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ABSTRACT. In this paper, we study the noncommutative balls
C, ={(X1,....X,) €e BH)" : wy(X1,...,Xn) <1}, p € (0, 00],

where w,, is the joint operator radius for n-tuples of bounded linear
operators on a Hilbert space. In particular, w; is the operator norm,
wo is the joint numerical radius, and we, is the joint spectral radius.

We introduce a Harnack type equivalence relation on C,, p > 0, and
use it to define a hyperbolic distance d, on the Harnack parts (equiv-
alence classes) of C,. We prove that the open ball

[Cp]<1 = {(Xl, . ,Xn) S B(H)n : UJp(Xl, . ,Xn) < 1}, p >0,

is the Harnack part containing 0 and obtain a concrete formula for the
hyperbolic distance, in terms of the reconstruction operator associated
with the right creation operators on the full Fock space with n gener-
ators. Moreover, we show that the d,-topology and the usual operator
norm topology coincide on [C)]<;. While the open ball [C,]<; is not
a complete metric space with respect to the operator norm topology,
we prove that it is a complete metric space with respect to the hyper-
bolic metric 6,. In the particular case when p = 1 and H = C, the
hyperbolic metric J, coincides with the Poincaré-Bergman distance
on the open unit ball of C™.

We introduce a Carathéodory type metric on [Coo]<1, the set of all
n-tuples of operators with joint spectral radius strictly less then 1, by
setting

dK(AaB) = sup H%p(A) - %p(B)Ha A, B € [COO]<15
p

where the supremum is taken over all noncommutative polynomials
with matrix-valued coefficients p € C[ X1, ..., X,,|® M,,, m € N, with
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Rp(0) = I and Rp(X) > 0 for all X € C;. We obtain a concrete
formula for dg in terms of the free pluriharmonic kernel on the non-
commutative ball [Cs]<1. We also prove that the metric d is com-
plete on [Cx]<1 and its topology coincides with the operator norm
topology.

We provide mapping theorems, von Neumann inequalities, and
Schwarz type lemmas for free holomorphic functions on noncommuta-
tive balls, with respect to the hyperbolic metric d,, the Carathéodory
metric dg, and the joint operator radius w,, p € (0, 00].
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INTRODUCTION

In [48], we provided a generalization of the Sz.-Nagy—Foiag theory of p-
contractions (see [54], [55], [56]), to the multivariable setting. An n-tuple

(1, ...

,T) € B(H)™ of bounded linear operators acting on a Hilbert space
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HYPERBOLIC GEOMETRY ON NONCOMMUTATIVE BALLS 597

H belongs to the class C,, p > 0, if there is a Hilbert space £ 2 ‘H and some
isometries V; € B(K), i =1,...,n, with orthogonal ranges such that

To = pPyVa|n for any a € F\{go},

where Py is the orthogonal projection of K onto H. Here, F stands for the
unital free semigroup on n generators gi,...,¢gn, and the identity go, while
To:=T,T;, Ty, if &« =gi,gi, - 9i, € F} and Ty, := Iy, the identity on H.
According to the theory of row contractions (see [56] for the case n = 1, and
[16], [7], [32], [33], [34], for n > 2) we have

€= BT = {(X1,.0, Xa) € BO)™ ¢ IXa XS 4+ X X0 2 < 1.

The results in [48] (see Section 4) can be seen as the unification of the the-
ory of isometric dilations for row contractions [54], [56], [16], [7], [32], [33],
[34] (which corresponds to the case p = 1) and Berger type dilations for n-
tuples (T4,...,T,) with the joint numerical radius w(T4,...,T,) < 1 (which
corresponds to the case p = 2).

Following the classical case ([19], [59]), we defined the joint operator radius
wy : B(H)™ — [0,00), p >0, by setting

1 1
wo(Ti,...,Ty) := inf {t >0: (;Tl,...,—Tn) € Cp}

t
and weo (T4, ..., Ty) == lim w,(Th,...,Ty). In particular, wi(7T1,...,T,) coin-
p—00
cides with the norm of the row operator [Ty - -- T3], we(T1,...,T,) coincides
with the joint numerical radius w(Ty,...,Ty), and we (T1,...,Ty) is equal to
the (algebraic) joint spectral radius (see [7], [25])
1/2k
Ty,....T,) = li T,
T( 1, ) ) k:inolo ;k «

where the length of & € F; is defined by |a| := 0if « = gg and by |a| := k if a =
9i, g, and iq,...,4; € {1,...,n}. In [48], we considered basic properties
of the joint operator radius w, and we extended to the (noncommutative and
commutative) multivariable setting several classical results obtained by Sz.-
Nagy and Foias, Halmos, Berger and Stampfli, Holbrook, Paulsen, Badea and
Cassier, and others (see [2], [3], [4], [5], [17], [18], [19], [20], [21], [29], [30], [55],
and [59]).

In [49], we introduced a hyperbolic metric § on the open noncommutative ball
[B(H)"]1, which turned out to be a noncommutative extension of the Poincaré-
Bergman ([6]) metric on the open unit ball B, := {z € C" : ||z]2 < 1}. We
proved that ¢ is invariant under the action of the group Aut([B(H)"]1) of all
free holomorphic automorphisms of [B(H)"];, and showed that the d-topology
and the usual operator norm topology coincide on [B(H)"];. Moreover, we
proved that [B(H)"]; is a complete metric space with respect to the hyperbolic
metric and obtained an explicit formula for § in terms of the reconstruction
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operator. A Schwarz-Pick lemma for bounded free holomorphic functions on
[B(H)™]1, with respect to the hyperbolic metric, was also obtained. In [46], we
continued to study the noncommutative hyperbolic geometry on the unit ball
of B(H)™, its connections with multivariable dilation theory, and its implica-
tions to noncommutative function theory. The results from [49] and [46] make
connections between noncommutative function theory (see [41], [44], [50], [47])
and classical results in hyperbolic complex analysis (see [22], [23], [24], [52],
[58]).

The present paper is an attempt to extend the results [49] concerning the
noncommutative hyperbolic geometry of the unit ball [B(H)"]; to the more
general setting of [48]. We study the noncommutative balls

Colc1 ={(X1,..., Xs) € BH)" : wp(Xy,...,Xn) <1}, p € (0,00],

and the Harnach parts of C,, p > 0, as metric spaces with respect to a hyper-
bolic (resp. Carathéodory) type metric that will be introduced. We provide
mapping theorems for free holomorphic functions on these noncommutative
balls, extending classical results from complex analysis and hyperbolic geome-
try.

In Section 1, we consider some preliminaries on free holomorphic (resp. pluri-
harmonic) functions on the open unit ball [B(H)"];, and present several char-
acterizations for the n-tuples of operators of class C,, p € (0,00). We introduce
a free pluriharmonic functional calculus for the class C, and show that a von
Neumann type inequality characterizes this class. In particular, we prove that
an n-tuple of operators (11, ...,T,) € B(H)™ is of class C, if and only if

Ip(Th,. ... Tl < |lpp(St,. .., Sn) + (1= p)p(0)]

for any noncommutative polynomial with matrix-valued coefficients p €
ClZ1,...,Zn] ® My, m € N, where Sy,...,S, are the left creation operators
on the full Fock space with n generators.

H
In Section 2, we introduce a preorder relation < on the class C,. If A :=
(A1,...,A,) and B := (By,...,By,) are in the class C, C B(H)"™, we say that
H
A is Harnack dominated by B (denote A < B) if there exists ¢ > 0 such that

Rp(A1, ..., An) + (p— 1)Rp(0) < & Rp(B, ..., Bn) + (p — 1)Rp(0)]

for any noncommutative polynomial with matrix-valued coefficients p €
C[X1,...,Xn] ® My, m € N, such that Rp(X) := 1[p(X)* + p(X)] > 0 for
any X € [B(K)"]1, where K is an infinite dimensional Hilbert space. When we

H
want to emphasize the constant ¢, we write A< B. We provide several char-

C
acterizations for the Harnack domination on the noncommutative ball C, (see
Theorem 2.2), and determine the set of all elements in C, which are Harnack
dominated by 0. The results of this section will play a major role in the next
sections.

DOCUMENTA MATHEMATICA 14 (2009) 595-651



HYPERBOLIC GEOMETRY ON NONCOMMUTATIVE BALLS 599

H
The relation < induces an equivalence relation X on the class C,. More pre-
cisely, two n-tuples A and B are Harnack equivalent (and denote A A B)

H H
if and only if there exists ¢ > 1 such that A< B and B< A (in this case we

denote AZ B). The equivalence classes with respect to A are called Harnack
C

parts of C,. In Section 3, we provide a Harnack type double inequality for
positive free pluriharmonic functions on the noncommutative ball C, and use it
to prove that the Harnack part of C, which contains 0 coincides with the open
noncommutative ball

Colc1 i ={(X1,...,. Xn) € B(H)" : wy(X1,...,X,) <1}

We introduce a hyperbolic metric d, : A x A — RT on any Harnack part A of
C,, by setting

3,(A,B) :zlninf{c>1: Arhv,TB}, A, BeA.

A concrete formula for the hyperbolic distance on any Harnack part of C, is
obtained. When A = [C,]<1, we prove that

)

d,(A, B) = Inmax { HCP,AC;,}B’

ConCral}.  ABel)a,

where

OPaX = Ap7x(1 - Rx)_l,
Apx = [pI + (1 - p)(Ry + Rx) + (p — 2)Rix Rx]"?,

and Ry := X{QR1+ -+ X ®R,, is the reconstruction operator associated with
the right creation operators Ry, ..., R, on the full Fock space with n generators,
and X = (X1,...,Xn) € [Cpl<1. We recall that the reconstruction operator
has played an important role in noncommutative multivariable operator theory.
It appeared as a building block in the characteristic function associated to a
row contraction (see [34], [45]) and also as a quantized variable (associated with
the n-tuple X) in the noncommutative Cauchy, Poisson, and Berezin transform,
respectively (see [41], [44], [47], [48]).

In Section 4, we study the stability of the ball C, under contractive free holo-
morphic functions and provide mapping theorems, von Neumann inequalities,
and Schwarz type lemmas, with respect to the hyperbolic metric 6, and the
operator radius wp, p € (0, 00].

Let f := (f1,-.., fm) be a contractive free holomorphic function with || f(0)|| <
1 such that the boundary functions ]?1, ceey fm are in the noncommutative disc
algebra A,, (see [36], [40]). If an n-tuple of operators (T1,...,T,) € B(H)" is
of class C,, p > 0, then we prove that, under the free pluriharmonic functional
calculus, the m-tuple f(T1,...,T},) € B(H)™ is of class C,,, where py > 0 is
given in terms of p and f(0).

Ppo

One of the main results of this section is the following spectral von Neumann
inequality for n-tuples of operators. If f := (f1,..., fm) satisfies the conditions
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above and (11, ...,T,) € B(H)™ has the joint spectral radius r(T1,...,T,) <1,
then r(f(Th,...,Tn)) < 1.

If, in addition, f(0) =0 and 6, : A x A — [0, 00) is the hyperbolic metric on a
Harnack part A of C,, then we prove that
5o(f(A), f(B)) <6,(A,B), A BeA.

In particular, this holds when A is the open ball [C,]<1. Moreover, in this
setting, we show that

wp(f(Tl,...,Tn)) < 1, (Tl,...,Tn) S [Cp]<1,
for any p > 0. The general case when f(0) # 0 is also discussed.
In Section 5, we introduce a Carathéodory type metric on the set of all n-tuples
of operators with joint spectral radius strictly less then 1, i.e.,
[Coo]<1 = {(Xl, R ,Xn) € B(H)n : T(Xl, .. ,Xn) < 1},

by setting
dx (A, B) = sup [|Rp(A) — Rp(B),
P

where the supremum is taken over all noncommutative polynomials with
matrix-valued coefficients p € C[X1,...,X,] ® My, m € N, with Rp(0) = T
and Rp(X) > 0 for all X € [B(K)"];.

We obtain a concrete formula for dx in terms of the free pluriharmonic kernel
on the open unit ball [Cs]<1. More precisely, we show that

dix(A,B) = |P(A,R) - P(B,R)||, A, B € [Cx]«,

where

P(X,R):=)_ > Xo®@Ri+pI®I+> > X:®Rs, X € [Cul,
k=1|a|=k k=1|a|=k

and & is the reverse of @ € F;'. This is used to prove that the metric dx is
complete on [Cx]<1 and its topology coincides with the operator norm topol-
ogy. We also prove that if f := (f1,..., fm) IS a contractive free holomorphic
function with || £(0)|| < 1 such that the boundary functions fi,..., fm are in
the noncommutative disc algebra A,,, then

1+ (/0]
dK(f(A)af(B)) S WdK(AaB)a AaB € [Coo]<1-

As a consequence, we deduce that the map
[COO]<1 > (Xla e DX"l) = f(Xla e 7X’n) € [COO]<1

is continuous in the operator norm topology.

In Section 6, we compare the hyperbolic metric §, with the Carathéodory metric
dx, and the operator metric, respectively, on Harnack parts of the unit ball C,,
p > 0. In particular, we prove that the hyperbolic metric §, is complete on the
open unit unit ball [C,]<1, while the other two metrics, mentioned above, are

DOCUMENTA MATHEMATICA 14 (2009) 595-651



HYPERBOLIC GEOMETRY ON NONCOMMUTATIVE BALLS 601

not complete. On the other hand, we show the §,-topology, the dx-topology,
and the operator norm topology coincide on [C,]<1.

In Section 7, we consider the single variable case (n = 1) and show that our
Harnack domination for p-contractions is equivalent to the one introduced and
studied by G. Cassier and N. Suciu in [9] and [10]. Consequently, we recover
some of their results and, moreover, we obtain some results which seem to be
new even in the single variable case.

Finally, we want to acknowledge that we were influenced in writing this paper
by the work of C. Foiag ([15]), I. Suciu ([53]), and G. Cassier and N. Suciu ([9],
[10]) concerning the Harnack domination and the hyperbolic distance between
two p-contractions. It will be interesting to see to which extent the results of
this paper, concerning the hyperbolic geometry on noncommutative balls, can
be extended to the Hardy algebras of Muhly and Solel (see [26], [27], [28]).

1. THE NONCOMMUTATIVE BALL Cp AND A FREE PLURIHARMONIC
FUNCTIONAL CALCULUS

In this section, we consider some preliminaries on free holomorphic (resp. pluri-
harmonic) functions on the unit ball [B(H)"]1, and several characterizations for
the n-tuples of operators of class C,. We introduce a free pluriharmonic func-
tional calculus for the class C, and show that a von Neumann type inequality
characterizes the class C,.

Let H,, be an n-dimensional complex Hilbert space with orthonormal basis eq,
€2, ...,en, where n =1,2,..., or n = co. The full Fock space of H,, is defined
by
F?(H,):=Clo P H*,
E>1

where H®* is the (Hilbert) tensor product of k copies of H,. We define the
left (resp. right) creation operators S; (resp. R;), i = 1,...,n, acting on the
full Fock space F?(H,) by setting

Si(p:: €i®(pa SDEF2(H7L)’

(resp. Rip := p ®e;, ¢ € F?(H,)). We recall that the noncommutative
disc algebra A, (resp. R,) is the norm closed algebra generated by the left
(resp. right) creation operators and the identity. The noncommutative analytic
Toeplitz algebra F° (resp. RS°) is the weakly closed version of A, (resp. R,,).
These algebras were introduced in [36] in connection with a von Neumann type
inequality [57], as noncommutative analogues of the disc algebra A(D) and the
Hardy space H* (D). For more information on theses noncommutative algebras
we refer the reader to [35], [37], [38], [40], [12], and the references therein.

