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654 Benedictus Margaux

1. Introduction.

Our original goal was to prove a strong version of a rigidity principle for ho-
momorphisms between algebraic groups which is part of the area’s folklore.
The general philosophy is that if G and H are algebraic groups over an alge-
braically closed field k, then the set Homk−gr(G,H) modulo the adjoint action
of H should remain constant under any base change K/k with K algebraically
closed. Our result is as follows.

Theorem 1.1. Let k be an algebraic closed field. Let G be a linearly reductive
(affine) algebraic k–group, and H a smooth algebraic k–group scheme. Then
for every algebraically closed field extension K/k, the natural map

Homk−gr(G,H)/H(k)→ HomK−gr(GK ,HK)/H(K)

is bijective.

When k is of characteristic 0 and G and H are both reductive this result
has been established by Vinberg [19, prop. 10] by reducing to the case where
G = GLN and H is connected. Our proof is very different in spirit than
Vinberg’s, and the main result more general. The proof we give is based on
the deformation theory à la Demazure-Grothendieck described in [17], which
is itself linked to the analytic viewpoint later taken by Richardson on similar
problems [12] [13] [16]. The main auxiliary statement we use is case (i) of
the following Theorem, a vanishing result for Hochschild cohomology of affine
group schemes which is of its own interest.

Theorem 1.2. Let R be a commutative ring. Let G be a flat affine group
scheme over Spec(R). Assume that the fibers of G over all closed points of
Spec(R) are linearly reductive groups (as affine groups over the corresponding
residue fields. See §3.1 below for the relevant definitions and references). Let
L be a G-R–module (see §2.1 below). Assume that one of the following two
conditions holds:

(i) R is noetherian,

(ii) the group G is of finite presentation as an R-scheme, and L is a direct
limit G-R–modules which are finitely presented as R-modules.

Then

Hi(G, L) = 0 for all i > 0.

This result extends a theorem of Grothendieck for R–groups of multiplicative
type [17, IX.3.1].

At this point we recall some standard notation that will be used throughout
the paper. Let S be scheme, and G a group scheme over S. For all scheme
morphism S → T we will denote as it is customary the T -group G ×S T by
GT . If T = Spec(R) we write GR instead of GT , and G(R) instead of G(T ).
Group schemes over a given scheme S will for brevity and convenience some-
times be refereed to simply as S–groups, or R–groups in the case when
S = Spec(R).
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2. Generalities on Hochschild cohomology

In this paper, we deal with Hochschild cohomology of a flat affine group scheme
G over an affine base X = Spec(R), and their corresponding G-OX–modules
[17, I 4.7]. This set up is equivalent to that of G-R-modules as we now explain.
Let G = Spec(R[G]). The group structure of G gives the R-algebra R[G] a
coassociative and counital Hopf algebra structure. We have thus a comultipli-
cation ∆G : R[G] → R[G] ⊗R R[G], a counit ǫ : R[G] → R and an antipode
map ι : R[G]→ R[G].
For any ring homomorphism R→ S recall that the S-group G×RS obtained by
base change is denoted by GS . This is an affine S–group with S[G] = S⊗RR[G]
as its Hopf algebra. Similarly, for any R–module L we denote the S–module
L⊗R S by LS .

2.1. Definition and basic properties. Let L be an R-module, and ρ : G→
GL(L) a linear representation of G. This amounts to give for each R–algebra
S an S–linear representation ρS of the abstract group G(S) on the S–module
LS in such a way that the family (ρS) is “functorial on S.” We also then say
that L is a (left) G-R–module. Because G is affine, to give L a G-R–module
structure is equivalent to give L a (right) R[G]-comodule structure, that is an
R–linear map

∆L : L→ L⊗R R[G]

satisfying the two following natural axioms:

(CM1) The following diagram is commutative

L
∆L−−−−→ L⊗R R[G]

∆L

y idL⊗∆G

y

L⊗R R[G]
∆L⊗idR[G]
−−−−−−−→ L⊗R R[G]⊗R R[G]

(CM2) The composite map

L
∆L−−−−→ L⊗R R[G]

idL⊗ǫ
−−−−→ L

is the identity map idL.

The flatness condition on G/R is natural within the present context since the
category of G-R–modules is then abelian. See [15, prop. 2].1 Recall that the
fixed points of L under G are defined by

LG :=
{
f ∈ L | ∆L(f) = f ⊗ 1

}
.

This is an R–submodule of L. Because of the assumption on flatness, the
Hochschild cohomology groups Hn(G, L) are the derived functors of the “fixed
point” functor G-R − mod → R − mod given by L → LG [17, I 5.3.1]. The
Hn(G, L) can thus be computed as the cohomology groups of the complex [4,
II §3.3.1]

1The existence of the unit section of G, more precisely of the counit ǫ, shows that R[G]
is in fact a faithfully flat R-algebra.
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656 Benedictus Margaux

L
∂0→ L⊗R R[G]

∂1→ L⊗R R[G2]
∂2→ L⊗R R[G3]→ · · ·(2.1)

where as usual R[Gn] = R[G × · · · × G] ≃ R[G] ⊗R · · · ⊗R R[G], and both
products and tensor products are taken n-times. We denote as it is customary
ker(∂i) by Zi(G, L) (the cocycles), and Im(∂i−1) by Bi(G, L) (the cobound-
aries). In particular we have the exact sequence

0→ LG = H0(G, L)→ L
∂0→ Z1(G, L)→ H1(G, L)→ 0.(2.2)

The following four properties easily follow from the resolution (2.1).

Lemma 2.1. Let L be a G-R–module.

(1) Let I be an ideal of R which annihilates L. Then LR/I = L⊗R R/I is nat-

urally a GR/I-R/I–module, and Hn(G, L)
∼
−→ Hn(GR/I , LR/I) for all n ≥ 0.

(2) If S/R is a flat extension of rings, then

Hn(G, L)⊗R S
∼
−→ Hn(GS , LS) for all n ≥ 0.

