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Abstract. The notion of a subproduct system, a generalization of
that of a product system, is introduced. We show that there is an
essentially 1 to 1 correspondence between cp-semigroups and pairs
(X,T ) where X is a subproduct system and T is an injective subprod-
uct system representation. A similar statement holds for subproduct
systems and units of subproduct systems. This correspondence is used
as a framework for developing a dilation theory for cp-semigroups. Re-
sults we obtain:
(i) a ∗-automorphic dilation to semigroups of ∗-endomorphisms over
quite general semigroups;
(ii) necessary and sufficient conditions for a semigroup of CP maps to
have a ∗-endomorphic dilation;
(iii) an analogue of Parrot’s example of three contractions with no
isometric dilation, that is, an example of three commuting, contrac-
tive normal CP maps on B(H) that admit no ∗-endomorphic dilation
(thereby solving an open problem raised by Bhat in 1998).
Special attention is given to subproduct systems over the semigroup
N, which are used as a framework for studying tuples of operators
satisfying homogeneous polynomial relations, and the operator alge-
bras they generate. As applications we obtain a noncommutative
(projective) Nullstellensatz, a model for tuples of operators subject to
homogeneous polynomial relations, a complete description of all rep-
resentations of Matsumoto’s subshift C∗-algebra when the subshift
is of finite type, and a classification of certain operator algebras –
including an interesting non-selfadjoint generalization of the noncom-
mutative tori.
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Introduction

Motivation: dilation theory of CP0-semigroups. We begin by describ-
ing the problems that motivated this work.
Let H be a separable Hilbert space, and let M ⊆ B(H) be a von Neumann
algebra. A CP map on M is a contractive, normal and completely positive
map. A CP0-semigroup on M is a family Θ = {Θt}t≥0 of unital CP maps on
M satisfying the semigroup property

Θs+t(a) = Θs(Θt(a)) , s, t ≥ 0, a ∈M,

Θ0(a) = a , a ∈ B(H),

and the continuity condition

lim
t→t0
〈Θt(a)h, g〉 = 〈Θt0(a)h, g〉 , a ∈ M, h, g ∈ H.
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A CP0-semigroup is called an E0-semigroup if each of its elements is a ∗-
endomorphism.
Let Θ be a CP0-semigroup acting onM, and let α be an E0-semigroup acting
on R, where R is a von Neumann subalgebra of B(K) and K ⊇ H . Denote
the orthogonal projection of K onto H by p. We say that α is an E0-dilation
of Θ if for all t ≥ 0 and b ∈ R
(0.1) Θt(pbp) = pαt(b)p.

In the mid 1990’s Bhat proved the following result, known today as “Bhat’s
Theorem” (see [9] for the caseM = B(H), and also [40, 15, 29, 6] for different
proofs and for the general case):

Theorem 0.1. (Bhat). Every CP0-semigroup has a unique minimal E0-
dilation.

A natural question is then this: given two commuting CP0-semigroups, can
one simultaneously dilate them to a pair of commuting E0-semigroups? In [43]
the following partial positive answer was obtained2:

Theorem 0.2. [43, Theorem 6.6] Let {φt}t≥0 and {θt}t≥0 be two strongly com-
muting CP0-semigroups on a von Neumann algebra M⊆ B(H), where H is a
separable Hilbert space. Then there is a separable Hilbert space K containing H
and an orthogonal projection p : K → H, a von Neumann algebra R ⊆ B(K)
such that M = pRp, and two commuting E0-semigroups α and β on R such
that

φs ◦ θt(pbp) = pαs ◦ βt(b)p

for all s, t ≥ 0 and all b ∈ R.

In other words: every two-parameter CP0-semigroup that satisfies an addi-
tional condition of strong commutativity has a two-parameter E0-dilation. The
condition of strong commutativity was introduced in [48]. A precise definition
will not be given here. The main tools in the proof of Theorem 0.2,
and also in some of the proofs of Theorem 0.1, were product sys-
tems of W∗-correspondences and their representations. In fact, the
only place in the proof of Theorem 0.2 where the assumption of strong com-
mutativity is used, is in the construction of a certain product system. More
about that later.
In [10], Bhat showed that given a pair of commuting CP maps Θ and Φ on
B(H), there is a Hilbert space K ⊇ H and a pair of commuting normal ∗-
endomorphisms α and β acting on B(K) such that

Θm ◦ Φn(pbp) = pαm ◦ βn(b)p , b ∈ B(K)

for all m,n ∈ N (here p denotes the projection of K onto H). Later on Solel,
using a different method (using in fact product systems and their representa-
tions), proved this result for commuting CP maps on arbitrary von Neumann
algebras [48]. Neither one of the above results requires strong commutativity.

2The same result was obtained in [42] for nonunital semigroups acting on M = B(H).
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In light of the above discussion, and inspired by classical dilation theory [47, 49],
it is natural to conjecture that every two commuting (not necessarily strongly
commuting) CP0-semigroups have an E0-dilation, and in fact that the same is
true for any k commuting CP0-semigroups, for any positive integer k. However,
the framework given by product systems seems to be too weak to prove this.
Trying to bypass this stoppage, we arrived at the notion of a subproduct system.

Background: from product systems to subproduct systems. Prod-
uct systems of Hilbert spaces over R+ were introduced by Arveson some 20
years ago in his study of E0-semigroups [3]. In a few imprecise words, a prod-
uct system of Hilbert spaces over R+ is a bundle {X(t)}t∈R+ of Hilbert spaces
such that

X(s+ t) = X(s)⊗X(t) , s, t ∈ R+.

We emphasize immediately that Arveson’s definition of product systems re-
quired also that the bundle carry a certain Borel measurable structure, but we
do not deal with these matters here. To every E0-semigroup Arveson associated
a product system, and it turns out that the product system associated to an
E0-semigroup is a complete cocycle conjugacy invariant of the E0-semigroup.
Later, product systems of Hilbert C∗-correspondences over R+ appeared (see
the survey [46] by Skeide). In [15], Bhat and Skeide associate with every
semigroup of completely positive maps on a C∗-algebra A a product system of
Hilbert A-correspondences. This product system was then used in showing that
every semigroup of completely positive maps can be “dilated” to a semigroup of
∗-endomorphisms. Muhly and Solel introduced a different construction [29]: to
every CP0-semigroup on a von Neumann algebraM they associated a product
system of Hilbert W∗-correspondences overM′, the commutant of M. Again,
this product system is then used in constructing an E0-dilation for the original
CP0-semigroup.
Product systems of C∗-correspondences over semigroups other than R+ were
first studied by Fowler [21], and they have been studied since then by many
authors. In [48], product systems over N2 (and their representations) were stud-
ied, and the results were used to prove that every pair of commuting CP maps
has a ∗-endomorphic dilation. Product systems over R2

+ were also central to the
proof of Theorem 0.2, where every pair of strongly commuting CP0-semigroups
is associated with a product system over R2

+. However, the construction of the
product system is one of the hardest parts in that proof. Furthermore, that
construction fails when one drops the assumption of strong commutativity, and
it also fails when one tries to repeat it for k strongly commuting semigroups.
On the other hand there is another object that may be naturally associated
with a semigroup of CP maps over any semigroup: this object is the subproduct
system, which, when the CP maps act on B(H), is the bundle of Arveson’s
“metric operator spaces” (introduced in [4]). Roughly, a subproduct system of
correspondences over a semigroup S is a bundle {X(s)}s∈S of correspondences
such that

X(s+ t) ⊆ X(s)⊗X(t) , s, t ∈ S.
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See Definition 1.1 below. Of course, a difficult problem cannot be made easy
just by introducing a new notion, and the problem of dilating k-parameter
CP0-semigroups remains unsolved. However, subproduct systems did already
provide us with an efficient general framework for tackling various problems
in operator algebras, and in particular it has led us to a progress toward the
solution of the discrete analogue of the above unsolved problem.
While preparing this paper we learned that Bhat and Mukherjee have also
considered subproduct systems over the semigroup R+ ([14]). They called it
inclusion systems and used it to compute the index of certain product systems.
This paper consists of two parts. In the first part we introduce subproduct
systems over general semigroups, show the connection between subproduct sys-
tems and cp-semigroups, and use this connection to obtain three main results
in dilation theory of cp-semigroups. The first result is that every e0-semigroup
over a (certain kind of) semigroup S can be dilated to a semigroup of ∗-
automorphisms on some type I factor. The second is some necessary conditions
and sufficient conditions for a cp-semigroup to have a (minimal) ∗-endomorphic
dilation. The third is an analogue of Parrot’s example of three contractions
with no isometric dilation, that is, an example of three commuting, contractive
normal CP maps onB(H) that admit no ∗-endomorphic dilation. The CP maps
in the stated example can be taken to have arbitrarily small norm, providing
the first example of a theorem in the classical theory of isometric dilations that
cannot be generalized to the theory of e-dilations of cp-semigroups.
Having convinced the reader that subproduct systems are an interesting and
important object, we turn in the second part of the paper to take a closer look
at the simplest examples of subproduct systems, that is, subproduct systems
of Hilbert spaces over N. We study certain tuples of operators and operator
algebras that can be naturally associated with every subproduct system, and
explore the relationship between these objects and the subproduct systems that
give rise to them.

Some preliminaries. M and N will denote von Neumann subalgebras of
B(H), where H is some Hilbert space.
In Sections 1 through 5, S will denote a sub-semigroup of Rk

+. In fact, in large
parts of the paper S can be taken to be any semigroup with unit, or at least any
Ore semigroup (see [25] for a definition), but we prefer to avoid this distraction.

Definition 0.3. A cp-semigroup is a semigroup of CP maps, that is, a family
Θ = {Θs}s∈S of completely positive, contractive and normal maps on M such
that

Θs+t(a) = Θs(Θt(a)) , s, t ∈ S, a ∈ M
and

Θ0(a) = a , a ∈M.

A cp0-semigroup is a semigroup of unital CP maps. An e-semigroup is a
semigroup of ∗-endomorphisms. An e0-semigroup is a semigroup of unital ∗-
endomorphisms.
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For concreteness, one should think of the case S = Nk, where a cp-semigroup is
a k-tuple of commuting CP maps, or the case S = Rk

+, where a cp-semigroup is
a k-parameter semigroup of CP maps, or k mutually commuting one-parameter
cp-semigroups.

Definition 0.4. Let Θ = {Θs}s∈S be a cp-semigroup acting on a von Neumann
algebra M ⊆ B(H). An e-dilation of Θ is a triple (α,K,R) consisting of
a Hilbert space K ⊇ H (with orthogonal projection PH : K → H), a von
Neumann algebra R ⊆ B(K) that containsM as a corner M = PHRPH , and
an e-semigroup α = {αs}s∈S on R such that for all T ∈ R, s ∈ S,

Θs(PHTPH) = PHαs(T )PH .

Definition 0.5. Let A be a C∗-algebra. A Hilbert C∗-correspondences over
A is a (right) Hilbert A-module E which carries a non-degenerate, adjointable,
left action of A.

Definition 0.6. Let M be a W ∗-algebra. A Hilbert W ∗-correspondence over
M is a self-adjoint Hilbert C∗-correspondence E over M, such that the map
M→ L(E) which gives rise to the left action is normal.

Definition 0.7. Let E be a C∗-correspondence over A, and let H be a Hilbert
space. A pair (σ, T ) is called a completely contractive covariant representation
of E on H (or, for brevity, a c.c. representation) if

(1) T : E → B(H) is a completely contractive linear map;
(2) σ : A→ B(H) is a nondegenerate ∗-homomorphism; and
(3) T (xa) = T (x)σ(a) and T (a ·x) = σ(a)T (x) for all x ∈ E and all a ∈ A.

If A is a W ∗-algebra and E is W ∗-correspondence then we also require that σ
be normal.

Given a C∗-correspondence E and a c.c. representation (σ, T ) of E on H ,
one can form the Hilbert space E ⊗σ H , which is defined as the Hausdorff
completion of the algebraic tensor product with respect to the inner product

〈x⊗ h, y ⊗ g〉 = 〈h, σ(〈x, y〉)g〉.
One then defines T̃ : E ⊗σ H → H by

T̃ (x⊗ h) = T (x)h.

Definition 0.8. A c.c. representation (σ, T ) is called isometric if for all x, y ∈
E,

T (x)∗T (y) = σ(〈x, y〉).
(This is the case if and only if T̃ is an isometry). It is called fully coisometric

if T̃ is a coisometry.

Given two Hilbert C∗-correspondences E and F over A, the balanced (or inner)
tensor product E ⊗F is a Hilbert C∗-correspondence over A defined to be the
Hausdorff completion of the algebraic tensor product with respect to the inner
product

〈x⊗ y, w ⊗ z〉 = 〈y, 〈x,w〉 · z〉 , x, w ∈ E, y, z ∈ F.
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The left and right actions are defined as a · (x⊗ y) = (a ·x)⊗ y and (x⊗ y)a =
x⊗(ya), respectively, for all a ∈ A, x ∈ E, y ∈ F . When working in the context
of W ∗-correspondences, that is, if E and F are W*-correspondences and A is
a W ∗-algebra, then E ⊗ F is understood do be the self-dual extension of the
above construction.

Detailed overview of the paper. Subproduct systems, their represen-
tations, and their units, are defined in the next section. The following two
sections, 2 and 3, can be viewed as a reorganization and sharpening of some
known results, including several new observations.
Section 2 establishes the correspondence between cp-semigroups and subprod-
uct systems. It is shown that given a subproduct system X of N - correspon-
dences and a subproduct system representationR of X on H , we may construct
a cp-semigroup Θ acting on N ′. We denote this assignment as Θ = Σ(X,R).
Conversely, it is shown that given a cp-semigroup Θ acting on M, there is a
subproduct system E (called the Arveson-Stinespring subproduct system of Θ)
of M′-correspondences and an injective representation T of E on H such that
Θ = Σ(E, T ). Denoting this assignment as (E, T ) = Ξ(Θ), we have that Σ◦Ξ is
the identity. In Theorem 2.6 we show that Ξ◦Σ is also, after restricting to pairs
(X,R) with R an injective representation (and up to some “isomorphism”), the
identity. This allows us to deduce (Corollary 2.8) that a subproduct system
that is not a product system has no isometric representations. We introduce
the Fock spaces associated to a subproduct system and the canonical shift rep-
resentations. These constructs allow us to show that every subproduct system
is the Arveson-Stinespring subproduct system of some cp-semigroup.
In Section 3 we briefly sketch the picture that is dual to that of Section 2. It is
shown that given a subproduct system and a unit of that subproduct system
one may construct a cp-semigroup, and that every cp-semigroup arises this way.
In Section 4, we construct for every subproduct system X and every fully
coisometric subproduct system representation T of X on a Hilbert space, a
semigroup T̂ of contractions on a Hilbert space that captures “all the informa-
tion” about X and T . This construction is a modification of the construction
introduced in [41] for the case where X is a product system. It turns out that

when X is merely a subproduct system, it is hard to apply T̂ to obtain new
results about the representation T . However, when X is a true product sys-
tem T̂ is very handy, and we use it to prove that every e0-semigroup has a
∗-automorphic dilation (in a certain sense).
Section 5 begins with some general remarks regarding dilations and pieces of
subproduct system representations, and then the connection between the di-
lation theories of cp-semigroups and of representations of subproduct systems
is made. We define the notion of a subproduct subsystem and then we define
dilations and pieces of subproduct system representations. These notions gen-
eralize the notions of commuting piece or q-commuting piece of [12] and [19],
and also generalizes the definition of dilation of a product system representa-
tion of [29]. Proposition 5.8, Theorem 5.12 and Corollary 5.13 show that the
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1-1 correspondences Σ and Ξ between cp-semigroups and subproduct systems
with representations take isometric dilations of representations to e-dilations
and vice-versa. This is used to obtain an example of three commuting, unital
and contractive CP maps on B(H) for which there exists no e-dilation act-
ing on a B(K), and no minimal dilation acting on any von Neumann algebra
(Theorem 5.14).
In Section 5 we also present a reduction of both the problem of constructing an
e0-dilation to a cp0-semigroup, and the problem of constructing an e-dilation
to a k-tuple of commuting CP maps with small enough norm, to the problem
of embedding a subproduct system in a larger product system. We show that
not every subproduct system can be embedded in a product system (Propo-
sition 5.15), and we use this to construct an example of three commuting CP
maps θ1, θ2, θ3 such that for any λ > 0 the three-tuple λθ1, λθ2, λθ3 has no
e-dilation (Theorem 5.16). This unexpected phenomenon has no counterpart
in the classical theory of isometric dilations, and provides the first example of
a theorem in classical dilation theory that cannot be generalized to the theory
of e-dilations of cp-semigroups.
The developments described in the first part of the paper indicate that sub-
product systems are worthwhile objects of study, but to make progress we must
look at plenty of concrete examples. In the second part of the paper we be-
gin studying subproduct systems of Hilbert spaces over the semigroup N. In
Section 6 we show that every subproduct system (of W∗-correspondences) over
N is isomorphic to a standard subproduct system, that is, it is a subproduct
subsystem of the full product system {E⊗n}n∈N for some W∗-correspondence
E. Using the results of the previous section, this gives a new proof to the
discrete analogue of Bhat’s Theorem: every cp0-semigroup over N has an e0-
dilation. Given a subproduct system we define the standard X-shift, and we
show that if X is a subproduct subsystem of Y , then the standard X-shift is
the maximal X-piece of the standard Y -shift, generalizing and unifying results
from [12, 19, 39].
In Section 7 we explain why subproduct systems are convenient for studying
noncommutative projective algebraic geometry. We show that every homo-
geneous ideal I in the algebra C〈x1, . . . , xd〉 of noncommutative polynomials
corresponds to a unique subproduct system XI , and vice-versa. The represen-
tations of XI on a Hilbert space H are precisely determined by the d-tuples in
the zero set of I,

Z(I) = {T = (T1, . . . , Td) ∈ B(H)d : ∀p ∈ I.p(T ) = 0}.
A noncommutative version of the Nullstellensatz is obtained, stating that

{p ∈ C〈x1, . . . , xd〉 : ∀T ∈ Z(I).p(T ) = 0} = I.

Section 8 starts with a review of a powerful tool, Gelu Popescu’s “Poisson
Transform” [38]. Using this tool we derive some basic results (obtained previ-
ously by Popescu in [39]) which allow us to identify the operator algebra AX

generated by the X-shift as the universal unital operator algebra generated by a
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row contraction subject to homogeneous polynomial identities. We then prove
that every completely bounded representation of a subproduct system X is a
piece of a scaled inflation of the X-shift, and derive a related “von Neumann
inequality”.
In Section 9 we discuss the relationship between a subproduct system X and
AX , the (non-selfadjoint operator algebra generated by the X-shift). The main
result in this section is Theorem 9.7, which says that X ∼= Y if and only if AX

is completely isometrically isomorphic to AY by an isomorphism that pre-
serves the vacuum state. This result is used in Section 10, where we study the
universal norm closed unital operator algebra generated by a row contraction
(T1, . . . , Td) satisfying the relations

TiTj = qijTjTi , 1 ≤ i < j ≤ d,
where q = (qi,j)d

i,j=1 ∈ Mn(C) is a matrix such that qj,i = q−1
i,j . These non-

selfadjoint analogues of the noncommutative tori, are shown to be classified by
their subproduct systems when qi,j 6= 1 for all i, j. In particular, when d = 2,
we obtain the universal algebra for the relation

T1T2 = qT2T1,

which we call Aq. It is shown that Aq is isomorphically isomorphic to Ar if
and only if q = r or q = r−1.
In Section 11 we describe all standard maximal subproduct systems X with
dimX(1) = 2 and dimX(2) = 3, and classify their algebras up to isometric
isomorphisms.
In the closing section of this paper, Section 12, we find that subproduct systems
are also closely related to subshifts and to the subshift C∗-algebras introduced
by K. Matsumoto [28]. We show how every subshift gives rise to a subproduct
system, and characterize the subproduct systems that come from subshifts.
We use this connection together with the results of Section 8 to describe all
representations of subshift C∗-algebras that come from a subshift of finite type
(Theorem 12.7).

Acknowledgments. The authors owe their thanks to Eliahu Levy for point-
ing out a mistake in a previous version of the paper, and to Michael Skeide, for
several helpful remarks.
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Part 1. Subproduct systems and cp-semigroups

1. Subproduct systems of Hilbert W ∗-correspondences

Definition 1.1. Let N be a von Neumann algebra. A subproduct system of
Hilbert W ∗-correspondences over N is a family X = {X(s)}s∈S of Hilbert
W ∗-correspondences over N such that

(1) X(0) = N ,
(2) For every s, t ∈ S there is a coisometric mapping of N -correspondences

Us,t : X(s)⊗X(t)→ X(s+ t),

(3) The maps Us,0 and U0,s are given by the left and right actions of N on
X(s),

(4) The maps Us,t satisfy the following associativity condition:

(1.1) Us+t,r

(
Us,t ⊗ IX(r)

)
= Us,t+r

(
IX(s) ⊗ Ut,r

)
.

The difference between a subproduct system and a product system is that in a
subproduct system the maps Us,t are only required to be coisometric, while in a
product system these maps are required to be unitaries. Thus, given the image
Us,t(x⊗ y) of x⊗ y in X(s+ t), one cannot recover x and y. Thus, subproduct
systems may be thought of as irreversible product systems. The terminology
is, admittedly, a bit awkward. It may be more sensible – however, impossible
at present – to use the term product system for the objects described above
and to use the term full product system for product system.

