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Conjecture IT of Serre considers a field F' of characteristic p with cd(Gal(F')) < 2
such that either p = 0 or p > 0 and [F : FP] < p and predicts that
HY(Gal(F),G) = 1 (i.e. each principal homogeneous G-spaces has an F-
rational point) for each simply connected semi-simple linear algebraic group
G [Ser97, p. 139).

As Serre notes, the hypothesis of the conjecture holds in the case where F' is
a field of transcendence degree 1 over a perfect field K with cd(Gal(K)) < 1.
Indeed, in this case cd(Gal(F')) < 2 [Ser97, p. 83, Prop. 11] and [F' : FP] < p if
p > 0 (by the theory of p-bases [FrJ08, Lemma 2.7.2]). We prove the conjecture
for F' in the special case, where K is PAC of characteristic 0 that contains all
roots of unity.

One of the main ingredients of the proof is the projectivity of Gal(K (z)ap)
(where x is transcendental over K and K (x),, is the maximal Abelian ex-
tension of K(x)). We also use the same ingredient to establish an analog
to the wellknown open problem of Shafarevich that Gal(Q,p) is free. Under
the assumption that K is PAC and contains all roots of unity we prove that
Gal(K (2)a1) is not only projective but even free. This proves a stronger version
of a conjecture of Bogomolov for a function field of one variable F' over a PAC
field that contains all roots of unity [Pos05, Conjecture 1.1].
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1. THE PROJECTIVITY OF Gal(K (z)ap)

We denote the separable (resp. algebraic) closure of a field K by K, (resp. K)
and its absolute Galois group by Gal(K). The field K is said to be PAC if
every absolutely irreducible variety defined over K has a K-rational point. The
proof of the projectivity result applies a local-global principle for Brauer groups
to reduce the statement to Henselian fields.

For a prime number p and an Abelian group A, we say that A is p’-DIVISIBLE,
if for each a € A and every positive integer n with p { n there exists b € A such
that a = nb. Note that if p = 0, then “p’-divisible” is the same as “divisible”.

LEMMA 1.1: Let p be 0 or a prime number, B a torsion free Abelian group,
and A is a p’-divisible subgroup of B of finite index. Then B is also p’-divisible.

Proof: First suppose p =0 and let m = (B : A). Then, for each b € B and a
positive integer n there exists a € A such that mb = mna. Since B is torsion
free, m = na. Thus, B is divisible.

Now suppose p is a prime number, let mp* = (B : A), with p{m and k > 0,
and consider b € B. Then mp*b € A. Hence, for each positive integer n with
p f n there exists a € A with mp*b = mna. Thus, p¥b = na. Since p { n,
there exist x,y € Z such that xp* + yn = 1. It follows from xp*b = xna that
b = n(za + yb), as claimed. O

COROLLARY 1.2: Let L/K be an algebraic field extension, v a valuation of L,
and p = 0 or p is a prime number. Suppose that v(K*) is p’-divisible. Then
v(L*) is p’-divisible.

Proof: Let x € L* and n a positive integer with p { n. Then v(K(x)*)
is a torsion free Abelian group and v(K*) is a subgroup of index at most
[K(z) : K]. Since v(K*) is p/-divisible, Lemma 1.1 gives y € K (x)* such that
v(x) = nv(y). It follows that v(L*) is p’-divisible. m

Given a Henselian valued field (M, v) we use v also for its unique extension to
M. We use a bar to denote the residue with respect to v of objects associated
with M, let Ops be the valuation ring of M, and let T'y; = v(M *) be the value
group of M.

We write c¢d;(K) and cd(K) for the Ith cohomological dimension and the coho-
mological dimension of Gal(K') and note that cd(K) < 1 if and only if Gal(K)
is projective [Ser97, p. 58, Cor. 2].

LEMMA 1.3: Let (M, v) be a Henselian valued field. Suppose p = char(M) =
char(M), Gal(M) is projective, and Iy is p'-divisible. Then Gal(M) is pro-
Jjective.

Proof: We denote the INERTIA FIELD of M by M,. It is determined by its
absolute Galois group: Gal(M,) = {0 € Gal(M)| v(cx —x) > 0 for all z €
M with v(x) > 0}. The map o — & of Gal(M) into Gal(M) such that 67 = 57
for each © € Oy is a well defined epimorphism [Efr06, Thm. 16.1.1] whose
kernel is Gal(M,,). It therefore defines an isomorphism

(1) Gal(M, /M) = Gal(M).
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CLAIM A: M, is separably closed. Let g € M[X] be a monic irreducible
separable polynomial of degree n > 1. Then there exists a monic polynomial
f € O, [X] of degree n such that f = g. We observe that f is also irreducible
and separable. Moreover, if f(X) =[[I_,(X — z;) with z1,...,z, € M,, then
9(X) =[I~,(X — z;). Given 1 <4,j < n there exists o € Gal(}M,,) such that
ox; = xj. By definition, ¥; = o%; = 0%; = Z;. Since g is separable, i = j, so
n = 1. We conclude that M, is separably closed.

