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Abstract. Let k be an algebrai
ally 
losed �eld of 
hara
teristi

p > 0, andG be a Barsotti-Tate over k. We denote by S the �algebrai
�lo
al moduli in 
hara
teristi
 p of G, by G the universal deformationof G over S, and by U ⊂ S the ordinary lo
us of G. The étalepart of G over U gives rise to a monodromy representation ρG of thefundamental group of U on the Tate module of G. Motivated by afamous theorem of Igusa, we prove in this arti
le that ρG is surje
tiveif G is 
onne
ted and HW-
y
li
. This latter 
ondition is equivalentto saying that Oort's a-number of G equals 1, and it is satis�ed by all
onne
ted one-dimensional Barsotti-Tate groups over k.2000 Mathemati
s Subje
t Classi�
ation: 13D10, 14L05, 14H30,14B12, 14D15, 14L15Keywords and Phrases: Barsotti-Tate groups (p-divisible groups), p-adi
 monodromy representation, universal deformation, Hasse-Wittmaps. 1. Introdu
tion

1.1. A 
lassi
al theorem of Igusa says that the monodromy representation as-so
iated with a versal family of ordinary ellipti
 
urves in 
hara
teristi
 p > 0is surje
tive [Igu, Ka2℄. This important result has deep 
onsequen
es in thetheory of p-adi
 modular forms, and inpsired various generalizations. Faltingsand Chai [Ch2, FC℄ extended it to the universal family over the moduli spa
eof higher dimensional prin
ipally polarized ordinary abelian varieties in 
har-a
teristi
 p, and Ekedahl [Eke℄ generalized it to the ja
obian of the universal
n-pointed 
urve in 
hara
teristi
 p, equipped with a symple
ti
 level stru
ture.Re
ently, Chai and Oort [CO℄ proved the maximality of the p-adi
 monodromyover ea
h �
entral leaf� in the moduli spa
e of abelian varieties whi
h is not
ontained in the supersingular lo
us. We refer to Deligne-Ribet [DR℄ and Hida[Hid℄ for other generalizations to some moduli spa
es of PEL-type and their
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398 Yichao Tianarithmeti
 appli
ations. Though it has been formulated in a global setting, theproof of Igusa's theorem is purely lo
al, and it has got also lo
al generalizations.Gross [Gro℄ generalized it to one-dimensional formal O-modules over a 
om-plete dis
rete valuation ring of 
hara
teristi
 p, where O is the integral 
losureof Zp in a �nite extension of Qp. We refer to Chai [Ch2℄ and A
hter-Norman[AN℄ for more results on lo
al monodromy of Barsotti-Tate groups. Motivatedby these results, it has been longly expe
ted/
onje
tured that the monodromyof a versal family of ordinary Barsotti-Tate groups in 
hara
teristi
 p > 0 ismaximal. The aim of this paper is to prove the surje
tivity of the monodromyrepresentation asso
iated with the universal deformation in 
hara
teristi
 p ofa 
ertain 
lass of Barsotti-Tate groups.
1.2. To des
ribe our main result, we introdu
e �rst the notion of HW-
y
li
Barsotti-Tate groups. Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p >
0, and G be a Barsotti-Tate group over k. We denote by G∨ the Serre dual of G,and by Lie(G∨) its Lie algebra. The Frobenius homomorphism of G (or duallythe Vers
hiebung of G∨) indu
es a semi-linear endomorphism ϕG on Lie(G∨),
alled the Hasse-Witt map of G (2.6.1). We say that G is HW-
y
li
, if c =
dim(G∨) ≥ 1 and there is a v ∈ Lie(G∨) su
h that v, ϕG(v), · · · , ϕc−1

G (v) forma basis of Lie(G∨) over k (4.1). We prove in 4.7 that G is HW-
y
li
 and non-ordinary if and only if the a-number of G, de�ned previously by Oort, equals
1. Basi
 examples of HW-
y
li
 Barsotti-Tate groups are given as follows. Let
r, s be relatively prime integers su
h that 0 ≤ s ≤ r and r 6= 0, λ = s/r, Gλbe the Barsotti-Tate group over k whose (
ontravariant) Dieudonné module isgenerated by an element e over the non-
ommutative Dieudonné ring with therelation (F r−s − V s) · e = 0 (4.10). It is easy to see that Gλ is HW-
y
li
 forany 0 < λ < 1. Any 
onne
ted Barsotti-Tate group over k of dimension 1 andheight h is isomorphi
 to G1/h [Dem, Chap.IV �8℄.Let G be a Barsotti-Tate group of dimension d and height c+ d over k; assume
c ≥ 1. We denote by S the �algebrai
� lo
al moduli of G in 
hara
teristi
 p, andby G be the universal deformation of G over S (
f. 3.8). The s
heme S is a�neof ring R ≃ k[[(ti,j)1≤i≤c,1≤j≤d]], and the Barsotti-Tate group G is obtainedby algebraizing the formal universal deformation of G over Spf(R) (3.7). Let
U be the ordinary lo
us of G (i.e. the open subs
heme of S parametrizing theordinary �bers of G), and η a geometri
 point over the generi
 point of U. Forany integer n ≥ 1, we denote by G(n) the kernel of the multipli
ation by pnon G, and by

Tp(G, η) = lim
←−
n

G(n)(η)the Tate module of G at η. This is a free Zp-module of rank c. We 
onsiderthe monodromy representation atta
hed to the étale part of G over U(1.2.1) ρG : π1(U, η)→ AutZp
(Tp(G, η)) ≃ GLc(Zp).The aim of this paper is to prove the following :
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p-Adic Monodromy of a Barsotti-Tate Group 399
Theorem 1.3. If G is 
onne
ted and HW-
y
li
, then the monodromy repre-sentation ρG is surje
tive.Igusa's theorem mentioned above 
orresponds to Theorem 1.3 for G = G1/2 (
f.5.7). My interest in the p-adi
 monodromy problem started with the se
ondpart of my PhD thesis [Ti1℄, where I guessed 1.3 for G = Gλ with 0 < λ < 1and proved it for G1/3. After I posted the manus
ript on ArXiv [Ti2℄, Strau
hproved the one-dimensional 
ase of 1.3 by using Drinfeld's level stru
tures [Str,Theorem 2.1℄. Later on, Lau [Lau℄ proved 1.3 without the assumption that
G is HW-
y
li
. By using the Newton strati�
ation of the universal deforma-tion spa
e of G due to Oort, Lau redu
ed the higher dimensional 
ase to theone-dimensional 
ase treated by Strau
h. In fa
t, Strau
h and Lau 
onsideredmore generally the monodromy representation over ea
h p-rank stratum of theuniversal deformation spa
e. In this paper, we provide �rst a di�erent proof ofthe one-dimensional 
ase of 1.3. Our approa
h is purely 
hara
teristi
 p, whileStrau
h used Drinfeld's level stru
ture in 
hara
teristi
 0. Then by followingLau's strategy, we give a new (and easier) argument to redu
e the general 
aseof 1.3 to the one-dimensional 
ase for HW-
y
li
 groups. The essential partof our argument is a versality 
riterion by Hasse-Witt maps of deformationsof a 
onne
ted one-dimensional Barsotti-Tate group (Prop. 4.11). This 
rite-rion 
an be 
onsidered as a generalization of another theorem of Igusa whi
h
laims that the Hasse invariant of a versal family of ellipti
 
urves in 
hara
-teristi
 p has simple zeros. Compared with Strau
h's approa
h, our 
hara
ter-isti
 p approa
h has the advantage of giving also results on the monodromy ofBarsotti-Tate groups over a dis
rete valuation ring of 
hara
teristi
 p.
1.4. Let A = k[[π]] be the ring of formal power series over k in the variable
π, K its fra
tion �eld, and v the valuation on K normalized by v(π) = 1. We�x an algebrai
 
losure K of K, and let Ksep be the separable 
losure of K
ontained inK, I be the Galois group ofKsep overK, Ip ⊂ I be the wild inertiasubgroup, and It = I/Ip the tame inertia group. For every integer n ≥ 1, thereis a 
anoni
al surje
tive 
hara
ter θpn−1 : It → F×pn (5.2), where Fpn is the�nite sub�eld of k with pn elements.We put S = Spec(A). Let G be a Barsotti-Tate group over S, G∨ be its Serredual, Lie(G∨) the Lie algebra of G∨, and ϕG the Hasse-Witt map of G, i.e.the semi-linear endomorphism of Lie(G∨) indu
ed by the Frobenius of G. Wede�ne h(G) to be the valuation of the determinant of a matrix of ϕG, and 
allit the Hasse invariant of G (5.4). We see easily that h(G) = 0 if and only if Gis ordinary over S, and h(G) <∞ if and only if G is generi
ally ordinary. If Gis 
onne
ted of height 2 and dimension 1, then h(G) = 1 is equivalent to that
G is versal (5.7).
Proposition 1.5. Let S = Spec(A) be as above, G be a 
onne
ted HW-
y
li
Barsotti-Tate group with Hasse invariant h(G) = 1, and G(1) the kernel of themultipli
ation by p on G. Then the a
tion of I on G(1)(K) is tame; moverover,
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400 Yichao Tian

G(1)(K) is an Fpc -ve
tor spa
e of dimension 1 on whi
h the indu
ed a
tion of
It is given by the surje
tive 
hara
ter θpc−1 : It → F×pc .This proposition is an analog in 
hara
teristi
 p of Serre's result [Se3, Prop.9℄ on the tameness of the monodromy asso
iated with one-dimensional formalgroups over a trait of mixed 
hara
teristi
. We refer to 5.8 for the proof of thisproposition and more results on the p-adi
 monodromy of HW-
y
li
 Barsotti-Tate groups over a trait in 
hara
teristi
 p.
1.6. This paper is organized as follows. In Se
tion 2, we review some wellknown fa
ts on ordinary Barsotti-Tate groups. Se
tion 3 
ontains some prelim-inaries on the Dieudonné theory and the deformation theory of Barsotti-Tategroups. In Se
tion 4, after establishing some basi
 properties of HW-
y
li
groups, we give the fundamental relation between the versality of a Barsotti-Tate group and the 
oe�
ients of its Hasse-Witt matrix (Prop. 4.11). Se
tion5 is devoted to the study of the monodromy of a HW-
y
li
 Barsotti-Tate groupover a 
omplete trait of 
hara
teristi
 p. Se
tion 6 is totally elementary, and
ontains a 
riterion (6.3) for the surje
tivity of a homomorphism from a pro�-nite group to GLn(Zp). Se
tion 7 is the heart of this work, and it 
ontainsa proof of Theorem 1.3 in the one-dimensional 
ase. Finally in Se
tion 8, wefollow Lau's strategy and 
omplete the proof of 1.3 by redu
ing the general
ase to the one-dimensional 
ase treated in Se
tion 7.The proof in Se
tion 7 of 1.3 in the one-dimensional 
ase is based on an indu
-tion on the height n+ 1 ≥ 2 of G. The 
ase n = 1 is just the 
lassi
al Igusa'stheorem (5.7). For n ≥ 2, by lemmas 6.3 and 6.5, it su�
es to prove the fol-lowing two statements: (a) the image of redu
tion modulo p of ρG 
ontains anon-split Cartan subgroup; (b) under a suitable basis, the image of ρG 
ontainsall matrix of the form (

B b
0 1

) with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp).The �rst statement follows easily from 1.5 by 
onsidering a 
ertain base 
hangeof G to a 
omplete dis
rete valuation ring. To prove (b), we 
onsider the for-mal 
ompletion Spec(R′) of the lo
alization of the lo
al moduli S = Spec(R)of G at the generi
 point of the lo
us where the universal deformation G has
p-rank ≤ 1 (7.4). The ring R′ is a 
omplete regular ring of dimension n − 1,and the Barsotti-Tate group G ′ = G ⊗R R

′ has a 
onne
ted part of height nand an étale part of height 1. Let K0 be the residue �eld of R′, and K0 analgebrai
 
losure of K0. In order to apply the indu
tion hypothesis, we 
on-sider the set of k-algebra homomorphisms σ : R′ → R̃′ = K0[[t1, · · · , tn−1]]lifting the natural in
lusion K0 → K0. The key point is that, the natural map
σ 7→ GfR′,σ = G ′⊗R′,σ R̃′ gives a bije
tion between the set of su
h σ's and the setof deformations of GK0

= G ′⊗R′K0 to R̃′; moreover, we 
an 
ompute expli
itlythe Hasse-Witt map of the 
onne
ted 
omponent G ◦
fR′,σ

of GfR′,σ
(Lemma 7.8).From the versality 
riterion for one-dimensional Barsotti-Tate groups in termsof the Hasse-Witt map established in Se
tion 4 (Prop. 4.11), it follows imme-diately that there exists a σ su
h that the Barsotti-Tate group G ◦

fR′,σ
, whi
h
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p-Adic Monodromy of a Barsotti-Tate Group 401is 
onne
ted and one-dimensional of height n, is the universal deformation ofits 
losed �ber. We �x su
h a σ. Then the set of all σ′ with G ◦
fR′,σ′

≃ G ◦
fR′,σas deformations of their 
ommon 
losed �ber is a
tually a group isomorphi
to Ext1fR′(Qp/Zp,G

◦
fR′,σ

) (Prop. 3.10). Let σ1 be the element 
orrespondingto neutral element in Ext1fR′(Qp/Zp,G
◦
fR′,σ

). Applying the indu
tion hypothesisto G ◦
fR′,σ1

, we see that the monodromy group of GfR′,σ1
, hen
e that of G, 
on-tains the subgroup (GLn−1(Zp) 0

0 1

) under a suitable basis of the Tate module(7.5.3). In order to 
on
lude the proof, we need another σ2 su
h that GfR′,σ2has the same 
onne
ted 
omponent as GfR′,σ1
, and that the indu
ed extensionbetween the Tate module of the étale part of GfR′,σ2

and that of G ◦R′,σ2
is non-trivial after redu
tion modulo p (see 7.5 and 7.5.4). To verify the existen
e ofsu
h a σ2, we redu
e the problem to a similar situation over a 
omplete trait of
hara
teristi
 p (see 7.9), and we use a 
riterion of non-triviality of extensionsby Hasse-Witt maps (5.12).

1.7. Acknowledgement. This paper is an expanded version of the se
ondpart of my Ph.D. thesis at University Paris 13. I would like to express my greatgratitude to my thesis advisor Prof. A. Abbes for his en
ouragement duringthis work, and also for his various helpful 
omments on earlier versions of thispaper. I also thank heartily E. Lau, F. Oort and M. Strau
h for interestingdis
ussions and valuable suggestions.
1.8. Notations. Let S be a s
heme of 
hara
teristi
 p > 0. A BT-groupover S stands for a Barsotti-Tate group over S. Let G be a 
ommutative�nite group s
heme (resp. a BT-group) over S. We denote by G∨ its Cartierdual (resp. its Serre dual), by ωG the sheaf of invariant di�erentials of G over
S, and by Lie(G) the sheaf of Lie algebras of G. If S = Spec(A) is a�neand there is no risk of 
onfusions, we also use ωG and Lie(G) to denote the
orresponding A-modules of global se
tions. We put G(p) the pull-ba
k of Gby the absolute Frobenius of S, FG : G → G(p) the Frobenius homomorphismand VG : G(p) → G the Vers
hiebung homomorphism. If G is a BT-group and
n an integer ≥ 1, we denote by G(n) the kernel of the multipli
ation by pn on
G; we have G∨(n) = (G∨)(n) by de�nition. For an OS-module M , we denoteby M (p) = OS ⊗FS

M the s
alar extension of M by the absolute Frobenius of
OS . If ϕ : M → N be a semi-linear homomorphism of OS-modules, we denoteby ϕ̃ : M (p) → N the linearization of ϕ, i.e. we have ϕ̃(λ⊗x) = λ ·ϕ(x), where
λ (resp. x) is a lo
al se
tion of OS (resp. of M).Starting from Se
tion 5, k will denote an algebrai
ally 
losed �eld of 
hara
-teristi
 p > 0.

2. Review of ordinary Barsotti-Tate groupsIn this se
tion, S denotes a s
heme of 
hara
teristi
 p > 0.
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2.1. Let G be a 
ommutative group s
heme, lo
ally free of �nite type over S.We have a 
anoni
al isomorphism of 
oherent OS-modules [Ill, 2.1℄(2.1.1) Lie(G∨) ≃H omSfppf
(G,Ga),where H omSfppf

is the sheaf of homomorphisms in the 
ategory of abelian
fppf-sheaves over S, and Ga is the additive group s
heme. Sin
e G

(p)
a ≃ Ga,the Frobenius homomorphism of Ga indu
es an endomorphism(2.1.2) ϕG : Lie(G∨)→ Lie(G∨),semi-linear with respe
t to the absolute Frobenius map FS : OS → OS ; we 
allit the Hasse-Witt map of G. By the fun
toriality of Frobenius, ϕG is also the
anoni
al map indu
ed by the Frobenius of G, or dually by the Vers
hiebungof G∨.

