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Abstract. In this paper, we study the noncommutative balls

Cρ := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) ≤ 1}, ρ ∈ (0,∞],

where ωρ is the joint operator radius for n-tuples of bounded linear
operators on a Hilbert space. In particular, ω1 is the operator norm,
ω2 is the joint numerical radius, and ω∞ is the joint spectral radius.

We introduce a Harnack type equivalence relation on Cρ, ρ > 0, and
use it to define a hyperbolic distance δρ on the Harnack parts (equiv-
alence classes) of Cρ. We prove that the open ball

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1}, ρ > 0,

is the Harnack part containing 0 and obtain a concrete formula for the
hyperbolic distance, in terms of the reconstruction operator associated
with the right creation operators on the full Fock space with n gener-
ators. Moreover, we show that the δρ-topology and the usual operator
norm topology coincide on [Cρ]<1. While the open ball [Cρ]<1 is not
a complete metric space with respect to the operator norm topology,
we prove that it is a complete metric space with respect to the hyper-
bolic metric δρ. In the particular case when ρ = 1 and H = C, the
hyperbolic metric δρ coincides with the Poincaré-Bergman distance
on the open unit ball of C

n.

We introduce a Carathéodory type metric on [C∞]<1, the set of all
n-tuples of operators with joint spectral radius strictly less then 1, by
setting

dK(A, B) = sup
p

‖ℜp(A) −ℜp(B)‖, A, B ∈ [C∞]<1,

where the supremum is taken over all noncommutative polynomials
with matrix-valued coefficients p ∈ C[X1, . . . , Xn]⊗Mm, m ∈ N, with
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ℜp(0) = I and ℜp(X) ≥ 0 for all X ∈ C1. We obtain a concrete
formula for dK in terms of the free pluriharmonic kernel on the non-
commutative ball [C∞]<1. We also prove that the metric dK is com-
plete on [C∞]<1 and its topology coincides with the operator norm
topology.

We provide mapping theorems, von Neumann inequalities, and
Schwarz type lemmas for free holomorphic functions on noncommuta-
tive balls, with respect to the hyperbolic metric δρ, the Carathéodory
metric dK , and the joint operator radius ωρ, ρ ∈ (0,∞].
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Introduction

In [48], we provided a generalization of the Sz.-Nagy–Foiaş theory of ρ-
contractions (see [54], [55], [56]), to the multivariable setting. An n-tuple
(T1, . . . , Tn) ∈ B(H)n of bounded linear operators acting on a Hilbert space
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H belongs to the class Cρ, ρ > 0, if there is a Hilbert space K ⊇ H and some
isometries Vi ∈ B(K), i = 1, . . . , n, with orthogonal ranges such that

Tα = ρPHVα|H for any α ∈ F
+
n \{g0},

where PH is the orthogonal projection of K onto H. Here, F+
n stands for the

unital free semigroup on n generators g1, . . . , gn, and the identity g0, while
Tα := Ti1Ti2 · · ·Tik

if α = gi1gi2 · · · gik
∈ F+

n and Tg0 := IH, the identity on H.

According to the theory of row contractions (see [56] for the case n = 1, and
[16], [7], [32], [33], [34], for n ≥ 2) we have

C1 = [B(H)n]−1 :=
{

(X1, . . . , Xn) ∈ B(H)n : ‖X1X
∗
1 + · · · + XnX∗

n‖1/2 ≤ 1
}

.

The results in [48] (see Section 4) can be seen as the unification of the the-
ory of isometric dilations for row contractions [54], [56], [16], [7], [32], [33],
[34] (which corresponds to the case ρ = 1) and Berger type dilations for n-
tuples (T1, . . . , Tn) with the joint numerical radius w(T1, . . . , Tn) ≤ 1 (which
corresponds to the case ρ = 2).

Following the classical case ([19], [59]), we defined the joint operator radius
ωρ : B(H)n → [0,∞), ρ > 0, by setting

ωρ(T1, . . . , Tn) := inf

{
t > 0 :

(
1

t
T1, . . . ,

1

t
Tn

)
∈ Cρ

}

and ω∞(T1, . . . , Tn) := lim
ρ→∞

ωρ(T1, . . . , Tn). In particular, ω1(T1, . . . , Tn) coin-

cides with the norm of the row operator [T1 · · · Tn], ω2(T1, . . . , Tn) coincides
with the joint numerical radius w(T1, . . . , Tn), and ω∞(T1, . . . , Tn) is equal to
the (algebraic) joint spectral radius (see [7], [25])

r(T1, . . . , Tn) := lim
k→∞

∥∥∥∥∥∥

∑

|α|=k

TαT ∗
α

∥∥∥∥∥∥

1/2k

,

where the length of α ∈ F+
n is defined by |α| := 0 if α = g0 and by |α| := k if α =

gi1 · · · gik
and i1, . . . , ik ∈ {1, . . . , n}. In [48], we considered basic properties

of the joint operator radius ωρ and we extended to the (noncommutative and
commutative) multivariable setting several classical results obtained by Sz.-
Nagy and Foiaş, Halmos, Berger and Stampfli, Holbrook, Paulsen, Badea and
Cassier, and others (see [2], [3], [4], [5], [17], [18], [19], [20], [21], [29], [30], [55],
and [59]).

In [49], we introduced a hyperbolic metric δ on the open noncommutative ball
[B(H)n]1, which turned out to be a noncommutative extension of the Poincaré-
Bergman ([6]) metric on the open unit ball Bn := {z ∈ Cn : ‖z‖2 < 1}. We
proved that δ is invariant under the action of the group Aut([B(H)n]1) of all
free holomorphic automorphisms of [B(H)n]1, and showed that the δ-topology
and the usual operator norm topology coincide on [B(H)n]1. Moreover, we
proved that [B(H)n]1 is a complete metric space with respect to the hyperbolic
metric and obtained an explicit formula for δ in terms of the reconstruction
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operator. A Schwarz-Pick lemma for bounded free holomorphic functions on
[B(H)n]1, with respect to the hyperbolic metric, was also obtained. In [46], we
continued to study the noncommutative hyperbolic geometry on the unit ball
of B(H)n, its connections with multivariable dilation theory, and its implica-
tions to noncommutative function theory. The results from [49] and [46] make
connections between noncommutative function theory (see [41], [44], [50], [47])
and classical results in hyperbolic complex analysis (see [22], [23], [24], [52],
[58]).

The present paper is an attempt to extend the results [49] concerning the
noncommutative hyperbolic geometry of the unit ball [B(H)n]1 to the more
general setting of [48]. We study the noncommutative balls

[Cρ]<1 = {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1} , ρ ∈ (0,∞],

and the Harnach parts of Cρ, ρ > 0, as metric spaces with respect to a hyper-
bolic (resp. Carathéodory) type metric that will be introduced. We provide
mapping theorems for free holomorphic functions on these noncommutative
balls, extending classical results from complex analysis and hyperbolic geome-
try.

In Section 1, we consider some preliminaries on free holomorphic (resp. pluri-
harmonic) functions on the open unit ball [B(H)n]1, and present several char-
acterizations for the n-tuples of operators of class Cρ, ρ ∈ (0,∞). We introduce
a free pluriharmonic functional calculus for the class Cρ and show that a von
Neumann type inequality characterizes this class. In particular, we prove that
an n-tuple of operators (T1, . . . , Tn) ∈ B(H)n is of class Cρ if and only if

‖p(T1, . . . , Tn)‖ ≤ ‖ρp(S1, . . . , Sn) + (1 − ρ)p(0)‖

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[Z1, . . . , Zn] ⊗ Mm, m ∈ N, where S1, . . . , Sn are the left creation operators
on the full Fock space with n generators.

In Section 2, we introduce a preorder relation
H≺ on the class Cρ. If A :=

(A1, . . . , An) and B := (B1, . . . , Bn) are in the class Cρ ⊂ B(H)n, we say that

A is Harnack dominated by B (denote A
H≺ B) if there exists c > 0 such that

ℜp(A1, . . . , An) + (ρ − 1)ℜp(0) ≤ c2 [ℜp(B1, . . . , Bn) + (ρ − 1)ℜp(0)]

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗ Mm, m ∈ N, such that ℜp(X) := 1

2 [p(X)∗ + p(X)] ≥ 0 for
any X ∈ [B(K)n]1, where K is an infinite dimensional Hilbert space. When we

want to emphasize the constant c, we write A
H≺
c

B. We provide several char-

acterizations for the Harnack domination on the noncommutative ball Cρ (see
Theorem 2.2), and determine the set of all elements in Cρ which are Harnack
dominated by 0. The results of this section will play a major role in the next
sections.
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The relation
H≺ induces an equivalence relation

H∼ on the class Cρ. More pre-

cisely, two n-tuples A and B are Harnack equivalent (and denote A
H∼ B)

if and only if there exists c > 1 such that A
H≺
c

B and B
H≺
c

A (in this case we

denote A
H∼
c

B). The equivalence classes with respect to
H∼ are called Harnack

parts of Cρ. In Section 3, we provide a Harnack type double inequality for
positive free pluriharmonic functions on the noncommutative ball Cρ and use it
to prove that the Harnack part of Cρ which contains 0 coincides with the open
noncommutative ball

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1}.
We introduce a hyperbolic metric δρ : ∆×∆ → R+ on any Harnack part ∆ of
Cρ, by setting

δρ(A, B) := ln inf
{

c > 1 : A
H∼
c

B
}

, A, B ∈ ∆.

A concrete formula for the hyperbolic distance on any Harnack part of Cρ is
obtained. When ∆ = [Cρ]<1, we prove that

δρ(A, B) = ln max
{∥∥∥Cρ,AC−1

ρ,B

∥∥∥ ,
∥∥∥Cρ,BC−1

ρ,A

∥∥∥
}

, A, B ∈ [Cρ]<1,

where

Cρ,X := ∆ρ,X(I − RX)−1,

∆ρ,X := [ρI + (1 − ρ)(R∗
X + RX) + (ρ − 2)R∗

XRX ]
1/2

,

and RX := X∗
1⊗R1+· · ·+X∗

n⊗Rn is the reconstruction operator associated with
the right creation operators R1, . . . , Rn on the full Fock space with n generators,
and X := (X1, . . . , Xn) ∈ [Cρ]<1. We recall that the reconstruction operator
has played an important role in noncommutative multivariable operator theory.
It appeared as a building block in the characteristic function associated to a
row contraction (see [34], [45]) and also as a quantized variable (associated with
the n-tuple X) in the noncommutative Cauchy, Poisson, and Berezin transform,
respectively (see [41], [44], [47], [48]).

In Section 4, we study the stability of the ball Cρ under contractive free holo-
morphic functions and provide mapping theorems, von Neumann inequalities,
and Schwarz type lemmas, with respect to the hyperbolic metric δρ and the
operator radius ωρ, ρ ∈ (0,∞].

Let f := (f1, . . . , fm) be a contractive free holomorphic function with ‖f(0)‖ <

1 such that the boundary functions f̃1, . . . , f̃m are in the noncommutative disc
algebra An (see [36], [40]). If an n-tuple of operators (T1, . . . , Tn) ∈ B(H)n is
of class Cρ, ρ > 0, then we prove that, under the free pluriharmonic functional
calculus, the m-tuple f(T1, . . . , Tn) ∈ B(H)m is of class Cρf

, where ρf > 0 is
given in terms of ρ and f(0).

One of the main results of this section is the following spectral von Neumann
inequality for n-tuples of operators. If f := (f1, . . . , fm) satisfies the conditions
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above and (T1, . . . , Tn) ∈ B(H)n has the joint spectral radius r(T1, . . . , Tn) < 1,
then r(f(T1, . . . , Tn)) < 1.

If, in addition, f(0) = 0 and δρ : ∆×∆ → [0,∞) is the hyperbolic metric on a
Harnack part ∆ of Cρ, then we prove that

δρ(f(A), f(B)) ≤ δρ(A, B), A, B ∈ ∆.

In particular, this holds when ∆ is the open ball [Cρ]<1. Moreover, in this
setting, we show that

ωρ(f(T1, . . . , Tn)) < 1, (T1, . . . , Tn) ∈ [Cρ]<1,

for any ρ > 0. The general case when f(0) 6= 0 is also discussed.

In Section 5, we introduce a Carathéodory type metric on the set of all n-tuples
of operators with joint spectral radius strictly less then 1, i.e.,

[C∞]<1 := {(X1, . . . , Xn) ∈ B(H)n : r(X1, . . . , Xn) < 1},
by setting

dK(A, B) = sup
p

‖ℜp(A) −ℜp(B)‖,

where the supremum is taken over all noncommutative polynomials with
matrix-valued coefficients p ∈ C[X1, . . . , Xn] ⊗ Mm, m ∈ N, with ℜp(0) = I
and ℜp(X) ≥ 0 for all X ∈ [B(K)n]1.

We obtain a concrete formula for dK in terms of the free pluriharmonic kernel
on the open unit ball [C∞]<1. More precisely, we show that

dK(A, B) = ‖P (A, R) − P (B, R)‖, A, B ∈ [C∞]<1,

where

P (X, R) :=

∞∑

k=1

∑

|α|=k

Xα ⊗ R∗
α̃ + ρI ⊗ I +

∞∑

k=1

∑

|α|=k

X∗
α ⊗ Rα̃, X ∈ [C∞]<1,

and α̃ is the reverse of α ∈ F+
n . This is used to prove that the metric dK is

complete on [C∞]<1 and its topology coincides with the operator norm topol-
ogy. We also prove that if f := (f1, . . . , fm) is a contractive free holomorphic

function with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in
the noncommutative disc algebra An, then

dK(f(A), f(B)) ≤ 1 + ‖f(0)‖
1 − ‖f(0)‖dK(A, B), A, B ∈ [C∞]<1.

As a consequence, we deduce that the map

[C∞]<1 ∋ (X1, . . . , Xn) 7→ f(X1, . . . , Xn) ∈ [C∞]<1

is continuous in the operator norm topology.

In Section 6, we compare the hyperbolic metric δρ with the Carathéodory metric
dK , and the operator metric, respectively, on Harnack parts of the unit ball Cρ,
ρ > 0. In particular, we prove that the hyperbolic metric δρ is complete on the
open unit unit ball [Cρ]<1, while the other two metrics, mentioned above, are
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not complete. On the other hand, we show the δρ-topology, the dK-topology,
and the operator norm topology coincide on [Cρ]<1.

In Section 7, we consider the single variable case (n = 1) and show that our
Harnack domination for ρ-contractions is equivalent to the one introduced and
studied by G. Cassier and N. Suciu in [9] and [10]. Consequently, we recover
some of their results and, moreover, we obtain some results which seem to be
new even in the single variable case.

Finally, we want to acknowledge that we were influenced in writing this paper
by the work of C. Foiaş ([15]), I. Suciu ([53]), and G. Cassier and N. Suciu ([9],
[10]) concerning the Harnack domination and the hyperbolic distance between
two ρ-contractions. It will be interesting to see to which extent the results of
this paper, concerning the hyperbolic geometry on noncommutative balls, can
be extended to the Hardy algebras of Muhly and Solel (see [26], [27], [28]).

1. The noncommutative ball Cρ and a free pluriharmonic
functional calculus

In this section, we consider some preliminaries on free holomorphic (resp. pluri-
harmonic) functions on the unit ball [B(H)n]1, and several characterizations for
the n-tuples of operators of class Cρ. We introduce a free pluriharmonic func-
tional calculus for the class Cρ and show that a von Neumann type inequality
characterizes the class Cρ.

Let Hn be an n-dimensional complex Hilbert space with orthonormal basis e1,
e2, . . . , en, where n = 1, 2, . . . , or n = ∞. The full Fock space of Hn is defined
by

F 2(Hn) := C1 ⊕
⊕

k≥1

H⊗k
n ,

where H⊗k
n is the (Hilbert) tensor product of k copies of Hn. We define the

left (resp. right) creation operators Si (resp. Ri), i = 1, . . . , n, acting on the
full Fock space F 2(Hn) by setting

Siϕ := ei ⊗ ϕ, ϕ ∈ F 2(Hn),

(resp. Riϕ := ϕ ⊗ ei, ϕ ∈ F 2(Hn)). We recall that the noncommutative
disc algebra An (resp. Rn) is the norm closed algebra generated by the left
(resp. right) creation operators and the identity. The noncommutative analytic
Toeplitz algebra F∞

n (resp. R∞
n ) is the weakly closed version of An (resp. Rn).

These algebras were introduced in [36] in connection with a von Neumann type
inequality [57], as noncommutative analogues of the disc algebra A(D) and the
Hardy space H∞(D). For more information on theses noncommutative algebras
we refer the reader to [35], [37], [38], [40], [12], and the references therein.

Let H be a Hilbert space and let B(H) be the algebra of all bounded linear
operators on H. We identify Mm(B(H)), the set of m×m matrices with entries
from B(H), with B(H(m)), where H(m) is the direct sum of m copies of H. If
X is an operator space, i.e., a closed subspace of B(H), we consider Mm(X ) as
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a subspace of Mm(B(H)) with the induced norm. Let X ,Y be operator spaces
and u : X → Y be a linear map. Define the map um : Mm(X ) → Mm(Y) by

um([xij ]) := [u(xij)].

We say that u is completely bounded if

‖u‖cb := sup
m≥1

‖um‖ < ∞.

If ‖u‖cb ≤ 1 (resp. um is an isometry for any m ≥ 1) then u is completely
contractive (resp. isometric), and if um is positive for all m, then u is called
completely positive. For basic results concerning completely bounded maps
and operator spaces we refer to [29], [31], and [13].

A few more notations and definitions are necessary. If ω, γ ∈ F+
n , we say that

ω >l γ if there is σ ∈ F
+
n \{g0} such that ω = γσ and set ω\lγ := σ. We denote

by α̃ the reverse of α ∈ F+
n , i.e., α̃ = gik

· · · gi1 if α = gi1 · · · gik
∈ F+

n . An
operator-valued positive semidefinite kernel on the free semigroup F+

n is a map
K : F+

n × F+
n → B(H) with the property that for each k ∈ N, for each choice

of vectors h1, . . . , hk in H, and σ1, . . . , σk in F+
n , the inequality

k∑

i,j=1

〈K(σi, σj)hj , hi〉 ≥ 0

holds. Such a kernel is called multi-Toeplitz if it has the following properties:
K(α, α) = IH for any α ∈ F+

n , and

K(σ, ω) =





K(g0, ω\lσ) if ω >l σ

K(σ\lω, g0) if σ >l ω

0 otherwise.