Cramm B: Each [-Sylow group of Gal(M,,) with | # p is trivial. Indeed, let
L be the fixed field of an [-Sylow group of Gal(M,) in Ms. If I = 2, then
G =-1€eL. Ifl#2 then [L(¢) : L]|l — 1 and [L({;) : L] is a power of , so
¢ € L.

Assume that Gal(L) # 1. By the the theory of finite I-groups, L has a cyclic
extension L’ of degree I. By the preceding paragraph and Kummer theory,
there exists @ € L* such that L' = L({/a). By Corollary 1.2, there exists
b € L* such that lv(b) = v(a). Then ¢ = & satisfies v(c) = 0. By Claim A, L
is separably closed. Therefore, ¢ has an [th root in L. By Hensel’s lemma, ¢
has an [th root in L. It follows that a has an [-root in L. This contradiction
implies that L = M, as claimed.

Having proved Claim B, we consider again a prime number [ # p and let G,
be an [-Sylow subgroup of Gal(M). By the Claim, G; N Gal(M,,) = 1, hence
the map res: Gal(M) — Gal(M, /M) maps G; isomorphically onto an I-Sylow
subgroup of Gal(M,/M). By (1), G, is isomorphic to an I-Sylow subgroup of
Gal(M). Since the latter group is projective, so is Gy, i.e. cd;(G) < 1 [Ser97,
p. 58, Cor. 2].

Finally, if p # 0, then cd,(M) < 1 [Ser97, p. 75, Prop. 3], because then
char(M) = p. Tt follows that ed(M) < 1 [Ser97, p. 58, Cor. 2]. m

LEMMA 1.4: Let F be an extension of a PAC field K of transcendence degree
1 and characteristic p. Suppose v(F*) is p’-divisible for each valuation v of
F/K. Then Gal(F) is projective.

Proof: Let Ki,s be the maximal purely inseparable algebraic extension
of K and set F/ = FKis. Then Ki, is PAC [FrJ08, Cor. 11.2.5],
trans.deg(F’/Kins) = 1, and v((F')*) is p/-divisible for every valuation v of
F’ (by Corollary 1.2). Moreover, Gal(F’) = Gal(F). Thus, we may replace K
by Ki,s and F by F’, if necessary, to assume that K is perfect.

Let V(F/K) be a system of representatives of the equivalence classes of valua-
tions of F' that are trivial on K. For each v € V(F/K) we choose a Henselian
closure F, of F at v. By [Efr01, Thm. 3.4], there is an injection of Brauer
groups,

(2) Br(F)— [[ Br().

VeV (F/K)

For each v € V(F/K) we have, v(F,)) = v(F"*) is p’-divisible. Also, the residue
field F), is an algebraic extension of K. Since K is PAC, a theorem of Ax says
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that Gal(K) is projective [FrJ08, Thm. 11.6.2], hence Gal(F,) is projective
[FrJO8, Prop. 22.4.7]. Finally, char(F,) = char(F,). Therefore, by Lemma 1.3,
Gal(F,) is projective, hence Br(F;) = 0 [Ser97, p. 78, Prop. 5]. It follows from
the injectivity of (2) that Br(F') = 0.

If F7 is a finite separable extension of F, v; € V(F1/K), and v = v1]|p,
then v(F*) is p’-divisible. Hence, by Corollary 1.2, vy ((Fy)*) is p/-divisible.
It follows from the preceding paragraph that Br(F;) = 0. Consequently, by
[Ser97, p. 78, Prop. 5], cd(Gal(F)) < 1. O

LEMMA 1.5: Let p be either 0 or a prime number and let I' be an additive
subgroup of Q. Suppose % € T for each positive integer n with p{n. Then T’
is p’-divisible.

Proof:  'We consider v € I'. If p = 0, we write v = 3, with a € Z and b € N.
Given n € N, we have T :a-% erl.
pr>0,wewrite7:bp%,wherean,bEN,kzeZ, and pfa,b. Let n € N
with pfn. If £ <0, then I = ap~F - % eI If k > 0, we may choose x,y € Z

k
such that zp® 4+ ynb = 1. Then 1= nl?pk = ﬂfﬁﬂb =azx- %—l—by- bp% erl,
as claimed. m]

PrOPOSITION 1.6: Let K be a PAC field that contains all roots of unity and let
E be an extension of K of transcendence degree 1. Then Gal(FE,y,) is projective.

Proof: First we consider the case where E = K (x), where x is transcendental
over K, and set F' = E,;,. In the notation of Lemma 1.4 we consider a valuation
v € V(F/K) normalized in such a way that v(E*) = Z. Then v(F*) < Q.
On the other hand, let p = char(K) and consider a positive integer n with
ptn. Let e € E with v(e) = 1. Then e'/™ € F (because K contains a root
of 1 of order n). Therefore, L = v(e!/") € v(F*). By Lemma 1.5, v(F*) is
p’-divisible. We conclude from Lemma 1.4 that Gal(F') is projective.

