}(4—1) =
ml/(q,l)/mf/(q_l) (5.1.1). We remark that G(1)(K) is an F,-vector space of

dimension ¢. Hence G(1)(K) is automatically of dimension 1 over F, once
we know it is an F,-vector space. By 5.3, it suffices to show that ¢ is an
injective I-equivariant homomorphism of groups. By 4.4(i), 1 is obviously an
I-equivariant homomorphism of groups. Let zy be a root of P(X), and put
Q(y) = P(zoy). Then the polynomial Q(y) has the form Q(y) = zQ1(y),
where .

Qi(y) =y + by’ 4+ by + by

with b; = a;/2{7" ) € K*. We have v(b;) > 0 for 2 < i < ¢ and v(by) = 0.
Let b; be the class of by in the residue field k = mo/ma“. Then the images of
the roots of P(X) in V},(4—1) are xOE}/(q_l)g, where ¢ runs over the finite field
F,. Therefore, v is injective.
(ii) By computing the slopes of the Newton polygon of P(X), we see that P(X)
has p°~1(p — 1) roots of valuation 1/(p¢ — p°~!). Let L be the sub-extension
of K obtained by adding to K all the roots of P(x). Then the ramification
index e(L/K) is divisible by p~!(p — 1). Let L be the sub-extension of K*°P
fixed by the kernel of 7 (5.6.3). The Galois group Gal(K*°P/L) fixes the roots
of P(z) by definition. Hence we have L C L, and |Im(p)| = [L : K] is divisible
by [L : KJ; in particular, it is divisible by p~!(p — 1).
(iii) Note that the relation ig < ¢ — 1 is equivalent to saying that G is not
connected by 4.4(ii). Assume conversely ig = ¢, i.e. G is connected. Then we
would have

P(X)=X? mod (rA[X]).
But v(P(a)) = 1 implies that a?" € 7A, i.e. a = 0; hence we would have
P(«) = 0, which contradicts the condition v(P(«)) = 1.
We put Q(X) = P(X + «a) = P(X) + P(a). As v(P(«)) = 1, then (0,1) and
(p®,0) are the first two break points of the Newton polygon of Q(X). Hence
there exists p’ roots of Q(X) of valuation 1/p‘. Let L be the subextension
of K in K*®P generated by the roots of P(X). The ramification index e(L/K)
is divisible by p?. As in the proof of (ii), if L is the subextension of K®°P
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fixed by the kernel of p, then it is an extension of L. Therefore, we have
|Im(p)| = [L : K] is divisible by [L : K], and in particular, divisible by p’. O
5.9. Let G be a BT-group over S with connected part G°, and étale part G¢*
of height r. We have a canonical exact sequence of I-modules

(5.9.1) 0— G°(1)(K) - G(1)(K) = G*(1)(K) — 0

giving rise to a class C € Extg ;(G*(1)(K),G°(1)(K)), which vanishes if
and only if (5.9.1) splits. Since I acts trivially on G**(1)(K), we have an

isomorphism of I-modules G¢*(1)(K) ~ F;. Recall that for any F,[/]-module
M, we have a canonical isomorphism ([Sel] Chap.VII, §2)

Exte (7 (Fp, M) ~ H'(I, M).
Hence we deduce that
(5.9.2) C € Extg (G“(1)(K),G°(1)(K)) ~ H'(I,G°(1)(K))".
PROPOSITION 5.10. Let G be a HW-cyclic BT-group over S such that h(G) =1

7 (5.6.3) be the representation of I on G(1)(K). Then the cohomology class C
does not vanish if and only if the order of the group Im(p) is divisible by p.

First, we prove the following result on cohomology of groups.

LEMMA 5.11. Let F' be a field, ' be a commutative group, and x : I' — F* be a
non-trivial character of T'. We denote by F(x) an F-vector space of dimension
1 endowed with an action of I’ given by x. Then we have H'(I', F(x)) = 0.

Proof. Let C be a 1-cocycle of T with values in F(x). We prove that C is a
1-coboundary. For any g,h € ', we have

C(gh) = C(g) + x(9)C(h),
C(hg) = C(h) + x(h)C(g)-
Since I' is commutative, it follows from the relation C(gh) = C(hg) that

(5.11.1) (x(g9) = 1)C(h) = (x(h) = 1)C(g).
If x(g9) # 1 and x(h) # 1, then
1 1
x(9) — [Cl) = x(h) — e

Therefore, there exists x € F(X) such that C(g) = (x(¢9) — 1)z for all g € T
with x(g) # 1. If x(g) = 1, we have also C(g) = 0 = (x(g9) — ):c by (5.11.1).
This shows that C' is a 1-coboundary. g

Proof of 5.10. By 4.3(ii) and 5.4(c), the connected part G° of G is HW-cyclic
with h(G°) = h(G) = 1. Assume that T,(G°) has rank ¢ over Z,, and T,(G*)
has rank 7. Then by 5.8(a), G°(1)(K) is an F,-vector space of dimension 1 with

q= pe, and the action of I on G°(1)(K) factors through the character \ : I —

I, — O . We write G°(1)(K) = Fy(x) for short. If the cohomology class

C is zero, then the exact sequence (5.9.1) splits, 4.e. we have an isomorphism
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of Galois modules G(1)(K) ~F,(x) ® Fy. Tt is clear that the group Im(p) has
order ¢ — 1.