An n-tuple of operators (T1, . . . , Tn), Ti ∈ B(H), belongs to the class Cρ, ρ > 0,
if there exist a Hilbert space K ⊇ H and isometries Vi ∈ B(K), i = 1, . . . , n,
with orthogonal ranges, such that

Tα = ρPHVα|H, α ∈ F
+
n \{g0},

where PH is the orthogonal projection of K onto H. If K = KT :=
∨

α∈F
+
n

VαH,

then the n-tuple (V1, . . . , Vn) is the minimal isometric dilation of (T1, . . . , Tn),
which is unique up to an isomorphism. Note that if (T1, . . . , Tn) ∈ Cρ, then the
joint spectral radius r(T1, . . . , Tn) ≤ 1, where

r(T1, . . . , Tn) := lim
k→∞

∥∥∥∥∥∥

∑

|α|=k

TαT ∗
α

∥∥∥∥∥∥

1/2k

.

We recall (see Corollary 1.36 from [48]) that
⋃

ρ>0
Cρ is dense (in the operator

norm topology) in the set of all n-tuples of operators with joint spectral radius
r(T1, . . . , Tn) ≤ 1. Moreover, any n-tuple of operators with r(T1, . . . , Tn) < 1
is of class Cρ for some ρ > 0. We should add that (see Theorem 5.9 from [43])
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(T1, . . . , Tn) ∈ B(H)n has the joint spectral radius r(T1, . . . , Tn) < 1 if and
only if it is uniformly stable, i.e., ‖

∑
|α|=k TαT ∗

α‖ → 0, as k → ∞.

Since the joint spectral radius of n-tuples of operators plays an important role
in the present paper, we recall (see [7], [25]) some of its properties. The joint
right spectrum σr(T1, . . . , Tn) of an n-tuple (T1, . . . , Tn) of operators in B(H) is
the set of all n-tuples (λ1, . . . , λn) of complex numbers such that the right ideal
of B(H) generated by the operators λ1I − T1, . . . , λnI − Tn does not contain
the identity operator. We know that σr(T1, . . . , Tn) is included in the closed
ball of Cn of radius r(T1, . . . , Tn).

If we assume that T1, . . . , Tn ∈ B(H) are mutually commuting operators and
B is a closed subalgebra of B(H) containing T1, . . . , Tn, and the identity, then
the Harte spectrum σ(T1, . . . , Tn) is the set of all (λ1, . . . , λn) ∈ Cn such that

(λ1I − T1)X1 + · · · + (λnI − Tn)Xn 6= I

for all X1, . . . , Xn ∈ B. In this case, we have

r(T1, . . . , Tn) = max{‖(λ1, . . . , λn)‖2 : (λ1, . . . , λn) ∈ σ(T1, . . . , Tn)}.

According to [25], the latter formula remains true if the Harte spectrum is
replaced by the Taylor’s spectrum for commuting operators.

According to Theorem 4.1 from [39] and Theorems 1.34 and 1.39 from [48], we
have the following characterizations for the n-tuples of operators of class Cρ.
We denote by C[Z1, . . . , Zn] the set of all noncommutative polynomials in n
noncommuting indeterminates.

Theorem 1.1. Let T1, . . . , Tn ∈ B(H) and let S ⊂ C∗(S1, . . . , Sn) be the op-
erator system defined by

S := {p(S1, . . . , Sn) + q(S1, . . . , Sn)∗ : p, q ∈ C[Z1, . . . , Zn]}.

Then the following statements are equivalent:

(i) (T1, . . . , Tn) ∈ Cρ.
(ii) The map Ψ : S → B(H) defined by

Ψ (p(S1, . . . , Sn) + q(S1, . . . , Sn)∗) := p(T1, . . . , Tn) + q(T1, . . . , Tn)∗

+ (ρ − 1)(p(0) + q(0))I

is completely positive.
(iii) The joint spectral radius r(T1 . . . , Tn) ≤ 1 and the ρ-pluriharmonic

kernel defined by

Pρ(rT, R) :=
∞∑

k=1

∑

|α|=k

r|α|Tα ⊗ R∗
α̃ + ρI ⊗ I +

∞∑

k=1

∑

|α|=k

r|α|T ∗
α ⊗ Rα̃

is positive for any 0 < r < 1, where the convergence is in the operator
norm topology.
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(iv) The spectral radius r(T1, . . . , Tn) ≤ 1 and

ρI ⊗ I + (1 − ρ)r

n∑

i=1

(Ti ⊗ R∗
i + T ∗

i ⊗ Ri) + (ρ − 2)r2

(
n∑

i=1

TiT
∗
i ⊗ I

)
≥ 0

for any 0 < r < 1.
(v) The multi-Toeplitz kernel Kρ,T : F

+
n × F

+
n → B(H) defined by

Kρ,T (α, β) :=






1
ρTβ\lα if β >l α

I if α = β
1
ρ(Tα\lβ)∗ if α >l β

0 otherwise

is positive semidefinite.

Consider 1 ≤ m < n and let (R′
1, . . . , R

′
m) and (R1, . . . , Rn) be the right

creation operators on F 2(Hm) and F 2(Hn), respectively. According to the
Wold type decomposition for isometries with orthogonal ranges [33], the m-
tuple (R1, . . . , Rm) is unitarily equivalent to (R′

1⊗ IE , . . . , R′
m⊗ IE), where E is

equal to F 2(Hn) ⊖ F 2(Hm). Consequently, using Theorem 1.1, one can easily
deduce the following result.

Corollary 1.2. Let ρ > 0, 1 ≤ m < n, and consider an m-tuple
(T1, . . . , Tm) ∈ B(H)m and its extension (T1, . . . , Tm, 0, . . . , 0) ∈ B(H)n. Then
the following statements hold:

(i) (T1, . . . , Tm) ∈ Cρ if and only if (T1, . . . , Tm, 0, . . . , 0) ∈ Cρ;
(ii) ωρ(T1, . . . , Tm) = ωρ(T1, . . . , Tm, 0, . . . , 0));
(iii) r(T1, . . . , Tm) = r(T1, . . . , Tm, 0, . . . , 0).

Throughout this paper, we assume that E is a separable Hilbert space. We recall
[44] that a mapping F : [B(H)n]1 → B(H)⊗̄minB(E) is called free holomorphic
function on [B(H)n]1 with coefficients in B(E) if there exist A(α) ∈ B(E),

α ∈ F+
n , such that lim supk→∞

∥∥∥
∑

|α|=k A∗
(α)A(α)

∥∥∥
1/2k

≤ 1 and

F (X1, . . . , Xn) =

∞∑

k=0

∑

|α|=k

Xα ⊗ A(α),

where the series converges in the operator norm topology for any (X1, . . . , Xn)
in the open unit ball [B(H)n]1 := {(X1, . . . , Xn) : ‖X1X

∗
1 + · · ·+XnXn‖ < 1}.

The set of all free holomorphic functions on [B(H)n]1 with coefficients in B(E)
is denoted by Hball(B(E)). Let H∞

ball
(B(E)) denote the set of all elements F

in Hball(B(E)) such that

‖F‖∞ := sup ‖F (X1, . . . , Xn)‖ < ∞,

where the supremum is taken over all n-tuples of operators (X1, . . . , Xn) ∈
[B(H)n]1 and any Hilbert space H. According to [44] and [47], H∞

ball
(B(E))
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can be identified to the operator algebra F∞
n ⊗̄B(E) (the weakly closed alge-

bra generated by the spatial tensor product), via the noncommutative Poisson
transform. Due to the fact that a free holomorphic function is uniquely de-
termined by its representation on an infinite dimensional Hilbert space, we
identify, throughout this paper, a free holomorphic function with its represen-
tation on a separable infinite dimensional Hilbert space.

We say that a map u : [B(H)n]1 → B(H)⊗̄minB(E) is a self-adjoint free pluri-
harmonic function on [B(H)n]1 if u = ℜf := 1

2 (f∗ + f) for some free holo-
morphic function f . A free pluriharmonic function on [B(H)n]1 has the form
H := H1 + iH2, where H1, H2 are self-adjoint free pluriharmonic functions on
[B(H)n]1. We recall [47] that if

f(Z1, . . . , Zn) =

∞∑

k=1

∑

|α|=k

Z∗
α ⊗ B(α) + I ⊗ A(0) +

∞∑

k=1

∑

|α|=k

Zα ⊗ A(α)

is a free pluriharmonic function on [B(H)n]1 with coefficients in B(E) and
(T1, . . . , Tn) ∈ B(H)n is any n-tuple of operators with joint spectral radius
r(T1, . . . , Tn) < 1, then f(T1, . . . , Tn) is a bounded linear operator, where the
corresponding series converge in norm. Moreover limr→1 f(rT1, . . . , rTn) =
f(T1, . . . Tn) in the operator norm topology. We refer to [47] for more results
on free pluriharmonic functions.

We denote by Harc
ball

(B(E)) the set of all free pluriharmonic functions on
[B(H)n]1 with operator-valued coefficients in B(E), which have continuous ex-
tensions (in the operator norm topology) to the closed ball [B(H)n]−1 . We
assume that H is an infinite dimensional Hilbert space. According to The-
orem 4.1 from [47], we can identify Harc

ball
(B(E)) with the operator space

An(E)∗ + An(E)
‖·‖

, where An(E) := An⊗̄minB(E) and An is the noncommu-
tative disc algebra. More precisely, if u : [B(H)n]1 → B(H)⊗̄minB(E), then
the following statements are equivalent:

(a) u is a free pluriharmonic function on [B(H)n]1 which has a continuous
extension (in the operator norm topology) to the closed ball [B(H)n]−1 ;

(b) there exists f ∈ An(E)∗ + An(E)
‖·‖

such that u(X) = (PX ⊗ id)(f) for
X ∈ [B(H)n]1, where PX is the noncommutative Poisson transform at
X ;

(c) u is a free pluriharmonic function on [B(H)n]1 such that
u(rS1, . . . , rSn) converges in the operator norm topology, as r → 1.

In this case, we have f = lim
r→1

u(rS1, . . . , rSn), where the convergence is

in the operator norm topology. Moreover, the map Φ : Harc
ball

(B(E)) →
An(E)∗ + An(E)

‖·‖
defined by Φ(u) := f is a completely isometric isomor-

phism of operator spaces. We call f the model boundary function of u.

Now, we introduce a free pluriharmonic functional calculus for the class Cρ.
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Theorem 1.3. Let T := (T1, . . . , Tn) ∈ B(H)n be of class Cρ, and let u ∈
Harc

ball
(B(E)) have the standard representation

u(X1, . . . , Xn) =

∞∑

k=1

∑

|α|=k

X∗
α ⊗ B(α) + I ⊗ A(0) +

∞∑

k=1

∑

|α|=k

Xα ⊗ A(α)

on [B(H)n]1, for some A(α), B(α) ∈ B(E), where the series converge in the
operator norm topology. Then

u(T1, . . . , Tn) := lim
r→1

u(rT1, . . . , rT1)

exists in the operator norm and

‖u(T1, . . . , Tn)‖ ≤ ‖ρu + (1 − ρ)u(0)‖∞.

Proof. Since T := (T1, . . . , Tn) ∈ B(H)n is an n-tuple of class Cρ, there is a
minimal isometric dilation V := (V1, . . . , Vn) of T on a Hilbert space KT ⊇ H,
satisfying the following properties: V ∗

i Vj = δijI for i, j = 1, . . . , n, and Tα =
ρPHVα|H for any α ∈ F+

n \{g0}, and KT =
∨

α∈F
+
n

VαH. Taking into account

that u ∈ Harc
ball

(B(E)), we have

u(rV1, . . . , rVn) =

∞∑

k=1

∑

|α|=k

r|α|V ∗
α ⊗ B(α) + I ⊗ A(0) +

∞∑

k=1

∑

|α|=k

r|α|Vα ⊗ A(α),

where the convergence is in the operator norm. Hence, and due to the fact that

∑

|α|=k

r|α|T ∗
α ⊗ B(α) = ρ(PH ⊗ I)



∑

|α|=k

r|α|V ∗
α ⊗ B(α)


 |H⊗E , k = 1, 2, . . . ,

we deduce that

u(rT1, . . . , rTn) :=

∞∑

k=1

∑

|α|=k

r|α|T ∗
α ⊗ B(α) + I ⊗ A(0) +

∞∑

k=1

∑

|α|=k

r|α|Tα ⊗ A(α)

= ρ(PH ⊗ I)u(rV1, . . . , rVn)|H⊗E − (ρ − 1)u(0).

exists in the operator norm topology. Now, taking into account that
limr→1 u(rV1, . . . , rV1) exists in the operator norm, we deduce that
limr→1 u(rT1, . . . , rT1) exists in the same topology. Consequently, we can
define

u(T1, . . . , Tn) := lim
r→1

u(rT1, . . . , rT1).

Using the considerations above, and the noncommutative von Neumann in-
equality, we obtain

‖u(T1, . . . , Tn)‖ ≤ ‖ρu + (1 − ρ)u(0)‖∞ ≤ (ρ + |ρ − 1|)‖u‖∞
for any (T1, . . . , Tn) ∈ Cρ. �
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We will refer to the map

Harc
ball(B(E)) ∋ u 7→ u(T1, . . . , Tn) ∈ B(H)⊗̄minB(E)

as the free pluriharmonic functional calculus for the class Cρ. Since there is

a completely isometric isomorphism of operator spaces An(E)∗ + An(E)
‖·‖ ∋

f 7→ u ∈ Harc
ball

(B(E)), given by u = (PX ⊗ id)(f) for X ∈ [B(H)n]1, we also
use the notation f(T1, . . . , Tn) for u(T1, . . . , Tn).

Now, we show that the von Neumann type inequality of Theorem 1.3 charac-
terizes the class Cρ. Denote

P(S1, . . . , Sn) := {p(S1, . . . , Sn) : p ∈ C[Z1, . . . , Zn]},
where S1, . . . , Sn are the left creation operators on the full Fock space F 2(Hn).

Theorem 1.4. Let T := (T1, . . . , Tn) ∈ B(H)n be an n-tuple of operators.
Then the following statements are equivalent:

(i) T is of class Cρ;
(ii) the von Neumann type inequality

‖p(T1, . . . , Tn)‖ ≤ ‖ρp(S1, . . . , Sn) + (1 − ρ)p(0)‖
holds for any noncommutative polynomial p ∈ C[Z1, . . . , Zn] ⊗ Mm,
m ∈ N;

(iii) the map ΨT : An → B(H) defined by

ΨT (q(S1, . . . , Sn)) :=
1

ρ
q(T1, . . . , Tn) +

(
1 − 1

ρ

)
q(0)I

for q(S1, . . . , Sn) ∈ P(S1, . . . , Sn) is completely contractive.

Proof. The implication (i) =⇒ (ii) follows, in particular, from Theorem
1.3. To prove the implication (ii) =⇒ (iii), note that setting p := 1

ρq +(
1 − 1

ρ

)
q(0)I, where q ∈ C[Z1, . . . , Zn] ⊗ Mm, m ∈ N, we have

‖ΨT (q(S1, . . . , Sn))‖ = ‖p(T1, . . . , Tn)‖
≤ ‖ρp(S1, . . . , Sn) + (1 − ρ)p(0)‖
= ‖q(S1, . . . , Sn)‖,

which proves that ΨT is completely contractive on the set of all polynomials
P(S1, . . . , Sn) and, consequently, extends uniquely to a completely contractive
map on the noncommutative disc algebra An. It remains to prove that (iii) =⇒
(i). Due to Arveson’s extension theorem, item (iii) implies the existence of a

unique completely positive extension Ψ̃T : A∗
n +An → B(H) of ΨT . Note that

Ψ̃T (r(S1, . . . , Sn) + q(S1, . . . , Sn)∗) =

=
1

ρ
(r(T1, . . . , Tn) + q(T1, . . . , Tn)∗) +

(
1 − 1

ρ

)
(r(0) + q(0))I

for any polynomials r(S1, . . . , Sn) and q(S1, . . . , Sn) in P(S1, . . . , Sn). Applying
Theorem 1.1 (the equivalence (i) ↔ (ii)), we complete the proof. �
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2. Harnack domination on noncommutative balls

We introduce a preorder relation
H≺ on the noncommutative ball Cρ, ρ ∈ (0,∞),

and provide several characterizations. We determine the elements of Cρ which
are Harnack dominated by 0. These results will play a crucial role in the next
sections.

First, we consider some preliminaries on noncommutative Poisson transforms.
Let C∗(S1, . . . , Sn) be the Cuntz-Toeplitz C∗-algebra generated by the left
creation operators (see [11]). The noncommutative Poisson transform at the n-
tuple T := (T1, . . . , Tn) ∈ [B(H)n]−1 is the unital completely contractive linear
map PT : C∗(S1, . . . , Sn) → B(H) defined by

PT [f ] := lim
r→1

K∗
rT (IH ⊗ f)KrT , f ∈ C∗(S1, . . . , Sn),

where the limit exists in the operator norm topology of B(H). Here, the non-
commutative Poisson kernel KrT : H → ∆rTH⊗F 2(Hn), 0 < r ≤ 1, is defined
by

KrT h :=
∞∑

k=0

∑

|α|=k

r|α|∆rT T ∗
αh ⊗ eα, h ∈ H,

where {eα}α∈F
+
n

is the orthonormal basis for the full Fock space F 2(Hn), defined

by eα := ei1 ⊗ · · · ⊗ eik
if α = gi1 · · · gik

∈ F+
n and eg0 := 1, and ∆rT := (IH −

r2T1T
∗
1 −· · ·− r2TnT ∗

n)1/2. We recall that PT [SαS∗
β ] = TαT ∗

β , α, β ∈ F+
n . When

T := (T1, . . . , Tn) is a pure row contraction, i.e., SOT- lim
k→∞

∑
|α|=k TαT ∗

α = 0,

then we have

PT [f ] = K∗
T (IDT

⊗ f)KT , f ∈ C∗(S1, . . . , Sn) or f ∈ F∞
n ,

where DT := ∆TH. We refer to [41], [42], and [48] for more on noncommutative
Poisson transforms on C∗-algebras generated by isometries.

A free pluriharmonic function u on [B(K)n]1 with operator valued coeffi-
cients is called positive, and denote u ≥ 0, if u(X1, . . . , Xn) ≥ 0 for any
(X1, . . . , Xn) ∈ [B(K)n]1, where K is an infinite dimensional Hilbert space.
We mention that it is enough to assume that the positivity condition holds
for any finite dimensional Hilbert space K. Indeed, for each m ∈ N, consider

R(m) := (R
(m)
1 , . . . , R

(m)
n ), where R

(m)
i is the compression of the right creation

operator Ri to the subspace Pm := span {eα : α ∈ F+
n , |α| ≤ m} of F 2(Hn).

We recall from [47] the following result.

Lemma 2.1. Let u be a free pluriharmonic function on [B(K)n]1 with operator-
valued coefficients. Then u(X1, . . . , Xn) ≥ 0 for any (X1, . . . , Xn) ∈ [B(K)n]1

if and only if u(R
(m)
1 , . . . , R

(m)
n ) ≥ 0 for any m ∈ N.

Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be n-tuples of operators in

Cρ ⊂ B(H)n. We say that A is Harnack dominated by B, and denote A
H≺ B,

if there exists c > 0 such that

ℜp(A1, . . . , An) + (ρ − 1)ℜp(0) ≤ c2 [ℜp(B1, . . . , Bn) + (ρ − 1)ℜp(0)]
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for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗ Mm, m ∈ N, such that ℜp ≥ 0. When we want to emphasize

the constant c, we write A
H≺
c

B.

According to Theorem 1.3, we can associate with each n-tuple T :=

(T1, . . . , Tn) ∈ Cρ the completely positive map ϕT : A∗
n + An

‖·‖ → B(H) de-
fined by

(2.1) ϕT (g) :=
1

ρ
g(T1, . . . , Tn) +

(
1 − 1

ρ

)
g(0),

where g(T1, . . . , Tn) is defined by the free pluriharmonic functional calculus for
the class Cρ.

Now, we present several characterizations for the Harnack domination in Cρ.

Theorem 2.2. Let A := (A1, . . . , An) ∈ B(H)n and B := (B1, . . . , Bn) ∈
B(H)n be in the class Cρ and let c > 0. Then the following statements are
equivalent:

(i) A
H≺
c

B;

(ii) Pρ(rA, R) ≤ c2Pρ(rB, R) for any r ∈ [0, 1), where Pρ(X, R) is the
multi-Toeplitz kernel associated with X ∈ Cρ;

(iii) u(rA1, . . . , rAn) + (ρ− 1)u(0) ≤ c2 [u(rB1, . . . , rBn) + (ρ − 1)u(0)] for
any positive free pluriharmonic function u on [B(H)n]1 with operator-
valued coefficients and any r ∈ [0, 1);

(iv) Kρ,A ≤ c2Kρ,B, where Kρ,X is the multi-Toeplitz kernel associated with
X ∈ Cρ;

(v) c2ϕB − ϕA is a completely positive linear map on the operator space

A∗
n + An

‖·‖
, where ϕA, ϕB are the c.p. maps associated with A and

B, respectively.
(vi) there is an operator LB,A ∈ B(KB ,KA) with ‖LB,A‖ ≤ c such that

LB,A|H = IH and

LB,AWi = ViLB,A, i = 1, . . . , n,

where (V1, . . . , Vn) on KA ⊃ H and (W1, . . . , Wn) on KA ⊃ H are the
minimal isometric dilations of A and B, respectively.

Proof. First we prove that (i) =⇒ (ii). Since R
(m)
α = 0 for any α ∈ F+

n with
|α| ≥ m + 1, we have

Pρ(rX, R(m)) =
∑

1≤|α|≤m

r|α|X∗
α ⊗ R

(m)
eα + ρI ⊗ I +

∑

1≤|α|≤m

r|α|Xα ⊗ R
(m)
eα

∗
.

Since X 7→ P1(X, R) is a positive free pluriharmonic function on [B(H)n]1,
with coefficients in B(F 2(Hn)), so is the map

X 7→ P1(rX, R(m)) = (I ⊗ PPm
)P1(rX, R)|H⊗Pm
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for any r ∈ [0, 1). If A
H≺
c

B, then we have

P1(rA, R(m)) + (ρ − 1)P1(0, R(m)) ≤ c2
[
P1(rB, R(m)) + (ρ − 1)P1(0, R(m))

]

for any m = 1, 2, . . . . Using Lemma 2.1, we deduce that

P1(rA, R) + (ρ − 1)I ≤ c2 [P1(rB, R) + (ρ − 1)I]

for any r ∈ [0, 1). Since Pρ(rY, R) = P1(rY, R) + (ρ − 1)I for any n-tuple
Y ∈ B(H)n with spectral radius r(Y ) ≤ 1 and r ∈ [0, 1), we deduce item (ii).

To prove the implication (ii) =⇒ (iii), assume that condition (ii) holds and
let u be a positive free pluriharmonic function on [B(H)n]1 with coefficients in
B(E) of the form

u(Z1, . . . , Zn) =

∞∑

k=1

∑

|α|=k

Z∗
α ⊗ C∗

(α) + I ⊗ C(0) +

∞∑

k=1

∑

|α|=k

Zα ⊗ C(α).

It is well-known (see e.g. [29]) that if S ⊆ B(F 2(Hn)) is an operator system
and µ : S → B(K) is a completely bounded map, then there exists a completely
bounded linear map

µ̃ := µ ⊗ id : S⊗̄minB(H) → B(K)⊗̄minB(H)

such that µ̃(f ⊗ Y ) := µ(f) ⊗ Y for f ∈ S and Y ∈ B(H). Moreover, ‖µ̃‖cb =
‖µ‖cb and, if µ is completely positive, then so is µ̃.

Using Corollary 5.5 from [47], we find a completely positive linear map ν :
R∗

n + Rn → B(E) such that ν(Rα̃) = C∗
(α) if |α| ≥ 1 and ν(I) = C(0). Note

that

(id ⊗ ν)[c2Pρ(rB, R) − Pρ(rA, R)]

= (id ⊗ ν)






∞∑

k=1

∑

|α|=k

r|α|(c2Bα − Aα) ⊗ R∗
α̃ + ρ(c2 − 1)I ⊗ I

+

∞∑

k=1

∑

|α|=k

(c2B∗
α − A∗

α) ⊗ Rα̃





=





∞∑

k=1

∑

|α|=k

r|α|(c2Bα − Aα) ⊗ C(α) + ρ(c2 − 1)I ⊗ C(0)

+

∞∑

k=1

∑

|α|=k

(c2B∗
α − A∗

α) ⊗ C∗
(α)





= c2 [u(rB1, . . . , rBn) + (ρ − 1)u(0)]

−[u(rA1, . . . , rAn) + (ρ − 1)u(0)] .

Hence, and using the fact that c2Pρ(rB, R) − Pρ(rA, R) ≥ 0, we deduce that

c2 [u(rB1, . . . , rBn) + (ρ − 1)u(0)] − [u(rA1, . . . , rAn) + (ρ − 1)u(0)] ≥ 0,
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which proves (iii).

Now, we prove the implication (iii) =⇒ (v). Let g ∈
(
A∗

n + An
‖·‖
)
⊗min Mm

be positive. Then, according to Theorem 4.1 from [47], the map defined by

g(X) := (PX ⊗ id)[g], X ∈ [B(H)n]1,

is a positive free pluriharmonic function. Condition (iii) implies

g(rA1, . . . , rAn) + (ρ − 1)g(0) ≤ c2 [g(rB1, . . . , rBn) + (ρ − 1)g(0)]

for any r ∈ [0, 1). Hence, and using relation (2.1), we get ρϕA(gr) ≤ c2ρϕB(gr).
Taking r → 1, we deduce item (v).

To prove the implication (v) =⇒ (i), let p ∈ C[X1, . . . , Xn] ⊗ Mm, m ∈ N,
be a noncommutative polynomial with matrix coefficients such that Re p ≥ 0.
Since

ρϕY (p) = p(Y1, . . . , Yn) + (ρ − 1)p(0)

for any Y := (Y1, . . . , Yn) ∈ Cρ, it is clear that (v) implies item (i).

We prove now that (ii) =⇒ (iv). We recall that eα := ei1 ⊗ · · · ⊗ eik
if

α = gi1 · · · gik
∈ F+

n and eg0 := 1, and that {eα}α∈F
+
n

is an orthonormal basis

for the full Fock space F 2(Hn). First, we prove that
(2.2)〈

Pρ(X, rR)




∑

|β|≤q

hβ ⊗ eβ



 ,
∑

|γ|≤q

hγ ⊗ eγ

〉
= ρ

∑

|β|,|γ|≤q

〈Kρ,X,r(γ, β)hβ , hγ〉 ,

where the multi-Toeplitz kernel Kρ,X,r : F+
n ×F+

n → B(H), r ∈ (0, 1), is defined
by

Kρ,X,r(α, β) :=






1
ρr|β\lα|Xβ\lα if β >l α

I if α = β
1
ρr|α\lβ|(Xα\lβ)∗ if α >l β

0 otherwise.

Note that if {hβ}|β|≤q ⊂ H, then we have

〈(ρI ⊗ I +

∞∑

k=1

∑

|α|=k

X∗
α ⊗ rkRα̃








∑

|β|≤q

hβ ⊗ eβ



 ,
∑

|γ|≤q

hγ ⊗ eγ

〉

= ρ
∑

|β|≤q

‖hβ‖2 +
∞∑

k=1

∑

|α|=k

〈
∑

|β|≤q

X∗
αhβ ⊗ rkRα̃eβ ,

∑

|γ|≤q

hγ ⊗ eγ

〉

= ρ
∑

|β|≤q

‖hβ‖2 + +
∑

|α|≥1

∑

|β|,|γ|≤q

r|α| 〈eβα, eγ〉 〈X∗
αhβ , hγ〉

= ρ
∑

|β|≤q

‖hβ‖2 +
∑

γ>β; |β|,|γ|≤q

r|γ\lβ|
〈
X∗

γ\lβ
hβ, hγ

〉

=
∑

γ≥β; |β|,|γ|≤q

〈ρKρ,X,r(γ, β)hβ , hγ〉 .
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Now, taking into account that Kρ,X,r(γ, β) = K∗
ρ,X,r(β, γ), we deduce relation

(2.2). Therefore, the condition Pρ(rA, R) ≤ c2Pρ(rB, R), r ∈ [0, 1), implies

[Kρ,A,r(α, β)]|α|,|β|≤q ≤ c2[Kρ,B,r(α, β)]|α|,|β|≤q

for any 0 < r < 1 and q = 0, 1, . . .. Taking r → 1 in the latter inequality, we
obtain item (iv).

Assume now that (iv) holds. Since c2Kρ,B − Kρ,A is a positive semidefi-
nite multi-Toeplitz kernel, due to Theorem 3.1 from [39] (see also the proof
of Theorem 5.2 from [47]), we find a completely positive linear map µ :
C∗(S1, . . . , Sn) → B(E) such that

µ(Sα) = c2Kρ,B(g0, α) − Kρ,A(g0, α) =
1

ρ
(c2Bα − Aα)

for any α ∈ F+
n with |α| ≥ 1, and µ(I) = (c2 − 1)I. Since

P (rS, R) :=

∞∑

k=1

∑

|α|=k

rkSα ⊗ R∗
α̃ + I ⊗ I +

∞∑

k=1

∑

|α|=k

rkS∗
α ⊗ Rα̃ ≥ 0

for r ∈ [0, 1), we deduce that

(µ ⊗ id)[P (rS, R)] =

∞∑

k=1

∑

|α|=k

1

ρ
r|α|[c2B∗

α − A∗
α] ⊗ Reα + (c2 − 1)I ⊗ I

+

∞∑

k=1

∑

|α|=k

1

ρ
r|α|[c2Bα − Aα] ⊗ R∗

eα

= c2Pρ(rB, R) − Pρ(rA, R) ≥ 0,

which implies (ii).

Let us prove that (iv) =⇒ (vi). Assume that (iv) holds. Then we have Kρ,A ≤
c2Kρ,B, where Kρ,X is the multi-Toeplitz kernel associated with X ∈ Cρ. Let
V := (V1, . . . , Vn) be the minimal isometric dilation of A := (A1, . . . , An). Then
KA =

∨
α∈F

+
n

VαH and ρPHVα|H = Aα for any |α| ≥ 1. Similar properties hold

if W := (W1, . . . , Wn) is the minimal isometric dilation of B := (B1, . . . , Bn).
Hence, and taking into account that V1, . . . , Vn and W1, . . . , Wn are isometries
with orthogonal ranges, respectively, we have
‚

‚

‚

‚

‚

‚

X

|α|≤m

Vαhα

‚

‚

‚

‚

‚

‚

2

=

=
X

α>lβ,|α|,|β|≤m

˙

Vα\lβ
hα, hβ

¸

+
X

|α|≤m

〈hα, hα〉 +
X

β>lα,|α|,|β|≤m

˙

V
∗

β\lα
hα, hβ

¸

=
X

α>lβ,|α|,|β|≤m

fi

1

ρ
Aα\lβ

hα, hβ

fl

+
X

|α|≤m

〈hα, hα〉 +
X

β>lα,|α|,|β|≤m

fi

1

ρ
A

∗
β\lα

hα, hβ

fl

=
X

|α|≤m,|β|≤m

〈Kρ,A(β, α)hα, hβ〉 =
D

[Kρ,A(β, α)]|α|,|β|≤m hm,hm

E
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for any m ∈ N and hm := ⊕|α|≤mhα ∈ ⊕|α|≤mHα, where each Hα is a copy of
H. Similarly, we obtain

∥∥∥∥∥∥

∑

|α|≤m

Wαhα

∥∥∥∥∥∥

2

=
〈
[Kρ,B(β, α)]|α|,|β|≤m hm,hm

〉
.

Taking into account that Kρ,A ≤ c2Kρ,B, we deduce that
∥∥∥∥∥∥

∑

|α|≤m

Vαhα

∥∥∥∥∥∥
≤ c

∥∥∥∥∥∥

∑

|α|≤m

Wαhα

∥∥∥∥∥∥
.

Therefore, we can define an operator LB,A : KB → KA by setting

(2.3) LB,A



∑

|α|≤m

Wαhα


 :=

∑

|α|≤m

Vαhα

for any m ∈ N and hα ∈ H, α ∈ F+
n . Note that LB,A is a bounded operator

with ‖LB,A‖ ≤ c. Since LB,A|H = IH, we have ‖LB,A‖ ≥ 1. It is easy to see
that LB,AWi = ViLB,A for i = 1, . . . , n. Therefore item (vi) holds.

Conversely, assume that there is an operator LB,A ∈ B(KB ,KA) with norm
‖LB,A‖ ≤ c such that LB,A|H = IH and LB,AWi = ViLB,A, i = 1, . . . , n.

Then, we deduce that LB,A

(∑
|α|≤m Wαhα

)
=
∑

|α|≤m Vαhα for any m ∈ N

and hα ∈ H, α ∈ F+
n . The condition ‖LB,A‖ ≤ c implies

∥∥∥∥∥∥

∑

|α|≤m

Vαhα

∥∥∥∥∥∥

2

≤ c2

∥∥∥∥∥∥

∑

|α|≤m

Wαhα

∥∥∥∥∥∥

2

,

which is equivalent to the inequality
〈
[Kρ,A(β, α)]|α|,|β|≤m hm,hm

〉
≤ c2

〈
[Kρ,B(β, α)]|α|,|β|≤m hm,hm

〉

for any m ∈ N and hm := ⊕|α|≤mhα ∈ ⊕|α|≤mHα. Consequently, we deduce
item (iv). The proof is complete. �

A closer look at the proof of Theorem 2.2 reveals that one can assume that
u(0) = I in part (iii), and one can also assume that ℜp(0) = I in the definition

of the Harnack domination A
H≺B. We also remark that, due to Theorem 1.3,

we can add an equivalence to Theorem 2.2, namely, A
H≺
c

B if and only if

u(A1, . . . , An) + (ρ − 1)u(0) ≤ c2 [u(B1, . . . , Bn) + (ρ − 1)u(0)]

for any positive free pluriharmonic function u ∈ Harc
ball

(B(E)).
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Corollary 2.3. If A, B ∈ Cρ and A
H≺B, then

‖LB,A‖ = inf{c > 1 : A
H≺
c

B}

= inf{c > 1 : Pρ(rA, R) ≤ c2Pρ(rB, R) for any r ∈ [0, 1)}.

Moreover, A
H≺B if and only if supr∈[0,1) ‖LrA,rB‖ < ∞. In this case,

‖LA,B‖ = sup
r∈[0,1)

‖LrA,rB‖

and the mapping r 7→ ‖LrA,rB‖ is increasing on [0, 1).

Proof. Assume that A
H≺B. Then, due to Theorem 2.2, A

H≺
c

B if and only if there

is an operator LB,A ∈ B(KB ,KA) with ‖LB,A‖ ≤ c such that LB,A|H = IH
and LB,AWi = ViLB,A for i = 1, . . . , n. Consequently, taking c = ‖LB,A‖, we

deduce that A
H≺

‖LB,A‖
B, which is equivalent to

Pρ(rA, R) ≤ ‖LB,A‖2Pρ(rB, R)

for any r ∈ [0, 1). Hence, we have tA
H≺

‖LB,A‖
tB for any t ∈ [0, 1). Applying again

Theorem 2.2 to the operators tA and tB, we deduce that ‖LtA,tB‖ ≤ ‖LB,A‖.
Conversely, suppose that c := supr∈[0,1) ‖LrA,rB‖ < ∞. Since ‖LrA,rB‖ ≤ c,

Theorem 2.2 implies rA
H≺
c

rB for any r ∈ [0, 1) and, therefore, Pρ(rtA, R) ≤

c2Pρ(rtB, R) for any t, r ∈ [0, 1). Hence, A
H≺
c

B and, consequently, ‖LB,A‖ ≤ c.

Therefore, ‖LA,B‖ = supr∈[0,1) ‖LrA,rB‖. The fact that r 7→ ‖LrA,rB‖ is an

increasing function on [0, 1) follows from the latter relation. This completes
the proof. �

We remark that if 1 ≤ m < n and u is a positive free pluriharmonic function
on [B(K)n]1, then the map

(X1, . . . , Xm) 7→ u(X1, . . . , Xm, 0, . . . , 0)

is a positive free pluriharmonic function on [B(K)m]1. Moreover, if g is a
positive free pluriharmonic function on [B(K)m]1, then the map

(X1, . . . , Xn) 7→ g(X1, . . . , Xm, 0, . . . , 0)

is a positive free pluriharmonic function on [B(K)n]1. Consequently, using
Corollary 1.2, one can easily deduce the following result.

Corollary 2.4. Let c > 0, ρ > 0, and 1 ≤ m < n. Consider two n-tuples
(A1, . . . , Am) ∈ B(H)m and (B1, . . . , Bm) ∈ B(H)m in the class Cρ and let
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(A1, . . . , Am, 0, . . . , 0) and (B1, . . . , Bm, 0, . . . , 0) be their extensions in B(H)n,

respectively. Then (A1, . . . , Am)
H≺
c

(B1, . . . , Bm) in Cρ ⊂ B(H)m if and only if

(A1, . . . , Am, 0, . . . , 0)
H≺
c

(B1, . . . , Bm, 0, . . . , 0) in Cρ ⊂ B(H)n.

We recall (e.g. [43]) that if (T1, . . . Tn) is an n-tuple of operators, then the joint

spectral radius r(T1, . . . , Tn) < 1 if and only if limk→∞

∥∥∥
∑

|α|=k TαT ∗
α

∥∥∥ = 0.

In what follows, we characterize the elements of Cρ which are Harnack domi-
nated by 0.

Theorem 2.5. Let A := (A1, . . . , An) be in Cρ. Then A
H≺ 0 if and only if the

joint spectral radius r(A1, . . . , An) < 1.

