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Abstract. We study the singular Bott-Chern classes introduced by
Bismut, Gillet and Soulé. Singular Bott-Chern classes are the main
ingredient to define direct images for closed immersions in arithmetic
K-theory. In this paper we give an axiomatic definition of a theory
of singular Bott-Chern classes, study their properties, and classify
all possible theories of this kind. We identify the theory defined by
Bismut, Gillet and Soulé as the only one that satisfies the additional
condition of being homogeneous. We include a proof of the arithmetic
Grothendieck-Riemann-Roch theorem for closed immersions that gen-
eralizes a result of Bismut, Gillet and Soulé and was already proved by
Zha. This result can be combined with the arithmetic Grothendieck-
Riemann-Roch theorem for submersions to extend this theorem to ar-
bitrary projective morphisms. As a byproduct of this study we obtain
two results of independent interest. First, we prove a Poincaré lemma
for the complex of currents with fixed wave front set, and second we
prove that certain direct images of Bott-Chern classes are closed.
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Contents

0 Introduction 74

1 Characteristic classes in analytic Deligne cohomology 79

2 Bott-Chern classes 87

3 Direct images of Bott-Chern classes 102

4 Cohomology of currents and wave front sets 107

5 Deformation of resolutions 111

6 Singular Bott-Chern classes 116

7 Classification of theories of singular Bott-Chern classes 122

8 Transitivity and projection formula 127

9 Homogeneous singular Bott-Chern classes 145

10 The arithmetic Riemann-Roch theorem for regular closed
immersions 158

0 Introduction

Chern-Weil theory associates to each hermitian vector bundle a family of closed
characteristic forms that represent the characteristic classes of the vector bun-
dle. The characteristic classes are compatible with exact sequences. But this
is not true for the characteristic forms. The Bott-Chern classes measure the
lack of compatibility of the characteristic forms with exact sequences.
The Grothendieck-Riemann-Roch theorem gives a formula that relates direct
images and characteristic classes. In general this formula is not valid for the
characteristic forms. The singular Bott-Chern classes measure, in a functorial
way, the failure of an exact Grothendieck-Riemann-Roch theorem for closed
immersions at the level of characteristic forms. In the same spirit, the analytic
torsion forms measure the failure of an exact Grothendieck-Riemann-Roch the-
orem for submersions at the level of characteristic forms. Hence singular Bott-
Chern classes and analytic torsion forms are analogous objects, the first for
closed immersions and the second for submersions.
Let us give a more precise description of Bott-Chern classes and singular Bott-
Chern classes. Let X be a complex manifold and let ϕ be a symmetric power
series in r variables with real coefficients. Let E = (E, h) be a rank r holo-
morphic vector bundle provided with a hermitian metric. Using Chern-Weil
theory, we can associate to E a differential form ϕ(E) = ϕ(−K), where K is
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the curvature tensor of E viewed as a matrix of 2-forms. The differential form
ϕ(E) is closed and is a sum of components of bidegree (p, p) for p ≥ 0.
If

ξ : 0 −→ E
′ −→ E −→ E

′′ −→ 0

is a short exact sequence of holomorphic vector bundles provided with hermitian

metrics, then the differential forms ϕ(E) and ϕ(E
′⊕E′

) may be different, but
they represent the same cohomology class.
The Bott-Chern form associated to ξ is a solution of the differential equation

− 2∂∂̄ϕ(ξ) = ϕ(E
′ ⊕ E′

)− ϕ(E) (0.1)

obtained in a functorial way. The class of a Bott-Chern form modulo the image
of ∂ and ∂ is called a Bott-Chern class and is denoted by ϕ̃(ξ).
There are three ways of defining the Bott-Chern classes. The first one is the
original definition of Bott and Chern [7]. It is based on a deformation between

the connection associated to E and the connection associated to E
′⊕E′′

. This
deformation is parameterized by a real variable.
In [17] Gillet and Soulé introduced a second definition of Bott-Chern classes

that is based on a deformation between E and E
′ ⊕ E′′

parameterized by a
projective line. This second definition is used in [4] to prove that the Bott-
Chern classes are characterized by three properties

(i) The differential equation (0.1).

(ii) Functoriality (i.e. compatibility with pull-backs via holomorphic maps).

(iii) The vanishing of the Bott-Chern class of a orthogonally split exact se-
quence.

In [4] Bismut, Gillet and Soulé have a third definition of Bott-Chern classes
based on the theory of superconnections. This definition is useful to link Bott-
Chern classes with analytic torsion forms.
The definition of Bott-Chern classes can be generalized to any bounded exact
sequence of hermitian vector bundles (see section 2 for details). Let

ξ : 0 −→ (En, hn) −→ . . . −→ (E1, h1) −→ (E0, h0) −→ 0

be a bounded acyclic complex of hermitian vector bundles; by this we mean
a bounded acyclic complex of vector bundles, where each vector bundle is
equipped with an arbitrarily chosen hermitian metric. Let

r =
∑

i even

rk(Ei) =
∑

i odd

rk(Ei).

As before, let ϕ be a symmetric power series in r variables. A Bott-Chern class
associated to ξ satisfies the differential equation

−2∂∂̄ϕ̃(ξ) = ϕ(
⊕

k

E2k)− ϕ(
⊕

k

E2k+1).
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In particular, let “ch” denote the power series associated to the Chern character
class. The Chern character class has the advantage of being additive for direct
sums. Then, the Bott-Chern class associated to the long exact sequence ξ and
to the Chern character class satisfies the differential equation

−2∂∂̄c̃h(ξ) = −
n∑

k=0

(−1)i ch(Ek).

Let now i : Y −→ X be a closed immersion of complex manifolds. Let F be a
holomorphic vector bundle on Y provided with a hermitian metric. Let N be
the normal bundle to Y in X provided also with a hermitian metric. Let

0 −→ En −→ En−1 −→ . . . −→ E0 −→ i∗F −→ 0

be a resolution of the coherent sheaf i∗F by locally free sheaves, provided with
hermitian metrics (following Zha [32] we shall call such a sequence a metric on
the coherent sheaf i∗F ). Let Td denote the Todd characteristic class. Then
the Grothendieck-Riemann-Roch theorem for the closed immersion i implies
that the current i∗(Td(N)−1 ch(F )) and the differential form

∑
k(−1)k ch(Ek)

represent the same class in cohomology. We denote ξ the data consisting in the
closed embedding i, the hermitian bundle N , the hermitian bundle F and the
resolution E∗ −→ i∗F .
In the paper [5], Bismut, Gillet and Soulé introduced a current associated to
the above situation. These currents are called singular Bott-Chern currents and
denoted in [5] by T (ξ). When the hermitian metrics satisfy a certain technical
condition (condition A of Bismut) then the singular Bott-Chern current T (ξ)
satisfies the differential equation

−2∂∂̄T (ξ) = i∗(Td(N)−1 ch(F ))−
n∑

i=0

(−1)i ch(Ei).

These singular Bott-Chern currents are among the main ingredients of the
proof of Gillet and Soulé’s arithmetic Riemann-Roch theorem. In fact it is the
main ingredient of the arithmetic Riemann-Roch theorem for closed immersions
[6]. This definition of singular Bott-Chern classes is based on the formalism of
superconnections, like the third definition of ordinary Bott-Chern classes.
In his thesis [32], Zha gave another definition of singular Bott-Chern currents
and used it to give a proof of a different version of the arithmetic Riemann-Roch
theorem. This second definition is analogous to Bott and Chern’s original defi-
nition. Nevertheless there is no explicit comparison between the two definitions
of singular Bott-Chern currents.
One of the purposes of this note is to give a third construction of singular Bott-
Chern currents, in fact of their classes modulo the image of ∂ and ∂, which could
be seen as analogous to the second definition of Bott-Chern classes. Moreover
we will use this third construction to give an axiomatic definition of a theory
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of singular Bott-Chern classes. A theory of singular Bott-Chern classes is an
assignment that, to each data ξ as above, associates a class of currents T (ξ),
that satisfies the analogue of conditions (i), (ii) and (iii). The main technical
point of this axiomatic definition is that the conditions analogous to (i), (ii)
and (iii) above are not enough to characterize the singular Bott-Chern classes.
Thus we are led to the problem of classifying the possible theories of Bott-Chern
classes, which is the other purpose of this paper.
We fix a theory T of singular Bott-Chern classes. Let Y be a complex manifold
and let N and F be two hermitian holomorphic vector bundles on Y . We write
P = P(N ⊕ 1) for the projective completion of N . Let s : Y −→ P be the
inclusion as the zero section and let πP : P −→ Y be the projection. Let K∗ be
the Koszul resolution of s∗OY endowed with the metric induced by N . Then
we have a resolution by hermitian vector bundles

K(F,N) : K∗ ⊗ π∗
PF −→ s∗F.

To these data we associate a singular Bott-Chern class T (K(F,N)). It turns
out that the current

1

(2πi)rk N

∫

πP

T (K(F,N)) = (πP )∗T (K(F,N))

is closed (see section 3 for general properties of the Bott-Chern classes that
imply this property) and determines a characteristic class CT (F,N) on Y for
the vector bundles N and F . Conversely, any arbitrary characteristic class for
pairs of vector bundles can be obtained in this way. This allows us to classify
the possible theories of singular Bott-Chern classes:

Claim (theorem 7.1). The assignment that sends a singular Bott-Chern class
T to the characteristic class CT is a bijection between the set of theories of
singular Bott-Chern classes and the set of characteristic classes.