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear
operators on H. We identify M,,(B(H)), the set of m X m matrices with entries
from B(H), with B(H(™)), where H(™) is the direct sum of m copies of H. If
X is an operator space, i.e., a closed subspace of B(H), we consider M,,(X) as
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a subspace of M,,,(B(H)) with the induced norm. Let X, be operator spaces
and u: X — ) be a linear map. Define the map u,, : M,,(X) — M,,(¥) by

U ([xi5]) == [u(wi;)]-
We say that u is completely bounded if

[ulleb == sup [Jum|| < oo.
m>1

If |ullep < 1 (resp. u, is an isometry for any m > 1) then w is completely
contractive (resp. isometric), and if w, is positive for all m, then wu is called
completely positive. For basic results concerning completely bounded maps
and operator spaces we refer to [29], [31], and [13].

A few more notations and definitions are necessary. If w,y € F;I, we say that
w > v if there is o € F;7\{go} such that w = yo and set w\;y := 0. We denote
by & the reverse of a € Ff, ie., & = ¢;, ---gi, if @ = gy - -g;, €FF. An
operator-valued positive semidefinite kernel on the free semigroup F;' is a map
K : F}f x F} — B(H) with the property that for each k € N, for each choice

of vectors hi,...,hg in H, and o1, ...,04 in F}, the inequality
k
Z (K(O‘i, O'j)hj, hl> >0
ij=1

holds. Such a kernel is called multi-Toeplitz if it has the following properties:
K(a,a) = Iy for any « € FF, and

K(go,w\io) ifw> 0
K(o,w) =< K(o\jw,g0) ifo>w
0 otherwise.

An n-tuple of operators (11, ...,T,), T; € B(H), belongs to the class C,, p > 0,
if there exist a Hilbert space K O H and isometries V; € B(K), i = 1,...,n,
with orthogonal ranges, such that

To = pPrValn, a e Fi\{go},
where Py is the orthogonal projection of IC onto H. If K = Kp := VaeJFI Vo'H,
then the n-tuple (V4,...,V,) is the minimal isometric dilation of (T1,...,T},),
which is unique up to an isomorphism. Note that if (71,...,T;,) € C,, then the
joint spectral radius r(T4,...,T,) < 1, where
1/2k
r(Ty,...,T,) = lim Z T, T

k—oo
la|=k

We recall (see Corollary 1.36 from [48]) that |J C, is dense (in the operator
p>0

norm topology) in the set of all n-tuples of operators with joint spectral radius

r(T1,...,T,) < 1. Moreover, any n-tuple of operators with r(771,...,T;,) <1

is of class C, for some p > 0. We should add that (see Theorem 5.9 from [43])
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(Ty,...,T,) € B(H)"™ has the joint spectral radius r(7T1,...,T,) < 1 if and
only if it is uniformly stable, i.e., || 32, TaT5ll — 0, as k — oo.

Since the joint spectral radius of n-tuples of operators plays an important role
in the present paper, we recall (see [7], [25]) some of its properties. The joint
right spectrum o, (T4, . .., T,) of an n-tuple (17, ..., T,) of operators in B(H) is
the set of all n-tuples (A1, ..., A,) of complex numbers such that the right ideal
of B(H) generated by the operators \iI — T1,..., A\, I — T,, does not contain
the identity operator. We know that o,.(T1,...,T}) is included in the closed
ball of C" of radius r(T1,...,Ty).

If we assume that T1,...,T, € B(H) are mutually commuting operators and
B is a closed subalgebra of B(H) containing 77, ...,T,, and the identity, then
the Harte spectrum o (771, ...,T;,) is the set of all (A1,...,A,) € C™ such that

MI-TH)Xi+- -+ W —-T)X, #1
for all Xy,...,X, € B. In this case, we have
r(Ty,...,Tn) = max{||(A1,.. ., A\n)ll2 s (A1yosAn) €0(Th, ..., Th)}e

According to [25], the latter formula remains true if the Harte spectrum is
replaced by the Taylor’s spectrum for commuting operators.

According to Theorem 4.1 from [39] and Theorems 1.34 and 1.39 from [48], we
have the following characterizations for the n-tuples of operators of class C,,.
We denote by C[Z1,...,7Z,] the set of all noncommutative polynomials in n
noncommuting indeterminates.

THEOREM 1.1. Let Th,...,T, € B(H) and let S C C*(S1,...,Sy) be the op-
erator system defined by

Si= {p(Sla 7Sn) +Q(S15 aSn)* P PgE C[Zlvvzn]}
Then the following statements are equivalent:

i) (T1,...,Tn) €C,.
(ii) The map ¥ : S — B(H) defined by

U (p(S1,...,5) +4q(S1,...,8.)") :==p(T1,...,T) + q(T1, ..., Tp)"

+ (p — 1)(p(0) + ¢(0))I

is completely positive.
(iii) The joint spectral radius r(Ty...,T,) < 1 and the p-pluriharmonic
kernel defined by

BT, R) =) > 7T @R+ pI@I+> Y r*T;®Rs
k=1 |a|=k k=1 |a|=k
is positive for any 0 < r < 1, where the convergence is in the operator

norm topology.
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(iv) The spectral radius r(Ty,...,T,) <1 and

pI @I+ (1—p)r

3

for any 0 <r < 1.
(v) The multi-Toeplitz kernel K, : Ff x Ff — B(H) defined by

(T.® Rf + T @ Ri) + (p — 2)r° (ZTT ®I> >0
=1 i=1

%Tﬁ\la Zfﬁ >«
Kpr(8) =4 yo=p
(o, B) = .
g HTavp) ifa>1B
0 otherwise

is positive semidefinite.

Consider 1 < m < n and let (R},...,R},) and (Ry,...,R,) be the right
creation operators on F2(H,,) and F?(H,), respectively. According to the
Wold type decomposition for isometries with orthogonal ranges [33], the m-
tuple (Ry,..., Ry ) is unitarily equivalent to (R} ® I¢, ..., R, ® I¢), where & is
equal to F%(H,) © F?(H,,). Consequently, using Theorem 1.1, one can easily
deduce the following result.

COROLLARY 1.2. Let p > 0, 1 < m < n, and consider an m-tuple
(Ty,...,Tw) € B(H)™ and its extension (T1,...,Tm,0,...,0) € B(H)™. Then
the following statements hold:

(i) (Th,...,Twm) € C, if and only if (T1,...,Ty,0,...,0) € Cy;
(11) wp(Tl,...,Tm):wp(Tl,...,Tm,O,...,O));
(111) T(Tl,...,Tm):T(Tl,...,Tm,O,...,O).

Throughout this paper, we assume that £ is a separable Hilbert space. We recall
[44] that a mapping F : [B(H)"]1 — B(H)®@minB(E) is called free holomorphic
function on [B(H)"]; with coefficients in B(E) if there exist A, € B(E),

1/2k
a € Ff, such that limsup,,_, Hz\alzk AlAw) <1 and

o0

F(XlaaXn):Z Z on®A(a)a

k=0 |a|=k
where the series converges in the operator norm topology for any (Xy, ..., X,)
in the open unit ball [B(H)"]1 := {(X1,...,Xn) : [|[Xa X7+ -+ X, X, || < 1}.
The set of all free holomorphic functions on [B(H)"]; with coefficients in B(E)
is denoted by Hpau(B(£)). Let Hpo (B(E)) denote the set of all elements F
in Hball(B(g)) such that

[ Flloo == sup [ F(Xy, ..., Xn)[| < oo,
where the supremum is taken over all n-tuples of operators (Xi,...,X,,) €

[B(H)"]; and any Hilbert space H. According to [44] and [47], Hgou(B(E))
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can be identified to the operator algebra F°®@B(E) (the weakly closed alge-
bra generated by the spatial tensor product), via the noncommutative Poisson
transform. Due to the fact that a free holomorphic function is uniquely de-
termined by its representation on an infinite dimensional Hilbert space, we
identify, throughout this paper, a free holomorphic function with its represen-
tation on a separable infinite dimensional Hilbert space.

We say that a map u : [B(H)"]1 — B(H)®minB(E) is a self-adjoint free pluri-
harmonic function on [B(H)"]1 if u = Rf = 2(f* + f) for some free holo-
morphic function f. A free pluriharmonic function on [B(H)"]; has the form

H := Hi + iH>, where Hq, Hs are self-adjoint free pluriharmonic functions on
[B(H)™]1. We recall [47] that if

F(Z1, 0 Z0) =YY Zi® Byt I®Ag + Y. Y Za® A
k=1 |a|=Fk k=1 |a|=k

is a free pluriharmonic function on [B(H)"]; with coefficients in B(E) and
(Th,...,T,) € B(H)™ is any n-tuple of operators with joint spectral radius
r(T1,...,Tn) <1, then f(Th,...,T,) is a bounded linear operator, where the
corresponding series converge in norm. Moreover lim,_,1 f(rTy,...,rT,) =
f(T1,...T,) in the operator norm topology. We refer to [47] for more results
on free pluriharmonic functions.

We denote by Harg,,;(B(E)) the set of all free pluriharmonic functions on
[B(H)™]1 with operator-valued coefficients in B(&), which have continuous ex-
tensions (in the operator norm topology) to the closed ball [B(H)"];. We
assume that H is an infinite dimensional Hilbert space. According to The-
orem 4.1 from [47], we can identify Har{,,;(B(€)) with the operator space

An () + An(E)"'”, where A,,(€) := A, @minB(E) and A, is the noncommu-
tative disc algebra. More precisely, if u : [B(H)"]1 — B(H)®minB(E), then
the following statements are equivalent:

(a) w is a free pluriharmonic function on [B(H)™]; which has a continuous

extension (in the operator norm topology) to the closed ball [B(H)"]];

(b) there exists f € An(E)" + An(€) " such that u(X) = (Px ©id)(f) for
X € [B(H)™)1, where Px is the noncommutative Poisson transform at

X
(c) u is a free pluriharmonic function on [B(H)"]; such that
u(rSy,...,rSy,) converges in the operator norm topology, as r — 1.
In this case, we have f = lin% u(rS1,...,rSy), where the convergence is
r—

in the operator norm topology. Moreover, the map ® : Harf,;(B(£)) —

A (E)* + Ay, (5)”'” defined by  ®(u) := f is a completely isometric isomor-
phism of operator spaces. We call f the model boundary function of u.

Now, we introduce a free pluriharmonic functional calculus for the class C,,.
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THEOREM 1.3. Let T := (T4,...,T,) € B(H)™ be of class C,, and let u €
Harg ,,,(B(E)) have the standard representation

w(Xy,..., X)) = Z Z X3 ® By +1® A +Z Z Xa ® Aa)
k=1 |a|=k k=1 |a|=k

on [B(H)"]1, for some A(q), Ba)y € B(E), where the series converge in the
operator norm topology. Then

w(Ty, ..., Ty) = }LHllu(TTl, cooyrTh)

exists in the operator norm and

[u(Ty, .., To) | < [lpu+ (1 = p)u(0)]|oo-

Proof. Since T := (T1,...,T,) € B(H)" is an n-tuple of class C,, there is a
minimal isometric dilation V := (Vi,...,V,,) of T on a Hilbert space K1 D H,
satisfying the following properties: V*V; = 6;;1 for ¢,j =1,...,n, and T, =
pPrVa|y for any a € Fi\{go}, and K1 =V p+ VoM. Taking into account
that w € Harg,y,(B(E)), we have

u(rVi,...,rV,) = Z Z T\aIV; ®B(a) +I® A(O) + Z Z Tla\Va ®A(o¢)a
k=1 |a|=k k=1 |a|=k

where the convergence is in the operator norm. Hence, and due to the fact that

Z T‘alTa*@B(a) :p(PH®I) Z T‘O‘lV;(X)B(a) |H®g, k=1,2,...,
la|=k |a|=k

we deduce that

u(rTy, ..., rTa) = > T @By + T@ Ay + > > 1T, @ A
k=1 |a|=k k=1 |a|=k

= p(Pr @ Du(rVi,...,rVa)lnee — (p — 1)u(0).

exists in the operator norm topology. Now, taking into account that

lim,q u(rVy,...,rV7) exists in the operator norm, we deduce that
lim,q u(rTy,...,rT1) exists in the same topology. Consequently, we can
define

w(Ty, ..., Ty) = }Hnl u(rTy, ..., rTh).

Using the considerations above, and the noncommutative von Neumann in-
equality, we obtain

[u(Ty, ..., To)ll < [lpu+ (1 = p)u(0)]loo < (p+ Ip — 1])|ullw
for any (T4,...,T,) € C,. O
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We will refer to the map
Hargan(B(€)) 3w u(Ty, ..., Th) € B(H)@min B(E)

as the free pluriharmonic functional calculus for the class C,. Since there is

a completely isometric isomorphism of operator spaces A, (£)* + A, (€ )"'H >
f—ue Harg,,(B(E)), given by u = (Px ®1id)(f) for X € [B(H)"]1, we also
use the notation f(T4,...,T,) for u(Ty,...,Ty).

Now, we show that the von Neumann type inequality of Theorem 1.3 charac-
terizes the class C,. Denote

P(S1,..-,8n) :={p(S1,...,5): peClZ,...,Z,]},
where S, ..., S, are the left creation operators on the full Fock space F2(H,,).

THEOREM 1.4. Let T := (T1,...,T,) € B(H)™ be an n-tuple of operators.
Then the following statements are equivalent:

(i) T is of class C,;
(ii) the von Neumann type inequality

holds for any noncommutative polynomial p € C[Z1,...,Z,] @ My,
m € N;
(ili) the map Ur : A, — B(H) defined by

Ur (q(S1,...,5)) == %q(Tl, o Th) + <1 — %) q(O)I

for q(S1,...,Sn) € P(S1,...,S5n) is completely contractive.

Proof. The implication (i) = (i4) follows, in particular, from Theorem
1.3. To prove the implication (i¢) = (#ii), note that setting p := %q +

(1 — %) q(0)I, where ¢ € C[Z1,...,Z,] ® My, m € N, we have
W7 (q(S1;- -, Sa))ll = Ip(Th, - .., To) ||
< lpp(S1,- .., Sn) + (1 = p)p(0)]|

= ||q(S17 MR S’I’I)Ha
which proves that U is completely contractive on the set of all polynomials
P(S1,...,S,) and, consequently, extends uniquely to a completely contractive

map on the noncommutative disc algebra A,,. It remains to prove that (iii) =
(i). Due to Arveson’s extension theorem, item (iii) implies the existence of a
unique completely positive extension Up : AX + A, — B(H) of 1. Note that

Tr(r(S1y. ., Sn) +a(S1,. ., Sn)")

1 1 —
= LT ) (T T )+ (12 1) (00 + O
for any polynomials r(S1,...,S,) and ¢(S1,...,S,) in P(S1,...,S,). Applying
Theorem 1.1 (the equivalence (i) < (ii)), we complete the proof. O
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2. HARNACK DOMINATION ON NONCOMMUTATIVE BALLS

We introduce a preorder relation Z on the noncommutative ball C,, p € (0, 00),
and provide several characterizations. We determine the elements of C, which
are Harnack dominated by 0. These results will play a crucial role in the next
sections.