Example 1.2. The simplest example of a subproduct system F = FE =
{F (n)}n∈N is given by

F (n) = E⊗n,

where E is some W∗-correspondence. F is actually a product system. We shall
call this subproduct system the full product system (over E).

Example 1.3. Let E be a fixed Hilbert space. We define a subproduct system
(of Hilbert spaces) SSP = SSPE over N using the familiar symmetric tensor
products (one can obtain a subproduct system from the anti-symmetric tensor
products as well). Define

E⊗n = E ⊗ · · · ⊗E,
(n times). Let pn be the projection of E⊗n onto the symmetric subspace of
E⊗n, given by

pnk1 ⊗ · · · ⊗ kn =
1

n!

∑

σ∈Sn

kσ−1(1) ⊗ · · · ⊗ kσ−1(n).

We define
SSP (n) = Esn := pnE

⊗n,

the symmetric tensor product of E with itself n times (SSP (0) = C). We
define a map Um,n : SSP (m)⊗ SSP (n)→ SSP (m+ n) by

Um,n(x⊗ y) = pm+n(x⊗ y).
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The U ’s are coisometric maps because every projection, when considered as a
map from its domain onto its range, is coisometric. A straightforward calcula-
tion shows that (1.1) holds (see [35, Corollary 17.2]). In these notes we shall
refer to SSP (or SSPE to be precise) as the symmetric subproduct system (over
E).

Definition 1.4. Let X and Y be two subproduct systems over the same semi-
group S (with families of coisometries {UX

s,t}s,t∈S and {UY
s,t}s,t∈S). A family

V = {Vs}s∈S of maps Vs : X(s) → Y (s) is called a morphism of subproduct
systems if V0 : X(0)→ Y (0) is the identity, if for all s ∈ S \ {0} the map Vs is
a coisometric correspondence map, and if for all s, t ∈ S the following identity
holds:

(1.2) Vs+t ◦ UX
s,t = UY

s,t ◦ (Vs ⊗ Vt).

V is said to be an isomorphism if Vs is a unitary for all s ∈ S \ {0}. X is said
to be isomorphic to Y if there exists an isomorphism V : X → Y .

There is an obvious extension of the above definition to the case where X(0)
and Y (0) are ∗-isomorphic. The above notion of morphism is not optimized
in any way. It is simply precisely what we need in order to develop dilation
theory for cp-semigroups.

Definition 1.5. Let N be a von Neumann algebra, let H be a Hilbert space, and
let X be a subproduct system of Hilbert N -correspondences over the semigroup
S. Assume that T : X → B(H), and write Ts for the restriction of T to X(s),
s ∈ S, and σ for T0. T (or (σ, T )) is said to be a completely contractive
covariant representation of X if

(1) For each s ∈ S, (σ, Ts) is a c.c. representation of X(s); and
(2) Ts+t(Us,t(x ⊗ y)) = Ts(x)Tt(y) for all s, t ∈ S and all x ∈ X(s), y ∈

X(t).

T is said to be an isometric (fully coisometric) representation if it is an iso-
metric (fully coisometric) representation on every fiber X(s).

Since we shall not be concerned with any other kind of representation, we shall
call a completely contractive covariant representation of a subproduct system
simply a representation.

Remark 1.6. Item 2 in the above definition of product system can be rewritten
as follows:

T̃s+t(Us,t ⊗ IH) = T̃s(IX(s) ⊗ T̃t).

Here T̃s : X(s)⊗σ H → H is the map given by

T̃s(x⊗ h) = Ts(x)h.

Example 1.7. We now define a representation T of the symmetric subproduct
system SSP from Example 1.3 on the symmetric Fock space. Denote by F+

the symmetric Fock space

F+ =
⊕

n∈N

Esn.
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For every n ∈ N, the map Tn : SSP (n) = Esn → B(F+) is defined on the
m-particle space Esm by putting

Tn(x)y = pn+m(x ⊗ y)

for all x ∈ X(n), y ∈ Esm. Then T extends to a representation of the sub-
product system SSP on F+ (to see that item 2 of Definition 1.5 is satisfied one
may use again [35, Corollary 17.2]).

Definition 1.8. Let X = {X(s)}s∈S be a subproduct system of N -
correspondences over S. A family ξ = {ξs}s∈S is called a unit for X if

(1.3) ξs ⊗ ξt = U∗
s,tξs+t.

A unit ξ = {ξs}s∈S is called unital if 〈ξs, ξs〉 = 1N for all s ∈ S, it is called
contractive if 〈ξs, ξs〉 ≤ 1N for all s ∈ S, and it is called generating if X(s) is
spanned by elements of the form
(1.4)
Us1+···+sn−1,sn

(· · ·Us1+s2,s3(Us1,s2(a1ξs1 ⊗ a2ξs2)⊗ a3ξs3 )⊗ · · · ⊗ anξsn
an+1),

where s = s1 + s2 + · · ·+ sn.

From (1.3) follows the perhaps more natural looking

Us,t(ξs ⊗ ξt) = ξs+t.

Example 1.9. A unital unit for the symmetric subproduct system SSP from
Example 1.3 is given by defining ξ0 = 1 and

ξn = v ⊗ v ⊗ · · · ⊗ v︸ ︷︷ ︸
n times

for n ≥ 1. This unit is generating only if E is one dimensional.

2. Subproduct system representations and cp-semigroups

In this section, following Muhly and Solel’s constructions from [29], we show
that subproduct systems and their representations provide a framework for
dealing with cp-semigroups, and allow us to obtain a generalization of the
classical result of Wigner that any strongly continuous one-parameter group
of automorphisms of B(H) is given by X 7→ UtXU

∗
t for some one-parameter

unitary group {Ut}t∈R.

2.1. All cp-semigroups come from subproduct system representa-
tions.

Proposition 2.1. Let N be a von Neumann algebra and let X be a subproduct
system of N -correspondences over S, and let R be completely contractive co-
variant representation of X on a Hilbert space H, such that R0 is unital. Then
the family of maps

(2.1) Θs : a 7→ R̃s(IX(s) ⊗ a)R̃∗
s , a ∈ R0(N )′,
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is a semigroup of CP maps on R0(N )′. Moreover, if R is an isometric (a fully
coisometric) representation, then Θs is a ∗-endomorphism (a unital map) for
all s ∈ S.
Proof. By Proposition 2.21 in [29], {Θs}s∈S is a family of contractive, normal,
completely positive maps on R0(N )′. Moreover, these maps are unital if R is
a fully coisometric representation, and they are ∗-endomorphisms if R is an
isometric representation. It remains is to check that Θ = {Θs}s∈S satisfies the
semigroup condition Θs ◦Θt = Θs+t. Fix a ∈ R0(N )′. For all s, t ∈ S,

Θs(Θt(a)) = R̃s

(
IX(s) ⊗

(
R̃t(IX(t) ⊗ a)R̃∗

t

))
R̃∗

s

= R̃s(IX(s) ⊗ R̃t)(IX(s) ⊗ IX(t) ⊗ a)(IX(s) ⊗ R̃∗
t )R̃∗

s

= R̃s+t(Us,t ⊗ IG)(IX(s) ⊗ IX(t) ⊗ a)(U∗
s,t ⊗ IG)R̃∗

s+t

= R̃s+t(IX(s·t) ⊗ a)R̃∗
s+t

= Θs+t(a).

Using the fact that R0 is unital, we have

Θ0(a)h = R̃0(IN ⊗ a)R̃0

∗
h

= R̃0(IN ⊗ a)(1N ⊗ h)

= R0(1N )ah

= ah,

thus Θ0(a) = a for all a ∈ N . �

We will now show that every cp-semigroup is given by a subproduct represen-
tation as in (2.1) above. We recall some constructions from [29] (building on
the foundations set in [4]).
Fix a CP map Θ on von Neumann algebra M ⊆ B(H). We define M⊗Θ H
to be the Hausdorff completion of the algebraic tensor product M⊗ H with
respect to the sesquilinear positive semidefinite form

〈T1 ⊗ h1, T2 ⊗ h2〉 = 〈h1,Θ(T ∗
1 T2)h2〉 .

We define a representation πΘ of M on M⊗Θ H by

πΘ(S)(T ⊗ h) = ST ⊗ h,
and we define a (contractive) linear map WΘ : H →M⊗H by

WΘ(h) = I ⊗ h.
If Θ is unital then WΘ is an isometry, and if Θ is an endomorphism then WΘ

is a coisometry. The adjoint of WΘ is given by

W ∗
Θ(T ⊗ h) = Θ(T )h.

For a given CP semigroup Θ on M, Muhly and Solel defined in [29] a W ∗-
correspondence EΘ overM′ and a c.c. representation (σ, TΘ) of EΘ on H such
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that for all a ∈ M
(2.2) Θ(a) = T̃Θ (IEΘ ⊗ a) T̃ ∗

Θ.

The W ∗-correspondence EΘ is defined as the intertwining space

EΘ = LM(H,M⊗Θ H),

where

LM(H,M⊗Θ H) := {X ∈ B(H,M⊗Θ H)
∣∣ XT = πΘ(T )X, T ∈M}.

The left and right actions of M′ are given by

S ·X = (I ⊗ S)X , X · S = XS

for all X ∈ EΘ and S ∈ M′. The M′-valued inner product on EΘ is de-
fined by 〈X,Y 〉 = X∗Y . EΘ is called the Arveson-Stinespring correspondence
(associated with Θ).
The representation (σ, TΘ) is defined by letting σ = idM′ , the identity repre-
sentation of M′ on H , and by defining

TΘ(X) = W ∗
ΘX.

(idM′ , TΘ) is called the identity representation (associated with Θ). We remark
that the paper [29] focused on unital CP maps, but the results we cite are true
for nonunital CP maps, with the proofs unchanged.
The case where M = B(H) in the following theorem appears, in essence at
least, in [4].

Theorem 2.2. Let Θ = {Θs}s∈S be a cp-semigroup on a von Neumann algebra
M ⊆ B(H), and for all s ∈ S let E(s) := EΘs

be the Arveson-Stinespring
correspondence associated with Θs, and let Ts := TΘs

denote the identity
representation for Θs. Then E = {E(s)}s∈S is a subproduct system of M′-
correspondences, and (idM′ , T ) is a representation of E on H that satisfies

(2.3) Θs(a) = T̃s

(
IE(s) ⊗ a

)
T̃ ∗

s

for all a ∈ M and all s ∈ S. Ts is injective for all s ∈ S. If Θ is an e-semigroup
(cp0-semigroup), then (idM′ , T ) is isometric (fully coisometric).

Proof. We begin by defining the subproduct system maps Us,t : E(s)⊗E(t)→
E(s + t). We use the constructions made in [29, Proposition 2.12] and the
surrounding discussion. We define

Us,t = V ∗
s,tΨs,t ,

where the map

Ψs,t : LM(H,M⊗Θs
H)⊗ LM(H,M⊗Θt

H)→ LM(H,M⊗Θt
M⊗Θs

H)

is given by Ψs,t(X ⊗ Y ) = (I ⊗X)Y , and

Vs,t : LM(H,M⊗Θs+t
H)→ LM(H,M⊗Θt

M⊗Θs
H)

is given by Vs,t(X) = Γs,t ◦X , where Γs,t :M⊗Θs+t
H →M⊗Θt

M⊗Θs
H is

the isometry
Γs,t : S ⊗Θs+t

h 7→ S ⊗Θt
I ⊗Θs

h.
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By [29, Proposition 2.12], Us,t is a coisometric bimodule map for all s, t ∈ S.
To see that the U ’s compose associatively as in (1.1), take s, t, u ∈ S, X ∈
E(s), Y ∈ E(t), Z ∈ E(u), and compute:

Us,t+u(IE(s) ⊗ Ut,u)(X ⊗ Y ⊗ Z) = Us,t+u(X ⊗ V ∗
t,u(I ⊗ Y )Z)

= V ∗
s,t+u

(
(I ⊗X)V ∗

t,u(I ⊗ Y )Z
)

= Γ∗
s,t+u(I ⊗X)Γ∗

t,u(I ⊗ Y )Z

and

Us+t,u(Us,t ⊗ IE(u))(X ⊗ Y ⊗ Z) = Us+t,u(V ∗
s,t(I ⊗X)Y ⊗ Z)

= V ∗
s+t,u

(
(I ⊗ V ∗

s,t(I ⊗X)Y )Z
)

= Γ∗
s+t,u(I ⊗ Γ∗

s,t)(I ⊗ I ⊗X)(I ⊗ Y )Z .

So it suffices to show that

Γ∗
s,t+u(I ⊗X)Γ∗

t,u = Γ∗
s+t,u(I ⊗ Γ∗

s,t)(I ⊗ I ⊗X)

It is easier to show that their adjoints are equal. Let a⊗h be a typical element
of M⊗Θs+t+u

h.

Γt,u(I ⊗X∗)Γs,t+u(a⊗Θs+t+u
h) = Γt,u(I ⊗X∗)(a⊗Θt+u

I ⊗Θs
h)

= Γt,u(a⊗Θt+u
X∗(I ⊗Θs

h))

= a⊗Θu
I ⊗Θt

X∗(I ⊗Θs
h).

On the other hand

(I ⊗ I ⊗X∗)(I ⊗ Γs,t)Γs+t,u(a⊗Θs+t+u
h) =

= (I ⊗ I ⊗X∗)(I ⊗ Γs,t)(a⊗Θu
I ⊗Θs+t

h)

= (I ⊗ I ⊗X∗)(a⊗Θu
I ⊗Θt

I ⊗Θs
h)

= a⊗Θu
I ⊗Θt

X∗(I ⊗Θs
h).

This shows that the maps {Us,t} make E into a subproduct system.
Let us now verify that T is a representation of subproduct systems. That
(idM′ , Ts) is a c.c. representation of E(s) is explained in [29, page 878]. Let
X ∈ E(s), Y ∈ E(t).

Ts+t(Us,t(X ⊗ Y )) = W ∗
Θs+t

Γ∗
s,t(I ⊗X)Y,

while

Ts(X)Tt(Y ) = W ∗
Θs
XW ∗

Θt
Y.

But for all h ∈ H ,

WΘt
X∗WΘs

h = WΘt
X∗(I ⊗Θs

h)

= I ⊗Θt
X∗(I ⊗Θs

h)

= (I ⊗X∗)(I ⊗Θt
I ⊗Θs

h)

= (I ⊗X∗)Γs,t(I ⊗Θs+t
h)

= (I ⊗X∗)Γs,tWΘs+t
h,
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which implies W ∗
Θs
XW ∗

Θt
Y = W ∗

Θs+t
Γ∗

s,t(I ⊗ X)Y , so we have the desired

equality

Ts+t(Us,t(X ⊗ Y )) = Ts(X)Tt(Y ).

Equation (2.3) is a consequence of (2.2). The injectivity of the identity repre-
sentation has already been noted by Solel in [48] (for all h, g ∈ H and a ∈ M ,
〈W ∗

ΘXa
∗h, g〉 = 〈Xa∗h, I ⊗ g〉 = 〈(I ⊗ a∗)Xh, I ⊗ g〉 = 〈Xh, a⊗ g〉 ). The final

assertion of the theorem is trivial (if Θs is a ∗-endomorphism, then WΘs
is a

coisometry). �

Definition 2.3. Given a cp-semigroup Θ on a W ∗ algebraM, the pair (E, T )
constructed in Theorem 2.2 is called the identity representation of Θ, and E
is called the Arveson-Stinespring subproduct system associated with Θ.

Remark 2.4. If follows from [29, Proposition 2.14], if Θ is an e-semigroup,
then the identity representation subproduct system is, in fact, a (full) product
system.

Remark 2.5. In [27], Daniel Markiewicz has studied the Arveson-Stinespring
subproduct system of a CP0-semigroup over R+ acting on B(H), and has also
shown that it carries a structure of a measurable Hilbert bundle.

2.2. Essentially all injective subproduct system representations
come from cp-semigroups. The following generalizes and is motivated by
[48, Proposition 5.7]. We shall also repeat some arguments from [32, Theorem
2.1].
By Theorem 2.2, with every cp-semigroup Θ = {Θs}s∈S on M ⊆ B(H) we
can associate a pair (E, T ) - the identity representation of Θ - consisting of a
subproduct system E (of correspondences overM′) and an injective subproduct
system c.c. representation T . Let us write (E, T ) = Ξ(Θ). Conversely, given a
pair (X,R) consisting of a subproduct system X of correspondences over M′

and a c.c. representationR of X such that R0 = id, one may define by equation
(2.1) a cp-semigroup Θ acting on M, which we denote as Θ = Σ(X,R). The
meaning of equation (2.3) is that Σ ◦ Ξ is the identity map on the set of cp-
semigroups of M. We will show below that Ξ ◦ Σ, when restricted to pairs
(X,R) such that R is injective, is also, essentially, the identity. When (X,R)
is not injective, we will show that Ξ ◦Σ(X,R) “sits inside” (X,R).

Theorem 2.6. Let N be a W∗-algebra, let X = {X(s)}s∈S be a subproduct
system of N -correspondences, and let R be a c.c. representation of X on
H, such that σ := R0 is faithful and nondegenerate. Let M ⊆ B(H) be the
commutant σ(N )′ of σ(N ). Let Θ = Σ(X,R), and let (E, T ) = Ξ(Θ). Then
there is a morphism of subproduct systems W : X → E such that

(2.4) Rs = Ts ◦Ws , s ∈ S.
W ∗

s Ws = IX(s)− qs, where qs is the orthogonal projection of X(s) onto KerRs.
In particular, W is an isomorphism if and only if Rs is injective for all s ∈ S.
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Remark 2.7. The construction of the morphism W below basically comes from
[48, 32], and it remains only to show that it respects the subproduct system
structure. Some of the details in the proof will be left out.

Proof. We may construct a subproduct system X ′ of M′-correspondences (re-
call thatM′ = σ(N )), and a representation R′ of X ′ on H such that R′

0 is the
identity, in such a way that (X,R) may be naturally identified with (X ′, R′).
Indeed, put

X ′(0) =M′ , X ′(s) = X(s) for s 6= 0,

where the inner product is defined by

〈x, y〉X′ = σ(〈x, y〉X),

and the left and right actions are defined by

a · x · b := σ−1(a)xσ−1(b),

for a, b ∈ M′ and x, y ∈ X ′(s), s ∈ S \ {0}. Defining R′
0 = id and W0 = σ;

and R′
s = Rs for and Ws = id for s ∈ S \ {0}, we have that W is a morphism

X → X ′ that sends R to R′.
Assume, therefore, that N =M′ and that σ is the identity representation.
We begin by defining for every s 6= 0

vs :M⊗Θs
H → X(s)⊗H

by

vs(a⊗ h) = (IX(s) ⊗ a)R̃∗
sh.

It is straightforward to show that for all s ∈ S the map vs is a well-defined

isometry. [(IX(s) ⊗M)R̃∗
sH ] is invariant under IX(s) ⊗M, thus the projection

onto the orthocomplement of this subspace is in (IX(s)⊗M)′ = L(X(s))⊗ IH ,
so it has the form qs ⊗ IH for some projection qs ∈ L(X(s)). In fact, it is easy
to check that qs is the orthogonal projection of X(s) onto KerRs.
By the definition of vs and by the covariance properties of T , we have for all
a ∈ M and b ∈M′,

vs(a⊗ I) = (I ⊗ a)vs , vs(I ⊗ b) = (b ⊗ I)vs.

Fix s ∈ S and x ∈ E(s). For all ξ ∈ X(s), h ∈ H , write

ψ(ξ)h = x∗v∗s (ξ ⊗ h).

It is easy to verify that the linear map ξ 7→ ψ(ξ) maps X(s) into M′ and is
a bounded right module map. From the self duality of X(s) it follows that
there is a unique element in X(s), which we denote by Vs(x), such that for all
ξ ∈ X(s), h ∈ H ,

(2.5) 〈Vs(x), ξ〉h = x∗v∗s (ξ ⊗ h).

The map Vs is then a linear bimodule map. To show that Vs preserves inner
products, write Lξ, ξ ∈ X(s), for the operator Lξ : H → X(s)⊗H that maps
h to ξ ⊗ h and note that equation (2.5) becomes

L∗
Vs(x)Lξ = x∗v∗sLξ , ξ ∈ X(s),
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or LVs(x) = vsx, for all x ∈ E(s). But since vs preserves inner products, we
have for all x, y ∈ E(s):

〈x, y〉 = x∗y = x∗v∗svsy = L∗
Vs(x)LVs(y) = 〈Vs(x), Vs(y)〉.

We now prove that VsV
∗
s = IX(s)−qs. ξ ∈ ImV ⊥

s if and only if L∗
ξvsE(s)H = 0.

But by [29, Lemma 2.10], E(s)H =M⊗Θs
H , thus L∗

ξvsE(s)H = 0 if and only

if 〈ξ, η〉 = 0 for all η ∈ (IX(s) − qs)X(s), which is the same as ξ ∈ qsX(s).
Fix h, k ∈ H . For x ∈ E(s), we compute:

〈Ts(x)h, k〉 = 〈W ∗
Θs
xh, k〉

= 〈xh, I ⊗Θs
k〉

= 〈vsxh, vs(I ⊗Θs
k)〉

= 〈Vs(x)⊗ h, R̃∗
sk〉

= 〈Rs(Vs(x))h, k〉,
thus Ts = Rs ◦ Vs for all s ∈ S. Define Ws = V ∗

s . Then Ts = Rs ◦ W ∗
s .