Proof. Note that the map X 7→ Pρ(X, R) is a positive free pluriharmonic func-
tion on [B(H)n]1 with coefficients in B(F 2(Hn)) and has the factorization

Pρ(X, R) =

= (I − RX)−1 + (ρ − 2)I + (I − R∗
X)−1

= (I − R∗
X)−1 [I − RX + (ρ − 2)(I − R∗

X)(I − RX) + I − R∗
X ] (I − RX)−1

= (I − R∗
X)−1 [ρI + (1 − ρ)(R∗

X + RX) + (ρ − 2)R∗
XRX ] (I − RX)−1,

(2.4)

where RX := X∗
1 ⊗ R1 + · · · + X∗

n ⊗ Rn is the reconstruction operator as-
sociated with the n-tuple X := (X1, . . . , Xn) ∈ [B(H)n]1. We remark that,
due to the fact that the spectral radius of RX is equal to the joint spec-
tral radius r(X1, . . . , Xn), the factorization above holds for any X ∈ Cρ with
r(X1, . . . , Xn) < 1.

Now, using Theorem 2.2 part (ii) and the above-mentioned factorization, we

deduce that A
H≺ 0 if and only if there exists c > 0 such that

(I − R∗
rA)−1 [ρI + (1 − ρ)(R∗

rA + RrA) + (ρ − 2)R∗
rARrA] (I − RrA)−1 ≤ ρc2I

for any r ∈ [0, 1). Similar inequality holds if we replace the right creation
operators by the left creation operators. Then, applying the noncommutative
Poisson transform id ⊗ PeiθR, where R := (R1, . . . , Rn), we obtain
(2.5)
ρI+(1−ρ)(e−iθR∗

rA+eiθRrA)+(ρ−2)R∗
rARrA ≤ ρc2(I−re−iθR∗

A)(I−reiθRA)

for any r ∈ [0, 1) and θ ∈ R.

On the other hand, since A := (A1, . . . , An) ∈ Cρ, we have r(A1, . . . , An) ≤
1. Suppose that r(A1, . . . , An) = 1. Taking into account that r(RA) =
r(A1, . . . , An), we can find λ0 ∈ T in the approximative spectrum of RA. Con-
sequently, there is a sequence {hm} in H⊗ F 2(Hn) such that ‖hm‖ = 1 and

(2.6) λ0hm − RAhm → 0 as m → ∞.
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In particular, relation (2.5) implies

ρ‖hm‖2 + (1 − ρ)
[
〈λ0R

∗
rAhm, hm〉 +

〈
λ̄0RrAhm, hm

〉]
+ (ρ − 2)‖RrAhm‖2

≤ ρc2‖hm − λ̄0RrAhm‖2

(2.7)

for any r ∈ (0, 1) and m ∈ N. Note that due to (2.6) and the fact that |λ0| = 1,
we have

〈
λ̄0RAhm, hm

〉
= λ̄0 〈RAhm − λ0hm, hm〉 + 1 → 1, as m → ∞.

Since

‖hm − λ̄0RrAhm‖ ≤ ‖hm − λ̄0RAhm‖ + ‖λ̄0(RAhm − RrAhm)‖
= ‖λ̄0hm − RAhm‖ + (1 − r)‖RAhm‖

and due to the fact that ‖RAhm‖ → 1 as m → ∞, we deduce that

lim sup
m→∞

‖hm − λ̄0RrAhm‖ ≤ 1 − r

for any r ∈ (0, 1). Now, since RrA = rRA and taking m → ∞ in relation (2.7),
we obtain

ρ + 2(1 − ρ)r + (ρ − 2)r2 ≤ c2ρ(1 − r)2

for any r ∈ (0, 1). Setting r = 1 − 1
m , m ≥ 2, straightforward calculations

imply 2m ≤ ρc2 − ρ+2 for any m ∈ N, which is a contradiction. Therefore, we
must have r(A1, . . . , An) < 1.

Conversely, assume that A := (A1, . . . , An) ∈ Cρ has the joint spectral radius
r(A1, . . . , An) < 1. Since r(A1, . . . , An) = r(RA), one can see that M :=
supr∈(0,1) ‖(I − rRA)−1‖ exists and M ≥ 1. Hence

(2.8) M2(I − R∗
rA)(I − RrA) ≥ I ≥ I − R∗

rARrA

for any r ∈ (0, 1). Now we consider the case ρ ≥ 1. Note that relation (2.8)
implies

I − R∗
rARrA + (ρ − 1)(I − R∗

rA)(I − RrA) ≤ ρM2(I − R∗
rA)(I − RrA).

The latter inequality is equivalent to

ρI + (1 − ρ)(R∗
rA + RrA) + (ρ − 2)R∗

rARrA ≤ ρM2(I − R∗
rA)(I − RrA),

which, due to the factorization (2.4), is equivalent to

Pρ(rA, R) ≤ ρM2 = M2Pρ(0, R)

for any r ∈ [0, 1). According to Theorem 2.2, we deduce that A
H≺ 0.

Now, consider the case when ρ ∈ (0, 1). Since ‖RrA‖ ≤ rρ and δ − 2 < 0, we
have

ρI + (1 − ρ)(R∗
rA + RrA) + (ρ − 2)R∗

rARrA ≤ ρI + (1 − ρ)(R∗
rA + RrA)

≤ ρI + 2(1 − ρ)rρ ≤ (3ρ − 2ρ2)I.

Using again the factorization (2.4), we deduce that

Pρ(rA, R) ≤ (3ρ − 2ρ2)(I − R∗
rA)−1(I − RrA)−1
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for any r ∈ (0, 1). Hence and using the fact that (I−R∗
rA)−1(I−RrA)−1 ≤ M2I,

we obtain

Pρ(rA, R) ≤ (3 − 2ρ)M2Pρ(0, R)

for any r ∈ (0, 1). Using again Theorem 2.2, we get A
H≺ 0. The proof is

complete. �

We mention that in the particular case when n = 1 we can recover a result
obtained by Ando, Suciu, and Timotin [1], when ρ = 1, and by G. Cassier and
N. Suciu [9], when ρ 6= 1.

3. Hyperbolic metric on Harnack parts of the noncommutative
ball Cρ

The relation
H≺ induces an equivalence relation

H∼ on the class Cρ. We provide a
Harnack type double inequality for positive free pluriharmonic functions on the
noncommutative ball Cρ and use it to prove that the Harnack part of Cρ which
contains 0 coincides with the open noncommutative ball [Cρ]<1. We introduce
a hyperbolic metric on any Harnack part of Cρ and obtain a concrete formula
in terms of the reconstruction operator.

Since
H≺ is a preorder relation on Cρ, it induces an equivalence relation

H∼ on Cρ,

which we call Harnack equivalence. The equivalence classes with respect to
H∼

are called Harnack parts of Cρ. Let A := (A1, . . . , An) and B := (B1, . . . , Bn)

be in Cρ. We say that A and B are Harnack equivalent (we denote A
H∼ B) if

and only if there exists c ≥ 1 such that

1

c2
[ℜp(B1, . . . , Bn) + (ρ − 1)ℜp(0)] ≤ ℜp(A1, . . . , An) + (ρ − 1)ℜp(0)

≤ c2 [ℜp(B1, . . . , Bn) + (ρ − 1)ℜp(0)]

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗ Mm, m ∈ N, such that ℜp(X) ≥ 0 for any X ∈ [B(H)n]1.

We also use the notation A
H∼
c

B when A
H≺
c

B and B
H≺
c

A. We remark that Theo-

rem 2.2 can be used to provide several characterizations for the Harnack parts
of Cρ.

The first result is an extension of Harnack inequality to positive free plurihar-
monic functions on the noncommutative ball Cρ, ρ > 0.

Theorem 3.1. If u is a positive free pluriharmonic function on [B(H)n]1 with
operator-valued coefficients in B(E) and 0 ≤ r < 1, then

u(0)
1 − r(2ρ − 1)

1 + r
≤ u(rX1, . . . , rXn) ≤ u(0)

1 + r(2ρ − 1)

1 − r

for any (X1, . . . , Xn) ∈ Cρ.
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Proof. Let

u(Z1, . . . , Zn) =
∞∑

k=1

∑

|α|=k

Z∗
α ⊗ A∗

(α) + I ⊗ A(0) +
∞∑

k=1

∑

|α|=k

Zα ⊗ A(α)

be a positive free pluriharmonic function on [B(H)n]1 with coefficients in B(E).
According to Theorem 1.4 from [49], for any Y ∈ [B(H)n]−1 and r ∈ [0, 1), we
have

(3.1) u(0)
1 − r

1 + r
≤ u(rY1, . . . , rYn) ≤ u(0)

1 + r

1 − r
.

On the other hand, let (X1, . . . , Xn) ∈ Cρ and let (V1, . . . , Vn) be the minimal
isometric dilation of (X1, . . . , Xn) on a Hilbert space KT ⊇ H. Since Xα =
ρPHVα|H for any α ∈ F+

n \{g0}, and using the free pluriharmonic functional
calculus, we have

u(rX1, . . . , rXn) =

=

∞∑

k=1

∑

|α|=k

r|α|X∗
α ⊗ A∗

(α) + I ⊗ A(0) +

∞∑

k=1

∑

|α|=k

r|α|Xα ⊗ A(α)

= ρ(PH ⊗ IE )




∞∑

k=1

∑

|α|=k

r|α|V ∗
α ⊗ A∗

(α)



 |H⊗E + IH ⊗ A(0)

+ ρ(PH ⊗ IE)




∞∑

k=1

∑

|α|=k

r|α|Vα ⊗ A(α)



 |H⊗E

= ρ(PH ⊗ IE )u(rV1, . . . , rVn)|H⊗E + (1 − ρ)u(0),

where the convergence is in the operator norm topology. Due to (3.1), we have

u(0)
1 − r

1 + r
≤ u(rV1, . . . , Vn) ≤ u(0)

1 + r

1 − r
.

Consequently, we deduce that

u(0)

[
ρ(1 − r)

1 + r
+ (1 − ρ)

]
≤ ρ(PH ⊗ IE)u(rV1, . . . , rVn)|H⊗E + (1 − ρ)u(0)

≤ u(0)

[
ρ(1 + r)

1 − r
+ (1 − ρ)

]
.

Since

u(rX1, . . . , rXn) = ρ(PH ⊗ IE )u(rV1, . . . , rVn)|H⊗E + (1 − ρ)u(0),

the result follows. �

Now, we can determine the Harnack part of Cρ which contains 0.

Theorem 3.2. Let A := (A1, . . . , An) be in Cρ. Then the following statements
are equivalent:
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(i) ωρ(A1, . . . , An) < 1;

(ii) A
H∼ 0;

(iii) r(A1, . . . , An) < 1 and Pρ(A, R) ≥ aI for some constant a > 0.

Proof. First, we prove that (i) =⇒ (ii). Let A := (A1, . . . , An) be in Cρ

and assume that ωρ(A) < 1. Then there is r0 ∈ (0, 1) such that ωρ(
1
r0

A) =
1
r0

ωρ(A) < 1. Consequently, 1
r0

A ∈ Cρ.

According to Theorem 3.1, we have

ℜp(0)
1 − r0(2ρ − 1)

1 + r0
≤ ℜp(A1, . . . , An) ≤ ℜp(0)

1 + r0(2ρ − 1)

1 − r0

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗ Mm, m ∈ N, such that ℜp ≥ 0 on [B(H)n]1. Hence, we

deduce that A
H∼ 0.

To prove that (ii) =⇒ (iii), assume that A
H∼ 0. Due to Theorem 2.5, we

have r(A) < 1. Using now Theorem 2.2, we deduce that there exists c > 0 such
that

(3.2) Pρ(rA, R) ≥ 1

c2
Pρ(0, R) =

ρ

c2
I

for any r ∈ [0, 1). Since r(A) < 1, one can prove that limr→1 Pρ(rA, R) =
Pρ(A, R) in the operator norm topology. Consequently, taking r → 1 in relation
(3.2), we obtain item (iii).

It remains to show that (iii) =⇒ (i). Assume that r(A1, . . . , An) < 1 and
Pρ(A, R) ≥ aI for some constant a > 0. Note that there exists t0 ∈ (0, 1) such
that the map

t 7→
(

I −
n∑

i=1

A∗
i ⊗ tRi

)−1

+ (ρ − 2)I +

(
I −

n∑

i=1

Ai ⊗ tR∗
i

)−1

is well-defined and continuous on [0, 1 + t0] in the operator norm topology. In
particular, there is ǫ0 ∈ (0, t0) such that

‖Pρ(A, R) − Pρ(A, tR)‖ <
a

2

for any t ∈ (1 − ǫ0, 1 + ǫ0). Consequently, if γ0 ∈ (1, 1 + ǫ0), then

Pρ(γ0A, R) ≥ Pρ(A, R) − ‖Pρ(A, R) − Pρ(γ0A, R)‖I ≥ a

2
I > 0.

Due to Theorem 1.1, we have γ0A ∈ Cρ, which implies ω(γ0A) ≤ 1. Therefore,
ω(A) ≤ 1

γ0
< 1 and item (i) holds. The proof is complete. �

We remark that, when n = 1, we recover a result obtain by Foiaş [15] if ρ = 1,
and by Cassier and Suciu [9] if ρ > 0.
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Given A, B ∈ Cρ, ρ > 0, in the same Harnack part of Cρ, i.e., A
H∼ B, we

introduce

(3.3) Λρ(A, B) := inf
{

c > 1 : A
H∼
c

B
}

.

Note that, due to Theorem 2.2, A
H∼ B if and only if the operator LB,A is

invertible. In this case, L−1
B,A = LA,B and

Λρ(A, B) = max {‖LA,B‖, ‖LB,A‖} .

To prove the latter equality, assume that A
H∼
c

B for some c ≥ 1. Due to the

same theorem, we have ‖LB,A‖ ≤ c and ‖LA,B‖ ≤ c. Consequently,

(3.4) max {‖LA,B‖, ‖LB,A‖} ≤ inf
{
c ≥ 1 : A

H∼
c

B
}

= Λρ(A, B).

On the other hand, setting c0 := ‖LB,A‖ and c′0 := ‖LA,B‖, Theorem

2.2 implies A
H≺
c0

B and B
H≺
c′0

A. Hence, we deduce that A
H∼
d

B, where d :=

max{c0, c
′
0}. Consequently, Λρ(A, B) ≤ d, which together with relation (3.4)

imply Λρ(A, B) = max {‖LA,B‖, ‖LB,A‖}, which proves our assertion.

Now, we can introduce a hyperbolic (Poincaré-Bergman type) metric δρ : ∆ ×
∆ → R+ on any Harnack part ∆ of Cρ, by setting

(3.5) δρ(A, B) := ln Λρ(A, B), A, B ∈ ∆.

Due to our discussion above, we also have

δρ(A, B) = ln max
{
‖LA,B‖ ,

∥∥∥L−1
A,B

∥∥∥
}

.

Proposition 3.3. δρ is a metric on any Harnack part of Cρ.

Proof. The proof is similar to that of Proposition 2.2 from [49], but uses ρ-
pluriharmonic kernels. �

We remark that, according to Theorem 3.2, the set

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1}
is the Harnack part of Cρ containing 0.

In what follows we calculate the norm of LY,X with X, Y ∈ [Cρ]<1, in terms of
the reconstruction operators.

Theorem 3.4. If X, Y ∈ [Cρ]<1, then ‖LY,X‖ = ‖Cρ,XC−1
ρ,Y ‖, where

Cρ,X := ∆ρ,X(I − RX)−1,

∆ρ,X := [ρI + (1 − ρ)(R∗
X + RX) + (ρ − 2)R∗

XRX ]
1/2

.

Moreover, if X, Y ∈ Cρ is such that X
H≺ Y , then ‖LY,X‖ =

supr∈[0,1) ‖Cρ,rXC−1
ρ,rY ‖.
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Proof. Since X, Y ∈ [Cρ]<1, Theorem 3.2 implies X
H∼ Y , r(X) < 1, and

r(Y ) < 1. Let c > 1 and assume that Pρ(rX, R) ≤ c2Pρ(rY, R) for any
r ∈ [0, 1). Since r(X) < 1 and r(Y ) < 1, we can take the limit, as r → 1, in the
operator norm topology, and obtain Pρ(X, R) ≤ c2Pρ(Y, R). Conversely, if the
latter inequality holds, then Pρ(X, S) ≤ c2Pρ(Y, S), where S := (S1, . . . , Sn) is
the n-tuple of left creation operators. Applying the noncommutative Poisson
transform id⊗PrR, r ∈ [0, 1), and taking into account that it is a positive map,
we deduce that Pρ(rX, R) ≤ c2Pρ(rY, R) for any r ∈ [0, 1).

Therefore, due to Theorem 2.2, we have

(3.6) Pρ(X, R) ≤ c2Pρ(Y, R) if and only if ‖LY,X‖ ≤ c.

We recall that the free pluriharmonic kernel Pρ(X, R) with X ∈ [Cρ]<1, has the
factorization P (X, R) = C∗

ρ,XCρ,X . Due to Theorem 3.2, Pρ(X, R) is invertible
and, consequently, so is Cρ,X . Consequently,

Pρ(X, R) ≤ c2Pρ(Y, R) if and only if C∗
ρ,Y

−1C∗
ρ,XCρ,XC−1

ρ,Y ≤ c2I.

Setting c0 := ‖Cρ,XC−1
ρ,Y ‖, we have Pρ(X, R) ≤ c2

0Pρ(Y, R). Now, due to

relation (3.6), we obtain

‖LY,X‖ ≤ c0 = ‖Cρ,XC−1
ρ,Y ‖.

Setting c′0 := ‖LY,X‖ and using again (3.6), we obtain Pρ(X, R) ≤ c′0
2
Pρ(Y, R).

Hence, we deduce that C∗
ρ,Y

−1C∗
ρ,XCρ,XC−1

ρ,Y ≤ c′0
2
I, which implies

‖Cρ,XC−1
ρ,Y ‖ ≤ c′0 = ‖LY,X‖.

Therefore, ‖LY,X‖ = ‖Cρ,XC−1
ρ,Y ‖. The last part of the theorem is now obvious.

�

Combining Theorem 3.4 with the remarks preceding Proposition 3.3, we ob-
tain a concrete formula for the hyperbolic metric δρ on [Cρ]<1 in terms of the
reconstruction operator, which is the main result of this section.

Theorem 3.5. Let δρ : [Cρ]<1 × [Cρ]<1 → [0,∞) be the hyperbolic metric. If
X, Y ∈ [Cρ]<1, then

δρ(X, Y ) = ln max
{∥∥∥Cρ,XC−1

ρ,Y

∥∥∥ ,
∥∥∥Cρ,Y C−1

ρ,X

∥∥∥
}

,

where

Cρ,X := ∆ρ,X(I − RX)−1,

∆ρ,X := [ρI + (1 − ρ)(R∗
X + RX) + (ρ − 2)R∗

XRX ]
1/2

,

and RX := X∗
1 ⊗ R1 + · · · + X∗

n ⊗ Rn is the reconstruction operator associated
with the right creation operators R1, . . . , Rn and X := (X1, . . . , Xn) ∈ [Cρ]<1.