2.2. By a 
ommutative p-Lie algebra over S, we mean a pair (L,ϕ), where Lis an OS-module lo
ally free of �nite type, and ϕ : L → L is a semi-linearendomorphism with respe
t to the absolute Frobenius FS : OS → OS . Whenthere is no risk of 
onfusions, we omit ϕ from the notation. We denote by
p-LieS the 
ategory of 
ommutative p-Lie algebras over S.Let (L,ϕ) be an obje
t of p-LieS . We denote by

U (L) = Sym(L) = ⊕n≥0 Symn(L),the symmetri
 algebra of L over OS . Let Ip(L) be the ideal sheaf of U (L)de�ned, for an open subset V ⊂ S, by
Γ(V,Ip(L)) = {x⊗p − ϕ(x) ; x ∈ Γ(V,U (L))},where x⊗p = x⊗ x⊗ · · · ⊗ x ∈ Γ(V, Symp(L)). We put Up(L) = U (L)/Ip(L),and 
all it the p-enveloping algebra of (L,ϕ). We endow Up(L) with the stru
-ture of a Hopf-algebra with the 
omultipli
ation given by ∆(x) = 1⊗ x+x⊗ 1and the 
oinverse given by i(x) = −x.Let G be a 
ommutative group s
heme, lo
ally free of �nite type over S. Wesay that G is of 
oheight one if the Vers
hiebung VG : G(p) → G is the zerohomomorphism. We denote by GVS the 
ategory of su
h obje
ts. For anobje
t G of GVS , the Frobenius FG∨ of G∨ is zero, so the Lie algebra Lie(G∨)is lo
ally free of �nite type over OS ([DG℄ VIIA Théo. 7.4(iii)). The Hasse-Wittmap of G (2.1.2) endows Lie(G∨) with a 
ommutative p-Lie algebra stru
tureover S.

Proposition 2.3 ([DG℄ VIIA, Théo. 7.2 et 7.4). The fun
tor GVS → p-LieSde�ned by G 7→ Lie(G∨) is an anti-equivalen
e of 
ategories; a quasi-inverse isgiven by (L,ϕ) 7→ Spec(Up(L)).
2.4. Assume S = Spec(A) a�ne. Let (L,ϕ) be an obje
t of p-LieS su
h that
L is free of rank n over OS , (e1, · · · , en) be a basis of L over OS , (hij)1≤i,j≤nbe the matrix of ϕ under the basis (e1, · · · , en), i.e. ϕ(ej) =

∑n
i=1 hijei for
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1 ≤ j ≤ n. Then the group s
heme atta
hed to (L,ϕ) is expli
itly given by

Spec(Up(L)) = Spec

(
A[X1, · · · , Xn]/(X

p
j −

n∑

i=1

hijXi)1≤j≤n

)
,with the 
omultipli
ation ∆(Xj) = 1⊗Xj +Xj ⊗ 1. By the Ja
obian 
riterionof étaleness [EGA, IV0 22.6.7℄, the �nite group s
heme Spec(Up(L)) is étaleover S if and only if the matrix (hij)1≤i,j≤n is invertible. This 
ondition isequivalent to that the linearization of ϕ is an isomorphism.

Corollary 2.5. An obje
t G of GVS is étale over S, if and only if the lin-earization of its Hasse-Witt map (2.1.2) is an isomorphism.Proof. The problem being lo
al over S, we may assume S a�ne and L =
Lie(G∨) free over OS . By Theorem 2.3, G is isomorphi
 to Spec(Up(L)), andwe 
on
lude by the last remark of 2.4. �

2.6. Let G be a BT-group over S of height c+ d and dimension d. The Lie al-gebra Lie(G∨) is an OS-module lo
ally free of rank c, and 
anoni
ally identi�edwith Lie(G∨(1))([BBM℄ 3.3.2). We de�ne the Hasse-Witt map of G(2.6.1) ϕG : Lie(G∨)→ Lie(G∨)to be that of G(1) (2.1.2).
2.7. Let k be a �eld of 
hara
teristi
 p > 0, G be a BT-group over k. Re
allthat we have a 
anoni
al exa
t sequen
e of BT-groups over k(2.7.1) 0→ G◦ → G→ Gét → 0with G◦ 
onne
ted and Gét étale ([Dem℄ Chap.II, �7). This indu
es an exa
tsequen
e of Lie algebras(2.7.2) 0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,
ompatible with Hasse-Witt maps.
Proposition 2.8. Let k be a �eld of 
hara
teristi
 p > 0, G be a BT-groupover k. Then Lie(Gét∨) is the unique maximal k-subspa
e V of Lie(G∨) withthe following properties:(a) V is stable under ϕG;(b) the restri
tion of ϕG to V is inje
tive.Proof. It is 
lear that Lie(Gét∨) satis�es property (a). We note that the Ver-s
hiebung of Gét(1) vanishes; so Gét(1) is in the 
ategory GVSpec(k). Sin
e kis a �eld, 2.5 implies that the restri
tion of ϕG to Lie(Gét∨), whi
h 
oin
ideswith ϕGét , is inje
tive. This proves that Lie(Gét∨) veri�es (b). Conversely, let
V be an arbitrary k-subspa
e of Lie(G∨) with properties (a) and (b). We haveto show that V ⊂ Lie(Gét∨). Let σ be the Frobenius endomorphism of k. If Mis a k-ve
tor spa
e, for ea
h integer n ≥ 1, we put M (pn) = k ⊗σn M , i.e. wehave 1 ⊗ ax = σn(a) ⊗ x in k ⊗σn M for a ∈ k, x ∈ M . Sin
e ϕG|V : V → Vis inje
tive by assumption, the linearization ϕ̃nG|V (pn) : V (pn) → V of ϕnG|V
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404 Yichao Tianis inje
tive (hen
e bije
tive) for any n ≥ 1. We have V = ϕ̃nG(V (pn)). Sin
e
G◦ is 
onne
ted, there is an integer n ≥ 1 su
h that the n-th iterated Frobe-nius FnG◦(1) : G◦(1) → G◦(1)(p

n) vanishes. Hen
e by de�nition, the linearized
n-iterated Hasse-Witt map ϕ̃nG◦ : Lie(G◦∨)(p

n) → Lie(G◦∨) is zero. By the
ompatibility of Hasse-Witt maps, we have ϕ̃nG(Lie(G∨)(p
n)) ⊂ Lie(Gét∨); inparti
ular, we have V = ϕ̃nG(V (pn)) ⊂ Lie(Gét∨). This 
ompletes the proof. �

Corollary 2.9. Let k be a �eld of 
hara
teristi
 p > 0, G be a BT-group over
k. Then G is 
onne
ted if and only if ϕG is nilpotent.Proof. In the proof of the proposition, we have seen that the Hasse-Witt mapof the 
onne
ted part of G is nilpotent. So the �only if� part is veri�ed. Con-versely, if ϕG is nilpotent, Lie(Gét∨) is zero by the proposition. Therefore G is
onne
ted. �

Definition 2.10. Let S be a s
heme of 
hara
teristi
 p > 0, G be a BT-group over S. We say that G is ordinary if there exists an exa
t sequen
e ofBT-groups over S(2.10.1) 0→ Gmult → G→ Gét → 0,su
h that Gmult is multipli
ative and Gét is étale.We note that when it exists, the exa
t sequen
e (2.10.1) is unique up to aunique isomorphism, be
ause there is no non-trivial homomorphisms between amultipli
ative BT-group and an étale one in 
hara
teristi
 p > 0. The propertyof being ordinary is 
learly stable under arbitrary base 
hange and Serre duality.If S is the spe
trum of a �eld of 
hara
teristi
 p > 0, G is ordinary if and onlyif its 
onne
ted part G◦ is of multipli
ative type.
Proposition 2.11. Let G be a BT-group over S. The following 
onditions areequivalent:(a) G is ordinary over S.(b) For every x ∈ S, the �ber Gx = G⊗S κ(x) is ordinary over κ(x).(
) The �nite group s
heme KerVG is étale over S.(
') The �nite group s
heme KerFG is of multipli
ative type over S.(d) The linearization of the Hasse-Witt map ϕG is an isomorphism.First, we prove the following lemmas.
Lemma 2.12. Let T be a s
heme, H be a 
ommutative group s
heme lo
ally freeof �nite type over T . Then H is étale ( resp. of multipli
ative type) over T ifand only if, for every x ∈ T , the �ber H⊗T κ(x) is étale ( resp. of multipli
ativetype) over κ(x).Proof. We will 
onsider only the étale 
ase; the multipli
ative 
ase follows byduality. Sin
e H is T -�at, it is étale over T if and only if it is unrami�edover T . By [EGA, IV 17.4.2℄, this 
ondition is equivalent to that H ⊗T κ(x) isunrami�ed over κ(x) for every point x ∈ T . Hen
e the 
on
lusion follows. �
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Lemma 2.13. Let G be a BT-group over S. Then KerVG is an obje
t of the
ategory GVS, i.e. it is lo
ally free of �nite type over S, and its Vers
hiebung iszero. Moreover, we have a 
anoni
al isomorphism (KerVG)∨ ≃ KerFG∨ , whi
hindu
es an isomorphism of Lie algebras Lie

(
(KerVG)∨

)
≃ Lie(KerFG∨) =

Lie(G∨), and the Hasse-Witt map (2.1.2) of KerVG is identi�ed with ϕG(2.6.1).Proof. The group s
heme KerVG is lo
ally free of �nite type over S ([Ill℄ 1.3(b)),and we have a 
ommutative diagram
(KerVG)(p)

VKer VG
//

� _

��

KerVG� _

��
(G(p))(p)

V
G(p)

// G(p)By the fun
toriality of Vers
hiebung, we have VG(p) = (VG)(p) and KerVG(p) =
(KerVG)(p). Hen
e the 
omposition of the left verti
al arrow with VG(p) van-ishes, and the Vers
hiebung of KerVG is zero.By Cartier duality, we have (KerVG)∨ = Coker(FG∨(1)). Moreover, the exa
tsequen
e

· · · → G∨(1)
FG∨(1)
−−−−→

(
G∨(1)

)(p) VG∨(1)
−−−−→ G∨(1)→ · · · ,indu
es a 
anoni
al isomorphism(2.13.1) Coker(FG∨(1))

∼
−→ Im(VG∨(1)) = KerFG∨(1) = KerFG∨ .Hen
e, we dedu
e that(2.13.2) (KerVG)∨ ≃ Coker(FG∨(1))

∼
−→ KerFG∨ →֒ G∨(1).Sin
e the natural inje
tion KerFG∨ → G∨(1) indu
es an isomorphism of Liealgebras, we get(2.13.3) Lie

(
(KerVG)∨

)
≃ Lie(KerFG∨) = Lie(G∨(1)) = Lie(G∨).It remains to prove the 
ompatibility of the Hasse-Witt maps with (2.13.3). Wenote that the dual of the morphism (2.13.2) is the 
anoni
al map F : G(1) →

KerVG = Im(FG(1)) indu
ed by FG(1). Hen
e by (2.1.1), the isomorphism(2.13.3) is identi�ed with the fun
torial map
H omSfppf

(KerVG,Ga)→H omSfppf
(G(1),Ga)indu
ed by F , and its 
ompatibility with the Hasse-Witt maps follows easilyfrom the de�nition (2.1.2). �Proof of 2.11. (a)⇒(b). Indeed, the ordinarity of G is stable by base 
hange.(b)⇒(
). By Lemma 2.12, it su�
es to verify that for every point x ∈ S, the�ber (KerVG)⊗S κ(x) ≃ KerVGx

is étale over κ(x). Sin
e Gx is assumed to beordinary, its 
onne
ted part (Gx)
◦ is multipli
ative. Hen
e, the Vers
hiebung of
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(Gx)
◦ is an isomorphism, and KerVGx

is 
anoni
ally isomorphi
 to KerVGét
x
⊂

(Gét
x )(p) ≃ (G

(p)
x )ét, so our assertion follows.

(c)⇔ (d). It follows immediately from Lemma 2.13 and Corollary 2.5.(
)⇔(
'). By 2.12, we may assume that S is the spe
trum of a �eld. So the
ategory of 
ommutative �nite group s
hemes over S is abelian. We will justprove (
)⇒(
'); the 
onverse 
an be proved by duality. We have a fundamentalshort exa
t sequen
e of �nite group s
hemes(2.13.4) 0→ KerFG → G(1)
F
−→ KerVG → 0,where F is indu
ed by FG(1), That indu
es a 
ommutative diagram

0 // (KerFG
)(p)

V ′

��

// (G(1)
)(p) F (p)

//

VG(1)

��

(
KerVG

)(p) //

V ′′

��

0

0 // KerFG // G(1)
F

// KerVG // 0where verti
al arrows are the Vers
hiebung homomorphisms. We have seenthat V ′′ = 0 (2.13). Therefore, by the snake lemma, we have a long exa
tsequen
e(2.13.5)
0→ KerV ′ → KerVG(1)

α
−→
(
KerVG

)(p)
→

→ CokerV ′ → CokerVG(1)
β
−→ KerVG → 0,where the map α is the Frobenius of KerVG and β is the 
omposed isomorphism

Coker(VG(1)) ≃ G(1)/KerFG(1)
∼
−→ Im(FG(1)) ≃ KerVG.Then 
ondition (
) is equivalent to that α is an isomorphism; it implies that

KerV ′ = CokerV ′ = 0, i.e. the Vers
hiebung of KerFG is an isomorphism,and hen
e (
').(
)⇒(a). For every integer n > 0, we denote by FnG the 
omposed homomor-phism
G

FG−−→ G(p)
F

G(p)

−−−−→ · · ·
F

G(pn−1)

−−−−−−→ G(pn),and by V nG the 
omposed homomorphism
G(pn)

V
G(pn−1)

−−−−−−→ G(pn−1)
V

G(pn−2)

−−−−−−→ · · ·
VG−−→ G;

FnG and V nG are isogenies of BT-groups. From the relation V nG ◦ FnG = pn, wededu
e an exa
t sequen
e(2.13.6) 0→ KerFnG → G(n)
Fn

−−→ KerV nG → 0,
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ed by FnG. For 1 ≤ j < n, we have a 
ommutative diagram(2.13.7) G(pn)

V n−j

G(pj)
//

V n
G ""EE

EE
EE

EE
G(pj)

V j
G||yy

yy
yy

yy

G.One noti
es that KerV n−j
G(pj)

= (KerV n−jG )(p
j) by the fun
toriality of Ver-s
hiebung . Sin
e all maps in (2.13.7) are isogenies, we have an exa
t sequen
e(2.13.8) 0→ (KerV n−jG )(p

j)
i′n−j,n

−−−−→ KerV nG
pn,j

−−→ KerV jG → 0.Therefore, 
ondition (
) implies by indu
tion that KerV nG is an étale groups
heme over S. Hen
e the j-th iteration of the Frobenius KerV n−jG →

(KerV n−jG )(p
j) is an isomorphism, and KerV n−jG is identi�ed with a 
losedsubgroup s
heme of KerV nG by the 
omposed map
in−j,n : KerV n−jG

∼
−→ (KerV n−jG )(p

j)
i′n−j,n

−−−−→ KerV nG .We 
laim that the kernel of the multipli
ation by pn−j on KerV nG is KerV n−jG .Indeed, from the relation pn−j · IdG(pn) = Fn−j
G(pj)

◦ V n−j
G(pj )

, we dedu
e a 
ommu-tative diagram (without dotted arrows)(2.13.9) KerV nG //

pn−j

��

pn,j

$$I
I

I
I

I
G(pn)

pn−j

��

V n−j

G(pj )

##GG
GGG

GG
GG

KerV jG
//_________

ij,n
zzu

u
u

u
u

G(pj)