Conversely, if the cohomology class C' is not zero, we will show that there exists
an element in Im(p) of order p. We choose a basis adapted to the exact sequence
(5.9.1) such that the action of g € I is given by

(5.11.2) (g) = (Ygg) Uﬁ})) 7

where 1, is the unit matrix of type (r,7) with coefficients in F,, and the map
g — C(g) gives rise to a 1-cocycle representing the cohomology class C. Let
I be the kernel of X : I — Fy, ' be the quotient I/I1, so X induces an

isomorphism Y : I' — F;. We have an exact sequence

—\\r Inf —\\r Res —\\7
0— H'(I,F,(x)" = H'(I,F,(x))" = H'(I,F4(xX))",

where “Inf” and “Res” are respectively the inflation and restriction homomor-
phisms in group cohomology. Since H'(I',F,(X))" = 0 by 5.11, the restriction
of the cohomology class C' to H*(I1,F,(X))" is non-zero. Hence there exists
h € I, such that C(h) # 0. As we have X(h) = 1, then

h)

A(hy = (104 pal( ) .

Thus the order of p(h) is p. O
COROLLARY 5.12. Let G be a HW-cyclic BT-group over S,
00 -+ 0 —a
1 0 --- 0 —as
h—|0 1 =+ 0 —as
00 - 1 —a

be a matriz of og, P(X) = X? 4+ a.X?" + -+ @ X € AX]. If h(G) =1
and if there exists o € k C A such that v(P(a)) = 1, then the cohomology class
(5.9.2) is not zero, i.e. the extension of I-modules (5.9.1) does not split.

Proof. Since v(a1) = h(G) = 1, the integer io defined in 5.8(iii) is at least 1.
Then the corollary follows from 5.8(iii) and 5.10. O
6. LEMMAS IN GROUP THEORY

In this section, we fix a prime number p > 2 and an integer n > 1.

6.1. Recall that the general linear group GL,,(Z,) admits a natural exhaustive
decreasing filtration by normal subgroups

GL,(Zp) D 1+ pMy(Zy) D - D1+ p"Mp(Zy) D -+,
where M,,(Z,,) denotes the ring of matrix of type (n,n) with coefficients in Z,.

We endow GL,,(Z,) with the topology for which (1 + p™M,,(Z;))m>1 form a
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fundamental system of neighborhoods of 1. Then GL,(Z,) is a complete and
separated topological group.

6.2. Let & be a profinite group, p : & — GL,(Z,) be a continuous homomor-
phism of topological groups. By taking inverse images, we obtain a decreasing
filtration (F™®,m € Z>o) on & by open normal subgroups:

F'% =6, and F"® =p '(1+p"M,(Z,)) for m > 1.

Furthermore, the homomorphism p induces a sequence of injective homomor-
phisms of finite groups

(6.2.1) po: F'8/F'® — GL,(F,)
(6.2.2) pm: F"®/F" T — M, (F,), form > 1.

LEMMA 6.3. The homomorphism p is surjective if and only if the following
conditions are satisfied:

(i) The homomorphism py is surjective.

(i) For every integer m > 1, the subgroup Im(p,,) of M, (F,) contains an
element of the form

z 0 0
0 0 0
00 --- 0

with © # 0; or equivalently, there exists, for every m > 1, an element g, € &
such that p(gm) is of the form

14+pmars  p™Mare - p"Mar,
1 1 1
p"tlasy 1+ p"tags - p"lag,
. b)
1 1 1
pm—i- Qn, 1 Pm+ Gn,2 e 1T+ Pm+ Qn,n

where a; j € Zyp for 1 <i,j <n and ay,1 is not divisible by p.

Proof. We notice first that p is surjective if and only if p,, is surjective for every
m > 0, because & is complete and GL,(Z,) is separated [Bou, Chap. III §2
n°8 Cor.2 au Théo. 1]. The surjectivity of pg is condition (i). Condition (ii) is
clearly necessary. We prove that it implies the surjectivity of p,, for all m > 1,
under the assumption of (i). First, we remark that under condition (i), if A
lies in Im(py,), then for any U € GL,(F,) the conjuagate matrix U - A - U~*
lies also in Im(py, ). In fact, let A be a lift of A in M, (Z,) and Ue GL,(Z,) a
lift of U. By assumption, there exist g, h € & such that

p(g) =1+p™A mod (1+p™* M, (Z,)) and p(h) = U mod (1+pM,,(Zy)).

Therefore, we have p(hgh™') = (1 4+ p™U - A-U~') mod (1 4 p™ M, (Z,)).
Hence hgh™! € F™® and pp,(hgh™) =U-A- U~

For 1 < 4,j < n, let E;; € M,(F,) be the matrix whose (¢,j)-th entry is
0 and the other entries are 0. The matrices E; ;(1 < 4,5 < n) form clearly
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a basis of M, (F,) over F,. To prove the surjectivity of p,,, we only need
to verify that E;; € Im(py) for 1 < 4,5 < n, because Im(p,,) is an F,-
subspace of M,,(F,). By assumption, we have E; ; € Im(p,,). For 2 <i <mn,
we put U; = Ev; — Eijn + 3,4, Ej ;. Then we have U; € GL,(Zp) and
Ui~ By Ut =FE;; €Im(py). For 1 <i<j<mn,weput U; =1+ E;;
where I is the unit matrix. Then we have U; ;- E; ; -U-le =E;;+FE;; € Im(pnm),
and hence E; ; € Im(p,,). This completes the proof.