First, we consider some preliminaries on noncommutative Poisson transforms.
Let C*(Sy,...,S5,) be the Cuntz-Toeplitz C*-algebra generated by the left
creation operators (see [11]). The noncommutative Poisson transform at the n-
tuple T := (T4,...,T,) € [B(H)™]{ is the unital completely contractive linear
map Pr: C*(S1,...,S,) — B(H) defined by

Pr(f] = lim K7p(le ® )Ker, [ €C7(Sh,.., ),

where the limit exists in the operator norm topology of B(H). Here, the non-
commutative Poisson kernel K,r : H — A,r7H® F?(H,), 0 < r <1, is defined
by

Koph:=Y Y rllAsTih@e,,  heH,
k=0 |o|=k
where {€q },cp+ i the orthonormal basis for the full Fock space F?(H,), defined
by €q =€, ® - @€, if a =g, - g, €F} and eg :=1, and A,p := (I —
P TY — - =T, 1), We recall that Pr[SaS5) = TaT}j, o, 3 € F,f. When
T :=(Ty,...,T,) is a pure row contraction, i.e., SOT- khjlgo Zm‘:k T, T =0,
then we have
Pr(f] = Ki(Ip, ® f)Kr, feC*(S,...,5,) or feFX,

where Dy := ArH. We refer to [41], [42], and [48] for more on noncommutative
Poisson transforms on C*-algebras generated by isometries.

A free pluriharmonic function v on [B(K)"]; with operator valued coeffi-
cients is called positive, and denote u > 0, if u(Xy,...,X,) > 0 for any
(X1,...,Xn) € [B(K)"]1, where K is an infinite dimensional Hilbert space.
We mention that it is enough to assume that the positivity condition holds
for any finite dimensional Hilbert space K. Indeed, for each m € N, consider
R(M .= (Rgm), . %m)), where ngm) is the compression of the right creation
operator R; to the subspace Py, := span{e, : «a € Fl |Ja| < m} of F2(H,).
We recall from [47] the following result.

LEMMA 2.1. Let u be a free pluriharmonic function on [B(K)"|1 with operator-
valued coefficients. Then u(Xq,...,X,) > 0 for any (X1,...,X,) € [B(K)"1
if and only if u(Rgm), - RT(lm)) >0 for any m € N.

Let A := (Ay,...,A,) and B := (By,...,B,) be n-tuples of operators in

H
C, C B(H)"™. We say that A is Harnack dominated by B, and denote A < B,
if there exists ¢ > 0 such that

Rp(Ar,..., An) + (p— 1)Rp(0) < & [Rp(B, ..., Bn) + (p — 1)Rp(0)]
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for any noncommutative polynomial with matrix-valued coefficients p €
ClX1,...,Xn] ® My, m € N, such that Rp > 0. When we want to emphasize

H
the constant ¢, we write A< B.
(&

According to Theorem 1.3, we can associate with each n-tuple T :=

(Th,...,T,) € C, the completely positive map 7 : A% + An”'H — B(H) de-
fined by

1 1
(2.1) er(g) = ;g(Tl, o To) + (1 - ;) 9(0),
where g(T1,...,T,) is defined by the free pluriharmonic functional calculus for

the class C,.

Now, we present several characterizations for the Harnack domination in C,,.

THEOREM 2.2. Let A := (A1,...,An) € B(H)" and B := (By,...,By,) €
B(H)™ be in the class C, and let ¢ > 0. Then the following statements are
equivalent:
(i) A% B;
(ii) P,(rA,R) < ¢®P,(rB,R) for any r € [0,1), where P,(X,R) is the
multi- Toeplitz kernel associated with X € C,;
(iii) u(rds,...,r4,) + (p—1)u(0) < [u(rB,...,rBy) + (p — 1)u(0)] for
any positive free pluriharmonic function u on [B(H)"™]1 with operator-
valued coefficients and any r € [0,1);
(iv) K, < CQKAB, where K, x is the multi- Toeplitz kernel associated with
X el
(v) 2op — @a is a completely positive linear map on the operator space
A JrAnH.H, where 4, pp are the c.p. maps associated with A and
B, respectively.
(vi) there is an operator Lp a € B(Kp,Ka) with ||Lp al|l < ¢ such that
LB,A|H = IH and

Lp aW; =V;Lp a, i=1,...,n,

where (Vi,..., V) on Ka D H and (Wh,...,W,,) on Ka D H are the
minimal isometric dilations of A and B, respectively.

Proof. First we prove that (i) = (ii). Since RY" = 0 for any o € F with
|a] > m+ 1, we have

(m)*

P,rX,R™)= " elxreRrR +pror+ Y rlelx, @RS

o
1<]al<m 1<]al<m

Since X +— Pi(X,R) is a positive free pluriharmonic function on [B(H)"],
with coefficients in B(F?(H,)), so is the map

X — P (rX,R™) = (I® Pp, )Pi(rX, R)|nap,
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H
for any r € [0,1). If A< B, then we have

Py(rA,R"™) + (p—1)P(0, R'™) < ¢? [Pl(rB, RU™) + (p— 1)Py(0,R"™)
for any m = 1,2,.... Using Lemma 2.1, we deduce that
Pi(rA,R)+ (p— DI <A [P(rB,R) + (p— 1)I]
for any r € [0,1). Since P,(rY,R) = Pi(rY,R) + (p — 1)I for any n-tuple
Y € B(H)™ with spectral radius #(Y) <1 and r € [0,1), we deduce item (ii).
To prove the implication (i4) = (4i%), assume that condition (ii) holds and
let u be a positive free pluriharmonic function on [B(H)"]; with coefficients in

B(€) of the form

oo

w(Zi,. o Zn) =3 Y ZL0CH + 1@ Co+ Y. Y Za®Ca).

k=1|a|=k k=1 |a|=k
It is well-known (see e.g. [29]) that if S C B(F?(H,)) is an operator system
and p: § — B(K) is a completely bounded map, then there exists a completely
bounded linear map
/7 = pu®id: SQ_@TMHB(H) — B(IC)@WHHB(H)
such that g(f ®Y) == u(f)®Y for f € S and Y € B(H). Moreover, ||| =
l£]lep and, if p is completely positive, then so is fi.

Using Corollary 5.5 from [47], we find a completely positive linear map v :
R} 4+ Ryn — B(E) such that v(Rs) = C(,) if |a| = 1 and v(I) = C(g). Note
that

(id ® v)[c*P,(rB, R) — P,(rA, R)]

(@)Y > rlol(®By — Aa) @ Ry + p(c* = NI @ T

k=1|o|=k

+ZZ (¢*Bj — A%) ® Ra

k=1|o|=k

Z Z Tla‘(C2Ba — Aa) X C(a) 4+ p(02 — 1)] X C(O)

k=1|a|=k

+Z ST (B - AL ® ¢,
k=1 |a|=k
= [u(rBy,...,rBy) + (p— 1)u(0)]
—[u(rds,...,rA) + (p — Du(0)].
Hence, and using the fact that ¢*P,(rB, R) — (rA R) > 0, we deduce that

Au(rBy,...,rBy) + (p — Du(0)] — [u(ray,...,rA,) + (p — u(0)] >0,
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which proves (iii).
Now, we prove the implication (iii) = (v). Let g € (ml\'l\) Omin Mm
be positive. Then, according to Theorem 4.1 from [47], the map defined by
9(X):=(Px ®id)[g], X €[B(H)"]1,
is a positive free pluriharmonic function. Condition (iii) implies
g(rAs,...,rAL) + (p—1)g(0) < A [g(rBi, ..., 7By) + (p — 1)g(0)]
for any r € [0,1). Hence, and using relation (2.1), we get poa(g-) < po5(gr).
Taking r — 1, we deduce item (v).
To prove the implication (v) = (i), let p € C[X1,..., Xpn] ® My, m € N,
be a noncommutative polynomial with matrix coefficients such that Rep > 0.
Since
pey (p) = p(Y1,.., Yn) + (p = 1)p(0)
for any Y := (¥1,...,Y,) € C,, it is clear that (v) implies item (i).
We prove now that (i1) = (iv). We recall that e, := e;; ® --- ® ¢;, if

@ = gi, -~ gi, €F} and ey, := 1, and that {es},p+ is an orthonormal basis

for the full Fock space F?(H,,). First, we prove that

(2.2)

<PP<X, rR)( Y hs®es |, Y hy® > =p Y (Kpx:(1,Bhs hy)
1Bl<q [vI<q 1Bl,1vI<q

where the multi-Toeplitz kernel K, x . : Ft xF;f — B(H), r € (0,1), is defined
by

%T'ﬁ\la"Xﬁ\la if ﬂ >«
I ifa=p
K ,X,r(aaﬁ) = % .
P %rla\lﬁl(Xa\lg) ifa>p
0 otherwise.

Note that if {hs} g<q C H, then we have

(pl T +iZX;®TkR@ > hg®es ,Zh7®e7>

k=1|a|=k 18I<q lv1<q
SO TED ) SXG IR ST
1B]1<q k=1lal=k \|B|<q [vI<q
=p > hslP++ > > rl*Nepa,ey) (Xihg, hy)
[BI<q lal>18],1vI<q
=p 2 Ml 4 X NE(XE b, hy)
[BI<q v>B; 18l,1v1<q

= Y (pKpxa(7:.8)hs hs) .

v>B5 18L,1vI<q
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Now, taking into account that K, x (v, 5) = K;,Xw(ﬂ, v), we deduce relation
(2.2). Therefore, the condition P,(rA4, R) < ¢*P,(rB,R), r € [0,1), implies

[Kp,a.r (0 B)ljat 8120 < K p,5,r(ct B)]jal 151<q
for any 0 < r < 1 and ¢ =0,1,.... Taking » — 1 in the latter inequality, we
obtain item (iv).
Assume now that (iv) holds. Since ¢*K, p — K, 4 is a positive semidefi-

nite multi-Toeplitz kernel, due to Theorem 3.1 from [39] (see also the proof

of Theorem 5.2 from [47]), we find a completely positive linear map u :
C*(S1,...,5n) — B(E) such that
1
:u(Soz) = C2KP,B(gOa a) - K/LA(gOa a) = ;(C2Ba — Aa)

for any a € F;} with || > 1, and p(I) = (¢* — 1)I. Since

P(rS,R) ZZ kS, ®R*+I®I+ZZ *S* @ Rz >0

k=1 |a|=k k=1 |a|=k

for r € [0,1), we deduce that

(1 ®id)[P(rS, R)] ZZ—H“' [®Bl — A @ Rg + (2 —1)I® I
=1 |a=k

Y _riaw B, — A @ R

k=1 |a|= kP
=c?P,(rB,R) — P,(rA,R) >0

which implies (ii).

Let us prove that (iv) = (vi). Assume that (iv) holds. Then we have K, 4 <
c2Kp,B, where K, x is the multi-Toeplitz kernel associated with X € C,. Let
V= (W1,...,V,) be the minimal isometric dilation of A := (A44,...,A4,). Then
Ka =V ep+ VaH and pPy Vol = A, for any |a| > 1. Similar properties hold
if W= (Wh,...,W,) is the minimal isometric dilation of B := (By,..., By).
Hence, and taking into account that Vi,...,V,, and W1,..., W, are isometries
with orthogonal ranges, respectively, we have

2
Z Vioha

la]<m

= Z <Va\15h0¢7hﬁ>+ Z (has ha) + Z <Vg\laha,h5>

a>8,]al|8l<m lal<m B> 1a]al,|Bl<m
1 1.,
= > <;Aa\mhmhﬁ>+ > (hasha)+ Y <;Aﬁ\zaha7hﬁ>
a> 18 lal|81<m laf<m > 1alal|8]<m

S (KnalB,0)ha; ko) = ([Kpa(B,0)) ) < By Bin )

la|<m,[B]<m
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for any m € N and hy,, := ®|4)<mha € Bjaj<mHa, Where each H, is a copy of
‘H. Similarly, we obtain

2
> Waha| = ([Kp5(8,0) o 1z B B )

la|<m

Taking into account that K, 4 < cQprB, we deduce that

N7 Vaha| <c|[ Y Waha

lee|<m loe|<m

Therefore, we can define an operator Lp 4 : Kp — K4 by setting

(2.3) Lpa| Y Waha| =Y Vaha

laf<m la|<m

for any m € N and h, € H, a € F,. Note that Lp 4 is a bounded operator
with ||Lp 4|l < c. Since Lp aln = I, we have |[Lp || > 1. It is easy to see
that Lp aW; = V;Lp 4 for i = 1,...,n. Therefore item (vi) holds.

Conversely, assume that there is an operator Lp 4 € B(Kp,K4) with norm
||LB,AH < ¢ such that LB,A|’H = Iy and Lp aW; = ViLp a4, i = 1,...,n.

Then, we deduce that Lp 4 (z|a\§m Waha) = ngm Vihe for any m € N
and h, € H, a € F;}. The condition ||Lp 4| < ¢ implies

2

2
> Vaha| <\ > Wahal|

laf<m la|<m

which is equivalent to the inequality

<[Kp,A(Ba a)]\aHﬁ\Sm h’mahm> S 02 <[Kp,B(ﬁaa)]‘a|7|ﬁ‘Sm h’m;hm>

for any m € N and hy, := @|qj<mha € jaj<mHa- Consequently, we deduce
item (iv). The proof is complete. O

A closer look at the proof of Theorem 2.2 reveals that one can assume that
u(0) = I in part (iii), and one can also assume that $p(0) = I in the definition

H
of the Harnack domination A< B. We also remark that, due to Theorem 1.3,

H
we can add an equivalence to Theorem 2.2, namely, A< B if and only if
(&

u(Ar, ..., Ap) + (p— Du(0) < A [u(By,...,Bn) + (p— 1)u(0)]

for any positive free pluriharmonic function v € Harg,,(B(£)).

DOCUMENTA MATHEMATICA 14 (2009) 595-651



614 GELU POPEsScuU

COROLLARY 2.3. If A, B €C, and Ag B, then

H
|Lp.all =inf{c>1: A< B}

=inf{e>1: P,(rA,R) < *P,(rB,R) forany r€][0,1)}.

H
Moreover, A= B if and only if sup,co,1y||Lra,r5| < oo. In this case,

[Lagll = sup [[Lra, sl

ref0,1)

and the mapping v — || LyarB| is increasing on [0,1).

H H
Proof. Assume that A< B. Then, due to Theorem 2.2, A< B if and only if there

C
is an operator Lg 4 € B(Kp,Ka) with |[Lp 4| < ¢ such that Lp alx = Ix
and Lp aW; = V,Lp 4 for i = 1,...,n. Consequently, taking ¢ = || Lp, 4|, we

H
deduce that A < B, which is equivalent to
I1L5,all

Py(rA,R) < ||Lp,al*P,(rB, R)

H
for any r € [0,1). Hence, we havetA < tBforanyt € [0,1). Applying again
L5, all
Theorem 2.2 to the operators tA and tB, we deduce that | Lia+p| < ||Lp,al-

Conversely, suppose that ¢ := sup,.co 1) |ILrarB| < co. Since |Lrargl < ¢,

H
Theorem 2.2 implies rA<rB for any r € [0,1) and, therefore, P,(rtA, R) <

H
c*P,(rtB, R) for any t,r € [0,1). Hence, A< B and, consequently, |[Lg 4| < c.