In the general case we choose x € F transcendental over K. By the preceding
paragraph, Gal(K (z)ap) is projective. Since taking purely inseparable exten-
sions of a field does not change its absolute Galois group, Gal(K (z)ab,ins) 18
projective. Now note that Gal(Eaub,ins) as a subgroup of Gal(K ()ab,ins) is also
projective. Hence, Gal(E,}) is projective. ]

Remark 1.7: Proposition 1.6 is false if K does not contain all roots of unity.
Indeed, the authors will elsewhere provide an example of a prime number [ and
a PAC field K of characteristic 0 that contains all roots of unity of order n
with It n but not ¢; such that Gal(K (x),p) is not projective. m

2. SERRE AND SHAFAREVICH

We refer to a simply connected semi-simple linear algebraic group G as a SIM-
PLY CONNECTED GROUP. In this case H!(Gal(K),G) will be also denoted by
H'(K,QG). Since each element of H'(K, G) is represented by a principal homo-
geneous space V of G and V is an absolutely irreducible variety defined over
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K, V has a K-rational point if K is PAC. Hence, V is equivalent to G [LaT58,
Prop. 4]. Thus, HY(K,G) = 1.

The proof of Serre’s Conjecture II in our case is based on the following conse-
quence of a theorem of Colliot-Thélene, Gille, and Parimala:

PROPOSITION 2.1: Let F' be a field and G a simply connected group defined
over F'. Suppose F is a Ca-field of characteristic 0, cd(F') < 2, and cd(F,p) < 1.
Then HY(F,G) = 1.

Proof: Let F’ be a finite extension of F. Since F is Co, [CGP04, Thm. 1.1(vi)]
implies that if the exponent e of a central simple algebra A over F’ is a power
of 2 or a power of 3, then e is equal to the index of A.

Since cd(F) < 2 and cd(Fa,) < 1, [CGP04, Thm. 1.2(v)] implies that
HY(F,G)=1. o

Remark 2.2: By Merkuriev-Suslin, the assumption that F' is a Cs-field implies
that cd(F) < 2 [Ser97, end of page 88]. However, we will be able to prove both
properties of F' directly in the application we have in mind. ]

The following result establishes the first condition on F.

LEMMA 2.3: Let F' be an extension of transcendence degree 1 over a perfect
PAC field K. Suppose either char(K) > 0 and K contains all roots of unity or
char(K) = 0. Then cd(F) < 2 and F is a Cy-field.

Proof: By Ax, cd(K) < 1 [FrJ08, Thm. 11.6.2]. Hence, by [Ser97, p. 83,
Prop. 11], cd(F) < 2.

A conjecture of Ax from 1968 says that every perfect PAC field K is C; [FrJ08,
Problem 21.2.5]. The conjecture holds if K contains an algebraically closed field
[FrJ08, Lemma 21.3.6(a)]. In particular, if p = char(K) > 0 and K contains all
roots of unity, then F, C K, so K is C;. If char(K) = 0, K is Cy, by [Kol07,
Thm. 1]. Tt follows that in each case, F is Cy [FrJ08, Prop. 21.2.12]. o

THEOREM 2.4: Let F be an extension of transcendence degree 1 of a PAC field
K of characteristic 0. Suppose K contains all roots of unity. Then F satisfies
Serre’s conjecture II. That is, H'(F,G) = 1 for each simply connected group
G defined over F'.

Proof: By Lemma 2.3, cd(F) < 2 and F is a Ca-field. By Proposition 1.6,
cd(Fap) < 1. Tt follows from Proposition 2.1 that H(F,G) = 1 for each simply
connected group G. ]

Remark 2.5: All of the ingredients of the proof of Theorem 2.4 except possibly
Proposition 2.1 work also when char(K) > 0. O

The proof of the freeness of Gal(K (x),p) applies the notion of ” quasi-freeness”
due to Harbater and Stevenson. To this end recall that a FINITE SPLIT EM-
BEDDING PROBLEM £ for a profinite group G is a pair (¢: G — A, a: B — A),
where A, B are finite groups, ¢, a are epimorphisms, and « has a group the-
oretic section. A SOLUTION of &£ is an epimorphism v: G — B such that
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a oy = @. We say that G is QUASI-FREE if its rank m is infinite and every
finite split embedding problem for G has m distinct solutions.

THEOREM 2.6: Let F' be a function field of one variable over a PAC field K
of cardinality m containing all roots of unity and let x be a variable. Then
Gal(F,p) is isomorphic to the free profinite group of rank m.

Proof: Since K is PAC, K is AMPLE, that is every absolutely irreducible curve
defined over K with a K-rational simple point has infinitely many K-rational
points. By [HaS05, Cor. 4.4], Gal(F) is quasi-free of rank m = card(K).
Hence, by [Har09, Thm. 2.4], Gal(F,p) is also quasi-free of rank m. Since by
Proposition 1.6, Gal(F,y,) is projective, it follows from a result of Chatzidakis

and Melnikov [FrJ08, Lemma 25.1.8] that Gal(Fyp,) is free of rank m. i

Acknowledgment: The authors thank Jean-Louis Colliot-Thélene for stimulat-

ing discussions, in particular for pointing out Proposition 2.1 to them. ]
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