Multiplying both sides by Ws we obtain Ts ◦Ws = Rs ◦W ∗
s Ws. But W ∗

s Ws =

I − qs is the orthogonal projection onto (KerRs)
⊥

, thus we obtain (2.4).
Finally, we need to show that W = {Ws} respects the subproduct system
structure: for all s, t ∈ S, x ∈ X(s) and y ∈ X(t), we must show that

Ws+t(U
X
s,t(x⊗ y)) = UE

s,t(Ws(x) ⊗Wt(y)).

Since Ts+t is injective, it is enough to show that after applying Ts+t to both
sides of the above equation we get the same thing. But Ts+t applied to the left
hand side gives

Ts+tWs+t(U
X
s,t(x⊗ y)) = Rs+t(U

X
s,t(x⊗ y)) = Rs(x)Rt(y),

and Ts+t applied to the right hand side gives

Ts+t(U
E
s,t(Ws(x) ⊗Wt(y))) = Ts(Ws(x))Tt(Wt(y)) = Rs(x)Rt(y).

�

Corollary 2.8. Let X be a subproduct system that has an isometric represen-
tation V such that V0 is faithful and nondegenerate. Then X is a (full) product
system.

Proof. Let Θ = Σ(X,V ). Then Θ is an e-semigroup. Thus, if (E, T ) = Ξ(Θ)
is the identity representation of Θ, then, by Remark 2.4, E is a (full) product
system. But if V0 is faithful and V is isometric then V is injective. By the
above theorem, X is isomorphic to E, so it is a product system. �

2.3. Subproduct systems arise from cp-semigroups. The shift rep-
resentation. A question arises: does every subproduct system arise as the
Arveson-Stinespring subproduct system associated with a cp-semigroup? By
Theorem 2.6, this is equivalent to the question does every subproduct system
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have an injective representation? We shall answer this question in the affir-
mative by constructing for every such subproduct system a canonical injective
representation.
The following constructs will be of most interest when S is a countable semi-
group, such as Nk.

Definition 2.9. Let X = {X(s)}s∈S be a subproduct system. The X-Fock
space FX is defined as

FX =
⊕

s∈S

X(s).

The vector Ω := 1 ∈ N = X(0) is called the vacuum vector of FX . The X-shift
representation of X on FX is the representation

SX : X → B(FX),

given by SX(x)y = UX
s,t(x⊗ y), for all x ∈ X(s), y ∈ X(t) and all s, t ∈ S.

Strictly speaking, SX as defined above is not a representation because it rep-
resents X on a C∗-correspondence rather than on a Hilbert space. However,
since for any C∗-correspondence E, L(E) is a C∗-algebra, one can compose a
faithful representation π : L(E) → B(H) with SX to obtain a representation
on a Hilbert space.

A direct computation shows that S̃X
s : X(s)⊗ FX → FX is a contraction, and

also that SX(x)SX(y) = SX(UX
s,t(x ⊗ y)) so SX is a completely contractive

representation of X . SX is also injective because SX(x)Ω = x for all x ∈ X .
Thus,

Corollary 2.10. Every subproduct system is the Arveson-Stinespring sub-
product system of a cp-semigroup.

3. Subproduct system units and cp-semigroups

In this section, following Bhat and Skeide’s constructions from [15], we show
that subproduct systems and their units may also serve as a tool for studying
cp-semigroups.

Proposition 3.1. Let N be a von Neumann algebra and let X be a subproduct
system of N -correspondences over S, and let ξ = {ξs}s∈S be a contractive unit
of X, such that ξ0 = 1N . Then the family of maps

(3.1) Θs : a 7→ 〈ξs, aξs〉 ,
is a semigroup of CP maps on N . Moreover, if ξ is unital, then Θs is a unital
map for all s ∈ S.

Proof. It is standard that Θs given by (3.1) is a contractive completely positive
map on N , which is unital if and only if ξ is unital. The fact that Θs is normal
goes a little bit deeper, but is also known (one may use [29, Remark 2.4(i)]).
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We show that {Θs}s∈S is a semigroup. It is clear that Θ0(a) = a for all a ∈ N .
For all s, t ∈ S,

Θs(Θt(a)) = 〈ξs, 〈ξt, aξt〉 ξs〉
= 〈ξt ⊗ ξs, , aξt ⊗ ξs〉
=
〈
U∗

t,sξs+t, , aU
∗
t,sξs+t

〉

= 〈ξs+t, aξs+t〉
= Θs+t(a).

�

We recall a central construction in Bhat and Skeide’s approach to dilation of
cp-semigroup [15], that goes back to Paschke [36]. LetM be a W ∗-algebra, and
let Θ be a normal completely positive map on M 3. The GNS representation
of Θ is a pair (FΘ, ξΘ) consisting of a Hilbert W ∗-correspondence FΘ and a
vector ξΘ ∈ FΘ such that

Θ(a) = 〈ξΘ, aξΘ〉 for all a ∈ M.

FΘ is defined to be the correspondence M⊗ΘM - which is the self-dual ex-
tension of the Hausdorff completion of the algebraic tensor product M⊗M
with respect to the inner product

〈a⊗ b, c⊗ d〉 = b∗Θ(a∗c)d.

ξΘ is defined to be ξΘ = 1 ⊗ 1. Note that ξΘ is a unit vector, that is -
〈ξΘ, ξΘ〉 = 1, if and only if Θ is unital.

Theorem 3.2. Let Θ = {Θs}s∈S be a cp-semigroup on a W ∗-algebra M.
For every s ∈ S let (F (s), ξs) be the GNS representation of Θs. Then F =
{F (s)}s∈S is a subproduct system of M-correspondences, and ξ = {ξs}s∈S is
a generating contractive unit for F that gives back Θ by the formula

(3.2) Θs(a) = 〈ξs, aξs〉 for all a ∈M.

Θ is a cp0-semigroup if and only if ξ is a unital unit.

Proof. For all s, t ∈ S define a map Vs,t : F (s + t) → F (s) ⊗ F (t) by sending
ξs+t to ξs ⊗ ξt and extending to a bimodule map. Because

〈aξs ⊗ ξtb, cξs ⊗ ξtd〉 = 〈ξtb, 〈aξs, cξs〉 ξtd〉
= 〈ξtb,Θs(a∗c)ξtd〉
= b∗ 〈ξt,Θs(a∗c)ξt〉 d
= b∗Θt+s(a∗c)d

= 〈aξt+sb, cξt+sd〉 ,
Vs,t extends to a well defined isometric bimodule map from F (s+t) into F (s)⊗
F (t). We define the map Us,t to be the adjoint of Vs,t (here it is important that

3The construction works also for completely positive maps on unital C∗-algebras, but in
Theorem 3.2 below we will need to work with normal maps on W∗-algebras.
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we are working with W ∗ algebras - in general, an isometry from one Hilbert
C∗-module into another need not be adjointable, but bounded module maps
between self-dual Hilbert modules are always adjointable, [36, Proposition 3.4]).
The collection {Us,t}s,t∈S makes F into a subproduct system. Indeed, these
maps are coisometric by definition, and they compose in an associative manner.
To see the latter, we check that (IF (r) ⊗ Vs,t)Vr,s+t = (Vr,s ⊗ IF (t))Vr+s,t and
take adjoints.

(IF (r) ⊗ Vs,t)Vr,s+t(aξr+s+tb) = (IF (r) ⊗ Vs,t)(aξr ⊗ ξs+tb)

= aξr ⊗ ξs ⊗ ξtb.
Similarly, (Vr,s ⊗ IF (t))Vr+s,t(aξr+s+tb) = aξr ⊗ ξs ⊗ ξtb. Since F (r + s+ t) is
spanned by linear combinations of elements of the form aξr+s+tb, the U ’s make
F into a subproduct system, and ξ is certainly a unit for F . Equation (3.2)
follows by definition of the GNS representation. Now,

〈ξs, ξs〉 = Θs(1) , s ∈ S,
so ξ is a contractive unit because Θs(1) ≤ 1, and ξ it is unital if and only if
Θs is unital for all s. ξ is in fact more then just a generating unit, as F (s) is
spanned by elements with the form described in equation (1.4) with (s1, . . . , sn)
a fixed n-tuple such that s1 + · · ·+ sn = s. �

Definition 3.3. Given a cp-semigroup Θ on a W ∗ algebra M, the subproduct
system F and the unit ξ constructed in Theorem 3.2 are called, respectively,
the GNS subproduct system and the GNS unit of Θ. The pair (F, ξ) is called
the GNS representation of Θ.

Remark 3.4. There is a precise relationship between the identity represen-
tation (Definition 2.3) and the GNS representation of a cp-semigroup. The
GNS representation of a CP map is the dual of the identity representation in
a sense that is briefly described in [31]. This notion of duality has been used
to move from the product-system-and-representation picture to the product-
system-with-unit picture, and vice versa. See for example [44] and the ref-
erences therein. It is more-or-less straightforward to use this duality to get
Theorem 3.2 from Theorem 2.2 (or the other way around).

4. ∗-automorphic dilation of an e0-semigroup

We now apply some of the tools developed above to dilate an e0-semigroup to a
semigroup of ∗-automorphisms. We shall need the following proposition, which
is a modification (suited for subproduct systems) of the method introduced
in [41] for representing a product system representation as a semigroup of
contractive operators on a Hilbert space.

Proposition 4.1. Let N be a von Neumann algebra and let X be a subproduct
system of W ∗-correspondences over S. Let (σ, T ) be a fully coisometric covari-
ant representation of X on the Hilbert space H, and assume that σ is unital.
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Denote

Hs :=
(
X(s)⊗σ H

)/
KerT̃s

and

H =
⊕

s∈S

Hs.

Then there exists a semigroup of coisometries T̂ = {T̂s}s∈S on H such that for
all s ∈ S, x ∈ X(s) and h ∈ H,

T̂s (δs · x⊗ h) = Ts(x)h.

T̂ also has the property that for all s ∈ S and all t ≥ s
(4.1) T̂ ∗

s T̂s

∣∣
Ht

= IHt
, (t ≥ s).

Proof. First, we note that the assumptions on σ and on the left action of N
imply that H0

∼= H via the identification a ⊗ h ↔ σ(a)h. This identification
will be made repeatedly below.
Define H0 to be the space of all finitely supported functions f on S such that
for all s ∈ S,

f(s) ∈ Hs.

H0 is generated by the functions δs ·ξ, where δs is the function taking the value
1 at s and 0 elsewhere, and ξ ∈ Hs. We equip H0 with the inner product

〈δs · ξ, δt · η〉 = δs,t〈ξ, η〉,
for all s, t ∈ S, ξ ∈ Hs, η ∈ Ht (here δs,t is Kronecker’s delta function). Let H
be the completion of H0 with respect to this inner product. We have

H ∼=
⊕

s∈S

Hs.

It will sometimes be convenient to identify the subspace δs ·Hs ⊆ H with Hs,
and for s = 0 this gives us an inclusion H ⊆ H. We define a family T̂ = {T̂s}s∈S

of operators on H0 as follows. First, we define T̂0 to be the identity. Now

assume that s > 0. If t ∈ S and t � s, then we define T̂s(δt · ξ) = 0 for all
ξ ∈ Ht. If t ≥ s > 0 we would like to define (as we did in [41])

(4.2) T̂s (δt · (xt−s ⊗ xs ⊗ h)) = δt−s ·
(
xt−s ⊗ T̃s(xs ⊗ h)

)
,

but since X is not a true product system, we cannot identify X(t− s)⊗X(s)
with X(t). For a fixed t > 0, we define for all s ≤ t, ξ ∈ X(t) and h ∈ H

Ťs (δt · (ξ ⊗ h)) = δt−s ·
(

(IX(t−s) ⊗ T̃s)(U∗
t−s,sξ ⊗ h)

)
.

Ťs can be extended to a well defined contraction from X(t)⊗H to X(t−s)⊗H ,
for all t ≥ s, and has an adjoint given by

(4.3) Ť ∗
s δt−s · η ⊗ h = δt ·

(
(Ut−s,s ⊗ IH)(η ⊗ T̃ ∗

s h)
)
.
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We are going to obtain T̂s as the map Ht → Ht−s induced by Ťs. Let Y ∈ Ht

satisfy T̃t(Y ) = 0. We shall show that Ťsδt · Y = 0 in δt−s ·Ht−s. But

Ťsδt · Y = δt−s ·
(

(IX(t−s) ⊗ T̃s)(U∗
t−s,s ⊗ IH)Y

)
,

and

T̃t−s

(
(IX(t−s) ⊗ T̃s)(U∗

t−s,s ⊗ IH)Y
)

(∗) = T̃t(Ut−s,s ⊗ IH)(U∗
t−s,s ⊗ IH)Y

(∗∗) = T̃t(Y ) = 0,

where the equation marked by (*) follows from the fact that T is a representa-
tion of subproduct systems, and the one marked by (**) follows from the fact
that Ut−s,s is a coisometry. Thus, for all s, t ∈ S,

Ťs

(
δt ·KerT̃t

)
⊆ δt−s ·KerT̃t−s,

thus Ťs induces a well defined contraction T̂s on H given by

(4.4) T̂s (δt · (ξ ⊗ h)) = δt−s ·
(

(IX(t−s) ⊗ T̃s)(U∗
t−s,sξ ⊗ h)

)
,

where ξ⊗h and (IX(t−s)⊗T̃s)(U∗
t−s,sξ⊗h) stand for these elements’ equivalence

classes in
(
X(t) ⊗ H

)/
KerT̃t and

(
X(t − s) ⊗ H

)/
KerT̃t−s, respectively. It

follows that we have the following, more precise, variant of (4.2):

T̂s (δt · (Ut−s,s(xt−s ⊗ xs)⊗ h)) = δt−s ·
(
xt−s ⊗ T̃s(xs ⊗ h)

)
.

In particular,

T̂s (δs · xs ⊗ h) = Ts(xs)h,

for all s ∈ S, xs ∈ X(s), h ∈ H .

It will be very helpful to have a formula for T̂ ∗
s as well. Assume that

∑
i ξi⊗hi ∈

KerT̃t.

Ť ∗
s

(
δt ·
∑

i

ξi ⊗ hi

)
= δs+t ·

(
(Ut,s ⊗ IH)(

∑

i

ξi ⊗ T̃ ∗
s hi)

)
,

and applying T̃s+t to the right hand side (without the δ) we get

T̃s+t

(
(Ut,s ⊗ IH)(

∑

i

ξi ⊗ T̃ ∗
s hi)

)
= T̃t(IX(t) ⊗ T̃s)(

∑

i

ξi ⊗ T̃ ∗
s hi)

= T̃t(
∑

i

ξi ⊗ T̃sT̃
∗
s hi)

= T̃t(
∑

i

ξi ⊗ hi) = 0,

because T is a fully coisometric representation. So

Ť ∗
s

(
δt ·KerT̃t

)
⊆ δs+t ·KerT̃s+t,

Documenta Mathematica 14 (2009) 801–868



824 Orr Shalit and Baruch Solel

and this means that Ť ∗
s induces on H a well defined contraction which is equal

to T̂ ∗
s , and is given by the formula (4.3).

We now show that T̂ is a semigroup. Let s, t, u ∈ S. If either s = 0 or t = 0
then it is clear that the semigroup property T̂sT̂t = T̂s+t holds. Assume that

s, t > 0. If u � s+ t, then both T̂sT̂t and T̂s+t annihilate δu · ξ, for all ξ ∈ Hu.

Assuming u ≥ s+ t, we shall show that T̂sT̂t and T̂s+t agree on elements of the
form

Z = δu ·
(
Uu−t,t(Uu−t−s,s ⊗ I)(xu−s−t ⊗ xs ⊗ xt)

)
⊗ h,

and since the set of all such elements is total in Hu, this will establish the
semigroup property.

T̂sT̂tZ = T̂s

(
δu−t

(
Uu−t−s,s(xu−s−t ⊗ xs)⊗ T̃t(xt ⊗ h)

))

= δu−s−t

(
xu−s−t ⊗ T̃s(xs ⊗ T̃t(xt ⊗ h))

)

= δu−s−t

(
xu−s−t ⊗ T̃s(I ⊗ T̃t)(xs ⊗ xt ⊗ h)

)

= δu−s−t

(
xu−s−t ⊗ T̃s+t (Us,t(xs ⊗ xt)⊗ h)

)

= T̂t+sδu · (Uu−t−s,t+s (xu−s−t ⊗ Us,t(xs ⊗ xt))⊗ h)

= T̂t+sZ.

The final equality follows from the associativity condition (1.1).

To see that T̂ is a semigroup of coisometries, we take ξ ∈ X(t), h ∈ H , and
compute

T̃t

(
T̂sT̂

∗
s δt · (ξ ⊗ h)

)
=

= T̃t

(
(IX(t) ⊗ T̃s)(U∗

t,s ⊗ IH)(Ut,s ⊗ IH)(IX(t) ⊗ T̃ ∗
s )(ξ ⊗ h)

)

= T̃s+t(Ut,s ⊗ IH)(IX(t) ⊗ T̃ ∗
s )(ξ ⊗ h)

= T̃t(ξ ⊗ T̃sT̃
∗
s h) = T̃t(ξ ⊗ h),

so T̂sT̂
∗
s is the identity on Ht for all t ∈ S, thus T̂sT̂

∗
s = IH. Equation (4.1)

follows by a similar computation, which is omitted. �

We can now obtain a ∗-automorphic dilation for any e0-semigroup over any
subsemigroup of Rk

+. The following result should be compared with similar-
looking results of Arveson-Kishimoto [8], Laca [25], Skeide [45], and Arveson-
Courtney [7] (none of these cited results is strictly stronger or weaker than the
result we obtain for the case of e0-semigroups).

Theorem 4.2. Let Θ be a e0-semigroup acting on a von Neumann algebra
M. Then Θ can be dilated to a semigroup of ∗-automorphisms in the follow-
ing sense: there is a Hilbert space K, an orthogonal projection p of K onto a
subspace H of K, a normal, faithful representation ϕ : M → B(K) such that
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ϕ(1) = p, and a semigroup α = {αs}s∈S of ∗-automorphisms on B(K) such
that for all a ∈ M and all s ∈ S
(4.5) αs(ϕ(a))

∣∣
H

= ϕ(Θs(a)),

so, in particular,

(4.6) pαs(ϕ(a))p = ϕ(Θs(a)).

The projection p is increasing for α, in the sense that for all s ∈ S,
(4.7) αs(p) ≥ p.
Remark 4.3. Another way of phrasing the above theorem is by using the
terminology of “weak Markov flows”, as used in [15]. Denoting ϕ by j0, and
defining js := αs ◦ j0, we have that (B(K), j) is a weak Markov flow for Θ on
K, which just means that for all t ≤ s ∈ S and all a ∈ M,

(4.8) jt(1)js(a)jt(1) = jt(Θs−t(a)).

Equation (4.8) for t = 0 is just (4.6), and the case t ≥ 0 follows from the case
t = 0.

Remark 4.4. The assumption that Θ is a unital semigroup is essential, since
(4.6) and (4.7) imply that Θ(1) = 1.

Remark 4.5. It is impossible, in the generality we are working in, to hope for
a semigroup of automorphisms that extends Θ in the sense that

(4.9) αs(ϕ(a)) = ϕ(Θs(a)),

because that would imply that Θ is injective.

Proof. Let (E, T ) be the identity representation of Θ. Since Θ preserves the

unit, T is a fully coisometric representation. Let T̂ and H be the semigroup
and Hilbert space representing T as described in Proposition 4.1. {T̂ ∗

s }s∈S is a

commutative semigroup of isometries. By a theorem of Douglas [20], {T̂ ∗
s }s∈S

can be extended to a semigroup {V̂ ∗
s }s∈S of unitaries acting on a space K ⊇ H.

We obtain a semigroup of unitaries V = {V̂s}s∈S that is a dilation of T̂ , that is

PHV̂s

∣∣
H

= T̂s , s ∈ S.
For any b ∈ B(K), and any s ∈ S, we define

αs(b) = V̂sbV̂
∗
s .