O

REMARK 6.4. By using the arguments in [Se2, Chap. IV 3.4 Lemma 3], we can
prove the following stronger form of Lemma 6.3: If p = 2, condition (i) and
(i) for m = 1,2 are sufficient to guarantee the surjectivity of p; if p > 3, then
(i) and (ii) just for m =1 suffice already.

A subgroup C of GL,(FF,) is called a non-split Cartan subgroup, if the subset
CU{0} of the matrix algebra M,,(F,) is a field isomorphic to Fyn; such a group
is cyclic of order p™ — 1.

LEMMA 6.5. Assume that n > 2. We denote by H the subgroup of GL,(F,)

consisting of all the elements of the form <61 11)> , where A € GL,,_1(F,) and
b

b= with b; € Fp(1 < i <n—1). Let G be a subgroup of GL,(F,).
bn—l

Then G = GL,,(Fp) if and only if G contains H and a non-split Cartan subgroup
of GL,,(F,).

Proof. The “only if” part is clear. For the “if” part, let C' be a non-split Cartan
subgroup contained in G. For a finite group A, we denote by |A| its order. An
easy computation shows that |GL, (F,)| = |H| - |C|. So we just need to prove
that UNC = {1}; since then we will have |GL,,(F,)| = |G|, hence G = GL,,(F,).
Let g € HNC, and P(T) € F,[T] be its characteristic polynomial. We fix an
isomorphism C' ~ IF;n,, and let ¢ € F;n, be the element corresponding to g. We
have P(T) = ngGal(Fpn /]Fp)(T —0(¢)) in Fpn[T]. On the other hand, the fact
that ¢ € H implies that (7' — 1) divises P(T). Therefore, we get ( = 1, i.e.
g=1. O

REMARK 6.6. E. Lau point out the following strengthened version of 6.5: When
n > 3, a subgroup G C GL,(F,) coincides with GL,(Fp) if and only if G
GL,-1(F,) O .
0 1) This
can be used to simplify the induction process in the proof of Theorem 7.3 when
n > 3.

contains a non-split Cartan subgroup and the subgroup (
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7. PROOF OF THEOREM 1.3 IN THE ONE-DIMENSIONAL CASE

7.1. We start with a general remark on the monodromy of BT-groups. Let X
be a scheme, G be an ordinary BT-group over a scheme X, G¢* be its étale
part (2.10.1). If 7 is a geometric point of X, we denote by

T,(G,7) = lim G(n)(77) = lim G* (n) (7)

the Tate module of G at 7, and by p(G) the monodromy representation of
71(X,7) on T,(G,7). Let f : Y — X be a morphism of schemes, £ be a
geometric point of Y, Gy = G xx Y. Then by the functoriality, we have a
commutative diagram

w1 (f) -

(7.1.1) m(Y,§) ———————m(X, f(§))
p(Gy)l/ lP(G)
Autz, (T,(Gy,&)) == Autz, (T, (G, f(£)))

In particular, the monodromy of Gy is a subgroup of the monodromy of G. In
the sequel, diagram (7.1.1) will be refereed as the functoriality of monodromy
for the BT-group G and the morphism f.

7.2. Let k be an algebraically closed field of characteristic p > 0, G be the
unique connected BT-group over k of dimension 1 and height n+1 > 2 (4.10).
We denote by S the algebraic local moduli of G in characteristic p, by G the
universal deformation of G over S, and by U the ordinary locus of G over S
(3.8). Recall that S is affine of ring R ~ k[[t1, - ,t,]] (3.7), and that G and
G are HW-cyclic (cf. 4.3(i) and 4.10). Let 7 be a geometric point of U over
its generic point. We put
T,(G7) = lim G(m)(7)

mEZL>1
to be the Tate module of G at the point 7. This is a free Z,-module of rank
n. We have the monodromy representation

Pn + T1 (Uﬂﬁ) - Auth (Tp(Gvﬁ)) = GL”(Z}’)
The following is the one-dimensional case of Theorem 1.3.

THEOREM 7.3. Under the above assumptions, the homomorphism p,, is surjec-
tive for n > 1.

7.4. First, we assume n > 2. By Proposition 4.11(ii), we may assume that

00 -« 0 —f
10 -~ 0 —ty
(7.4.1) h=|(0 1 - 0 &
00 -« 1 —t,
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is a matrix of the Hasse-Witt map ¢g. Let p be the prime ideal of R generated
by t1,--- ,t,—1. Then the closed subscheme of S defined by p is just the locus
where the p-rank of G is < 1 by 4.4(ii). Let K¢ ~ k((t,)) be the fraction
field of R/p, R’ = ﬁp be the completion of the localization of R at p, and
Yr = G ®@r R'. Since the natural map R — R’ is injective, for any a € R,
we will denote also by a its image in R’. Since the Hasse-Witt map commutes
with base change, the image of h in M,,«,,(R’), denoted also by b, is a matrix
of pg,,. We see easily that the étale part of g has height 1 and its connected
part 45, has height n. We have an exact sequence of BT-groups over R’

(7.4.2) 0— Y5 — Gr — Gt — 0.