Fn−j

G(pj){{ww
ww

ww
www

KerV nG // G(pn).It follows from (2.13.8) that the subgroup KerV nG of G(pn) is sent by V n−j
G(pj )

onto
KerV jG. Therefore diagram (2.13.9) remains 
ommutative when 
ompleted bythe dotted arrows, hen
e our 
laim. It follows from the 
laim that (KerV nG )n≥1
onstitutes an étale BT-group over S, denoted by Gét. By duality, we have anexa
t sequen
e(2.13.10) 0→ KerF jG → KerFnG → (KerFn−jG )(p

j) → 0.Condition (
') implies by indu
tion that KerFnG is of multipli
ative type. Hen
ethe j-th iteration of Vers
hiebung (KerFn−jG )(p
j) → KerFn−jG is an isomor-phism. We dedu
e from (2.13.10) that (KerFnG)n≥1 form a multipli
ative BT-group over S that we denote by Gmult. Then the exa
t sequen
es (2.13.6) givea de
omposition of G of the form (2.10.1). �
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Corollary 2.14. Let G be a BT-group over S, and Sord be the lo
us in S ofthe points x ∈ S su
h that Gx = G ⊗S κ(x) is ordinary over κ(x). Then Sordis open in S, and the 
anoni
al in
lusion Sord → S is a�ne.The open subs
heme Sord of S is 
alled the ordinary lo
us of G.
3. Preliminaries on Dieudonné Theory and Deformation Theory

3.1. We will use freely the 
onventions of 1.8. Let S be a s
heme of 
hara
-teristi
 p > 0, G be a Barsotti-Tate group over S, and M(G) = D(G)(S,S) bethe 
oherent OS-module obtained by evaluating the (
ontravariant) Dieudonné
rystal of G at the trivial divided power immersion S →֒ S [BBM, 3.3.6℄. Re
allthat M(G) is an OS-module lo
ally free of �nite type satisfying the followingproperties:(i) Let FM : M(G)(p) →M(G) and VM : M(G) →M(G)(p) be the OS-linearmaps indu
ed respe
tively by the Frobenius and the Vers
hiebung of G. Wehave the following exa
t sequen
e:
· · · →M(G)(p)

FM−−→M(G)
VM−−→M(G)(p) → · · · .(ii) There is a 
onne
tion ∇ : M(G) → M(G) ⊗OS

Ω1
S/Fp

for whi
h FM and
VM are horizontal morphisms.(iii) We have two 
anoni
al �ltrations on M(G) by OS-modules lo
ally free of�nite type:(3.1.1) 0→ ωG →M(G)→ Lie(G∨)→ 0,
alled the Hodge �ltration on M(G) [BBM, 3.3.5℄, and the 
onjugate �ltrationon M(G)(3.1.2) 0→ Lie(G∨)(p)

φG
−−→M(G)→ ω

(p)
G → 0,whi
h is obtained by applying the Dieudonné fun
tor to the exa
t sequen
e of�nite group s
hemes 0 → KerFG → G(1) → KerVG → 0 [BBM, 4.3.1, 4.3.6,4.3.11℄. Moreover, we have the following 
ommutative diagram (
f. [Ka1, 2.3.2
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p-Adic Monodromy of a Barsotti-Tate Group 409and 2.3.4℄)(3.1.3)
0

��

0

��

0

��

ω
(p)
G

��

ωG

��

ψG
// ω

(p)
G

��
// M(G)(p)

FM
//

��

M(G)

��

VM
//

6 6mmmmmmmmmmmmmmmm

M(G)(p)

��

// ,

Lie(G∨)(p)

��

(
�

φG

6llllllllllllll
fϕG

// Lie(G∨)

��

Lie(G∨)(p)

��
0 0 0where the 
olumns are the Hodge �ltrations and the anti-diagonal is the
onjugate �ltration. By fun
toriality, we see easily that ϕ̃G above is noth-ing but the linearization of the Hasse-Witt map ϕG (2.6.1), and the mor-phism ψ∗G : Lie(G)(p) → Lie(G), whi
h is obtained by applying the fun
tor

H omOS
(_,OS) to ψG, is identi�ed with the linearization ϕ̃G∨ of ϕG∨ .The formation of these stru
tures on M(G) 
ommutes with arbitrary base
hanges of S. In the sequel, we will use (M(G), FM ,∇) to emphasize thesestru
tures on M(G).

3.2. In the reminder of this se
tion, k will denote an algebrai
ally 
losed �eldof 
hara
teristi
 p > 0. Let S be a s
heme formally smooth over k su
h that
Ω1
S/Fp

= Ω1
S/k is an OS-module lo
ally free of �nite type, e.g. S = Spec(A)with A a formally smooth k-algebra with a �nite p-basis over k. Let G be aBT-group over S. We put KS to be the 
omposed morphism(3.2.1) KS : ωG →M(G)

∇
−→M(G)⊗OS

Ω1
S/k

pr
−→ Lie(G∨)⊗OS

Ω1
S/kwhi
h is OS-linear. We put TS/k = H omOS

(Ω1
S/k,OS), and de�ne theKodaira-Spen
er map of G(3.2.2) Kod : TS/k →H omOS

(ωG,Lie(G∨))to be the morphism indu
ed by KS. We say that G is versal if Kod is surje
tive.
3.3. Let r be an integer ≥ 1, R = k[[t1, · · · , tr]], m be the maximal idealof R. We put S = Spf(R), S = Spec(R), and for ea
h integer n ≥ 0,
Sn = Spec(R/mn+1). By a BT-group G over the formal s
heme S , we meana sequen
e of BT-groups (Gn)n≥0 over (Sn)n≥0 equipped with isomorphisms
Gn+1 ×Sn+1 Sn ≃ Gn.
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ording to [deJ, 2.4.4℄, the fun
tor G 7→ (G×SSn)n≥0 indu
es an equivalen
eof 
ategories between the 
ategory of BT-groups over S and the 
ategory of BT-groups over S . For a BT-group G over S , the 
orresponding BT-group Gover S is 
alled the algebraization of G . We say that G is versal over S , if itsalgebraization G is versal over S. Sin
e S is lo
al, by Nakayama's Lemma, Gor G is versal if and only if the redu
tion of Kod modulo the maximal ideal(3.3.1) Kod0 : TS/k ⊗OS
k −→ Homk(ωG0 ,Lie(G∨0 ))is surje
tive.

3.4. We re
all brie�y the deformation theory of a BT-group. Let ALk be the
ategory of lo
al artinian k-algebras with residue �eld k. We noti
e that allmorphisms of ALk are lo
al. A morphism A′ → A in ALk is 
alled a smallextension, if it is surje
tive and its kernel I satis�es I ·mA′ = 0, where mA′ isthe maximal ideal of A′.Let G0 be a BT-group over k, and A an obje
t of ALk. A deformation of
G0 over A is a pair (G,φ), where G is a BT-group over Spec(A) and φ isan isomorphism φ : G ⊗A k

∼
−→ G0. When there is no risk of 
onfusions, wewill denote a deformation (G,φ) simply by G. Two deformations (G,φ) and

(G′, φ′) over A are isomorphi
 if there exists an isomorphism of BT-groups
ψ : G

∼
−→ G′ over A su
h that φ = φ′ ◦ (ψ⊗A k). Let's denote by D the fun
torwhi
h asso
iates with ea
h obje
t A of ALk the set of isomorphsm 
lasses ofdeformations of G0 over A. If f : A → B is a morphism of ALk, then themap D(f) : D(A) → D(B) is given by extension of s
alars. We 
all D thedeformation fun
tor of G0 over ALk.

Proposition 3.5 ([Ill℄, 4.8). Let G0 be a BT-group over k of dimension d andheight c+ d, D be the deformation fun
tor of G0 over ALk.(i) Let A′ → A be a small extension in ALk with ideal I, x = (G,φ)be an element in D(A), Dx(A′) be the subset of D(A′) with image x in
D(A). Then the set Dx(A′) is a nonempty homogenous spa
e under the group
Homk(ωG0 ,Lie(G∨0 ))⊗k I.(ii) The fun
tor D is pro-representable by a formally smooth formal s
heme Sover k of relative dimension cd, i.e. S = Spf(R) with R ≃ k[[(tij)1≤i≤c,1≤j≤d]],and there exists a unique deformation (G , ψ) of G0 over S su
h that, for anyobje
t A of ALk and any deformation (G,φ) of G0 over A, there is a uniquehomomorphism of lo
al k-algebras ϕ : R→ A with (G,φ) = D(ϕ)(G , ψ).(iii) Let TS /k(0) = TS /k⊗OS

k be the tangent spa
e of S at its unique 
losedpoint,
Kod0 : TS /k(0) −→ Homk(ωG0 ,Lie(G∨0 ))be the Kodaira-Spen
er map of G evaluated at the 
losed point of S . Then Kod0is bije
tive, and it 
an be des
ribed as follows. For an element f ∈ TS /k(0), i.e.a homomorphism of lo
al k-algebras f : R→ k[ǫ]/ǫ2, Kod0(f) is the di�eren
eof deformations

[G ⊗R (k[ǫ]/ǫ2)]− [G0 ⊗k (k[ǫ]/ǫ2)],whi
h is a well-de�ned element in Homk(ωG0 ,Lie(G∨0 )) by (i).
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Remark 3.6. Let (ej)1≤j≤d be a basis of ωG0 , (fi)1≤i≤c be a basis of Lie(G∨0 ).In view of 3.5(iii), we 
an 
hoose a system of parameters (tij)1≤i≤c,1≤j≤d of Ssu
h that

Kod0(
∂

∂tij
) = e∗j ⊗ fi,where (e∗j )1≤j≤d is the dual basis of (ej)1≤j≤d. Moreover, if m is the maximalideal of R, the parameters tij are determined uniquely modulo m2.

Corollary 3.7 (Algebraization of the universal deformation). Theassumptions being those of (3.5), we put moreover S = Spec(R) and G thealgebraization of the universal formal deformation G . Then the BT-group Gis versal over S, and satis�es the following universal property: Let A be anoetherian 
omplete lo
al k-algebra with residue �eld k, G be a BT-group over
A endowed with an isomorphism G ⊗A k ≃ G0. Then there exists a unique
ontinuous homomorphism of lo
al k-algebras ϕ : R→ A su
h that G ≃ G⊗RA.Proof. By the last remark of 3.3, G is 
learly versal. It remains to prove that itsatis�es the universal property in the 
orollary. Let G be a deformation of G0over a noetherian 
omplete lo
al k-algebra A with residue �eld k. We denoteby mA the maximal ideal of A, and put An = A/mn+1

A for ea
h integer n ≥ 0.Then by 3.5(b), there exists a unique lo
al homomorphism ϕn : R → An su
hthat G ⊗ An ≃ G⊗R An. The ϕn's form a proje
tive system (ϕn)n≥0, whoseproje
tive limit ϕ : R→ A answers the question. �

Definition 3.8. The notations are those of (3.7). We 
all S the lo
al moduli in
hara
teristi
 p of G0, and G the universal deformation of G0 in 
hara
teristi

p.If there is no 
onfusions, we will omit �in 
hara
teristi
 p� for short.
3.9. Let G be a BT-group over k, G◦ be its 
onne
ted part, and Gét be itsétale part. Let r be the height of Gét. Then we have Gét ≃ (Qp/Zp)

r, sin
e
k is algebrai
ally 
losed. Let DG (resp. DG◦) be the deformation fun
tor of G(resp. G◦) over ALk. If A is an obje
t in ALk and G is a deformation of G(resp. G◦) over A, we denote by [G ] its isomorphism 
lass in DG(A) (resp. in
DG◦(A)).
Proposition 3.10. The assumptions are as above, let Θ : DG → DG◦ be themorphism of fun
tors that maps a deformation of G to its 
onne
ted 
omponent.(i) The morphism Θ is formally smooth of relative dimension r.(ii) Let A be an obje
t of ALk, and G ◦ be a deformation of G◦ over A. Then thesubset Θ−1

A ([G ◦]) of DG(A) is 
anoni
ally identi�ed with Ext1A(Qp/Zp,G
◦)r,where Ext1A means the group of extensions in the 
ategory of abelian fppf-sheaves on Spec(A).Proof. (i) Sin
e DG and DG◦ are both pro-representable by a noetherian lo
al
omplete k-algebra and formally smooth over k (3.5), by a formal 
ompletionversion of [EGA, IV 17.11.1(d)℄, we only need to 
he
k that the tangent map

Θk[ǫ]/ǫ2 : DG(k[ǫ]/ǫ2)→ DG◦(k[ǫ]/ǫ2)
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412 Yichao Tianis surje
tive with kernel of dimension r over k. By 3.5(iii), DG(k[ǫ]/ǫ2)(resp. DG◦(k[ǫ]/ǫ2)) is isomorphi
 to Homk(ωG,Lie(G∨)) (resp.
Homk(ωG◦ ,Lie(G◦∨))) by the Kodaira-Spen
er morphism. In view of the
anoni
al isomorphism ωG ≃ ωG◦ , Θk[ǫ]/ǫ2 
orresponds to the map

Θ′k[ǫ]/ǫ2 : Homk(ωG,Lie(G∨))→ Homk(ωG,Lie(G◦∨))indu
ed by the 
anoni
al surje
tion Lie(G∨) → Lie(G◦∨). It is 
lear that
Θ′k[ǫ]/ǫ2 is surje
tive of kernel Homk(ωG,Lie(Gét∨)), whi
h has dimension rover k.(ii) Sin
e Gét is isomorphi
 to (Qp/Zp)

r, every element in Ext1A(Qp/Zp,G
◦)rde�nes 
learly an element of DG(A) with image [G ◦] in DG◦(A). Conversely, forany G ∈ DG(A) with 
onne
ted 
omponent isomorphi
 to G ◦, the isomorphism

Gét ≃ (Qp/Zp)
r lifts uniquely to an isomorphism G ét ≃ (Qp/Zp)

r be
ause A ishenselian. The 
anoni
al exa
t sequen
e 0 → G ◦ → G → G ét → 0 shows that
G 
omes from an element of Ext1A(Qp/Zp,G

◦)r.
�

4. HW-
y
li
 Barsotti-Tate Groups
Definition 4.1. Let S be a s
heme of 
hara
teristi
 p > 0, G be a BT-groupover S su
h that c = dim(G∨) is 
onstant. We say that G is HW-
y
li
, if c ≥ 1and there exists an element v ∈ Γ(S,Lie(G∨)) su
h that

v, ϕG(v), · · · , ϕc−1
G (v)generate Lie(G∨) as an OS-module, where ϕG is the Hasse-Witt map (2.6.1) of

G.
Remark 4.2. It is 
lear that a BT-group G over S is HW-
y
li
, if and onlyif Lie(G∨) is free over OS and there exists a basis of Lie(G∨) over OS underwhi
h ϕG is expressed by a matrix of the form(4.2.1) 



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



,where ai ∈ Γ(S,OS) for 1 ≤ i ≤ c.