Clearly, α = {αs}s∈S is a semigroup of ∗-automorphisms.
Put p = PH, the orthogonal projection of K onto H. Define ϕ :M→ B(K) by
ϕ(a) = p(I ⊗ a)p, where I ⊗ a : H → H is given by

(I ⊗ a)δt · x⊗ h = δt · x⊗ ah , x⊗ h ∈ E(t)⊗H.
ϕ is well defined because T is an isometric representation (so KerT̃t is always
zero). We have that ϕ is a faithful, normal ∗-representation (the fact that T0 is
the identity representation ensures that ϕ is faithful). It is clear that ϕ(1) = p.
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To see (4.7), we note that since V̂ ∗
s is an extension of T̂ ∗

s , we have T̂ ∗
s = V̂ ∗

s p =

pV̂ ∗
s p, thus

pαs(p)p = pV̂spV̂
∗
s p

= pV̂sV̂
∗
s p

= p,

that is, pαs(p)p = p, which implies that αs(p) ≥ p.
We now prove (4.6). Let δt · x⊗ h be a typical element of H. We compute

pαs(ϕ(a))pδt · x⊗ h = pV̂sp(I ⊗ a)pV̂ ∗
s pδt · x⊗ h

= T̂s(I ⊗ a)T̂ ∗
s δt · x⊗ h

= T̂s(I ⊗ a)δs+t · (Ut,s ⊗ IH)
(
x⊗ T̃ ∗

s h
)

= T̂sδs+t · (Ut,s ⊗ IH)
(
x⊗ (I ⊗ a)T̃ ∗

s h
)

= δt · x⊗
(
T̃s(I ⊗ a)T̃ ∗

s h
)

= δt · x⊗ (Θs(a)h)

= ϕ(Θs(a))δt · x⊗ h.
Since both pαs(ϕ(a))p and ϕ(Θs(a)) annihilate K ⊖H, we have (4.6).
To prove (4.5), it just remains to show that

pαs(ϕ(a))
∣∣
H

= αs(ϕ(a))
∣∣
H
,

that is, that αs(ϕ(a))H ⊆ H. Now, V̂ ∗
s is an extension of T̂ ∗

s . Moreover (4.1)

shows that if ξ ∈ Hu with u ≥ s, then ‖T̂s(ξ)‖ = ‖ξ‖. Thus

‖ξ‖2 = ‖V̂sξ‖2 = ‖PHV̂sξ‖2 + ‖(IK − PH)V̂sξ‖2 = ‖T̂sξ‖2 + ‖(IK − PH)V̂sξ‖2.
So V̂sξ = T̂sξ for ξ ∈ Hu with u ≥ s. Now, for a typical element δt · x ⊗ h in
Ht, t ∈ S, we have

αs(ϕ(a))δt · x⊗ h = V̂s(I ⊗ a)V̂ ∗
s δt · x⊗ h

= V̂s(I ⊗ a)T̂ ∗
s δt · x⊗ h

= V̂sδs+t · (Us,t ⊗ IH)
(
x⊗ (I ⊗ a)T̃ ∗

s h
)

= T̂sδs+t · (Us,t ⊗ IH)
(
x⊗ (I ⊗ a)T̃ ∗

s h
)
∈ H,

because δs+t · x⊗ (I ⊗ a)T̃ ∗
s h ∈ Hs+t, and s+ t ≥ s. �

5. Dilations and pieces of subproduct system representations

5.1. Dilations and pieces of subproduct system representations.

Definition 5.1. Let X and Y be subproduct systems of M correspondences
(M a W∗-algebra) over the same semigroup S. Denote by UX

s,t and UY
s,t the

coisometric maps that make X and Y , respectively, into subproduct systems.
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X is said to be a subproduct subsystem of Y (or simply a subsystem of Y for
short) if for all s ∈ S the space X(s) is a closed subspace of Y (s), and if the
orthogonal projections ps : Y (s)→ X(s) are bimodule maps that satisfy

(5.1) ps+t ◦ UY
s,t = UX

s,t ◦ (ps ⊗ pt) , s, t ∈ S.
One checks that if X is a subproduct subsystem of Y then

(5.2) ps+t+u ◦ UY
s,t+u(I ⊗ (pt+u ◦ UY

t,u)) = ps+t+u ◦ UY
s+t,u((ps+t ◦ UY

s,t)⊗ I),

for all s, t, u ∈ S. Conversely, given a subproduct system Y and a family of
orthogonal projections {ps}s∈S that are bimodule maps satisfying (5.2), then
by defining X(s) = psY (s) and UX

s,t = ps+t ◦ UY
s,t one obtains a subproduct

subsystem X of Y (with (5.1) satisfied).
The following proposition is a consequence of the definitions.

Proposition 5.2. There exists a morphism X → Y if and only if Y is iso-
morphic to a subproduct subsystem of X.

Remark 5.3. In the notation of Theorem 2.6, we may now say that given a sub-
product system X and a representation R of X , then the Arveson-Stinespring
subproduct system E of Θ = Σ(X,R) is isomorphic to a subproduct subsystem
of X .

The following definitions are inspired by the work of Bhat, Bhattacharyya and
Dey [12].

Definition 5.4. Let X and Y be subproduct systems of W∗-correspondences
(over the same W∗-algebra M) over S, and let T be a representation of Y on
a Hilbert space K. Let H be some fixed Hilbert space, and let S = {Ss}s∈S be
a family of maps Ss : X(s)→ B(H). (Y, T,K) is called a dilation of (X,S,H)
if

(1) X is a subsystem of Y ,
(2) H is a subspace of K, and

(3) for all s ∈ S, T̃ ∗
s H ⊆ X(s)⊗H and T̃ ∗

s

∣∣
H

= S̃∗
s .

In this case we say that S is an X-piece of T , or simply a piece of T . T is said
to be an isometric dilation of S if T is an isometric representation.

The third item can be replaced by the three conditions

1’ T0(·)PH = PHT0(·)PH = S0(·),
2’ PH T̃s

∣∣
X(s)⊗H

= S̃s for all s ∈ S, and

3’ PH T̃s

∣∣
Y (s)⊗K⊖X(s)⊗H

= 0.

So our definition of dilation is identical to Muhly and Solel’s definition of di-
lation of representations when X = Y is a product system [29, Theorem and
Definition 3.7].

Proposition 5.5. Let T be a representation of Y , let X be a subproduct sub-
system of Y , and let S an X-piece of T . Then S is a representation of X.
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Proof. S is a completely contractive linear map as the compression of a com-
pletely contractive linear map. Item 1’ above together with the coinvariance of
T imply that S is coinvariant: if a, b ∈ M and x ∈ X(s), then

Ss(axb) = PHTs(axb)PH = PHT0(a)Ts(x)T0(b)PH

= PHT0(a)PHTs(x)PHT0(b)PH

= S0(a)Ss(x)S0(b).

Finally, (using Item 3’ above),

Ss+t(U
X
s,t(x ⊗ y))h = Ss+t(ps+tU

Y
s,t(x ⊗ y))h

= S̃s+t(ps+tU
Y
s,t(x ⊗ y)⊗ h)

= PH T̃s+t(U
Y
s,t(x⊗ y)⊗ h)

= PHTs(x)Tt(y)h

= PHTs(x)PHTt(y)h

= Ss(x)St(y)h.

�

Example 5.6. Let E be a Hilbert space of dimension d, and let X be the
symmetric subproduct system constructed in Example 1.3. Fix an orthonor-
mal basis {e1, . . . , en} of E. There is a one-to-one correspondence between
c.c. representations S of X (on some H) and commuting row contractions
(S1, . . . , Sd) (of operators on H), given by

S ↔ S = (S(e1), . . . , S(ed)).

If Y is the full product system over E, then any dilation (Y, T,K) gives rise to
a tuple T = (T (e1), . . . , T (ed)) that is a dilation of S in the sense of [12], and
vice versa. Moreover, S is then a commuting piece of T in the sense of [12].

Consider a subproduct system Y and a representation T of Y on K. Let X be
some subproduct subsystem of Y . Define the following set of subspaces of K:

(5.3) P(X,T ) = {H ⊆ K : T̃ ∗
sH ⊆ X(s)⊗H for all s ∈ S}.

As in [12], we observe that P(X,T ) is closed under closed linear spans (and
intersections), thus we may define

KX(T ) =
∨

H∈P(X,T )

H.

KX(T ) is the maximal element of P(X,T ).

Definition 5.7. The representation TX of X on KX(T ) given by

TX(x)h = PKX (T )T (x)h,

for x ∈ X(s) and h ∈ KX(T ), is called the maximal X-piece of T .

By Proposition 5.5, TX is indeed a representation of X .

Documenta Mathematica 14 (2009) 801–868



Subproduct Systems 829

5.2. Consequences in dilation theory of cp-semigroups.

Proposition 5.8. Let X and Y be subproduct systems of W∗-correspondences
(over the same W∗-algebra M) over S, and let S and T be representations of
X on H and of Y on K, respectively. Assume that (Y, T,K) is a dilation of
(X,S,H). Then the cp-semigroup Θ acting on V0(M)′, given by

Θs(a) = T̃s(IY (s) ⊗ a)T̃ ∗
s , a ∈ V0(M)′,

is a dilation of the cp-semigroup Φ acting on T0(M)′ given by

Φs(a) = S̃s(IX(s) ⊗ a)S̃∗
s , a ∈ T0(M)′,

in the sense that for all b ∈ V0(M)′ and all s ∈ S,
Φs(PHbPH) = PHΘs(b)PH .

Proof. This follows from the definitions. �

Although the above proposition follows immediately from the definitions, we
hope that it will prove to be important in the theory of dilations of cp-
semigroups, because it points to a conceptually new way of constructing di-
lations of cp-semigroups, as the following proposition and corollary illustrate.

Proposition 5.9. Let X = {X(s)}s∈S be a subproduct system, and let S be
a fully coisometric representation of X on H such that S0 is unital. If there
exists a (full) product system Y = {Y (s)}s∈S such that X is a subproduct
subsystem of Y , then S has an isometric and fully coisometric dilation.

Proof. Define a representation T of Y on H by

(5.4) Ts = Ss ◦ ps,

where, as above, ps is the orthogonal projection Y (s) → X(s). A straightfor-
ward verification shows that T is indeed a fully coisometric representation of Y
on H . By [43, Theorem 5.2], (Y, T,H) has a minimal isometric and fully coiso-
metric dilation (Y, V,K). (Y, V,K) is also clearly a dilation of (X,S,H). �

Corollary 5.10. Let Θ = {Θs}s∈S be a cp0-semigroup and let (E, T ) = Ξ(Θ)
be the Arveson-Stinespring representation of Θ. If there is a (full) product
system Y such that E is a subproduct subsystem of Y , then Θ has an e0-
dilation.

Proof. Combine Propositions 2.1, 5.8 and 5.9. �

Thus, the problem of constructing e0-dilations to cp0-semigroups is reduced to
the problem of embedding a subproduct system into a full product system. In
the next subsection we give an example of a subproduct system that cannot
be embedded into full product system. When this can be done in general is a
challenging open question.
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Corollary 5.11. Let Θ = {Θs}s∈Nk be a cp-semigroup generated by k com-
muting CP maps θ1, . . . , θk, and let (E, T ) = Ξ(Θ) be the Arveson representa-
tion of Θ. Assume, in addition, that

k∑

i=1

‖θi‖ ≤ 1.

If there is a (full) product system Y such that E is a subproduct subsystem of
Y , then Θ has an e-dilation.

Proof. As in (5.4), we may extend T to a product system representation of Y
on H , which we also denote by T . Denote by ei the element of Nk with 1 in
the ith element and zeros elsewhere. Then

k∑

i=1

‖T̃ei
T̃ ∗
ei
‖ =

k∑

i=1

‖θi‖ ≤ 1.

By the methods of [41], one may show that S has a minimal (regular) isometric
dilation. This isometric dilation provides the required e-dilation of Θ. �

Theorem 5.12. Let M ⊆ B(H) be a von Neumann algebra, let X be a sub-
product system of M′-correspondences, and let R be an injective representa-
tion of X on a Hilbert space H. Let Θ = Σ(X,R) be the cp-semigroup act-
ing on R0(M′)′ given by (2.1). Assume that (α,K,R) is an e-dilation of Θ,
and let (Y, V ) = Ξ(α) be the Arveson-Stinespring subproduct system of α to-
gether with the identity representation. Assume, in addition, that the map
R′ ∋ b 7→ PHbPH is a ∗-isomorphism of R′ onto R0(M′). Then (Y, V,K) is a
dilation of (X,R,H).

Proof. For every s ∈ S, define Ws : Y (s) → B(H) by Ws(y) = PHVs(y)PH .
We claim that W = {Ws}s∈S is a representation of Y on H . First, note

that PHαs(I − PH)PH = Θs(PH(I − PH)PH) = 0, thus PH Ṽs(I ⊗ (I −
PH))Ṽ ∗

s PH = 0, and consequently PH Ṽs(I ⊗ PH) = PH Ṽs. It follows that
Ws(y) = PHVs(y)PH = PHVs(y). From this it follows that

Ws(y1)Wt(y2) = PHVs(y1)PHVt(y2) = PHVs(y1)Vt(y2)

= PHVs+t(U
Y
s,t(y1 ⊗ y2)) = Ws+t(U

Y
s,t(y1 ⊗ y2)).

By Theorem 2.6, we may assume that (X,R) = (E, T ) = Ξ(Θ) is the Arveson-
Stinespring representation of Θ. Because α is a dilation of Θ, we have

W̃s(I ⊗ a)W̃ ∗
s = PH Ṽs(I ⊗ a)Ṽ ∗

s PH = Θs(a),

That is, Θ = Σ(Y,W ). Thus, by Theorem 2.6 and Remark 5.3, we may assume
that E is a subproduct subsystem of Y , and that Ts ◦ ps = Ws, ps being the
projection of Y (s) onto E(s). In other words, for all y ∈ Y ,

T̃s(ps ⊗ IH) = PHW̃s.
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Therefore, W̃ ∗
s H ⊆ E(s)⊗H , and W̃ ∗

s

∣∣
H

= T̃ ∗
s . That is, (Y,W,H) is a dilation

of (E, T,H). But (Y, V,K) is a dilation of (Y,W,H), so it is also a dilation of
(E, T,H). �

The assumption that R′ ∋ b 7→ PHbPH ∈ M′ is a ∗-isomorphism is satisfied
when M = B(H) and R = B(K). More generally, it is satisfied whenever the
central projection of PH in R is IK (see Propositions 5.5.5 and 5.5.6 in [22]).
Let (α,K,R) be an e-dilation of a semigroup Θ on M ⊆ B(H). (α,K,R) is
called a minimal dilation if the central support of PH in R is IK and if

R = W ∗

(
⋃

s∈S

αs(M)

)
.

Corollary 5.13. Let Θ be cp-semigroup on M⊆ B(H), and let (α,K,R) be
a minimal dilation of Θ. Then Ξ(α) is an isometric dilation of Ξ(Θ).

5.3. cp-semigroups with no e-dilations. Obstructions of a new na-
ture. By Parrot’s famous example [34], there exist 3 commuting contractions
that do not have a commuting isometric dilation. In 1998 Bhat asked whether
3 commuting CP maps necessarily have a commuting ∗-endomorphic dilation
[10]. Note that it is not obvious that the non-existence of an isometric di-
lation for three commuting contractions would imply the non-existence of a
∗-endomorphic dilation for 3 commuting CP maps. However, it turns out that
this is the case.

Theorem 5.14. There exists a cp-semigroup Θ = {Θn}n∈N3 acting on a B(H)
for which there is no e-dilation (α,K,B(K)). In fact, Θ has no minimal e-
dilation (α,K,R) on any von Neumann algebra R.

Proof. Let T1, T2, T3 ∈ B(H) be three commuting contractions that have no
isometric dilation and such that T n1

1 T n2
2 T n3

3 6= 0 for all n = (n1, n2, n3) ∈ N3

(one may take commuting contractions R1, R2, R3 with no isometric dilation as
in Parrot’s example [34], and define Ti = Ri⊕1). For all n = (n1, n2, n3) ∈ N3,
define

Θn(a) = T n1
1 T n2

2 T n3
3 a(T n3

3 )∗(T n2
2 )∗(T n1

1 )∗ , a ∈ B(H).

Note that Θ = Σ(X,R), where X = {X(n)}n∈N3 is the subproduct system
given by X(n) = C for all n ∈ N3, and R is the (injective) representation that
sends 1 ∈ X(n) to T n1

1 T n2
2 T n3

3 (the product in X is simply multiplication of
scalars).
Assume, for the sake of obtaining a contradiction, that Θ = {Θn}n∈N3 has an
e-dilation (α,K,B(K)). Let (Y, V ) = Ξ(α) be the Arveson-Stinespring sub-
product system of α together with the identity representation. By Theorem
5.12, (Y, V,K) is a dilation of (X,R,H). It follows that V1, V2, V3 are a com-
muting isometric dilation of T1, T2, T3 where V1 := V (1) with 1 ∈ X(1, 0, 0),
V2 := V (1) with 1 ∈ X(0, 1, 0), and V3 := V (1) with 1 ∈ X(0, 0, 1). This is a
contradiction.
Finally, a standard argument shows that if (α,K,R) is a minimal dilation of
Θ, then R = B(K). �
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Until this point, all the results that we have seen in the dilation theory of cp-
semigroups have been anticipated by the classical theory of isometric dilations.
We shall now encounter a phenomena that has no counterpart in the classical
theory.
By [49, Proposition 9.2], if T1, . . . , Tk is a commuting k-tuple of contractions
such that

(5.5)

k∑

i=1

‖Ti‖2 ≤ 1,

then T1, . . . , Tk has a commuting regular unitary dilation (and, in particular,
an isometric dilation). One is tempted to conjecture that if θ1, . . . , θk is a
commuting k-tuple of CP maps such that

(5.6)

k∑

i=1

‖θi‖ ≤ 1,

then the tuple θ1, . . . , θk has an e-dilation. Indeed, if θi(a) = TiaT
∗
i , where

T1, . . . , Tk is a commuting k-tuple satisfying (5.5), then it is easy to construct
an e-dilation of θ1, . . . , θk from the isometric dilation of T1, . . . , Tk. However,
it turns out that (5.6) is far from being sufficient for an e-dilation to exist. We
need some preparations before exhibiting an example.

Proposition 5.15. There exists a subproduct system that is not a subsystem
of any product system.

Proof. We construct a counter example over N3. Let e1, e2, e3 be the standard
basis of N3. We let X(e1) = X(e2) = X(e3) = C2. Let X(ei + ej) = C2 ⊗ C2

for all i, j = 1, 2, 3. Put X(n) = {0} for all n ∈ Nk such that |n| > 2. To
complete the construction of X we need to define the product maps UX

m,n. Let

UX
ei,ej

be the identity on C2 ⊗ C2 for all i, j except for i = 3, j = 2, and let

UX
e3,e2

be the flip. Define the rest of the products to be zero maps (except the

maps UX
0,n, U

X
m,0 which are identities). This product is evidently coisometric,

and it is also associative, because the product of any three nontrivial elements
vanishes.
Let Y be a product system “dilating” X . Then for all k,m, n ∈ Nk we have

UY
k+m,n(UY

k,m ⊗ I) = UY
k,m+n(I ⊗ UY

m,n),

or

UY
k+m,n = UY

k,m+n(I ⊗ UY
m,n)(UY

k,m ⊗ I)∗,

and

UY
k,m+n = UY

k+m,n(UY
k,m ⊗ I)(I ⊗ UY

m,n)∗.
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Iterating these identities, we have, on the one hand,

Ue3,e1+e2 = UY
e3+e2,e1

(UY
e3,e2

⊗ I)(I ⊗ UY
e2,e1

)∗

= UY
e2,e3+e1

(I ⊗ UY
e3,e1

)(UY
e2,e3

⊗ I)∗(UY
e3,e2

⊗ I)(I ⊗ UY
e2,e1

)∗

= UY
e1+e2,e3

(UY
e2,e1

⊗ I)(I ⊗ UY
e1,e3

)∗

(I ⊗ UY
e3,e1

)(UY
e2,e3

⊗ I)∗(UY
e3,e2

⊗ I)(I ⊗ UY
e2,e1

)∗,

and on the other hand

Ue3,e1+e2 = UY
e3+e1,e2

(UY
e3,e1

⊗ I)(I ⊗ UY
e1,e2

)∗

= UY
e1,e3+e2

(I ⊗ UY
e3,e2

)(UY
e1,e3

⊗ I)∗(UY
e3,e1

⊗ I)(I ⊗ UY
e1,e2

)∗

= UY
e1+e2,e3

(UY
e1,e2

⊗ I)(I ⊗ UY
e2,e3

)∗

(I ⊗ UY
e3,e2

)(UY
e1,e3

⊗ I)∗(UY
e3,e1

⊗ I)(I ⊗ UY
e1,e2

)∗.

Canceling UY
e1+e2,e3

, we must have

(UY
e1,e2

⊗ I)(I ⊗ UY
e2,e3

)∗(I ⊗ UY
e3,e2

)(UY
e1,e3

⊗ I)∗(UY
e3,e1

⊗ I)(I ⊗ UY
e1,e2

)∗

= (UY
e2,e1

⊗ I)(I ⊗ UY
e1,e3

)∗(I ⊗ UY
e3,e1

)(UY
e2,e3

⊗ I)∗(UY
e3,e2

⊗ I)(I ⊗ UY
e2,e1

)∗.

Now, UX
ei,ej

were unitary to begin with, so the above identity implies

(UX
e1,e2

⊗ I)(I ⊗ UX
e2,e3

)∗(I ⊗ UX
e3,e2

)(UX
e1,e3

⊗ I)∗(UX
e3,e1

⊗ I)(I ⊗ UX
e1,e2

)∗

= (UX
e2,e1

⊗ I)(I ⊗ UX
e1,e3

)∗(I ⊗ UX
e3,e1

)(UX
e2,e3

⊗ I)∗(UX
e3,e2

⊗ I)(I ⊗ UX
e2,e1

)∗.

Recalling the definition of the product inX (the product is usually the identity),
this reduces to

I ⊗ UX
e3,e2

= UX
e3,e2

⊗ I.
This is absurd. Thus, X cannot be dilated to a product system. �

We can now strengthen Theorem 5.14:

Theorem 5.16. There exists a cp-semigroup Θ = {Θn}n∈N3 acting on a B(H),
such that for all λ > 0, λΘ has no e-dilation (α,K,B(K)), and no minimal
e-dilation (α,K,R) on any von Neumann algebra R.