We fix an imbedding i : Ko — K, of Ky into an algebraically closed field. Put
G =95 ® Ko for + = (0, ét, 0. We have %% ~ Q,/Zy, and @z is the unique
connected one-dimensional BT-group over K of height n (cf. 4.10). We put
R = Fo[[l'l, ce ,SCnfl]], and

(74.3) ¥ = {ring homomorphisms o : R — R’ lifting R’ — K, 4 Ko}

Let 0 € ¥. We deduce from (7.4.2) by base change an exact sequence of
BT-groups over R’

(7.4.4) 0= — Y, —95 —0,

where we have put g% , = b Qo R’ for + = o,0,ét. Due to the henselian
property of ,}\27, the isomorphism %i;o ~ Q,/Z, lifts uniquely to an isomorphism
%% . Qp/Z, . Assume that 95,  is generically ordinary over S = Spec(ﬁ).

Let ﬁ; C S be its ordinary locus, and T be a geometric point over the generic

point of U(', The exact sequence (7.4.4) induces an exact sequence of Tate
modules

(7.4.5) 0— Ty . 7) = Tp(9 ,.T) — Tp(%%’a,f) -0

compatible with the actions of ﬂl(ﬁ;,f). Since we have Tp(%% G,E) o~

T,(Qp/Zy,T) = Zp, this determines a cohomology class

(Zp, Tp( @, ®)) = H (mi(Ug ), Tp(%, . ).

1
(7.4.6) C, € Ext) 2

[71(T, )]
We consider also the “mod-p version” of (7.4.5)

095 (V@) =9y, (1)@ = Fp =0,
which determines a cohomology class

(7.47) C, € Ext;p[m(ﬁm] (Fp Z ,(1)(@) =~ Hl(m(ﬁ;,f),%ﬁ(1)(m).

It is clear that C, is the image of C, by the canonical reduction map

Hl(ﬂ-l(ﬁ!ﬂ ), Tp(g%yga T)) — H' (771((7!75 ), g%ﬁg(l)(f))'
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LEMMA 7.5. Under the above assumptions, there exist 01,09 € X satisfying the
following properties:
(i) We have 92 =92 | and it is the universal deformation of 4= .

R0 R 02 Ko

(ii) We have C,, =0 and C,, # 0.

Before proving this lemma, we prove first Theorem 7.3.

PRrOOF OF 7.3. First, we notice that the monodromy of a BT-group is inde-
pendent of the base point. So we can change 7 to any geometric point of U
when discussing the monodromy of G. We make an induction on the codimen-
sion n = dim(GY). The case of n = 1 is proved in Theorem 5.7. Assume that
n > 2 and the theorem is proved for n — 1. We denote by

P : m(U, ) — Auty, (G(1)(7)) ~ GL,(Fp)

the reduction of p,, modulo by p. By Lemma 6.3 and 6.5, to prove the surjec-
tivity of p,, we only need to verify the following conditions:

(a) Im(p,,) contains a non-split Cartan subgroup of GL,,(Fp);

(b) Im(p,,) contains the subgroup H C GL,(Z,) consisting of all the elements
of the form <§ 11)> € GLy(Zyp), with B € GL,,_1(Zp) and b € M(,,_1)x1(Zp);
For condition (a), let A = k[[x]], T = Spec(A), £ be its generic point, £ be a
geometric point over ¢, and I = Gal(£/€) be the absolute Galois group over
£. We keep the notations of 7.4. Let f*: R — A be the homomorphism of
k-algebras such that f*(¢;) = 7 and f*(t;) = 0 for 2 < i < n. We denote by
f:T — S the corresponding morphism of schemes, and put G = G xgT. By
the functoriality of Hasse-Witt maps,

00 - 0 —nx
10 -0 0
bT: . . .
00 -~ 1 0

is a matrix of pg,. By definition 5.4, the Hasse invariant of G is h(G) = 1.
Hence G is generically ordinary; so f(£) € U. Let

pr: I = Gal(£/€) — Autr, (Gr(1)(€))

be the mod-p monodromy representation attached to Gr. Proposition 5.8(i)
implies that Im(p) is a non-split Cartan subgroup of GL,(F,). On the other
hand, by the functoriality of monodromy, we get Im(p;) C Im(p,,). This verifies
condition (a).

To check condition (b), we consider the constructions in 7.4. Let S’ = Spec(R’),
f S — S be the morphism of schemes corresponding to the natural ring
homomorphism R — R’, U’ be the ordinary locus of ¢z, and € be a geometric
point of U’. From (7.4.2), we deduce an exact sequence of Tate modules

(7.5.1) 0 — Tp(%5. ) — Tp(Yrr, &) — Tp(¥55,E) — 0.
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Let pg : m (U, &) — Autz, (T,(9r,€)) ~ GL,(Zy) be the monodromy repre-

sention of ¥g,. Under any basis of T, (¥r/, ) adapted to (7.5.1), the action of
m1(U’,€) on Ty(Yrs, &) is given by