(3) Let L = lim−→i
Li be the inductive limit of G-R–modules. Then

lim−→
i

Hn(G, Li)
∼
−→ Hn(G, L) for all n ≥ 0.

(4) Let S = lim−→α
Sα be an inductive limit of R–rings. Then

lim−→
α

Hn(GSα
, LSα

)
∼
−→ Hn(GS , LS) for all n ≥ 0.

Proof. (1) The natural map L → L ⊗R R/I is an isomorphism of both R and
R/I–modules. We have R and R/I–module isomorphisms

L⊗R R[Gn] ≃ L⊗R R/I ⊗R R[Gn] ≃ L⊗R R/I[Gn] ≃

≃ L⊗R R/I ⊗R/I R/I[Gn] ≃ LR/I ⊗R/I R/I[Gn].

Now (1) follows from the fact that Hn(G, L) and Hn(GR/I , LR/I) are com-
puted by the cohomology of the same complex. This is also a special case of
[17, III 1.1.2].

(2) See [10, I.4.13].

(3) See [10, I.4.17].

(4) The terms of the complex (2.1) for the GS-S–module LS are

LS ⊗S S[Gn] = (L⊗R S)⊗S (S ⊗R R[Gn]
)
≃

(
L⊗R R[Gn]

)
⊗R S

So this complex reads

L⊗R S →
(
L⊗R R[G]

)
⊗R S →

(
L⊗R R[G2]

)
⊗R S →

(
L⊗R R[G3]

)
⊗R S · · ·

which is the inductive limit over the Sα of the complexes

L⊗RSα →
(
L⊗RR[G]

)
⊗RSα →

(
L⊗RR[G2]

)
⊗RSα →

(
L⊗RR[G3]

)
⊗RSα · · ·
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whence the statement. �

The third property in the last Proposition is useful in view of the following
fact.

Proposition 2.2. (Serre) Assume that one of the following hypothesis holds.

(i) R is noetherian,

(ii) G is essentially free over R (see §6).

Let L be a G-R–module. Then L is the inductive limit of its G-R submodules
which are of finite type as R–modules.

Proof. (i) See [14, prop. 2].

(ii) See [17, VIB 11.10].
�

We also recall the following application of erasing functors.

Lemma 2.3. Let d > 0 be a positive integer such that Hd(G, L) = 0 for all
G-R–modules L. Then Hd+i(G, L) = 0 for all G-R–modules L and for all
i ≥ 0.

Proof. It is enough to prove the vanishing for d + 1. Let eR be the trivial R–
group, and view L as a (necessarily trivial) eR-R–module. We also view L as
a trivial G-R–module which we denote by L0 to avoid any possible confusion.
Now we embed L into the induced G-R–module indG

eR
(L) = L0 ⊗R R[G] via

the comodule map ∆L, and denote by Q the resulting quotient. We know that
the Shapiro lemma holds [10, I.4.6], namely that

Hi(G, indG

eR
(L))

∼
−→ Hi(eR, L) = 0 ∀ i > 0.

The long exact sequence for cohomology for 0→ L→ indG

1 (L)→ Q→ 0 yields

an isomorphism Hd(G, Q)
∼
−→ Hd+1(G, L), whence the result. �

3. Vanishing of Hochschild cohomology

The proof of Theorem 1.2 proceeds by considering successively the cases of
fields, artinian rings, complete noetherian rings and local rings. We begin by
recalling and collecting a few facts about linearly reductive groups.

3.1. Linearly reductive groups. Let k be a field. A k–group G is linearly
reductive if it is affine and its corresponding category Repk(G) of finite dimen-
sional linear representations is semisimple. We recall the following criterion.

Proposition 3.1. Let G be an affine k-group. Then the following are equiva-
lent:

(1) G is linearly reductive.
(2) Every linear representation of G is semisimple.
(3) H1(G, V ) = 0 for any finitely dimensional G-k–module V.
(4) H1(G, V ) = 0 for any G-k–module V .
(5) Hi(G, V ) = 0 for any G-k–module V and all i > 0.
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658 Benedictus Margaux

(6) k is a direct summand of the G-k–module structure on k[G] corre-
sponding to the right regular representation.

(7) k is an injective G-k–module.

Proof. For the equivalence of the first five assertions, see [4, II prop. 3.3.7].

(2) =⇒ (6): This follows from the fact that k is a submodule of k[G].

(6) =⇒ (7): See [10, I.3.10].
(7) =⇒ (3): If k is an injective G-k–module, the group H1(G, V ) = Ext1G(k, V )
vanishes for each finite dimensional G-k–module V (by duality). �

The property of being linearly reductive behaves well with respect to base
change.

Proposition 3.2. Let G be an affine algebraic k–group. Let K/k be a field
extension. For the K-group GK to be linearly reductive it is necessary and
sufficient that G be linearly reductive. In particular, if k is an algebraic closure
of k and Gk is a linearly reductive k-group, then G is linearly reductive.

This result is certainly known. We give three different proofs for the sake of
completeness.

Proof. (1) As observed by S. Donkin in §2 of [5], G is linearly reductive if and
only if the injective envelope EG(k) of the trivial G-k–module k coincides with
k. One also knows [ibid. eq. (1)] that EGK

(K) = EG(k)⊗k K. The proposition
follows.

(2) Assume that the k–group G is linearly reductive. By the criterion (6) of
Proposition 3.1, k is a direct summand of k[G]. Hence K is a direct summand
of K[G] and therefore GK is linearly reductive. Conversely if GK is linearly
reductive and V is a G-k–module, then by Lemma 2.1.2 we have H1(G, V )⊗k

K ≃ H1(GK , VK) = 0.

(3) The argument depends on the characteristic of k. One uses [4] IV prop. 3.3
in characteristic 0, and Nagata’s theorem (ibid. théorème 3.6) if the character-
istic is positive.

�

Remark 3.3. Let G be an affine algebraic group over a field k. Let S be a
scheme over k, and consider the S-group scheme GS = G ×k S. The fibers
of GS are then affine algebraic groups over the corresponding residue fields.
It follows from the previous proposition that if any of the fibers is linearly
reductive, then all fibers are linearly reductive.