The next objective of this note is to study the properties of the different theories
of singular Bott-Chern classes and of the corresponding characteristic classes.
We mention, in the first place, that for the functoriality condition to make sense,
we have to study the wave front sets of the currents representing the singular
Bott-Chern classes. In particular we use a Poincaré Lemma for currents with
fixed wave front set. This result implies that, in each singular Bott-Chern class,
we can find a representative with controlled wave front set that can be pulled
back with respect certain morphisms.
We also investigate how different properties of the singular Bott-Chern classes
T are reflected in properties of the characteristic classes CT . We thus charac-
terize the compatibility of the singular Bott-Chern classes with the projection
formula, by the property of CT of being compatible with the projection for-
mula. We also relate the compatibility of the singular Bott-Chern classes with
the composition of successive closed immersions to an additivity property of
the associated characteristic class.
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Furthermore, we show that we can add a natural fourth axiom to the conditions
analogue to (i), (ii) and (iii), namely the condition of being homogeneous (see
section 9 for the precise definition).

Claim (theorem 9.11). There exists a unique homogeneous theory of singular
Bott-Chern classes.

Thanks to this axiomatic characterization, we prove that this theory agrees
with the theories of singular Bott-Chern classes introduced by Bismut, Gillet
and Soulé [6], and by Zha [32]. In particular this provides us a comparison
between the two definitions. We will also characterize the characteristic class
CT h for the theory of homogeneous singular Bott-Chern classes.
The last objective of this paper is to give a proof of the arithmetic Riemann-
Roch theorem for closed immersions. A version of this theorem was proved by
Bismut, Gillet and Soulé and by Zha.
Next we will discuss the contents of the different sections of this paper. In
section §1 we recall the properties of characteristic classes in analytic Deligne
cohomology. A characteristic class is just a functorial assignment that asso-
ciates a cohomology class to each vector bundle. The main result of this section
is that any characteristic class is given by a power series on the Chern classes,
with appropriate coefficients.
In section §2 we recall the theory of Bott-Chern forms and its main properties.
The contents of this section are standard although the presentation is slightly
different to the ones published in the literature.
In section §3 we study certain direct images of Bott-Chern forms. The main
result of this section is that, even if the Bott-Chern classes are not closed,
certain direct images of Bott-Chern classes are closed. This result generalizes
previous results of Bismut, Gillet and Soulé and of Mourougane. This result is
used to prove that the class CT mentioned previously is indeed a cohomology
class, but it can be of independent interest because it implies that several
identities in characteristic classes are valid at the level of differential forms.
In section §4 we study the cohomology of the complex of currents with a fixed
wave front set. The main result of this section is a Poincaré lemma for currents
of this kind. This implies in particular a ∂∂̄-lemma. The results of this section
are necessary to state the functorial properties of singular Bott-Chern classes.
In section §5 we recall the deformation of resolutions, that is a generalization of
the deformation to the normal cone, and we also recall the construction of the
Koszul resolution. These are the main geometric tools used to study singular
Bott-Chern classes.
Sections §6 to §9 are devoted to the definition and study of the theories of sin-
gular Bott-Chern classes. Section §6 contains the definition and first properties.
Section §7 is devoted to the classification theorem of such theories. In section
§8 we study how properties of the theory of singular Bott-Chern classes and of
the associated characteristic class are related. And in section §9 we define the
theory of homogeneous singular Bott-Chern classes and we prove that it agrees
with the theories defined by Bismut, Gillet and Soulé and by Zha.
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Finally in section §10 we define arithmetic K-groups associated to a Dlog-
arithmetic variety (X , C) (in the sense of [13]) and push-forward maps for closed
immersions of metrized arithmetic varieties, at the level of the arithmetic K-
groups. After studying the compatibility of these maps with the projection
formula and with the push-forward map at the level of currents, we prove
a general Riemann-Roch theorem for closed immersions (theorem 10.28) that
compares the direct images in the arithmeticK-groups with the direct images in
the arithmetic Chow groups. This theorem is compatible, if we choose the the-
ory of homogeneous singular Bott-Chern classes, with the arithmetic Riemann-
Roch theorem for closed immersions proved by Bismut, Gillet and Soulé [6] and
it agrees with the theorem proved by Zha [32]. Theorem 10.28, together with
the arithmetic Grothendieck-Riemann-Roch theorem for submersions proved in
[16], can be used to obtain an arithmetic Grothendieck-Riemann-Roch theorem
for projective morphisms of regular arithmetic varieties.
Acknowledgements : This project was started during the Special Year on
Arakelov Theory and Shimura Varieties held at the CRM (Bellaterra, Spain).
We would like to thank the CRM for his hospitality during that year. We would
also like to thank the University of Barcelona and the University Alexandru
Ioan Cuza of Iaşi for their hospitality during several visits that allowed us to
finish the project. We would also like to thank K. Köhler, J. Kramer, U. Kühn,
V. Maillot, D. Rossler, and J. Wildeshaus with whom we have had many dis-
cussions on the subject of this paper. Our special thanks to G. Freixas and
Shun Tang for their careful reading of the paper and for suggesting some sim-
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1 Characteristic classes in analytic Deligne cohomology

A characteristic class for complex vector bundles is a functorial assignment
which, to each complex continuous vector bundle on a paracompact topological
space X , assigns a class in a suitable cohomology theory of X . For example,
if the cohomology theory is singular cohomology, it is well known that each
characteristic class can be expressed as a power series in the Chern classes.
This can be seen for instance, showing that continuous complex vector bundles
on a paracompact space X can be classified by homotopy classes of maps from
X to the classifying space BGL∞(C) and that the cohomology of BGL∞(C)
is generated by the Chern classes (see for instance [28]).
The aim of this section is to show that a similar result is true if we restrict the
class of spaces to the class of quasi-projective smooth complex manifolds, the
class of maps to the class of algebraic maps and the class of vector bundles to
the class of algebraic vector bundles and we choose analytic Deligne cohomology
as our cohomology theory.
This result and the techniques used to prove it are standard. We will use the
splitting principle to reduce to the case of line bundles and will then use the
projective spaces as a model of the classifying space BGL1(C). In this section
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we also recall the definition of Chern classes in analytic Deligne cohomology
and we fix some notations that will be used through the paper.

Definition 1.1. Let X be a complex manifold. For each integer p, the analytic
real Deligne complex of X is

RX,D(p) = (R(p) −→ OX −→ Ω1
X −→ . . . −→ Ωp−1

X )
∼= s(R(p)⊕ F pΩ∗

X −→ Ω∗
X),

where R(p) is the constant sheaf (2πi)pR ⊆ C. The analytic real Deligne
cohomology of X , denotedH∗

Dan(X,R(p)), is the hyper-cohomology of the above
complex.

Analytic Deligne cohomology satisfies the following result.

Theorem 1.2. The assignment X 7−→ H∗
Dan(X,R(∗)) =

⊕
pH

∗
Dan(X,R(p)) is

a contravariant functor between the category of complex manifolds and holo-
morphic maps and the category of unitary bigraded rings that are graded com-
mutative (with respect to the first degree) and associative. Moreover there exists
a functorial map

c : Pic(X) = H1(X,O∗
X) −→ H2

Dan(X,R(1))

and, for each closed immersion of complex manifolds i : Y −→ X of codimen-
sion p, there exists a morphism

i∗ : H∗
Dan(Y,R(∗)) −→ H∗+2p

Dan (X,R(∗ + p))

satisfying the properties

A1 Let X be a complex manifold and let E be a holomorphic vector bundle
of rank r. Let P(E) be the associated projective bundle and let O(−1) the
tautological line bundle. The map

π∗ : H∗
Dan(X,R(∗)) −→ H∗

Dan(P(E),R(∗))

induced by the projection π : P(E) −→ X gives to the second ring a
structure of left module over the first. Then the elements c(cl(O(−1)))i,
i = 0, . . . , r − 1 form a basis of this module.

A2 If X is a complex manifold, L a line bundle, s a holomorphic section
of L that is transverse to the zero section, Y is the zero locus of s and
i : Y −→ X the inclusion, then

c(cl(L)) = i∗(1Y ).

A3 If j : Z −→ Y and i : Y −→ X are closed immersions of complex mani-
folds then (ij)∗ = i∗j∗.

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 81

A4 If i : Y −→ X is a closed immersion of complex manifolds then, for every
a ∈ H∗

Dan(X,R(∗)) and b ∈ H∗
Dan(Y,R(∗))

i∗(bi
∗a) = (i∗b)a.

Proof. The functoriality is clear. The product structure is described, for in-
stance, in [15]. The morphism c is defined by the morphism in the derived
category

O∗
X [1]

∼=←− s(Z(1)→ OX) −→ s(R(1)→ OX) = RD(1).

The morphism i∗ can be constructed by resolving the sheaves RD(p) by means
of currents (see [26] for a related construction). Properties A3 and A4 follow
easily from this construction.
By abuse of notation, we will denote by c1(O(−1)) the first Chern class of
O(−1) with the algebro-geometric twist, in any of the groups H2(P(E),R(1)),
H2(P(E),C), H1(P(E),Ω1

P(E)). Then, we have sheaf isomorphisms (see for

instance [22] for a related result),

r−1⊕

i=0

RX(p− i)[−2i] −→ Rπ∗RP(E)(p)

r−1⊕

i=0

Ω∗
X [−2i] −→ Rπ∗Ω

∗
P(E)

r−1⊕

i=0

F p−iΩ∗
X [−2i] −→ Rπ∗F

pΩ∗
P(E)

given, all of them, by (a0, . . . , ar−1) 7−→
∑
aic1(O(−1))i. Hence we obtain a

sheaf isomorphism

r−1⊕

i=0

RX,D(p− i)[−2i] −→ Rπ∗RP(E),D(p)

from which property A1 follows. Finally property A2 in this context is given
by the Poincare-Lelong formula (see [13] proposition 5.64).