Proof. Let X be as in Proposition 5.15. Let Θ be the cp-semigroup generated
by the X-shift, as in Section 2.3 of the paper. Of course, Θ, as a semigroup
over N3, can be generated by three commuting CP maps θ1, θ2, θ3. X cannot
be embedded into a full product system, so by Theorem 5.12, Θ has no minimal
e-dilation, nor does it have an e-dilation acting on a B(K). Note that if Θ is
scaled its product system is left unchanged (this follows from Theorem 2.6: if
you take X and scale the representation SX you get a scaled version of Θ). So
no matter how small you take λ > 0, λθ1, λθ2, λθ3 cannot be dilated to three
commuting ∗-endomorphisms on B(K), nor to a minimal three-tuple on any
von Neumann algebra. �
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Note that the obstruction here seems to be of a completely different nature
from the one in the example given in Theorem 5.14. The subproduct system
arising there is already a product system, and, indeed, the cp-semigroup arising
there can be dilated once it is multiplied by a small enough scalar.

Part 2. Subproduct systems over N

6. Subproduct systems of Hilbert spaces over N

We now specialize to subproduct systems of Hilbert W∗-correspondences over
the semigroup N, so from now on any subproduct system is to be understood
as such (soon we will specialize even further to subproduct systems of Hilbert
spaces).

6.1. Standard and maximal subproduct systems. If X is a subproduct
system over N, then X(0) = M (some von Neumann algebra), X(1) equals
some W∗-correspondence E, and X(n) can be regarded as a subspace of E⊗n.
The following lemma allows us to consider X(m+ n) as a subspace of X(m)⊗
X(n).

Lemma 6.1. Let X = {X(n)}n∈N be a subproduct system. X is isomorphic
to a subproduct system Y = {Y (n)}n∈N with coisometries {UY

m,n}m,n∈N that
satisfies

Y (1) = X(1)

and

(6.1) Y (m+ n) ⊆ Y (m)⊗ Y (n).

Moreover, if pm+n is the orthogonal projection of Y (1)⊗(m+n) onto Y (m+ n),
then

(6.2) UY
m,n = pm+n

∣∣∣
Y (m)⊗Y (n)

and the projections {pn}n∈N satisfy

(6.3) pk+m+n = pk+m+n(IE⊗k ⊗ pm+n) = pk+m+n(pk+m ⊗ IE⊗n).

Proof. Denote by UX
m,n the subproduct system maps X(s)⊗X(t)→ X(s+ t).

Denote E = X(1). We first note that for every n there is a well defined
coisometry Un : E⊗n → X(n) given by composing in any way a sequence of
maps UX

k,m (for example, one can take U3 = UX
2,1(UX

1,1 ⊗ IE) and so on). We

define Y (n) = Ker(Un)⊥, and we let pn be the orthogonal projection from
E⊗n onto Y (n). pn = U∗

nUn, so, in particular, pn is a bimodule map. For all
m,n ∈ N we have that

E⊗m ⊗Ker(Un) ⊆ Ker(Um+n).

Thus E⊗m⊗Ker(Un)⊥ ⊇ Ker(Um+n)⊥, so pm+n ≤ IE⊗m⊗pn. This means that
(6.3) holds. In addition, defining UY

m,n to be pm+n restricted to Y (m)⊗Y (n) ⊆
E⊗(m+n) gives Y the associative multiplication of a subproduct system.
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It remains to show that X is isomorphic to Y . For all n, X(n) is spanned by
elements of the form Un(x1 ⊗ · · · ⊗ xn), with x1, . . . , xn ∈ E. We define a map
Vn : X(n)→ Y (n) by

Vn

(
Un(x1 ⊗ · · · ⊗ xn)

)
= pn(x1 ⊗ · · · ⊗ xn).

It is immediate that Vn preserves inner products (thus it is well defined) and
that it maps X(n) onto Y (n). Finally, for all m,n ∈ N and x ∈ E⊗m, y ∈ E⊗n,

Vm+n

(
UX

m,n(Um(x)⊗ Un(y))
)

= Vm+n

(
Um+n(x⊗ y)

)

= pm+n(x ⊗ y)

= pm+n(pmx⊗ pny)

= pm+n

(
(VmUm(x)) ⊗ (VnUn(y))

)

= UY
m+n

(
(VmUm(x)) ⊗ (VnUn(y))

)
,

and (1.2) holds. �

Definition 6.2. A subproduct system Y satisfying (6.1), (6.2) and (6.3) above
will be called a standard subproduct system.

Note that a standard subproduct system is a subproduct subsystem of the full
product system {E⊗n}n∈N.

Corollary 6.3. Every cp-semigroup over N has an e-dilation.

Proof. The unital case follows from Corollary 5.10 together with the above
lemma. The nonunital case follows from a similar construction (where the
dilation of a non-fully-coisometric representation is obtained by adapting [41,
Theorem 4.2] instead of [43, Theorem 5.2]). �

Let k ∈ N, and let E = X(1), X(2), . . . , X(k) be subspaces of E,E⊗2, . . . , E⊗k,
respectively, such that the orthogonal projections pn : E⊗n → X(n) satisfy

pn ≤ IE⊗i ⊗ pj

and

pn ≤ pi ⊗ IE⊗j

for all i, j, n ∈ N+ satisfying i+j = n ≤ k. In this case one can define a maximal
standard subproduct system X with the prescribed fibers X(1), . . . , X(k) by
defining inductively for n > k

X(n) =


 ⋂

i+j=n

E⊗i ⊗X(j)


⋂


 ⋂

i+j=n

X(i)⊗ E⊗j


 .

It is easy to see that

X(n) =
⋂

n1+...+nm=n

X(n1)⊗ · · · ⊗X(nm) =
⋂

i+j=n

X(i)⊗X(j).
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We then have obvious formulas for the projections {pn}n∈N as well, for example

pn =
∧

i+j=n

pi ⊗ pj , (n > k).

6.2. Examples.

Example 6.4. In the case k = 1, the maximal standard subproduct system
with prescribed fiber X(1) = E, with E a Hilbert space, is the full product
system FE of Example 1.2. If dimE = d, we think of this subproduct system as
the product system representing a (row-contractive) d-tuple (T1, . . . , Td) of non
commuting operators, that is, d operators that are not assumed to satisfy any
relations (the idea behind this last remark must be rather vague at this point,
but it shall become clearer as we proceed). In the case k = 2, if X(2) is the
symmetric tensor product E with itself then the maximal standard subproduct
system with prescribed fibers X(1), X(2) is the symmetric subproduct system
SSPE of Example 1.3. We think of SSP as the subproduct system representing
a commuting d-tuple.

Example 6.5. Let E be a two dimensional Hilbert space with basis {e1, e2}.
Let X(2) be the space spanned by e1⊗ e1, e1⊗ e2, and e2⊗ e1. In other words,
X(2) is what remains of E⊗2 after we declare that e2⊗e2 = 0. We think of the
maximal standard subproduct system X with prescribed fibers X(1) = E,X(2)
as the subproduct system representing pairs (T1, T2) of operators subject only
to the condition T 2

2 = 0. E⊗n has a basis consisting of all vectors of the form
eα = eα1 ⊗ · · · ⊗ eαn

where α = α1 · · ·αn is a word of length n in “1” and “2”.
X(n) then has a basis consisting of all vectors eα where α is a word of length
n not containing “22” as a subword. Let us compute dimX(n), that is, the
number of such words.
Let An denote the number of words not containing “22” that have leftmost
letter “1”, and let Bn denote the number of words not containing “22” that
have leftmost letter “2”. Then we have the recursive relationAn = An−1+Bn−1

and Bn = An−1. The solution of this recursion gives

dimX(n) = An +Bn ≈
(

1 +
√

5

2

)n

.

As one might expect, the dimension of X(n) grows exponentially fast.

Example 6.6. Suppose that we want a “subproduct system that will represent
a pair of operators (T1, T2) such that TiT2 = 0 for i = 1, 2”. Although we have
not yet made clear what we mean by this, let us proceed heuristically along
the lines of the preceding examples. We let E be as above, but now we declare
e1⊗e2 = e2⊗e2 = 0. In other words, we define X(2) = {e1⊗e2, e2⊗e2}⊥. One
checks that the maximal standard subproduct system X with prescribed fibers
X(1) = E,X(2) is given by X(n) = span{e1⊗ e1⊗ · · · ⊗ e1, e2⊗ e1⊗ · · · ⊗ e1}.
This is an example of a subproduct system with two dimensional fibers.
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At this point two natural questions might come to mind. First, is every stan-
dard subproduct system X the maximal subproduct system with prescribed fibers
X(1), . . . , X(k) for some k ∈ N? Second, does dimX(n) grow exponentially
fast (or remain a constant) for every subproduct system X? The next example
answers both questions negatively.

Example 6.7. Let E be as in the preceding examples, and let X(n) be a
subspace of E⊗n having basis the set

{eα : |α| = n, α does not contain the words 22, 212, 2112, 21112, . . .}.
Then X = {X(n)}n∈N is a standard subproduct system, but it is smaller than
the maximal subproduct system defined by any initial k fibers. Also, X(n) is
the span of eα with α = 11 · · ·11, 21 · · ·11, 121 · · ·11, . . . , 11 · · · 12, thus

dimX(n) = n+ 1,

so this is an example of a subproduct system with fibers that have a linearly
growing dimension.

Of course, one did not have to go far to find an example of a subproduct
system with linearly growing dimension: indeed, the dimension of the fibers of
the symmetric subproduct system SSPCd is known to be

dimSSPCd(n) =

(
n+ d− 1

n

)
.

Taking d = 2 we get the same dimension as in Example 6.7. However, SSP :=
SSPC2 and the subproduct system X of Example 6.7 are not isomorphic: for
any nonzero x ∈ SSP (1), the “square” USSP

1,1 (x ⊗ x) ∈ SSP (2) is never zero,

while UX
1,1(e2 ⊗ e2) = 0.

Here is an interesting question that we do not know the answer to: given a
solution f : N→ N to the functional inequality

f(m+ n) ≤ f(m)f(n) , m, n ∈ N,

does there exists a subproduct system X such that dimX(n) = f(n) for all
n ∈ N?

Remark 6.8. One can cook up simple examples of subproduct systems that
are not standard. We will not write these examples down, as we already know
that such a subproduct system is isomorphic to a standard one.

6.3. Representations of subproduct systems. Fix a W∗-correspondence
E. Every completely contractive linear map T1 : E → B(H) gives rise to a c.c.
representation T n of the full product system FE = {E⊗n}n∈N by defining for
all x ∈ E⊗n and h ∈ H
(6.4) T n(x)h = T̃1

(
IE ⊗ T̃1

)
· · ·
(
IE⊗(n−1) ⊗ T̃1

)
(x⊗ h),

where T̃1 : E ⊗ H → H is given by T̃1(e ⊗ h) = T1(e)h. We will denote

the operator acting on x ⊗ h in the right hand side of (6.4) as T̃ n, so as not
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to confuse with T̃n, which sometimes has a different meaning (namely: if T
denotes a c.c. representation of a subproduct system X then

T̃n : X(n)⊗H → H

is given by

T̃n(x ⊗ h) = T (x)h

for all x ∈ X(n), h ∈ H . Of course, when X = FE , T is a representation

of FE and T1 is the restriction of T to E, then T̃ n = T̃n for all n). If X is a
standard subproduct system and X(1) = E, we obtain a completely contractive
representation of X(n) by restricting T n to X(n). Let us denote this restriction
by Tn, and denote the family {Tn}n∈N by T .

Proposition 6.9. Let X be a standard subproduct system with projections
{pn}n∈N, and let T1 : E → B(H) be a completely contractive map. Construct
the family of maps T = {Tn}n∈N, with Tn : X(n)→ B(H) as in the preceding
paragraph. Then the following are equivalent:

(1) T is a representation of X.
(2) For all m,n ∈ N,

(6.5) T̃m(IX(m) ⊗ T̃n)(pm ⊗ pn ⊗ IH)(p⊥m+n ⊗ IH) = 0.

(3) For all n ∈ N,

(6.6) T̃ n(p⊥n ⊗ IH) = 0.

Proof. If T is a representation, then

T̃m(IX(m)⊗T̃n)(pm⊗pn⊗IH)(p⊥m+n⊗IH) = T̃m+n(pm+n⊗IH)(p⊥m+n⊗IH) = 0,

so 1 ⇒ 2. To prove 2 ⇒ 3 note first that (6.6) is clear for n = 1. Assuming
that (6.6) holds for n = 1, 2, . . . , k − 1, we will show that it holds for n = k.

T̃ k(p⊥k ⊗ IH) = T̃ 1(I ⊗ T̃ k−1)(p⊥k ⊗ IH)

= T̃ 1(I ⊗ T̃ k−1)(IE ⊗ p⊥k−1 ⊗ IH + IE ⊗ pk−1 ⊗ IH)(p⊥k ⊗ IH)

(∗) = T̃ 1(I ⊗ T̃ k−1(pk−1 ⊗ IH))(p⊥k ⊗ IH)

= T̃1(I ⊗ T̃k−1(pk−1 ⊗ IH))(p⊥k ⊗ IH)

(∗∗) = 0.

The equality marked by (*) is true by the inductive hypothesis, and the one
marked by (**) follows from (6.5).

Finally, 3 ⇒ 1: by (6.6) we have T̃ n(pn ⊗ IH) = T̃ n. On the other hand,

T̃ n(pn ⊗ IH) = T̃n(pn ⊗ IH). Thus

T̃m+n(pm+n ⊗ IH) = T̃m+n(pm+n ⊗ IH)

= T̃m+n

= T̃m(IX(m) ⊗ T̃ n)

= T̃m(IX(m) ⊗ T̃n)(pm ⊗ pn ⊗ IH),
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which shows that T is a representation. �

Proposition 6.10. Let X be the maximal standard subproduct system with
prescribed fibers X(1), . . . , X(k), and let T1 : E → B(H) be a completely con-
tractive map. Construct T as in Proposition 6.9. Then T is a representation
of X if and only if

(6.7) T̃ n(p⊥n ⊗ IH) = 0 for all n = 1, 2, . . . , k.

Proof. The necessity of (6.7) follows from Proposition 6.9. By the same propo-
sition, to show that the condition is sufficient it is enough to show that (6.7)
holds for all n ∈ N. Given m ∈ N, we have pm =

∧
q q, where q runs over all

projections of the form q = IX(i) ⊗ pj or q = pi ⊗ IX(j), with i, j ∈ N+ and

i+ j = m. But then p⊥m =
∨

q q
⊥, thus if (6.7) holds for all n < m then it also

holds for n = m. �

6.4. Fock spaces and standard shifts.

Definition 6.11. Let X be a subproduct system of Hilbert spaces. Fix an
orthonormal basis {ei}i∈I of E = X(1). X(n), when considered as a subspace
of FX , is called the n particle space. The standard X-shift (related to {ei}i∈I)

on FX is the tuple of operators SX =
(
SX

i

)
i∈I

in B(FX) given by

SX
i (x) = U1,n(ei ⊗ x),

for all i ∈ I, n ∈ N and x ∈ X(n).

It is clear that SX
i = SX(ei), where SX is the shift representation given by

Definition 2.9.
If F denotes the usual full product system (Example 1.2) then FF is the usual
Fock space and the tuple (SF

i )i∈I is the standard shift (the I orthogonal shift
of [37]). We shall denote FF as F and (SF

i )i∈I as (Si)i∈I . It is then obvious
that the tuple

(
SX

i

)
i∈I

is a row contraction, as it is the compression of the

row contraction (Si)i∈I . Indeed, assuming (as we may, thanks to Lemma 6.1)
that Um,n is an orthogonal projection pm+n : X(m)⊗X(n)→ X(m+ n), and
denoting p = ⊕npn, we have for all i that SX

i = pSi

∣∣FX .

Example 6.12. The q-commuting Fock space of [19] also fits into this frame-
work. Indeed, let (as in [19]) Γ(Cd) be the full Fock space, let Γq(Cd) denote
the q-commuting Fock space, and let Y (n) be the “n particle q-commuting
space” with orthogonal projection pn : (Cd)n → Y (n). Then a straightforward
calculation shows that the projections {pn}n∈N satisfy equation (6.3) of Lemma
6.1, thus Y = {Y (n)}n∈N is a subproduct system (satisfying (6.1) and (6.2)).
With our notation from above we have that FY = Γq(Cd) and that the tuple
(SY

i , . . . , S
Y
d ) is the standard q-commuting shift.

SF , the standard shift of the full product system on the full Fock space, will
be denoted by S, and will be called simply the standard shift.
By the notation introduced in Definition 5.7, the symbol SX is also used to
denote the maximal X-piece of the standard shift S. The following proposition
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– which is a generalization of [12, Proposition 6], [19, Proposition 11] and [39,
Proposition 2.9] – shows that this is consistent.

Proposition 6.13. Let X subproduct subsystem of a subproduct system Y .
Then the maximal X-piece of the standard Y -shift is the standard X-shift.

Proof. Let E = Y (1), and let F = FE be the full product system. Viewing

F (n) ⊗ FF as direct sum of |I|n copies of FF , (S̃)n is just the row isometry
(Si1 ◦ · · · ◦ Sin

)i1,...,in∈I from the space of columns FF ⊕ FF ⊕ · · · into FF . In
other words, for h ∈ FF and i1, . . . , in ∈ I,

(S̃)n

(
(ei1 ⊗ · · · ⊗ ein

)⊗ h
)

= Si1 ◦ · · · ◦ Sin
h = (ei1 ⊗ · · · ⊗ ein

)⊗ h.
This is an isometry, and the adjoint works by sending (ei1 ⊗· · ·⊗ ein

)⊗h ∈ FF

back to (ei1 ⊗ · · · ⊗ ein
) ⊗ h ∈ F (n) ⊗ FF , and by sending the 0, 1, . . . , n − 1

particle spaces to 0.
Now, if Z is any standard subproduct subsystem of F , then

(
S̃Z
)

n
= PFZ

(
S̃
)

n

∣∣
Z(n)⊗FZ

,

thus

(6.8)
(
S̃Z
)∗

n
= PZ(n)⊗FZ

(
S̃
)∗

n

∣∣
FZ
.

Now if h is in the k particle space of FF with k < n, then (S̃Z)∗nh = 0. If
k ≥ n, then since Z(k) ⊆ Z(n)⊗ Z(k − n) we may write h =

∑
ξi ⊗ ηi, where

ξi ∈ Z(n) and ηi ∈ Z(k − n). Thus by (6.8) we find that

(6.9) (S̃Z)∗n

(∑
ξi ⊗ ηi

)
=
∑

pZ
n ξi ⊗ pZ

k−nηi =
∑

ξi ⊗ ηi.

From these considerations it follows that the standard X-shift is in fact an
X-piece of the standard Y shift, as (S̃Y )∗n

∣∣
FX

= (S̃X)∗n. It remains to show

that the X-shift is maximal.
Assume that there is a Hilbert space H , FX ⊆ H ⊆ FY , such that the com-
pression of SY to H is an X-piece of Y , that is, H ∈ P(X,SY ) (see equation
(5.3)). Let h ∈ H ⊖ FX . We shall prove that h = 0. Being orthogonal to all
of FX , pY

n h must be orthogonal to X(n) for all n. Thus, we may assume that
h ∈ Y (n)⊖X(n) for some n. But then by (6.9)

(S̃Y )∗nh = h⊗ Ω.

But since H ∈ P(X,SY ), we must have h⊗ Ω ∈ X(n)⊗H , and this, together
with h ∈ Y (n)⊖X(n), forces h = 0. �

7. Zeros of homogeneous polynomials in noncommutative
variables

In the next section we will describe a model theory for representations of sub-
product systems. But before that we dedicate this section to build a precise
connection between subproduct systems together with their representations
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and tuples of operators that are the zeros of homogeneous polynomials in non
commuting variables.

Remark 7.1. The notions that we are developing give a framework for study-
ing tuples of operators satisfying relations given by homogeneous polynomials.
One can go much further by considering subspaces of Fock spaces and “repre-
sentations”, i.e., maps of the Fock space into B(H), that give a framework for
studying tuples of operators satisfying arbitrary (not-necessarily homogeneous)
polynomial and even analytic identities. Gelu Popescu [39] has already begun
developing such a theory.

We begin by setting up the usual notation. Let I be a fixed set of indices, and
let C〈(xi)i∈I〉 be the algebra of complex polynomials in the non commuting
variables (xi)i∈I . We denote x = (xi)i∈I , and we consider x as a “tuple
variable”. We shall sometimes write C〈x〉 for C〈(xi)i∈I〉. The set of all words
in I is denoted by F+

I . For a word α ∈ F+
I , let |α| denote the length of α, i.e.,

the number of letters in α.
For every word α = α1 · · ·αk in I denote xα = xα1 · · ·xαk

. If α = 0 is the empty
word, then this is to be understood as 1. k is also referred to in this context
as the degree of the monomial xα. C〈x〉 is by definition the linear span over
C of all such monomials, and every element in C〈x〉 is called a polynomial. A
polynomial is called homogeneous if it is the sum of monomials of equal degree.
A homogeneous ideal is a two-sided ideal that is generated by homogeneous
polynomials.
If T = (Ti)i∈I is a tuple of operators on a Hilbert space H and α = α1 · · ·αk

is a word with letters in I, we define

Tα = Tα1Tα2 · · ·Tαk
.