The following useful statement seems to have gone unnoticed in the literature.

Proposition 3.4. Let 1 → G1 → G2 → G3 → 1 be an exact sequence of
affine algebraic k–groups. Then the following are equivalent:

(1) G2 is linearly reductive ,
(2) G1 and G3 are linearly reductive.

Documenta Mathematica 14 (2009) 653–672



Vanishing of Hochschild Cohomology . . . 659

Proof. (1) =⇒ (2): Since G2/G1 is affine, we know that the induction functor

indG2

G1
is exact [10, I.5.13], and therefore Shapiro’s lemma hence holds (ibid.

I.4.6). Thus

H∗(G2, indG2

G1
(V1))

∼
−→ H∗(G1, V1)

for any G1-k–module V1. Thus Hi(G1, V1) = 0 for i > 0 and Proposition 3.1

shows that G1 is linearly reductive. Since the functor indG2

G1
is exact we can use

the Hochschild-Serre spectral sequence in this framework (ibid. I.6.6.) Given
a finite dimensional representation V3 of G3, this spectral sequence reads as
follows

E2
p,q = Hp(G3, H

q(G1, V3)) =⇒ Hp+q(G2, V3).

Since G1 is linearly reductive Hq(G1, V3) vanishes for all q ≥ 1, hence

Hn(G3, V3)
∼
−→ Hn(G2, V3) for all n ≥ 0. Since H1(G2, V3) = 0,

H1(G3, V3) = 0 and we conclude that G3 is linearly reductive by Proposition
3.1.

(2) =⇒ (1): Assume that G1 and G3 are linearly reductive. Let us check that
G2 is linearly reductive by again appealing to Proposition 3.1. Let V2 be a
finitely dimensional representation of G2. Again we can use the Hochschild-
Serre spectral sequence which now reads as follows

E2
p,q = Hp(G3, H

q(G1, V2)) =⇒ Hp+q(G2, V2).

The only non zero E2-term is H0(G3, H
0(G1, V2)) = H0(G2, V2). Hence

Hi(G2, V2) = 0 for i > 0. Thus G2 is linearly reductive. �

Note that Proposition 3.4 agrees with Nagata’s theorem characterizing linearly
reductive groups over an algebraically closed field [11].

Proposition 3.5. Let G be an affine algebraic k–group which admits a com-
position series where each of the factors is of one of the following types:

(i) algebraic k-groups of multiplicative type,

(ii) finite étale k-group whose order is invertible in k,

(iii) reductive k-group if k is of characteristic zero.

Then G is linearly reductive.

Proof. By Proposition 3.4 we are reduced to verifying the result for each of
the given types. Proposition 3.2 permits us to assume that the base field k
is algebraically closed. Case (i) is then that of a diagonalizable k–group [17,
th. I.5.3.3]. Case (ii) is the case of a finite constant group of invertible order
(Maschke’s theorem, see [11]). Case (iii) is a classical result due to H. Weyl
(see [18, th. 27.3.3]). �
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3.2. Finiteness considerations. Recall that for arbitrary groups schemes
G and H over a scheme S the functor HomS−gp(G,H) : Sch/S → Sets is
defined by

T 7→ HomS−gr(G,H)(T ) = HomT−gr(GT ,HT )

for all schemes T/S.
The following observations will be repeatedly used in the proofs of our main
results. For the remainder of this section we assume that G and H are finitely
presented group schemes over S.
Assume that T = Spec(B) is an affine scheme (in the absolute sense) over S. In
what follows we will encounter ourselves several times in the situation where
B is given to us as an inductive limit

(3.1) B = lim−→
λ∈Λ

Bλ

over some directed set Λ. Note that the Spec(Bλ) do not in general have any
natural structure of schemes over S.
Under these assumptions the group schemes GB and HB are defined over some
Bµ by [17, V IB 10.10.3], i.e. there exists µ ∈ Λ and finitely presented Bµ–group
schemes Gµ and Hµ such that

(3.2) GB = Gµ ×Bµ
B and HB = Hµ ×Bµ

B.

Furthermore if either G is affine (resp. flat, smooth), so is Gµ by [9] 8.10.5
(resp. 11.2.6, 17.7.8). Similarly for H.
It follows from the very definition that
(3.3)

HomS−gp(G,H)(B) = HomB−gp(GB,HB) = HomBµ−gp(Gµ,Hµ)(B)

For all λ ≥ µ define Gλ = Gµ ×Bµ
Bλ and Hλ = Hµ ×Bµ

Bλ. Then the
canonical map

(3.4) lim−→
λ≥µ

HomBλ−gr(Gλ,Hλ)→ HomB−gr(GB,HB).

is bijective by [17, V IB 10.10.2] (see also [9, théorème 8.8.2]).

Remark 3.6. From the foregoing it follows that if u, v : G → H are two
homomorphisms of S-group schemes, then there exist µ ∈ Λ such that uB

and vB are obtained by the base change Bµ → B from group homomorphisms
uµ, vµ ∈ HomBµ−gp(Gµ,Hµ).

Lemma 3.7. Let L be a GB-B-module which is of finite presentation as a B-
module. Then there exists an index µ and a Gµ-Bµ-module Lµ which is finitely
presented as a Bµ–module such that L = Lµ ⊗Bµ

B.

Proof. According to (3.2) and proposition 8.9.1 (ii) of [9] we can find an index α,
a Bα–group Gα and a finitely presented Bα-module Lα such that Gα×Bα

B =
GB and Lα⊗Bα

B = L. For λ ≥ α, we set Gλ = Gα×Bα
Bλ and Lλ = L⊗Bα

Bλ.

Documenta Mathematica 14 (2009) 653–672



Vanishing of Hochschild Cohomology . . . 661

By [9] 8.5.2.2, we have an isomorphism

lim−→
λ≥α

HomBλ

(
Lλ, Lλ ⊗Bλ

Bλ[Gλ]
) ∼
−→ HomB

(
lim−→
λ≥α

Lλ, lim−→
λ≥α

Lλ ⊗Bλ
Bλ[Gλ]

)
=

= HomB(L, L⊗B B[G]).