Therefore, || La gl = sup,¢jo,1) [[Lrar5l. The fact that r — [[L,4,p[ is an
increasing function on [0,1) follows from the latter relation. This completes
the proof. O

We remark that if 1 < m < n and u is a positive free pluriharmonic function
on [B(K)"]1, then the map

(Xl,...,Xm)P—>’U,(X1,...,Xm,0,...,0)

is a positive free pluriharmonic function on [B(K)™];. Moreover, if g is a
positive free pluriharmonic function on [B(K)™];, then the map

(Xla---an) Hg(Xl,...,Xm,O,...,O)

is a positive free pluriharmonic function on [B(K)"];. Consequently, using
Corollary 1.2, one can easily deduce the following result.

COROLLARY 2.4. Let ¢ > 0, p > 0, and 1 < m < n. Consider two n-tuples
(A1,...,Ay) € B(H)™ and (Bi,...,By) € B(H)™ in the class C, and let
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(A1,...,4,,0,...,0) and (B1,...,Bn,0,...,0) be their extensions in B(H)",

respectively. Then (A1, ..., Apn)=<(Bi,...,Bp) in C, C B(H)™ if and only if

o AT

(A, . A, 0,...,0)

o AT

(By,...,Bm,0,...,0) in C, C B(H)".

We recall (e.g. [43]) that if (77, ...T,) is an n-tuple of operators, then the joint
’Z\M:k .77 =o0.

In what follows, we characterize the elements of C, which are Harnack domi-
nated by 0.

spectral radius (71, ...,T,) < 1 if and only if limg_,

H
THEOREM 2.5. Let A := (A1,...,A,) be in C,. Then A<O0 if and only if the
joint spectral radius r(A1,...,A,) < 1.

Proof. Note that the map X — P,(X, R) is a positive free pluriharmonic func-
tion on [B(H)"]1 with coefficients in B(F?(H,,)) and has the factorization
(2.4)

PP (Xa R) =

= —Rx)"' +(p-2)I+ (I~ RY)™

— (I= Ry)™ [ = Rx + (p—2)(I = Ri)(I — Rx) + I — Rx] (I = Rx)™"

=(I = Rx)"pI + (1 = p)(Rx + Rx) + (p = 2)Rx Rx] (I — Rx) ™",
where Rx = X{ ® Ry +--- + X} ® R,, is the reconstruction operator as-
sociated with the n-tuple X := (X3,...,X,) € [B(H)"];. We remark that,
due to the fact that the spectral radius of Rx is equal to the joint spec-

tral radius r(X1,...,X,,), the factorization above holds for any X € C, with
T(Xl,.. ,Xn) < 1.

Now, using Theorem 2.2 part (ii) and the above-mentioned factorization, we

H
deduce that A< 0 if and only if there exists ¢ > 0 such that
(I = Rya) ' [pI + (1= p)(Rig + Rra) + (p = 2)RyaRra] (I = Rea) ™ < pc?I

for any r € [0,1). Similar inequality holds if we replace the right creation
operators by the left creation operators. Then, applying the noncommutative
Poisson transform id ® P g, where R := (Ry,..., R,), we obtain

(2.5)

pI+(1=p)(e "Ry 4+ Rea)+(p=2) R g Ry < pc(I—re™ " RY) (I —re' Ry)
for any r € [0,1) and 6 € R.

On the other hand, since A := (4i,...,A,) € C,, we have r(Ay,...,Ay)
1. Suppose that r(A41,...,A,) = 1. Taking into account that r(Ra)

r(A1,...,Ay), we can find A\g € T in the approximative spectrum of R4. Con-
sequently, there is a sequence {h,,} in H ® F?(H,,) such that ||h,,|| =1 and

(2.6) Mohm — Rahy, — 0 as m — oo.

I IA
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In particular, relation (2.5) implies
(2.7)
pllhml? + (1 = p) [(Mo Ry alims ban) + (Mo Rrahim, hin)] + (p = 2)|| Rrahin ||
< pCQHhm - XORTAhmHQ

for any r € (0,1) and m € N. Note that due to (2.6) and the fact that |Ag| =1,
we have

<5\0RAhm,hm> = Xo (Rahm — Mohm, b)) +1 — 1, as m — oo.
Since
1A = MoRralm || < [ — XoRahmll + [ Xo(Rahm — Reahn)|
= Aol — Rahmll + (1 = 1) Rahum
and due to the fact that ||Rahm,|| — 1 as m — oo, we deduce that
limsup |[Am — Ao Rrahm|| <1 -7

for any r € (0,1). Now, since R4 = rR4 and taking m — oo in relation (2.7),
we obtain

p+2(1—p)r+(p—2)r? <p(l —r)?
for any r € (0,1). Setting r = 1 — %, m > 2, straightforward calculations
imply 2m < pc? — p+2 for any m € N, which is a contradiction. Therefore, we
must have 7(Ay,..., 4,) < 1.

Conversely, assume that A := (A4i,...,A,) € C, has the joint spectral radius
r(A4y,...,A,) < 1. Since 7(Ay,...,A,) = r(Ra), one can see that M :=
sup,.¢(o,1) (I —rRa)~"| exists and M > 1. Hence

(2.8) M*(I —R:\)I — Rya) >I1>1—R'4Rya
for any r € (0,1). Now we consider the case p > 1. Note that relation (2.8)
implies

= RigRea+(p—1)(I = Rip)(I = Rya) < pM?(I = REy)(I — Rya):
The latter inequality is equivalent to

pI+ (1= p)(Ria + Rea) + (p = 2)RiyRya < pM?(I = R 4)(I = Rya),
which, due to the factorization (2.4), is equivalent to

P,(rA,R) < pM? = M*P,(0, R)

for any r € [0,1). According to Theorem 2.2, we deduce that AZ 0.

Now, consider the case when p € (0,1). Since ||Rya|| < rp and § — 2 < 0, we
have

pl+ (1= p)(Ria + Bra) + (p = 2)Riy Bea < pl + (1= p)(Ryg + Rra)
< pl+2(1 = p)rp < (3p — 2p°)1.
Using again the factorization (2.4), we deduce that
P(rAR) < (3p — 2°)(I — Riy) (I — Roa)™"
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for any r € (0,1). Hence and using the fact that (I—R} ) ' (I—R,4)~* < M?I,
we obtain

Py(rA,R) < (3 —2p)M?P,(0,R)

H
for any r € (0,1). Using again Theorem 2.2, we get A<0. The proof is
complete. O

We mention that in the particular case when n = 1 we can recover a result
obtained by Ando, Suciu, and Timotin [1], when p = 1, and by G. Cassier and
N. Suciu [9], when p # 1.

3. HYPERBOLIC METRIC ON HARNACK PARTS OF THE NONCOMMUTATIVE
BALL C,

The relation Z induces an equivalence relation A on the class C »- We provide a
Harnack type double inequality for positive free pluriharmonic functions on the
noncommutative ball C, and use it to prove that the Harnack part of C, which
contains 0 coincides with the open noncommutative ball [C,]<i. We introduce
a hyperbolic metric on any Harnack part of C, and obtain a concrete formula
in terms of the reconstruction operator.

Since < is a preorder relation on C,, it induces an equivalence relation ~ on C,,

which we call Harnack equivalence. The equivalence classes with respect to A
are called Harnack parts of C,. Let A := (4;,...,4y) and B := (B1,...,By)

be in C,. We say that A and B are Harnack equivalent (we denote A i B) if
and only if there exists ¢ > 1 such that

Cig [Rp(B1, ..., Bn) + (p— DRp(0)] < Rp(Ay,..., An) + (p — 1)Rp(0)
< ¢ [Rp(By,..., By) + (p — 1)Rp(0)]
for any noncommutative polynomial with matrix-valued coefficients p €
ClX1,...,Xn] ® My, m € N, such that Rp(X) > 0 for any X € [B(H)"]:.
We also use the notation A2 B when Ag B and B 5 A. We remark that Theo-

(&3 (& c
rem 2.2 can be used to provide several characterizations for the Harnack parts
of C,.

The first result is an extension of Harnack inequality to positive free plurihar-
monic functions on the noncommutative ball C,, p > 0.

THEOREM 3.1. If u is a positive free pluriharmonic function on [B(H)"|1 with
operator-valued coefficients in B(E) and 0 < r < 1, then

1-r(2p—-1) 1+r(2p—1)
0) — P ) Sl S
u(©) 147 1—r
for any (X1,...,X,) €C,.

<u(rXi,...,rXn) <u(0)
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Proof. Let
WZiy o Zn) =Y ZERA IR A + Y Y Za® A
k=1 |a|=k k=1 |a|=k

be a positive free pluriharmonic function on [B(H)"]; with coefficients in B(E).
According to Theorem 1.4 from [49], for any Y € [B(H)"]] and r € [0,1), we

have

(3.1) u(O)lJrr§u(rY1,...,rYn)§u(0)17T.

On the other hand, let (X1,...,X,) € C, and let (V3,...,V,) be the minimal
isometric dilation of (Xi,...,X,) on a Hilbert space 7 O H. Since X, =
pPrVa|n for any a € F\{go}, and using the free pluriharmonic functional
calculus, we have

L—r 1+7r

u(rXq,...,rX,) =

=> Y rhxieAl +T0Ag+ Y Y X, @ A
k=1 |a|=k k=1 |a|=k

= p(Py ® I¢) Z Z T'a‘V; ® Aza) |Hoe + In ® A(o)
k=1 |o|=k

FoPr@le) |3 D Ve © A | Inee
k=1 |a|=k

= p(Pr @ Ie)u(rVi,...,1Vi)|nee + (1 — p)u(0),
where the convergence is in the operator norm topology. Due to (3.1), we have

L—r 1+7r
u(0)1+rSu(er,...,Vn)Su(O)l_r.

Consequently, we deduce that

a(0) 2221 4 (1= )] < p(Pr L Yu( Va1V s + (1 — p)u(0)

1+r
<u() |2 )
Since
u(rXy,...,rX,) = p(Py @ Ig)u(rVi,...,rVo)|uge + (1 — p)u(0),
the result follows. 0

Now, we can determine the Harnack part of C, which contains 0.

THEOREM 3.2. Let A := (Aq,...,A,) bein C,. Then the following statements
are equivalent:
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(i) wp(Ar,...,An) <1;
i) A X o;
(iii) r(Ai,...,An) <1 and P,(A,R) > al for some constant a > 0.

Proof. First, we prove that () == (7). Let A := (A1,...,4,) bein C,
and assume that w,(A) < 1. Then there is 79 € (0,1) such that w,(-—A) =

%wp(A) < 1. Consequently, %A €C,.

1
To
According to Theorem 3.1, we have

1—r9(2p—1)
1+T0

1+7r(2p—1)

Rp(0) r—

for any noncommutative polynomial with matrix-valued coefficients p €
C[X1,...,Xn] ® My, m € N, such that ®p > 0 on [B(H)"];. Hence, we

deduce that A 2 0.
To prove that (i) = (4i7), assume that A 2 0. Due to Theorem 2.5, we

have r(A) < 1. Using now Theorem 2.2, we deduce that there exists ¢ > 0 such
that

(3.2) P,(rA,R) > C%PP(O,R) =L
for any r € [0,1). Since r(A) < 1, one can prove that lim,_,; P,(rA,R) =
P,(A, R) in the operator norm topology. Consequently, taking r — 1 in relation
(3.2), we obtain item (iii).

It remains to show that (iii) = (). Assume that r(41,...,4,) < 1 and

P,(A, R) > al for some constant a > 0. Note that there exists to € (0,1) such
that the map

n -1 n
tH(IZA?@tRz> +(p2)]+<IZA1®tR:>
=1 =1

is well-defined and continuous on [0, 1 + ¢o] in the operator norm topology. In
particular, there is €y € (0, ) such that

-1

a
155 (A, B) = Pp(AtR)|| < 5
for any t € (1 — €g, 1 + €p). Consequently, if vo € (1,1 + €), then
a
Py(10A, B) > Fy(A R) ~ | Py(A, B) — (oA, )1 > 21 > 0.

Due to Theorem 1.1, we have 79 A € C,, which implies w(y9A) < 1. Therefore,
w(4) < % < 1 and item (i) holds. The proof is complete. O

We remark that, when n = 1, we recover a result obtain by Foiag [15] if p = 1,
and by Cassier and Suciu [9] if p > 0.
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Given A,B € C,, p > 0, in the same Harnack part of C,, ie., A K B, we
introduce

(3.3) A (A,B) := mf{c> 1: AEB}.
Note that, due to Theorem 2.2, A L B if and only if the operator Lp 4 is
invertible. In this case, LE}A =La,p and

Ay(A, B) = max{|[Lasll | Ls.al}-

To prove the latter equality, assume that AX B for some ¢ > 1. Due to the

C
same theorem, we have ||Lp 4| < c and ||La, g|| < c. Consequently,

34)  max{|Lasl, |Ls.al} < inf{c >1: A%B} — A, (A, B).

On the other hand, setting ¢y := |Lp a| and ¢{ := ||La,g||, Theorem
H H

2.2 implies A< B and B<A. Hence, we deduce that A%B, where d :=
co ch

max{co,cy}t. Consequently, A,(A, B) < d, which together with relation (3.4)
imply A,(A, B) = max{||La gl | Lp,all}, which proves our assertion.

Now, we can introduce a hyperbolic (Poincaré-Bergman type) metric §, : A x
A — RT on any Harnack part A of C,, by setting

(3.5) d,(A,B) :=1nA,(A, B), A, B e A.
Due to our discussion above, we also have
05(A, B) = mmax { | La 51l | L2315}

PROPOSITION 3.3. §, is a metric on any Harnack part of C,.

Proof. The proof is similar to that of Proposition 2.2 from [49], but uses p-
pluriharmonic kernels. O

We remark that, according to Theorem 3.2, the set
[Cp]<1 = {(Xl, . ,Xn) S B(H)n : wp(Xl, . ,Xn) < 1}
is the Harnack part of C, containing 0.

In what follows we calculate the norm of Ly x with X,Y € [C,]<1, in terms of
the reconstruction operators.

THEOREM 3.4. If X,Y € [C,]<1, then || Ly x| = ||C, ,XCP_&,H, where
OPaX = Ap7x(1 - Rx)_l,
A,x = [pl + (1 - p)(Rx + Rx) + (p — 2)Rx Rx]"/*.

H
Moreover, if X,Y € C, is such that X < Y, then |Lyx| =
SUPr¢(o0,1) HCPJ"XC;;YH'
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Proof. Since X,Y € [Cpl<1, Theorem 3.2 implies X i Y, r(X) < 1, and
r(Y) < 1. Let ¢ > 1 and assume that P,(rX,R) < ¢?P,(rY,R) for any
r €1]0,1). Since r(X) < 1 and #(Y") < 1, we can take the limit, as » — 1, in the
operator norm topology, and obtain P,(X, R) < ¢?P,(Y, R). Conversely, if the
latter inequality holds, then P,(X,S) < ¢?P,(Y, S), where S := (S1,...,5,) is
the n-tuple of left creation operators. Applying the noncommutative Poisson
transform id ® P,.g, r € [0, 1), and taking into account that it is a positive map,
we deduce that P,(rX, R) < ¢?P,(rY, R) for any r € [0,1).

Therefore, due to Theorem 2.2, we have
(3.6) P,(X,R)<c®P,(Y,R) ifandonlyif |Lyx| <ec.
We recall that the free pluriharmonic kernel P,(X, R) with X € [C,]<1, has the

factorization P(X, R) = C} +C, x. Due to Theorem 3.2, P,(X, R) is invertible

and, consequently, so is C;, x. Consequently,

Py(X,R) <P,(Y,R) ifandonlyif C},7'CsyCpxCoy <1
Setting ¢o = ||C ,ch}l/”, we have P,(X,R) < c3P,(Y,R). Now, due to
relation (3.6), we obtain

1Ly x|l < co = CoxCpy -
Setting ¢, := ||Ly,x|| and using again (3.6), we obtain P,(X, R) < 062PP(Y, R).
Hence, we deduce that C;’Y%C;,XCAXC’;; < ¢y”I, which implies

IC, xCoyll < ¢ = | Ly.x]l
Therefore, || Ly x|| = HCp,XCP_,)l, |I. The last part of the theorem is now obvious.