Lemma 4.3. Let R be a lo
al ring of 
hara
teristi
 p > 0, k be its residue �eld.(i) A BT-group G over R is HW-
y
li
 if and only if so is G⊗ k.(ii) Let 0→ G′ → G→ G′′ → 0 be an exa
t sequen
e of BT-groups over R. If
G is HW-
y
li
, then so is G′. In parti
ular, if R is henselian, the 
onne
tedpart of a HW-
y
li
 BT-group over R is HW-
y
li
.Proof. (i) The property of being HW-
y
li
 is 
learly stable under arbitrarybase 
hanges, so the �only if� part is 
lear. Assume that G0 = G ⊗ kis HW-
y
li
. Let v be an element of Lie(G∨0 ) = Lie(G∨) ⊗ k su
h that
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(v, ϕG0(v), · · · , ϕ

c−1
G0

(v)) is a basis of Lie(G∨0 ). Let v be any lift of v in Lie(G∨).Then by Nakayama's lemma, (v, ϕG(v), · · · , ϕc−1
G (v)) is a basis of Lie(G∨).(ii) By statement (i), we may assume R = k. The exa
t sequen
e of BT-groupsindu
es an exa
t sequen
e of Lie algebras(4.3.1) 0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,and the Hasse-Witt map ϕG′ is indu
ed by ϕG by fun
toriality. Assume that

G is HW-
y
li
 and G∨ has dimension c. Let u be an element of Lie(G∨) su
hthat
u, ϕG(u), · · · , ϕc−1

G (u)form a basis of Lie(G∨) over k. We denote by u′ the image of u in Lie(G′∨).Let r ≤ c be the maximal integer su
h that the ve
tors
u′, ϕG′(u′), · · · , ϕr−1

G′ (u′)are linearly independent over k. It is easy to see that they form a basis of the
k-ve
tor spa
e Lie(G′∨). Hen
e G′ is HW-
y
li
. �

Lemma 4.4. Let S = Spec(R) be an a�ne s
heme of 
hara
teristi
 p > 0, Gbe a HW-
y
li
 BT-group over R with c = dim(G∨) 
onstant, and



0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈Mc×c(R),be a matrix of ϕG. Put ac+1 = 1, and P (X) =
∑c
i=0 ai+1X

pi

∈ R[X ].(i) Let VG : G(p) → G be the Vers
hiebung homomorphism of G. Then KerVGis isomorphi
 to the group s
heme Spec(R[X ]/P (X)) with 
omultipli
ationgiven by X 7→ 1⊗X +X ⊗ 1.(ii) Let x ∈ S, and Gx be the �bre of G at x. Put(4.4.1) i0(x) = min
0≤i≤c

{i; ai+1(x) 6= 0},where ai(x) denotes the image of ai in the residue �eld of x. Then the étale partof Gx has height c− i0(x), and the 
onne
ted part of Gx has height d + i0(x).In parti
ular, Gx is 
onne
ted if and only if ai(x) = 0 for 1 ≤ i ≤ c.Proof. (i) By 2.3 and 2.13, KerVG is isomorphi
 to the group s
heme
Spec

(
R[X1, . . . , Xc]/(X

p
1 −X2, · · · , X

p
c−1 −Xc, X

p
c + a1X1 + · · ·+ acXc)

)with 
omultipli
ation ∆(Xi) = 1 ⊗ Xi + Xi ⊗ 1 for 1 ≤ i ≤ c. By sending
(X1, X2, · · · , Xc) 7→ (X,Xp, · · · , Xpc−1

), we see that the above group s
hemeis isomorphi
 to Spec(R[X ]/P (X))with 
omultipli
ation ∆(X) = 1⊗X+X⊗1.
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414 Yichao Tian(ii) By base 
hange, we may assume that S = x = Spec(k) and hen
e G = Gx.Let G(1) be the kernel of the multipli
ation by p on G. Then we have an exa
tsequen
e
0→ KerFG → G(1)→ KerVG → 0.Sin
e KerFG is an in�nitesimal group s
heme over k, we have G(1)(k) =

(KerVG)(k), where k is an algebrai
 
losure of k. By the de�nition of i0(x), wehave P (X) = Q(Xpi0(x)

), where Q(X) is an additive sepearable polynomial in
k[X ] with deg(Q) = pc−i0(x). Hen
e the roots of P (X) in k form an Fp-ve
torspa
e of dimension c − i0(x). By (i), (KerVG)(k) 
an be identi�ed with theadditive group 
onsisting of the roots of P (X) in k. Therefore, the étale partof G has height c− i0(x), and the 
onne
ted part of G has height d+ i0(x). �

4.5. Let k be a perfe
t �eld of 
hara
teristi
 p > 0, and αp = Spec(k[X ]/Xp) bethe �nite group s
heme over k with 
omultipli
ation map ∆(X) = 1⊗X+X⊗1.Let G be a BT-group over k. Following Oort, we 
all
a(G) = dimk Homkfppf

(αp, G)the a-number of G, where Homkfppf
means the homomorphisms in the 
ate-gory of abelian fppf-sheaves over k. Sin
e the Frobenius of αp vanishes, anymorphism of αp in G fa
torize through Ker(FG). Therefore we have

Homkfppf
(αp, G) = Homk−gr(αp,Ker(FG))

= Homk−gr(Ker(FG)∨, αp)

= Homp-Liek
(Lie(αp),Lie(Ker(FG))),where Homk−gr denotes the homomorphisms in the 
ategory of 
ommutativegroup s
hemes over k, and the last equality uses Proposition 2.3. Sin
e we havea 
anoni
al isomorphism Lie(Ker(FG)) ≃ Lie(G) and Lie(αp) has dimension oneover k with ϕαp

= 0, we get(4.5.1) a(G) = dimk{x ∈ Lie(G)|ϕG∨(x) = 0} = dimk Ker(ϕG∨).Due to the perfe
tness of k, we have also a(G) = dimk Ker(ϕ̃G∨), where ϕ̃G∨is the linearization of ϕG∨ . By Proposition 2.11, we see that a(G) = 0 if andonly if G is ordinary.
Lemma 4.6. Let G be a BT-group over k, and G∨ its Serre dual. Then wehave a(G) = a(G∨).Proof. Let ψG : ωG → ω

(p)
G be the k-linear map indu
ed by the Vers
hiebungof G. Then ψ∗G, the morphism obtained by applying the fun
tor Homk(_, k)to ψG, is identi�ed with ϕ̃G∨ . By (4.5.1) and the exa
titude of the fun
tor

Homk(_, k), we have a(G) = dimk Ker(ψ∗G) = dimk Coker(ψG). Using theadditivity of dimk, we get �nally a(G) = dimk Ker(ψG). By 
onsidering the
ommutative diagram (3.1.3), we have
a(G) = dimk

(
ωG ∩ φG(Lie(G∨)(p))

)
.
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p-Adic Monodromy of a Barsotti-Tate Group 415On the other hand, it follows also from (3.1.3) that
a(G∨) = dimk Ker(ϕ̃G) = dimk

(
φG(Lie(G∨)(p)) ∩ ωG

)
.The lemma now follows immediately.

�

Proposition 4.7. Let k be a perfe
t �eld of 
hara
teristi
 p > 0, G a BT-groupover k. Consider the following 
onditions:(i) G is HW-
y
li
 and non-ordinary;(ii) the 
onne
ted part G◦ of G is HW-
y
li
 and not of multipli
ative type;(iii) a(G∨) = a(G) = 1.We have (i) ⇒ (ii) ⇔ (iii). If k is algebrai
ally 
losed, we have moreover
(ii)⇒ (i).
Remark 4.8. In [Oo1, Lemma 2.2℄, Oort proved the following assertion, whi
his a generalization of (iii) ⇒ (ii): Let k be an algebrai
ally 
losed �eld of
hara
teristi
 p > 0, and G be a 
onne
ted BT-group with a(G) = 1. Thenthere exists a basis of the Dieudonné module M of G overW (k), su
h that thea
tion of Frobenius on M is given by a display-matrix of �normal form� in thesense of [Oo1, 2.1℄.Proof. (i)⇒ (ii) follows from 4.3(ii).
(ii)⇒ (iii). First, we note that a(G) = a(G◦), so we may assume G 
onne
ted.Sin
e G is not of multipli
ative type, we have c = dim(G∨) ≥ 1. By Lemma4.4(ii), there exists a basis of Lie(G∨) over k under whi
h ϕG is expressed by




0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0... . . . ...
0 0 · · · 1 0



∈ Mc×c(k).A

ording to (4.5.1), a(G∨) equals to dimk Ker(ϕG), i.e. the k-dimension ofthe solutions of the equation system in (x1, · · · , xc)




0 0 · · · 0 0
1 0 · · · 0 0... . . . ...
0 0 · · · 1 0







xp1
xp2...
xpc


 = 0The solutions (x1, · · · , xc) form 
learly a ve
tor spa
e over k of dimension 1,i.e. we have a(G∨) = 1.

(iii) ⇒ (ii). Let Gét be the étale part of G. Sin
e k is perfe
t, the exa
tsequen
e (2.7.1) splits [Dem, Chap. II �7℄; so we have G ≃ G◦ ×Gét. We put
M = Lie(G∨), M1 = Lie(G◦∨) and M2 = Lie(Gét∨) for short. By 2.8 and 2.9,we have a de
omposition M = M1 ⊕M2, su
h that M1,M2 are stable under
ϕG, and the a
tion of ϕG is nilpotent on M1 and bije
tive on M2. We note
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416 Yichao Tianthat a(G◦∨) = a(G◦) = a(G) = 1. By the last remark of 4.5, G◦ is not ofmultipli
ative type, hen
e dimkM1 = dim(G◦∨) ≥ 1. It remains to prove that
G◦ is HW-
y
li
. Let n be the minimal integer su
h that ϕnG(M1) = 0. Wehave a stri
tly in
reasing �ltration

0 ( Ker(ϕG) ( · · · ( Ker(ϕnG) = M1.If n = 1, then M1 is one-dimensional, hen
e G◦ is 
learly HW-
y
li
. Assume
n ≥ 2. For 2 ≤ m ≤ n, ϕm−1

G indu
es an inje
tive map
ϕm−1
G : Ker(ϕmG )/Ker(ϕm−1

G ) −→ Ker(ϕG).Sin
e dimk Ker(ϕG) = a(G◦∨) = 1, ϕm−1
G is ne
essarily bije
tive. So we have

dimk Ker(ϕmG ) = m for 1 ≤ m ≤ n. Let v be an element of M1 but not in
Ker(ϕn−1

G ). Then v, ϕG(v), · · · , ϕn−1
G (v) are linearly independant, hen
e theyform a basis of M1 over k. This proves that G◦ is HW-
y
li
.Assume k algebrai
ally 
losed. We prove that (ii) ⇒ (i). Noting that G isordinary if and only if G◦ is of multipli
ative type, we only need to 
he
k that

G is HW-
y
li
. We 
onserve the notations above. Sin
e ϕG is bije
tive on M2and k algebrai
ally 
losed, there exists a basis (e1, · · · , em) of M2 su
h that
ϕG(ei) = ei for 1 ≤ i ≤ m. Let v ∈ M1 but not in Ker(ϕn−1

G ) as above, andput u = v + λ1e1 + · · ·λmem, where λi(1 ≤ i ≤ m) are some elements in k tobe determined later. Then we have



ϕnG(u)...
ϕn+m−1
G (u)


 =




λp
n

1 · · · λp
n

m... . . . ...
λp

n+m−1

1 · · · λp
n+m−1

m






e1...
em


 .Let L(λ1, · · · , λm) ∈ k[λ1, · · · , λm] be the determinant polynomial of the ma-trix on the right side. An elementary 
omputation shows that the polyno-mial L(λ1, · · · , λm) is not null. We 
an 
hoose λ1, · · · , λm ∈ k su
h that

L(λ1, · · · , λm) 6= 0 be
ause k is algebrai
ally 
losed. So ϕnG(u), · · · , ϕn+m−1
G (u)form a basis of M2 over k. Sin
e

ϕiG(u) ≡ ϕiG(v) mod M2 for 0 ≤ i ≤ n,by the 
hoi
e of u, we see that {u, ϕG(u), · · · , ϕn+m−1
G (u)} form a basis of

M = Lie(G∨) over k. �By 
ombining 4.6 and 4.7, we obtain the following
Corollary 4.9. Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0.Then a BT-group over k is HW-
y
li
 if and only if so is its Serre dual.
4.10. Examples. Let k be a perfe
t �eld, W (k) be the ring of Witt ve
torswith 
oe�
ients in k, and σ be the Frobenius automorphism of W (k). Let
s, r be relatively prime integers su
h that 0 ≤ s ≤ r and r 6= 0; put λ = s

r .We 
onsider the Dieudonné module Mλ ≃ W (k)[F, V ]/(F r−s − V s), where
W (k)[F, V ] is the non-
ommutative ring with relations FV = V F = p, Fa =
σ(a)F and V σ(a) = aV for all a ∈ W (k). We note that Mλ is free of rank
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p-Adic Monodromy of a Barsotti-Tate Group 417
r over W (k) and Mλ/VMλ ≃ k[F ]/F r−s. By the 
ontravariant Dieudonnétheory, Mλ 
orresponds to a BT-group Gλ over k of height r with Lie(Gλ∨) =
Mλ/VMλ. We see easily that Gλ is HW-
y
li
, and we 
all it the elementaryBT-group of slope λ. We note that G0 ≃ Qp/Zp, G1 ≃ µp∞ , and (Gλ)∨ ≃ G1−λfor 0 ≤ λ ≤ 1.Assume k algebrai
ally 
losed. Then by the Dieudonné-Manin's 
lassi�
ationof iso
rystals [Dem, Chap.IV �4℄, any BT-group over k is isogenous to a �-nite produ
t of Gλ's; moreover, any 
onne
ted one-dimensional BT-group over
k of height r is ne
essarily isomorphi
 to G1/r [Dem, Chap.IV �8℄, hen
e inparti
ular HW-
y
li
.
Proposition 4.11. Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0,
R be a noetherian 
omplete regular lo
al k-algebra with residue �eld k, and
S = Spec(R). Let G be a 
onne
ted HW-
y
li
 BT-group over R of dimension
d ≥ 1 and height c+ d,

h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈ Mc×c(R)be a matrix of ϕG.(i) If G is versal over S, then {a1, · · · , ac} is a subset of a regular system ofparameters of R.(ii) Assume that d = 1. The 
onverse of (i) is also true, i.e. if {a1, · · · , ac}is a subset of a regular system of parameters of R then G is versal over S.Furthermore, G is the universal deformation of its spe
ial �ber if and only if

{a1, · · · , ac} is a system of regular parameters of R.Proof. Let (M(G), FM ,∇) be the �nite free OS-module equipped with a semi-linear endomorphism FM and a 
onne
tion ∇ : M(G) → M(G) ⊗OS
Ω1
S/k,obtained by evaluating the Dieudonné 
rystal of G at the trivial immersion

S →֒ S (
f. 3.1). Re
all that we have a 
ommutative diagram(4.11.1) M(G)(p)
FM

//

pr

��

M(G)

pr

��

Lie(G∨)(p)
fϕG

//
(
�

φG

66llllllllllllll

Lie(G∨),where φG is universally inje
tive (3.1.3). Let {v1, · · · , vc} be a basis of Lie(G∨)over OS under whi
h ϕG is expressed by h, i.e. we have ϕi−1
G (v1) = vi for

1 ≤ i ≤ c and ϕcG(v1) = ϕG(vc) = −
∑c
i=1 aivi. Let f1 be a lift of v1 to

Γ(S,M(G)), and put fi+1 = φG(v
(p)
i ) for 1 ≤ i ≤ c− 1, where v(p)

i = 1 ⊗ vi ∈
Γ(S,Lie(G∨)(p)). The image of fi in Γ(S,Lie(G∨)) is thus vi for 1 ≤ i ≤ c by
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418 Yichao Tian(4.11.1). We put(4.11.2) e1 = φG(v(p)
c ) + a1f1 + · · ·+ acfc ∈ Γ(S,M(G)).The image of e1 in Γ(S,Lie(G∨)) is ϕG(vc) +

∑c
i=1 aivi = 0; so we have e1 ∈

Γ(S, ωG). By 4.4(ii), we noti
e that a1, · · · , ac belong to the maximal ideal
mR of R, as G is 
onne
ted. Hen
e, we have e1 = φG(v

(p)
c ), where for a R-module M and x ∈ M , we denote by x the 
anoni
al image of x in M ⊗ k.Sin
e φG 
ommutes with base 
hange and is universally inje
tive, we get e1 =

φG(v
(p)
c ) = φG⊗k(v

(p)
c ) 6= 0. Therefore, we 
an 
hoose e2, · · · , ed ∈ Γ(S, ωG)su
h that (e1, · · · , ed) be
omes a basis of ωG over OS , so (e1, · · · , ed, f1, · · · , fc)is a basis of M(G). Sin
e FM is horizontal for the 
onne
tion ∇ (
f. 3.1(ii)),we have
∇(φG(v(p)

c )) = ∇(FM (f (p)
c )) = 0.In view of (4.11.2), we get

∇(e1) =

c∑

i=1

fi ⊗ dai +

c∑

i=1

ai∇(fi)

≡
c∑

i=1

fi ⊗ dai (mod mR).(4.11.3)Let KS0 and Kod0 be respe
tively the redu
tions modulo mR of (3.2.1) and(3.2.2). Sin
e (vi)1≤i≤c is a base of Lie(G∨)⊗ k, we 
an write
KS0(ej) =

c∑

i=1

vi ⊗ θi,j for 1 ≤ j ≤ d,where θi,j ∈ ΩS/k ⊗ k. From (4.11.3), we dedu
e that θi,1 = dai. By thede�nition of Kod0, we have(4.11.4) Kod0(∂) =

d∑

j=1

c∑

i=1

< ∂, θi,j > ej
∗ ⊗ viwhere ∂ ∈ TS/k ⊗ k, < •, • > is the 
anoni
al pairing between TS/k ⊗ k and

Ω1
S/k⊗ k, and (ei

∗)1≤i≤d denotes the dual basis of (ei)1≤i≤d. Now assume that
G is versal over S, i.e. Kod0 is surje
tive by de�nition (3.2). In parti
ular,there are ∂1, · · · , ∂c ∈ TS/k ⊗ k su
h that Kod0(∂i) = e1