— pag,(9) %
,igem (UL E) — "
PGri+ 9 (U, 6) ( 0 Py, (g),)
where g — pgo, (9) € GLp—1(Zy) (resp. g +— pye (9) € Z)) gives the action
R/

of m (U’ €) on Tp(%5,,€) (resp. on Tp(45,€)). Note that f(U’) C U. So by
the functoriality of monodromy, we get Im(pg ) C Im(py,). To complete the
proof of Theorem 7.3, it suffices to check condition (b) with p,, replaced by pg,,

under the induction hypothesis that 7.3 is valide for n — 1. Let 01,05 : R’ — I’
be thgvhomomorphisms given by 7.5. For i = 1,2, we denote by f; : S’ =
Spec(R’) — S’ = Spec(R') the morphism of schemes corresponding to o;, and
put ¥ =95 = 9Yr Q,, R’ to simply the notations. By condition 7.5(i), we
can denote by ¢° the common connected component of % and ¢,. Let U cs
be the ordinary locus of 4°. Then we have f;(U’) C U’ for i = 1,2. Let T be
a geometric point over the generic point of U’. We have an exact sequence of
Tate modules
(7.5.2) 0—Tp(94°,7) — Tp(%,7) — Tp(Qp/Zp,T) — 0
compatible with the actions of Wl(,ﬁ,f). We denote by
pg, - T (U, T) — Autg, (Tp(%,T)) =~ GL,(Z,)
the monodromy representation of ¢;. In a basis adapted to (7.5.2), the action
of m (U, %) on T,(¥;,T) is given by
: pge(9) Co,(9)
pg; : g — ( 0 1)
where pgo : m (/Uv’,f) — GL,,—1(Z,) is the monodromy representation of ¥°,
and the cohomology class in H'(m(U',T), Tp(¥4°)) given by g — Cy,(g) is
nothing but the class defined in (7.4.6). By 7.5(i) and the induction hypothesis,

pwo is surjective. Since the cohomology class C,, = 0 by 7.5(ii), we may assume
Cy,(g) =0 for all g € m1(U’,T). Therefore Im(pg, ) contains all the matrix of

0 1
Im(pg,, ) contains Im(py, ). Hence we have

(GLnol(Zp) (1)) C Im(pg, ) C Im(pg,, ).

the form (B 0) with B € GL,_1(Z,). By the functoriality of monodromy,

(7.5.3)

On the other hand, since the cohomology class C,, # 0, there exists a
g € m(U’,T) such that by = C,,(g) # 0. Hence the matrix pg,(g) has the

form (%2 bf) such that By € GL,,—1(Z,) and the image of by € M1 xn—1(Zp)
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in Myxn—1(Fp) is non-zero. By the functoriality of monodromy, we have
Im(pg,) C Im(pg,,); in particular, we have <‘%2 b12> € Im(pg,,). In view

of (7.5.3), we get

(7.5.4) (GLnol(Zp) (1)) (%2 bf) (GLnol(Zp) (1)) C Im(pg,, ).

But the subset of GL,(Z,) on the left hand side is just the subgroup H
described in condition (b). Therefore, condition (b) is verified for pg,,, and
the proof of 7.3 is complete.

The rest of this section is dedicated to the proof of Lemma 7.5.

LEMMA 7.6. Let k be an algebraically closed field of characteristic p > 0, A
be a noetherian henselian local k-algebra with residue field k, G be a BT-group
over A, and G be its étale part. Put

Lie(GY)?=! = {z € Lie(G") such that pc(z) = z}.

Then Lie(GY)¥=! is an F,-vector space of dimension equal to the rank
of Lie(G¢Y), and the A-submodule Lie(G**Y) of Lie(GV) is generated by
Lie(GY)¥=1!.

Proof. Let r be the rank of Lie(G®*Y), G° be the connected part of G, and s
be the height of Lie(G°"). We have an exact sequence of A-modules

0 — Lie(G®") — Lie(GY) — Lie(G°Y) — 0,

compatible with Hasse-Witt maps. We choose a basis of Lie(G") adapted to

this exact sequence, so that g is expressed by a matrix of the form g I‘/i/

with U € M,x,(4), V € Mxs(A), and W € M,xs(A). An element of
Z1 U1

Lie(GY)#=! is given by a vector (z), where z = | : | andy = | @ | with
Ly Ys

x;,Y; € A, satisfying

U W () T U-z2®) 4+ W.y®) =g
won (5 M)(0)-() - {V S
where 2(P) (resp. y(P)) is the vector obtained by applying a +— a” to each z;(1 <
i <r) (resp. y;(1 <j<s)). By 2.9, the Hasse-Witt map of the special fiber of
G° is nilpotent. So there exists an integer N > 1 such that ¢ (Lie(G°Y)) C
my - Lie(G°Y), i.e. we have V- V® ...V®"™) =0 (mod my). From the
equation V - y®) =y, we deduce that

A

y=v.vw.. .ye y@") =0 (mod my).
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But this implies that y(pN) =0 (mod miN). Hence we get y = V -y =
0 (mod mZNH). Repeting this argument, we get finally y = 0 (mod m
for all integers ¢ > 1, so y = 0. This implies that Lie(GY)*=! C Lie(G*"),
and the equation (7.6.1) is simplified as U - (") = . Since the linearization
of @ge is bijective by 2.11, we have U € GL,(A). Let U be the image of
U in GL,(k), and Sol be the solutions of the equation U - z(®) = z. As k is
algebraically closed, Sol is an F,-space of dimension r, and Lie(G**Y) @ k is
generated by Sol (cf. [Ka2, Prop. 4.1]). By the henselian property of A, every
elements in Sol lifts uniquely to a solution of U-z®) = z, i.e. the reduction map
Lie(GV)?=! = Sol is bijective. By Nakayama’s lemma, Lie(G")¥=! generates
the A-module Lie(G). O
7.7. We keep the notations of 7.4. Let Compg,_ be the category of noetherian
complete local K-algebras with residue field Ky, Dgfo (resp. Dg%o) be the
functor which associates to every object A of Compy  the set of isomorphsm
classes of deformations of 9%, (resp. %%O) . If Ais an object in Compy and
G is a deformation of ¥ (resp. %%O) over A, we denote by [G] its isomorphic
class in De (A) (resp. in Dg%o).