We define T 0 = IH . If p(x) =
∑

α cαx
α ∈ C〈x〉, we define p(T ) =

∑
α cαT

α.
If E is a Hilbert space with orthonormal basis {ei}i∈I , An element eα1 ⊗
· · · ⊗ eαk

∈ E⊗k will be written in short form as eα, where α = α1 · · ·αk. If
p(x) =

∑
α cαx

α ∈ C〈x〉, we define p(e) =
∑

α cαeα. Here e0 (0 the empty
word) is understood as the vacuum vector Ω.

Proposition 7.2. Let E be a Hilbert space with orthonormal basis {ei}i∈I.
There is an inclusion reversing correspondence between proper homogeneous
ideals I ⊳C〈x〉 and standard subproduct systems X = {X(n)}n∈N with X(1) ⊆
E. When |I| <∞ this correspondence is bijective.

Proof. Let X be such a subproduct system. We define an ideal

(7.1) IX := span{p ∈ C〈x〉 : ∃n > 0, p(e) ∈ E⊗n ⊖X(n)}.
Once it is established that IX is a two-sided ideal the fact that it is homogeneous
will follow from the definition. Let p ∈ C〈x〉 be such that p(e) ∈ E⊗n ⊖X(n)
for some n > 0. It suffices to show that for every monomial xα we have that
xαp(x) ∈ IX , that is,

eα ⊗ p(e) ∈ E⊗|α|+n ⊖X(|α|+ n).
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But since X is standard, X(|α|+ n) ⊆ X(|α|)⊗X(n), thus

E⊗|α| ⊗ (E⊗n ⊖X(n)) ⊆ E⊗|α|+n ⊖X(|α|+ n).

It follows that IX is a homogeneous ideal.
Conversely, let I be a homogeneous ideal. We construct a subproduct system
XI as follows. Let I(n) be the set of all homogeneous polynomials of degree n
in I. Define

(7.2) XI(n) = E⊗n ⊖ {p(e) : p ∈ I(n)}.
Denote by pn the orthogonal projection of E⊗n onto XI(n). To show that XI is
a subproduct system it is enough (by symmetry) to prove that for all m,n ∈ N

pm+n ≤ IE⊗m ⊗ pn,

or, in other words, that

(7.3) XI(m+ n) ⊆ E⊗m ⊗XI(n).

Let x ∈ XI(m+ n), let α ∈ Im, and let q ∈ I(n). Since I is an ideal, xαq(x) is
in I(m+n), thus 〈x, eα ⊗ q(e)〉 = 0. This proves (7.3).
Assume now that |I| <∞. We will show that the maps X 7→ IX and I 7→ XI

are inverses of each other. Let J be a homogeneous ideal in C〈x〉. Then

IXJ = span{p ∈ C〈x〉 : ∃n > 0, p(e) ∈ E⊗n ⊖XJ (n)}
(∗) = span{p ∈ C〈x〉 : ∃n > 0, p(e) ∈ {q(e) : q ∈ J (n)}}

= span{p : ∃n > 0, p ∈ J (n)}
(∗∗) = J,

where (*) follows from the definition of XJ , and (**) from the fact that J is a
homogeneous ideal.
For the other direction, let Y be a standard subproduct subsystem of FE =
{E⊗n}n∈N. Clearly, (IY )(n) = {p ∈ C〈x〉 : p(e) ∈ E⊗n ⊖ Y (n)}. Thus

XIY (n) = E⊗n ⊖ {p(e) : p ∈ (IY )(n)}
= E⊗n ⊖ {p(e) : p ∈ {q ∈ C〈x〉 : q(e) ∈ E⊗n ⊖ Y (n)}
= E⊗n ⊖ (E⊗n ⊖ Y (n))

= Y (n).

�

We record the definitions of IX and XI from the above theorem for later use:

Definition 7.3. Let E be a Hilbert space with orthonormal basis {ei}i∈I (|I| is
not assumed finite). Given a homogeneous ideal I ⊳C〈x〉, the subproduct system
XI defined by (7.2) will be called the subproduct system associated with I. If
X is a given subproduct subsystem of FE, then the ideal IX of C〈x〉 defined by
(7.1) will be called the ideal associated with X.

We note that XI depends on the choice of the space E and basis {ei}i∈I , but
different choices will give rise to isomorphic subproduct systems.
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Proposition 7.4. Let X and Y be standard subproduct systems with
dimX(1) = dimY (1) = d < ∞. Then X is isomorphic to Y if and only if
there is a unitary linear change of variables in C〈x1, . . . , xd〉 that sends IX

onto IY .

Fix some infinite dimensional separable Hilbert space H . As in classical alge-
braic geometry, given a homogeneous ideal I ⊳ C〈x〉, it is natural to introduce
and to study the zero set of I

Z(I) := {T = (Ti)i∈I ∈ B(H)I : ∀p ∈ I, p(T ) = 0}.
Also, given a set Z ⊆ B(H)I , one may form the following two-sided ideal in
C〈x〉

I(Z) := {p ∈ C〈x〉 : ∀T ∈ Z, p(T ) = 0}.
In the following theorem we shall use the notation of 6.3. This simple result is
the justification for viewing subproduct systems as a framework for studying
tuples of operators satisfying certain homogeneous polynomial relations.

Theorem 7.5. Let E be a Hilbert space with orthonormal basis {ei}i∈I (not
necessarily with |I| < ∞), and let I be a proper homogeneous ideal in
C〈(xi)i∈I〉. Let XI be the associated subproduct system. Let T1 : E → B(H)
be a given representation of E. Define a tuple T = (T (ei))i∈I . Construct the
family of maps T = {Tn}n∈N, with Tn : X(n) → B(H) as in the paragraphs
before Proposition 6.9. Then T is a representation of X if and only if T ∈ Z(I).

Proof. On the one hand, E⊗n ⊖XI(n) = span{p(e) : p ∈ I(n)}. On the other
hand, for every p ∈ I(n) and every h ∈ H ,

T̃ n(p(e)⊗ h) = p(T )h.

Hence, the Theorem follows from Proposition 6.9. �

Lemma 7.6. Let J ⊳ C〈(xi)i∈I〉, |I| < ∞, be a proper homogeneous ideal. Let
SXJ be the XJ -shift representation, and define T = (Ti)i∈I by Ti = SXJ (ei),
i ∈ I. If p ∈ C〈x〉 is a homogeneous polynomial, then p(T ) = 0 if and only if
p ∈ J .

Proof. The “if” part follows from Theorem 7.5. For the “only if” part, let
p /∈ J be a homogeneous polynomial of degree n. Applying p(T ) to the vacuum
vector Ω, we have

p(T )Ω = Pp(e),

where P is the orthogonal projection of E⊗n onto XJ(n). But as p /∈ J , p(e)
is not in E⊗n ⊖XJ(n) = kerP , thus Pp(e) 6= 0. In particular, p(T ) 6= 0. �

We have the following noncommutative projective Nullstellensatz.

Theorem 7.7. Let H be a fixed infinite dimensional separable Hilbert space.
Let J be a homogeneous ideal in C〈(xi)i∈I〉, with |I| <∞. Then

I(Z(J)) = J.

Documenta Mathematica 14 (2009) 801–868



844 Orr Shalit and Baruch Solel

In particular, Z(J) = {0 = (0, 0, . . .)} if and only if J is the ideal generated by
all the xi, i ∈ I.
Proof. I(Z(J)) ⊇ J is immediate. To see the converse, first note that equal-
ity is obvious when J = C〈x〉, so we may assume that J is proper. Also
note that since J is homogeneous Z(J) is scale invariant. From this it fol-
lows that I(Z(J)) is also a homogeneous ideal. Indeed, if h, g ∈ H , and
p(x) =

∑
α cαx

α ∈ I(Z(J)), then for all λ ∈ C one has for every tuple
T = (Ti)i∈I ∈ Z(I),

0 = 〈p(λT )h, g〉 =
∑

k


∑

|α|=k

cα〈Tαh, g〉


λk,

and since a nonzero univariate polynomial has only finitely many zeros, it
follows the homogeneous components of p are all in I(Z(J)).
Assume now that p is a homogeneous polynomial not in J . Let SXJ be the
XJ -shift representation, and define T = (Ti)i∈I by Ti = SXJ (ei), i ∈ I. It is
clear that B(H)I contains some unitarily equivalent copy of T , which we also
denote by T . By Theorem 7.5, T ∈ Z(J). But by Lemma 7.6, p(T ) 6= 0, so
p /∈ I(Z(J)). This completes the proof. �

8. Universality of the shift: universal algebras and models

In [5], Arveson established a model for commuting, row-contractive tuples.
Using an idea from that paper that appeared also in [12] and [19] – an idea
that rests upon Popescu’s “Poisson Transform” introduced in [38] (and pushed
forward in [33] and [39]) – we construct below a model for representations of
subproduct systems. Roughly speaking, we will show that every representation
of a subproduct system X is a piece of a scaled inflation of the shift. Our
model should be compared with a similar model obtained by Popescu in [39].
We will also see below that the operator algebra generated by the shift SX is
the universal operator algebra generated by a representation of X .

8.1. Notation for this section. We continue to use the notation set in the
previous section. Let X be a standard subproduct system of Hilbert spaces
over N, to be fixed throughout this section. Let pn : E⊗n → X(n) be the
projections. Denote E = X(1). Let {ei}i∈I be an orthonormal basis for E,
fixed once and for all.
We denote the standard X-shift tuple by SX = (SX

i )i∈I , and we denote the
standard X-shift representation of X on FX by SX . We consider FX to be a
subspace of the full Fock space F, we denote the full shift by S = (Si)i∈I , and
we denote the full shift representation of F on F := FF by S.
Given a representation T : X → B(H), we will write T = (Ti)i∈I for the tuple
(T (ei))i∈I .
We denote by AX the unital algebra

AX := span{SXα
: α ∈ F+

I }.
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We denote by EX the operator system

EX := spanAXA∗
X ,

and by TX = C∗(SX) the C∗-algebra generated by SX
i , i ∈ I and IFX

. We
denote by K(FX) the algebra of compact operators on FX

If T and U are two representations of X on Hilbert spaces H and K, respec-
tively, then we define

T ⊕ U
to be the representation of X on H ⊕K given by (T ⊕ U)(x) = T (x)⊕ U(x).
We also define

T ⊗ IK
to be the representation of X on H ⊗K given by (T ⊗ IK)(x) = T (x)⊗ IK .

8.2. Popescu’s “Poisson Transform”. After obtaining the results of this
section, we discovered that they were obtained earlier by Popescu [39]. We are
presenting them here since they are important for the rest of this paper but we
leave out some of the arguments.

Proposition 8.1. K(FX) ⊆ EX .

Proof. The result follows from the equations

(8.1) I −
∑

i∈I

SX
i

(
SX
)∗
i

= PC.

and

(SX)β

(
I −

∑

i∈I

SX
i

(
SX
)∗
i

)
SXα∗

x = p|β|〈eα, x〉eβ .

As the elements p|β|eβ span FX , it follows that K(FX) ⊆ EX .
Full details can be found in [39, Theorem 1.3] �

Given a representation T of X on a Hilbert space H and given an integer
m ∈ N, we denote by m · T the representation

m · T : X → B(H ⊕H ⊕ · · · ⊕H︸ ︷︷ ︸
m times

)

given by m · T (x) = T (x)⊕ T (x)⊕ · · · ⊕ T (x)︸ ︷︷ ︸
m times

. T is a row contraction (i.e.,

∑
i∈I TiT

∗
i ≤ IH) if and only if T is completely contractive. When T is a row

contraction the defect operator ∆(T ) is defined as

∆(T ) = I −
∑

i∈I

TiT
∗
i ,

and the Poisson Kernel [38] associated with T is the family of isometries
{Kr (T )}0≤r<1

Kr (T ) : H → F⊗H,
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given by

Kr (T )h =
∑

α∈F
+
I

eα ⊗
(
r|α|∆(rT )1/2Tα∗h

)
.

(See the beginning of [38, Section 8] for the remark that T has “property (P)”,
and [38, Lemma 3.2] for the fact that these are isometries). When it makes
sense, we also define K1 (T ) by the same formula with r = 1. The Poisson
transform is then defined as a map

Φ = ΦT : C∗(S)→ B(H)

Φ(a) = ΦT (a) = lim
rր1

Kr (T )
∗

(a⊗ I)Kr (T ) .

By [38, Theorem 3.8], Φ is a unital, completely positive, completely contractive,
satisfies

Φ(SαSβ∗) = TαT β∗,

and is multiplicative on Alg(S, IF), the algebra generated by S and IF (Φ is in
fact an Alg(S, IF)-morphism).

Theorem 8.2. Let T be a c.c. representation of X on H. There exists a
unital, completely positive, completely contractive map

Ψ : EX → B(H)

that satisfies

Ψ
(
(SX)α(SX)β∗

)
= TαT β∗ , α, β ∈ F+

I

and

(8.2) Ψ(ab) = Ψ(a)Ψ(b) , a ∈ AX , b ∈ EX .
Proof. By the lemma below, the range of Kr (T ) is contained in FX ⊗H for all
0 ≤ r < 1, thus

(PFX
⊗ IH)Kr (T ) = Kr (T ) .

We may then define

Ψ(T )(
(
(SX)α(SX)β∗

)
) = lim

rր1
Kr (T )

∗ ((
(SX)α(SX)β∗

)
⊗ I
)
Kr (T )

(∗) = lim
rր1

Kr (T )
∗
((
SαSβ∗

)
⊗ I
)
Kr (T )

= TαT β∗,

where in (*) we have made use of the coinvariance of FX under S. This obvi-
ously extends to the desired map on EX . �

Lemma 8.3. Kr (T )H ⊆ FX ⊗H.

Proof. This was proved in [39, Equation (2.5)] for r = 1. The same argument
(using the fact that p, there, can be chosen homogeneous) works also for r <
1. �
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8.3. The universal algebra generated by a tuple subject to homo-
geneous polynomial identities.

Theorem 8.4. J ⊳ C〈(xi)i∈I〉, be a homogeneous ideal. Then AXJ
is the uni-

versal unital operator algebra generated by a row contraction in Z(J), that is:
AXJ

is a norm closed unital operator algebra generated by a tuple in Z(J),

(namely, (SXJ

i )i∈I), and if B ⊆ B(H) is another norm closed unital operator
algebra generated by a row contraction (Ti)i∈I ∈ Z(J), then there is a unique
unital and completely contractive homomorphism ϕ of AXJ

onto B, such that

ϕ(SXJ

i ) = Ti for all i ∈ I.

Proof. This follows from Theorems 7.5 and 8.2. �

8.4. A model for representations: every completely bounded rep-
resentation of X is a piece of an inflation of SX. We will now con-
struct a model for representations of subproduct systems. In [39, Section 2],
a similar but different model – that includes also a fully coisometric part and
not only the shift – has been obtained.

Theorem 8.5. Let T be a completely bounded representation of the subproduct
system X on a separable Hilbert space H, and let K be an infinite dimensional,
separable Hilbert space. Then for all r > ‖T ‖cb, T is unitarily equivalent to a
piece of

(8.3) SX ⊗ rIK .
Moreover, ‖T ‖cb is equal the infimum of r such that T is a piece of an operator
as in (8.3).

Proof. It is known that ‖T ‖cb = ‖(Ti)i∈I‖row, where Ti = T (ei). Thus if r >
r0 = ‖T ‖cb, then

∑
i∈I TiT

∗
i ≤ r20I < r2I. Put Wi = r−1Ti, so

∑
i∈I WiW

∗
i ≤

r20/r
2I. Then K1 (W ) is an isometry (it is equal to Kr0/r(r/r0W ), and r/r0W

is a row contraction). Thus we may define a map (as in the proof of Theorem
8.2)

Ψ : B(FX)→ B(H)

by

Ψ(a) = K1 (W )
∗

(a⊗ I)K1 (W ) .

Ψ is a normal completely positive unital map that satisfies

Ψ
(
(SX)α(SX)β∗

)
= WαW β∗ , α, β ∈ F+

I .

Since Ψ is normal it has a normal minimal Stinespring dilation Ψ(a) =
V ∗π(a)V , with π : B(FX)→ B(L) a normal ∗-homomorphism and V : H → L
an isometry. It is well known that π is equivalent to a multiple of the identity
representation. Thus we obtain, up to unitary equivalence and after identi-
fying H with V H , that r−1Ti = PHπ(SX

i )PH = PH(SX
i ⊗ IG)PH , for some

Hilbert space G. To see that T is a piece of SX ⊗ IG we need to show that
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(SX
i ⊗ IG)∗

∣∣
H

= T ∗
i for all i ∈ I. In other words, we need to show that

PHπ(SX
i ) = PHπ(SX

i )PH . But, for all b ∈ EX ,

PHπ(SX
i )π(b)PH = PHπ(SX

i b)PH

= Ψ(SX
i b)

(∗) = Ψ(SX
i )Ψ(b)

= PHπ(SX
i )PHπ(b)PH ,

where (*) follows from (8.2). By Proposition 8.1, the strong operator closure
of EX is B(FX). PHπ(SX

i ) = PHπ(SX
i )PH now follows from the minimality

and normality of the dilation.
It is clear that r−1T is a also piece of SX⊗IK for every K with dimK ≥ dimG,
so we may choose K to be infinite dimensional.
We want to show that necessarily dimK ≥ dimH . Since SX ⊗ IK is a dilation
of r−1T , IL−

∑
i∈I S

X
i (SX

i )∗⊗IK is a dilation of IH −
∑

i∈I r
−2TiT

∗
i . But the

latter operator is invertible so it has rank dimH . Thus the rank of PC ⊗ IK =
IL −

∑
i∈I S

X
i (SX

i )∗ ⊗ IK , which is dimK, must be greater.
Now the final assertion is clear. �

We can now obtain a general von Neumann inequality.

Theorem 8.6. Let X be a subproduct system, and let T be a c.c. representation
of X on a Hilbert space H. Let {e1, . . . , ed} be an orthonormal set in X(1),
and define Ti = T (ei) and SX

i = SX(ei) for i = 1, . . . , d. Then for every
polynomials p and q in d non commuting variables,

‖p(T1, . . . , Td)q(T1, . . . , Td)∗‖ ≤ ‖p(SX
1 , . . . , S

X
d )q(SX

1 , . . . , S
X
d )∗‖.

Proof. Since T is a piece of SX ⊗ rIK for all r > 1, we have

p(T1, . . . , Td)q(T1, . . . , Td)∗ = P
(
p(rS1, . . . , rSd)q(rS1, . . . , rSd)∗ ⊗ IK

)
P

for some projection P , and the result follows by taking r ց 1. �

9. The operator algebra associated to a subproduct system

9.1. Let X be a subproduct system. Recall the definitions of AX and EX from
8.1. If {ei}i∈I is an orthonormal basis for X(1), then AX is the unital oper-
ator algebra generated by (SX

i )i∈I with SX
i = SX(ei). If {fi}i∈I is another

orthonormal basis then the tuple (SX(fi))i∈I is not necessarily unitarily equiv-
alent to (SX

i )i∈I . For instance (with the above notation), if X and {e1, e2} are
as in Example 6.7, and

f1 =
1√
2

(e1 + e2) , f2 =
1√
2

(e1 − e2),

then SX
1 , S

X
2 are partial isometries, whereas T1 = SX(f1) and T2 = SX(f2)

are not. Thus, the unitary equivalence of the row (SX
i ) does not determine the

isomorphism class of the subproduct system X .
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Proposition 9.1. Let X and Y be two subproduct systems with X(1) = E
and Y (1) = F . Assume that {ei}i∈I is an orthonormal basis for E and that
{fi}i∈I is an orthonormal basis for F . Then the shifts (SX

i )i∈I and (SY
i )i∈I

are unitarily equivalent as rows (i.e., there exists a unitary V : FX → FY such
that V SX

i = SY
i V for all i ∈ I), if and only if there is an isomorphism of

subproduct systems W : X → Y such that Wei = fi for all i ∈ I.

Proof. If X and Y are isomorphic with the isomorphism W sending ei to fi,
then define a unitary V : FX → FY by

V =
⊕

n∈N

W
∣∣
X(n)

.

V SX
i = SY

i V follows from the properties of W . Conversely, a unitary V in-

tertwining SX and SY must send ΩX to ΩY . Indeed, such a unitary must
send {ΩX}⊥ (which is equal to ∨iImS

X
i ) onto a subspace of {ΩY }⊥ that has

codimension 1 in FY , thus it must send {ΩX}⊥ onto {ΩY }⊥. It follows that

V ΩX = ΩY . Thus, given a unitary V intertwining SX and SY , we may define
W
∣∣X(n) : X(n)→ Y (n) by

WSX
α Ω = V SX

α Ω = SY
α Ω,

for all |α| = n, and it is easy to see that the maps W
∣∣
X(n)

assemble to form an

isomorphism of subproduct systems. �

In the example preceding the proposition, we saw how the shift “tuple”
(SX

1 , S
X
2 ) depends essentially on the choice of basis in E. However, the closed

unital algebra generated by (SX
1 , S

X
2 ) is isomorphic to the one generated by

(T1, T2). Similar remarks hold for EX and TX .