Using Theorem 2.2, one can easily obtain the following result. Since the proof
is similar to that of Lemma 2.6 from [49], we shall omit it.
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Lemma 3.6. Let X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn) be in Cρ. Then the
following properties hold.

(i) X
H∼ Y if and only if rX

H∼ rX for any r ∈ [0, 1) and
supr∈[0,1) Λρ(rX, rY ) < ∞. In this case,

Λρ(X, Y ) = sup
r∈[0,1)

Λρ(rX, rY ) and δρ(X, Y ) = sup
r∈[0,1)

δρ(rX, rY ).

(ii) If X
H∼ Y , then the functions r 7→ Λρ(rX, rY ) and r 7→ δρ(rX, rY ) are

increasing on [0, 1).

Putting together Theorem 3.5 and Lemma 3.6, we deduce the following result.

Theorem 3.7. Let X := (X1, . . . , Xn) and Y := (Y1, . . . , Yn) be in Cρ such

that X
H∼ Y . Then the metric δρ satisfies the relation

δρ(X, Y ) = ln max

{
sup

r∈[0,1)

∥∥∥Cρ,rXC−1
ρ,rY

∥∥∥ , sup
r∈[0,1)

∥∥∥Cρ,rY C−1
ρ,rX

∥∥∥
}

,

where Cρ,X := ∆ρ,X(I − RX)−1 and RX := X∗
1 ⊗ R1 + · · · + X∗

n ⊗ Rn is the
reconstruction operator.

Using the Harnack type inequality of Theorem 3.1, we obtain an upper bound
for the hyperbolic distance δρ on [Cρ]<1. First, we need the following result.

Proposition 3.8. Let f be in the noncommutative disc algebra An such that
ℜf ≥ 0 and let X := (X1, . . . , Xn) ∈ Cρ be with ωρ(X) < 1. Then

ρ
1 − ωρ(X)

1 + ωρ(X)
ℜf(0) ≤ ℜf(X1, . . . , Xn) + (ρ − 1)ℜf(0) ≤ ρ

1 + ωρ(X)

1 − ωρ(X)
.

Proof. Let r := ωρ(X) and define Y := 1
r X . Since ωρ(Y ) = 1

r ωρ(X) = 1, we
deduce that Y ∈ Cρ. Applying Theorem 3.1 to Y , we obtain

1 − ωρ(X)(2ρ − 1)

1 + ωρ(X)
ℜf(0) ≤ ℜf(X1, . . . , Xn) ≤ ρ

1 + ωρ(X)(2ρ − 1)

1 − ωρ(X)
.

It is easy to see that the latter inequality is equivalent to the one from the
proposition. �

Now, we can deduce the following upper bound for the hyperbolic distance on
[Cρ]<1.

Corollary 3.9. For any X, Y ∈ [Cρ]<1,

δρ(X, Y ) ≤ 1

2
ln

(1 + ωρ(X))(1 + ωρ(Y ))

(1 − ωρ(X))(1 − ωρ(Y ))
.
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Proof. Using Theorem 2.2 and the inequality of Proposition 3.8, we deduce
that

Λρ(X, 0) ≤
(

1 + ωρ(X)

1 − ωρ(X)

)1/2

.

On the other hand, since δρ is a metric on [Cρ]<1, we have δ(X, Y ) ≤ δ(X, 0)+
δρ(Y, 0). Taking into account that δρ(X, Y ) = ln Λρ(X, Y ), the result follows.

�

We remark that when ρ = 1, the inequality of Corollary 3.9 is sharper then the
one obtained in Corollary 2.5 from [49].

Using Corollary 2.4, on can easily obtain the following result.

Corollary 3.10. Let ρ > 0, and 1 ≤ m < n. Consider two n-tuples A :=
(A1, . . . , Am) ∈ B(H)m and B := (B1, . . . , Bm) ∈ B(H)m in the class Cρ and

their extensions Ã := (A1, . . . , Am, 0, . . . , 0) and B̃ := (B1, . . . , Bm, 0, . . . , 0) in
B(H)n, respectively. Then

A
H∼ B if and only if Ã

H∼ B̃.

Moreover, in this case,

δρ(A, B) = δρ(Ã, B̃).

In what follows we provide a few properties for the map ρ 7→ δρ(A, B).

Lemma 3.11. Let A := (A1, . . . , An) ∈ B(H)n and B := (B1, . . . , Bn) ∈ B(H)n

be in the class Cρ and let c > 0 and 0 < ρ ≤ ρ′. Then the following statements
hold.

(i) if A
H≺
c

B in Cρ, then A
H≺
c

B in Cρ′ ;

(ii) if A
H∼
c

B in Cρ, then if A
H∼
c

B in Cρ and

δρ′(A, B) ≤ δρ(A, B).

Proof. First recall that Cρ ⊆ Cρ′ . If A
H≺
c

B in Cρ, then

ℜp(A1, . . . , An) + (ρ − 1)ℜp(0) ≤ c2 [ℜp(B1, . . . , Bn) + (ρ − 1)ℜp(0)]

for any noncommutative polynomial with matrix-valued coefficients p ∈
C[X1, . . . , Xn] ⊗ Mm, m ∈ N, such that ℜp(X) ≥ 0 for any X ∈ [B(H)n]1.
Hence, c ≥ 1 and, consequently, the inequality above holds when we replace ρ

with ρ′ ≥ ρ. This shows that A
H≺
c

B in Cρ′ . Part (ii) is a clear consequence of

(i) and the definition of the hyperbolic metric. �

If A := (A1, . . . , An) ∈ B(H)n is a nonzero n-tuple of operators such that
A ∈ [C∞]<1, i.e., the joint spectral radius r(A) < 1, then

ρA := inf{ρ > 0 : A ∈ Cρ} > 0.
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Indeed, if ρ, ρ′ ∈ (0,∞], ρ ≤ ρ′, then Cρ ⊆ Cρ′ and, moreover, we have

ωρ′(A) ≤ ωρ(A), r(A) = lim
ρ→∞

ωρ(A), A ∈ B(H)n.

Consequently, there exists ρ > 0 such that ωρ′(A) < 1, for any ρ′ ≥ ρ. Assume
now that ρA = 0. Then T ∈ Cρ, i.e., ωρ(A) ≤ 1 for any ρ > 0. On the other
hand, we know that ‖A‖ ≤ ρωρ(A). Taking ρ → 0, we deduce that A = 0,
which is a contradiction. This proves our assertion.

Note that if A, B ∈ [C∞]<1, then

ρA,B := inf{ρ > 0 : A, B ∈ Cρ} = max{ρA, ρB}.

Proposition 3.12. If A, B ∈ [C∞]<1, then the map

[ρA,B,∞) ∋ ρ 7→ δρ(A, B) ∈ R
+

is continuous, decreasing, and

lim
ρ→∞

δρ(A, B) = 0.

Proof. Using Theorem 3.5 and Lemma 3.11, one can easily deduce that the
map ρ 7→ δρ(A, B) is continuous and decreasing. To prove the last part of the
proposition, note that since δρ(A, B) ≤ δρ(A, 0)+δρ(0, B), it is enough to show
that limρ→∞ δρ(A, 0) = 0. To this end, note that Theorem 3.5, implies

(3.7) δρ(A, 0) = ln max
{∥∥Cρ,AC−1

ρ,0

∥∥ ,
∥∥∥Cρ,0C

−1
ρ,A

∥∥∥
}

,

where

Cρ,AC−1
ρ,0 =

1√
ρ

[ρI + (1 − ρ)(R∗
A + RA) + (ρ − 2)R∗

ARA]
1/2

(I − RA)−1.

Hence, we deduce that

lim
ρ→∞

‖Cρ,AC−1
ρ,0‖ =

∥∥∥[I − (R∗
A + RA) + R∗

ARA]1/2 (I − RA)−1
∥∥∥

=
∥∥(I − R∗

A)−1 [I − (R∗
A + RA) + R∗

ARA] (I − RA)−1
∥∥

=
∥∥(I − R∗

A)−1(I − R∗
A)(I − RA)(I − RA)−1

∥∥
= 1

Similarly, we have limρ→∞ ‖Cρ,0C
−1
ρ,A‖ = 1. Using now relation (3.7), we com-

plete the proof. �

Documenta Mathematica 14 (2009) 595–651



Hyperbolic Geometry on Noncommutative Balls 625

4. Mapping theorems for free holomorphic functions on
noncommutative balls

In this section, we provide mapping theorems, spectral von Neumann inequal-
ities, and Schwarz type results for free holomorphic functions on noncommu-
tative balls, with respect to the hyperbolic metric and the operator radius ωρ,
ρ ∈ (0,∞].

First, we prove the following mapping theorem for the classes Cρ, ρ > 0.

Theorem 4.1. Let f := (f1, . . . , fm) be a contractive free holomorphic function

with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the non-
commutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n is of class Cρ, ρ > 0,
then f(T1, . . . , Tn) is of class Cρf

, where

(4.1) ρf :=





1 + (ρ − 1)1−‖f(0)‖
1+‖f(0)‖ if ρ < 1

1 + (ρ − 1)1+‖f(0)‖
1−‖f(0)‖ if ρ ≥ 1.

Proof. Let p ∈ C[Z1, . . . , Zm] ⊗ Mk, k ∈ N, be such that ℜp ≥ 0 on the unit
ball [B(H)m]1. This is equivalent to ℜp(S′

1, . . . S
′
m) ≥ 0, where S′

1, . . . , S
′
m

are the left creation operators on the full Fock space F 2(Hm). Applying the
noncommutative Poisson transform Pf(X1,...,Xn) ⊗ id, which is a completely
positive linear map, to the inequality ℜp(S′

1, . . . S
′
m) ≥ 0, we obtain

ℜp(f(X1, . . . , Xn)) ≥ 0, X ∈ [B(H)n]1.

Moreover, since the boundary functions f̃1, . . . , f̃m are in the noncommutative
disc algebra An, we deduce that the boundary function of the composition p◦f

is p(f̃1, . . . , f̃m) ∈ An⊗̄minMk.

Assume that (T1, . . . , Tn) ∈ Cρ. Using the free pluriharmonic functional calcu-
lus of Theorem 1.3 and Theorem 1.1, we deduce that

(4.2) ℜ(p ◦ f)(T1, . . . , Tn) + (ρ − 1)ℜ(p ◦ f)(0) ≥ 0.

On the other hand, according to the Harnack type inequality of Theorem 1.4
from [49] applied to the positive free pluriharmonic function ℜp at the point
f(0) = (f1(0), . . . , fm(0)), we have

(4.3) ℜp(0)
1 − ‖f(0)‖
1 + ‖f(0)‖ ≤ ℜp(f(0)) ≤ ℜp(0)

1 + ‖f(0)‖
1 − ‖f(0)‖ .

Let γ > 0 and note that

(4.4) ℜp(f(T1, . . . , Tn)) + (γ − 1)ℜp(0) = A + B,

where

A := ℜp(f(T1, . . . , Tn)) + (ρ − 1)p(f(0))

B := (γ − 1)ℜp(0) − (ρ − 1)p(f(0)).
(4.5)
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Assume now that ρ ≥ 1. Using the second inequality in (4.3), we obtain

B ≥ (γ − 1)ℜp(0) − (ρ − 1)ℜp(0)
1 + ‖f(0)‖
1 − ‖f(0)‖

=

[
(γ − 1) − (ρ − 1)

1 + ‖f(0)‖
1 − ‖f(0)‖

]
ℜp(0),

which is positive if γ ≥ 1 + (ρ − 1)1+‖f(0)‖
1−‖f(0)‖ . In this case, using relation (4.4)

and (4.2), we obtain

ℜp(f(T1, . . . , Tn)) + (γ − 1)ℜp(0) ≥ 0

for any p ∈ C[Z1, . . . , Zn] ⊗ Mk, k ∈ N, be such that ℜp ≥ 0 on the unit
ball [B(H)m]1. Applying Theorem 1.1, we deduce that f(T1, . . . , Tn) ∈ Cγ . In
particular, we have f(T1, . . . , Tn) ∈ Cδf

where

δf := 1 + (ρ − 1)
1 + ‖f(0)‖
1 − ‖f(0)‖ .

Now, we consider the case ρ ∈ (0, 1). Using the first inequality in (4.3), we
obtain

B ≥
[
(γ − 1) − (ρ − 1)

1 − ‖f(0)‖
1 + ‖f(0)‖

]
ℜp(0),

which is positive if γ ≥ 1+ (ρ− 1)1−‖f(0)‖
1+‖f(0)‖ . As above, using relations (4.4) and

(4.2), we obtain

ℜp(f(T1, . . . , Tn)) + (γ − 1)ℜp(0) ≥ 0

for any p ∈ C[Z1, . . . , Zn] ⊗ Mk, k ∈ N, be such that ℜp ≥ 0 on the unit ball
[B(H)m]1. Theorem 1.1 implies f(T1, . . . , Tn) ∈ Cγ . In particular, we have
f(T1, . . . , Tn) ∈ Cδf

where

δf := 1 + (ρ − 1)
1 − ‖f(0)‖
1 + ‖f(0)‖ .

The proof is complete. �

Note that under the conditions of Theorem 4.1, ρ ≤ ρf and ρ = 1 =⇒ ρf = 1.
Moreover, if ρ 6= 1, then ρf = ρ if and only if f(0) = 0. On can also show that
ρf ≤ 1 if ρ ≤ 1.

We remark that, under the conditions of Theorem 4.1, there exists T :=
(T1, . . . , Tn) ∈ B(H)n such that if ρ > 0 is the smallest positive number such
that (T1, . . . , Tn) ∈ Cρ, then there exists a free holomorphic function f such
that ρf is the smallest positive number with the property that f(T1, . . . , Tn) ∈
Cρf

. Indeed, if n ≤ m, take f(X1, . . . , Xn) = (X1, . . . , Xn, 0, . . . , 0) and
use Corollary 2.4. When n > m, take f(X1, . . . , Xn) = (X1, . . . , Xm) and
T := (T1, . . . , Tn, 0, . . . , 0) with (T1, . . . , Tn) ∈ Cρ.
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Corollary 4.2. Let f := (f1, . . . , fm) be a bounded free holomorphic function

with ‖f(0)‖ < ‖f‖∞ such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n is of class Cρ, ρ > 0,
then

ωρf
(f(T1, . . . , Tn)) ≤ ‖f‖∞,

where ρf is given by relation (4.1). In particular, if f(0) = 0 and (T1, . . . , Tn) ∈
Cρ, then

ωρ(f(T1, . . . , Tn)) ≤ ‖f‖∞.

Proof. Applying Theorem 4.1 the function 1
‖f‖∞

f , we deduce that
1

‖f‖∞

f(T1, . . . , Tn) is in the class Cρf
, which is equivalent to

ωρf

(
1

‖f‖∞

f(T1, . . . , Tn)
)

≤ 1, and the first inequality of the theorem fol-

lows. Hence, and using the fact that ρf = ρ when f(0) = 0, we complete the
proof. �

A simple consequence of Corollary 4.2 is the following power inequality.

Corollary 4.3. If (T1, . . . , Tn) ∈ B(H)n is non-zero, ρ ∈ (0,∞), and k ≥ 1,
then

ωρ(Tα : α ∈ F
+
n , |α| = k) ≤ ωρ(T1, . . . , Tn).

Proof. Since ‖(T1, . . . , Tn)‖ ≤ ρωρ(T1, . . . , Tn), we have ωρ(T1, . . . , Tn) 6=
0. Applying the second part of Corollary 4.2 to the n-tuple of operators(

1
ωρ(T1,...,Tn)T1, . . . ,

1
ωρ(T1,...,Tn)Tn

)
∈ Cρ and to the free holomorphic function

f(X1, . . . , Xn) := (Xα : α ∈ F
+
n , |α| = k), (X1, . . . , Xn) ∈ [B(H)n]1,

we complete the proof. �

Theorem 4.4. Let f := (f1, . . . , fm) be a bounded free holomorphic function

with ‖f(0)‖ < ‖f‖∞ such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then, for each r ∈ [0, 1),

sup
T∈Cρ, ωρ(T )≤r

ωρf
(f(T1, . . . , Tn)) ≤ ‖f(rS1, . . . , rSn)‖,

where S1, . . . , Sn are the left creation operators.

Proof. Consider the free holomorphic function fr, defined by

fr(X1, . . . , Xn) := f(rX1, . . . , rXn), (X1, . . . , Xn) ∈ [B(H)n]1

and recall that ‖fr‖∞ = ‖f(rS1, . . . , rSn)‖. Applying Corollary 4.2 to fr, we
have

(4.6) ωρfr
(fr(A1, . . . , An)) ≤ ‖fr‖∞, (A1, . . . , An) ∈ Cρ
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Since f(0) = fr(0), we have ρf = ρfr
. Consequently, if we assume that

ωρ(T1, . . . , Tn) ≤ r < 1, then
(

1
r T1, . . . ,

1
r Tn

)
∈ Cρ and inequality (4.6) im-

plies

ωρf
(f(T1, . . . , Tn)) = ωρf

(
fr

(
1

r
T1, . . . ,

1

r
Tn

))
≤ ‖fr‖∞,

which completes the proof. �

Corollary 4.5. Let (T1, . . . , Tn) ∈ B(H)n be such that ωρ(T1, . . . , Tn) < 1,
and let f := (f1, . . . , fm) be a bounded free holomorphic function with the fol-
lowing properties:

(i) the boundary functions f̃1, . . . , f̃m are in the noncommutative disc al-
gebra An.

(ii) fj has the standard representation of the form

fj(X1, . . . , Xn) =
∑

|α|≥k

a(j)
α Xα, j = 1, . . . , m.

Then

ωρ(f(T1, . . . , Tn)) ≤ ωρ(T1, . . . , Tn)k‖f‖∞.

Proof. Consider the free holomorphic function g := 1
‖f‖∞

f . Note that ‖g‖∞ =

1 and g(0) = 0. According to the Schwarz lemma for free holomorphic functions
(see Theorem 2.4 from [44]), we have

‖g(X1, . . . , Xn)‖ ≤ ‖(X1, . . . , Xn)‖k, (X1, . . . , Xn) ∈ [B(H)n]1.

Denote r := ωρ(T1, . . . , Tn) < 1, ρ > 0, and consider

gr(X1, . . . , Xn) := g(rX1, . . . , rXn), (X1, . . . , Xn) ∈ [B(H)n]1.