Notation 1.3. For the convenience of the reader, we gather here together
several notations and conventions regarding the differential forms, currents and
Deligne cohomology that will be used through the paper.
Throughout this paper we will use consistently the algebro-geometric twist.
In particular the Chern classes ci, i = 0, . . . in Betti cohomology will live in
ci ∈ H2i(X,R(i)); hence our normalizations differ from the ones in [18] where
real forms and currents are used.
Moreover we will use the following notations. We will denote by E

∗
X the sheaf of

Dolbeault algebras of differential forms on X and by D∗
X the sheaf of Dolbeault
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complexes of currents onX (see [13] §5.4 for the structure of Dolbeault complex
of D∗

X). We will denote by E∗(X) and by D∗(X) the complexes of global
sections of E ∗

X and D∗
X respectively. Following [9] and [13] definition 5.10, we

denote by (D∗( , ∗), dD) the functor that associates to a Dolbeault complex
its corresponding Deligne complex. For shorthand, we will denote

D∗(X, p) = D∗(E∗(X), p),

D∗
D(X, p) = D∗(D∗(X), p).

To keep track of the algebro-geometric twist we will use the conventions of [13]
§5.4 regarding the current associated to a locally integrable differential form

[ω](η) =
1

(2πi)dim X

∫

X

η ∧ ω

and the current associated with a subvariety Y

δY (η) =
1

(2πi)dim Y

∫

Y

η.

With these conventions, we have a bigraded morphism D∗(X, ∗) → D∗
D(X, ∗)

and, if Y has codimension p, the current δY belongs to D2p
D (X, p). Then

D∗(X, p) and D∗
D(X, p) are the complex of global sections of an acyclic res-

olution of RX,D(p). Therefore

H∗
Dan(X,R(p)) = H∗(D(X, p)) = H∗(DD(X, p)).

If f : X → Y is a proper smooth morphism of complex manifolds of relative
dimension e, then the integral along the fibre morphism

f∗ : Dk(X, p) −→ Dk−2e(X, p− e)

is given by

f∗ω =
1

(2πi)e

∫

f

ω. (1.4)

If (D∗(∗), dD) is a Deligne complex associated to a Dolbeault complex, we will
write

D̃k(X, p) := Dk(X, p)/ dD Dk−1(X, p).

Finally, following [13] 5.14 we denote by • the product in the Deligne complex
that induces the usual product in Deligne cohomology. Note that, if ω ∈⊕

pD2p(X, p), then for any η ∈ D∗(X, ∗) we have ω • η = η • ω = η ∧ ω.
Sometimes, in this case we will just write ηω := η • ω.

We denote by ∗ the complex manifold consisting on one single point. Then

Hn
Dan(∗, p) =





R(p) := (2πi)pR, if n = 0, p ≤ 0,

R(p− 1) := (2πi)p−1R, if n = 1, p > 0.

{0}, otherwise.
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The product structure in this case is the bigraded product that is given by
complex number multiplication when the degrees allow the product to be non
zero. We will denote by D this ring. This is the base ring for analytic Deligne
cohomology. Note that, in particular, H1

Dan(∗, 1) = R = C/R(1). We will
denote by 11 the image of 1 in H1

Dan(∗, 1).
Following [23], theorem 1.2 implies the existence of a theory of Chern classes
for holomorphic vector bundles in analytic Deligne cohomology. That is, to
every vector bundle E, we can associate a collection of Chern classes ci(E) ∈
H2i

Dan(X,R(i)), i ≥ 1 in a functorial way.
We want to see that all possible characteristic classes in analytic Deligne coho-
mology can be derived from the Chern classes.

Definition 1.5. Let n ≥ 1 be an integer and let r1 ≥ 1, . . . , rn ≥ 1 be a collec-
tion of integers. A theory of characteristic classes for n-tuples of vector bundles
of rank r1, . . . , rn is an assignment that, to each n-tuple of isomorphism classes
of vector bundles (E1, . . . , En) over a complex manifold X , with rk(Ei) = ri,
assigns a class

cl(E1, . . . , En) ∈
⊕

k,p

Hk
Dan(X,R(p))

in a functorial way. That is, for every morphism f : X −→ Y of complex
manifolds, the equality

f∗(cl(E1, . . . , En)) = cl(f∗E1, . . . , f
∗En)

holds

The first consequence of the functoriality and certain homotopy property of
analytic Deligne cohomology classes is the following.

Proposition 1.6. Let cl be a theory of characteristic classes for n-tuples of vec-
tor bundles of rank r1, . . . , rn. Let X be a complex manifold and let (E1, . . . , En)
be a n-tuple of vector bundles over X with rk(Ei) = ri for all i. Let 1 ≤ j ≤ n
and let

0 −→ E′
j −→ Ej −→ E′′

j −→ 0,

be a short exact sequence. Then the equality

cl(E1, . . . , Ej , . . . , En) = cl(E1, . . . , E
′
j ⊕ E′′

j , . . . , En)

holds.

Proof. Let ι0, ι∞ : X −→ X × P1 be the inclusion as the fiber over 0 and
the fiber over ∞ respectively. Then there exists a vector bundle Ẽj on
X × P1 (see for instance [19] (1.2.3.1) or definition 2.5 below) such that

ι∗0Ẽj
∼= Ej and ι∗∞Ẽj

∼= E′
j ⊕ E′′

j . Let p1 : X × P1 −→ X be the first

projection. Let ω ∈ ⊕k,pDk(X, p) be any dD-closed form that represents
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cl(p∗1E1, . . . , Ẽj , . . . , p
∗
1En). Then, by functoriality we know that ι∗0ω repre-

sents cl(E1, . . . , Ej , . . . , En) and ι∗∞ω represents cl(E1, . . . , E
′
j ⊕ E′′

j , . . . , En).
We write

β =
1

2πi

∫

P1

−1

2
log tt̄ • ω,

where t is the absolute coordinate of P1. Then

dD β = ι∗∞ω − ι∗0ω

which implies the result.

A standard method to produce characteristic classes for vector bundles is to
choose hermitian metrics on the vector bundles and to construct closed differ-
ential forms out of them. The following result shows that functoriality implies
that the cohomology classes represented by these forms are independent from
the hermitian metrics and therefore are characteristic classes. When working
with hermitian vector bundles we will use the convention that, if E denotes the
vector bundle, then E = (E, h) will denote the vector bundle together with the
hermitian metric.

Proposition 1.7. Let n ≥ 1 be an integer and let r1 ≥ 1, . . . , rn ≥ 1
be a collection of integers. Let cl be an assignment that, to each n-tuple
(E1, . . . , En) = ((E1, h1), . . . , (En, hn)) of isometry classes of hermitian vector
bundles of rank r1, . . . , rn over a complex manifold X, associates a cohomology
class

cl(E1, . . . , En) ∈
⊕

k,p

Hk
D(X,R(p))

such that, for each morphism f : Y → X,

cl(f∗E1, . . . , f
∗En) = f∗ cl(E1, . . . , En).

Then the cohomology class cl(E1, . . . , En) is independent from the hermitian
metrics. Therefore it is a well defined characteristic class.

Proof. Let 1 ≤ j ≤ n be an integer and let E
′

j = (Ej , h
′
j) be the vector bundle

underlying Ej with a different choice of metric. Let ι0, ι∞ and p1 be as in the
proof of proposition 1.6. Then we can choose a hermitian metric h on p∗1Ej ,

such that ι∗0(p
∗
1Ej , h) = Ej and ι∗∞(p∗1Ej , h) = E

′

j . Let ω be any smooth closed

differential form on X × P1 that represents cl(p∗1E1, . . . , (p
∗
1E1, h), . . . , p

∗
1En).

Then,

β =
1

2πi

∫

P1

−1

2
log tt̄ • ω

satisfies
dD β = ι∗∞ω − ι∗0ω

which implies the result.
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We are interested in vector bundles that can be extended to a projective variety.
Therefore we will restrict ourselves to the algebraic category. So, by a complex
algebraic manifold we will mean the complex manifold associated to a smooth
quasi-projective variety over C. When working with an algebraic manifold, by
a vector bundle we will mean the holomorphic vector bundle associated to an
algebraic vector bundle.
We will denote by D[[x1, . . . , xr]] the ring of commutative formal power se-
ries. That is, the unknowns x1, . . . , xr commute with each other and with
D. We turn it into a commutative bigraded ring by declaring that the un-
knowns xi have bidegree (2, 1). The symmetric group in r elements, Sr acts
on D[[x1, . . . , xr]]. The subalgebra of invariant elements is generated over D

by the elementary symmetric functions. The main result of this section is the
following

Theorem 1.8. Let cl be a theory of characteristic classes for n-tuples of vector
bundles of rank r1, . . . , rn. Then, there is a power series ϕ ∈ D[[x1, . . . , xr]]
in r = r1 + · · · + rn variables with coefficients in the ring D, such that, for
each complex algebraic manifold X and each n-tuple of algebraic vector bundles
(E1, . . . , En) over X with rk(Ei) = ri this equality holds:

cl(E1, . . . , En) = ϕ(c1(E1), . . . , cr1
(E1), . . . , c1(En), . . . , crn(En)). (1.9)

Conversely, any power series ϕ as before determines a theory of characteristic
classes for n-tuples of vector bundles of rank r1, . . . , rn, by equation (1.9).

