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Abstract. We show that the homotopy type of a complex manifold
X satisfying the Oka property is captured by holomorphic maps from
the affine spaces C

n, n ≥ 0, into X . Among such X are all complex
Lie groups and their homogeneous spaces. We present generalisations
of this result, one of which states that the homotopy type of the space
of continuous maps from any smooth manifold to X is given by a
simplicial set whose simplices are holomorphic maps into X .
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1. Introduction

Motivated by Gromov’s comments in his seminal paper [12], Sec. 3.5.G and
3.5.G’, we prove in Sec. 2 that the homotopy type of an Oka manifold X (as
a topological space) is captured by holomorphic maps from the affine spaces
C

n, n ≥ 0, into X . In Sec. 3 we present generalisations of this result. We start
with a very brief review of some background material.

The concept of an Oka manifold has evolved from Gromov’s paper and subse-
quent work, mainly due to Forstnerič, see in particular [4] and [5]. By a Stein

inclusion we mean the inclusion into a reduced Stein space S (or a Stein man-
ifold: the choice is immaterial) of a closed analytic subvariety T . A complex
manifold X has the basic Oka property with interpolation (BOPI) with respect
to T →֒ S if every continuous map h : S → X with h|T holomorphic can be
deformed to a holomorphic map S → X with h|T fixed. Also, X has the inter-

polation property with respect to T →֒ S if every holomorphic map h : T → X
extends to a holomorphic map S → X . The following are equivalent (see [15])
and define what it means for X to be Oka:
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(1) X has BOPI with respect to every Stein inclusion.
(2) X has the interpolation property, or equivalently BOPI, with respect

to every Stein inclusion T →֒ Cn, n ≥ 1, where T is contractible
(holomorphically or topologically: the choice is immaterial).

The Oka property has several other equivalent formulations. Each of these
has a parametric version, where instead of a single map h as above we have a
family of maps depending continuously on a parameter. The parametric Oka
properties are all equivalent [4], and are equivalent to the Oka property [7].

A holomorphic map f : X → Y has the parametric Oka property with inter-

polation (POPI) if for every Stein inclusion T →֒ S, every finite polyhedron P
with a subpolyhedron Q, and every continuous map g : S × P → X such that
the restriction g|S × Q is holomorphic along S (meaning that g(·, q) : S → X
is holomorphic for each q ∈ Q), the restriction g|T ×P is holomorphic along T ,
and the composition f ◦ g is holomorphic along S, there is a continuous map
G : S × P × I → X , where I = [0, 1], such that:

(1) G(·, ·, 0) = g,
(2) G(·, ·, 1) : S × P → X is holomorphic along S,
(3) G(·, ·, t) = g on S × Q and on T × P for all t ∈ I,
(4) f ◦ G(·, ·, t) = f ◦ g on S × P for all t ∈ I.

Equivalently, Q →֒ P may be taken to be any cofibration between cofibrant
topological spaces, such as the inclusion of a subcomplex in a CW-complex,
and the existence of G can be replaced by the stronger statement that the
inclusion into the space, with the compact-open topology, of continuous maps
h : S × P → X with h = g on S × Q and on T × P and f ◦ h = f ◦ g on
S × P of the subspace of maps that are holomorphic along S is acyclic, that
is, a weak homotopy equivalence (see [14], §16). Taking P to be a point and
Q empty defines BOPI for f . A complex manifold X is Oka if and only if the
constant map from X to a point satisfies BOPI or, equivalently, POPI. For
maps in general, it is not known whether BOPI implies POPI.

The notion of a holomorphic submersion being subelliptic was defined by
Forstnerič [2], generalising the concept of ellipticity due to Gromov [12]. Subel-
lipticity is the weakest currently-known sufficient geometric condition for a
holomorphic map to satisfy POPI (see Forstnerič’s recently-proved parametric
Oka principle for liftings [6]) and for a complex manifold to be Oka.

By the influential work of Grauert in [9] and [10], the primary examples of
Oka manifolds, to which our results apply, are complex Lie groups and their
homogeneous spaces, that is, complex manifolds on which a complex Lie group
acts holomorphically and transitively. Among other known examples are Cn\A,
where A is an algebraic or a tame analytic subvariety of codimension at least
2, Pn \ A, where A is a subvariety of codimension at least 2, Hopf manifolds,
Hirzebruch surfaces, and the complement of a finite set in a complex torus of
dimension at least 2 (see [3] and [5]).
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2. Oka manifolds are homotopically elliptic

Our results are naturally formulated in the language of simplicial sets. Simpli-
cial sets are combinatorial objects that have a homotopy theory equivalent to
that of topological spaces, but tend to be more useful or at least more conve-
nient than topological spaces for various homotopy-theoretic purposes. For an
introduction to simplicial sets, we refer the reader to [8] or [16].