O

Combining Theorem 3.4 with the remarks preceding Proposition 3.3, we ob-
tain a concrete formula for the hyperbolic metric é, on [C,]<1 in terms of the
reconstruction operator, which is the main result of this section.

THEOREM 3.5. Let 6, : [Cpl<1 X [Cpl<1 — [0,00) be the hyperbolic metric. If
X, Y € [Cpl<1, then

)

3,(X,Y) = Inmax {HCP,XCP_&/

Co x|}
where

Cox =20, x(I—Rx)™",

A,x = [pI+ (1 - p)(Rk + Rx) + (p — 2)Rx Rx]'/?,

and Rx = X{ @ R1 + -+ X ® R, is the reconstruction operator associated
with the right creation operators Ri,..., R, and X := (X1,...,X,) € [Cpl<1-

Using Theorem 2.2, one can easily obtain the following result. Since the proof
is similar to that of Lemma 2.6 from [49], we shall omit it.
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LEMMA 3.6. Let X := (X1,...,Xy) and Y := (Y1,...,Y,) be in C,. Then the
following properties hold.

(i) X Ty if and only if rX 2 .x for any v € [0,1) and
SUPreo,1) Ap(TX, rY) < oo. In this case,

AX,)Y)= sup A,(rX,7Y) and §,(X,Y)= sup ,(rX,rY).
7‘6[011) 7‘6[0,1)

(ii) If X K Y, then the functions r — A,(rX,rY) and r — 6,(rX,rY) are
increasing on [0,1).
Putting together Theorem 3.5 and Lemma 3.6, we deduce the following result.

THEOREM 3.7. Let X = (X1,...,X,) and Y = (Y1,...,Y,) be in C, such
that X & Y. Then the metric 0, satisfies the relation

0,(X,Y) =Ilnmaxq sup HCPTXC;iY
rel0,1) ’

Lo envezinl |
re0,1)

where C, x := Ap x(I — Rx)™! and Rx == X; @ Ri + -+ X} ® Ry, is the
reconstruction operator.

Using the Harnack type inequality of Theorem 3.1, we obtain an upper bound
for the hyperbolic distance d, on [C,]<1. First, we need the following result.

PROPOSITION 3.8. Let f be in the noncommutative disc algebra A, such that
Rf >0 and let X := (X1,...,Xn) € C, be with w,(X) < 1. Then

1 —wy(X) 1+WP(X)

Pm%f(o)ﬁmf()(h---,)(n)‘f'( p—1)RF0) < lpr(X)'

Proof. Let r := w,(X) and define Y := 1X. Since w,(Y) = 1w,(X) =1, we
deduce that Y € C,. Applying Theorem 3.1 to Y, we obtain

JRf0) < RIKL - X) < pHT'J_(i)((i?) D,

1-w,(X)(2p—1
14 w,(X)

It is easy to see that the latter inequality is equivalent to the one from the
proposition. ]

Now, we can deduce the following upper bound for the hyperbolic distance on
[Cp]<1-

COROLLARY 3.9. For any X,Y € [Cpl<1,

(1 +wo (X)) (1 +w,(Y))
(1= w,(X))(A = w,(Y))

5,(X,Y) < %1

DOCUMENTA MATHEMATICA 14 (2009) 595-651



HYPERBOLIC GEOMETRY ON NONCOMMUTATIVE BALLS 623

Proof. Using Theorem 2.2 and the inequality of Proposition 3.8, we deduce
that

Ay(X,0) < <%) 1/2

On the other hand, since d, is a metric on [C,]<1, we have §(X,Y) < §(X,0)+
9,(Y,0). Taking into account that §,(X,Y) = InA,(X,Y), the result follows.
]

We remark that when p = 1, the inequality of Corollary 3.9 is sharper then the
one obtained in Corollary 2.5 from [49].

Using Corollary 2.4, on can easily obtain the following result.

COROLLARY 3.10. Let p > 0, and 1 < m < n. Consider two n-tuples A :=
(A1,...,Ap) € B(H)™ and B := (Bi,...,Bn) € B(H)™ in the class C, and
their extensions A := (A1,...,Am,0,...,0) and B := (By,...,Bn,,0,...,0) in
B(H)"™, respectively. Then

AR B if and only if A% B.
Moreover, in this case,

d,(A,B) = 0,(A, B).

In what follows we provide a few properties for the map p — 0,(A, B).

LEMMA 3.11. Let A :=(Ay,...,An) € B(H)" and B := (By,...,B,) € B(H)"
be in the class C, and let ¢ >0 and 0 < p < p’. Then the following statements
hold.

. . H . H .
(i) of A?B in Cp, then AjB in Cpr;
(i) ifAivIB in Cp, then ifAiiB inC, and
0, (A, B) <6,(A,B).

H
Proof. First recall that C, C C,. If A{ B in C,, then

Rp(Ar,..., An) + (p— 1)Rp(0) < & [Rp(By, ..., Bn) + (p — 1)Rp(0)]

for any noncommutative polynomial with matrix-valued coefficients p €
ClX1,...,Xn] ® My, m € N, such that Rp(X) > 0 for any X € [B(H)"]:.
Hence, ¢ > 1 and, consequently, the inequality above holds when we replace p

H
with p" > p. This shows that A< B in C,/. Part (ii) is a clear consequence of
(i) and the definition of the hyperbolic metric. O
If A:= (Ay,...,A,) € B(H)" is a nonzero n-tuple of operators such that
A € [Cx)<1, i-e., the joint spectral radius r(A) < 1, then
pa:=inf{p>0: AeC,} >0.
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Indeed, if p, p’ € (0,00], p < p', then C, C C,s and, moreover, we have

wpr(A) Sw,(4), r(A4) = lim w,(A), A € B(H)".

p—00

Consequently, there exists p > 0 such that w,(A) < 1, for any p’ > p. Assume
now that pa = 0. Then T € C,, i.e., w,(A4) <1 for any p > 0. On the other
hand, we know that ||A| < pw,(A). Taking p — 0, we deduce that A = 0,
which is a contradiction. This proves our assertion.

Note that if A, B € [Coo]<1, then
pap =inf{p>0: A BeCC,} =max{pa,ps}
PROPOSITION 3.12. If A, B € [Coo]<1, then the map
[pa,B,00) 2 pr6,(A,B) € RT
s continuous, decreasing, and

lim §,(A, B) =0.

p—00

Proof. Using Theorem 3.5 and Lemma 3.11, one can easily deduce that the
map p — 0,(A, B) is continuous and decreasing. To prove the last part of the
proposition, note that since §,(A, B) < d,(A,0)+6,(0, B), it is enough to show
that lim, . d,(A4,0) = 0. To this end, note that Theorem 3.5, implies

57) 5,(4.0) = mmase { | CpaCd | oo}
where

1
ConCyh = 5ol + (L= RS+ Ra) + (p = DGR (1= )™

Hence, we deduce that
Jim [[CpaCpgll = I = (B3 + Ra) + B4R (1= Ra)7!|

= (1 = RA4)7"[I = (R + Ra) + RARA] (I — Ra)™'||
= (I = R)™HI = Ry = Ra)(I = Ra)™'
=1

Similarly, we have lim,_. ||C, ,OC,;_,,14H = 1. Using now relation (3.7), we com-
plete the proof. O
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4. MAPPING THEOREMS FOR FREE HOLOMORPHIC FUNCTIONS ON
NONCOMMUTATIVE BALLS

In this section, we provide mapping theorems, spectral von Neumann inequal-
ities, and Schwarz type results for free holomorphic functions on noncommu-
tative balls, with respect to the hyperbolic metric and the operator radius w,,
p € (0,00].

First, we prove the following mapping theorem for the classes C,, p > 0.

THEOREM 4.1. Let f := (f1,..., fm) be a contractive free holomorphic function

with ||f(0)|]| < 1 such that the boundary functions fi,..., fm are in the non-
commutative disc algebra Ay,. If (Ti,...,T,) € B(H)" is of class C,, p > 0,

then f(T1,...,Ty) is of class C,,, where

1-1£(0 .
oS <
(4.1) pf=
L £(0)]
L+ (0 = Dipr

if p>1.

Proof. Let p € C[Z1,...,Zy] ® My, k € N, be such that $p > 0 on the unit
ball [B(H)™];. This is equivalent to Rp(Sy,...S,,) > 0, where Si,...,S.,
are the left creation operators on the full Fock space F2(H,,). Applying the
noncommutative Poisson transform Pyx, .. x,) ® id, which is a completely
positive linear map, to the inequality Rp(S7,...S.,) > 0, we obtain

Moreover, since the boundary functions ]?1, . ,fm are in the noncommutative
disc algebra A,,, we deduce that the boundary function of the composition po f

is p(}rla ey fm) S An®mank
Assume that (T71,...,T5) € C,. Using the free pluriharmonic functional calcu-
lus of Theorem 1.3 and Theorem 1.1, we deduce that

(4.2) R(po f)(T1,..., T) + (p— DR(po £)(0) > 0.

On the other hand, according to the Harnack type inequality of Theorem 1.4
from [49] applied to the positive free pluriharmonic function Rp at the point
f(O) = (fl(o)a H 7fm(0))a we have

e e O ke v
Let v > 0 and note that

(4.4) Rp(f(Th,...,Tn)) + (v —1)Rp(0) = A + B,
where

A:=Rp(f(T1,...,Ty)) + (p — 1)p(f(0))

(4.5) B := (v — 1)Rp(0) — (p — 1)p(£(0)).
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Assume now that p > 1. Using the second inequality in (4.3), we obtain

B> (v —1)Rp(0) — (p - 1)%1’(0)1 . H?E %H
_ (,y_l)_(p—1)1+||f( )” % (O)

1O
)il

which is positive if y > 14 (p—1 7o) - 10 this case, using relation (4.4)

and (4.2), we obtain

Rp(f(Ty, ..., Ta)) + (v = )Rp(0) = 0

for any p € C[Z1,...,Z,] ® My, k € N, be such that ®p > 0 on the unit
ball [B(H)™]1. Applying Theorem 1.1, we deduce that f(T1,...,T,) € Cy. In
particular, we have f(T1,...,Ty,) € Cs, where

1+ [lF0)]
L= [f O

Now, we counsider the case p € (0,1). Using the first inequality in (4.3), we
obtain

5f::1+(p71)

B2 (-1~ (o~ D (HaH | Re0)

)1—Hf(0)|\

)| As above, using relations (4.4) and

which is positive if y > 1+ (p—1
(4.2), we obtain
Rp(f(Tr,.. . Tw)) + (v = DRp(0) > 0

for any p € C[Z1,...,Z,] ® My, k € N, be such that ®p > 0 on the unit ball
[B(H)™]1. Theorem 1.1 implies f(T4,...,T,) € Cy. In particular, we have
f(T1,...,T,) € Cs, where

1[I0
L+ £ O

The proof is complete. O

5f::1+(p71)

Note that under the conditions of Theorem 4.1, p < pyand p=1 = py = 1.
Moreover, if p # 1, then py = p if and only if f(0) = 0. On can also show that
pr<lifp<1.

We remark that, under the conditions of Theorem 4.1, there exists T :=
(Ty,...,T,) € B(H)™ such that if p > 0 is the smallest positive number such
that (T1,...,T,) € C,, then there exists a free holomorphic function f such
that py is the smallest positive number with the property that f(T1,...,T,) €
Cp;- Indeed, if n < m, take f(Xi,...,X,) = (X1,...,X,,0,...,0) and
use Corollary 2.4. When n > m, take f(X1,...,X,) = (X1,..., X)) and
T:= (Tl,...,Tn,O,...,O) with (Tl,...,Tn) S Cp.
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COROLLARY 4.2. Let f:= (f1,..., fm) be a bounded free holomorphic function

with || fO)|| < [fllcc such that the boundary functions f1,..., fm are in the
noncommutative disc algebra A,,. If (T1,...,T,) € B(H)" is of class C,, p > 0,
then

wo, (F(T1y- - T0)) < [ floos
where py is given by relation (4.1). In particular, if f(0) =0 and (T1,...,T,) €
C,, then

wo(f(T1,- -+ T0)) < (1 flloo-

Proof. Applying Theorem 4.1 the function m f, we deduce that

= f(T1,...,T,) is in the class C which is equivalent to

[FAIPS Pis

Wy, (Wf(Tl, e ,Tn)) < 1, and the first inequality of the theorem fol-
lows. Hence, and using the fact that py = p when f(0) = 0, we complete the
proof. O

A simple consequence of Corollary 4.2 is the following power inequality.

COROLLARY 4.3. If (T1,...,T,) € B(H)" is non-zero, p € (0,00), and k > 1,
then

wp(To: a €l lal =k) <w,(Th,....Ty).

Proof. Since [|(Th,...,Tn)|| < pwy(Th,...,Tn), we have w,(Ty,...,T,) #
0. Applying the second part of Corollary 4.2 to the n-tuple of operators

1 T1,... 1 Tn) € C, and to the free holomorphic function

f(X1,...,X,) = (Xo: a€Fl |a| =k), (X1,...,Xn) € [B(H)"]1,
we complete the proof. O

THEOREM 4.4. Let f := (f1,..., fm) be a bounded free holomorphic function
with ||fO)|| < || fllec such that the boundary functions fi,..., fm are in the
noncommutative disc algebra A,,. Then, for each r € [0,1),

sup wpf(f(Tlv'-'aTn))S Hf(rsla-"vrsn)Ha

TeCp, wp(T)<r

where S1,...,S, are the left creation operators.

Proof. Consider the free holomorphic function f;., defined by
fr(Xla . ,Xn) = f(TXl, . ,T‘Xn), (Xl, . ,Xn) (S [B(H)nh

and recall that ||f;|lcc = [|f(rS1,...,7S,)|. Applying Corollary 4.2 to f,, we
have

(4.6) wo, (fr(A1, .oy An)) < I frlloes  (Ar,...,An) €Cy
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Since f(0) = f,(0), we have p; = pys.. Consequently, if we assume that
wo(Th,...,T,) < r < 1, then (271,...,27,) € C, and inequality (4.6) im-
plies

1 1
opy (T T) =y, (1 (11 3T ) ) < Ul
which completes the proof. 0

COROLLARY 4.5. Let (Th,...,T,) € B(H)™ be such that w,(Th,...,T,) < 1,
and let f:= (f1,..., fm) be a bounded free holomorphic function with the fol-
lowing properties:

(i) the boundary functions ﬁ, .. .,fm are in the noncommutative disc al-
gebra A,,.
(ii) f; has the standard representation of the form

FXy LX) = > aPXe,  j=1,...,m.
|| >k
Then
Wp(f(T1y s T)) < wp(Ty oo To) ¥ oo

Proof. Consider the free holomorphic function g := m f. Note that ||g]|cc =

1 and ¢g(0) = 0. According to the Schwarz lemma for free holomorphic functions
(see Theorem 2.4 from [44]), we have

lg(X1, s X))l < 1(Xns o X[, (Xa,o0, Xa) € [B(H) 1
Denote 7 := w,(T1,...,T,) <1, p > 0, and consider
gr(Xla- ,Xn) = g(?"Xl,.. .,TXn), (Xl,.. ,Xn) S [B(H)n]l

Note that the inequality above implies ||g,|lcc < 7%

4.4 to g, and using the latter inequality, we obtain

. Applying now Theorem

wWo(9(T1, ..., 1)) < |gr]loe < rk = wp (T, - .,Tn)k.
Hence, the result follows. O
COROLLARY 4.6. Let (Th,...,T,) € B(H)"™ be such that w,(Th,...,T) < 1,

and let f : [B(H)"]1 — B(H) be a free holomorphic function with Rf < I and
having the standard representation

f(Xq,. ., X,) = Z aaXa, where k > 1.
la|>k

Then

2w,(Thy ..., Tn)*
Th,...,T,)) < —L—22 :
wp(f( 15 ) "))_1—wp(T1a--->T")k
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Proof. According to the Carathéodory type result for free holomorhic functions
(see Theorem 5.1 from [51]), we have

2| Zw\:k XBXEHUQ
1— Z|ﬁ\:k XEXEHI/Q’

Hence, we deduce that [|fr]ec < 2% for any r € (0,1). Setting r :=

1—rk

wo(T1,...,Tn) < 1, p> 0, and applying Theorem 4.4, we obtain

(X1,...,Xpn) € [B(H)"].