Note that the inequality above implies ‖gr‖∞ ≤ rk. Applying now Theorem
4.4 to g, and using the latter inequality, we obtain

ωρ(g(T1, . . . , Tn)) ≤ ‖gr‖∞ ≤ rk = ωρ(T1, . . . , Tn)k.

Hence, the result follows. �

Corollary 4.6. Let (T1, . . . , Tn) ∈ B(H)n be such that ωρ(T1, . . . , Tn) < 1,
and let f : [B(H)n]1 → B(H) be a free holomorphic function with ℜf ≤ I and
having the standard representation

f(X1, . . . , Xn) =
∑

|α|≥k

aαXα, where k ≥ 1.

Then

ωρ(f(T1, . . . , Tn)) ≤ 2ωρ(T1, . . . , Tn)k

1 − ωρ(T1, . . . , Tn)k
.
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Proof. According to the Carathéodory type result for free holomorhic functions
(see Theorem 5.1 from [51]), we have

‖f(X1, . . . , Xn)‖ ≤
2‖
∑

|β|=k XβX∗
β‖1/2

1 − ‖∑|β|=k XβX∗
β‖1/2

, (X1, . . . , Xn) ∈ [B(H)n]1.

Hence, we deduce that ‖fr‖∞ ≤ 2rk

1−rk for any r ∈ (0, 1). Setting r :=

ωρ(T1, . . . , Tn) < 1, ρ > 0, and applying Theorem 4.4, we obtain

ωρ(f(T1, . . . , Tn)) ≤ ‖fr‖∞ ≤ 2ωρ(T1, . . . , Tn)k

1 − ωρ(T1, . . . , Tn)k
.

The proof is complete. �

Lemma 4.7. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in
the noncommutative disc algebra An. Let A := (A1, . . . , An) ∈ B(H)n and
B := (B1, . . . , Bn) ∈ B(H)n be in the class Cρ ⊂ B(H)n and let c ≥ 1. If

A
H≺
c

B, then f(A) and f(B) are in Cρf
⊂ B(H)m and f(A)

H≺
c

f(B), where ρf is

given by relation (4.1).

Proof. First, note that, due to Theorem 4.1, f(A), f(B) are in Cρf
, where ρf

is given by relation (4.1). Let p ∈ C[Z1, . . . , Zm] ⊗ Mk, k ∈ N, be such that
ℜp ≥ 0 on the unit ball [B(H)m]1. According to the proof of Theorem 4.1, the

boundary function of the composition p ◦ f is p(f̃1, . . . , f̃m) ∈ An⊗̄minMk and
ℜ(p ◦ f) ≥ 0. Using the free pluriharmonic functional calculus for the class Cρ

and Theorem 2.2, if A, B are in Cρ and A
H≺
c

B, c ≥ 1, then

ℜ(p ◦ f)(A1, . . . , An) + (ρ − 1)ℜ(p ◦ f)(0)

≤ c2 [ℜ(p ◦ f)(B1, . . . , Bn) + (ρ − 1)ℜ(p ◦ f)(0)] .
(4.7)

Assume now that ρ ≥ 1. Due to the Harnack type inequality (4.3), the inequal-
ity (4.7) implies

ℜ(p◦f)(A1, . . . , An) ≤ c2ℜ(p◦f)(B1, . . . , Bn)+(c2−1)(ρ−1)ℜp(0)
1 + ‖f(0)‖
1− ‖f(0)‖ ,

which is equivalent to

ℜ(p ◦ f)(A1, . . . , An) + (ρf − 1)ℜ(p ◦ f)(0)

≤ c2 [ℜ(p ◦ f)(B1, . . . , Bn) + (ρf − 1)ℜ(p ◦ f)(0)] ,

where δf := 1 + (ρ − 1)1+‖f(0)‖
1−‖f(0)‖ . Applying Theorem 2.2, we deduce that

f(A)
H≺
c

f(B).
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Now, we consider the case ρ ∈ (0, 1). The inequality (4.7) and the Harnack
type inequality (4.3) imply

ℜ(p◦f)(A1, . . . , An) ≤ c2ℜ(p◦f)(B1, . . . , Bn)+(c2−1)(ρ−1)ℜp(0)
1− ‖f(0)‖
1 + ‖f(0)‖ .

As above, we deduce that f(A)
H≺
c

f(B) in Cρf
, where δf := 1 + (ρ− 1)1−‖f(0)‖

1+‖f(0)‖ .

This completes the proof. �

Theorem 4.8. Let δρ : ∆×∆ → [0,∞) be the hyperbolic metric on a Harnack
part ∆ of Cρ, and let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An.Then

δρf
(f(A), f(B)) ≤ δρ(A, B), A, B ∈ ∆,

where ρf is given by relation (4.1).

Proof. Let A, B ∈ ∆ ⊂ Cρ, i.e., there is c ≥ 1 such that A
H∼
c

B. According to

Theorem 4.1 and Lemma 4.7, f(A) and f(B) are in Cρf
, and f(A)

H∼
c

f(B) in

Cρf
, where ρf is given by relation (4.1). Hence and taking into account that

δρ(A, B) := ln inf
{

c > 1 : A
H∼
c

B
}

, A, B ∈ ∆,

we deduce that

δρf
(f(A), f(B)) ≤ δρ(A, B), A, B ∈ ∆.

The proof is complete. �

Now, we can deduce the following Schwarz type result.

Corollary 4.9. Let δρ : ∆ × ∆ → [0,∞) be the hyperbolic metric on a Har-
nack part ∆ of Cρ, and let f := (f1, . . . , fm) be a contractive free holomorphic

function with f(0) = 0 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then

δρ(f(A), f(B)) ≤ δρ(A, B), A, B ∈ ∆.

We recall that, due to Theorem 3.2, the open ball [Cρ]<1 is the Harnack part
of Cρ containing 0. Consequently, Theorem 4.8 and Corollary 4.9 hold in the
particular case when ∆ := [Cρ]<1.

Ky Fan [14] showed that the von Neumann inequality [57] is equivalent to the
fact that if T ∈ B(H) is a strict contraction (‖T ‖ < 1) and f : D → D is an
analytic function, then ‖f(T )‖ < 1. A multivariable analogue of this result was
obtained in [51]. In what follows, we provide a spectral version of this result,
when the norm is replaced by the joint spectral radius.
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Theorem 4.10. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n and the joint spec-
tral radius r(T1, . . . , Tn) < 1, then

r(f(T1, . . . , Tn)) < 1.

Proof. Assume that (T1, . . . , Tn) ∈ B(H)n has the joint spectral ra-
dius r(T1, . . . , Tn) < 1. Taking into account that r(T1, . . . , Tn) =
limρ→∞ ωρ(T1, . . . , Tn), we find δ > 1 such that ωρ(T1, . . . , Tn) < 1. Therefore,
we have T := (T1, . . . , Tn) ∈ Cρ and, due to Theorem 3.2, the n-tuple T

is Harnack equivalent to 0. Consequently, T
H≺
c

0 for some constant c ≥ 1.

According to Theorem 4.1, f(T ) and f(0) are in the class Cρf
, where ρf is

given by relation (4.1). On the other hand, Lemma 4.7 implies f(T )
H≺
c

f(0) in

Cρf
. Since ‖f(0)‖ < 1, we have the joint spectral radius r(f(0)) < 1. Applying

Theorem 2.5, we deduce that f(0)
H≺
c

0 in Cρf
. Therefore, we have f(T )

H≺
c

0

in Cρf
. Applying again Theorem 2.5, we have r(f(T )) < 1. The proof is

complete. �

An analogue of Theorem 4.10 for n-tuples of operators with joint operator
radius ωρ(T1, . . . , Tn) < 1 is the following.

Theorem 4.11. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the non-
commutative disc algebra An. If (T1, . . . , Tn) ∈ B(H)n and ωρ(T1, . . . , Tn) < 1,
then

ωρf
(f(T1, . . . , Tn)) < 1,

where ρf is defined by relation (4.1). In particular, if f(0) = 0, then
ωρ(f(T1, . . . , Tn)) < 1.

Proof. If T := (T1, . . . , Tn) ∈ B(H)n and ωρ(T1, . . . , Tn) < 1, then T ∈ Cρ.
According to Theorem 3.2, we have

r(T1, . . . , Tn) < 1 and Pρ(T, R) ≥ aI

for some constant a > 0. Applying Theorem 4.1 and Theorem 4.10, we deduce
that f(T ) ∈ Cρf

and r(f(T )) < 1. Since ωρ(T ) < 1, Theorem 3.2 implies

T
H∼ 0. In particular, we have 0

H≺
c

T for some constant c ≥ 1. Applying Lemma

4.7, we deduce that f(0)
H≺
c

f(T ) in Cρf
, where ρf is given by relation (4.1).

Hence, and using Theorem 2.2 (part (ii)), we get

Pρf
(rf(0), R) ≤ c2Pρf

(rf(T ), R), r ∈ [0, 1).

Since r(f(0)) < 1 and r(f(T )) < 1, the latter inequality implies

(4.8) Pρf
(f(0), R) ≤ c2Pρf

(f(T ), R), r ∈ [0, 1).

Documenta Mathematica 14 (2009) 595–651



632 Gelu Popescu

On the other hand, since the mapping X 7→ P1(X, R) is a positive free pluri-
harmonic function on [B(H)n]1, the Harnack inequality (3.1) implies

P1(f(0), R) ≥ P1(0, R)
1 − ‖f(0)‖
1 + ‖f(0)‖ =

1 − ‖f(0)‖
1 + ‖f(0)‖I.

Therefore, we have

Pρf
(f(0), R) = P1(f(0), R) + (ρf − 1)I

≥
(

ρf − 1 +
1 − ‖f(0)‖
1 + ‖f(0)‖

)
I.

Since

a := ρf − 1 +
1 − ‖f(0)‖
1 + ‖f(0)‖ =






ρ 1−‖f(0)‖
1+‖f(0)‖ if ρ < 1

(ρ − 1)1+‖f(0)‖
1−‖f(0)‖ + 1−‖f(0)‖

1+‖f(0)‖ if ρ ≥ 1,

we have a > 0. Combining the latter inequality with (4.8) we obtain

Pρf
(f(T ), R) ≥ a

c2
I.

Using again Theorem 3.2, we deduce that ωρf
(f(T )) < 1. The last part of the

theorem follows from Theorem 4.1. This completes the proof. �

Remark 4.12. If m = 1, all the results of this section remain true when the
condition ‖f(0)‖ < 1 is dropped if f is a nonconstant contractive free holomor-
phic function with boundary function in the noncommutative algebra An.

5. Carathéodory metric on the open noncommutative ball [C∞]<1

and Lipschitz mappings

In this section, we introduce a Carathéodory type metric dK on the open ball of
all n-tuples of operators (T1, . . . , Tn) with joint spectral radius r(T1, . . . , Tn) <
1. We obtain a concrete formula for dK in terms of the free pluriharmonic
kernel on the open unit ball [C∞]<1. This is used to prove that the metric
dK is complete on [C∞]<1 and its topology coincides with the operator norm
topology.

We need some notation. Consider the noncommutative balls

[Cρ]<1 := {(X1, . . . , Xn) ∈ B(H)n : ωρ(X1, . . . , Xn) < 1} for ρ ∈ (0,∞],

where ω∞(X1, . . . , Xn) := r(X1, . . . , Xn) is the joint spectral radius of
(X1, . . . , Xn), and set

[Cρ]
≺ 0 := Cρ ∩ [C∞]<1 for ρ ∈ (0,∞).

According to Theorem 1.35 from [48], if ρ, ρ′ ∈ (0,∞], ρ ≤ ρ′, then Cρ ⊆ Cρ′

and, moreover, we have

ωρ′(X) ≤ ωρ(X), r(X) = lim
ρ→∞

ωρ(X), X ∈ B(H)n.
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Consequently, we have

[Cρ]
≺ 0 ⊆ [Cρ′ ]≺ 0, [Cρ]<1 ⊆ [Cρ′ ]<1.

Due to Theorem 2.5 and Theorem 3.2, one can easily see that

{X ∈ Cρ : X
H∼ 0} = [Cρ]<1 ⊂ [Cρ]

≺ 0 =

{
X ∈ Cρ : X

H≺ 0

}

for any ρ ∈ (0,∞). Note also that
⋃

ρ>0

[Cρ]<1 =
⋃

ρ>0

[Cρ]
≺ 0 = [C∞]<1.

Indeed, if X ∈ [C∞]<1, i.e., r(X) < 1, then taking into account that r(X) =
limρ→∞ ωρ(X), we find ρ > 0 such that ωρ(X) < 1. Thus X ∈ [Cρ]<1, which
proves our assertion. Note also that

⋃
ρ>0

[Cρ]<1 is dense (in the norm topology)

in the set C∞ of all n-tuples of operators (T1, . . . , Tn) with joint spectral radius
r(T1, . . . , Tn) ≤ 1.

Now, we introduce the map dK : [C∞]<1 × [C∞]<1 → [0,∞) by setting

(5.1) dK(A, B) = sup
p

‖ℜp(A) −ℜp(B)‖, A, B ∈ [C∞]<1,

where the supremum is taken over all polynomials p ∈ C[X1, . . . , Xn] ⊗ Mm,
m ∈ N, with ℜp(0) = I and ℜp ≥ 0 on [B(H)n]1. In what follows we will
prove that dK is a metric and obtain a concrete formula in terms of the free
pluriharmonic kernel on the open unit ball [C∞]<1.

First, we need the following result.

Lemma 5.1. Let G be a free pluriharmonic function on [B(H)n]1 with coeffi-
cients in B(E), such that G(0) = I and G ≥ 0. If A, B ∈ [C∞]<1, then

‖G(A) − G(B)‖ ≤ ‖P1(A, R) − P1(B, R)‖,
where where P1(X, R) is the free pluriharmonic Poisson kernel defined by

P1(X, R) :=

∞∑

k=1

∑

|α|=k

Xα ⊗ R∗
α̃ + I ⊗ I +

∞∑

k=1

∑

|α|=k

X∗
α ⊗ Rα̃, X ∈ [C∞]<1,

and the convergence is in the operator norm topology.

Proof. Since G is a positive free pluriharmonic function of [B(H)n]1 it has a
unique representation of the form

G(X1, . . . , Xn) =

∞∑

k=1

∑

|α|=k

X∗
α⊗A∗

(α)+I⊗I+

∞∑

k=1

∑

|α|=k

Xα⊗A(α), X ∈ [B(H)n]1,

for some A(α) ∈ B(E), where the series converge in the operator norm topology.
Applying Theorem 5.2 from [47] to G, we find a completely positive linear map
µ : R∗

n + Rn → B(E) with µ(I) = I and µ(R∗
α̃) = A(α) if |α| ≥ 1.

Since A, B ∈ [Cρ]<1, we have r(A) < 1 and r(B) < 1. According to the
free pluriharmonic functional calculus, Pρ(A, R), Pρ(B, R), G(A), and G(B)
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are well-defined and the corresponding series converge in the operator norm
topology. Consequently, we have

G(A) = (id ⊗ µ)(P1(A, R)) and G(A) = (id ⊗ µ)(P1(A, R)).

Taking into account that µ is completely positive linear map with µ(I) = I, we
have

‖G(A) − G(B)‖ ≤ ‖µ‖‖P1(A, R) − P1(B, R)‖ = ‖P1(A, R) − P1(B, R)‖.

The proof is complete. �

According to Lemma 5.1, it makes sense to define the map d′K : [C∞]<1 ×
[C∞]<1 → [0,∞) by setting

d′K(A, B) := sup
u

‖u(A) − u(B)‖ < ∞,

where the supremum is taken over all free pluriharmonic functions u on
[B(H)n]1 with coefficients in B(E), such that u(0) = I and u ≥ 0.

Using the the free pluriharmonic functional calculus for for n-tuples of operators
(T1, . . . , Tn) with the joint spectral radius r(T1, . . . , Tn) < 1, one can extend
Proposition 3.1 from [49] and show that for any A, B ∈ [C∞]<1,

d′K(A, B) = dK(A, B),

where dK is defined by relation (5.1). Since the proof is essentially the same,
we shall omit it.

Proposition 5.2. dK is a metric on [C∞]<1 satisfying relation

dK(A, B) = ‖P1(A, R) − P1(B, R)‖, A, B ∈ [C∞]<1.

In addition, the map [0, 1) ∋ r 7→ dK(rA, rB) ∈ R+ is increasing and

dK(A, B) = sup
r∈[0,1)

dK(rA, rB).

Proof. Using Lemma 5.1 we deduce that dK(A, B) ≤ ‖P1(A, R) − P1(B, R)‖.
The rest of the proof is similar to that of Proposition 3.2 from [49], so we shall
omit it. �

Now, we can prove the main result of this section.

Theorem 5.3. Let dK be the Carathéodory metric on [C∞]<1. Then the fol-
lowing statements hold:

(i) the dK-topology coincides with the norm topology on [C∞]<1;
(ii) [Cρ]

≺ 0 is a dK-closed subset of [C∞]<1 for any ρ > 0;
(iii) the metric dK is complete on [C∞]<1.
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Proof. We recall that the free pluriharmonic Poisson kernel is given by

P1(X, R) =

∞∑

k=1

∑

|α|=k

Xα ⊗ R∗
α̃ + I ⊗ I +

∞∑

k=1

∑

|α|=k

X∗
α ⊗ Rα̃, X ∈ [C∞]<1,

where the convergence is in the operator norm topology. Let RA := A∗
1 ⊗

R1 + · · · + A∗
n ⊗ Rn be the reconstruction operator. Note that, due to the

noncommutative von Neumann inequality, we have

‖A − B‖ = ‖RA − RB‖

=

∥∥∥∥
1

2π

∫ 2π

0

eit[P1(A, eitR) − P1(B, eitR)]dt

∥∥∥∥

≤ sup
t∈[0,2π]

∥∥P1(A, eitR) − P1(B, eitR)
∥∥

≤ ‖P1(A, R) − P1(B, R)‖.
Now, Proposition 5.2 implies

(5.2) ‖A − B‖ ≤ dK(A, B), A, B ∈ [C∞]<1,

which shows that the dK -topology is stronger then the norm topology on
[C∞]<1. Conversely, to prove that the norm topology on [C∞]<1 is stronger than
the dK -topology, note that since r(RA) = r(A) < 1 and r(RB) = r(B) < 1,
the operators I − RA and I − RB are invertible. Thus

dK(A, B) = ‖P1(A, R) − P1(B, R)‖ ≤ 2‖(I − RA)−1 − (I − RB)−1‖
for any A, B ∈ [C∞]<1. Hence and due to the continuity of the maps
X 7→ I − RX on B(H)n and Y 7→ Y −1 on the group of invertible elements
in B(H⊗F 2(Hn)), in the operator norm topology, we deduce our assertion. In
conclusion, the dK-topology coincides with the norm topology on [C∞]<1.