Proof. The second statement is obvious from the properties of Chern classes.
Since we are assuming X quasi-projective, given n algebraic vector bundles
E1, . . . , En on X , there is a smooth projective compactification X̃ and vector
bundles Ẽ1, . . . , Ẽn on X̃, such that Ei = Ẽi|X (see for instance [14] proposition
2.2), we are reduced to the case when X is projective. In this case, analytic
Deligne cohomology agrees with ordinary Deligne cohomology.
Let us assume first that r1 = · · · = rn = 1 and that we have a characteristic
class cl for n line bundles. Then, for each n-tuple of positive integersm1, . . . ,mn

we consider the space Pm1,...,mn = Pm1

C × · · · × Pmn

C and we denote by pi the
projection over the i-th factor. Then

⊕

k,p

Hk
D(Pm1,...,mn ,R(p)) = D[x1, . . . , xn]

/
(xm1

1 , . . . , xmn
n )

is a quotient of the polynomial ring generated by the classes xi = c1(p
∗
iO(1))

with coefficients in the ring D. Therefore, there is a polynomial ϕm1,...,mn in n
variables such that

cl(p∗1O(1), . . . , p∗1O(1)) = ϕm1,...,mn(x1, . . . , xn).

If m1 ≤ m′
1, . . . , mn ≤ m′

n then, by functoriality, the polynomial ϕm1,...,mn is
the truncation of the polynomial ϕm′

1
,...,m′

n
. Therefore there is a power series
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in n variables, ϕ such that ϕm1,...,mn is the truncation of ϕ in the appropriate
quotient of the polynomial ring.
Let L1, . . . , Ln be line bundles on a projective algebraic manifold that are
generated by global sections. Then they determine a morphism f : X −→
Pm1,...,mn such that Li = f∗p∗iO(1). Therefore, again by functoriality, we
obtain

cl(L1, . . . , Ln) = ϕ(c1(L1), . . . , c1(Ln)).

From the class cl we can define a new characteristic class for n+1 line bundles
by the formula

cl′(L1, . . . , Ln,M) = cl(L1 ⊗M∨, . . . , Ln ⊗M∨).

When L1, . . . , Ln and M are generated by global sections we have that there
is a power series ψ such that

cl′(L1, . . . , Ln,M) = ψ(c1(L1), . . . , c1(Ln), c1(M)).

Moreover, when the line bundles Li⊗M∨ are also generated by global sections
the following holds

ψ(c1(L1), . . . , c1(Ln), c1(M)) = ϕ(c1(L1 ⊗M∨), . . . , c1(Ln ⊗M∨))

= ϕ(c1(L1)− c1(M), . . . , c1(Ln)− c1(M)).

Considering the system of spaces Pm1,...,mn,mn+1 with line bundles

Li = p∗iO(1)⊗ p∗n+1O(1), i = 1, . . . , n, M = p∗n+1O(1),

we see that there is an identity of power series

ϕ(x1 − y, . . . , xn − y) = ψ(x1, . . . , xn, y).

Now let X be a projective complex manifold and let L1, . . . , Ln be arbitrary
line bundles. Then there is a line bundle M such that M and L′

i = Li ⊗M ,
i = 1, . . . , n are generated by global sections. Then we have

cl(L1, . . . , Ln) = cl(L′
1 ⊗M∨, . . . , L′

n ⊗M∨)

= cl′(L′
1, . . . , L

′
n,M)

= ψ(c1(L
′
1), . . . , c1(L

′
n), c1(M))

= ϕ((c1(L
′
1)− c1(M), . . . , c1(L

′
n)− c1(M)))

= ϕ(c1(L1), . . . , c1(Ln)).

The case of arbitrary rank vector bundles follows from the case of rank one
vector bundles by proposition 1.6 and the splitting principle. We next recall
the argument. Given a projective complex manifold X and vector bundles
E1, . . . , En of rank r1, . . . , rn, we can find a proper morphism π : X̃ −→ X ,
with X̃ a complex projective manifold, and such that the induced morphism

π∗ : H∗
D(X,R(∗)) −→ H∗

D(X̃,R(∗))
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is injective and every bundle π∗(Ei) admits a holomorphic filtration

0 = Ki,0 ⊂ Ki,1 ⊂ · · · ⊂ Ki,ri−1 ⊂ Ki,ri = π∗(Ei),

with Li,j = Ki,j/Ki,j−1 a line bundle. If cl is a characteristic class for n-
tuples of vector bundles of rank r1, . . . , rn, we define a characteristic class for
r1 + · · ·+ rn-tuples of line bundles by the formula

cl′(L1,1, . . . , L1,r1
, . . . , Ln,1, . . . , Ln,rn) =

cl(L1,1 ⊕ · · · ⊕ L1,r1
, . . . , Ln,1 ⊕ · · · ⊕, Ln,rn).

By the case of line bundles we know that there is a power series in r1 + · · ·+ rn
variables ψ such that

cl′(L1,1, . . . , L1,r1
, . . . , Ln,1, . . . , Ln,rn) = ψ(c1(L1,1), . . . , c1(Ln,rn)).

Since the class cl′ is symmetric under the group Sr1
× · · · ×Srn , the same is

true for the power series ψ. Therefore ψ can be written in terms of symmetric
elementary functions. That is, there is another power series in r1 + · · · + rn
variables ϕ, such that

ψ(x1,1, . . . , xn,rn) = ϕ(s1(x1,1, . . . , x1,r1
), . . . , sr1

(x1,1, . . . , x1,r1
), . . .

. . . , s1(xn,1, . . . , xn,rn), . . . , srn(xn,1, . . . , xn,rn)),

where si is the i-th elementary symmetric function of the appropriate number
of variables. Then

π∗(cl(E1, . . . , En)) = cl(π∗E1, . . . , π
∗En))

= cl′(L1,1, . . . , Ln,rn)

= ψ(c1(L1,1), . . . , c1(Ln,rn))

= ϕ(c1(π
∗E1), . . . , cr1

(π∗E1), . . . , c1(π
∗En), . . . , crn(π∗En))

= π∗ϕ(c1(E1), . . . , cr1
(E1), . . . , c1(En), . . . , crn(En)).

Therefore, the result follows from the injectivity of π∗.

Remark 1.10. It would be interesting to know if the functoriality of a charac-
teristic class in enough to imply that it is a power series in the Chern classes
for arbitrary complex manifolds and holomorphic vector bundles.

2 Bott-Chern classes

The aim of this section is to recall the theory of Bott-Chern classes. For more
details we refer the reader to [7], [4], [19], [31], [14], [10] and [12]. Note however
that the theory we present here is equivalent, although not identical, to the
different versions that appear in the literature.

Documenta Mathematica 15 (2010) 73–176
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Let X be a complex manifold and let E = (E, h) be a rank r holomorphic
vector bundle provided with a hermitian metric. Let φ ∈ D[[x1, . . . , xr]] be a
formal power series in r variables that is symmetric under the action of Sr.
Let si, i = 1, . . . , r be the elementary symmetric functions in r variables. Then
φ(x1, . . . , xr) = ϕ(s1, . . . , sr) for certain power series ϕ. By Chern-Weil theory
we can obtain a representative of the class

φ(E) := ϕ(c1(E), . . . , cr(E)) ∈
⊕

k,p

Hk
Dan(X,R(p))

as follows.
We denote also by φ the invariant power series in r × r matrices defined by
φ. Let K be the curvature matrix of the hermitian holomorphic connection of
(E, h). The entries of K in a particular trivialization of E are local sections of
D2(X, 1). Then we write

φ(E, h) = φ(−K) ∈
⊕

k,p

Dk(X, p).

The form φ(E, h) is well defined, closed, and it represents the class φ(E).
Now let

E∗ = (. . .
fn+1−→ En

fn−→ En−1
fn−1−→ . . . )

be a bounded acyclic complex of hermitian vector bundles; by this we mean
a bounded acyclic complex of vector bundles, where each vector bundle is
equipped with an arbitrarily chosen hermitian metric.
Write

r =
∑

i even

rk(Ei) =
∑

i odd

rk(Ei).

and let φ be a symmetric power series in r variables.
As before, we can define the Chern forms

φ(
⊕

i even

(Ei, hi)) and φ(
⊕

i odd

(Ei, hi)),

that represent the Chern classes φ(
⊕

i evenEi) and φ(
⊕

i oddEi). The Chern
classes are compatible with respect to exact sequences, that is,

φ(
⊕

i even

Ei) = φ(
⊕

i odd

Ei).

But, in general, this is not true for the Chern forms. This lack of compatibility
with exact sequences on the level of Chern forms is measured by the Bott-Chern
classes.

Definition 2.1. Let

E∗ = (. . .
fn+1−→ En

fn−→ En−1
fn−1−→ . . . )
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be an acyclic complex of hermitian vector bundles, we will say that E∗ is an
orthogonally split complex of vector bundles if, for any integer n, the exact
sequence

0 −→ Ker fn −→ En −→ Ker fn−1 −→ 0

is split, there is a splitting section sn : Ker fn−1 → En such that En is the
orthogonal direct sum of Ker fn and Im sn and the metrics induced in the
subbundle Ker fn−1 by the inclusion Ker fn−1 ⊂ En−1 and by the section sn

agree.

Notation 2.2. Let (x : y) be homogeneous coordinates of P1 and let t = x/y
be the absolute coordinate. In order to make certain choices of metrics
in a functorial way, we fix once and for all a partition of unity {σ0, σ∞},
over P1 subordinated to the open cover of P1 given by the open subsets
{{|y| > 1/2|x|}, {|x| > 1/2|y|}}. As usual we will write∞ = (1 : 0), 0 = (0 : 1).

The fundamental result of the theory of Bott-Chern classes is the following
theorem (see [7], [4], [19]).