It follows that there exists λ ≥ α such that the B–module homomorphisms
∆L : L→ L⊗BB[G] is obtained by the base change Bλ → B from a Bλ–module
homomorphism ∆Lλ

: Lλ → Lλ ⊗Bλ
Bλ[Gλ]. The same reasoning applied to

HomB(L, L⊗B B[G]⊗B B[G]) and HomB(L, L) show that there exists µ ≥ λ
such that ∆Lλ

satisfies conditions (CM1) and (CM2) after applying the base
change Bλ → Bµ. �

3.3. Proof of Theorem 1.2. We assume throughout that i > 0.
Case (i) R a noetherian ring: The proof is a classical dévissage argument [8,
§7.2.7)].

Case of R a field: The result follows from Proposition 3.1.

Case of R local artinian: Let m be the maximal ideal of R, and k the corre-
sponding residue field. By our assumption on the closed fibers of G the k–group
Gk = G×R k is linearly reductive.
Fix an integer e ≥ 2 such that me = 0. Thus there exists a smallest integer
j = j(L) such that 0 < j ≤ e and mjL = 0. We reason by induction on j.
If j = 1 then mL = 0. By Lemma 2.1.1, we have Hi(G, L) ∼= Hi(Gk, Lk) for
all i, and Hi(Gk, Lk) vanishes since Gk is linearly reductive. Assume now that
Hi(G, M) = 0 for all G-R–modules M satisfying mjM = 0. If mj+1L = 0, we
consider the exact sequence

0→ mL→ L→ L′ → 0

of G-R–modules. Observe that mj(mL) = 0 and that mL′ = 0. This sequence
gives rise to the long exact sequence of cohomology [10, I.4.2]

· · · → Hi(G, mL)→ Hi(G, L)→ Hi(G, L′)→ · · ·

We have Hi(G, L′) = 0 by the case j = 1 and Hi(G, mL) = 0 by the induction
hypothesis. Thus Hi(G, L) = 0 as desired.

Case of R local and complete: We denote by m the maximal ideal of R, and set
Rn = R/mn+1 for all n ≥ 0.
By Lemma 2.3 it will suffice to establish the case i = 1. Furthermore, Propo-
sition 2.2 together with Lemma 2.1.3 allows us to assume that L is finitely
generated over R. By the Artin-Rees lemma [7, cor. 0.7.3.3 ] we have a natural
isomorphism

L
∼
−→ lim←−

n

Ln

where Ln = L ⊗R Rn. We are given a cocycle z ∈ Z1(G, L) and our goal is
to show by using approximation that z is a coboundary. Since Rn is a local
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artinian ring we have H1(Gn, Ln) = 0 where Gn = G ×R Rn.2 We consider
the exact commutative diagram

0 −−−−−→ H0(G, L) −−−−−→ L
∂0

−−−−−→ Z1(G, L) −−−−−→ H1(G, L) → 0
?

?

y

?

?

y

?

?

y

?

?

y

0 −−−−−→ H0(Gn, Ln) −−−−−→ Ln

∂0,n
−−−−−→ Z1(Gn, Ln) −−−−−→ H1(Gn, Ln) = 0.

Then the images zn of z in the Z1(Gn, Ln) define elements bn ∈ B1(Gn, Ln) ⊂
Z1(G, Ln). We look now

0 −−−−→ H0(Gn, Ln) −−−−→ Ln
∂0,n

−−−−→ B1(Gn, Ln) −−−−→ 0.

Since H0(Gn, Ln) is a finitely generated Rn-module, it is artinian. Hence the
system

(
H0(G, Ln)

)
n≥0

satisfies the Mittag-Leffler condition [7, cor. 0.13.2.2

]. We get then an exact sequence (ibid. prop. 13.2.2)

0 −−−−−→ lim
←−n

H0(Gn, Ln) −−−−−→ lim
←−n

Ln −−−−−→ lim
←−n

B1(Gn, Ln) −−−−−→ 0.

It follows that there exists l ∈ L such that z = ∂0(l) modulo mn+1 for all
n ≥ 0. Thus z = ∂0(l) and therefore the image of z in H1(G, L) vanishes.

Case of R local: We know that the completion R̂ of R is local noetherian and
faithfully flat over R [7, cor. 0.7.3.5]). By Lemma 2.1.2, we have

Hi(G, L)⊗R R̂
∼
−→ Hi(G bR, L bR).

The right hand side vanishes by the local complete case, hence Hi(G, L) = 0
by faithfully flat descent.

Case of R arbitrary noetherian: By the same reasoning used in the previous
case we have Hi(G, L) ⊗R Rm = 0 for any maximal ideal m of R. Thus
Hi(G, L) = 0.

Case (ii) The group G is finitely presented as an R-scheme and L is a direct
limit of G-R-modules which are finitely presented as R–modules: By Lemma
2.1.3 we may assume that L is a finitely presented R–module. The same rea-
soning used in the final step of the noetherian case allows us to assume that
R is a local ring. Let m be the maximal ideal of R and k its residue field.
We consider the standard filtration R = lim−→λ

Rλ of R by its finitely generated

(hence noetherian) Z–subalgebras. For each λ, we consider the prime ideal
pλ := p ∩ Rλ of Rλ, and the corresponding local ring R′

λ := (Rλ)pλ
whose

maximal ideal pλR′
λ we denote by mλ. Note that the residue field kλ of R′

λ is a
subfield of k. We have R = lim−→λ

R′
λ and the following commutative diagram

2One of course verifies that the Rn-groups Gn satisfy the assumptions of the theorem.
Similar considerations apply to the reductions that follow.
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R′
λ −−−−→ R

y
y

kλ = R′
λ/mλ −−−−→ R/m = k.