Now, to prove (ii), let {A(k) := (A
(k)
1 , . . . , A

(k)
n )}∞k=1 be a dK-Cauchy sequence

in [Cρ]
≺ 0 ⊂ Cρ. Due to inequality (5.2), we deduce that {A(k)}∞k=1 is a Cauchy

sequence in the norm topology of B(H)n. Since Cρ is closed in the operator

norm topology, there exists T := (T1, . . . , Tn) in Cρ such that ‖T − A(k)‖ → 0,
as k → ∞.

Now let us prove that the joint spectral radius r(T ) < 1. Since {A(k)}∞k=1 is

a dK-Cauchy sequence, there exists k0 ∈ N such that dK(A(k), A(k0)) ≤ 1 for

any k ≥ k0. On the other hand, since A(k0) ∈ [Cρ]
≺ 0, i.e., A(k0)

H≺ 0, Theorem

2.2 shows that there is c ≥ 1 such that Pρ(rA
(k0), R) ≤ c2δ for any r ∈ [0, 1).

Hence, and due to the noncommutative von Neumann inequality, we deduce
that

Pρ(rA
(k), R) ≤

(
‖Pρ(rA

(k), R) − Pρ(rA
(k0), R)‖ + ‖Pρ(rA

(k0), R)‖
)

I

≤
(
dK(A(k), A(k0)) + ‖Pρ(rA

(k0), R)‖
)

I ≤ (1 + c2δ)I
(5.3)

for any k ≥ k0 and r ∈ [0, 1).
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We show now that limk→∞ Pρ(rA
(k), R) = Pρ(rT, R) in the operator norm

topology. First, one can easily see that, since T, A(k) ∈ Cρ, we have
∑

|α|=p

TαT ∗
α ≤ ρ2I and

∑

|α|=p

A(k)
α A(k)

α ≤ ρ2I

for any p, k = 1, 2, . . .. Given ǫ > 0 and r ∈ (0, 1), let m ∈ N be such that∑∞
p=m ρrp < ǫ

2 . Note that

‖P (rA(k), R) − P (rT, R)‖

≤ 2

m−1∑

p=1

∥∥∥∥∥∥

∑

|α|=p

r|α|(A(k)
α − Tα) ⊗ R∗

α̃

∥∥∥∥∥∥

+ 2

∞∑

p=m

∥∥∥∥∥∥

∑

|α|=p

r|α|A(k)
α ⊗ R∗

α̃

∥∥∥∥∥∥
+ 2

∞∑

p=m

∥∥∥∥∥∥

∑

|α|=p

r|α|Tα ⊗ R∗
α̃

∥∥∥∥∥∥

= 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p

(A(k)
α − Tα)(A(k)

α − Tα)∗

∥∥∥∥∥∥

+ 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p

A(k)
α A(k)

α

∗

∥∥∥∥∥∥
+ 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p

TαTα
∗

∥∥∥∥∥∥

≤ 2

∥∥∥∥∥∥

m−1∑

p=1

rp
∑

|α|=p

(A(k)
α − Tα)(A(k)

α − Tα)∗

∥∥∥∥∥∥
+ ǫ

for any k = 1, 2, . . .. Since A(k) → T in the norm topology, as k → ∞, and
using the results above, one can easily deduce that limk→∞ Pρ(rA

(k), R) =
Pρ(rT, R) for each r ∈ [0, 1). Now, taking k → ∞ in inequality (5.3), we
obtain Pρ(rT, R) ≤ (1 + c2δ)I for r ∈ [0, 1). Applying Theorem 2.2, we deduce

that T
H≺ 0. Now, Theorem 2.5 implies r(T ) < 1, which shows that T is in

[Cρ]
≺ 0 and, therefore, in [C∞]<1, which proves part (ii).

It remains to prove part (iii). To this end, let {A(k) := (A
(k)
1 , . . . , A

(k)
n )}∞k=1 be

a dK-Cauchy sequence in [C∞]<1. Given ǫ > 0, there exists k0 ≥ 1 such that
dK(A(k), A(j)) < ǫ for any k, j ≥ k0. Then we have

(5.4) dK(A(k), 0) ≤ c := dK(A(k0), 0) + ǫ for any k ≥ k0.

Hence, and due to the definition of dK , we have ‖u(A(k)) − u(0)‖ ≤ c and,
consequently,

u(A(k)) ≤ (‖u(A(k) − u(0)‖ + 1)I ≤ (c + 1)u(0) for any k ≥ k0

and for any positive free pluriharmonic function u on [B(H)n]1 with coefficients
in B(E) such that u(0) = I.
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Now, for each k ≥ k0, fix ρk ≥ 1 such that A(k) ∈ [Cρk
]≺ 0. Note that the

inequality above implies

u(A(k)) + (ρk − 1)u(0) ≤ ρk(c + 1)u(0)

for all k ≥ k0. Applying Theorem 2.2 and using relation (5.4), we obtain

‖L0,A(k)‖2 ≤ dK(A(k0), 0) + ǫ + 1, k ≥ k0.

Consequently, we have

(5.5) 1 ≤ ǫ0 := sup
k≥k0

‖L0,A(k)‖2 < ∞.

Since {A(k)} is a dK-Cauchy sequence, there exists m0 ≥ k0 such that

dK(A(m′), A(m)) < 1
2ǫ0

for any m, m′ ≥ m0. Using now relation (5.5), we
obtain

(5.6) dK(A(m), A(m0)) <
1

2‖L0,A(m0)‖2
, k ≥ m0.

Since A(m0) ∈ [Cρm0
]≺ 0, Theorem 2.5 implies r(A(m0)) < 1. On the other

hand, since limρ→∞ ωρ(A
(m0)) = r(A(m0)) < 1, there exists ρm0 > 0 such that

ωρm0
(A(m0)) < 1 for any ρ ≥ ρm0 . We can assume that

(5.7) ρm0 ≥
‖LA(m0),0‖2

‖L0,A(m0)‖2
.

Using Proposition 5.2 and relation (5.6), we deduce that

(5.8) Pρm0
(A(m0), R) ≤ Pρm0

(A(k), R) +
1

2‖L0,A(k)‖2
I, k ≥ m0.

On the other hand, since ωρm0
(A(m0)) < 1, Theorem 3.2 implies A(m0) H∼ 0 in

Cρm0
. Consequently, we have 0

H≺A(m0), which due to Theorem 2.2, implies

ρm0I = Pρm0
(0, R) ≤ ‖LA(m0),0‖2Pρm0

(A(m0), R).

Combining this with relation (5.7), we get

Pρm0
(A(m0), R) ≥ 1

‖L0,A(m0)‖2
I.

Hence, and due to (5.8), we have

Pρm0
(A(k), R) ≥ 1

2‖L0,A(m0)‖2
I ≥ 1

2ǫ0
I.

Applying Theorem 3.2, we deduce that A(k) H∼ 0 and A(k) ∈ Cρm0
. Therefore,

A(k) ∈ [Cρm0
]≺ 0 for all k ≥ m0 and the sequence {A(k)}k≥m0 is a dK-Cauchy

sequence in [Cρm0
]≺ 0. Due to part (ii), there exists A ∈ [Cρm0

]≺ 0 ⊂ [C∞]<1

such that dK(A(k), A) → 0, as k → ∞, which proves that dK is a complete
metric on [C∞]<1. The proof is complete. �
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We can provide now a class of Lipschitz functions with respect to the
Carathéodory metric on [C∞]<1.

Theorem 5.4. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then

dK(f(A), f(B)) ≤ 1 + ‖f(0)‖
1 − ‖f(0)‖dK(A, B)

for any n-tuples A := (A1, . . . , An) and B := (B1, . . . , Bn) in [C∞]<1.

Proof. According to the maximum principle for free holomorphic functions
with operator-valued coefficients (see Proposition 5.2 from [50]), the condition
‖f(0)‖ < 1 implies that ‖f(X)‖ < 1, X ∈ [B(H)n]1. If u is a free plurihar-
monic function on [B(H)m]1, then Theorem 1.1 from [51] shows that u ◦ f is
a free pluriharmonic function on [B(H)n]1. If, in addition, u is positive, then
u ◦ f is also positive.

Assume now that A and B are in [C∞]<1. Due to Theorem 4.10, f(A) and f(B)
are in [C∞]<1. Let p ∈ C[X1, . . . , Xm] ⊗ Mk, k ∈ N, be a matrix-valued non-
commutative polynomial with ℜp(0) = I and ℜp ≥ 0 on [B(H)m]1. According
to the Harnack type inequality (4.3), we have

1 − ‖f(0)‖
1 + ‖f(0)‖I ≤ ℜp(f(0)) ≤ 1 + ‖f(0)‖

1 − ‖f(0)‖I.

Since ‖f(0)‖ < 1, we deduce that ℜp(f(0)) is a positive invertible operator
of the form IH ⊗ A for some A ∈ Mk. Define the mapping h : [B(H)n]1 →
B(H)⊗̄minMk by setting

h(X) := [ℜp(f(0))]−1/2ℜp(f(X))[ℜp(f(0))]−1/2, X ∈ [B(H)n]1.

Note that h is a positive free pluriharmonic function on [B(H)n]1 with coeffi-
cients in Mk with the property that h(0) = I. Now, using the above-mentioned
Harnack type inequality, we have

‖ℜp(f(A)) −ℜp(f(B))‖

≤ ‖[ℜp(f(0))]1/2‖
∥∥∥[ℜp(f(0))]−1/2 (ℜp(f(A)) −ℜp(f(B))) [ℜp(f(0))]1/2

∥∥∥

· ‖[ℜp(f(0))]1/2‖
≤ ‖[ℜp(f(0))]‖‖h(A)− h(B)‖
1 + ‖f(0)‖
1 − ‖f(0)‖dK(A, B).

Taking the supremum over all polynomials p ∈ C[X1, . . . , Xm] ⊗ Mk, k ∈ N,
with ℜp(0) = I and ℜp ≥ 0 on [B(H)m]1, we obtain

dK(f(A), f(B)) ≤ 1 + ‖f(0)‖
1 − ‖f(0)‖dK(A, B),
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which completes the proof. �

Corollary 5.5. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with f(0) = 0 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then

dK(f(A), f(B)) ≤ dK(A, B)

for any A, B ∈ [C∞]<1.

We remark that, using Corollary 1.2 and the remarks preceding Corollary 2.4,
one can easily obtain the following result, which provides a simple example
when the inequality of Theorem 5.4 is an equality.

Corollary 5.6. If 1 ≤ m < n, let A := (A1, . . . , Am) ∈ B(H)m and B :=

(B1, . . . , Bm) ∈ B(H)m be in [C∞]<1 and let Ã := (A1, . . . , Am, 0, . . . , 0) and

B̃ := (B1, . . . , Bm, 0, . . . , 0) be their extensions in B(H)n, respectively. Then

dK(A, B) = dK(Ã, B̃).

According to Theorem 5.3, the dK-topology coincides with the norm topology
on [C∞]<1. Due to Theorem 5.4, we deduce the following result.

Corollary 5.7. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. Then the map

[C∞]<1 ∋ (T1, . . . , Tn) 7→ f(T1, . . . , Tn) ∈ [C∞]<1

is continuous in the operator norm topology, where [C∞]<1 is the corresponding
ball in B(H)n and B(H)m, respectively.

6. Three metric topologies on Harnack parts of Cρ

In this section we study the relation between the δρ-topology, the dK-topology,
and the operator norm topology on Harnack parts of Cρ. We prove that the
hyperbolic metric δρ is a complete metric on certain Harnack parts of Cρ, and
that all the three topologies coincide on [Cρ]<1. In particular, we prove that
the hyperbolic metric δρ is complete on the open unit unit ball [Cρ]<1, while
the other two metrics are not complete.

First, we mention another formula for the hyperbolic distance that will be used
to prove the main result of this section. If f ∈ An⊗̄minMm, m ∈ N, then we
call ℜf strictly positive and denote ℜf > 0 if there exists a constant a > 0
such that ℜ f ≥ aI. We remark that, in this case, if (T1, . . . , Tn) ∈ Cρ, then,
using the functional calculus for the class Cρ, we deduce that

ℜf(T1, . . . , Tn) + (ρ − 1)ℜf(0) ≥ ρaI.

The proof of the next result is similar to that of Proposition 3.5 from [49], but
uses the functional calculus for the class Cρ and Theorem 2.2 of the present
paper. We shall omit it.
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Proposition 6.1. Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be in Cρ such

that A
H∼ B. Then

(6.1) δρ(A, B) =
1

2
sup

∣∣∣∣ln
〈[ℜf(A1, . . . , An) + (ρ − 1)ℜf(0)]x, x〉
〈[ℜf(B1, . . . , Bn) + (ρ − 1)ℜf(0)]x, x〉

∣∣∣∣ ,

where the supremum is taken over all f ∈ An ⊗ Mm, m ∈ N, with ℜf > 0 and
x ∈ H⊗ Cm with x 6= 0.

We remark that, under the conditions of Proposition 6.1, one can also prove
that relation (6.1) holds if the supremum is taken over all noncommutative
polynomials f ∈ C[X1, . . . , Xn] ⊗ Mm, m ∈ N, with ℜf > 0, and x ∈ H ⊗ Cm

with x 6= 0.

The main result of this section is the following.

Theorem 6.2. Let δρ, ρ > 0, be the hyperbolic metric on a Harnack part ∆ of
[Cρ]

≺ 0. Then the following properties hold:

(i) δρ is complete on ∆;
(ii) the δρ-topology is stronger then the dK -topology on ∆;
(iii) the δρ-topology, the dK -topology, and the operator norm topology coin-

cide on [Cρ]<1;
(iv) [Cρ]<1 is complete relative the hyperbolic metric, but not complete with

respect to the Carathéodory metric dK and the operator metric.

Proof. Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be n-tuples in a Harnack
part ∆ of [Cρ]

≺ 0. Then A is Harnack equivalent to B and

ℜf(A1, . . . , An) + (ρ − 1)ℜf(0) ≤ Λρ(A, B)2[ℜf(B1, . . . , Bn) + (ρ − 1)ℜf(0)]

for any f ∈ An⊗̄minMm with ℜf ≥ 0, where Λρ(A, B) is defined by (3.3).
Hence, we deduce that
(6.2)

ℜf(A1, . . . , An)−ℜf(B1, . . . , Bn) ≤ [Λρ(A, B)2 − 1][ℜf(B1, . . . , Bn) + (ρ− 1)ℜf(0)].

Since B
H≺ 0, we have the joint spectral radius r(B) < 1, so the ρ-pluriharmonic

kernel Pρ(B, R) makes sense. Due to the fact that the noncommutative Poisson
transform id ⊗ PrR is completely positive, and Pρ(B, S) ≤ ‖Pρ(B, R)‖I, one
can easily see that

Pρ(rB, R) = (id ⊗ PrR)[Pρ(B, S)] ≤ ‖Pρ(B, R)‖I

=
1

ρ
‖Pρ(B, R)‖Pρ(0, R)

for any r ∈ [0, 1). Using the equivalence (ii) ↔ (iii) of Theorem 2.2, when c2 =
1
ρ‖Pρ(B, R)‖, we obtain ℜf(rB1, . . . , rBn) + (ρ − 1)ℜf(0) ≤ ‖Pρ(B, R)‖ℜf(0)

for any r ∈ [0, 1). Letting r → 1, in the operator norm topology, we deduce
that

ℜf(B1, . . . , Bn) + (ρ − 1)ℜf(0) ≤ ‖Pρ(B, R)‖ℜf(0).
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Hence, and using relation (6.2), we obtain

ℜf(A1, . . . , An) −ℜf(B1, . . . , Bn) ≤ [Λρ(A, B)2 − 1]‖Pρ(B, R)‖ℜf(0).

We can obtain a similar inequality if we interchange A with B. If, in addition,
we assume that ℜf(0) = I, then we obtain

−tI ≤ ℜf(A1, . . . , An) −ℜf(B1, . . . , Bn) ≤ tI,

where t := [Λρ(A, B)2 − 1] max{‖Pρ(A, R)‖, ‖Pρ(B, R)‖}. On the other hand,
since ℜf(A1, . . . , An) − ℜf(B1, . . . , Bn) is a self-adjoint operator, we get
‖ℜf(A1, . . . , An)−ℜf(B1, . . . , Bn)‖ ≤ t. Hence, we deduce that dK(A, B) ≤ s.
As a consequence, we obtain

(6.3) dK(A, B) ≤ max{‖Pρ(A, R)‖, ‖Pρ(B, R)‖}
(
e2δρ(A,B) − 1

)
.

Let us prove that δρ is a complete metric on ∆. To this end, let {A(k) :=

(A
(k)
1 , . . . , A

(k)
n )}∞k=1 ⊂ ∆ be a δρ-Cauchy sequence. First, we prove that the

sequence {‖Pρ(A
(k), R)‖}∞k=1 is bounded. Given ǫ > 0, there exists k0 ∈ N such

that

(6.4) δρ(A
(k), A(p)) < ǫ for any k, p ≥ k0.

Let f ∈ An⊗̄minMm with Re f ≥ 0. Since A(k0)
H≺ 0 and

Pρ(rA
(k0), R) ≤ 1

ρ
‖Pρ(rA

(k0), R)‖Pρ(0, R),

Theorem 2.2 implies

ℜf(A(k0)) + (ρ − 1)ℜf(0) ≤ 1

ρ
‖Pρ(rA

(k0), R)‖[ℜf(0) + (ρ − 1)ℜf(0)].

On the other hand, since A(k) H∼ A(k0), Theorem 2.2 implies

ℜf(A(k)) + (ρ − 1)ℜf(0) ≤ Λρ(A
(k), A(k0))2[ℜf(A(k0)) + (ρ − 1)ℜf(0)].

Combining these inequalities, we obtain

ℜf(A(k)) + (ρ − 1)ℜf(0) ≤ c2 1

ρ
[ℜf(0) + (ρ − 1)ℜf(0)],(6.5)

where c := ‖Pρ(A
(k0), R)‖1/2Λρ(A

(k), A(k0)), for any f ∈ An⊗Mm with ℜf ≥ 0.

Consequently, due to Theorem 2.2, we have ‖Pρ(A
(k), R)‖ ≤ c2 for any k ≥ k0.

Combining this with relation (6.4), we obtain

‖Pρ(A
(k), R)‖ ≤ ‖Pρ(A

(k0), R)‖e2ǫ

for any k ≥ k0. This shows that the sequence {‖Pρ(A
(k), R)‖}∞k=1 is bounded.