Theorem 2.3. There is a unique way to attach to each bounded exact complex
E∗ as above, a class φ̃(E∗) in

⊕

k

D̃2k−1(X, k) =
⊕

k

D2k−1(X, k)/ Im(dD)

satisfying the following properties

(i) (Differential equation)

dD φ̃(E∗) = φ(
⊕

i even

(Ei, hi))− φ(
⊕

i odd

(Ei, hi)). (2.4)

(ii) (Functoriality) f∗φ̃(E∗) = φ̃(f∗E∗), for every holomorphic map
f : X ′ −→ X.

(iii) (Normalization) If E∗ is orthogonally split, then φ̃(E∗) = 0.

Proof. We first recall how to prove the uniqueness.
Let Ki = (Ki, gi), where Ki = Ker fi and gi is the metric induced by the
inclusion Ki ⊂ Ei. Consider the complex manifold X × P1 with projections p1

and p2. For every vector bundle F on X we will denote F (i) = p∗1F ⊗p∗2OP1(i).

Let C̃∗ = C̃(E∗)∗ be the complex of vector bundles on X × P1 given by C̃i =

Ei(i) ⊕ Ei−1(i − 1) with differential d(s, t) = (t, 0). Let D̃∗ = D̃(E∗)∗ be the

complex of vector bundles with D̃i = Ei−1(i) ⊕ Ei−2(i − 1) and differential

d(s, t) = (t, 0). Using notation 2.2 we define the map ψ : C̃(E∗)i −→ D̃(E∗)i

given by ψ(s, t) = (fi(s)− t⊗ y, fi−1(t)). It is a morphism of complexes.

Definition 2.5. The first transgression exact sequence of E∗ is given by

tr1(E∗)∗ = Kerψ.
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On X × A1, the map p∗1Ei −→ C̃(E∗)i given by s 7−→ (s ⊗ yi, fi(s) ⊗ yi−1)
induces an isomorphism of complexes

p∗1E∗ −→ tr1(E∗)∗|X×A1 , (2.6)

and in particular isomorphisms

tr1(E∗)i|X×{0}
∼= Ei. (2.7)

Moreover, we have isomorphisms

tr1(E∗)i|X×{∞}
∼= Ki ⊕Ki−1. (2.8)

Definition 2.9. We will denote by tr1(E∗)∗ the complex tr1(E∗)∗ provided
with any hermitian metric such that the isomorphisms (2.7) and (2.8) are
isometries. If we need a functorial choice of metric, we proceed as follows.
On X × (P1 \ {0}) we consider the metric induced by C̃ on tr1(E∗)∗. On
X × (P1 \ {∞}) we consider the metric induced by the isomorphism (2.6). We
glue both metrics by means of the partition of unity of notation 2.2.

In particular, we have that tr1(E∗)|X×{∞} is orthogonally split. We assume
that there exists a theory of Bott-Chern classes satisfying the above properties.
Thus, there exists a class of differential forms φ̃(tr1(E∗)∗) with the following
properties. By (i) this class satisfies

dD φ̃(tr1(E∗)∗) = φ(
⊕

i even

tr1(E∗)i))− φ(
⊕

i odd

tr1(E∗)i).

By (ii), it satisfies

φ̃(tr1(E∗)∗) |X×{0}= φ̃(tr1(E∗)∗ |X×{0}) = φ̃(E∗).

Finally, by (ii) and (iii) it satisfies

φ̃(tr1(E∗)∗) |X×{∞}= φ̃(tr1(E∗)∗ |X×{∞}) = 0.

Let φ(tr1(E∗)∗) be any representative of the class φ̃(tr1(E∗)∗).

Then, in the group
⊕

k D̃2k−1(X, k), we have

0 = dD
1

2πi

∫

P1

−1

2
log(tt̄) • φ(tr1(E∗)∗)

=
1

2πi

∫

P1

(
dD
−1

2
log(tt̄) • φ(tr1(E∗)∗)−

−1

2
log(tt̄) • dD φ(tr1(E∗)∗)

)

= φ̃(tr1(E∗)∗)|X×{∞} − φ̃(tr1(E∗)∗)|X×{0}

− 1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i even

tr1(E∗)i)− φ(
⊕

i odd

tr1(E∗)i))

= −φ̃(E∗)−
1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i even

tr1(E∗)i)− φ(
⊕

i odd

tr1(E∗)i)).
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Hence, if such a theory exists, it should satisfy the formula

φ̃(E∗) =
1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i odd

tr1(E∗)i)− φ(
⊕

i even

tr1(E∗)i)). (2.10)

Therefore φ̃(E∗) is determined by properties (i), (ii) and (iii).
In order to prove the existence of a theory of functorial Bott-Chern forms, we
have to see that the right hand side of equation (2.10) is independent from the
choice of the metric on tr1(E∗)∗ and that it satisfies the properties (i), (ii) and
(iii). For this the reader can follow the proof of [4] theorem 1.29.

In view of the proof of theorem 2.3, we can define the Bott-Chern classes as
follows.

Definition 2.11. Let

E∗ : 0 −→ (En, hn) −→ . . . −→ (E1, h1) −→ (E0, h0) −→ 0

be a bounded acyclic complex of hermitian vector bundles. Let

r =
∑

i even

rk(Ei) =
∑

i odd

rk(Ei).

Let φ ∈ D[[x1, . . . , xr]]
Sr be a symmetric power series in r variables. Then

the Bott-Chern class associated to φ and E∗ is the element of
⊕

k,p D̃k(EX , p)
given by

φ̃(E∗) =
1

2πi

∫

P1

−1

2
log(tt̄) • (φ(

⊕

i odd

tr1(E∗)i)− φ(
⊕

i even

tr1(E∗)i)).

The following property is obvious from the definition.

Lemma 2.12. Let E∗ be an acyclic complex of hermitian vector bundles. Then,
for any integer k,

φ̃(E∗[k]) = (−1)kφ̃(E∗).

�

Particular cases of Bott-Chern classes are obtained when we consider a single
vector bundle with two different hermitian metrics or a short exact sequence of
vector bundles. Note however that, in order to fix the sign of the Bott-Chern
classes on these cases, one has to choose the degree of the vector bundles
involved, for instance as in the next definition.

Definition 2.13. Let E be a holomorphic vector bundle of rank r, let h0

and h1 be two hermitian metrics and let φ be an invariant power series of r
variables. We will denote by φ̃(E, h0, h1) the Bott-Chern class associated to
the complex

ξ : 0 −→ (E, h1) −→ (E, h0) −→ 0,

where (E, h0) sits in degree zero.
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Therefore, this class satisfies

dD φ̃(E, h0, h1) = φ(E, h0)− φ(E, h1).

In fact we can characterize φ̃(E, h0, h1) axiomatically as follows.

Proposition 2.14. Given φ, a symmetric power series in r variables, there is
a unique way to attach, to each rank r vector bundle E on a complex manifold
X and metrics h0 and h1, a class φ̃(E, h0, h1) satisfying

(i) dD φ̃(E, h0, h1) = φ(E, h0)− φ(E, h1).

(ii) f∗φ̃(E, h0, h1) = φ̃(f∗(E, h0, h1)) for every holomorphic map f : Y −→
X.

(iii) φ̃(E, h, h) = 0.

Moreover, if we denote Ẽ := tr1(ξ)1, then it satisfies

Ẽ|X×{∞}
∼= (E, h0), Ẽ|X×{0}

∼= (E, h1)

and

φ̃(E, h0, h1) =
1

2πi

∫

P1

−1

2
log(tt̄) • φ(Ẽ). (2.15)

Proof. The axiomatic characterization is proved as in theorem 2.3. In order
to prove equation (2.15), if we follow the notations of the proof of theorem
2.3 we have K0 = (E, h0) and K1 = 0. Therefore tr1(ξ)0 = p∗1(E, h0), while

Ẽ := tr1(ξ)1 satisfies Ẽ|X×{0} = (E, h1) and Ẽ|X×{∞} = (E, h0). Using the
antisymmetry of log tt̄ under the involution t 7→ 1/t we obtain

φ̃(E, h0, h1) = φ̃(ξ) =
1

2πi

∫

P1

−1

2
log(tt̄) • φ(Ẽ).

We can also treat the case of short exact sequences. If

ε : 0 −→ E2 −→ E1 −→ E0 −→ 0

is a short exact sequence of hermitian vector bundles, by convention, we will
assume that E0 sits in degree zero. This fixs the sign of φ̃(ε).

Proposition 2.16. Given φ, a symmetric power series in r variables, there
is a unique way to attach, to each short exact sequence of hermitian vector
bundles on a complex manifold X

ε : 0 −→ E2 −→ E1 −→ E0 −→ 0,

where E1 has rank r, a class φ̃(ε) satisfying
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(i) dD φ̃(ε) = φ(E0 ⊕ E2)− φ(E1).

(ii) f∗φ̃(ε) = φ̃(f∗(ǫ)) for every holomorphic map f : Y −→ X.

(iii) φ̃(ε) = 0 whenever ε is orthogonally split.

�

The following additivity result of Bott-Chern classes will be useful later.

Lemma 2.17. Let A∗,∗ be a bounded exact sequence of bounded exact sequences
of hermitian vector bundles. Let

r =
∑

i,j even

rk(Ai,j) =
∑

i,j odd

rk(Ai,j) =
∑

i odd
j even

rk(Ai,j) =
∑

i even
j odd

rk(Ai,j).

Let φ be a symmetric power series in r variables. Then

φ̃(
⊕

k even

Ak,∗)− φ̃(
⊕

k odd

Ak,∗) = φ̃(
⊕

k even

A∗,k)− φ̃(
⊕

k odd

A∗,k).