We denote by ∆ the category of finite ordinals and order-preserving maps. The
objects of ∆ are the sets n = {0, 1, 2, . . . , n}, n ∈ N, with the usual order, and a
morphism θ : n → m is a map such that θ(i) ≤ θ(j) whenever 0 ≤ i ≤ j ≤ n. A
cosimplicial object in a category C is a functor ∆ → C. A simplicial object in C
is a functor from the opposite category ∆

op to C. In particular, a simplicial set
is a functor from ∆

op to the category Set of sets. The category of simplicial
objects in C is denoted sC. A cosimplicial object A• in C induces a functor
hA•

: C → sSet, X 7→ homC(A•, X). We call the simplicial set homC(A•, X)
the homotopy type of X with respect to A•.

The standard n-simplex Tn, n ≥ 0, is the subset

Tn = {(t0, . . . , tn) ∈ R
n+1 : t0 + · · · + tn = 1, t0, . . . , tn ≥ 0}

of Rn+1 with the subspace topology. An order-preserving map θ : n → m

induces a continuous map θ∗ : Tn → Tm defined by the formula θ∗(t0, . . . , tn) =
(s0, . . . , sm), where

si =
∑

j∈θ−1(i)

tj

(the sum is interpreted as zero if θ−1(i) is empty). It is easy to check that
this defines a cosimplicial object T• in the category of topological spaces. The
homotopy type sX = C (T•, X) of a topological space X with respect to T• is
the usual homotopy type of X . Here, for each n ≥ 0, C (Tn, X) denotes the set
of continuous maps Tn → X . The simplicial set sX is called the singular set
of X . It is a fibrant simplicial set, that is, a Kan complex.

The affine n-simplex An, n ≥ 0, is the affine subspace

An = {(t0, . . . , tn) ∈ C
n+1 : t0 + · · · + tn = 1}

of Cn+1, viewed as a complex manifold biholomorphic to Cn. An order-
preserving map θ : n → m induces a holomorphic map θ∗ : An → Am defined
by the same formula as above, and we have a cosimplicial object A• in the
category of complex manifolds. We call the homotopy type eX = O(A•, X) of
a complex manifold X with respect to A• the affine homotopy type of X . Here,
for each n ≥ 0, O(An, X) denotes the set of holomorphic maps An → X . We
also call the simplicial set eX the affine singular set of X .

A holomorphic map An → X is determined by its restriction to Tn ⊂ An, so we
have a monomorphism, that is, a cofibration eX →֒ sX . The following lemma
comes from basic homotopy theory.

Lemma. For a complex manifold X, the following are equivalent.
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(a) The affine singular set eX is fibrant and the cofibration eX →֒ sX is

a weak equivalence of simplicial sets.

(b) The cofibration eX →֒ sX is the inclusion of a strong deformation

retract.

Proof. (a) ⇒ (b) by [13], Prop. 7.6.11.

(b) ⇒ (a) by [13], Prop. 7.8.3, and since a retract of a fibrant object is fibrant.
�

We say that X is homotopically elliptic if conditions (a) and (b) are satisfied.
Then the usual homotopy type of X as a topological space is represented by
the affine singular set eX of X .

If X is connected and homotopically elliptic, then X is C-connected, meaning
that any two points in X can be joined by an entire curve. In fact, any finite
subset of X lies in a holomorphic image of C. On the other hand, if X is Brody
hyperbolic, then eX is discrete.

Theorem 1. An Oka manifold is homotopically elliptic.

Proof. Let Zn = {(z1, . . . , zn) ∈ Cn : zj = 0 for some j} be the union of
the coordinate hyperplanes in Cn, n ≥ 2. If X is an Oka manifold, every
holomorphic map Zn → X extends to a holomorphic map Cn → X , but this is
precisely what it means for eX to be fibrant.

The homotopy groups πm(K, ∗), m ≥ 1, of a Kan complex K with respect to
a base point ∗ ∈ K0 may be simply described as follows:

πm(K, ∗) = {a ∈ Km : dja = ∗ for j = 0, . . . , m}/ ∼,

where dj : Km → Km−1 is the face map that in the case of sX and eX acts by
precomposition by the map

δj : (t0, . . . , tm−1) 7→ (t0, . . . , tj−1, 0, tj, . . . , tm−1),

and ∼ is the equivalence relation with a ∼ b for a, b ∈ Km with all faces ∗
if there is c ∈ Km+1 such that djc = a for some j, djc = b for another j,
and djc = ∗ for the remaining values of j. Identifying vertices a, b ∈ K0 if
there is c ∈ K1 with d0c = a and d1c = b (this is an equivalence relation)
gives the set π0(K) of path components of K. (See e.g. [1], Th. 2.4, or [17],
Sec. 8.2—homotopy groups of non-fibrant simplicial sets are not so easily dealt
with.)