2wp(T1, ce ,Tn)k
— wp(Tl, . .,Tn)k ’

wp(f(Tla-- aTn)) S ||f7‘Hoo S 1

The proof is complete. O

LEMMA 4.7. Let f := (f1,...,fm) be a contractive free holomorphic func-
tion with ||f(0)]] < 1 such that the boundary functions fi,...,fm are in
the noncommutative disc algebra A,,. Let A := (Ay,...,A,) € B(H)" and
B := (By,...,B,) € B(H)" be in the class C, C B(H)"™ and let ¢ > 1. If
A% B, then f(A) and f(B) are in C,, C B(H)™ and f(A)gf(B), where py is

given by relation (4.1).

Proof. First, note that, due to Theorem 4.1, f(A), f(B) are in C,,, where py
is given by relation (4.1). Let p € C[Z1,...,Zy] ® My, k € N, be such that
Rp > 0 on the unit ball [B(H)™];. According to the proof of Theorem 4.1, the
boundary function of the composition po f is p(fl, e fm) € A, Qmin My and
R(po f) > 0. Using the free pluriharmonic functional calculus for the class C,

and Theorem 2.2, if A, B are in C, and Ag B, ¢ > 1, then
R(po f)(Ar,..., An) + (p = DR(p o f)(0)
< ERpo f)(Br,-.-. Ba) + (0= DR(po f)(0)].

Assume now that p > 1. Due to the Harnack type inequality (4.3), the inequal-
ity (4.7) implies

(4.7)

R(po (A1 Au) £ R0 1) (Brve. Bu)-+ (&= 1)p = DRp(0) T E G

which is equivalent to

%(po f)(Ala .- aAn) + (pf - 1)%(170 f)(O)
<ER(po f)(Bi,-..,Bn) + (py — HR(po f)(0)],

where 6y = 14 (p — 1)%. Applying Theorem 2.2, we deduce that
H
F)% 1(B).
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Now, we consider the case p € (0,1). The inequality (4.7) and the Harnack
type inequality (4.3) imply
1 - [I£(0)]

R(po f)(Ay, ..., An) < R(po f)(By, .. .,Bn)+(c2—1)(p—1)%p(0)m-

H
As above, we deduce that f(A)< f(B) in C,,, where 67 := 1+ (p—1) };”%8;”

This completes the proof. (|

THEOREM 4.8. Let 6, : A x A — [0,00) be the hyperbolic metric on a Harnack
part A of C,, and let f = (f1,..., fm) be a contractive free holomorphic func-

tion with || f(0)|| < 1 such that the boundary functions fi,..., fm are in the
noncommutative disc algebra A,,.Then

5pf(f(A>af(B)> Sép(AvB)v AaBEAv
where py is given by relation (4.1).

Proof. Let A,B € A C C,, i.e., there is ¢ > 1 such that AgB. According to

Theorem 4.1 and Lemma 4.7, f(A) and f(B) are in C,,, and f(A)gf(B) in
C

s> Where py is given by relation (4.1). Hence and taking into account that

5,(A, B) ::1ninf{c>1: AEB}, A, B €A,
we deduce that
5pf(f(A),f(B)) <,(A,B), A, BeA.
The proof is complete. O

Now, we can deduce the following Schwarz type result.

COROLLARY 4.9. Let 6, : A x A — [0,00) be the hyperbolic metric on a Har-
nack part A of C,, and let f := (f1,..., fm) be a contractive free holomorphic
function with f(0) = 0 such that the boundary functions ]?1, cee fm are in the
noncommutative disc algebra A,,. Then

6,(f(A), f(B)) < 6,(A,B), A, B eA.

We recall that, due to Theorem 3.2, the open ball [C)]<; is the Harnack part
of C, containing 0. Consequently, Theorem 4.8 and Corollary 4.9 hold in the
particular case when A :=[C,]<1.

Ky Fan [14] showed that the von Neumann inequality [57] is equivalent to the
fact that if T € B(H) is a strict contraction (||T]| < 1) and f: D — D is an
analytic function, then || f(7)| < 1. A multivariable analogue of this result was
obtained in [51]. In what follows, we provide a spectral version of this result,
when the norm is replaced by the joint spectral radius.
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THEOREM 4.10. Let f := (f1,..., fm) be a contractive free holomorphic func-

tion with || f(0)|| < 1 such that the boundary functions fi,..., fm are in the
noncommutative disc algebra A,,. If (T1,...,T,) € B(H)™ and the joint spec-
tral radius r(T1,...,T,) <1, then

r(f(Ty,...,Tn)) < 1.
Proof. Assume that (T41,...,7,) € B(H)™ has the joint spectral ra-
dius =(Th,...,T,) < 1. Taking into account that r(T1,...,T,) =

limy oo wy(T1,...,Ty), we find § > 1 such that w,(T1,...,T;) < 1. Therefore,
we have T' := (T1,...,T,,) € C, and, due to Theorem 3.2, the n-tuple T

is Harnack equivalent to 0. Consequently, T?O for some constant ¢ > 1.
According to Theorem 4.1, f(T) and f(0) arecin the class C,,, where py is
given by relation (4.1). On the other hand, Lemma 4.7 implies f(T)Z f£(0) in
Cp,. Since || f(0)|| < 1, we have the joint spectral radius (f(0)) < 1. gpplying
Theorem 2.5, we deduce that f(())g() in C,,. Therefore, we have f(T)zO
in C,,. Applying again Theorem 20.5, we have r(f(T)) < 1. The proofC is
complete. O

An analogue of Theorem 4.10 for n-tuples of operators with joint operator
radius w,(T1,...,T,) < 1 is the following.

THEOREM 4.11. Let f := (f1,..., fm) be a contractive free holomorphic func-

tion with || £(0)|| < 1 such that the boundary functions f1,..., fm are in the non-
commutative disc algebra Ay,. If (T1,...,T,) € B(H)" andw,(T1,...,T,) <1,
then

wp, (f(Ty,...,Ty)) <1,
where py is defined by relation (4.1). In particular, if f(0) = 0, then
wo(f(T1,...,T,)) < 1.

Proof. If T := (Ty,...,T,) € B(H)" and w,(T1,...,T,,) < 1, then T € C,,.
According to Theorem 3.2, we have
r(Ti,...,T,) <1 and P,(T,R) > al

for some constant a > 0. Applying Theorem 4.1 and Theorem 4.10, we deduce
that f(T') € Cp, and r(f(T)) < 1. Since w,(T) < 1, Theorem 3.2 implies

H
T2 0. In particular, we have 0< T for some constant ¢ > 1. Applying Lemma
(&3

4.7, we deduce that f(O)%f(T) in C
Hence, and using Theorem 2.2 (part (ii)), we get

P, (rf(0),R) < P, (rf(T),R), r€0,1).
Since r(f(0)) < 1 and r(f(T)) < 1, the latter inequality implies
(4.8) P, (£(0),R) < P, (f(T),R),  r€[0,1).

s Where py is given by relation (4.1).
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On the other hand, since the mapping X — P;(X, R) is a positive free pluri-
harmonic function on [B(H)"]1, the Harnack inequality (3.1) implies

L= [lfOl _ 1= l7 O],
L+ O 1+ (O

Pi(f(0), R) = (0, R)

Therefore, we have
P, (f(0),R) = Pi(f(0),R) + (py — 1)1

>(p,1+w)1.

- 1+ [ £(0)]]
Since
1-|1£(0)]] '
IO VTR Rl it p<i
a:=pf—1+ —7"0 =
IO L[ £(0)]]

IO
(0 =Dimron + oo 22 L

we have ¢ > 0. Combining the latter inequality with (4.8) we obtain
a
Py (F(D), R) 2 51

Using again Theorem 3.2, we deduce that w,,(f(T)) < 1. The last part of the
theorem follows from Theorem 4.1. This completes the proof. U

REMARK 4.12. If m = 1, all the results of this section remain true when the
condition || f(0)|| < 1 is dropped if f is a nonconstant contractive free holomor-
phic function with boundary function in the noncommutative algebra A,,.

5. CARATHEODORY METRIC ON THE OPEN NONCOMMUTATIVE BALL [Ceol<1
AND LIPSCHITZ MAPPINGS

In this section, we introduce a Carathéodory type metric dx on the open ball of
all n-tuples of operators (11, ...,T;,) with joint spectral radius r(11,...,T),) <
1. We obtain a concrete formula for dg in terms of the free pluriharmonic
kernel on the open unit ball [C»]<1. This is used to prove that the metric
dg is complete on [Co]<1 and its topology coincides with the operator norm
topology.

We need some notation. Consider the noncommutative balls

[Cp]<1 = {(Xl,.. ,Xn) S B(H)n : wp(Xl,.. ,Xn) < 1} for p e (0,00],

where weo(X1,...,Xn) = r(Xi1,...,X,) is the joint spectral radius of
(X1,...,Xn), and set

[Cp]” =C,N[Cx]<1 for pe(0,00).

According to Theorem 1.35 from [48], if p,p’ € (0,00], p < p/, then C, C C,
and, moreover, we have
wp (X) Sw,(X), r(X)= lim w,(X), X € B(H)™.

p—00
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Consequently, we have
[CP]<O - [Cp/ﬁov [Cp]<1 - [Cp’]<1~

Due to Theorem 2.5 and Theorem 3.2, one can easily see that
H
{XeC,: X d 0} =[Colc1 C[C,)70 = {X €C,: X<O}

for any p € (0,00). Note also that
UG« = J %" = [Cacl <t
p>0 p>0

Indeed, if X € [Cx)<1, i-€., 7(X) < 1, then taking into account that r(X) =

lim, o w,(X), we find p > 0 such that w,(X) < 1. Thus X € [C,]<1, which

proves our assertion. Note also that J [C,]<1 is dense (in the norm topology)
p>0

in the set Cy of all n-tuples of operators (71, ..., T),) with joint spectral radius

T(Tl, N ,Tn) S 1.

Now, we introduce the map di : [Coo]<1 X [Coo]<1 — [0,00) by setting

(5.1) dx (A, B) = Sup [Rp(A) = Rp(B)|l, A, B € [Cu]<a,

where the supremum is taken over all polynomials p € C[X;,...,X,] ® M,,,
m € N, with ®p(0) = I and Rp > 0 on [B(H)"];. In what follows we will
prove that dx is a metric and obtain a concrete formula in terms of the free
pluriharmonic kernel on the open unit ball [Coo]<1.

First, we need the following result.

LEMMA 5.1. Let G be a free pluriharmonic function on [B(H)™1 with coeffi-
cients in B(E), such that G(0) =1 and G > 0. If A, B € [Cxo]<1, then

IG(A) = G(B)|| < [[P1(A, R) — Pi(B, R,
where where Py(X, R) is the free pluriharmonic Poisson kernel defined by

P(X,R):=> > Xo®Ri+I@I+» > X:®Rs, XE€[Cxla,
k=1 |a|=k k=1|a|=k

and the convergence is in the operator norm topology.

Proof. Since G is a positive free pluriharmonic function of [B(H)"]; it has a
unique representation of the form

G(X1,. 0, Xn) =Y Y Xi@A[ +HIRI+Y > Xa®Aw), X € [B(H)"]1,
k=1 |a|=k k=1 |a|=k

for some A(,) € B(£), where the series converge in the operator norm topology.
Applying Theorem 5.2 from [47] to G, we find a completely positive linear map
p: Ry + Ry — B(E) with u(I) = I and p(RE) = A if |af > 1.

Since A,B € [Cy]<1, we have r(4) < 1 and r(B) < 1. According to the
free pluriharmonic functional calculus, P,(A4, R), P,(B,R), G(A), and G(B)
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are well-defined and the corresponding series converge in the operator norm
topology. Consequently, we have

G(A) = (id® p)(Pi(A,R)) and G(A) = (id ® p)(Pi(A, R)).

Taking into account that u is completely positive linear map with p(I) = I, we
have

1G(A) = G(B)|| < plllPr(A, R) — P1(B, R)|| = [|[P1(A, R) — PA(B, R)||.

The proof is complete. O

According to Lemma 5.1, it makes sense to define the map df : [Coo]<1 X
[Cx]<1 — [0,00) by setting

di (A, B) = sup [|u(4) — u(B)|| < oo,

where the supremum is taken over all free pluriharmonic functions w on
[B(H)™]1 with coefficients in B(E), such that u(0) = I and « > 0.

Using the the free pluriharmonic functional calculus for for n-tuples of operators
(Ty,...,T,) with the joint spectral radius r(T4,...,T,) < 1, one can extend
Proposition 3.1 from [49] and show that for any A, B € [Coo]<1,

where dg is defined by relation (5.1). Since the proof is essentially the same,
we shall omit it.

PROPOSITION 5.2. d is a metric on [Cool<1 satisfying relation
dK(A,B): ||P1(A,R)—P1(B,R)H, A,BE [Coo]<1-
In addition, the map [0,1) > r — dg(rA,rB) € RT s increasing and

dik(A,B) = sup dg(rA,rB).
rel0,1)

Proof. Using Lemma 5.1 we deduce that dg (A, B) < ||Pi(4,R) — P1(B,R)|.
The rest of the proof is similar to that of Proposition 3.2 from [49], so we shall
omit it. g

Now, we can prove the main result of this section.