∗ ⊗ vi for 1 ≤ i ≤ c,i.e. we have(4.11.5) < ∂i, daj >=

{
1 if i = j

0 if i 6= j
for 1 ≤ i, j ≤ c,and

< ∂i, θj,ℓ >= 0 for 1 ≤ i, j ≤ c, 2 ≤ ℓ ≤ d.From (4.11.5), we see easily that da1, · · · , dac are linearly independent in ΩS/k⊗
k ≃ mR/m

2
R; therefore, (a1, · · · , ac) is a part of a regular system of parametersof R. Statement (i) is proved.
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p-Adic Monodromy of a Barsotti-Tate Group 419For statement (ii), we assume d = 1 and that (a1, · · · , ac) is a part of a regularsystem of parameters of R. Then the formula (4.11.4) is simpli�ed as
Kod0(∂) =

c∑

i=1

< ∂, dai > e1
∗ ⊗ vi.Sin
e da1, · · · , dac are linearly independent in Ω1

S/k⊗k, there exist ∂1, · · · , ∂c ∈

TS/k⊗k su
h that (4.11.5) holds, i.e. (e1
∗⊗vi)1≤i≤c are in the image of Kod0.But the elements (e1

∗⊗vi)1≤i≤c form already a basis ofH omOS
(ωG,Lie(G∨))⊗

k. So Kod0 is surje
tive, and hen
e G is versal over S by Nakayama's lemma.Let G0 be the spe
ial �ber of G. It remains to prove that when d = 1, G is theuniversal deformation of G0 if and only if dim(S) = c and G is versal over S.Let S be the lo
al moduli in 
hara
teristi
 p of G0. By the universal propertyof G (3.7), there exists a unique morphism f : S → S su
h that G ≃ G×S S.Sin
e S and S are lo
al 
omplete regular s
hemes over k with residue �eld k ofthe same dimension, f is an isomorphism if and only if the tangent map of f atthe 
losed point of S, denoted by Tf , is an isomorphism. By the fun
torialityof Kodaira-Spen
er maps (3.2.2), we have a 
ommutative diagram
TS/k ⊗OS

k

Tf

��

KodS
0

// Homk(ωG0 ,Lie(G∨0 ))

TS/k ⊗OS
k

KodS

0
// Homk(ωG0 ,Lie(G∨0 ))

,where horizontal arrows are the Kodaira-Spen
er maps evaluated at the 
losedpoints (3.3.1). Sin
e KodS0 and KodS

0 are isomorphisms a

ording to the �rstpart of this propostion, we dedu
e that so is Tf . This 
ompletes the proof. �

5. Monodromy of a HW-
y
li
 BT-group over a Complete Traitof Chara
teristi
 p > 0

5.1. Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0, A be a 
om-plete dis
rete valuation ring of 
hara
teristi
 p, with residue �eld k and fra
tion�eld K. We put S = Spec(A), and denote by s its 
losed point, by η its generi
point. Let K be an algebrai
 
losure of K, Ksep be the maximal separableextension of K 
ontained in K, Kt be the maximal tamely rami�ed extensionof K 
ontained in Ksep. We put I = Gal(Ksep/K), Ip = Gal(Ksep/Kt) and
It = I/Ip = Gal(Kt/K).Let π be a uniformizer of A; so we have A ≃ k[[π]]. Let v be the valuation on
K normalized by v(π) = 1; we denote also by v the unique extension of v to K.For every α ∈ Q, we denote by mα (resp. by m+

α ) the set of elements x ∈ Ksepsu
h that v(x) ≥ α (resp. v(x) > α). We put(5.1.1) Vα = mα/m
+
α ,whi
h is a k-ve
tor spa
e of dimension 1 equipped with a 
ontinuous a
tion ofthe Galois group I.
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5.2. First, we re
all some properties of the inertia groups Ip and It [Se1, Chap.IV℄. The subgroup Ip, 
alled the wild inertia subgroup, is the unique maximalpro-p-group 
ontained in I and hen
e normal in I. The quotient It = I/Ipis a 
ommutative pro�nite group, 
alled the tame inertia group. We have a
anoni
al isomorphism(5.2.1) θ : It
∼
−→ lim←−

(d,p)=1

µd,where the proje
tive system is taken over positive integers prime to p, µd is thegroup of d-th roots of unity in k, and the transition maps µm → µd are givenby ζ 7→ ζm/d, whenever d divides m. We denote by θd : It → µd the proje
tionindu
ed by (5.2.1). Let q be a power of p, Fq be the �nite sub�eld of k with qelements. Then µq−1 = F×q , and we 
an write θq−1 : It → F×q . The 
hara
ter
θd is 
hara
terized by the following property.
Proposition 5.3 ([Se3℄ Prop.7). Let a, d be relatively prime positive integerswith d prime to p. Then the natural a
tion of Ip on the k-ve
tor spa
e Va/d(5.1.1) is trivial, and the indu
ed a
tion of It on Va/d is given by the 
hara
ter
(θd)

a : It → µd. In parti
ular, if q is a power of p, the a
tion of It on V1/(q−1)is given by the 
hara
ter θq−1 : It → F×q and any I-equivariant Fp-subspa
e of
V1/(q−1) is an Fq-ve
tor spa
e.
5.4. Let G be a BT-group over S. We de�ne h(G) to be the valuation of thedeterminant of a matrix of ϕG if dim(G∨) ≥ 1, and h(G) = 0 if dim(G∨) = 0.We 
all h(G) the Hasse invariant of G.(a) h(G) does not depend on the 
hoi
e of the matrix representing ϕG. Indeed,let c be the rank of Lie(G∨) over A, h ∈ Mc×c(A) be a matrix of ϕG. Anyother matrix representing ϕG 
an be written in the form U−1 · h · U (p), where
U ∈ GLc(A), U−1 is the inverse of U , and U (p) is the matrix obtained byapplying the Frobenius map of A to the 
oe�
ients of U .(b) By 2.11, the generi
 �ber Gη is ordinary if and only if h(G) < ∞; G isordinary over T if and only h(G) = 0.(
) Let 0→ G′ → G→ G′′ → 0 be a short exa
t sequen
e of BT-groups over T ,then we have h(G) = h(G′) + h(G′′). Indeed, the exa
t sequen
e of BT-groupsindu
es a short exa
t sequen
e of Lie algebras (
f. [BBM℄ 3.3.2)

0→ Lie(G′′∨)→ Lie(G∨)→ Lie(G′∨)→ 0,from whi
h our assertion follows easily.
Proposition 5.5. Let G be a BT-group over S. Then we have h(G) = h(G∨).Proof. The proof is very similar to that of Lemma 4.6. First, we have

h(G) = leng
(
Lie(G∨)/ϕ̃G(Lie(G∨)(p))

)
,where ϕ̃G is the linearization of ϕG, and � leng� means the length of a �nite

A-module (note that this formulae holds even if dim(G∨) = 0). By the 
om-mutative diagram (3.1.3), we have
h(G) = lengM(G)/(φG(Lie(G∨)(p)) + ωG).
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p-Adic Monodromy of a Barsotti-Tate Group 421On the other hand, by applying the fun
tor HomA(_, A) to the A-linear map
ϕ̃G∨ : Lie(G)(p) → Lie(G), we obtain a map ψG : ωG → ω

(p)
G . If U is a matrixof ϕ̃G∨ , then the transpose of U , denoted by U t, is a matrix of ψG. So we have

h(G∨) = v(det(U)) = v(det(U t)) = leng
(
ω

(p)
G /ψG(ωG)

)
.By diagram 3.1.3, we get

h(G∨) = leng M(G)/(φG(Lie(G∨)(p)) + ωG) = h(G).

�

5.6. Let G be a BT-group over S, c = dim(G∨). We put(5.6.1) Tp(G) = lim
←−

n

G(n)(K)the Tate module of G, where G(n) is the kernel of pn : G → G. It is a free
Zp-module of rank ≤ c, and the equality holds if and only if the generi
 �ber Gηis ordinary. The Galois group I a
ts 
ontinuously on Tp(G). We are interestedin the image of the monodromy representation(5.6.2) ρ : I = Gal(Ksep/K)→ AutZp

(Tp(G)).We denote by(5.6.3) ρ : I = Gal(Ksep/K)→ AutFp

(
G(1)(K)

)its redu
tion mod p.
Theorem 5.7 (Reformulation of Igusa's theorem). Let G be a 
onne
ted BT-group over S of height 2 and dimension 1. Then G is versal (3.2) if and only if
h(G) = 1; moreover, if this 
ondition is satis�ed, the monodromy representation
ρ : I → AutZp

(Tp(G)) ≃ Z×p is surje
tive.Proof. Sin
e Lie(G∨) is an OS-module free of rank 1, the 
ondition that h(G) =
1 is equivalent to that any matrix of ϕG is represented by a uniformizer of A.Hen
e the �rst part of this theorem follows from Proposition 4.11(ii).We follow [Ka2, Thm 4.3℄ to prove the surje
tivity of ρ under the assumptionthat h(G) = 1. For ea
h integer n ≥ 1, let

ρn : I → AutZ/pnZ(G(n)(K)) ≃ (Z/pnZ)×be the redu
tion mod pn of ρ, Kn be the sub�eld of Ksep �xed by the kernelof ρn. Then ρn indu
es an inje
tive homomorphism Gal(Kn/K)→ (Z/pnZ)×.By taking proje
tive limits, we are redu
ed to proving the surje
tivity of ρn forevery n ≥ 1. It su�
es to verify that
| Im(ρn)| = [Kn : K] ≥ pn−1(p− 1)(then the equality holds automati
ally).

Documenta Mathematica 14 (2009) 397–440



422 Yichao TianWe regard G as a formal group over S. Then by [Ka2, 3.6℄, there exists aparameter X of the formal group G normalized by the 
ondition that [ξ](X) =
ξ(X) for all (p− 1)-th root of unity ξ ∈ Zp. For su
h a parameter, we have

[p](X) = a1X
p + αXp2 +

∑

m≥2

cmX
p(1+m(p−1)) ∈ A[[X ]],where we have v(a1) = h(G) = 1 by [Ka2, 3.6.1 and 3.6.5℄, and v(α) = 0, as Gis of height 2. For ea
h integer i ≥ 0, we put

V (pi)(X) = ap
i

1 X + αp
i

Xp +
∑

m≥2

cp
i

mX
1+m(p−1) ∈ A[[X ]];then we have [pn](X) = V (pn−1) ◦ V (pn−2) ◦ · · · ◦ V (Xpn

). Hen
e ea
h pointof G(n)(K) is given by a sequen
e y1, · · · , yn ∈ Ksep (or simply an element
yn ∈ Ksep) satisfying the equations





V (y1) = a1y1 + αyp1 + · · · = 0;

V (p)(y2) = ap1y2 + αpyp2 + · · · = y1;...
V (pn−1)(yn) = ap

n−1

1 yn + αp
n−1

ypn + · · · = yn−1.Let yn ∈ Ksep be su
h that y1 6= 0. By 
onsidering the Newton polygons ofthe equations above, we verify that
v(yi) =

1

pi−1(p− 1)
for 1 ≤ i ≤ n.In parti
ular, the rami�
ation index e(Kn/K) is at least pn−1(p − 1). By thede�nition of Kn, the Galois group Gal(Ksep/Kn) must �x yn ∈ Ksep, i.e. Knis an extension of K(yn). Therefore, we have [Kn : K] ≥ [K(yn) : K] ≥

e(K(yn)/K) ≥ pn−1(p− 1). �

Proposition 5.8. Let G be a HW-
y
li
 BT-group over S of height c+ d anddimension d su
h that G⊗K is ordinary,
h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac


be a matrix of ϕG. Put q = pc, ac+1 = 1, and P (X) =

∑c
i=0 ai+1X

pi

∈ A[X ].(i) Assume that G is 
onne
ted and the Hasse invariant h(G) = 1. Then therepresentation ρ (5.6.3) is tame, G(1)(K) is endowed with the stru
ture of an
Fq-ve
tor spa
e of dimension 1, and the indu
ed a
tion of It is given by the
hara
ter θq−1 : It → F×q .(ii) Assume that c > 1, v(ai) ≥ 2 for 1 ≤ i ≤ c − 1 and v(ac) = 1. Then theorder of Im(ρ) is divisible by pc−1(p− 1).
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p-Adic Monodromy of a Barsotti-Tate Group 423(iii) Put i0 = min0≤i≤c{i; v(ai+1) = 0}. Assume that there exists α ∈ k su
hthat v(P (α)) = 1. Then we have i0 ≤ c− 1 and the order of Im(ρ) is divisibleby pi0 .Proof. Sin
e G is generi
ally ordinary, we have a1 6= 0 by 2.11(d). Hen
e
P (X) ∈ K[X ] is a separable polynomial. By 4.4, G(1)(K) ≃ (KerVG)(Ksep)is identi�ed with the additive group 
onsisting of the roots of P (X) in Ksep.(i) By de�nition of the Hasse invariant, we have v(a1) = h(G) = 1. By 4.4(ii),the assumption that G is 
onne
ted is equivalent to saying v(ai) ≥ 1 for 1 ≤
i ≤ c. From the Newton polygon of P (X), we dedu
e that all the non-zeroroots of P (X) in Ksep have the same valuation 1/(q − 1). We denote by

ψ : G(1)(K)→ V1/(q−1)the map whi
h sends ea
h root x ∈ Ksep of P (X) to the 
lass of x in V1/(q−1) =

m1/(q−1)/m
+
1/(q−1) (5.1.1). We remark that G(1)(K) is an Fp-ve
tor spa
e ofdimension c. Hen
e G(1)(K) is automati
ally of dimension 1 over Fq on
ewe know it is an Fq-ve
tor spa
e. By 5.3, it su�
es to show that ψ is aninje
tive I-equivariant homomorphism of groups. By 4.4(i), ψ is obviously an

I-equivariant homomorphism of groups. Let x0 be a root of P (X), and put
Q(y) = P (x0y). Then the polynomial Q(y) has the form Q(y) = xq0Q1(y),where

Q1(y) = yq + bcy
pc−1

+ · · ·+ b2y
p + b1ywith bi = ai/x

(q−pi−1)
0 ∈ Ksep. We have v(bi) > 0 for 2 ≤ i ≤ c and v(b1) = 0.Let b1 be the 
lass of b1 in the residue �eld k = m0/m

+
0 . Then the images ofthe roots of P (X) in V1/(q−1) are x0b

1/(q−1)

1 ζ, where ζ runs over the �nite �eld
Fq. Therefore, ψ is inje
tive.(ii) By 
omputing the slopes of the Newton polygon of P (X), we see that P (X)has pc−1(p − 1) roots of valuation 1/(pc − pc−1). Let L be the sub-extensionof Ksep obtained by adding to K all the roots of P (x). Then the rami�
ationindex e(L/K) is divisible by pc−1(p − 1). Let L̃ be the sub-extension of Ksep�xed by the kernel of ρ (5.6.3). The Galois group Gal(Ksep/L̃) �xes the rootsof P (x) by de�nition. Hen
e we have L ⊂ L̃, and | Im(ρ)| = [L̃ : K] is divisibleby [L : K]; in parti
ular, it is divisible by pc−1(p− 1).(iii) Note that the relation i0 ≤ c − 1 is equivalent to saying that G is not
onne
ted by 4.4(ii). Assume 
onversely i0 = c, i.e. G is 
onne
ted. Then wewould have

P (X) ≡ Xq mod (πA[X ]).But v(P (α)) = 1 implies that αpc

∈ πA, i.e. α = 0; hen
e we would have
P (α) = 0, whi
h 
ontradi
ts the 
ondition v(P (α)) = 1.We put Q(X) = P (X + α) = P (X) + P (α). As v(P (α)) = 1, then (0, 1) and
(pi0 , 0) are the �rst two break points of the Newton polygon of Q(X). Hen
ethere exists pi0 roots of Q(X) of valuation 1/pi0. Let L be the subextensionof K in Ksep generated by the roots of P (X). The rami�
ation index e(L/K)is divisible by pi0 . As in the proof of (ii), if L̃ is the subextension of Ksep
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424 Yichao Tian�xed by the kernel of ρ, then it is an extension of L. Therefore, we have
| Im(ρ)| = [L̃ : K] is divisible by [L : K], and in parti
ular, divisible by pi0 . �

5.9. Let G be a BT-group over S with 
onne
ted part G◦, and étale part Gétof height r. We have a 
anoni
al exa
t sequen
e of I-modules(5.9.1) 0→ G◦(1)(K)→ G(1)(K)→ Gét(1)(K)→ 0giving rise to a 
lass C ∈ Ext1
Fp[I](G

ét(1)(K), G◦(1)(K)), whi
h vanishes ifand only if (5.9.1) splits. Sin
e I a
ts trivially on Gét(1)(K), we have anisomorphism of I-modules Gét(1)(K) ≃ Frp. Re
all that for any Fp[I]-module
M , we have a 
anoni
al isomorphism ([Se1℄ Chap.VII, �2)

Ext1
Fp[I](Fp,M) ≃ H1(I,M).Hen
e we dedu
e that(5.9.2) C ∈ Ext1

Fp[I](G
ét(1)(K), G◦(1)(K)) ≃ H1(I,G◦(1)(K))r.