We now apply the considerations of §3.2 to the case when S = Spec(R), B = R
and Bλ = R′

λ. This yield the existence of an R′
µ, an affine, flat and finitely

presented R′
µ– group scheme Gµ and a Gµ-R′

µ-module Lµ such that G =
Gµ ×R′

µ
R and L = Lµ ⊗R′

µ
R. By Lemma 2.1.4, we have

(3.5) Hi(G, L) = lim−→
λ≥µ

Hi(Gµ ×R′

µ
R′

λ, Lµ ⊗R′

µ
R′

λ).

We also have by the transitivity of base change that

(3.6) (Gµ ×R′

µ
kµ)×kµ

k ≃ Gµ ×R′

µ
k ≃ (Gµ ×R′

µ
R)×R k = G×R k.

From our assumptions on the R–group G it follows that the k–group G ×R

k is affine algebraic and linearly reductive. It then follows from (3.6) and
Proposition 3.2 that the kµ–algebraic group Gµ ×R′

µ
kµ is linearly reductive as

well. This shows that the R′
µ–group Gµ satisfies the assumption of the first

part of the theorem. Similar considerations apply to the R′
λ–group Gµ×R′

µ
R′

λ

for all λ ≥ µ. Thus the noetherian case that we have already established shows,
with the aid of (3.5), that Hi(G, L) = 0. �

4. Rigidity and deformation theory

4.1. Locally finitely presented S–functors. Let S be a scheme and
F : Sch/S → Sets a contravariant functor. We recall the following definitions:

- F is locally of finite presentation over S if for every filtered inverse system of
affine S-schemes Spec(Bi), the canonical morphism

lim−→F (Bi)→ F (lim−→Bi)

is an isomorphism [3, §8.3].3

- F is formally smooth (resp. formally unramified, formally étale) if for any
affine scheme Spec(B) over S and any subscheme Spec(B0) of Spec(B) defined
by a nilpotent ideal I of B, the map

F (B)→ F (B0)

is surjective (resp. injective, bijective) [17, XI.1.1].

Note that all these definitions are stable by an arbitrary base change T → S.
In the second definition, we can require furthermore that I2 = 0. The following
lemma is elementary.

3This reference has assumptions on the nature of S related to Artin’s approximation
theorem which are relevant to their work, but not to ours. As it is customary, given an affine
scheme Spec(B) over S, we write F (B) instead of F

`

Spec(B)
´

.
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Lemma 4.1. Assume that F is locally of finite presentation over S. Consider
a field extension K/k over S, that is morphisms Spec(K) → Spec(k) → S.
Assume that k is separably closed and K is a separable field extension of k.
Then the map F (k)→ F (K) is injective.

Remark 4.2. If k is algebraically closed, any field extension K/k is separable,
hence the Lemma applies.

Proof. We may assume without loss of generality that S = Spec(k). We are
given two elements α, β ∈ F (k) with same image in F (K). Since K is the induc-
tive limit of its finitely generated subalgebras, there exists a finitely generated
k–algebra A such that α and β have same image in F (A). Since K/k is sep-
arable, the finitely generated k–subalgebras of K are separable over k. Hence
A is integral and absolutely reduced (i.e. A⊗k k is reduced), and therefore the
affine variety Spec(A) admits a k–point [1, AG.13.3]. In other words, the ring
homomorphim k → A admits a section. This, in turn, induces a section of the
group homomorphism F (k)→ F (A), hence α = β in F (k). �

4.2. Formal étalness. We recall the following crucial statement of deforma-
tion theory for group scheme homomorphisms due to Demazure.

Theorem 4.3. ([17, cor. III.2.6]) Let G and H be group schemes over a scheme
S. Assume that G is affine (in the absolute sense) and flat, and that H is
smooth. Let S0 be a closed subscheme of S defined by an ideal I of OS such
that I2 = 0. We set G0 = G×S S0 and H0 = H×S S0. Let f0 : G0 → H0 be a
homomorphism of S0-groups, and let G0 act on Lie(H0) via f0 and the adjoint
representation of H0. Then

(1) If H2
(
G0, Lie(H0) ⊗OS0

I
)

= 0 the homomorphism f0 lifts to an S–
group homomorphism f : G→ H.

(2) If H1
(
G0, Lie(H0)⊗OS0

I
)

= 0, then any two liftings f and f ′ of f0 as

in (1) are conjugate under an element of ker
(
H(S) → H(S0)

)
. More

precisely f ′ = int(h)f for some h ∈ ker
(
H(S)→ H(S0)

)
. �

Combined with the vanishing result given by Theorem 1.2 we are very close
to the completion of the proof of our main result. The missing ingredient is
some detailed information pertaining to the nature of certain functors related
to homomorphisms between group schemes.
Let G and H be group schemes over a scheme S. The functor HomS−gp(G,H)
was already defined in §3.2. Any element h ∈ H(T ) defines an inner automor-
phism int(t) ∈ AutT−gr(HT ), and this last group acts naturally on the set

HomS−gr(G,H)(T ). This allows us to define a new functor HomS−gr(G,H) :
Sch/S → Sets by

T 7→ HomS−gr(G,H)(T ) = HomT−gr(GT ,HT )/H(T ).

The final functor which is relevant to us is the transporter of two elements of
HomS−gr(G,H). Let u, v : G → H two homomorphisms of S-group schemes.
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Recall the subfunctor Transp(u, v) of H defined by

T → Transp(u, v)(T ) =
{
h ∈ H(T ) | uT = int(h) vT

}
.

We begin with an easy observation.

Lemma 4.4. Let G and H be finitely presented group schemes over S, and let
u, v ∈ HomS−gr(G,H). The S-functors HomS−gr(G,H), HomS−gr(G,H)
and Transp(u, v) are locally of finite presentation.