Proof. The proof is analogous to the proof of proposition 6.13 and is left to the
reader.

Corollary 2.18. Let A∗,∗ be a bounded double complex of hermitian vector
bundles with exact rows, let

r =
∑

i+j even

rk(Ai,j) =
∑

i+j odd

rk(Ai,j)

and let φ be a symmetric power series in r variables. Then

φ̃(TotA∗,∗) = φ̃(
⊕

k

A∗,k[−k]).

Proof. Let k0 be an integer such that Ak,l = 0 for k < k0. For any in-
teger n we denote by Totn = Tot((Ak,l)k≥n) the total complex of the ex-
act complex formed by the rows with index greater or equal than n. Then
Totk0

= Tot(A∗,∗). For each k there is an exact sequence of complexes

0 −→ Totk+1 −→ Totk ⊕
⊕

l<k

Al,∗[−l] −→
⊕

l≤k

Al,∗[−l] −→ 0,

which is orthogonally split in each degree. Therefore by lemma 2.17 we obtain

φ̃(Totk ⊕
⊕

l<k

Al,∗[−l]) = φ̃(Totk−1⊕
⊕

l≤k

Al,∗[−l]).

Hence the result follows by induction.
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A particularly important characteristic class is the Chern character. This class
is additive for exact sequences. Specializing lemma 2.17 and corollary 2.18 to
the Chern character we obtain

Corollary 2.19. With the hypothesis of lemma 2.17, the following equality
holds: ∑

k

(−1)kc̃h(Ak,∗) =
∑

k

(−1)kc̃h(A∗,k) = c̃h(TotA∗,∗).

�

Our next aim is to extend the Bott-Chern classes associated to the Chern
character to metrized coherent sheaves. This extension is due to Zha [32],
although it is still unpublished.

Definition 2.20. A metrized coherent sheaf F on X is a pair (F , E∗ → F)
where F is a coherent sheaf on X and

0→ En → En−1 → · · · → E0 → F → 0

is a finite resolution by hermitian vector bundles of the coherent sheaf F . This
resolution is also called the metric of F .

If E is a hermitian vector bundle, we will also denote byE the metrized coherent

sheaf (E,E
id−→ E).

Note that the coherent sheaf 0 may have non trivial metrics. In fact, any exact
sequence of hermitian vector bundles

0→ An → · · · → A0 → 0→ 0

can be seen as a metric on 0. It will be denoted 0A∗
. A metric on 0 is said to

be orthogonally split if the exact sequence is orthogonally split.

A morphism of metrized coherent sheaves F1 → F2 is just a morphism of
sheaves F1 → F2. A sequence of metrized coherent sheaves

ε : . . . −→ Fn+1 −→ Fn −→ Fn−1 −→ . . .

is said to be exact if it is exact as a sequence of coherent sheaves.

Definition 2.21. Let F = (F , E∗ → F) be a metrized coherent sheaf. Then
the Chern character form associated to F is given by

ch(F) =
∑

i

(−1)i ch(Ei).

Definition 2.22. An exact sequence of metrized coherent sheaves with com-

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 95

patible metrics is a commutative diagram

...
...

...
↓ ↓ ↓

0 → En,1 → . . . → E0,1 → 0
↓ ↓ ↓

0 → En,0 → . . . → E0,0 → 0
↓ ↓ ↓

0 → Fn → . . . → F0 → 0
↓ ↓ ↓
0 0 0

(2.23)

where all the rows and columns are exact. The columns of this diagram are the
individual metrics of each coherent sheaf. We will say that an exact sequence
with compatible metrics is orthogonally split if each row of vector bundles is
an orthogonally split exact sequence of hermitian vector bundles.

As in the case of exact sequences of hermitian vector bundles, the Chern char-
acter form is not compatible with exact sequences of metrized coherent sheaves
and we can define a secondary Bott-Chern character which measures the lack
of compatibility between the metrics.

Theorem 2.24. 1) There is a unique way to attach to every finite exact
sequence of metrized coherent sheaves with compatible metrics

ε : 0→ Fn → · · · → F0 → 0

on a complex manifold X a Bott-Chern secondary character

c̃h(ε) ∈
⊕

p

D̃2p−1(X, p)

such that the following axioms are satisfied:

(i) (Differential equation)

dD c̃h(ε) =
∑

k

(−1)k ch(Fk).

(ii) (Functoriality) If f : X ′ −→ X is a morphism of complex manifolds,
that is tor-independent from the coherent sheaves Fk, then

f∗(c̃h)(ε) = c̃h(f∗ε),

where the exact sequence f∗ε exists thanks to the tor-independence.

(iii) (Horizontal normalization) If ε is orthogonally split then

c̃h(ε) = 0.
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2) There is a unique way to attach to every finite exact sequence of metrized
coherent sheaves

ε : 0→ Fn → · · · → F0 → 0

on a complex manifold X a Bott-Chern secondary character

c̃h(ε) ∈
⊕

p

D̃2p−1(X, p)

such that the axioms (i), (ii) and (iii) above and the axiom (iv) below are
satisfied:

(iv) (Vertical normalization) For every bounded complex of hermitian
vector bundles

· · · → Ak → · · · → A0 → 0

that is orthogonally split, and every bounded complex of metrized
coherent sheaves

ε : 0→ Fn → · · · → F0 → 0

where the metrics are given by Ei,∗ → Fi, if, for some i0 we denote

F ′

i0 = (Fi0 , Ei0,∗ ⊕A∗ → Fi0)

and
ε′ : 0→ Fn → · · · → F

′

i0 → · · · → F0 → 0,

then c̃h(ε′) = c̃h(ε).

Proof. 1) The uniqueness is proved using the standard deformation argument.
By definition, the metrics of the coherent sheaves form a diagram like (2.23).

On X × P1, for each j ≥ 0 we consider the exact sequences Ẽ∗,j = tr1(E∗,j)
associated to the rows of the diagram with the hermitian metrics of definition
2.9. Then, for each i, j there are maps d: Ẽi,j → Ẽi−1,j , and δ : Ẽi,j → Ẽi,j−1.
We denote

F̃i = Coker(δ : Ẽi,1 → Ẽi,0).

Using the definition of tr1 and diagram chasing one can prove that there is a
commutative diagram

...
...

...
↓ ↓ ↓

0 → Ẽn,1 → . . . → Ẽ0,1 → 0
↓ ↓ ↓

0 → Ẽn,0 → . . . → Ẽ0,0 → 0
↓ ↓ ↓

0 → F̃n → . . . → F̃0 → 0
↓ ↓ ↓
0 0 0

(2.25)
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where all the rows and columns are exact. In particular this implies that the
inclusions i0 : X → X × {0} → X × P1 and i∞ : X → X × {∞} → X × P1

are tor-independent from the sheaves F̃i. But i∗0F̃∗ is isometric with F∗ and

i∗∞F̃∗ is orthogonally split. Hence, by the standard argument, axioms (i), (ii)
and (iii) imply that

c̃h(ε) =
∑

j

(−1)j c̃h(E∗,j). (2.26)

To prove the existence we use equation (2.26) as definition. Then the properties
of the Bott-Chern classes of exact sequences of hermitian vector bundles imply
that axioms (i), (ii) and (iii) are satisfied.

Proof of 2). We first assume that such theory exists. Let

· · · → Ak → · · · → A0 → 0

be a bounded complex of hermitian vector bundles, non necessarily orthogo-
nally split, and

ε : 0→ Fn → · · · → F0 → 0

a bounded complex of metrized coherent sheaves where the metrics are given
by Ei,∗ → Fi. As in axiom (iv), for some i0 we denote

F ′

i0 = (Fi0 , Ei,∗ ⊕A∗ → Fi0)

and

ε′ : 0→ Fn → · · · → F
′

i0 → · · · → F0 → 0.

By axioms (i), (ii) and (iv), the class (−1)i0(c̃h(ε′)− c̃h(ε)) satisfies the prop-

erties that characterize c̃h(A∗). Therefore c̃h(ε′) = c̃h(ε) + (−1)i0 c̃h(A∗).

Fix again a number i0 and assume that there is an exact sequence of resolutions

0 // A•

��

// E
′

i0,∗

��

// Ei0,∗

��

// 0

0 // Fi0 Fi0

(2.27)

Let now ε′ denote the exact sequence ε but with the metric E
′

i0,∗ in the position
i0. Let ηj denote the j-th row of the diagram (2.27). Again using a deformation
argument one sees that

c̃h(ε′)− c̃h(ε) = (−1)i0


c̃h(A∗)−

∑

j

(−1)j c̃h(ηj)


 . (2.28)
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Choose now a compatible system of metrics

...
...

...
↓ ↓ ↓

0 → Dn,1 → . . . → D0,1 → 0
↓ ↓ ↓

0 → Dn,0 → . . . → D0,0 → 0
↓ ↓ ↓

0 → Fn → . . . → F0 → 0
↓ ↓ ↓
0 0 0

(2.29)

we denote by λj each row of the above diagram. For each i, choose a resolution

E
′

i,∗ −→ Fi such that there exist exact sequences of resolutions

0 // Ai,∗

��

// E
′

i,∗

��

// Ei,∗

��

// 0

0 // Fi Fi

(2.30)

and

0 // Bi,∗

��

// E
′

i,∗

��

// Di,∗

��

// 0

0 // Fi Fi

(2.31)

We denote by ηi,j each row of the diagram (2.30) and by µi,j each row of the
diagram (2.31). Then, by (2.28) and (2.26), we have

c̃h(ε) =
∑

j

(−1)j c̃h(λj) +
∑

i

(−1)i(c̃h(Bi,∗)− c̃h(Ai,∗))

+
∑

i,j

(−1)i+j(c̃h(ηi,j)− c̃h(µi,j)) (2.32)

Thus, c̃h(ε) is uniquely determined by axioms (i) to (iv). To prove the existence
we use equation (2.32) as definition. We have to show that this definition is
independent of the choices of the new resolutions. This independence follows
from corollary 2.19. Once we know that the Bott-Chern classes are well defined,
it is clear that they satisfy axioms (i), (ii), (iii) and (iv).
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Proposition 2.33. (Compatibility with exact squares) If

...
...