Proposition 5.10. Let G be a HW-
y
li
 BT-group over S su
h that h(G) = 1,
ρ (5.6.3) be the representation of I on G(1)(K). Then the 
ohomology 
lass Cdoes not vanish if and only if the order of the group Im(ρ) is divisible by p.First, we prove the following result on 
ohomology of groups.
Lemma 5.11. Let F be a �eld, Γ be a 
ommutative group, and χ : Γ→ F× be anon-trivial 
hara
ter of Γ. We denote by F (χ) an F -ve
tor spa
e of dimension
1 endowed with an a
tion of Γ given by χ. Then we have H1(Γ, F (χ)) = 0.Proof. Let C be a 1-
o
y
le of Γ with values in F (χ). We prove that C is a
1-
oboundary. For any g, h ∈ Γ, we have

C(gh) = C(g) + χ(g)C(h),

C(hg) = C(h) + χ(h)C(g).Sin
e Γ is 
ommutative, it follows from the relation C(gh) = C(hg) that(5.11.1) (χ(g)− 1)C(h) = (χ(h)− 1)C(g).If χ(g) 6= 1 and χ(h) 6= 1, then
1

χ(g)− 1
C(g) =

1

χ(h)− 1
C(h).Therefore, there exists x ∈ F (χ) su
h that C(g) = (χ(g) − 1)x for all g ∈ Γwith χ(g) 6= 1. If χ(g) = 1, we have also C(g) = 0 = (χ(g) − 1)x by (5.11.1).This shows that C is a 1-
oboundary. �Proof of 5.10. By 4.3(ii) and 5.4(
), the 
onne
ted part G◦ of G is HW-
y
li
with h(G◦) = h(G) = 1. Assume that Tp(G

◦) has rank ℓ over Zp, and Tp(G
ét)has rank r. Then by 5.8(a), G◦(1)(K) is an Fq-ve
tor spa
e of dimension 1 with

q = pℓ, and the a
tion of I on G◦(1)(K) fa
tors through the 
hara
ter χ : I →

It
θq−1
−−−→ F×q . We write G◦(1)(K) = Fq(χ) for short. If the 
ohomology 
lass

C is zero, then the exa
t sequen
e (5.9.1) splits, i.e. we have an isomorphism
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p-Adic Monodromy of a Barsotti-Tate Group 425of Galois modules G(1)(K) ≃ Fq(χ)⊕ Frp. It is 
lear that the group Im(ρ) hasorder q − 1.Conversely, if the 
ohomology 
lass C is not zero, we will show that there existsan element in Im(ρ) of order p. We 
hoose a basis adapted to the exa
t sequen
e(5.9.1) su
h that the a
tion of g ∈ I is given by(5.11.2) ρ(g) =

(
χ(g) C(g)

0 1r

)
,where 1r is the unit matrix of type (r, r) with 
oe�
ients in Fp, and the map

g 7→ C(g) gives rise to a 1-
o
y
le representing the 
ohomology 
lass C. Let
I1 be the kernel of χ : I → F×q , Γ be the quotient I/I1, so χ indu
es anisomorphism χ : Γ

∼
−→ F×q . We have an exa
t sequen
e

0→ H1(Γ,Fq(χ))r
Inf
−−→ H1(I,Fq(χ))r

Res
−−→ H1(I1,Fq(χ))r,where �Inf� and �Res� are respe
tively the in�ation and restri
tion homomor-phisms in group 
ohomology. Sin
e H1(Γ,Fq(χ))r = 0 by 5.11, the restri
tionof the 
ohomology 
lass C to H1(I1,Fq(χ))r is non-zero. Hen
e there exists

h ∈ I1 su
h that C(h) 6= 0. As we have χ(h) = 1, then
ρ(h)p =

(
1ℓ pC(h)
0 1r

)
= 1ℓ+r.Thus the order of ρ(h) is p. �

Corollary 5.12. Let G be a HW-
y
li
 BT-group over S,
h =




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac


be a matrix of ϕG, P (X) = Xpc

+ acX
pc−1

+ · · · + a1X ∈ A[X ]. If h(G) = 1and if there exists α ∈ k ⊂ A su
h that v(P (α)) = 1, then the 
ohomology 
lass(5.9.2) is not zero, i.e. the extension of I-modules (5.9.1) does not split.Proof. Sin
e v(a1) = h(G) = 1, the integer i0 de�ned in 5.8(iii) is at least 1.Then the 
orollary follows from 5.8(iii) and 5.10. �

6. Lemmas in Group TheoryIn this se
tion, we �x a prime number p ≥ 2 and an integer n ≥ 1.
6.1. Re
all that the general linear group GLn(Zp) admits a natural exhaustivede
reasing �ltration by normal subgroups

GLn(Zp) ⊃ 1 + pMn(Zp) ⊃ · · · ⊃ 1 + pmMn(Zp) ⊃ · · · ,where Mn(Zp) denotes the ring of matrix of type (n, n) with 
oe�
ients in Zp.We endow GLn(Zp) with the topology for whi
h (1 + pmMn(Zp))m≥1 form a
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426 Yichao Tianfundamental system of neighborhoods of 1. Then GLn(Zp) is a 
omplete andseparated topologi
al group.
6.2. Let G be a pro�nite group, ρ : G→ GLn(Zp) be a 
ontinuous homomor-phism of topologi
al groups. By taking inverse images, we obtain a de
reasing�ltration (FmG,m ∈ Z≥0) on G by open normal subgroups:

F 0G = G, and FmG = ρ−1(1 + pmMn(Zp)) for m ≥ 1.Furthermore, the homomorphism ρ indu
es a sequen
e of inje
tive homomor-phisms of �nite groups
ρ0 : F 0G/F 1G −→ GLn(Fp)(6.2.1)
ρm : FmG/Fm+1G→ Mn(Fp), for m ≥ 1.(6.2.2)

Lemma 6.3. The homomorphism ρ is surje
tive if and only if the following
onditions are satis�ed:(i) The homomorphism ρ0 is surje
tive.(ii) For every integer m ≥ 1, the subgroup Im(ρm) of Mn(Fp) 
ontains anelement of the form 


x 0 · · · 0
0 0 · · · 0... ... . . . ...
0 0 · · · 0


with x 6= 0; or equivalently, there exists, for every m ≥ 1, an element gm ∈ Gsu
h that ρ(gm) is of the form




1 + pma1,1 pm+1a1,2 · · · pm+1a1,n

pm+1a2,1 1 + pm+1a2,2 · · · pm+1a2,n... ... . . . ...
pm+1an,1 pm+1an,2 · · · 1 + pm+1an,n


 ,where ai,j ∈ Zp for 1 ≤ i, j ≤ n and a1,1 is not divisible by p.Proof. We noti
e �rst that ρ is surje
tive if and only if ρm is surje
tive for every

m ≥ 0, be
ause G is 
omplete and GLn(Zp) is separated [Bou, Chap. III �2
n◦8 Cor.2 au Théo. 1℄. The surje
tivity of ρ0 is 
ondition (i). Condition (ii) is
learly ne
essary. We prove that it implies the surje
tivity of ρm for all m ≥ 1,under the assumption of (i). First, we remark that under 
ondition (i), if Alies in Im(ρm), then for any U ∈ GLn(Fp) the 
onjuagate matrix U · A · U−1lies also in Im(ρm). In fa
t, let Ã be a lift of A in Mn(Zp) and Ũ ∈ GLn(Zp) alift of U . By assumption, there exist g, h ∈ G su
h that
ρ(g) ≡ 1+pmÃ mod (1+pm+1Mn(Zp)) and ρ(h) ≡ Ũ mod (1+pMn(Zp)).Therefore, we have ρ(hgh−1) ≡ (1 + pmŨ · Ã · Ũ−1) mod (1 + pm+1Mn(Zp)).Hen
e hgh−1 ∈ FmG and ρm(hgh−1) = U ·A · U−1.For 1 ≤ i, j ≤ n, let Ei,j ∈ Mn(Fp) be the matrix whose (i, j)-th entry is
0 and the other entries are 0. The matri
es Ei,j(1 ≤ i, j ≤ n) form 
learly
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p-Adic Monodromy of a Barsotti-Tate Group 427a basis of Mn(Fp) over Fp. To prove the surje
tivity of ρm, we only needto verify that Ei,j ∈ Im(ρm) for 1 ≤ i, j ≤ n, be
ause Im(ρm) is an Fp-subspa
e of Mn(Fp). By assumption, we have E1,1 ∈ Im(ρm). For 2 ≤ i ≤ n,we put Ui = E1,i − Ei,1 +
∑

j 6=1,i Ej,j . Then we have Ui ∈ GLn(Zp) and
Ui · E1,1 · U

−1
i = Ei,i ∈ Im(ρm). For 1 ≤ i < j ≤ n, we put Ui,j = I + Ei,jwhere I is the unit matrix. Then we have Ui,j ·Ei,i ·U−1

i,j = Ei,i+Ei,j ∈ Im(ρm),and hen
e Ei,j ∈ Im(ρm). This 
ompletes the proof.
�

Remark 6.4. By using the arguments in [Se2, Chap. IV 3.4 Lemma 3℄, we 
anprove the following stronger form of Lemma 6.3: If p = 2, 
ondition (i) and
(ii) for m = 1, 2 are su�
ient to guarantee the surje
tivity of ρ; if p ≥ 3, then
(i) and (ii) just for m = 1 su�
e already.A subgroup C of GLn(Fp) is 
alled a non-split Cartan subgroup, if the subset
C∪{0} of the matrix algebra Mn(Fp) is a �eld isomorphi
 to Fpn ; su
h a groupis 
y
li
 of order pn − 1.
Lemma 6.5. Assume that n ≥ 2. We denote by H the subgroup of GLn(Fp)
onsisting of all the elements of the form (

A b
0 1

)
, where A ∈ GLn−1(Fp) and

b =




b1...
bn−1


 with bi ∈ Fp(1 ≤ i ≤ n − 1). Let G be a subgroup of GLn(Fp).Then G = GLn(Fp) if and only if G 
ontains H and a non-split Cartan subgroupof GLn(Fp).Proof. The �only if� part is 
lear. For the �if� part, let C be a non-split Cartansubgroup 
ontained in G. For a �nite group Λ, we denote by |Λ| its order. Aneasy 
omputation shows that |GLn(Fp)| = |H | · |C|. So we just need to provethat U∩C = {1}; sin
e then we will have |GLn(Fp)| = |G|, hen
e G = GLn(Fp).Let g ∈ H ∩ C, and P (T ) ∈ Fp[T ] be its 
hara
teristi
 polynomial. We �x anisomorphism C ≃ F×pn , and let ζ ∈ F×pn be the element 
orresponding to g. Wehave P (T ) =
∏
σ∈Gal(Fpn/Fp)(T − σ(ζ)) in Fpn [T ]. On the other hand, the fa
tthat g ∈ H implies that (T − 1) divises P (T ). Therefore, we get ζ = 1, i.e.

g = 1. �

Remark 6.6. E. Lau point out the following strengthened version of 6.5: When
n ≥ 3, a subgroup G ⊂ GLn(Fp) 
oin
ides with GLn(Fp) if and only if G
ontains a non-split Cartan subgroup and the subgroup (GLn−1(Fp) 0

0 1

). This
an be used to simplify the indu
tion pro
ess in the proof of Theorem 7.3 when
n ≥ 3.
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7. Proof of Theorem 1.3 in the One-dimensional Case
7.1. We start with a general remark on the monodromy of BT-groups. Let Xbe a s
heme, G be an ordinary BT-group over a s
heme X , Gét be its étalepart (2.10.1). If η is a geometri
 point of X , we denote by

Tp(G, η) = lim
←−
n

G(n)(η) = lim
←−
n

Gét(n)(η)the Tate module of G at η, and by ρ(G) the monodromy representation of
π1(X, η) on Tp(G, η). Let f : Y → X be a morphism of s
hemes, ξ be ageometri
 point of Y , GY = G ×X Y . Then by the fun
toriality, we have a
ommutative diagram(7.1.1) π1(Y, ξ)

π1(f)
//

ρ(GY )

��

π1(X, f(ξ))

ρ(G)

��

AutZp
(Tp(GY , ξ)) AutZp

(Tp(G, f(ξ)))In parti
ular, the monodromy of GY is a subgroup of the monodromy of G. Inthe sequel, diagram (7.1.1) will be refereed as the fun
toriality of monodromyfor the BT-group G and the morphism f .
7.2. Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0, G be theunique 
onne
ted BT-group over k of dimension 1 and height n+1 ≥ 2 (4.10).We denote by S the algebrai
 lo
al moduli of G in 
hara
teristi
 p, by G theuniversal deformation of G over S, and by U the ordinary lo
us of G over S(3.8). Re
all that S is a�ne of ring R ≃ k[[t1, · · · , tn]] (3.7), and that G and
G are HW-
y
li
 (
f. 4.3(i) and 4.10). Let η be a geometri
 point of U overits generi
 point. We put

Tp(G, η) = lim
←−

m∈Z≥1

G(m)(η)to be the Tate module of G at the point η. This is a free Zp-module of rank
n. We have the monodromy representation

ρn : π1(U, η)→ AutZp
(Tp(G, η)) ≃ GLn(Zp).The following is the one-dimensional 
ase of Theorem 1.3.

Theorem 7.3. Under the above assumptions, the homomorphism ρn is surje
-tive for n ≥ 1.
7.4. First, we assume n ≥ 2. By Proposition 4.11(ii), we may assume that(7.4.1) h =




0 0 · · · 0 −t1
1 0 · · · 0 −t2
0 1 · · · 0 −t3... . . . ...
0 0 · · · 1 −tn



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p-Adic Monodromy of a Barsotti-Tate Group 429is a matrix of the Hasse-Witt map ϕG. Let p be the prime ideal of R generatedby t1, · · · , tn−1. Then the 
losed subs
heme of S de�ned by p is just the lo
uswhere the p-rank of G is ≤ 1 by 4.4(ii). Let K0 ≃ k((tn)) be the fra
tion�eld of R/p, R′ = R̂p be the 
ompletion of the lo
alization of R at p, and
GR′ = G ⊗R R′. Sin
e the natural map R → R′ is inje
tive, for any a ∈ R,we will denote also by a its image in R′. Sin
e the Hasse-Witt map 
ommuteswith base 
hange, the image of h in Mn×n(R

′), denoted also by h, is a matrixof ϕGR′ . We see easily that the étale part of GR′ has height 1 and its 
onne
tedpart G ◦R′ has height n. We have an exa
t sequen
e of BT-groups over R′(7.4.2) 0→ G
◦
R′ → GR′ → G

ét
R′ → 0.We �x an imbedding i : K0 → K0 of K0 into an algebrai
ally 
losed �eld. Put

G ∗
K0

= G ∗R′ ⊗K0 for ∗ = ∅, ét, ◦. We have G ét
K0
≃ Qp/Zp, and G ◦

K0
is the unique
onne
ted one-dimensional BT-group over K0 of height n (
f. 4.10). We put

R̃′ = K0[[x1, · · · , xn−1]], and(7.4.3) Σ = {ring homomorphisms σ : R′ → R̃′ lifting R′ → K0
i
−→ K0}Let σ ∈ Σ. We dedu
e from (7.4.2) by base 
hange an exa
t sequen
e ofBT-groups over R̃′(7.4.4) 0→ G

◦
fR′,σ
→ GfR′,σ → G

ét
fR′,σ
→ 0,where we have put G ∗

fR′,σ
= G ∗R′ ⊗σ R̃′ for ∗ = ◦, ∅, ét. Due to the henselianproperty of R̃′, the isomorphism G ét

K0
≃ Qp/Zp lifts uniquely to an isomorphism

G ét
fR′,σ
≃ Qp/Zp . Assume that G ◦

fR′,σ
is generi
ally ordinary over S̃′ = Spec(R̃′).Let Ũ ′σ ⊂ S̃′ be its ordinary lo
us, and x be a geometri
 point over the generi
point of Ũ ′σ. The exa
t sequen
e (7.4.4) indu
es an exa
t sequen
e of Tatemodules(7.4.5) 0→ Tp(G