Example 9.2. Let X be the subproduct system given by X(0) = C, X(1) = C2

and X(n) = 0 for all n ≥ 2. Let Y be the subproduct system given by
Y (0) = Y (1) = Y (2) = C and Y (n) = 0 for all n ≥ 3. Then since EX and
EY contain the compact operators on FX and FY (the Fock spaces), we have
EX = TX

∼= M3(C) ∼= TY = EY .
On the other hand, let {e1, e2} be an orthonormal basis for X(1). Then if Ω
is the vacuum vector, then AX is generated by SX(Ω) = I, SX(e1), SX(e2). In
the base {Ω, e1, e2} for FX , these operators have the form




1 0 0
0 1 0
0 0 1


 ,




0 0 0
1 0 0
0 0 0


 ,




0 0 0
0 0 0
1 0 0


 .

Thus,

AX
∼=







a 0 0
b a 0
c 0 a



∣∣∣a, b, c ∈ C



 .
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On the other hand, AY is generated by

I =




1 0 0
0 1 0
0 0 1


 , SY (f1) =




0 0 0
1 0 0
0 1 0


 ,
(
SY (f1)

)2
=




0 0 0
0 0 0
1 0 0


 ,

where {f1} is an orthonormal basis for Y (1). Thus

AY
∼=







a 0 0
b a 0
c b a



∣∣∣a, b, c ∈ C



 .

So AX ≇ AY (in AX the solutions of T 2 = 0 form a two dimensional subspace,
and in AY they form a one dimensional subspace).

9.2. AX as a graded algebra. For every subproduct system X there exists
a unique completely contractive multiplicative linear functional ρ0 : EX → C
that sends λI to λ and SX

α to 0 when |α| > 0. The existence of ρ0 follows from
Theorem 8.2 (using the Poisson Transform), but it is also clear that ρ0 is just
the vector state associated with the vacuum vector ΩX :

ρ0(T ) = 〈TΩX ,ΩX〉 , T ∈ AX .

ρ0 can be considered also as a conditional expectation ρ0 : AX → C · ΩX ,
inducing a direct sum

(9.1) AX = ρ0AX ⊕ kerρ0 = C · I ⊕
∑

i

SX
i AX .

AX contains a dense graded subalgebra, with the homogeneous elements of
degree n being SX(ξ), where ξ ∈ X(n). To be precise, we have the following
proposition.

Proposition 9.3. Every T ∈ AX can be written in a unique way as

T =

∞∑

n=0

Tn,

where Tn ∈ span{SX(ξ) : ξ ∈ X(n)} and the sum is Cesaro convergent in the
norm topology.

Proof. The proof uses a familiar gadget in operator algebra theory, the gauge
action of the torus. For every t ∈ [−π, π], let Wt : X → X be the subproduct
system automorphism given by

X(n) ∋ ξ 7→ eintξ ∈ X(n).

The gauge action on AX is given by

γt(T ) = WtTW
∗
t , T ∈ AX .

Note that if α ∈ In, then

γt(S
X
α ) = eintSX

α ,
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and it follows also that for all T ∈ span{SX(ξ) : ξ ∈ X(n)},
γt(T ) = eintT.

Moreover, for all T ∈ AX , the path t 7→ γt(T ) is strong operator continuous.
Given T ∈ AX , we define

Φn(T ) =
1

2π

∫ π

−π

γt(T )e−intdt,

where this is interpreted in the strong operator sense.
It is easy to show that Φn is an idempotent whose range is span{SX(ξ) : ξ ∈
X(n)}.
Define linear maps on AX by

ΨN (T ) =

N∑

n=0

(
1− n

N

)
Φn(T ).

It is then a standard argument (using the Fejer kernel) to prove that
∑

n Φn(T )
is Cesaro convergent to T in the norm topology, that is, to show that for all
T ∈ AX ,

‖ΨN(T )− T ‖ N→∞−→ 0.

It remains to prove the uniqueness assertion. Assume that T =
∑

n Tn, where
the sum is Cesaro convergent to T , and Tn ∈ span{SX(ξ) : ξ ∈ X(n)}. Then
for all N > n,

Φn

(
N∑

m=0

(
1− m

N

)
Tm

)
=
(

1− n

N

)
Tn

N→∞−→ Tn.

On the other hand,

Φn

(
N∑

m=0

(
1− m

N

)
Tm

)
N→∞−→ Φn(T ),

whence Tn = Φn(T ). �

9.3. Vacuum state preserving isometric isomorphisms of AX .

Lemma 9.4. Let ϕ : AX → AY be an isometric isomorphism. Then ϕ is unital.

Proof. A theorem of Arazy and Solel [1] implies that an isometric map between
AX and AY must send I ∈ AX to an isometry in AX ∩ A∗

X . It follows that
ϕ(I) = cI, |c| = 1. But since ϕ is a homomorphism, then c = 1. �

Lemma 9.5. For all n ∈ N, ξ ∈ X(n)

‖SX(ξ)‖ = ‖SX(ξ)ΩX‖ = ‖ξ‖.
Proof. Because SX(ξ) maps the orthogonal summands X(k) of FX into the
orthogonal summands X(k + n), it suffices to show that for all η ∈ X(k),
‖SX(ξ)η‖ ≤ ‖ξ‖‖η‖ (because SX(ξ)ΩX = ξ). Now, SX(ξ)η = pX

n+k(ξ ⊗ η),
thus

‖SX(ξ)η‖2 ≤ ‖ξ ⊗ η‖2 = ‖ξ‖2‖η‖2.
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�

Lemma 9.6. Let ϕ : AX → AY be an isometric isomorphism that preserves
the direct sum decomposition (9.1). Then ϕ preserves the grading: if ξ ∈ X(n)
then ϕ(SX(ξ)) is in the norm closure of span{SY (η) : η ∈ Y (n)}.

Proof. Since ϕ is a homomorphism, it suffices to show, say, that ϕ(SX
1 ) has

“degree one”, that is, it is in the norm closure of span{SY (η) : η ∈ Y (1)}. By
assumption, we may write ϕ(SX

1 ) =
∑

i aiS
Y
i + T , with T in the closure of

span{SY (η) : η ∈ Y (n), n ≥ 2}. But ϕ−1(
∑

i aiS
Y
i + T ) = SX

1 , and ϕ−1(T )
is in the norm closure of span{SX(ξ) : η ∈ X(n), n ≥ 2}, so ϕ−1(

∑
i aiS

Y
i ) =

SX
1 + B, with B = −ϕ−1(T ) (note that ϕ−1 also preserves the direct sum

decomposition (9.1)).
If T = 0 then we are done, so assume T 6= 0. Then B 6= 0, also. But

1 = ‖SX
1 ‖ = ‖SX

1 ΩX‖ < ‖(SX
1 +B)ΩX‖ ≤ ‖SX

1 +B‖ = ‖
∑

i

aiS
Y
i ‖,

and at the same time

‖
∑

i

aiS
Y
i ‖ = ‖

∑

i

aiS
Y
i ΩY ‖ < ‖(

∑

i

aiS
Y
i + T )ΩY ‖ ≤

≤ ‖
∑

i

aiS
Y
i + T ‖ = ‖SX

1 ‖ = 1.

From T 6= 0 we arrived at 1 < 1, thus T = 0. �

Theorem 9.7. X ∼= Y if and only if AX and AY are isometrically isomorphic
with an isomorphism that preserves the direct sum decomposition (9.1), and this
happens if and only if AX and AY are isometrically isomorphic with a grading
preserving isomorphism. In fact, if ϕ : AX → AY is a grading preserving
isometric isomorphism then there is an isomorphism V : X → Y such that for
all T ∈ AX , ϕ(T ) = V TV ∗.

Proof. X ∼= Y implies AX
∼= AY because these algebras are then generated by

unitarily equivalent tuples.
For the converse, we will assume that X and Y are standard subproduct sys-
tems. The isomorphism V : X → Y is defined on the fiber X(n) by

V (ξ) = V (SX(ξ)ΩX) = ϕ(SX(ξ))ΩY , ξ ∈ X(n).

If it is well defined, then it is onto. Lemma 9.5 shows that V is an isometry on
the fibers:

‖SX(ξ)ΩX‖ = ‖SX(ξ)‖ = ‖ϕ(SX(ξ))‖ = ‖ϕ(SX(ξ))ΩY ‖.
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Lemma 9.6 implies that V (ξ) sits in Y (n). V respects the subproduct structure:
if m,n ∈ N, ξ ∈ X(n), η ∈ X(m), then

V pX
m,n(ξ ⊗ η) = V SX(pX

m,n(ξ ⊗ η))ΩX

= ϕ(SX(pX
m,n(ξ ⊗ η)))ΩY

= ϕ(SX(ξ)SX(η))ΩY

= ϕ(SX(ξ))ϕ(SX (η))ΩY

(∗) = pY
m,n

(
ϕ(SX(ξ))ΩY ⊗ ϕ(SX(η))ΩY

)

= pY
m,n(V (ξ)⊗ V (η)).

(*) follows from the facts SY (y)ΩY = y and SY (y1)SY (y2)ΩY = SY (pY
m,n(y1⊗

y2))ΩY = pY
m,n(y1 ⊗ y2) = pY

m,n(SY (y1)ΩY ⊗ SY (y2)ΩY ).
Finally, let us show that for all T ∈ AX , ϕ(T ) = V TV ∗. What we mean by
this is that for all ξ ∈ X , ϕ(SX(ξ)) = V SX(ξ)V ∗. Let ϕ(SX(η))ΩY = V (η) be
a typical element in FY .

V SX(ξ)V ∗ϕ(SX(η))ΩY = V SX(ξ)η

= V pX(ξ ⊗ η)

= ϕ(SX(pX(ξ ⊗ η)))ΩY

= ϕ(SX(ξ)SX(η))ΩY

= ϕ(SX(ξ))ϕ(SX (η))ΩY ,

This completes the proof. �

10. Classification of the universal algebras of q-commuting
tuples

Definition 10.1. A matrix q is called admissible if qii = 0 and 0 6= qij = q−1
ji

for all i 6= j.

10.1. The q-commuting algebras Aq and their universality. Let
{e1, . . . , ed} be an orthonormal basis for E := Cd, to be fixed (together with d)
throughout this section. Let q ∈ Md(C) be an admissible matrix, and let Xq

be the maximal standard subproduct system with fibers

Xq(1) = E , Xq(2) = E ⊗ E ⊖ span{ei ⊗ ej − qijej ⊗ ei : 1 ≤ i, j ≤ d, i 6= j}.
When qij = 1 for all i < j, then Xq is the symmetric subproduct system SSP .
The Fock spaces FXq

have been studied in [19].

For brevity, we shall write Sq
i instead of S

Xq

i . We denote byAq the algebraAXq
.

By Theorem 8.4, the algebra Aq is the universal norm closed unital operator
algebra generated by a row contraction (T1, . . . , Td) satisfying the relations

TiTj = qijTjTi , 1 ≤ i < j ≤ d.
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10.2. The character space of Aq. LetMq be the space of all (contractive)
multiplicative and unital linear functionals on Aq, endowed with the weak-∗
topology. We shall call Mq the character space of Aq. Every ρ ∈ Mq is
uniquely determined by the d-tuple of complex numbers (x1, . . . , xd), where
xi = ρ(Sq

i ) for i = 1, . . . , d. Since a contractive linear functional is completely
contractive, (x1, . . . , xd) must be a row contraction, that is, |x1|2 + . . .+ |xd|2 ≤
1. In other words, (x1, . . . , xd) is in the unit ball Bd of Cd. The multiplicativity
of ρ implies that (x1, . . . , xd) must lie inside the set

Zq := {(z1, . . . , zd) ∈ Bd : (1− qij)zizj = 0, 1 ≤ i < j ≤ d}.
Conversely, Theorem 8.4 implies that every (x1, . . . , xd) ∈ Zq gives rise to a
character ρ ∈Mq that sends Sq

i to xi. Thus the map

Mq ∋ ρ 7→ (ρ(Sq
1), . . . , ρ(Sq

d)) ∈ Zq

is injective and surjective. It is also obviously continuous (with respect to the
weak-∗ and standard topologies). Since Mq is compact, we have the homeo-
morphism

(10.1) Mq
∼= Zq.

Note that the vacuum state ρ0 corresponds to the point 0 ∈ Zq ⊂ Cd.
When qij = 1, the condition (1 − qij)zizj = 0 is trivially satisfied, so when
qi,j = 1 for all i, j, then Zq is the unit ball Bd. When qij 6= 1, the condition is
that either zi = 0 or zj = 0. Thus, if for all i, j, qij 6= 1, then Zq is the union
of d discs glued together at their origins.

10.3. Classification of the Aq, qij 6= 1. Given a permutation σ (on a set
with d elements), let Uσ be the matrix that induces the same permutation on
the standard basis of Cd.

Proposition 10.2. Let q and r be two admissible d×d matrices. Assume that
there is a permutation σ ∈ Sd such that r = UσqU

−1
σ , and let λ1, . . . , λd be any

complex numbers on the unit circle. Then the map

(10.2) ei 7→ λieσ(i)

extends to an isomorphism of Xq onto Xr, and thus the map

Sq
i 7→ λiS

r
σ(i)

extends to a completely isometric isomorphism between Aq and Ar.

Proof. For all n, the map (10.2) extends to a unitary Vn of E⊗n. For n = 2,
this unitary sends ei ⊗ ej − qijej ⊗ ei to λiλjeσ(i) ⊗ eσ(j) − λiλjqijeσ(j) ⊗ eσ(i).

But r = UσqU
−1
σ implies rσ(i)σ(j) = qij , thus

V2 : ei ⊗ ej − qijej ⊗ ei 7→ λiλjeσ(i) ⊗ eσ(j) − λiλjrσ(i)σ(j)eσ(j) ⊗ eσ(i),

so V2 is a unitary between Xq(2) and Xr(2) that respects the product. By
induction, it follows that V = {Vn

∣∣
Xq(n)

}n is an isomorphism of subproduct

systems. The final assertion follows from Proposition 9.1. �
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Theorem 10.3. Let q and r be two admissible d×d matrices such that qij , rij 6=
1 for all i, j. Then Xq is isomorphic to Xr if and only if there is a permutation
σ ∈ Sd such that r = UσqU

−1
σ . In this case the isomorphisms are precisely

those of the form

ei 7→ λieσ(i),

where λ1, . . . , λd are any complex numbers on the unit circle, and σ is such that
r = UσqU

−1
σ .

Proof. One direction is Proposition 10.2, so assume that there is an isomor-
phism of subproduct systems V : Xq → Xr. Let fi := V −1ei. There is a d× d
unitary matrix U = (uij) such that fi =

∑
j uijej . As V is an isomorphism of

subproduct systems, we have for all i 6= j

V p
Xq

2 (fi ⊗ fj − rijfj ⊗ fi) = pXr

2 (ei ⊗ ej − rijej ⊗ ei) = 0,

thus

(
∑

k

uikek)⊗ (
∑

l

ujlel)− rij(
∑

k

ujkek)⊗ (
∑

l

uilel) ∈

∈ span{em ⊗ en − qmnen ⊗ em : m 6= n},
or

(10.3)
∑

k,l

(uikujl − rijujkuil)ek ⊗ el ∈ span{em ⊗ en − qmnen ⊗ em : m 6= n}.

The coefficients of the vectors ek ⊗ ek in the sum above must vanish, thus
uikujk − rijujkuik = 0 for all i 6= j. Since rij 6= 1, we must have ujkuik = 0
for all k and all i 6= j. Thus the unitary matrix U has precisely one nonzero
element in each column, and it therefore must be of the form U−1

σ D, where D
is a diagonal unitary matrix.
Equation (10.3) becomes

uiσ(i)ujσ(j)eσ(i) ⊗ eσ(j) − rijujσ(j)uiσ(i)eσ(j) ⊗ eσ(i) ∈
∈ span{em ⊗ en − qmnen ⊗ em : m 6= n},

but this can only happen if

uiσ(i)ujσ(j)eσ(i) ⊗ eσ(j) − rijujσ(j)uiσ(i)eσ(j) ⊗ eσ(i)

is proportional to

eσ(i) ⊗ eσ(j) − qσ(i)σ(j)eσ(j) ⊗ eσ(i),

that is uiσ(i)ujσ(j)qσ(i)σ(j) = ujσ(j)uiσ(i)rij , or rij = qσ(i)σ(j) . Replacing σ with

σ−1, the proof is complete. �

Corollary 10.4. Let q be an admissible d × d matrix such that there is no
permutation σ ∈ Sd such that q = UσqU

−1
σ . Assume that qij 6= 1 for all

i, j. Then the only automorphisms of Xq are unitary scalings of the basis
{e1, . . . , ed}.
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Theorem 10.5. Let q and r be two admissible d×d matrices such that qij , rij 6=
1 for all i, j. Then Aq is isometrically isomorphic to Ar if and only if there
is a permutation σ ∈ Sd such that r = UσqU

−1
σ . In this case the isometric

isomorphisms between Aq and Ar are precisely those of the form

Sq
i 7→ λiS

r
σ(i),

where λ1, . . . , λd are any complex numbers on the unit circle.

Proof. If r = UσqU
−1
σ , then by Proposition 10.2 and Theorem 9.7 Aq and Ar

are isomorphic (with an isomorphism that preserves the direct sum decompo-
sition (9.1)).
Conversely, assume that ϕ : Aq → Ar is a completely isometric isomorphism.
Then ϕ induces a homeomorphism between Mr and Mq by ρ 7→ ρ ◦ ϕ. Recall
that Mq and Mr are both homeomorphic to d discs glued together at the
origin. Thus the homeomorphism ρ 7→ ρ ◦ ϕ must take ρ0 of Xr to ρ0 of Xq,
because these are the unique points in Mr and Mq, respectively, that when
removed from Mr andMq leave d disconnected punctured discs. Thus ϕ sends
the vacuum state of Ar to the vacuum state of Aq, and must therefore preserve
the direct sum decomposition (9.1). By Theorem 9.7, there is an isomorphism
of subproduct systems V : Xq → Xr such that ϕ(•) = V • V ∗. By Theorem
10.3 we conclude that there is a permutation σ ∈ Sd such that r = UσqU

−1
σ . It

also follows that ϕ(Sq
i ) = λiS

r
σ(i). �

Corollary 10.6. Let q be an admissible d × d matrix such that there is no
permutation σ ∈ Sd such that q = UσqU

−1
σ . Then the only isometric automor-

phisms of Aq are unitary scalings of the shift {Sq
1 , . . . , S

q
d}.

As a corollary of the above discussion we have:

Corollary 10.7. Let q and r be two admissible d × d matrices such that
qij , rij 6= 1 for all i, j. Then Aq is isometrically isomorphic to Ar if and only
if Xq

∼= Xr.

10.4. Xq and Aq, d = 2. In the particular case d = 2, we let a complex
number q parameterize the spaces Xq (we may allow also q = 0) defined to be
the maximal standard subproduct system with fibers

Xq(1) = C2 , Xq(2) = C2 ⊗ C2 ⊖ span{e1 ⊗ e2 − qe2 ⊗ e1}.
Since M1

∼= B2, A1 is not isomorphic to any Aq with q 6= 1 (recall that when
q 6= 1, Mq is homeomorphic to two discs glued together at the origin). Thus
Theorem 10.5 gives:

Corollary 10.8. Assume that d = 2. Then Xq
∼= Xr if and only if Aq is

isometrically isomorphic to Ar, and either one of these happens if and only if
either r = q or r = q−1.

Elias Katsoulis has pointed out to us that the above corollary also follows from
the techniques of [18].
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The above result is reminiscent to the fact that two rotation algebras Aθ and
Aθ′ are isomorphic if and only if either e2πiθ = e2πiθ′

or (e2πiθ)−1 = e2πiθ′

. One
cannot help but wonder whether one can draw a deeper connection between
these results then the superficial one, in particular, can the classification of
rotation algebras be deduced from the classification of the algebras Aq?
By Corollaries 10.4 and 10.6 we have the following.

Corollary 10.9. Let d = 2 and let q 6= 1. Then subproduct system Xq has
no automorphisms aside form the unitary scalings of the basis. The algebra Aq

has no isometric automorphisms other than unitary scalings of the generators.

On the other hand, a direct calculation shows that every unitary on C2 extends
to an automorphism of X1, and thus induces a non-obvious automorphism of
A1.

11. Standard maximal subproduct systems with dimX(1) = 2 and
dimX(2) = 3

Again, let {e1, . . . , ed} be an orthonormal basis for E := Cd. We will soon
turn attention to the case d = 2. For a matrix A ∈ Md(C), we define the
symmetric part of A to be As := (A + At)/2 and the antisymmetric part of
A to be Aa := (A − At)/2. Denote by XA the maximal standard subproduct
system with fibers

XA(1) = E , XA(2) = E ⊗ E ⊖ span





d∑

i,j=1

aijei ⊗ ej



 .

We will write SA for the shift SXA . We will also write AA for AXA
.

Proposition 11.1. Let A,B ∈ Md(C). Then there is an isomorphism V :
XA → XB if and only if there exists λ ∈ C and a unitary d× d matrix U such
that B = λU tAU . In this case, U extends to the isomorphism V between XA

and XB by V1 = U .