THEOREM 5.3. Let dx be the Carathéodory metric on [Coo)<1. Then the fol-
lowing statements hold:

(i) the d-topology coincides with the norm topology on [Cool<1;
(ii) [C,]70 is a dk-closed subset of [Cos]<1 for any p > 0;
(iii) the metric di is complete on [Coo)<1-
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Proof. We recall that the free pluriharmonic Poisson kernel is given by

P(X,R)=> Y Xo@Ri+I@I+» > X:®Ra, X E€[Colc,
k=1|a|=k k=1 |a|=k

where the convergence is in the operator norm topology. Let R4 = A ®
Ry + .-+ 4+ A, ® R, be the reconstruction operator. Note that, due to the
noncommutative von Neumann inequality, we have

|A— Bl =||Ra— Rz

1 2 ) ) )
= ‘ —/ e"[P1(A,e"R) — Pl(B,e“R)]dtH
2T 0
< sup le(AveitR)7P1(B7€itR)H
te[0,27]

Now, Proposition 5.2 implies
(5.2) |A— B| <dk(A, B), A, B € [Cxo]<1,

which shows that the dx-topology is stronger then the norm topology on
[Coo]<1. Conversely, to prove that the norm topology on [Coo]<1 is stronger than
the dg-topology, note that since r(Ra) = r(4) < 1 and r(Rp) = r(B) < 1,
the operators I — R4 and I — Rp are invertible. Thus

di(A,B) = |Pi(A,R) = Pi(B,R)|| <2|(I = Ra)™" = (I - Rp) ™|
for any A,B € [Coo]<1- Hence and due to the continuity of the maps
X — I —Rx on B(H)" and Y — Y ! on the group of invertible elements

in B(H® F?(H,)), in the operator norm topology, we deduce our assertion. In
conclusion, the dx-topology coincides with the norm topology on [Cx]<1-

Now, to prove (ii), let {A®*) .= (Agk), . ,A%k))},;”;l be a dx-Cauchy sequence
in [C,]=° C C,. Due to inequality (5.2), we deduce that {A®*)}2° is a Cauchy
sequence in the norm topology of B(H)™. Since C, is closed in the operator
norm topology, there exists T := (T, ..., T,) in C, such that |7 — A®| — 0,
as k — oo.

Now let us prove that the joint spectral radius r(T') < 1. Since {A(k)}z‘;1 is
a dg-Cauchy sequence, there exists kg € N such that dg(A®), A0)) < 1 for

H
any k > ko. On the other hand, since A%0) € [C,]30, i.e., A0) <0, Theorem
2.2 shows that there is ¢ > 1 such that P,(rA®*0) R) < ¢2§ for any r € [0, 1).
Hence, and due to the noncommutative von Neumann inequality, we deduce
that

Py(rA®, R) < (P, (rA™, R) = P, (rA™), R)| + || P, (rA®), R)]|) 1
(5.3)
< (ax (AW, 4% 1 [P, (r A%, R)|) T < (14 20)1

for any k > ko and r € [0,1).
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We show now that limy_. P,(rA®) R) = P,(rT,R) in the operator norm
topology. First, one can easily see that, since T', A) € C,, we have

SOTT<pT and Y AP AW <71
lal=p jal=p

for any p,k = 1,2,.... Given € > 0 and r € (0,1), let m € N be such that
> g PP < 5. Note that

HP(TA(k)aR) - P(TT, R)H

mz 3 rll(A® — 1) @ R

p=1 |||a|=p
+2) 1Y AP @Ryl +2) || YD relT, @ R
p=m |||a|=p p=m |||a|=p
m—1
—2| Y 3T (AP - T)(AY - T
p=l  |a|=p
m—1 m—1
Sy apap| 2| S v
p=1l " Jal=p p=1l " Jal=p
S P I I
p=1 :
for any k = 1,2,.... Since A®*) — T in the norm topology, as k — oo, and

using the results above, one can easily deduce that limg_, PP(TA(k),R) =
P,(rT,R) for each r € [0,1). Now, taking k — oo in inequality (5.3), we
obtain P,(rT, R) < (14 ¢*§)I for r € [0,1). Applying Theorem 2.2, we deduce

H
that T<0. Now, Theorem 2.5 implies r(T) < 1, which shows that T is in
[C,]=9 and, therefore, in [Cs]<1, which proves part (ii).

It remains to prove part (iii). To this end, let {A*) (A(k) ey A%k)) 1 be
a dg-Cauchy sequence in [Coo]<1. Given € > 0, there exists ko > 1 such that
di(A®) AD)) < ¢ for any k,j > kzo. Then we have

(5.4) d(A®0) < c:=dg(A*) 0) 4 ¢ for any k > k.

Hence, and due to the definition of dx, we have ||u(A®) — u(0)|] < ¢ and,
consequently,

w(AM) < (u(A™ —u(0)] + I < (c+ 1)u(0)  for any k > ko

and for any positive free pluriharmonic function u on [B(H)"]; with coefficients
in B(€) such that «(0) = I.
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Now, for each k > ko, fix pr > 1 such that A% ¢ [C,.]7°. Note that the
inequality above implies

u(A®) + (o — Du(0) < pr(c+ 1u(0)
for all k > ko. Applying Theorem 2.2 and using relation (5.4), we obtain
Lo amw|* < dx (A%, 0) +e+1, k> ko.
Consequently, we have

(5.5) 1< e := sup || Ly qm[* < oc.
k>ko

Since {A(k)} is a dg-Cauchy sequence, there exists mo > ko such that
dK(A(ml),A(m)) < ﬁ for any m,m’ > mg. Using now relation (5.5), we
obtain

1

(5.6) dic (A, Almo)y <

_ k> mg.
2| Lo, acmon 12 =

Since A(™0) € [C,, 170, Theorem 2.5 implies r(A™®)) < 1. On the other
hand, since lim,_ o w,(A™0)) = r(A(M0)) < 1, there exists p,,, > 0 such that
Wpmo (A(m0)) < 1 for any p > pm,. We can assume that

1L Ao oll?

(5.7) Pmg = 1
P Lo a0 |12

Using Proposition 5.2 and relation (5.6), we deduce that
1

5.8 P S
58 Mo a2

Pmg (A(m[))v R) S Pp (A(k), R) + k Z my.

mQo

On the other hand, since w,,, (A(m0)) < 1, Theorem 3.2 implies A(™0) Z0in

H
Cp,n, - Consequently, we have 0< A(m0) wwhich due to Theorem 2.2, implies

meI - Ppmo (07 R) < HLA("I'O),OH2P mg (A(mO)a R)
Combining this with relation (5.7), we get

1
P, (Am) Ry > — — .
rmo Lo, acmo0 12
Hence, and due to (5.8), we have
1 1
P, (A®RYy>—— 1>
o ) 2 B B 2

Applying Theorem 3.2, we deduce that A®*) A 0and AW ¢ Cp,n, - Therefore,
A ¢ [Cp,,, ] 30 for all k > mg and the sequence {A®) Y5, is a dx-Cauchy
sequence in [Cp,, ]7%. Due to part (ii), there exists A € [Cp,, ]7? C [Coo)<a
such that dgx(A®), A) — 0, as k — oo, which proves that dx is a complete
metric on [Coo]<1. The proof is complete. O
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We can provide now a class of Lipschitz functions with respect to the
Carathéodory metric on [Coo]<1.-

THEOREM 5.4. Let f := (f1,..., fm) be a contractive free holomorphic func-

tion with || f(0)]] < 1 such that the boundary functions fi,..., fm are in the
noncommutative disc algebra A,. Then

1+ /)]
A (J(A). (B) < [ tidi(A.B)

for any n-tuples A := (A1,...,A,) and B := (By,...,B,) in [Coo)<1-

Proof. According to the maximum principle for free holomorphic functions
with operator-valued coefficients (see Proposition 5.2 from [50]), the condition
[If(0)]] < 1 implies that || f(X)|| < 1, X € [B(H)"]:. If u is a free plurihar-
monic function on [B(H)™];, then Theorem 1.1 from [51] shows that wo f is
a free pluriharmonic function on [B(H)"];. If, in addition, u is positive, then
wo f is also positive.

Assume now that A and B are in [Coo]<1. Due to Theorem 4.10, f(A) and f(B)
are in [Cool<1. Let p € C[X1,...,X;n] ® My, k € N, be a matrix-valued non-
commutative polynomial with $p(0) = I and p > 0 on [B(H)™]1. According
to the Harnack type inequality (4.3), we have

- 1o, L4+ 7)1,
TS PO S ey

Since || f(0)|| < 1, we deduce that Rp(f(0)) is a positive invertible operator
of the form Iy ® A for some A € My. Define the mapping h : [B(H)"]1 —
B(H)®min My by setting

B(X) 1= Rp(FON] T2 Rp(F (X)) Rp(FO) T2, X € [BH)"].
Note that h is a positive free pluriharmonic function on [B(H)"]; with coeffi-

cients in M}, with the property that h(0) = I. Now, using the above-mentioned
Harnack type inequality, we have

IRp(f(4) = Rp(F(B))]
< e O)1/21] | [Re(£ (00)) 772 (Re(F(4)) = Re(F(B)) [Re(F O]

IERp(F O]
< IRp( O 11(4) — h(B)|
11 170)]
=70 x5

Taking the supremum over all polynomials p € C[X1,...,X;] ® My, k € N,
with ®p(0) = I and Rp > 0 on [B(H)™]1, we obtain

L+ 4]
i (F(4),£(B)) < T4 B).
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which completes the proof. O

COROLLARY 5.5. Let f := (f1,..., fm) be a contractive free holomorphic func-
tion with f(0) = 0 such that the boundary functions fi,...,fm are in the
noncommutative disc algebra A,. Then

dx (f(A), f(B)) < dk (A, B)
for any A, B € [Cool<1.

We remark that, using Corollary 1.2 and the remarks preceding Corollary 2.4,
one can easily obtain the following result, which provides a simple example
when the inequality of Theorem 5.4 is an equality.

COROLLARY 5.6. If 1 < m < mn, let A := (A1,...,Ap) € B(H)™ and B :=
(B1,...,Bn) € B(H)™ be in [Cool<1 and let A :== (A1,...,Am,0,...,0) and

B:=(B1,...,Bm,0,...,0) be their extensions in B(H)", respectively. Then
di (A, B) = dg (A, B).

According to Theorem 5.3, the di-topology coincides with the norm topology
on [Coo]<1. Due to Theorem 5.4, we deduce the following result.

COROLLARY 5.7. Let f := (f1,..., fm) be a contractive free holomorphic func-

tion with || f(0)|| < 1 such that the boundary functions fi,...,fm are in the
noncommutative disc algebra A,,. Then the map

[Coo]<1 > (Tl,.. 7Tn) — f(Tl,. .. ,Tn) S [Coo]<1

is continuous in the operator norm topology, where [Coo]<1 is the corresponding
ball in B(H)™ and B(H)™, respectively.

6. THREE METRIC TOPOLOGIES ON HARNACK PARTS OF C,

In this section we study the relation between the §,-topology, the dx-topology,
and the operator norm topology on Harnack parts of C,. We prove that the
hyperbolic metric J, is a complete metric on certain Harnack parts of C,, and
that all the three topologies coincide on [Cy]<1. In particular, we prove that
the hyperbolic metric , is complete on the open unit unit ball [C,]<1, while
the other two metrics are not complete.

First, we mention another formula for the hyperbolic distance that will be used
to prove the main result of this section. If f € A,®minM,mm, m € N, then we
call Rf strictly positive and denote Rf > 0 if there exists a constant a > 0
such that ® f > al. We remark that, in this case, if (T1,...,T,) € C,, then,
using the functional calculus for the class C,, we deduce that

The proof of the next result is similar to that of Proposition 3.5 from [49], but
uses the functional calculus for the class C, and Theorem 2.2 of the present
paper. We shall omit it.
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PROPOSITION 6.1. Let A := (A4,...,An) and B := (By, ..., By) be inC, such
that AX B. Then

6.1 0,(A,B) = =sup|ln ,

O A B = 5 0 R By, Bu) + (p = DRFO)e. )

where the supremum is taken over all f € A, @ M,,, m € N, with Rf > 0 and
x € H®C™ with x # 0.

We remark that, under the conditions of Proposition 6.1, one can also prove
that relation (6.1) holds if the supremum is taken over all noncommutative
polynomials f € C[X1,...,Xn] ® My, m € N, with Rf >0, and v € H® C™
with z # 0.

The main result of this section is the following.

THEOREM 6.2. Let d,, p > 0, be the hyperbolic metric on a Harnack part A of
[C,]=°. Then the following properties hold:

(i) 6, is complete on A;
(ii) the é,-topology is stronger then the d -topology on A;
(ili) the 0,-topology, the d -topology, and the operator norm topology coin-
cide on [Cpl<1;
(iv) [Col<1 is complete relative the hyperbolic metric, but not complete with
respect to the Carathéodory metric dg and the operator metric.

Proof. Let A :=(A1,...,A,) and B := (By,...,B,) be n-tuples in a Harnack
part A of [C,]=°. Then A is Harnack equivalent to B and

Rf(A1,.... An) + (o~ DRF(0) < Ap(A, BEIRS (B, ... Ba) + (0 — HRF(0)]

for any f € Apn®mpminMy, with Rf > 0, where A,(A, B) is defined by (3.3).
Hence, we deduce that

6.2)

RE(Ars. o, An) = RE(Bis .., Bu) < [Ap(A, B2 — 1[Rf(Bi, ..., Ba) + (p— DRF(0)).

Since B g 0, we have the joint spectral radius r(B) < 1, so the p-pluriharmonic
kernel P,(B, R) makes sense. Due to the fact that the noncommutative Poisson
transform id ® P, is completely positive, and P,(B,S) < ||P,(B, R)||I, one
can easily see that

By(rB, R) = (id ® Prr)[Py(B, )] < [|F,(B, R)|1
1
= ;lle(B,R)HPp(O,R)
for any r € [0,1). Using the equivalence (ii) <> (iii) of Theorem 2.2, when ¢? =
%HPP(B, R)||, we obtain Rf(rBi,...,rBy) + (p— 1)Rf(0) < ||P,(B, R)||Rf(0)

for any r € [0,1). Letting » — 1, in the operator norm topology, we deduce
that

Rf(By,..., Bn) + (p = 1)Rf(0) < [|P,(B, R)[|Rf(0).
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Hence, and using relation (6.2), we obtain
Rf(Ar,...,An) —Rf(Bi,...,By) < [Ay(A, B)> —1]||P,(B, R)||Rf(0).

We can obtain a similar inequality if we interchange A with B. If, in addition,
we assume that Rf(0) = I, then we obtain

*tlégﬁf(Ala7An)7%f(B177Bn) Stla

where ¢ := [A,(A, B)? — 1] max{||P,(A, R)||, || P,(B, R)||}. On the other hand,
since Rf(Ai1,...,A,) — Rf(B1,...,By) is a self-adjoint operator, we get
IRf(A1,...,An)—Rf(B1,...,By)| <t. Hence, we deduce that dx (A, B) < s.
As a consequence, we obtain

(63)  dic(A, B) < max{|| P,(4, )|, |P,(B, R)||} (¢*+5) —1).
Let us prove that ¢, is a complete metric on A. To this end, let {AR) =
(Agk), . ,Aslk))},;”;l C A be a §,-Cauchy sequence. First, we prove that the

sequence {||P,(A®), R)||}52, is bounded. Given € > 0, there exists ko € N such
that

(6.4) 5P(A(k),A(p)) <e forany k,p> ko.
Let f € A,®minM,, with Re f > 0. Since A(k‘))z 0 and
1
Py(rA%) R) < ;IIPp(TA(’““),R)IIPp(O,R),
Theorem 2.2 implies
1

Rf(A®)) + (p— HRF(0) < ;HPP(TA“O), R)[[[Rf(0) + (p — 1)RF(0)].
On the other hand, since A®*) i Ako)  Theorem 2.2 implies

Rf(AR) + (p = DRF(0) < A (AR, AT [RF(ARD) + (p — HRF(0)].
Combining these inequalities, we obtain

1

65)  RI(AD)+ (0 - DRAO) < ZRIO) + (0~ DRIO))

where ¢ := || P,(A%0) R)||V/2A,(A®), Ao for any f € A,@M,, with Rf > 0.