LEMMA 7.8. Let 3 be the set defined in (7.4.3).

(i) The morphism of sets ® : ¥ — Degre, (ﬁ) given by o — [95; ] is bijective.
(ii) Let o € X. Then there exists a basis of Lie( %/ ) such that pgo s
s0 R’ o

represented by a matriz of the form

00 -+ 0 a

1 0 0 ag
(7.8.1) =], . .

0 0 -+ 1 apa

with a; = o - a(ti)/(vmodm%) for1<i<n-—1, where a € ﬁx and my; is the
mazximal ideal of R'. In particular, %% . is the universal deformation of %%

E 0
if and only if {o(t1), -+ ,0(tn—1)} is a system of regular parameters of R'.

Proof. (i) We begin with a remark on the Kodaira-Spencer map of ¥r,. Let
Tsk = Homeg (Qé/k, 0s) be the tangent sheaf of S. Since G is universal,

the Kodaira-Spencer map (3.2.2)

Kod : Jg ), — H omgg(wa, Lie(GY))
is an isomorphism. By functoriality, this induces an isomorphism of R’-modules
(7.8.2) Kodg : Tgjp — Homp (wy,, , Lie(95)),
where Tx/ ), = Homp, (Q}R’//k’ R')=T(S, 75/x) ®r R'.
For each integer v > 0, we put /}\271, = ﬁ/mgl, ¥, to be the set of liftings of
R—Ky— KgtoR— R',,and &, : X, — 'Dgfo (R',) to be the morphism of
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sets 0, — [Yr Ry, ﬁy] We prove by induction on v that @, is bijective for all
v > 0. This will complete the proof of (i). For v = 0, the claim holds trivially.
Assume that it holds for ¥ — 1 with v > 1. We have a commutative diagram

Xy Dgfo (ﬁl/)
Sy —— Dy (K1),

where the vertical arrows are the canonical reductions, and the lower arrow
is an isomorphism by induction hypothesis. Let 7 be an arbitrary element of
Y,-1. We denote by ¥, C X, the preimage of 7, and by Dg,_,(-)(R')) C
'Dg?o (/}\271,) the preimage of ®,_;(7). It suffices to prove that ®, induces a
bijection between ¥, ; and D¢U71(7)(ﬁy). Let I, = m%/mgl be the ideal of
the redugcion map R/, — R/,_1. By [EGA, Orv 21.2.5 and 21.9.4], we have
Q}%,/k ~ Q}%,/k, and they are free over A of rank n. By [EGA, Ory 20.1.3], &, ,
is a (nonempty) homogenous space under the group
Homp, (Q}z//k Qr Ko, 1) = Trr )i @rr 1.

On the other hand, according to 3.5(i), Dy, _, (r)(&’,) is a homogenous space
under the group

Homgz, (ngo , Lie(%%o)) @5, I, = Homp (wg,, , Lie(Zy,)) @p: 1.
Moreover, it is easy to check that the morphism of sets ®, : ¥, —

Dy, _,(r) (1)) is compatible with the homomorphism of groups
KOdR/ QR Id : TR’/k Rpr L, — HOIDRI (ng,,Lie(gI\{/)) QR L,,

where Kod g is the Kodaira-Spencer map (7.8.2) associated to ¥r/. The bijec-
tivity of @, now follows from the fact that Kodgs is an isomorphism.

(i) The second part of the statement follows immediately from 4.11. It remains
to compute the Hasse-Witt map of g% o We determine first the submodule
Lie(%%vg) of Lie(%% ,)- We choose a basis of Lie(GY) over 0g such that g
is expressed by the matrix b (7.4.1). As ¥5;  derives from G by base change
R — R' % R/, there exists a basis (e1, -+ ,en) of Lie(%ﬁi’ U) such that g
is expressed by 7 7

00 - 0 —o(t)

10 - 0 —o(ts)
h” = ) :

0 0 - 1 —oty)

By Lemma 7.6, Lie(%5" ) is generated by Lie(9Y )#='. If 370 wnen €

Lie(%k\i, a)‘P:1 with z; € R for 1 < 4 < n, then (x;)1<i<n, must satisfy the
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x} 1
equation h? - | : [ = [ : |; or equivalently,
P T,
x1 = —o(ty)al
X9 = —o(ta)al — o(tl)pxﬁz
(7.8.3)
Ty = —0(tn_1)al — - —o(ty)?" ab"

n—1

1 =
U(tl)pnilzﬁn + J(tg)pn'72z£ +--+o(tn)z? +x, =0.

We note that o(t;) € mg for 1 <i < n—1and o(t,) € R with image
i(t,) € Ko, where i : Koy — K is the fixed immbedding. By Hensel’s lemma,
every solution in K of the equation i(t, )22 +x, = 0 lifts uniquely to a solution
of (7.8.3). As Lie(ggvo_) has rank 1, by Lemma 7.6, these are all the solutions

of (7.8.3). Let (A\y,-- . , An) be a non-zero solution of (7.8.3). We have

(7.8.4) A€ R and A =-Xo(t;) (modmZ).

We put v = Aje; + --- + Apen; so v is a basis of Lie(%%va) by 7.6. For

1 < i < n,let f; be the image of e; in Lie( %VU). Then fy,---, f, clearly

generate Lie(g%/a). By the explicit description above of Lie(g%\/a), we have

o= N1f1 - +An—1fn_1). Hence f1, -, fn_1 form a basis of Lie( %VU).