Proof. Let V : XA → XB be an isomorphism of subproduct systems. There is
a d× d unitary matrix U = (uij) such that

fi := V1(ei) =

d∑

j=1

uijej.

Then

0 = V1(pX
2 (
∑

i,j

aijei ⊗ ej))

= pY
2 (
∑

i,j

aijfi ⊗ fj),
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so
∑

i,j aijfi⊗fj must be a spanning vector of span
{∑

i,j bijei ⊗ ej

}
. Writing

out fully what this means,

λ
∑

i,j

aij

∑

k,l

uikujlek ⊗ el =
∑

k,l

bklek ⊗ el

for some λ ∈ C, so

bkl = λ
∑

i,j

aijuikujl.

But the right hand side is precisely the kl-th element of λU tAU .
Conversely, assuming B = λU tAU , one can read the above argument from
finish to start to obtain an isomorphism V : XA → XB. �

We see that for XA and XB to be isomorphic the ranks of A and B must be
the same, as well as the ranks of their symmetric and anti-symmetric parts.
For example, if A is symmetric and B is not then XA ≇ XB, a result which
may not seem obvious at first glance.

Theorem 11.2. Assume that d = 2. Let A,B ∈ M2(C) be any two matrices.
Then AA is isometrically isomorphic to AB if and only if XA

∼= XB, and this
happens if and only if there exists λ ∈ C and a unitary 2 × 2 matrix U such
that B = λU tAU .

The proof of Theorem 11.2 will occupy the rest of this section. Denote by
MA the character space of AA, that is, the topological space of contractive
multiplicative and unital linear functionals on AA, endowed with the weak-∗
topology.

Lemma 11.3. The topology ofMA depends on the rank r(As) of the symmetric
part As of A:

(1) If r(As) = 0 then MA
∼= B2, the unit ball in C2.

(2) If r(As) = 1 then MA
∼= D, the unit disc in C.

(3) If r(As) = 2 thenMA is homeomorphic to two discs pasted together at
the origin.

Proof. We proceed similarly to the lines of 10.2. Every character ρ ∈ MA

is uniquely determined by λ1 = ρ(SA
1 ) and λ2 = ρ(SA

2 ), which lie in B2.
Conversely, every (λ1, λ2) ∈ B2 that satisfies

∑

i,j

aijλiλj = 0

gives rise to a character ρ by defining λ1 = ρ(SA
1 ) and λ2 = ρ(SA

2 ). Thus,

MA
∼= VA :=



(λi, λj) ∈ B2 :

∑

i,j

aijλiλj = 0



 .
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Clearly, VA = VAs . However, every symmetric 2×2 matrix is complex congruent
to one of the following:

D0 =

(
0 0
0 0

)
, D1 =

(
1 0
0 0

)
or D2 =

(
1 0
0 1

)
,

i.e., there exists a nonsingular matrix T such that As = T tDiT , for i = r(As).
But then VAs = T−1VDi

∼= VDi
, so it remains to verify that VDi

is homeomor-
phic to the spaces listed in the statement of the lemma. �

Corollary 11.4. If r(As) 6= r(Bs) then AA ≇ AB.

We can use this corollary to break down the classification of the algebras AA

to the classification of the algebras AA with fixed r(As). The easiest case is

r(As) = 0, because then A is either the zero matrix or a multiple of

(
0 1
−1 0

)
,

and these two matrices give rise to non isomorphic algebras (these are the
algebras generated by the full and symmetric shifts, respectively).
The next easiest case is r(As) = 2.

Lemma 11.5. If A,B ∈ M2(C) and r(As) = r(Bs) = 2, then AA is isometri-
cally isomorphic to AB if and only if XA

∼= XB, and this happens if and only
if there exists λ ∈ C and a unitary 2 × 2 matrix U such that B = λU tAU .
Any isometric isomorphism between AA and AB arises as conjugation by the
subproduct system isomorphism arising from U .

Proof. In light of Theorem 9.7 and Proposition 11.1, it suffices to show that any
isometric isomorphism ϕ : AA → AB sends the vacuum state to the vacuum
state. But the vacuum state inMA and inMB corresponds to the point where
the two discs are glued together. Since ϕ induces a homeomorphism between
MB and MA, it must send the vacuum state to the vacuum state. �

Remark 11.6. In the previous section we have seen already that there is a
continuum of non-(completely isometrically)-isomorphic algebras AA and sub-
product systems XA with r(As) = 2, namely the algebras Aq. One can see
that these algebras AA are not exhausted by the algebras Aq of the previous

section. For example, all the algebras AA with A =

(
1 0
0 q

)
, with q > 0, are

non-isomorphic, and only for q = 1 is this algebra isomorphic to an Aq (in this
case q = −1).

We now come to the trickiest case, r(As) = 1.

Lemma 11.7. If A,B ∈ M2(C) are two symmetric matrices of rank 1, then
there exists λ ∈ C and a unitary 2 × 2 matrix U such that B = λU tAU , and
consequently XA

∼= XB and AA is isometrically isomorphic to AB .

Proof. We only have to prove the first assertion, and we may assume that

B =

(
1 0
0 0

)
. We may also assume that there is a unit vector v = (v1, v2)t
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such that A = vvt. Now let

U =

(
v1 v2
v2 −v1

)
.

Then

U tAU =

(
v1 v2
v2 −v1

)t

vvt

(
v1 v2
v2 −v1

)
=

(
v1 v2
v2 −v1

)t(
v1 0
v2 0

)
=

(
1 0
0 0

)
.

�

Below we will also need the following lemma.

Lemma 11.8. Let A be a 2× 2 matrix for which r(As) = 1. Then there exists
one and only one q ≥ 0 for which there is a λ ∈ C and a unitary U such that

(
1 q
−q 0

)
= λU tAU.

Furthermore, if A is non-symmetric then A is congruent to the matrix
(

1 1
−1 0

)
.

Proof. Direct verification, using Lemma 11.7 and the fact that congruations
preserves, up to a scalar, the anti-symmetric part. �

Let us write Aq for the matrix

Aq =

(
1 q
−q 0

)
.

By the above lemma, we may restrict attention only to the algebras AAq
with

q ≥ 0.
Recall that the character space MAq

of AAq
is identified with the closed unit

disc D by

MAq
∋ ρ←→ ρ(S

Aq

2 ) ∈ D.

We write ρz for the character that sends S
Aq

2 to z ∈ D. This identifies the
vacuum vector ρ0 with the point 0. Recall also that if ϕ : AAq

→ AAr
is an

isometric isomorphism, then it induces a homeomorphism ϕ∗ : MAr
→ MAq

given by ϕ∗ρ = ρ ◦ϕ. We write Fϕ for the homeomorphism D→ D induced by

ϕ, that is, Fϕ is the unique self map of D that satisfies

ϕ∗ρz = ρFϕ(z) , z ∈ D.

Let us introduce the notation

O(0; q, r) = {Fϕ(0)
∣∣ϕ : AAq

→ AAr
is an isometric isomorphism},

and

O(0; q) = O(0; q, q).

Lemma 11.9. Let q, r ≥ 0. If q 6= r then 0 does not lie in O(0; q, r).

Documenta Mathematica 14 (2009) 801–868



Subproduct Systems 861

Proof. Assume that 0 ∈ O(0; q, r). Then there is some isometric isomorphism
ϕ : AAq

→ AAq
that preserves the character ρ0. It follows from Theorem 9.7

and Proposition 11.1 that, for some unitary 2 × 2 matrix U and some λ ∈ C,
Aq = λU tArU . But, as noted in Lemma 11.8, this is impossible if r 6= q. �

Lemma 11.10. The sets O(0; q, r) are invariant under rotations around 0.

Proof. For λ with |λ| = 1, write ϕλ for the isometric isomorphism mapping

S
Aq

i to λS
Aq

i (i = 1, 2). For b = Fϕ(0) ∈ O(0; q, r), consider ϕ ◦ ϕλ. We

have ρ0((ϕ ◦ ϕλ)(S
Aq

2 )) = ρ0(ϕ(λS
Aq

2 )) = λρ0(ϕ(S
Aq

2 )) = λb. Thus λb ∈
O(0; q, r). �

Lemma 11.11. Let q, r ≥ 0. If q 6= r then AAq
is not isometrically isomorphic

to AAr
.

Proof. Assume that ϕ : AAq
→ AAr

is an isometric isomorphism. We have

ρ0 ◦ ϕ = ρb, with b = Fϕ(0), and Fϕ is a homeomorphism of D onto itself.
By definition, b ∈ O(0; q, r). By Lemma 11.9, b 6= 0. Denote C := {z : |z| =
|b|}. By Lemma 11.10, C ⊆ O(0; q, r). Consider C′ := F−1

ϕ (C). We have that
C′ ⊆ O(0; r). C′ is a simply connected closed path in D that goes through the
origin. By Lemma 11.10, the interior of C′, int(C′), is in O(0; r). But then
Fϕ(int(C′)) is the interior of C, and it is in O(0; q, r). But then 0 ∈ O(0; q, r),
contradicting Lemma 11.9. �

That concludes the proof of Theorem 11.2.

12. The representation theory of Matsumoto’s subshift
C∗-algebras

In [28] Kengo Matsumoto introduced a class of C∗-algebras that arise from
symbolic dynamical systems called “subshifts” (we note that in the later paper
[17] Carlsen and Matsumoto suggest another way of associating a C∗-algebra
with a subshift. Here we are discussing only the algebras originally introduced
in [28]). These subshift algebras, as we shall call them, are strict generalizations
of Cuntz-Krieger algebras and have been extensively studied by Matsumoto, T.
M. Carlsen and others. For example, the following have been studied: criteria
for simplicity and pure-infiniteness; conditions on the underlying dynamical
systems for subshift algebras to be isomorphic; the automorphisms of the sub-
shift algebras; K-theory of the subshift algebras; and much more. In this section
we will use the framework constructed in the previous sections to give a com-
plete description of all representations of a subshift algebra when the subshift
is of finite type.

12.1. Subshifts and the corresponding subproduct systems and C∗-
algebras. Our references for subshifts are [28] and [16, Chapter 3].
Let I = {1, 2, . . . , d} be a fixed finite set. IZ is the space of all two-sided infinite
sequences, endowed with the product topology. The left shift (or simply the
shift) on IZ is the homeomorphism σ : IZ → IZ given by (σ(x))k = xk+1. Let
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Λ be a shift invariant closed subset of IZ. By this we mean σ(Λ) = Λ. The
topological dynamical system (Λ, σ

∣∣
Λ

) is called a subshift. Sometimes Λ is also
referred to as the subshift.
If W is a set of words in 1, 2, . . . , d, one can define a subshift by forbidding the
words in W as follows:

ΛW = {x ∈ IZ : no word in W occurs as a block in x}.
Conversely, every subshift arises this way: i.e., for every subshift Λ there exists
a collection of words W , called the set of forbidden words, such that Λ = ΛW .
In this context, if W can be chosen finite then Λ = ΛW is called a subshift of
finite type, or SFT for short. By replacing I if needed, we may always assume
that W has no words of length one. If W can be chosen such that the longest
word in W has length k + 1 then Λ is called a k-step SFT. A 1-step SFT is
also called a topological Markov chain. A basic result is that every SFT is
isomorphic to a topological Markov chain ([16, Proposition 3.2.1]).
For a fixed subshift (Λ, σ

∣∣
Λ

), we set

Λk = {α : α is a word with length k occurring in some x ∈ Λ},
and Λl = ∪l

k=0Λk, Λ∗ = ∪∞k=0Λk. With the subshift (Λ, σ
∣∣
Λ

) we associate a

subproduct system XΛ as follows. Let {ei}i∈I be an orthonormal basis of a
Hilbert space E. We define

XΛ(0) = C,

and for n ≥ 1 we define

XΛ(n) = span{eα : α ∈ Λn}.
We define a product Um,n : XΛ(m)⊗XΛ(n)→ XΛ(m+ n) by

Um,n(eα ⊗ eβ) =

{
eαβ , if αβ ∈ Λm+n

0, else.

Since Λm+n ⊆ Λm · Λn, XΛ is a standard subproduct system.

Definition 12.1. The C∗-algebra associated with a subshift (Λ, σ
∣∣
Λ

) is defined
as the quotient algebra

OΛ := OXΛ = TXΛ/K(FXΛ).

Remark 12.2. Just to prevent confusion: In [28], OΛ was defined as the quo-
tient by the compacts of the C∗-algebra generated by the “creation operators”
(that is, the X-shift) on FX , without using the language of subproduct systems.

12.2. Subproduct systems that come from subshifts.

Proposition 12.3. Let X be a standard subproduct system such that there is
an orthonormal basis {ei}i∈I of X(1), with I finite, such that

(1) Every X(n), n ≥ 1, is spanned by vectors of the form eα with |α| = n.
(2) For all m,n ∈ N, |α| = n and eα ∈ X(n), implies that there is some

β, γ ∈ Im such that eβ ⊗ eα and eα ⊗ eγ are in X(m+ n).
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Then there is a shift invariant closed subset Λ of IZ such that X =
XΛ. X is the maximal standard subproduct system with prescribed fibers
X(1), X(2), . . . , X(k + 1) if and only if Λ is k-step SFT.

Proof. For all k ∈ N, define

Λ(k) = {α ∈ Ik : eα ∈ X(k)}.
For all m ∈ Z, k ∈ N, define the closed sets

Am,k = {x ∈ IZ : (xm, xm+1, . . . , xm+k−1) ∈ Λ(k)}.
Condition (2) implies that X(k) always contains a nonzero vector of the form
eα, |α| = k. That implies that the family {Am,k}m,k has the finite intersection
property. Indeed,

Am1,k1 ∩Am2,k2 ⊇ AM,K 6= ∅,
where M = min{m1,m2}, K = max{m2 + k2,m1 + k1} −M . By compactness
of IZ we conclude that the closed set

Λ :=
⋂

m,k

Am,k

is non-empty. Λ is invariant under the left and the right shifts, so σ(Λ) = Λ,
so (Λ, σ

∣∣
Λ

) is a subshift. By condition (2), Λk = Λ(k). Condition (1) together
with the definition of XΛ now imply that X = XΛ.
The final assertion follows from the following facts, together with X = XΛ.
Fact number one:

E⊗n ⊖XΛ(n) = span{eα : α is a forbidden word of length n}.
Fact number two: X is the maximal standard subproduct system with pre-
scribed fibers X(1), . . . , X(k + 1) if and only if for every n > k + 1,

X(n) =
⋂

i+j=n

X(i)⊗X(j),

or in other words, if and only if

E⊗n ⊖X(n) =
∨

i+j=n

(
E⊗n ⊖ (X(i)⊗X(j))

)

=
∨

i+j=n

(
E⊗i ⊗ (E⊗j ⊖X(j)) + (E⊗i ⊖X(i))⊗ E⊗j

)
.

Fact number three: Λ is a k-step SFT if and only if for every n > k + 1,

{forbidden words of length n} =
⋃

i+j=n

(
Ii · {forbidden words of length j} ∪ {forbidden words of length i} · Ij

)
.

These facts assemble together to complete the proof. �
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Not every subproduct system is isomorphic to one that comes from a subshift.
Indeed, in the symmetric subproduct system SSP (see Example 1.3) for any
basis {ei}i∈I of X(1), the product ei ⊗ ej for i 6= j is never in X(2), and thus
the images fi and fj of ei and ej in any isomorphic subproduct system X can
never be such that fi ⊗ fj is mapped isometrically to UX

1,1(fi ⊗ fj). Thus if
SSP is isomorphic to XΛ for some subshift Λ, then Λ must be the subshift
containing only constant sequences. But such XΛ is clearly not isomorphic to
SSP .
As another example, the subproduct systemX(0) = C, X(1) = C2, andX(n) =
0 for n > 1, cannot be of the form XΛ for any Λ ⊆ IZ.

12.3. The representation theory of the C∗-algebra associated
with a subshift of finite type. Let Λ be a fixed subshift in IZ (with
I = {1, 2, . . . , d}), and let X = XΛ be the associated subproduct system. We
will denote the X-shift by S (instead of SX) to make some formulas more read-
able. Let Zi be the image of Si in the quotient OΛ. We define for i ∈ I, k ∈ N
the sets

Ek
i = {α ∈ Λk : iα ∈ Λ∗}.

Lemma 12.4. If Λ is a k-step SFT, then for all i ∈ I,
{γ ∈ Λ∗ : |γ| ≥ k, iγ ∈ Λ∗} = {αβ ∈ Λ∗ : α ∈ Ek

i , β ∈ Λ∗}.
Proof. Assume that γ ∈ Λ∗ is such that |γ| ≥ k and iγ ∈ Λ∗. Defining
α = γ1 · · ·γk and β = γk+1 · · · γk+l, we have that γ = αβ where α ∈ Ek

i and
β ∈ Λ∗.
Conversely, if γ = αβ ∈ Λ∗ where α ∈ Ek

i and β ∈ Λ∗, then iγ must be in Λ∗.
Indeed, if not, then iγ must contain a forbidden word. But γ ∈ Λ∗, thus the
forbidden word must be in iα (since Λ is a k-step SFT). But that is impossible
because α ∈ Ek

i . �

Lemma 12.5. If Λ is a k-step SFT then for all i, j ∈ I, i 6= j,

S∗
i Sj = 0,

and

(12.1) S∗
i Si =

∑

α∈Ek
i

SαSα∗ mod KX .

Consequently, EX = TX .

Proof. Since the Si are partial isometries with orthogonal ranges, we have
S∗

i Sj = 0 for all i 6= j. Since KX ⊆ EX ⊆ TX (Proposition 8.1), EX = TX will
be established once we prove (12.1).
S∗

i Si is the projection onto the initial space of Si. Call this space G. We have

G = span{eα : α ∈ Λ∗ such that iα ∈ Λ∗}.
The space

G′ = span{eα : α ∈ Λ∗ such that iα ∈ Λ∗ and |α| ≥ k}
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has finite codimension in G. But by Lemma 12.4,

G′ = {eαβ : αβ ∈ Λ∗, α ∈ Ek
i },

that is, G′ is spanned by eγ where γ runs through all legal words beginning

with some α ∈ Ek
i . Thus, G′ is the range of the projection

∑
α∈Ek

i
SαSα∗

.

Since G′ has finite codimension in G, we have (12.1). �

Proposition 12.6. For every subshift Λ, the d-tuple Z = (Z1, . . . , Zd) satisfies
the following relations:

(12.2) p(Z) = 0 , for all p ∈ IX ,

(12.3) Z∗
i Zj = 0 , for all i, j ∈ I , i 6= j,

and

(12.4)

d∑

i=1

ZiZ
∗
i = 1.

In particular, Zi is a partial isometry for all i ∈ I. If Λ is a k-step SFT, the
Z also satisfies

(12.5) Z∗
i Zi =

∑

α∈Ek
i

ZαZα∗ , for all i ∈ I.

Proof. The quotient map TX → OΛ is a ∗-homomorphism, so (12.2) follows
from Theorem 7.5. (12.3) and (12.5) follow from the previous lemma, and
(12.4) follows ¿¿from equation (8.1). �

Theorem 12.7. Let Λ be a k-step SFT. Every unital representation π : OΛ →
B(H) is determined by a row-contraction T = (T1, . . . , Td) satisfying relations
(12.2)-(12.5) such that π(Zi) = Ti for all i ∈ I. Conversely, every row con-
traction in B(H)d satisfying the relations (12.2)-(12.5) gives rise to a unital
representation π : OΛ → B(H) such π(Zi) = Ti for all i ∈ I.
Proof. It is the second assertion that is non-trivial, and we will try to convince
that it is true. By Theorem 8.2, there is unital completely positive map

Ψ : EX → B(H)

sending SαSβ∗ to TαT β∗. Since enough of the rank one operators on FX arise

as Sα(I −∑d
i=1 SiS

∗
i )Sβ∗ (see equation (8.1)), and because T satisfies (12.4),

we must have that Ψ(K) = 0 for every K ∈ K(FX). By Lemma 12.5, EX = TX ,
and it follows that Ψ induces a positive and unital (hence contractive) mapping

π : OΛ → B(H)

that sends ZαZβ∗ to TαT β∗. Roughly speaking: π must be multiplicative
because Z and T satisfy the same relations. In more detail: every product

(ZαZβ∗)(Zα′

Zβ′∗) may be written, using the relations (12.2)-(12.5) as some
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sum
∑

γ,δ Z
γZδ∗. The mapping π then takes this sum to

∑
γ,δ T

γT δ∗, and this

can be rewritten (using the same relations) as

(TαT β∗)(Tα′

T β′∗) = π(ZαZβ∗)π(Zα′

Zβ′∗).

This shows that

π
(

(ZαZβ∗)(Zα′

Zβ′∗)
)

= π(ZαZβ∗)π(Zα′

Zβ′∗),

and since the elements of the form ZαZβ∗ span OΛ, and since π is a positive
linear map, it follows that π is in fact a ∗-representation. �
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47. M. S lociński, Unitary dilation of two-parameter semi-groups of contrac-
tions, Bull. Acad. Polon. Sci. Se’r. Sci. Math. Astronom. Phys., Vol. 22
(1974), 1011–1014.

48. B. Solel, Representations of product systems over semigroups and dilations
of commuting CP maps, J. Funct. Anal., Vol. 235, No. 2 (2006) 593–618.
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