Consequently, due to Theorem 2.2, we have || P,(A®) | R)|| < ¢? for any k > k.
Combining this with relation (6.4), we obtain

1P,(A®), R)|| < [P, (A%), R)||e*

for any k > ko. This shows that the sequence {||P,(A®, R)||}52, is bounded.
Consequently, inequality (6.3) implies that {A®)} is a dx-Cauchy sequence.
Due to Theorem 5.3, there exists A := (A1,..., A,) € [C,]7° such that

(6.6) dg(A® A) -0 as k— oc.
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In what follows, we prove that A € A. Let f € A, ® M,, with Rf > 0 and
Rf(0) = I. Taking into account relations (6.5) and (6.4), we have

RF(AP) + (p— DHRF(0) < A (AR, AFDY2[RF(AFD) + (p — 1)RF(0)]
< X [Rf(AR)) 4 (p — 1)RF(0)]

for k > ko. According to relation (6.6) and the definition of d, Rf(A*)) —
Rf(A), as k — 00, in the operator norm topology. Consequently, relation (6.7)
implies

(6.8) Rf(A) + (p— DRF(0) < e*[RF(AX)) + (p— 1)RF(0)].

(6.7)

Such an inequality can be deduced in the more general case when f € A, ® M,,
with ®f > 0. Indeed, for each ¢ > 0 let g := €I + f, Y := Rg(0), and
@ = Y~ Y2gY =12 Since Ry > 0 and Rp(0) = I, we can apply inequality
(6.8) to ¢ and deduce that

pe T+ RF(A) + (p— DRF(0) < € [peT + RF(A®) + (o — 1)RF(0)]

for any ¢’ > 0. Letting ¢ — 0, we get

(6.9) RF(A) + (p — DRF(0) < e*[RF(A™)) + (p — HRF(0)]
for any f € A, ® M, with ®f > 0. Therefore,

(6.10) A% Alko),

On the other hand, since A(k“)g A®) for any k > ko, Theorem 2.2 and relation
(6.4), imply

Rp(A*)) + (p — DRp(0) < Ay (AR AW [Rp(AD) + (p — 1)Rp(0)]
< X [Rp(AM) + (p — HR(0)]

for k > ko and any polynomial p € C[Xy,...,X,] ® M,,, m € N, with ®p > 0.
According to Theorem 5.3, the di-topology coincides with the norm topology
on [C,] <. Therefore, relation (6.6) implies A*) — A € [C,]<° in the operator
norm topology. Taking the limit, as kK — oo, in the inequality above, we deduce
that

(6.11) Rp(A*)) + (p — 1)Rp(0) < e*[Rp(A) + (p — 1)Rp(0))]

for any p € C[Xq, ..., X,] ® M, with $£p > 0. Consequently, we get A(ko)z A.
Hence, and using relation (6.10), we obtain AR Ao which proves that A € A.
The inequalities (6.9) and (6.11) imply A,(A®*0) A) < e2¢. This shows that
§,(ARo) | A) < ¢, which together with relation (6.4) imply 6,(A®) | A) < 2¢ for
any k > kg. Therefore, 5P(A(k),A) — 0, as k — oo, which proves that J, is a
complete metric on the Harnack part A. Note that we have also proved part
(ii) of this theorem.
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In what follows, we prove part (iii). To this end, assume that A and B
are n-tuples of operators in [Cp]<i. Due to Theorem 3.2, P,(B,R) is a
positive invertible operator. Since P,(B,R)~! < ||P,(B,R)™!|, we have
I < ||P,(B,R)™!|P,)(B,R), which, applying the noncommutative Poisson
transform, implies I < ||P,(B, R)"!||P,(rB,R) for any r € [0,1). By The-
H
orem 2.2, we deduce that 0< B and
RF(0) < [[Pp(B, R)™| [Rf(B) + (p — R (0)]

for any f € A, ® M,,, with Rf > 0. If, in addition, Rf(0) = I, then the latter
inequality implies
(Rf(A) + (p— 1)RF(0)], )
(Rf(B) + (p — DR (0)]z, z)

% (Rf(A) —=Rf(B))z,2)

< |1P(B, R)™'|ldx (A, B)

—1<

for any x € H® C™, z # 0. Consequently, we have

(Rf(A) + (p = D)RF(0)]z, z)
((RF(B) + (p— HRS(0)]z, z)
A similar inequality can be obtained interchanging A with B. Combining these
two inequalities, we get

In <In(1+|P,(B,R)"|dk(A,B)).

1 SBRAA) + (p — DRF(0)], 2)
(6.12) (Rf(B) + (p— RF(0)]z, )
< In (1 +max{||P,(B, R)~'||, [ Po(A, R) "' [|}dr (A, B)) .

Now, we consider the general case when g € A,, ® M,,, with Rg > 0. Note that
Y := Rg(0) is a positive invertible operator on H® C™ and f := Y ~1/2gy ~1/2
has the properties R8f > 0 and Rf(0) = I. Applying inequality (6.12) to f
when z :=Y 12y, y € H® C™, and y # 0, we obtain

(6.13)  26,(A, B) <1In (1 + max{||P,(B,R)""|,||P,(A,R)""||}dk (A, B)).

Consider a sequence {A*)}2°  of elements in [C,]<1 and let A € [C,]<1 be
such that dg (A%®),A) — 0, as k — oo. By Proposition 5.2, we deduce that
PP(A(k) ,R) — P,(A, R) in the operator norm topology. On the other hand, due
to Theorem 3.2, the operators P(A®*) R) and P(A, R) are invertible. Hence,
and using the well-known fact that the map Z — Z~! is continuous on the open
set of all invertible operators, we deduce that P,(A®) R)~! — P,(A,R)~! in
the operator norm topology, as k — oo. Hence, we deduce that the sequence
{IIP,(A®, R)=Y||}22, is bounded. Consequently, there exists M > 0 with
| P,(A®) R)=1|| < M for any k € N. Using inequality (6.13), we obtain

26,(A®) | A) < In (1 + MdK(A(k),A)) . keN

Since dix(A® A) — 0, as k — oo, the latter inequality implies that
5p(A®) A) — 0. Therefore, the dx-topology on [C,]<1 is stronger than the
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d,-topology. Due to the first part of this theorem, the two topologies coincide
on [Cpl<1. Using now Theorem 5.3, we complete the proof of part (iii).

Now, we prove item (iv). Since [Cp))<1 is the Harnack part of 0 (see Theorem
3.2), part (i) implies its completeness with respect to the hyperbolic metric. To
prove that [C,]<1 is not complete with respect to the Carathéodory metric dg
and the operator metric, we consider the following example. Let (T4,...,T,) €
B(P1)™ be the n-tuple of operators defined by T; := Pp,Si|p,, i = 1,...,n,
where P := span{e, : || < 1}. Note that ||[T1,...,T]|| =1 and T, = 0 for
any o € F with |a| > 2. Set X; := pT;, i=1,...,n, and note that

Xg = pls = pPp,Splp,, B EF\{g0}
Therefore, (X1,...,X,) € C,, ie, wy(Xi,...,X,) < 1, which implies
wp(Tl, o Th) < %. The reverse inequality is due to the fact that
N1, ..., Th]|l < pwp(Th,...,Tn). Consequently, we have

1
wo(Th,...,T,) = -, for p e (0,00).
p
On other hand, the condition T,, = 0 if || > 2 implies 7(T4,...,T,) = 0.
Therefore, we have
wp(X1,..., X)) =1 and r(Xi,...,X,n)=0.

Now, let ¢ € (0,1) and define Y*) := ¢/k(X,, ..., X,,) for k= 1,2,.... Since

wp(Y#)) = ¢!/ < 1, Theorem 3.2 implies Y (*) 2 0in C, and YV € [C)]<1.
On the other hand, since w,(X1,...,X,) = 1, we have X := (X1,...,X,,) ¢
[Cp]<1. Now, note that

dg (Y™, X) <2|(I = Ryw)™' = (I - Rx)™Y||
=2||Ryw — Rx|| =2|[Y® — X| =2 X (1 - k).

Consequently, Y(¥) — X in the operator norm and dg (Y ¥, X) — 0, as k —
oo. This shows that [C,]<1 is not complete with respect to the Carathéodory
metric dg and the operator metric. The proof is complete. ([l

COROLLARY 6.3. Let 8, be the hyperbolic metric on a Harnack part A of [C,]=°.
Then

A (A, B) < max{|| P, (A, R)||, | Pp(B, R)|}} (245 ~ 1), A,BeA.
If, in addition A, B € [C))<1, then
20,(A, B) < In (1 + max{||P,(B, R) ||, | P,(A, R) ™| }dx (A, B)) .

COROLLARY 6.4. Let f :=(f1,..., fm) be a contractive free holomorphic func-
tion with || f(0)|]| < 1 such that the boundary functions fi,..., fm are in the
noncommutative disc algebra A,. If A is a Harnack part of [C,]=°, then the
map

As(Th,....Ty) = f(Th,...,Ty) € [Cp, ] *°
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is continuous with respect to the hyperbolic metric §, on A and the
Carathéodory metric dg on [C,,|=°, where py is defined by relation (4.1). In
particular, tha map

[Cp]<1 > (Tl,. .. 7Tn) — f(Tl,.. ,Tn) e [Cpf]<1

18 continuous with respect to the hyperbolic metric.

7. HARNACK DOMINATION AND HYPERBOLIC METRIC FOR p-CONTRACTIONS
(CASE n =1)

In this section, we consider the single variable case (n = 1) and show that our
Harnack domination of p-contractions is equivalent to the one introduced and
studied by Cassier and Suciu in [9]. We recover some of their results and obtain
some results which seem to be new even in the single variable case.

In the particular case when n = 1, the free pluriharmonic Poisson kernel
P,(rY,R), r € [0,1), coincides with

Q,(rY,U) ==Y Y eUt+plal+) rY*eU™,  Yec,cBH),
k=1 k=1

where the convergence of the series is in the operator norm topology and U is
the unilateral shift acting on the Hardy space H?(T). For each p-contraction
T € B(H), consider the operator-valued Poisson kernel defined by

Kp(2,T):=> 2T** 4 pI +> " FTF, 2 €D,
k=1 k=1

which was employed by Cassier and Fack in [8]. Using Theorem 2.2, in the
particular case when n = 1, we can prove the following result.

PROPOSITION 7.1. Let T and T' be two p-contractions in B(H) and let ¢ > 1.
Then the following statements are equivalent:

Q) TZT;
(ii) Q,(rT,U) < *Q,(rT',U) for any r € [0,1);
(iil) K,(2,T) < ?K,(2,T") for any z € D.

Proof. The equivalence (i) < (i) follows from Theorem 2.2, when n = 1. To
prove the implication (i4) = (iii), we apply the noncommutative Poisson
transform (when n = 1) at €I to the inequality of part (ii). Consequently, we
obtain

KP(Teita T) = (ld & Pe“])[QP (TT, U)]
<A @ Pip)[Q,(rT',U)] = K, (re™, T")
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for any r € [0,1) and ¢ € R. Now let us prove that (ii¢) = (i1). Since
<(T*k ® Uk)(hm ® eimt)’ h/p ® eipt>

1 s
2w ).

HOH2(T)
<eiktT*k(eimt hm); eipt hp> dt
H
for any hy,, h, € H and k,m,p € N, one can easily obtain
((PQu(rT",U) = Q,(rT, U)) h(e™), h(e™)),, OH(T)

1 ™

:% -

(K (re™, T") — K,(re™, T)) h(e™), h(eit)>H

for any function e + h(e®) in H® H?(T). Now, the implication (iii) = (ii)
is clear. The proof is complete. 0

H
Let T,T" € B(H) be p-contractions such that T'< T”. Due to Proposition 7.1
and Corollary 2.3, we deduce that

| L7 7| = inf{c>1: Q,(rT,U) < Q,(rT',U) for any r € [0,1)}

=inf{e>1: K,(2,T) < ®K,(2,T') for any z € D}

=inf{e>1: K,(2,T%) < ®K,(2,T"") for any z € D} = | Ly -||.
Therefore T = T’ if and only if T* < T'*.
THEOREM 7.2. Let T,T' € B(H) be such that T,T' € [C)l<1. Then

] = sup A (2)7 (1 = 2171 = 2T By 2,
where

A, r(2) = [pl + (1 — p)(2T* + 2T) + (p — 2)TT*|*?, 2 €D.

Moreover,

6p(T,T") = mmax {||Lrz ||, | L 7|} -

Proof. f T, T" € [C,] <1, Theorem 3.4 implies
= sup [|Ap - (2)(I = 21) 711 = 2T ) A p i+ (2) 77
z€D

| Lozl = [| L= -
= sup [ Ay ()71 = 2T)(I = 2T A (2)]
FAS
Using now Theorem 3.5, we complete the proof. 0

We mention that when p = 1, we recover a result obtained by I. Suciu [53],
using different methods. However, if p > 0 and p # 1, the result of Theorem
7.2 seems to be new. We also remark that Proposition 3.12 , Proposition 5.2,
and part (i) of Theorem 5.3 are new even in the single variable case (n = 1).
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The next result makes an interesting connection between the Harnack dom-
ination for n-tuples of operators in C, and and the Harnack domination for
p-contractions (n = 1), via the reconstruction operator.

THEOREM 7.3. Let A :=(Ay,...,A,) and B := (B1,...,B,) be in C, and let
c > 0. Then the following statements are equivalent:
H
(i) A< B;
H
(ii) Ra<Rp, where Rx := X; ® Ry + -+ X ® Ry, is the reconstruction

operator associated with X = (X1,...,X,) € C, and the right creation
operators Ry, ..., R,.

H
(iii) R3= Rj.

Proof. First, assume that item (i) holds. Due to Theorem 2.2, we have
(7.1) P,(rA,S) < 2P,(rB,S)

for any r € [0,1), where S := (S1,...,S,) is the n-tuple of left creation

operators. Let U be the unilateral shift on the Hardy space H?(T). Since

RfR; = 6;;I, the n-tuple (R1 @ U*,..., R,, ® U*) is a row contraction acting

from [F2(H,) ® H*(T)]" to F?(H,) ® H?(T). Applying the noncommutative

Poisson transform at (Ry @ U*,..., R, ® U*) to inequality (7.1), we obtain
Qp(rRa,U) = (id ® Pg,ou~,. .r,eu+)) [Ps(rA,S)]

S C2 (ld ® P(R1®U*,...,Rn®U*)) [PP(TB, S)] = CQQP(TRB, U)

H
for any r € [0, 1). Using Proposition 7.1, we obtain that R4< Rp. Now, assume
that (ii) holds. Proposition 7.1 implies

(7.2) Ky(re"™,Ra) < *K,(re", Rp), r€[0,1) and ¢t € R.

Taking ¢ = 0, we obtain P,(rA, R) < ¢*P,(rB, R) for any r € [0, 1), which, due
H

to Theorem 2.2, implies A< B. The equivalence (ii) < (4i%) is a consequence

of Proposition 7.1 and the fact that inequality (7.2) is equivalent to
K,(re, RY) < K, (re', Ry), r€[0,1) and ¢t € R.

This completes the proof. O

We remark that, according to Theorem 3.4 and Corollary 2.3, we have
ILp.all = [IC,aC, pll = inf{c > 1: P,(A,R) < *F,(B, R)}
for any A, B € [Cp]<1, where C, 4 is defined in Theorem 3.4.

COROLLARY 7.4. If A, B are n-tuples of operators in [Cpl<1, then |Lp a| =
I LRy, rall = ILRs, R2 || Moreover, 0,(A, B) = 6,(Ra, Rp).
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