By the functoriality of Hasse-Witt maps, we have pgo (f;) = fi41 for 1 <i <
R/

n — 1, or equivalently,

00 -« 0 —Aln

10 - 0 —Alh
(P%%/g(fla"',fn—l):(fla"'afn—l)' : . :

00 - 1 —ATh,

In view of (7.8.4), we see that the above matrix has the form of (7.8.1) by

setting o = \P~1 € R, The second part of statement, (ii) follows immediately
from Proposition 4.11(ii) and the description above of g . O

R’,o

Now we can turn to the proof of 7.5.

7.9. PROOF OF LEMMA 7.5. First, suppose that we have found a oy € ¥
such that C,, # 0 and g% " is the universal deformation of g%o. Since
y02
oy = Dy, (R') is bijective by 7.8(i), there exists a o1 € X corresponding to
: o D7 : o ~ GO
the deformation [%ﬁ,az ®Q,/Z,) € D (R'). It is clear that gﬁ’m ~ %ﬁ702.
Besides, the exact sequence (7.4.5) for oy splits; so we have C,, = 0. It
remains to prove the existence of o5. We note first that K¢ can be canonically
imbedded into R/, since it is perfect. Since R’ is formally smooth over k and
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(t1,--+ ,t,) is a p-basis of R’ over k, by [EGA, Ory 21.2.7], there is a 0 € X
such that o(t;) (1 <4 <mn—1) form a system of regular parameters of R’ and

o(t,) € Ko C R'. We claim that 0o = o answers the question. In fact, Lemma,
7.8(ii) implies that %% , 1s the universal deformation of ¢2 . It remains to
) 0

verify that C, # 0.

Let A = Ko[[n]] be a complete discrete valuation ring of characteristic p with
residue field K¢, T = Spec(A), ¢ be the generic point of T, £ be a geometric
over & and I = Gal(£/€) the Galois group. We define a homomorphism of
Ko-algebras f* : R — A by putting f*(o(t1)) = 7 and f*(o(¢;)) = 0 for
2 < i < n—1. This is possible, since (o(t1), - ,0(tn—1)) is a system of
regular parameters of R'. Let f:T— S’ be the homomorphism of schemes
corresponding to f*, and 91 = 95 xg T. By the functoriality of Hasse-Witt

R0
maps,
00 --- 0 —T
1 0 0 0
bT = 0 1 0 0 S Man(E)
0 0 -+ 1 —f*o(tn))

is a matrix of g, . By definition (5.4), the Hasse invariant of ¢r is h(¥9r) = 1.
In particular, %r is generically ordinary. Let U! C S’ be the ordinary locus
of ¥ ,. We have f (&) € U.. By the functoriality of fundamental groups, f
induces a homomorphism of groups

mi(f) : I = Gal(€/€) — mi(UL, f(€)) ~ m (UL, 7).

Let %7 be the connected part of %7, and %5t be the étale part of %r. Then
Gt ~ Q,/Z,. We have an exact sequence of F,[/]-modules

0 — G2(1)(€) — r(1)(€) — ' (1)(§) — 0,

which determines a cohomology class Cr € H*(I,%42(1)(€)). We notice that
%r(1)(€) is isomorphic to ¥ (1)(Z) as an abelian group, and the action of I
on %p(1)(€) is induced by the action of m (U.,Z) on 9% (1)(T). Therefore,
C'r is the image of C, by the functorial map 7

H' (m (U4.7), 93, (1)(@) — H' (1.93(1)(D)).

To verify that C, # 0, it suffices to check that Cr # 0. We consider the
polynomial P(X) = X?" 4 f*(c(t,))X?" " + X € A[X]. According to 5.12,
it suffices to find a o € K¢ C A such that P(a) is a uniformizer of A. But by
the choice of o, we have o(t,) € K¢ and o(t,) # 0; so f*(o(t,)) # 0 lies in K.
Let o be a p"~!(p — 1)-th root of —f*(c(t,)) in Ko. Then we have o € ?g,
and P(a) = ar is a uniformizer of A. This completes the proof of 7.5.
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8. END OF THE PROOF OF THEOREM 1.3
In this section, k& denotes an algebraically closed field of characteristic p > 0.

8.1. First, we recall some preliminaries on Newton stratification due to F.
Oort. Let G be an arbitrary BT-group over k, S be the local moduli of G in
characteristic p, and G be the universal deformation of G over S (3.8). Put
d = dim(G) and ¢ = dim(G"). We denote by N (G) the Newton polygon of
G which has endpoints (0,0) and (¢ + d,d). Here we use the normalization of
Newton polygons such that slope 0 corresponds to étale BT- groups and slope
1 corresponds to groups of multiplicative type.

Let NP(c + d,d) be the set of Newton polygons with endpoints (0,0) and
(¢ +d,d) and slopes in (0,1). For o, 3 € NP(c+ d,d), we say that o« < 3
if no point of « lies below 3; then “=<” is a partial order on N'P(c + d,d).
For each 8 € N'P(c + d,d), we denote by Vs the subset of S consisting of
points x with A(G,) = 3, and by Vg the subset of S consisting of points z
with M (G,) = 8. By Grothendieck-Katz’s specialization theorem of Newton
polygons, Vg is closed in S, and Vj is open (maybe empty) in V3. We put

O(B) =
{(z,y) € ZXZ|0<y <d,y<x<c+d,(z,y)lies on or above the polygon 5},

and dim(3) = #(0(8))-

THEOREM 8.2 ([O02] Theorem 2.11). Under the above assumptions, for each
B € NP(c+d,d), the subset V5 is non-empty if and only if N(G) = . In
that case, Vi is the closure of Vi and all irreducible components of Vg have
dimension dim(Q).