Proof. For every filtered inverse system of affine schemes Spec(Bλ) over S based
on some directed set Λ, and we have to show that the canonical morphisms

lim−→HomS−gr(G,H)(Bλ)→ HomS−gr(G,H)(lim−→Bλ) = HomS−gr(G,H)(B),

lim−→HomS−gr(G,H)(Bλ)→ HomS−gr(G,H)(lim−→Bλ) = HomS−gr(G,H)(B),

and

lim−→Transp(u, v)(Bλ)→ Transp(u, v)(lim−→Bλ) = Transp(u, v)(B)

are bijective. Taking into account (3.2), (3.3) and (4.1) we may replace S by
Spec(Bµ) for some suitable index µ ∈ Λ, and replace Λ by the subset of Λ
consisting of all indices λ ≥ µ. Denote G ×Bµ

Bλ and H ×Bµ
Bλ by Gλ and

Hλ respectively, just as we did in §3.2. Then (3.4) shows that HomS−gr(G,H)
is locally of finite presentation.
As for the second assertion, we look in view of (3.3) at the map

lim−→HomBλ−gr(Gλ,Hλ)/Hλ(Bλ)→ HomB−gr(GB ,HB)/HB(B)

which is already known to be surjective. For the injectivity, we are given
φα, φ′

α ∈ HomBα−gr(Gα,Hα) for some α ≥ µ whose images φ, φ′ in
HomB−gr(GB,HB) are conjugated under HB(B) = H(B). Since H is of finite

presentation lim−→H(Bλ)
∼
−→ H(B). So there exists β ≥ α and hβ ∈ H(Bβ)

such that φ = int(h)φ′ where h stands for the image of hβ in H(B). By (3.4)
there exists γ ≥ β such that φα ×Bα

idBγ
= int(hγ)(φ′

α ×Bα
idBγ

), where hγ is
the image of hβ in H(Bγ). In other words, φα, φ′

α map to the same element of
HomBγ−gr(Gγ ,Hγ)/Hγ(Bγ), hence define the same element in the inductive

limit lim−→ HomBλ−gr(Gλ,Hλ)/Hλ(Bλ). We conclude that HomS−gr(G,H) is

locally of finite presentation.
Finally we look at the case of the transporter. Assume that h ∈ H(B) is such
that uB = int(h)vB. Since H is finitely presented there exists α ≥ µ and an
element hα ∈ H(Bα) whose image in H(B) is h. Then the two elements uα and
int(hα)vα of HomBα

(Gα,Hα) map to the same element of HomB(GB,HB).
By (3.4) there exists β ≥ α such that uβ = int(hβ)vβ (where the subindex
β denotes the image of the element in question under the map Bα → Bβ).
This shows that our map is surjective. Note that from the definition of the
transporter it follows that

(4.1) Transp(u, v)(B) = Transp(uB, vB)(B) = Transp(uµ, vµ)(B)
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Injectivity is clear since for all λ ≥ µ we have Transp(uµ, vµ)(Bλ) ⊂ Hµ(Bλ)
and Hµ is of finite presentation. �

Theorem 4.5. Let S be a scheme and let G and H be finitely presented group
schemes over S. Assume that G is affine (in the absolute sense) and flat, and
that H is smooth. Assume that for all s ∈ S the fiber Gs is linearly reductive
(as an affine algebraic group over the residue field κ(s) of s). Then

(1) The functor Hom(G,H) is formally smooth.

(2) The functor Hom(G,H) is formally étale.
(3) If u, v : G→ H are two homomorphisms of S-group schemes, the subfunc-
tor Transp(u, v) of H is formally smooth.

The case when G is of multiplicative type is an important result of
Grothendieck [17, XI prop. 2.1]. If S is of characteristic zero and G is re-
ductive, the first statement is due to Demazure [17, XXIV prop. 7.3.1.a].

Proof. We note that if HomS−gr(G,H) is formally smooth, then

HomS−gr(G,H) is formally smooth as well. As a consequence, to estab-
lish (1) and (2) it will suffice to prove that HomS−gr(G,H) is formally

smooth and that HomS−gr(G,H) is formally unramified. We are given an
affine scheme Spec(B) over S, and a closed subscheme Spec(B0) defined by an
ideal I of B satisfying I2 = 0, and we need to show that

(I) HomS−gr(G,H)(B)→ HomS−gr(G,H)(B0) is surjective,

(II) HomS−gr(G,H)(B)→ HomS−gr(G,H)(B0) is injective, and

(III) Transp(u, v)(B)→ Transp(u, v)(B0) is surjective.

Proof of (I) and (II): By the first equality of (3.3) we may assume with no loss
of generality that S = Spec(B). We claim that, with the obvious adaptations
to the notation of Theorem 4.3,

(4.2) Hi
(
G0, Lie(H0)⊗B0 I

)
= 0 for all i > 0.

Write B = lim−→Bλ where the limit is taken over all finitely generated Z–

subalgebras (hence noetherian) Bλ of B. Then Jλ := I ∩ Bλ is an ideal of
Bλ such that J2

λ = 0 and I = lim−→Jλ. Consider the trivial G0-B0 module

Iλ := Jλ ⊗Bλ
B0.

Since Jλ is a Bλ-module of finite presentation, Iλ is a B0-module of finite
presentation. We have an isomorphism of B0-modules

lim−→Iλ
∼
−→ I

hence an isomorphism of G0-B0–modules

lim−→

(
Lie(H0)⊗B0 Iλ

) ∼
−→ Lie(H0)⊗B0 I.