Since X is Oka, two points in the same path component of X can be joined by
a holomorphic image of C. Thus the inclusion eX →֒ sX induces a bijection
π0(eX) → π0(sX).

By induction over m we obtain continuous retractions ρm : Am → Tm, m ≥ 0,
such that ρm+1 ◦ δj = δj ◦ ρm for j = 0, . . . , m, so ρm retracts each face of Am

onto the corresponding face of Tm. The continuous surjection σm : Tm × I →
Tm+1,

(t0, . . . , tm, s) 7→ (t0(1 − s), t1, . . . , tm, t0s),
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m ≥ 1, collapses each segment {x}× I, where x belongs to the face of Tm with
t0 = 0, and makes no other identifications.

Let m ≥ 1 and choose a base point ∗ ∈ X . To prove surjectivity of the induced
map πm(eX, ∗) → πm(sX, ∗), we need to show that if a ∈ smX has all faces
∗, then there is b ∈ emX with all faces ∗ that is equivalent to a by some
c ∈ sm+1X . Now a0 = a ◦ ρm : Am → X is continuous with all faces ∗, so since
X is Oka, there is a continuous deformation at, t ∈ I, of a0, such that a1 is
holomorphic and at has all faces ∗ for all t ∈ I. The restriction to Tm × I of
the deformation factors through σm by a map Tm+1 → X , which is continuous
since σm is a quotient map, and which is the desired c.

To prove injectivity of the induced map πm(eX, ∗) → πm(sX, ∗), we need to
show that if a, b ∈ emX with all faces ∗ are equivalent by c ∈ sm+1X , say
dc = (a, b, ∗, . . . , ∗), then a and b are also equivalent by some c′ ∈ em+1X .
Continuously extend c to Tm+1 ∪ Wm+1, where Wm+1 = {(t0, . . . , tm+1) ∈
Am+1 : tj = 0 for some j}, such that dc is still (a, b, ∗, . . . , ∗). Use the acyclic
cofibration Tm+1 ∪ Wm+1 →֒ Am+1 to further extend c to a continuous map
c : Am+1 → X . Since X is Oka, c may be deformed to c′ ∈ em+1X with
dc′ = dc. �

The author has tried to directly construct a strong deformation retraction from
sX onto eX , but without success.

The proof shows that a complex manifold is homotopically elliptic if and only
if it satisfies the interpolation property with respect to the Stein inclusions
Zn →֒ C

n, n ≥ 2, and a weak version of BOPI with respect to the Stein
inclusions Wn →֒ An

∼= Cn, n ≥ 1.

3. Generalisations

Theorem 1 is a special case of a more general result. Let f : X → Y be a
holomorphic map between complex manifolds and T →֒ S be a Stein inclusion.
Let

T //

��

X

��

S // Y

be a commuting square of holomorphic maps. Let LO be the space, with the
compact-open topology, of holomorphic liftings in the square, and LC be the
space of continuous liftings. Let eLO be the simplicial set whose n-simplices,
n ≥ 0, are the holomorphic maps λ : S×An → X such that λ(·, t) is a lifting in
the square for every t ∈ An, and whose maps taking m-simplices to n-simplices
are given by precomposing in the second variable by the holomorphic maps
θ∗ : An → Am described above. There are inclusions

eLO →֒i
′

sLO →֒i
′′

sLC .
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If f satisfies POPI, then i′′ is a weak equivalence (see [14], §16). Also, the proof
of the Theorem is easily generalised to show that if f satisfies BOPI, then eLO

is fibrant and i′′ ◦ i′ is a weak equivalence. Thus, if f satisfies POPI, i′ is a
weak equivalence of Kan complexes.

Theorem 1 is the case when T is empty and S and Y are points. A less special
case is when T is empty and Y is a point. Then liftings in the square are simply
maps S → X , so we write eO(S, X) for eLO and conclude that if X is Oka,
then the inclusions eO(S, X) →֒ sO(S, X) →֒ sC (S, X) are weak equivalences
of Kan complexes.

Generalising this in a different direction, we can represent the the homotopy
type of the space C (M, X) of continuous maps from any smooth manifold M
to an Oka manifold X by a simplicial set whose simplices are holomorphic
maps into X . Namely, assuming as we may that M is real-analytic, by a well-
known result of Grauert [11], M can be real-analytically embedded into a Stein
manifold S such that M is a strong deformation retract of S. Then, if X is
Oka, the homotopy type of C (M, X) is given by the Kan complex eO(S, X).

For ease of reference, we summarise the above as a theorem.

Theorem 2. Let X be an Oka manifold.

(1) For every Stein manifold S, the inclusions

eO(S, X) →֒ sO(S, X) →֒ sC (S, X)

are weak equivalences of Kan complexes.

(2) For every smooth manifold M , there is a Stein manifold S such that

the homotopy type of C (M, X) is given by the Kan complex eO(S, X).
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