8.3. Let G be a connected and HW-cyclic BT-group over k of dimension d =
dim(G) > 2. Let 3 € NP(c+ d,d) be the Newton polygon given by the
following slope sequence:
6: (1/(c+]‘)ﬂ 71/(C+1)715 ﬂl)
——
c+1 d—1

We have N(G) < 3 since G is supposed to be connected. By Oort’s Theorem
8.2, V3 is a equal dimensional closed subset of the local moduli S of dimension
c(d —1). We endow V3 with the structure of a reduced closed subscheme of S.

LEMMA 8.4. Under the above assumptions, let R be the ring of S, and

0 0 0 —ay

1 0 0 —ag

0 1 0 —as c MCXC(R)

00 --- 1 —ae
be a matriz of the Hasse- Witt map . Then the closed reduced subscheme V3
of S is defined by the prime ideal (a1, - ,ac). In particular, Vs is irreducible.
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Proof. Note first that {ai,- -, a.} is a subset of a system of regular parameters
of R by 4.11(i). Let I be the ideal of R defining V3. Let x be an arbitrary
point of V3, we denote by p, the prime ideal of R corresponding to x. Since
the Newton polygon of the fibre G, lies above 3, G, is connected. By Lemma
4.4, we have a; € p, for 1 < ¢ < c. Since V3 is reduced, we have a; € 1.
Let B = (a1,---,ac), and V(P) the closed subscheme of S defined by ‘P.
Then V() is an integral scheme of dimension ¢(d — 1) and V3 C V(). Since
Theorem 8.2 implies that dim V3 = ¢(d—1), we have necessarily Vs = V(). O

We keep the assumptions above. Let (; j)1<i<c,1<j<d be a regular system of
parameters of R such that ¢; 4 = a; for all 1 <7 < c. Let x be the generic point
of the Newton strata Vs, k' = k(z), and R’ = Os,. Since R is noetherian
and integral, the canonical ring homomorphism R — 0s, — R’ is injective.
The image in R’ of an element a € R will be denoted also by a. By choosing a
k-section k' — R’ of the canonical projection R' — k', we get a (non-canonical)
isomorphism of k-algebras R’ ~ K'[[t1,4,--- ,tca]]- Let k” be an algebraic
closure of k', and R” = k"[[t1,4, - ,tc,a]]- Then we have a natural injective
homomorphism of k-algebras R’ — R” mapping ¢; 4 to t; 4 for 1 <i <c.

Let S” = Spec(R"), T be its closed point. By the construction of S”, we have
a morphism of k-schemes

(8.4.1) f:58"—S8
sending T to z. We put 4 = G xg S”. By the choice of the Newton polygon £,
the closed fibre 4 has a BT-subgroup 7% of multiplicative type of height d—1.

Since S” is henselian, % lifts uniquely to a BT-subgroup 2 of 4. We put
4" =9 /. Tt is a connected BT-group over S” of dimension 1 and height c¢+1.

LEMMA 8.5. Under the above assumptions, 4" is the universal deformation in
equal characteristic of its special fiber.

This lemma is a particular case of [Lau, Lemma 3.1]. Here, we use 4.11(ii) to
give a simpler proof.

Proof. We have an exact sequence of BT-groups over S”

0= -9 —-9" -0,
which induces an exact sequence of Lie algebras 0 — Lie(4"V) — Lie(¢V) —
Lie(2#V) — 0 compatible with Hasse-Witt maps. Since 5 is of multiplicative

type, we get Lie(sV) = 0 and an isomorphism of Lie algebras Lie(¢"V) ~
Lie(¢"). By the choice of the regular system (; j)1<i<c,1<j<d, there is a basis

(v1,+ -+ ,v) of Lie(9¢"V) over Os» such that pgn is given by the matrix
00 - 0 —tig
1 0 - 0 —tyg
b= [0 1 - 0 —ts
00 «+ 1 —teg
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Now the lemma results from Proposition 4.11(ii). O

8.6. PROOF OF THEOREM 1.3. The one-dimensional case is treated in 7.3.
If dim(G) > 2, we apply the preceding discussion to obtain the morphism
f:8” — S and the BT-groups ¥ = G xs S” and ¢”, which is the quotient of
% by the maximal subgroup of ¢ of multiplicative type. Let U” be the common
ordinary locus of 4 and 4" over S”, and £ be a geometric point of U”. Then
f maps U” into the ordinary locus U of G. We denote by

py = m(U",€) — Autz, (Tp(¥,€))

the monodromy representation associated to ¢, and the same notation for pg .
By the functoriality of monodromy, we have Im(py) C Im(pg). On the other
hand, the canonical map ¥4 — %" induces an isomorphism of Tate modules
T,(4,m) — Tp(4”,7) compatible with the action of 71 (U”,7). Therefore,
the group Im(pg) is identified with Im(pg~ ). Since 4" is one-dimensional, we
conclude the proof by Lemma 8.5 and Theorem 7.3.
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