...
↓ ↓ ↓

. . . → Fn+1,m+1 → Fn+1,m → Fn+1,m−1 → . . .
↓ ↓ ↓

. . . → Fn,m+1 → Fn,m → Fn,m−1 → . . .
↓ ↓ ↓

. . . → Fn−1,m+1 → Fn−1,m → Fn−1,m−1 → . . .
↓ ↓ ↓
...

...
...

is a bounded commutative diagram of metrized coherent sheaves, where all the
rows . . . (εn−1), (εn), (εn+1), . . . and all the columns (ηm−1), (ηm), (ηm+1) are
exact, then ∑

n

(−1)nc̃h(εn) =
∑

m

(−1)mc̃h(ηm).

Proof. This follows from equation (2.32) and corollary 2.19.

We will use the notation of definition 2.13 also in the case of metrized coherent
sheaves.

It is easy to verify the following result.

Proposition 2.34. Let

(ε) . . . −→ En+1 −→ En −→ En−1 −→ . . .

be a finite exact sequence of hermitian vector bundles. Then the Bott-Chern
classes obtained by theorem 2.24 and by theorem 2.3 agree. �

Proposition 2.35. Let F = (F , E∗ → F) be a metrized coherent sheaf. We
consider the exact sequence of metrized coherent sheaves

ε : 0 −→ En → · · · → E0 → F → 0,

where, by abuse of notation, Ei = (Ei, Ei
=→ Ei). Then c̃h(ε) = 0.

Proof. Define Ki = Ker(Ei → Ei−1), i = 1, . . . , n and K0 = Ker(E0 → F).
Write

Ki = (Ki, 0→ En → · · · → Ei+1 → Ki), i = 0, . . . , n,

and K−1 = F . If we prove that

c̃h(0→ Ki → Ei → Ki−1 → 0) = 0, (2.36)
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then we obtain the result by induction using proposition 2.33. In order to prove
equation (2.36) we apply equation (2.32). To this end consider resolutions

D0,∗ −→ Ki−1, D0,k = Ek+i

D1,∗ −→ Ei, D1,k = Ek+i+1 ⊕ Ek+i

D2,∗ −→ Ki, D2,k = Ek+i+1

with the map D2,k
∆→ D1,k given by s 7→ (s, d s) and the map D1,k

∇→ D0,k

given by (s, t) 7→ t − d s. The differential of the complex D1,k is given by
(s, t) 7→ (t, 0). Using equations (2.32) and (2.26) we write the left hand side of
equation (2.36) in terms of Bott-Chern classes of vector bundles. All the exact
sequences involved are orthogonally split except maybe the sequences

λk : 0→ D2,k → D1,k → D0,k → 0.

But now we consider the diagrams

Ek+i+1

i1 //

id

��

Ek+i+1 ⊕ Ek+i

p2 //

f

��

Ek+i

id

��
Ek+i+1

∆ // Ek+i+1 ⊕ Ek+i
∇ // Ek+i

and

Ek+i

i2 //

id

��

Ek+i+1 ⊕ Ek+i

p1 //

f

��

Ek+i+1

id

��
Ek+i

i2 // Ek+i+1 ⊕ Ek+i

p1 // Ek+i+1

,

where ii, i2 are the natural inclusions, p1 and p2 are the projections and
f(s, t) = (s, t+ f(s)). These diagrams and corollary 2.19 imply that c̃h(λk) =
0.

Remark 2.37. In [32], Zha shows that the Bott-Chern classes associated to
exact sequences of metrized coherent sheaves are characterized by proposition
2.34, proposition 2.35 and proposition 2.33. We prefer the characterization in
terms of the differential equation, the functoriality and the normalization, be-
cause it relies on natural extensions of the corresponding axioms that define the
Bott-Chern classes for exact sequences of hermitian vector bundles. Moreover,
this approach will be used in a subsequent paper where we will study singular
Bott-Chern classes associated to arbitrary proper morphisms.

The following generalization of proposition 2.35 will be useful later. Let

ε : 0→ Gn → Gn−1 → · · · → G0 → F → 0
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be a finite resolution of a coherent sheaf by coherent sheaves. Assume that we
have a commutative diagram

...
...

...
↓ ↓ ↓

E1,n → . . . → E1,0

↓ ↓ ↓
E0,n → . . . → E0,0

↓ ↓ ↓
0 → Gn → . . . → G0 → F → 0

↓ ↓ ↓
0 0 0

where the columns are exact, the rows are complexes and the Ei,j are her-
mitian vector bundles. The columns of this diagram define metrized coherent
sheaves Gi. Let F be the metrized coherent sheaf defined by the resolution
Tot(E∗,∗) −→ F .

Proposition 2.38. With the notations above, let ε be the exact sequence of
metrized coherent sheaves

ε : 0→ Gn → Gn−1 → · · · → G0 → F → 0

Then c̃h(ε) = 0.

Proof. For each k, let Totk = Tot((E∗,j)j≥k). There are inclusions Totk −→
Totk−1. Let D∗,j = s(Totj+1 → Totj) with the hermitian metric induced by
E∗,∗. There are exact sequences of complexes

0 −→ E∗,j −→ D∗,j −→ s(Totj+1 → Totj+1) −→ 0 (2.39)

that are orthogonally split at each degree. The third complex is orthogonally
split. Therefore, if we denote by hE and hD the metric structures of Gj induced
respectively by the first and second column of diagram (2.39), then

c̃h(Gj , hE, hD) = 0. (2.40)

There is a commutative diagram of resolutions

...
...

...
...

↓ ↓ ↓ ↓
0 → D1,n → . . . → D1,0 → (Tot0)1 → 0

↓ ↓ ↓ ↓
0 → D0,n → . . . → D0,0 → (Tot0)0 → 0

↓ ↓ ↓ ↓
0 → Gn → . . . → G0 → F → 0

↓ ↓ ↓ ↓
0 0 0 0
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where the rows of degree greater or equal than zero are orthogonally split.
Hence the result follows from equation (2.26), equation (2.40) and proposition
2.33.

Remark 2.41. We have only defined the Bott-Chern classes associated to the
Chern character. Everything applies without change to any additive charac-
teristic class. The reader will find no difficulty to adapt the previous results to
any multiplicative characteristic class like the Todd genus or the total Chern
class.

3 Direct images of Bott-Chern classes

The aim of this section is to show that certain direct images of Bott-Chern
classes are closed. This result is a generalization of results of Bismut, Gillet and
Soulé [6] page 325 and of Mourougane [29] proposition 6. The fact that these
direct images of Bott-Chern classes are closed implies that certain relations
between characteristic classes are true at the level of differential forms (see
corollary 3.7 and corollary 3.8).
In the first part of this section we deal with differential geometry. Thus all the
varieties will be differentiable manifolds.
Let G1 be a Lie group and let π : N2 −→ M2 be a principal bundle with
structure group G2 and connection ω2. Assume that there is a left action of G1

overN2 that commutes with the right action ofG2 and such that the connection
ω2 is G1-invariant.
Let g1 and g2 be the Lie algebras of G1 and G2. Every element γ ∈ g1 defines
a tangent vector field γ∗ over N2 given by

γ∗p =
d

dt

∣∣∣∣
t=0

exp(tγ)p.

Let (γ∗)V be the vertical component of γ∗ with respect to the connection ω2.
For every point p ∈ N2, we denote by ϕ(γ, p) ∈ g2 the element characterized
by (γ∗)V

p = ϕ(γ, p)∗p, where ϕ(γ, p)∗ is the fundamental vector field associated
to ϕ(γ, p).
The commutativity of the actions of G1 and G2 and the invariance of the
connection ω2 implies that, for g ∈ G1 and γ ∈ g1, the following equalities hold

Lg∗(γ
∗) = (ad(g)γ∗), (3.1)

Lg∗(γ
∗)V = (ad(g)γ∗)V , (3.2)

ϕ(ad(g)γ, p) = ϕ(γ, g−1p). (3.3)

Let G2 be the vector bundle over M2 associated to N2 and the adjoint repre-
sentation of G2. That is,

G2 = N2 × g2

/〈
(pg, v) ∼ (p, ad(g)v)

〉
.

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 103

Thus, we can identify smooth sections of G2 with g2-valued functions on N2

that are invariant under the action of G2. In this way, ϕ(γ, p) determines a
section

ϕ(γ) ∈ C∞(N2, g2)
G2 = C∞(M2,G2).

Equation (3.3) implies that, for g ∈ G1 and γ ∈ g1,

ϕ(ad(g)γ) = L∗
g−1ϕ(γ).

We denote by Ωω2 the curvature of the connection ω2. Let P be an invariant
function on g2, then P (Ωω2 + ϕ(γ)) is a well defined differential form on M2.

Proposition 3.4. Let P be an invariant function on g2 and let µ be a current
on M2 invariant under the action of G1. Then µ(P (Ωω2+ϕ(γ))) is an invariant
function on g1.