Because H0 is a smooth B0–group Lie(H0) is a finitely presented B0–module
(see [4] II §4.8). Since the tensor product of finitely presented modules is finitely
presented, Lie(H0)⊗B0 I is a direct limit of G0-B0–modules which are finitely
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presented as B0-modules. It is clear that the B0-groups G0 and H0 satisfy the
assumptions of Theorem 1.2.2. This shows that (4.2) holds, and we can now
apply Theorem 4.3 to obtain (I) and (II)

Proof of (III): For convenience we denote Transp(u, v) by T(u, v). Con-
sider the B-group homomorphisms uB, vB ∈ HomB−gr(GB,HB) induced by
the base change Spec(B) → S. By the definition of the transporter we see
that T(u, v)(B) = T(uB, vB)(B) and T(u, v)(B0) = T(uB, vB)(B0) where
Spec(B0)→ Spec(B) is the natural map. From this it follows that to establish
(III) we may assume without loss of generality that S = Spec(B).
Let u0 and v0 be the elements of HomB0−gr(G0,H0) induced by the base change
B → B0. Let h0 ∈ Transp(u0, v0)(B0), so that u0 = int(h0)v0. Lift h0 to an el-
ement h′ ∈ H(B) (which is possible since H is smooth), and set u′ = int(h′)vB .
Then u′ and uB map to the same element of HomB0−gr(G0,H0), namely u0. By
II there exists h′′ ∈ H(B) such that uB = int(h′′)u′. Furthermore, because of
(4.2) we may assume that h′′ ∈ ker

(
H(B)→ H(B0)

)
. Then h = h′′h′ ∈ H(B)

maps to h0 and satisfies uB = int(h)vB . �

Remark 4.6. The assumption on the fibers of G is not superfluous. Let B =
C[ǫ] be the ring of dual numbers over C, and let S = Spec(B). If I = Cǫ, then
B0 = C. Consider now the case when G = Ga and H = Gm (the additive and
multiplicative groups over B.)
It is well-known that HomB−gr(G,H)(B0) = HomC−gr(Ga,C,Gm,C) is trivial.
On the other hand HomB−gr(G,H)(B) is infinite; it consists of the homomor-
phisms {φz : z ∈ C} which under Yoneda correspond to the B–Hopf algebra
homomorphisms φ∗

z : B[t±1] → B[x] given by φ∗
z : t 7→ 1 + zǫx. Since H

is abelian the functors HomB−gr(G,H) and HomB−gr(G,H) coincide. The

above discussion shows that HomB−gr(G,H) is not formally étale.

Lemma 4.7. If G is essentially free over S (see §6), the functor Transp(u, v)
is representable by a closed S–subscheme of H

Proof. Consider the two morphisms q1, q2 : H → Hom(G,H) which for all
schemes T/S and h ∈ H(T ) are given by and q1(h) = uT and q2(h) =
int(h)vT . Since G is assumed essentially free over S and H is separated over
S, Grothendieck’s criterion [17, VIII.6.5.b] applied to X = H, Y = G,
Z = H shows the representability of Transp(u1, u2) by a closed S–subscheme
of H. �

Corollary 4.8. Under the assumptions of Theorem 4.5, assume furthermore
that G is essentially free over S. Let u, v : G → H be two homomorphisms
of S-group schemes. Then the S-functor Transp(u, v) is representable by a
smooth closed S-subscheme of H. In particular, if u = v, then the centralizer
subfunctor Centr(u) of H is representable by a smooth closed subscheme of H.

Proof. By the last Lemma the S-functor Transp(u, v) is representable by a
closed subscheme of H, which is locally of finite presentation by Lemma 4.4
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and [9] 8.14.2, and formally smooth by Theorem 4.5. Thus Transp(u, v) is a
smooth scheme over S. �

Corollary 4.9. Under the assumptions of Theorem 4.5, assume furthermore
that G is essentially free over S and that S = Spec(B) where B is a henselian
local ring of residue field k. Then the map Hom(G,H)(B)→ Hom(G,H)(k)
is injective. Thus two homomorphisms u, v : G → H of S-group schemes are
conjugate under H(B) if and only if uk, vk : G ×B k → H×B k are conjugate
under H(k).

Proof. By Corollary 4.8, the B–functor Transp(u, v) is representable by a
smooth B–scheme. By Hensel’s lemma [3, §2.3] the map

Transp(u, v)(B)→ Transp(u, v)(k)

is surjective. Thus if uk, vk : G ×B k → H×B k are such that uk = int(h0)vk

for some h0 ∈ H(k), then there exists h ∈ H(B) such that u = int(h)v. �

5. Applications

5.1. Rigidity. Our first result establishes Theorem 1.1

Theorem 5.1. Let k be a field. Let G be a linearly reductive algebraic k–group
and let H be a smooth algebraic k–group. Let K/k be a field extension such
that k and K are both separably closed and K is separable over k (for example
if both k and K are algebraically closed).
Then the map

Homk−gr(G,H)(k)→ Homk−gr(G,H)(K) = HomK−gr(GK ,HK)(K)

is bijective.

Proof. By Lemma 4.1.1 and Lemma 4.4 the map Homk−gr(G,H)(k)→

Homk−gr(G,H)(K) is injective. Conversely we are given an element
u ∈ HomK−gr(GK ,HK) and we want to show that there exists v0 ∈
Homk−gr(G,H) and h ∈ H(K) such that v0 ×k idK = int(h)u.
The homomorphism u : GK → HK arises by base change from some A-group
scheme homomorphism v ∈ HomA−gr(GA,HA), i.e. u = vK , where A ⊂ K
is a finitely generated k–algebra. Under our assumption on k we may assume,
by considering a basic open affine subsheme of Spec(A) if needed, that A is
smooth over k. In particular, A is normal.
Since A is separable over k and k is separably closed, there exists a maximal
ideal m of A such that A/m = k. Then v gives rise to a k–homomorphism
v0 : G→ H. Denote by B the (strict) henselization of the local ring Am. Then
B is noetherian and may be identified with a subring of a separable closure
of the fraction field of A [M, I.4.10, 11]. In particular B can be assumed to
embed into K. By Proposition 3.2 and Remark 3.3 the group GB (which is
clearly affine and free of finite rank over B) satisfies the assumption on the
fibers of Theorem 4.5. By Corollary 4.9, v0×k idB = int(h)(v×A idB) for some
h ∈ H(B). Thus v0 ×k idK = int(hK)u as desired. �
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Remark 5.2. The assumption that G be linearly reductive is not superflu-
ous. Recall (see §3.1) that H1(G, V ) = Ext1G(k, V ). Assume that k is alge-
braically closed of positive characteristic, and let K/k be an arbitrary field
extension. One knows from Nagata’s work that for each non-trivial semisim-
ple k-group G there exists a non-trivial finite dimensional irreducible G-k–
module V such that H1(G, V ) 6= 0. This implies that Theorem 5.1 fails for
Homk−gr(G,GLn) if n = dim(V ) + 1. Indeed Homk−gr(G,GLn)(k) mea-
sures the equivalence classes of n–dimensional linear representations of G. We
know that Ext1

G
(k, V ), which by assumption is a non-trivial k-space, can be

identified with the subset of Homk−gr(G,GLn)(k) that corresponds to those
representations of G that are extensions of k by V. Similar considerations
apply to HomK−gr(GK ,GLn,K)(K). Since H1(G, V ) ⊗k K = H1(GK , VK)

the foregoing discussion shows that the natural map Homk−gr(G,H)(k) →

Homk−gr(G,H)(K) is not surjective whenever k 6= K.