Consequently, inequality (6.3) implies that {A(k)} is a dK-Cauchy sequence.
Due to Theorem 5.3, there exists A := (A1, . . . , An) ∈ [Cρ]

≺ 0 such that

(6.6) dK(A(k), A) → 0 as k → ∞.
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In what follows, we prove that A ∈ ∆. Let f ∈ An ⊗ Mm with ℜf ≥ 0 and
ℜf(0) = I. Taking into account relations (6.5) and (6.4), we have

ℜf(A(k)) + (ρ − 1)ℜf(0) ≤ Λρ(A
(k), A(k0))2[ℜf(A(k0)) + (ρ − 1)ℜf(0)]

≤ e2ǫ[ℜf(A(k0)) + (ρ − 1)ℜf(0)]
(6.7)

for k ≥ k0. According to relation (6.6) and the definition of dK , ℜf(A(k)) →
ℜf(A), as k → ∞, in the operator norm topology. Consequently, relation (6.7)
implies

(6.8) ℜf(A) + (ρ − 1)ℜf(0) ≤ e2ǫ[ℜf(A(k0)) + (ρ − 1)ℜf(0)].

Such an inequality can be deduced in the more general case when f ∈ An⊗Mm

with ℜf ≥ 0. Indeed, for each ǫ′ > 0 let g := ǫ′I + f , Y := ℜg(0), and
ϕ := Y −1/2gY −1/2. Since ℜϕ ≥ 0 and ℜϕ(0) = I, we can apply inequality
(6.8) to ϕ and deduce that

ρǫ′I + ℜf(A) + (ρ − 1)ℜf(0) ≤ e2ǫ
[
ρǫ′I + ℜf(A(k0)) + (ρ − 1)ℜf(0)

]

for any ǫ′ > 0. Letting ǫ′ → 0, we get

(6.9) ℜf(A) + (ρ − 1)ℜf(0) ≤ e2ǫ[ℜf(A(k0)) + (ρ − 1)ℜf(0)]

for any f ∈ An ⊗ Mm with ℜf ≥ 0. Therefore,

(6.10) A
H≺A(k0).

On the other hand, since A(k0)
H≺A(k) for any k ≥ k0, Theorem 2.2 and relation

(6.4), imply

ℜp(A(k0)) + (ρ − 1)ℜp(0) ≤ Λρ(A
(k0), A(k))2[ℜp(A(k)) + (ρ − 1)ℜp(0)]

≤ e2ǫ[ℜp(A(k)) + (ρ − 1)ℜ(0)]

for k ≥ k0 and any polynomial p ∈ C[X1, . . . , Xn]⊗ Mm, m ∈ N, with ℜp ≥ 0.
According to Theorem 5.3, the dK-topology coincides with the norm topology
on [Cρ]

≺ 0. Therefore, relation (6.6) implies A(k) → A ∈ [Cρ]
≺ 0 in the operator

norm topology. Taking the limit, as k → ∞, in the inequality above, we deduce
that

(6.11) ℜp(A(k0)) + (ρ − 1)ℜp(0) ≤ e2ǫ[ℜp(A) + (ρ − 1)ℜp(0)]

for any p ∈ C[X1, . . . , Xn]⊗Mm with ℜp ≥ 0. Consequently, we get A(k0)
H≺A.

Hence, and using relation (6.10), we obtain A
H∼A(k0), which proves that A ∈ ∆.

The inequalities (6.9) and (6.11) imply Λρ(A
(k0), A) ≤ e2ǫ. This shows that

δρ(A
(k0), A) < ǫ, which together with relation (6.4) imply δρ(A

(k), A) < 2ǫ for

any k ≥ k0. Therefore, δρ(A
(k), A) → 0, as k → ∞, which proves that δρ is a

complete metric on the Harnack part ∆. Note that we have also proved part
(ii) of this theorem.
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In what follows, we prove part (iii). To this end, assume that A and B
are n-tuples of operators in [Cρ]<1. Due to Theorem 3.2, Pρ(B, R) is a
positive invertible operator. Since Pρ(B, R)−1 ≤ ‖Pρ(B, R)−1‖, we have
I ≤ ‖Pρ(B, R)−1‖Pρ(B, R), which, applying the noncommutative Poisson
transform, implies I ≤ ‖Pρ(B, R)−1‖Pρ(rB, R) for any r ∈ [0, 1). By The-

orem 2.2, we deduce that 0
H≺B and

ℜf(0) ≤ ‖Pρ(B, R)−1‖ [ℜf(B) + (ρ − 1)ℜf(0)]

for any f ∈ An ⊗ Mm with ℜf ≥ 0. If, in addition, ℜf(0) = I, then the latter
inequality implies

〈[ℜf(A) + (ρ − 1)ℜf(0)]x, x〉
〈[ℜf(B) + (ρ − 1)ℜf(0)]x, x〉 − 1 ≤ ‖Pρ(B, R)−1‖

‖x‖ 〈(ℜf(A) − ℜf(B))x, x〉

≤ ‖Pρ(B, R)−1‖dK(A, B)

for any x ∈ H⊗ Cm, x 6= 0. Consequently, we have

ln
〈[ℜf(A) + (ρ − 1)ℜf(0)]x, x〉
〈[ℜf(B) + (ρ − 1)ℜf(0)]x, x〉 ≤ ln

(
1 + ‖Pρ(B, R)−1‖dK(A, B)

)
.

A similar inequality can be obtained interchanging A with B. Combining these
two inequalities, we get

∣∣∣∣ln
〈[ℜf(A) + (ρ − 1)ℜf(0)]x, x〉
〈[ℜf(B) + (ρ − 1)ℜf(0)]x, x〉

∣∣∣∣

≤ ln
(
1 + max{‖Pρ(B, R)−1‖, ‖Pρ(A, R)−1‖}dK(A, B)

)
.

(6.12)

Now, we consider the general case when g ∈ An ⊗Mm with ℜg > 0. Note that
Y := ℜg(0) is a positive invertible operator on H⊗Cm and f := Y −1/2gY −1/2

has the properties ℜf ≥ 0 and ℜf(0) = I. Applying inequality (6.12) to f
when x := Y −1/2y, y ∈ H⊗ Cm, and y 6= 0, we obtain

(6.13) 2δρ(A, B) ≤ ln
(
1 + max{‖Pρ(B, R)−1‖, ‖Pρ(A, R)−1‖}dK(A, B)

)
.

Consider a sequence {A(k)}∞k=1 of elements in [Cρ]<1 and let A ∈ [Cρ]<1 be

such that dK(A(k), A) → 0, as k → ∞. By Proposition 5.2, we deduce that
Pρ(A

(k), R) → Pρ(A, R) in the operator norm topology. On the other hand, due

to Theorem 3.2, the operators P (A(k), R) and P (A, R) are invertible. Hence,
and using the well-known fact that the map Z 7→ Z−1 is continuous on the open
set of all invertible operators, we deduce that Pρ(A

(k), R)−1 → Pρ(A, R)−1 in
the operator norm topology, as k → ∞. Hence, we deduce that the sequence
{‖Pρ(A

(k), R)−1‖}∞k=1 is bounded. Consequently, there exists M > 0 with

‖Pρ(A
(k), R)−1‖ ≤ M for any k ∈ N. Using inequality (6.13), we obtain

2δρ(A
(k), A) ≤ ln

(
1 + MdK(A(k), A)

)
, k ∈ N.

Since dK(A(k), A) → 0, as k → ∞, the latter inequality implies that
δρ(A

(k), A) → 0. Therefore, the dK-topology on [Cρ]<1 is stronger than the
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δρ-topology. Due to the first part of this theorem, the two topologies coincide
on [Cρ]<1. Using now Theorem 5.3, we complete the proof of part (iii).

Now, we prove item (iv). Since [Cρ]<1 is the Harnack part of 0 (see Theorem
3.2), part (i) implies its completeness with respect to the hyperbolic metric. To
prove that [Cρ]<1 is not complete with respect to the Carathéodory metric dK

and the operator metric, we consider the following example. Let (T1, . . . , Tn) ∈
B(P1)

n be the n-tuple of operators defined by Ti := PP1Si|P1 , i = 1, . . . , n,
where P1 := span{eα : |α| ≤ 1}. Note that ‖[T1, . . . , Tn]‖ = 1 and Tα = 0 for
any α ∈ F

+
n with |α| ≥ 2. Set Xi := ρTi, i = 1, . . . , n, and note that

Xβ = ρTβ = ρPP1Sβ|P1 , β ∈ F
+
n \{g0}.

Therefore, (X1, . . . , Xn) ∈ Cρ, i.e., ωρ(X1, . . . , Xn) ≤ 1, which implies
ωρ(T1, . . . , Tn) ≤ 1

ρ . The reverse inequality is due to the fact that

‖[T1, . . . , Tn]‖ ≤ ρωρ(T1, . . . , Tn). Consequently, we have

ωρ(T1, . . . , Tn) =
1

ρ
, for ρ ∈ (0,∞).

On other hand, the condition Tα = 0 if |α| ≥ 2 implies r(T1, . . . , Tn) = 0.
Therefore, we have

ωρ(X1, . . . , Xn) = 1 and r(X1, . . . , Xn) = 0.

Now, let c ∈ (0, 1) and define Y (k) := c1/k(X1, . . . , Xn) for k = 1, 2, . . . . Since

ωρ(Y
(k)) = c1/n < 1, Theorem 3.2 implies Y (k) H∼ 0 in Cρ and Y (k) ∈ [Cρ]<1.

On the other hand, since ωρ(X1, . . . , Xn) = 1, we have X := (X1, . . . , Xn) /∈
[Cρ]<1. Now, note that

dK(Y (k), X) ≤ 2‖(I − RY (k))−1 − (I − RX)−1‖
= 2‖RY (k) − RX‖ = 2‖Y (k) − X‖ = 2‖X‖(1− c1/k).

Consequently, Y (k) → X in the operator norm and dK(Y (k), X) → 0, as k →
∞. This shows that [Cρ]<1 is not complete with respect to the Carathéodory
metric dK and the operator metric. The proof is complete. �

Corollary 6.3. Let δρ be the hyperbolic metric on a Harnack part ∆ of [Cρ]
≺ 0.

Then

dK(A, B) ≤ max{‖Pρ(A, R)‖, ‖Pρ(B, R)‖}
(
e2δρ(A,B) − 1

)
, A, B ∈ ∆.

If, in addition A, B ∈ [Cρ]<1, then

2δρ(A, B) ≤ ln
(
1 + max{‖Pρ(B, R)−1‖, ‖Pρ(A, R)−1‖}dK(A, B)

)
.

Corollary 6.4. Let f := (f1, . . . , fm) be a contractive free holomorphic func-

tion with ‖f(0)‖ < 1 such that the boundary functions f̃1, . . . , f̃m are in the
noncommutative disc algebra An. If ∆ is a Harnack part of [Cρ]

≺ 0, then the
map

∆ ∋ (T1, . . . , Tn) 7→ f(T1, . . . , Tn) ∈ [Cρf
]≺ 0
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is continuous with respect to the hyperbolic metric δρ on ∆ and the
Carathéodory metric dK on [Cρf

]≺ 0, where ρf is defined by relation (4.1). In
particular, tha map

[Cρ]<1 ∋ (T1, . . . , Tn) 7→ f(T1, . . . , Tn) ∈ [Cρf
]<1

is continuous with respect to the hyperbolic metric.

7. Harnack domination and hyperbolic metric for ρ-contractions
(case n = 1)

In this section, we consider the single variable case (n = 1) and show that our
Harnack domination of ρ-contractions is equivalent to the one introduced and
studied by Cassier and Suciu in [9]. We recover some of their results and obtain
some results which seem to be new even in the single variable case.

In the particular case when n = 1, the free pluriharmonic Poisson kernel
Pρ(rY, R), r ∈ [0, 1), coincides with

Qρ(rY, U) :=
∑

k=1

rkY ∗k ⊗Uk + ρI ⊗ I +

∞∑

k=1

rkY k ⊗U∗k, Y ∈ Cρ ⊂ B(H),

where the convergence of the series is in the operator norm topology and U is
the unilateral shift acting on the Hardy space H2(T). For each ρ-contraction
T ∈ B(H), consider the operator-valued Poisson kernel defined by

Kρ(z, T ) :=

∞∑

k=1

zkT ∗k + ρI +

∞∑

k=1

z̄kT k, z ∈ D,

which was employed by Cassier and Fack in [8]. Using Theorem 2.2, in the
particular case when n = 1, we can prove the following result.

Proposition 7.1. Let T and T ′ be two ρ-contractions in B(H) and let c ≥ 1.
Then the following statements are equivalent:

(i) T
H≺
c

T ′;

(ii) Qρ(rT, U) ≤ c2Qρ(rT
′, U) for any r ∈ [0, 1);

(iii) Kρ(z, T ) ≤ c2Kρ(z, T ′) for any z ∈ D.

Proof. The equivalence (i) ↔ (ii) follows from Theorem 2.2, when n = 1. To
prove the implication (ii) =⇒ (iii), we apply the noncommutative Poisson
transform (when n = 1) at eitI to the inequality of part (ii). Consequently, we
obtain

Kρ(re
it, T ) = (id ⊗ PeitI)[Qρ(rT, U)]

≤ c2(id ⊗ PeitI)[Qρ(rT
′, U)] = c2Kρ(re

it, T ′)
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for any r ∈ [0, 1) and t ∈ R. Now let us prove that (iii) =⇒ (ii). Since
〈
(T ∗k ⊗ Uk)(hm ⊗ eimt), hp ⊗ eipt

〉

H⊗H2(T)

=
1

2π

∫ π

−π

〈
eiktT ∗k(eimthm), eipthp

〉

H
dt

for any hm, hp ∈ H and k, m, p ∈ N, one can easily obtain
〈(

c2Qρ(rT
′, U) − Qρ(rT, U)

)
h(eit), h(eit)

〉
H⊗H2(T)

=
1

2π

∫ π

−π

〈(
c2Kρ(re

it, T ′) − Kρ(re
it, T )

)
h(eit), h(eit)

〉
H

for any function eit 7→ h(eit) in H⊗H2(T). Now, the implication (iii) =⇒ (ii)
is clear. The proof is complete. �

Let T, T ′ ∈ B(H) be ρ-contractions such that T
H≺ T ′. Due to Proposition 7.1

and Corollary 2.3, we deduce that

‖LT ′,T ‖ = inf{c > 1 : Qρ(rT, U) ≤ c2Qρ(rT
′, U) for any r ∈ [0, 1)}

= inf{c > 1 : Kρ(z, T ) ≤ c2Kρ(z, T ′) for any z ∈ D}
= inf{c > 1 : Kρ(z, T ∗) ≤ c2Kρ(z, T ′∗) for any z ∈ D} = ‖LT ′∗,T∗‖.

Therefore T
H≺ T ′ if and only if T ∗

H≺ T ′∗.

Theorem 7.2. Let T, T ′ ∈ B(H) be such that T, T ′ ∈ [Cρ]<1. Then

‖LT ′,T ‖ = sup
z∈D

‖∆ρ,T ′∗(z)−1(I − z̄T ′∗)(I − z̄T ∗)−1∆ρ,T∗(z)‖,

where

∆ρ,T (z) := [ρI + (1 − ρ)(zT ∗ + z̄T ) + (ρ − 2)TT ∗]1/2, z ∈ D.

Moreover,

δρ(T, T ′) = ln max {‖LT,T ′‖ , ‖LT ′,T ‖} .

Proof. If T, T ′ ∈ [Cρ]<1, Theorem 3.4 implies

‖LT ′,T ‖ = ‖LT ′∗,T∗‖ = sup
z∈D

‖∆ρ,T∗(z)(I − zT )−1(I − zT ′)∆ρ,T ′∗(z)−1‖

= sup
z∈D

‖∆ρ,T ′∗(z)−1(I − z̄T ′∗)(I − z̄T ∗)−1∆ρ,T∗(z)‖.

Using now Theorem 3.5, we complete the proof. �

We mention that when ρ = 1, we recover a result obtained by I. Suciu [53],
using different methods. However, if ρ > 0 and ρ 6= 1, the result of Theorem
7.2 seems to be new. We also remark that Proposition 3.12 , Proposition 5.2,
and part (i) of Theorem 5.3 are new even in the single variable case (n = 1).
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The next result makes an interesting connection between the Harnack dom-
ination for n-tuples of operators in Cρ and and the Harnack domination for
ρ-contractions (n = 1), via the reconstruction operator.

Theorem 7.3. Let A := (A1, . . . , An) and B := (B1, . . . , Bn) be in Cρ and let
c > 0. Then the following statements are equivalent:

(i) A
H≺
c

B;

(ii) RA

H≺
c

RB , where RX := X∗
1 ⊗R1 + · · ·+ X∗

n ⊗Rn is the reconstruction

operator associated with X := (X1, . . . , Xn) ∈ Cρ and the right creation
operators R1, . . . , Rn.

(iii) R∗
A

H≺
c

R∗
B .

Proof. First, assume that item (i) holds. Due to Theorem 2.2, we have

(7.1) Pρ(rA, S) ≤ c2Pρ(rB, S)

for any r ∈ [0, 1), where S := (S1, . . . , Sn) is the n-tuple of left creation
operators. Let U be the unilateral shift on the Hardy space H2(T). Since
R∗

i Rj = δijI, the n-tuple (R1 ⊗ U∗, . . . , Rn ⊗ U∗) is a row contraction acting
from [F 2(Hn) ⊗ H2(T)]n to F 2(Hn) ⊗ H2(T). Applying the noncommutative
Poisson transform at (R1 ⊗ U∗, . . . , Rn ⊗ U∗) to inequality (7.1), we obtain

Qρ(rRA, U) =
(
id ⊗ P(R1⊗U∗,...,Rn⊗U∗)

)
[Pρ(rA, S)]

≤ c2
(
id ⊗ P(R1⊗U∗,...,Rn⊗U∗)

)
[Pρ(rB, S)] = c2Qρ(rRB , U)

for any r ∈ [0, 1). Using Proposition 7.1, we obtain that RA

H≺
c

RB. Now, assume

that (ii) holds. Proposition 7.1 implies

(7.2) Kρ(re
it, RA) ≤ c2Kρ(re

it, RB), r ∈ [0, 1) and t ∈ R.

Taking t = 0, we obtain Pρ(rA, R) ≤ c2Pρ(rB, R) for any r ∈ [0, 1), which, due

to Theorem 2.2, implies A
H≺
c

B. The equivalence (ii) ↔ (iii) is a consequence

of Proposition 7.1 and the fact that inequality (7.2) is equivalent to

Kρ(re
it, R∗

A) ≤ c2Kρ(re
it, R∗

B), r ∈ [0, 1) and t ∈ R.

This completes the proof. �

We remark that, according to Theorem 3.4 and Corollary 2.3, we have

‖LB,A‖ = ‖Cρ,AC−1
ρ,B‖ = inf{c > 1 : Pρ(A, R) ≤ c2Pρ(B, R)}

for any A, B ∈ [Cρ]<1, where Cρ,A is defined in Theorem 3.4.

Corollary 7.4. If A, B are n-tuples of operators in [Cρ]<1, then ‖LB,A‖ =
‖LRB,RA

‖ = ‖LR∗

B
,R∗

A
‖. Moreover, δρ(A, B) = δρ(RA, RB).
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