◦
fR′,σ

, x)→ Tp(GfR′,σ, x)→ Tp(G
ét
fR′,σ

, x)→ 0
ompatible with the a
tions of π1(Ũ
′
σ, x). Sin
e we have Tp(G

ét
fR′,σ

, x) ≃

Tp(Qp/Zp, x) = Zp, this determines a 
ohomology 
lass(7.4.6) Cσ ∈ Ext1
Zp[π1(eU ′

σ ,x)]
(Zp,Tp(G

◦
fR′,σ

, x)) ≃ H1(π1(Ũ
′
σ, x),Tp(G

◦
fR′,σ

, x)).We 
onsider also the �mod-p version� of (7.4.5)
0→ G

◦
fR′,σ

(1)(x)→ GfR′,σ
(1)(x)→ Fp → 0,whi
h determines a 
ohomology 
lass(7.4.7) Cσ ∈ Ext1

Fp[π1(eU ′
σ ,x)]

(Fp,G
◦
fR′,σ

(1)(x)) ≃ H1(π1(Ũ
′
σ, x),G

◦
fR′,σ

(1)(x)).It is 
lear that Cσ is the image of Cσ by the 
anoni
al redu
tion map
H1(π1(Ũ

′
σ, x),Tp(G

◦
fR′,σ

, x))→ H1(π1(Ũ
′
σ, x),G

◦
fR′,σ

(1)(x)).
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Lemma 7.5. Under the above assumptions, there exist σ1, σ2 ∈ Σ satisfying thefollowing properties:(i) We have G ◦
fR′,σ1

= G ◦
fR′,σ2

, and it is the universal deformation of G ◦
K0

.(ii) We have Cσ1 = 0 and Cσ2 6= 0.Before proving this lemma, we prove �rst Theorem 7.3.
Proof of 7.3. First, we noti
e that the monodromy of a BT-group is inde-pendent of the base point. So we 
an 
hange η to any geometri
 point of Uwhen dis
ussing the monodromy of G. We make an indu
tion on the 
odimen-sion n = dim(G∨). The 
ase of n = 1 is proved in Theorem 5.7. Assume that
n ≥ 2 and the theorem is proved for n− 1. We denote by

ρn : π1(U, η)→ AutFp
(G(1)(η)) ≃ GLn(Fp)the redu
tion of ρn modulo by p. By Lemma 6.3 and 6.5, to prove the surje
-tivity of ρn, we only need to verify the following 
onditions:(a) Im(ρn) 
ontains a non-split Cartan subgroup of GLn(Fp);(b) Im(ρn) 
ontains the subgroup H ⊂ GLn(Zp) 
onsisting of all the elementsof the form (

B b
0 1

)
∈ GLn(Zp), with B ∈ GLn−1(Zp) and b ∈ M(n−1)×1(Zp);For 
ondition (a), let A = k[[π]], T = Spec(A), ξ be its generi
 point, ξ be ageometri
 point over ξ, and I = Gal(ξ/ξ) be the absolute Galois group over

ξ. We keep the notations of 7.4. Let f∗ : R → A be the homomorphism of
k-algebras su
h that f∗(t1) = π and f∗(ti) = 0 for 2 ≤ i ≤ n. We denote by
f : T → S the 
orresponding morphism of s
hemes, and put GT = G×S T . Bythe fun
toriality of Hasse-Witt maps,

hT =




0 0 · · · 0 −π
1 0 · · · 0 0... . . . ...
0 0 · · · 1 0


is a matrix of ϕGT

. By de�nition 5.4, the Hasse invariant of GT is h(G) = 1.Hen
e GT is generi
ally ordinary; so f(ξ) ∈ U. Let
ρT : I = Gal(ξ/ξ)→ AutFp

(GT (1)(ξ))be the mod-p monodromy representation atta
hed to GT . Proposition 5.8(i)implies that Im(ρT ) is a non-split Cartan subgroup of GLn(Fp). On the otherhand, by the fun
toriality of monodromy, we get Im(ρT ) ⊂ Im(ρn). This veri�es
ondition (a).To 
he
k 
ondition (b), we 
onsider the 
onstru
tions in 7.4. Let S′ = Spec(R′),
f : S′ → S be the morphism of s
hemes 
orresponding to the natural ringhomomorphism R→ R′, U ′ be the ordinary lo
us of GR′ , and ξ be a geometri
point of U ′. From (7.4.2), we dedu
e an exa
t sequen
e of Tate modules(7.5.1) 0→ Tp(G

◦
R′ , ξ)→ Tp(GR′ , ξ)→ Tp(G

ét
R′ , ξ)→ 0.
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p-Adic Monodromy of a Barsotti-Tate Group 431Let ρG ′ : π1(U
′, ξ)→ AutZp

(Tp(GR′ , ξ)) ≃ GLn(Zp) be the monodromy repre-sention of GR′ . Under any basis of Tp(GR′ , ξ) adapted to (7.5.1), the a
tion of
π1(U

′, ξ) on Tp(GR′ , ξ) is given by
ρGR′ : g ∈ π1(U

′, ξ) 7→

(
ρG ◦

R′
(g) ∗

0 ρG ét
R′

(g),

)where g 7→ ρG ◦
R′

(g) ∈ GLn−1(Zp) (resp. g 7→ ρG ét
R′

(g) ∈ Z×p ) gives the a
tionof π1(U
′, ξ) on Tp(G

◦
R′ , ξ) (resp. on Tp(G

ét
R′ , ξ)). Note that f(U ′) ⊂ U. So bythe fun
toriality of monodromy, we get Im(ρG ′) ⊂ Im(ρn). To 
omplete theproof of Theorem 7.3, it su�
es to 
he
k 
ondition (b) with ρn repla
ed by ρGR′under the indu
tion hypothesis that 7.3 is valide for n−1. Let σ1, σ2 : R′ → R̃′be the homomorphisms given by 7.5. For i = 1, 2, we denote by fi : S̃′ =

Spec(R̃′)→ S′ = Spec(R′) the morphism of s
hemes 
orresponding to σi, andput Gi = GfR′,σi
= GR′ ⊗σi

R̃′ to simply the notations. By 
ondition 7.5(i), we
an denote by G ◦ the 
ommon 
onne
ted 
omponent of G1 and G2. Let Ũ ′ ⊂ S̃′be the ordinary lo
us of G ◦. Then we have fi(Ũ ′) ⊂ U ′ for i = 1, 2. Let x bea geometri
 point over the generi
 point of Ũ ′. We have an exa
t sequen
e ofTate modules(7.5.2) 0→ Tp(G
◦, x)→ Tp(Gi, x)→ Tp(Qp/Zp, x)→ 0
ompatible with the a
tions of π1(Ũ ′, x). We denote by

ρGi
: π1(Ũ ′, x)→ AutZp

(Tp(Gi, x)) ≃ GLn(Zp)the monodromy representation of Gi. In a basis adapted to (7.5.2), the a
tionof π1(Ũ ′, x) on Tp(Gi, x) is given by
ρGi

: g 7→

(
ρG ◦(g) Cσi

(g)
0 1

)
,where ρG ◦ : π1(Ũ ′, x) → GLn−1(Zp) is the monodromy representation of G ◦,and the 
ohomology 
lass in H1(π1(Ũ ′, x),Tp(G

◦)) given by g 7→ Cσi
(g) isnothing but the 
lass de�ned in (7.4.6). By 7.5(i) and the indu
tion hypothesis,

ρG ◦ is surje
tive. Sin
e the 
ohomology 
lass Cσ1 = 0 by 7.5(ii), we may assume
Cσ1 (g) = 0 for all g ∈ π1(U

′, x). Therefore Im(ρG1) 
ontains all the matrix ofthe form (
B 0
0 1

) with B ∈ GLn−1(Zp). By the fun
toriality of monodromy,
Im(ρGR′ ) 
ontains Im(ρG1). Hen
e we have(7.5.3) (

GLn−1(Zp) 0
0 1

)
⊂ Im(ρG1) ⊂ Im(ρGR′ ).On the other hand, sin
e the 
ohomology 
lass Cσ2 6= 0, there exists a

g ∈ π1(Ũ ′, x) su
h that b2 = Cσ2(g) 6= 0. Hen
e the matrix ρG2(g) has theform (B2 b2
0 1

) su
h that B2 ∈ GLn−1(Zp) and the image of b2 ∈M1×n−1(Zp)
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432 Yichao Tianin M1×n−1(Fp) is non-zero. By the fun
toriality of monodromy, we have
Im(ρG2) ⊂ Im(ρGR′ ); in parti
ular, we have (B2 b2

0 1

)
∈ Im(ρGR′ ). In viewof (7.5.3), we get(7.5.4) (

GLn−1(Zp) 0
0 1

)(
B2 b2
0 1

)(
GLn−1(Zp) 0

0 1

)
⊂ Im(ρGR′ ).But the subset of GLn(Zp) on the left hand side is just the subgroup Hdes
ribed in 
ondition (b). Therefore, 
ondition (b) is veri�ed for ρGR′ , andthe proof of 7.3 is 
omplete.The rest of this se
tion is dedi
ated to the proof of Lemma 7.5.

Lemma 7.6. Let k be an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0, Abe a noetherian henselian lo
al k-algebra with residue �eld k, G be a BT-groupover A, and Gét be its étale part. Put
Lie(G∨)ϕ=1 = {x ∈ Lie(G∨) su
h that ϕG(x) = x}.Then Lie(G∨)ϕ=1 is an Fp-ve
tor spa
e of dimension equal to the rankof Lie(Gét∨), and the A-submodule Lie(Gét∨) of Lie(G∨) is generated by

Lie(G∨)ϕ=1.Proof. Let r be the rank of Lie(Gét∨), G◦ be the 
onne
ted part of G, and sbe the height of Lie(G◦∨). We have an exa
t sequen
e of A-modules
0→ Lie(Gét∨)→ Lie(G∨)→ Lie(G◦∨)→ 0,
ompatible with Hasse-Witt maps. We 
hoose a basis of Lie(G∨) adapted tothis exa
t sequen
e, so that ϕG is expressed by a matrix of the form (

U W
0 V

)with U ∈ Mr×r(A), V ∈ Ms×s(A), and W ∈ Mr×s(A). An element of
Lie(G∨)ϕ=1 is given by a ve
tor (x

y

), where x =



x1...
xr


 and y =



y1...
ys


 with

xi, yj ∈ A, satisfying(7.6.1) (
U W
0 V

)
·

(
x(p)

y(p)

)
=

(
x
y

)
⇔

{
U · x(p) +W · y(p) = x

V · y(p) = y.where x(p) (resp. y(p)) is the ve
tor obtained by applying a 7→ ap to ea
h xi(1 ≤
i ≤ r) (resp. yj(1 ≤ j ≤ s)). By 2.9, the Hasse-Witt map of the spe
ial �ber of
G◦ is nilpotent. So there exists an integer N ≥ 1 su
h that ϕNG◦(Lie(G◦∨)) ⊂

mA · Lie(G◦∨), i.e. we have V · V (p) · · ·V (pN−1) ≡ 0 (mod mA). From theequation V · y(p) = y, we dedu
e that
y = V · V (p) · · ·V (pN−1) · y(pN ) ≡ 0 (mod mA).
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p-Adic Monodromy of a Barsotti-Tate Group 433But this implies that y(pN ) ≡ 0 (mod m
pN

A ). Hen
e we get y = V · y(p) ≡

0 (mod m
pN +1
A ). Repeting this argument, we get �nally y ≡ 0 (mod mℓ

A)for all integers ℓ ≥ 1, so y = 0. This implies that Lie(G∨)ϕ=1 ⊂ Lie(Gét∨),and the equation (7.6.1) is simpli�ed as U · x(p) = x. Sin
e the linearizationof ϕGét is bije
tive by 2.11, we have U ∈ GLr(A). Let U be the image of
U in GLr(k), and Sol be the solutions of the equation U · x(p) = x. As k isalgebrai
ally 
losed, Sol is an Fp-spa
e of dimension r, and Lie(Gét∨) ⊗ k isgenerated by Sol (
f. [Ka2, Prop. 4.1℄). By the henselian property of A, everyelements in Sol lifts uniquely to a solution of U ·x(p) = x, i.e. the redu
tion map
Lie(G∨)ϕ=1 ∼−→ Sol is bije
tive. By Nakayama's lemma, Lie(G∨)ϕ=1 generatesthe A-module Lie(Gét∨). �

7.7. We keep the notations of 7.4. Let CompK0
be the 
ategory of noetherian
omplete lo
al K0-algebras with residue �eld K0, DG

K0
(resp. DG ◦

K0

) be thefun
tor whi
h asso
iates to every obje
t A of CompK0
the set of isomorphsm
lasses of deformations of GK0

(resp. G ◦
K0

) . If A is an obje
t in CompK0
and

G is a deformation of GK0
(resp. G ◦

K0
) over A, we denote by [G] its isomorphi

lass in DG

K0
(A) (resp. in DG ◦

K0

).
Lemma 7.8. Let Σ be the set de�ned in (7.4.3).(i) The morphism of sets Φ : Σ→ DG

K0
(R̃′) given by σ 7→ [GfR′,σ

] is bije
tive.(ii) Let σ ∈ Σ. Then there exists a basis of Lie(G ◦∨
fR′,σ

) su
h that ϕG ◦
fR′,σ

isrepresented by a matrix of the form(7.8.1) h◦σ =




0 0 · · · 0 a1

1 0 · · · 0 a2... . . . ...
0 0 · · · 1 an−1


with ai ≡ α · σ(ti) (mod m2

fR′
) for 1 ≤ i ≤ n− 1, where α ∈ R̃′× and mfR′ is themaximal ideal of R̃′. In parti
ular, G ◦

fR′,σ
is the universal deformation of G ◦

K0if and only if {σ(t1), · · · , σ(tn−1)} is a system of regular parameters of R̃′.Proof. (i) We begin with a remark on the Kodaira-Spen
er map of GR′ . Let
TS/k = H omOS

(Ω1
S/k,OS) be the tangent sheaf of S. Sin
e G is universal,the Kodaira-Spen
er map (3.2.2)
Kod : TS/k

∼
−→H omOS

(ωG,Lie(G∨))is an isomorphism. By fun
toriality, this indu
es an isomorphism of R′-modules(7.8.2) KodR′ : TR′/k
∼
−→ HomR′(ωGR′ ,Lie(G ∨R′)),where TR′/k = HomR′(Ω1

R′/k, R
′) = Γ(S,TS/k)⊗R R

′.For ea
h integer ν ≥ 0, we put R̃′ν = R̃′/mν+1
fR′

, Σν to be the set of liftings of
R→ K0 → K0 to R→ R̃′ν , and Φν : Σν → DG

K0
(R̃′ν) to be the morphism of
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434 Yichao Tiansets σν 7→ [GR′⊗σν
R̃′ν ]. We prove by indu
tion on ν that Φν is bije
tive for all

ν ≥ 0. This will 
omplete the proof of (i). For ν = 0, the 
laim holds trivially.Assume that it holds for ν − 1 with ν ≥ 1. We have a 
ommutative diagram
Σν

��

Φν
// DG

K0
(R̃′ν)

��

Σν−1
Φν−1

// DG
K0

(R̃′ν−1),where the verti
al arrows are the 
anoni
al redu
tions, and the lower arrowis an isomorphism by indu
tion hypothesis. Let τ be an arbitrary element of
Σν−1. We denote by Σν,τ ⊂ Σν the preimage of τ , and by DΦν−1(τ)(R̃

′
ν) ⊂

DG
K0

(R̃′ν) the preimage of Φν−1(τ). It su�
es to prove that Φν indu
es abije
tion between Σν,τ and DΦν−1(τ)(R̃
′
ν). Let Iν = mν

fR′
/mν+1

fR′
be the ideal ofthe redu
tion map R̃′ν → R̃′ν−1. By [EGA, 0IV 21.2.5 and 21.9.4℄, we have

Ω1
R′/k ≃ Ω̂1

R′/k, and they are free over A of rank n. By [EGA, 0IV 20.1.3℄, Σν,τis a (nonempty) homogenous spa
e under the group
HomK0(Ω