Remark 5.3. Let H be a simple Chevalley Z–group of adjoint type. In [2]
Borel, Friedman and Morgan provide a considerable amount of information
about the set of conjugacy classes of n-tuples x = (x1, · · · , xn) of commuting
elements of finite order of H(C).4 The methods used in [2] are topological and
analytic in nature, and do not immediately translate to other algebraically
closed fields of characteristic 0. One of the reasons why this problem is relevant
is because of its applications to infinite dimensional Lie theory. The interested
reader can consult [6] for details and further references about this topic.
Fix an n-tuple m = (m1, · · · , mn) of positive integers, and let Fm be the finite
constant Q–group corresponding to the finite group Z/m1Z × · · · × Z/mnZ.
Because of the nature of our base field the group Fm is diagonalizable, hence
linearly reductive. Let K be an algebraically closed field of characteristic 0. The
conjugacy classes of n-tuples x = (x1, · · · , xn) of commuting elements of H(K)
where the xi satisfy xmi

i = 1 are parametrized by HomK−gr(Fm,K,HK)(K).
By Theorem 1.1 we have natural bijections

HomK−gr(Fm,K,HK)(K) ≃ HomQ−gr(Fm,HQ)(Q)) ≃

≃HomC−gr(Fm,C,HC)(C).

This allows us to translate the relevant information within [2] to the group
H(K).

5.2. Lie algebras. Assume henceforth that the base scheme S is of “charac-
teristic zero”, i.e. that S is a scheme over Q. Let G/S be a semisimple group
scheme and let H/S be an affine smooth group scheme. In this case, we already
know that the functor HomS−gp(G,H) is representable by a smooth affine S-
scheme of finite presentation [17, XXIV.7.3.1]. Furthermore, if G/S is simply
connected, we have an S-scheme isomorphism

HomS−gr(G,H)
∼
−→ HomS−Lie

(
Lie(G), Lie(H)

)
.

4When lifted to the simply connected cover of H(C) the n-tuples will be comprised of
“almost commuting” elements.
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From this and Theorem 4.5 it follows that the functor

T 7→ HomT−Lie

(
Lie(GT ), Lie(HT )

)
/H(T )

is formally étale.

Corollary 5.4. Let k be an algebraically closed field of characteristic zero.
Let g be a finite dimensional semisimple Lie algebra over k. Let H be a smooth
algebraic k–group. If K is an algebraically closed field extension of k, then the
map

Homk−Lie(g, Lie(H))/H(k)→ HomK−Lie(g⊗k K, Lie(H)⊗k K)/H(K)

is bijective. �

6. Appendix: Affine group schemes which are essentially free

Definition 6.1. [17, VIII 6] A morphism of schemes X/S is essentially free
if there exists an open covering of S by affine schemes Si = Spec(Ai), and for
all i an faithfully flat extension S′

i = Spec(A′
i) → Si such that each X ×S S′

i

admits an open covering by affine schemes (Spec(B′
i,j)) such that B′

i,j is a free

A′
i–module for all j.

Note that an essentially free morphism is flat. Furthermore this property is
stable by arbitrary base change and is local with respect to the Zariski and the
fpqc topology. Recall that that a sequence

1→ G1 → G2 → G3 → 1

of S–group schemes is said to be exact if it is exact as a sequence of fpqc-sheaves
over S [17, VIB 9].

Lemma 6.2. (1) Let G/S be a flat group scheme which is essentially free
over S. Let X → S be a G–torsor which is locally trivial for the fpqc–
topology. Then X is essentially free over S.

(2) Let 1 → G1 → G2 → G3 → 1 be an exact sequence of S–group
schemes. If G1 and G3 are essentially free over S, then G2 is essen-
tialy free over S.

Proof. (1) Since we can reason locally for the Zariski and for the fpqc topology,
we can assume that X is the trivial torsor, namely X = G.

(2) Similarly, we can assume that S = Spec(A) and that G1 (resp. G3) is
covered by open affines subschemes Spec(Bj) (resp. Spec(Cl)) for the fpqc
topology such that the Bj and the Cl are free A–modules. Up to refining the
second fpqc covering, we can furthermore assume that

G2 ×G3 Spec(Cl)
∼
−→ G1 ×S Spec(Cl).

It follows that the Spec(Bl⊗ACl)’s form a fpqc–cover of G2 where the Bl⊗ACl

are free A–modules. Thus G2 is essentially free over S as desired. �

Several well-known affine group schemes are essentially free.
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Proposition 6.3. Let G/S be an affine S–group scheme which admits locally
for the fpqc topology a composition series with factors of the following kind:

(i) S-group schemes of multiplicative type,

(ii) twisted finite constant S–group schemes,

(iii) smooth S-group schemes with connected geometric fibers.

Then G is essentially free over S.

Note that the last case includes reductive group schemes over S and their
parabolic subgroups.

Proof. By Lemma 6.2 it suffices to verify each of the three cases locally for
the fpqc topology. Case (i) is then the case of diagonalizable groups which are
essentially free over S by definition. Case (ii) is that of finite constant S–group
schemes which are also essentially free over S by definition. Case (iii) has been
noticed by Seshadri [15, Lemma 1 p. 230] using a result of Raynaud. �
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