1
R′/k ⊗R′ K0, Iν) = TR′/k ⊗R′ Iν .On the other hand, a

ording to 3.5(i), DΦν−1(τ)(R̃′ν) is a homogenous spa
eunder the group

HomK0
(ωGK0

,Lie(G ∨
K0

))⊗K0
Iν = HomR′(ωGR′ ,Lie(G ∨R′))⊗R′ Iν .Moreover, it is easy to 
he
k that the morphism of sets Φν : Σν,τ →

DΦν−1(τ)(R̃
′
ν) is 
ompatible with the homomorphism of groups

KodR′ ⊗R′ Id : TR′/k ⊗R′ Iν → HomR′(ωGR′ ,Lie(G ∨R′))⊗R′ Iν ,where KodR′ is the Kodaira-Spen
er map (7.8.2) asso
iated to GR′ . The bije
-tivity of Φν now follows from the fa
t that KodR′ is an isomorphism.(ii) The se
ond part of the statement follows immediately from 4.11. It remainsto 
ompute the Hasse-Witt map of G ◦
fR′,σ

. We determine �rst the submodule
Lie(G ét∨

fR′,σ
) of Lie(G ∨

fR′,σ
). We 
hoose a basis of Lie(G∨) over OS su
h that ϕGis expressed by the matrix h (7.4.1). As GfR′,σ

derives from G by base 
hange
R → R′

σ
−→ R̃′, there exists a basis (e1, · · · , en) of Lie(G ∨

fR′,σ
) su
h that ϕG fR′,σis expressed by

hσ =




0 0 · · · 0 −σ(t1)
1 0 · · · 0 −σ(t2)... . . . ...
0 0 · · · 1 −σ(tn)


 .By Lemma 7.6, Lie(G ét∨

fR′,σ
) is generated by Lie(G ∨

fR′,σ
)ϕ=1. If ∑n

i=1 xnen ∈

Lie(G ∨
fR′,σ

)ϕ=1 with xi ∈ R̃′ for 1 ≤ i ≤ n, then (xi)1≤i≤n must satisfy the
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

xp1...
xpn


 =



x1...
xn


 ; or equivalently,

(7.8.3) 



x1 = −σ(t1)x
p
n

x2 = −σ(t2)x
p
n − σ(t1)

pxp
2

n

· · ·

xn−1 = −σ(tn−1)x
p
n − · · · − σ(t1)

pn−2

xp
n−1

n

σ(t1)
pn−1

xp
n

n + σ(t2)
pn−2

xp
n−1

n + · · ·+ σ(tn)xpn + xn = 0.We note that σ(ti) ∈ mfR′ for 1 ≤ i ≤ n − 1 and σ(tn) ∈ R̃′
× with image

i(tn) ∈ K0, where i : K0 → K0 is the �xed immbedding. By Hensel's lemma,every solution inK0 of the equation i(tn)xpn+xn = 0 lifts uniquely to a solutionof (7.8.3). As Lie(G ét∨
fR′,σ

) has rank 1, by Lemma 7.6, these are all the solutionsof (7.8.3). Let (λ1, · · · , λn) be a non-zero solution of (7.8.3). We have(7.8.4) λn ∈ R̃′
× and λi ≡ −λ

p
nσ(ti) (mod m2

fR′
).We put v = λ1e1 + · · · + λnen; so v is a basis of Lie(G ét∨

fR′,σ
) by 7.6. For

1 ≤ i ≤ n, let fi be the image of ei in Lie(G ◦∨
fR′,σ

). Then f1, · · · , fn 
learlygenerate Lie(G ◦∨
fR′,σ

). By the expli
it des
ription above of Lie(G ét∨
fR′,σ

), we have
fn = −λ−1

n (λ1f1 · · ·+λn−1fn−1). Hen
e f1, · · · , fn−1 form a basis of Lie(G ◦∨
fR′,σ

).By the fun
toriality of Hasse-Witt maps, we have ϕG ◦
fR′

(fi) = fi+1 for 1 ≤ i ≤

n− 1, or equivalently,
ϕG ◦

fR′,σ

(f1, · · · , fn−1) = (f1, · · · , fn−1) ·




0 0 · · · 0 −λ−1
n λ1

1 0 · · · 0 −λ−1
n λ2... . . . ...

0 0 · · · 1 −λ−1
n λn−1


 .In view of (7.8.4), we see that the above matrix has the form of (7.8.1) bysetting α = λp−1

n ∈ R̃′
×. The se
ond part of statement (ii) follows immediatelyfrom Proposition 4.11(ii) and the des
ription above of ϕG ◦

fR′,σ

. �Now we 
an turn to the proof of 7.5.
7.9. Proof of Lemma 7.5. First, suppose that we have found a σ2 ∈ Σsu
h that Cσ2 6= 0 and G ◦

fR′,σ2
is the universal deformation of G ◦

K0
. Sin
e

Φ : Σ
∼
−→ DG

K0
(R̃′) is bije
tive by 7.8(i), there exists a σ1 ∈ Σ 
orresponding tothe deformation [G ◦

fR′,σ2
⊕Qp/Zp] ∈ DG

K0
(R̃′). It is 
lear that G ◦

fR′,σ1
≃ G ◦

fR′,σ2
.Besides, the exa
t sequen
e (7.4.5) for σ1 splits; so we have Cσ1 = 0. Itremains to prove the existen
e of σ2. We note �rst that K0 
an be 
anoni
allyimbedded into R̃′, sin
e it is perfe
t. Sin
e R′ is formally smooth over k and
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(t1, · · · , tn) is a p-basis of R′ over k, by [EGA, 0IV 21.2.7℄, there is a σ ∈ Σsu
h that σ(ti) (1 ≤ i ≤ n− 1) form a system of regular parameters of R̃′ and
σ(tn) ∈ K0 ⊂ R̃′. We 
laim that σ2 = σ answers the question. In fa
t, Lemma7.8(ii) implies that G ◦

fR′,σ
is the universal deformation of G ◦

K0
. It remains toverify that Cσ 6= 0.Let A = K0[[π]] be a 
omplete dis
rete valuation ring of 
hara
teristi
 p withresidue �eld K0, T = Spec(A), ξ be the generi
 point of T , ξ be a geometri
over ξ, and I = Gal(ξ/ξ) the Galois group. We de�ne a homomorphism of

K0-algebras f∗ : R̃′ → A by putting f∗(σ(t1)) = π and f∗(σ(ti)) = 0 for
2 ≤ i ≤ n − 1. This is possible, sin
e (σ(t1), · · · , σ(tn−1)) is a system ofregular parameters of R̃′. Let f : T → S̃′ be the homomorphism of s
hemes
orresponding to f∗, and GT = GfR′,σ×fS′ T . By the fun
toriality of Hasse-Wittmaps,

hT =




0 0 · · · 0 −π
1 0 · · · 0 0
0 1 · · · 0 0... . . . ...
0 0 · · · 1 −f∗(σ(tn))



∈Mn×n(R̃′)is a matrix of ϕGT

. By de�nition (5.4), the Hasse invariant of GT is h(GT ) = 1.In parti
ular, GT is generi
ally ordinary. Let Ũ ′σ ⊂ S̃′ be the ordinary lo
usof GfR′,σ
. We have f(ξ) ∈ Ũ ′σ. By the fun
toriality of fundamental groups, findu
es a homomorphism of groups

π1(f) : I = Gal(ξ/ξ)→ π1(Ũ
′
σ, f(ξ)) ≃ π1(Ũ

′
σ, x).Let G ◦T be the 
onne
ted part of GT , and G ét

T be the étale part of GT . Then
G ét
T ≃ Qp/Zp. We have an exa
t sequen
e of Fp[I]-modules

0→ G
◦
T (1)(ξ)→ GT (1)(ξ)→ G

ét
T (1)(ξ)→ 0,whi
h determines a 
ohomology 
lass CT ∈ H1(I,G ◦T (1)(ξ)). We noti
e that

GT (1)(ξ) is isomorphi
 to GfR′,σ(1)(x) as an abelian group, and the a
tion of Ion GT (1)(ξ) is indu
ed by the a
tion of π1(Ũ
′
σ, x) on GfR′,σ

(1)(x). Therefore,
CT is the image of Cσ by the fun
torial map

H1
(
π1(Ũ

′
σ, x),G

◦
fR′,σ

(1)(x)
)
→ H1

(
I,G ◦T (1)(ξ)

)
.To verify that Cσ 6= 0, it su�
es to 
he
k that CT 6= 0. We 
onsider thepolynomial P (X) = Xpn

+ f∗(σ(tn))Xpn−1

+ πX ∈ A[X ]. A

ording to 5.12,it su�
es to �nd a α ∈ K0 ⊂ A su
h that P (α) is a uniformizer of A. But bythe 
hoi
e of σ, we have σ(tn) ∈ K0 and σ(tn) 6= 0; so f∗(σ(tn)) 6= 0 lies in K0.Let α be a pn−1(p − 1)-th root of −f∗(σ(tn)) in K0. Then we have α ∈ K×0 ,and P (α) = απ is a uniformizer of A. This 
ompletes the proof of 7.5.
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8. End of the Proof of Theorem 1.3In this se
tion, k denotes an algebrai
ally 
losed �eld of 
hara
teristi
 p > 0.

8.1. First, we re
all some preliminaries on Newton strati�
ation due to F.Oort. Let G be an arbitrary BT-group over k, S be the lo
al moduli of G in
hara
teristi
 p, and G be the universal deformation of G over S (3.8). Put
d = dim(G) and c = dim(G∨). We denote by N (G) the Newton polygon of
G whi
h has endpoints (0, 0) and (c + d, d). Here we use the normalization ofNewton polygons su
h that slope 0 
orresponds to étale BT- groups and slope1 
orresponds to groups of multipli
ative type.Let NP(c + d, d) be the set of Newton polygons with endpoints (0, 0) and
(c + d, d) and slopes in (0, 1). For α, β ∈ NP(c + d, d), we say that α � βif no point of α lies below β; then ��� is a partial order on NP(c + d, d).For ea
h β ∈ NP(c + d, d), we denote by Vβ the subset of S 
onsisting ofpoints x with N (Gx) � β, and by V ◦β the subset of S 
onsisting of points xwith N (Gx) = β. By Grothendie
k-Katz's spe
ialization theorem of Newtonpolygons, Vβ is 
losed in S, and V ◦β is open (maybe empty) in Vβ . We put
♦(β) =

{(x, y) ∈ Z×Z | 0 ≤ y < d, y < x < c+d, (x, y)lies on or above the polygon β},and dim(β) = #(♦(β)).
Theorem 8.2 ([Oo2℄ Theorem 2.11). Under the above assumptions, for ea
h
β ∈ NP(c + d, d), the subset V ◦β is non-empty if and only if N (G) � β. Inthat 
ase, Vβ is the 
losure of V ◦β and all irredu
ible 
omponents of Vβ havedimension dim(β).
8.3. Let G be a 
onne
ted and HW-
y
li
 BT-group over k of dimension d =
dim(G) ≥ 2. Let β ∈ NP(c + d, d) be the Newton polygon given by thefollowing slope sequen
e:

β = (1/(c+ 1), · · · , 1/(c+ 1)︸ ︷︷ ︸
c+1

, 1, · · · , 1︸ ︷︷ ︸
d−1

).We have N (G) � β sin
e G is supposed to be 
onne
ted. By Oort's Theorem8.2, Vβ is a equal dimensional 
losed subset of the lo
al moduli S of dimension
c(d− 1). We endow Vβ with the stru
ture of a redu
ed 
losed subs
heme of S.
Lemma 8.4. Under the above assumptions, let R be the ring of S, and




0 0 · · · 0 −a1

1 0 · · · 0 −a2

0 1 · · · 0 −a3... . . . ...
0 0 · · · 1 −ac



∈ Mc×c(R)be a matrix of the Hasse-Witt map ϕG. Then the 
losed redu
ed subs
heme Vβof S is de�ned by the prime ideal (a1, · · · , ac). In parti
ular, Vβ is irredu
ible.
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438 Yichao TianProof. Note �rst that {a1, · · · , ac} is a subset of a system of regular parametersof R by 4.11(i). Let I be the ideal of R de�ning Vβ . Let x be an arbitrarypoint of Vβ , we denote by px the prime ideal of R 
orresponding to x. Sin
ethe Newton polygon of the �bre Gx lies above β, Gx is 
onne
ted. By Lemma4.4, we have ai ∈ px for 1 ≤ i ≤ c. Sin
e Vβ is redu
ed, we have ai ∈ I.Let P = (a1, · · · , ac), and V (P) the 
losed subs
heme of S de�ned by P.Then V (P) is an integral s
heme of dimension c(d− 1) and Vβ ⊂ V (P). Sin
eTheorem 8.2 implies that dimVβ = c(d−1), we have ne
essarily Vβ = V (P). �We keep the assumptions above. Let (ti,j)1≤i≤c,1≤j≤d be a regular system ofparameters of R su
h that ti,d = ai for all 1 ≤ i ≤ c. Let x be the generi
 pointof the Newton strata Vβ , k′ = κ(x), and R′ = ÔS,x. Sin
e R is noetherianand integral, the 
anoni
al ring homomorphism R → OS,x → R′ is inje
tive.The image in R′ of an element a ∈ R will be denoted also by a. By 
hoosing a
k-se
tion k′ → R′ of the 
anoni
al proje
tion R′ → k′, we get a (non-
anoni
al)isomorphism of k-algebras R′ ≃ k′[[t1,d, · · · , tc,d]]. Let k′′ be an algebrai

losure of k′, and R′′ = k′′[[t1,d, · · · , tc,d]]. Then we have a natural inje
tivehomomorphism of k-algebras R′ → R′′ mapping ti,d to ti,d for 1 ≤ i ≤ c.Let S′′ = Spec(R′′), x be its 
losed point. By the 
onstru
tion of S′′, we havea morphism of k-s
hemes(8.4.1) f : S′′ → Ssending x to x. We put G = G×S S

′′. By the 
hoi
e of the Newton polygon β,the 
losed �bre Gx has a BT-subgroup Hx of multipli
ative type of height d−1.Sin
e S′′ is henselian, Hx lifts uniquely to a BT-subgroup H of G . We put
G ′′ = G /H . It is a 
onne
ted BT-group over S′′ of dimension 1 and height c+1.
Lemma 8.5. Under the above assumptions, G ′′ is the universal deformation inequal 
hara
teristi
 of its spe
ial �ber.This lemma is a parti
ular 
ase of [Lau, Lemma 3.1℄. Here, we use 4.11(ii) togive a simpler proof.Proof. We have an exa
t sequen
e of BT-groups over S′′

0→H → G → G
′′ → 0,whi
h indu
es an exa
t sequen
e of Lie algebras 0 → Lie(G ′′∨) → Lie(G ∨) →

Lie(H ∨)→ 0 
ompatible with Hasse-Witt maps. Sin
e H is of multipli
ativetype, we get Lie(H ∨) = 0 and an isomorphism of Lie algebras Lie(G ′′∨) ≃
Lie(G ∨). By the 
hoi
e of the regular system (ti,j)1≤i≤c,1≤j≤d, there is a basis
(v1, · · · , vc) of Lie(G ′′∨) over OS′′ su
h that ϕG ′′ is given by the matrix

h =




0 0 · · · 0 −t1,d
1 0 · · · 0 −t2,d
0 1 · · · 0 −t3,d... . . . ...
0 0 · · · 1 −tc,d



.
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p-Adic Monodromy of a Barsotti-Tate Group 439Now the lemma results from Proposition 4.11(ii). �

8.6. Proof of Theorem 1.3. The one-dimensional 
ase is treated in 7.3.If dim(G) ≥ 2, we apply the pre
eding dis
ussion to obtain the morphism
f : S′′ → S and the BT-groups G = G×S S

′′ and G ′′, whi
h is the quotient of
G by the maximal subgroup of G of multipli
ative type. Let U ′′ be the 
ommonordinary lo
us of G and G ′′ over S′′, and ξ be a geometri
 point of U ′′. Then
f maps U ′′ into the ordinary lo
us U of G. We denote by

ρG : π1(U
′′, ξ)→ AutZp

(Tp(G , ξ))the monodromy representation asso
iated to G , and the same notation for ρG ′′ .By the fun
toriality of monodromy, we have Im(ρG ) ⊂ Im(ρG). On the otherhand, the 
anoni
al map G → G ′′ indu
es an isomorphism of Tate modules
Tp(G , η)

∼
−→ Tp(G

′′, η) 
ompatible with the a
tion of π1(U
′′, η). Therefore,the group Im(ρG ) is identi�ed with Im(ρG ′′). Sin
e G ′′ is one-dimensional, we
on
lude the proof by Lemma 8.5 and Theorem 7.3.Referen
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