Proof. Let g ∈ G1. Then,

µ(P (Ωω2 + ϕ(ad(g)γ))) = µ(P (Ωω2 + L∗
g−1ϕ(γ)))

= µ(P (L∗
g−1Ωω2 + L∗

g−1ϕ(γ)))

= Lg−1∗(µ)(P (Ωω2 + ϕ(γ)))

= µ(P (Ωω2 + ϕ(γ)))

Let nowN1 −→M1 be a principal bundle with structure groupG1 and provided
with a connection ω1. Then we can form the diagram

N1 ×N2
π1−−−−→ N1 ×

G1

N2

yπ′

yπ

N1 ×M2
π2−−−−→ N1 ×

G1

M2

yq

M1

Then π is a principal bundle with structure group G2. The connections ω1 and
ω2 induce a connection on the principal bundle π. The subbundle of horizontal
vectors with respect to this connection is given by π1∗(T

HN1⊕THN2). We will
denote this connection by ω1,2. We are interested in computing the curvature
ω1,2.
In fact, all the maps in the above diagram are fiber bundles provided with a
connection. When applicable, given a vector field U in any of these spaces, we
will denote by UH,1 the horizontal lifting to N1 × N2, by UH,2 the horizontal
lifting to N1 ×

G1

N2 and by UH,3 the horizontal lifting to N1 ×
G1

M2.
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The tangent space T (N1×N2) can be decomposed as direct sum in the following
ways

T (N1 ×N2) = THN1 ⊕ T VN1 ⊕ THN2 ⊕ T VN2

= THN1 ⊕ T VN1 ⊕ THN2 ⊕Kerπ1∗, (3.5)

For every point (x, y) ∈ N1 ×N2 we have that (Kerπ1∗)(x,y) ⊂ T V
x N1 ⊕ TyN2.

Moreover, there is an isomorphism g1 −→ (Ker π1∗)(x,y) that sends an element
γ ∈ g1 to the element (γ∗x,−γ∗y) ∈ T V

x N1 ⊕ TyN2.
The tangent space to N1 ×

G1

M2 can be decomposed as the sum of the subbundle

of vertical vectors with respect to q and the subbundle of horizontal vectors
defined by the connection ω1. The horizontal lifting to N1 × N2 of a vertical
vector lies in THN2 and the horizontal lifting of a horizontal vector lies in
THN1.
Let U , V be two vector fields on M1 and let UH,3, V H,3 be the horizontal
liftings to N1 ×

G1

M2. Then

Ωω1,2(UH,3,V H,3) = [UH,3, V H,3]H,2 − [UH,2, V H,2]

= π1∗([U
H,3, V H,3]H,1 − [UH,1, V H,1])

= π1∗([U
H,3, V H,3]H,1 − [U, V ]H,1 + [U, V ]H,1 − [UH,1, V H,1])

= π1,∗([U
H,3, V H,3]H,1 − [U, V ]H,1 + Ωω1(U, V )).

But, we have

Ωω1,2(UH,3, V H,3) ∈ T VN2,

Ωω1(U, V ) ∈ T VN1,

[UH,3, V H,3]H,1 − [U, V ]H,1 ∈ THN2.

Therefore, by the direct sum decomposition (3.5) we obtain that

Ωω1,2(UH,3, V H,3) = ((π1∗Ω
ω1(U, V )))V ,

where the vertical part is taken with respect to the fib re bundle π.
If U is a horizontal vector field over N1 ×

G1

M2 and V is a vertical vector field,

a similar argument shows that Ωω1,2(U, V ) = 0. Finally, if U and V are vector
fields on M2, they determine vertical vector fields on N1 ×

G1

M2. Then the

horizontal liftings UH,1 and V H,1 are induced by horizontal liftings of U and
V to N2. Therefore, reasoning as before we see that

Ωω1,2(U, V ) = Ωω2(U, V ).

Proposition 3.6. Let G1 and G2 be Lie groups, with Lie algebras g1 and
g2. For i = 1, 2, let Ni −→ Mi be a principal bundle with structure group
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Gi, provided with a connection ωi. Assume that there is a left action of G1

over N2 that commutes with the right action of G2 and that the connection ω2

is invariant under the G1-action. We form the G2-principal bundle π : N1 ×
G1

N2 −→ N1 ×
G1

M2 with the induced connection ω1,2 and curvature Ωω1,2 . Let

P be any invariant function on g2. Thus P (Ωω1,2) is a well defined closed
differential form on N1 ×

G1

M2. Let µ be a current on M2 invariant under the

G1-action. Being G1 invariant, the current µ induces a current on N1 ×
G1

M2,

that we denote also by µ. Let q : N1 ×
G1

M2 −→ M1 be the projection. Then

q∗(P (Ωω1,2) ∧ µ) is a closed differential form on M1.

Proof. Let U ⊂ M1 be a trivializing open subset for N1 and choose a trivial-
ization of N1 |U∼= U ×G1. With this trivialization, we can identify Ωω1 |U with
a 2-form on U with values in g1.
For γ ∈ g1, we denote by

ψµ(γ) = µ(P (Ωω2 + ϕ(γ)))

the invariant function provided by proposition 3.4.
Then

q∗(P (Ωω1,2) ∧ µ) = ψµ(Ωω1).

Therefore, the result follows from the usual Chern-Weil theory.

We go back now to complex geometry and analytic real Deligne cohomology
and to the notations 1.3, in particular (1.4).

Corollary 3.7. Let X be a complex manifold and let E = (E, hE) be a
rank r hermitian holomorphic vector bundle on X. Let π : P(E) −→ X be
the associated projective bundle. On P(E) we consider the tautological exact
sequence

ξ : 0 −→ O(−1) −→ π∗E −→ Q −→ 0

where all the vector bundles have the induced metric. Let P1, P2 and P3 be
invariant power series in 1, r − 1 and r variables respectively with coefficients
in D. Let P1(O(−1)) and P2(Q) be the associated Chern forms and let P̃3(ξ)
the associated Bott-Chern class. Then

π∗(P1(O(−1)) • P2(Q) • P̃3(ξ)) ∈
⊕

k

D̃2k−1(X, k)

is closed. Hence it defines a class in analytic real Deligne cohomology. This
class does not depend on the hermitian metric of E.

Proof. We consider Cr with the standard hermitian metric. On the space P(Cr)
we have the tautological exact sequence

0 −→ OP(Cr)(−1)
f−→ Cr −→ Q −→ 0.
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Let (x : y) be homogeneous coordinates on P1 and let t = x/y be the absolute

coordinate. Let p1 and p2 be the two projections of M2 = P(Cr) × P1. Let Ẽ
be the cokernel of the map

p∗1OP(Cr)(−1) −→ p∗1OP(Cr)(−1)⊗ p∗2OP1(1)⊕ p∗1Cr ⊗ p∗2OP1(1)
s 7−→ s⊗ y + f(s)⊗ x

with the metric induced by the standard metric of Cr and the Fubini-Study
metric of OP(1)(1).
Let N2 be the principal bundle overM2 formed by the triples (e1, e2, e3), where

e1, e2 and e3 are unitary frames of p∗1OP(Cr)(−1), p∗1Q and Ẽ respectively. The
structure group of this principal bundle is G2 = U(1)× U(r − 1) × U(r). Let
ω2 be the connection induced by the hermitian holomorphic connections on the
vector bundles p∗1OP(Cr)(−1), p∗1Q and Ẽ.

Now we denote M1 = X , and let N1 be the bundle of unitary frames of E.
This is a principal bundle over M1 with structure group G1 = U(r).

The group G1 acts on the left on N2. This action commutes with the right
action of G2 and the connection ω2 is invariant under this action.

Let µ = [− log(|t|)] be the current on M2 associated to the locally integrable
function − log(|t|). This current is invariant under the action of G1 because
this group acts trivially on the factor P1.
The invariant power series P1, P2 and P3 determine an invariant function P on
g2, the Lie algebra of G2.
Let ω1 be the connection induced in N1 by the holomorphic hermitian con-
nection on E. As before let ω1,2 be the connection on N1 ×

G1

N2 induced

by ω1 and ω2 and let q : N1 ×
G1

M2 −→ M1 be the projection. Observe that

N1 ×
G1

M2 = P(E)× P1 and q = π ◦ p1.

By the projection formula and the definition of Bott-Chern classes we have

π∗(P1(O(−1)) ∧ P2(Q) ∧ P̃3(ξ)) = q∗(µ • P (Ωω1,2)),

Therefore the fact that it is closed follows from 3.6. Since, for fixed P1, P2 and
P3, the construction is functorial on (X.E), the fact that the class in analytic
real Deligne cohomology does not depend on the choice of the hermitian metric
follows from proposition 1.7.

Corollary 3.8. Let E = (E, hE) be a hermitian holomorphic vector bundle on
a complex manifold X. We consider the projective bundle π : P(E ⊕C) −→ X.
Let Q be the universal quotient bundle on the space P(E ⊕C) with the induced
metric. Then the following equality of differential forms holds

π∗
∑

i

(−1)i ch(

i∧
Q

∨
) = π∗(cr(Q)Td−1(Q)) = Td−1(E).
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Proof. Let ξ be the tautological exact sequence with induced metrics. We first
prove that

π∗(cr(Q)Td(O(−1))) = 1.

We can write Td(O(−1)) = 1+ c1(O(−1))φ(O(−1)) for certain power series φ.
Since cr+1(E ⊕ C) = 0 we have

cr(Q)c1(O(−1)) = dD c̃r+1(ξ).

Therefore, by corollary 3.7, we have

π∗(cr(Q)Td(O(−1))) = π∗(cr(Q)) + π∗(cr(Q)c1(O(−1))φ(O(−1)))

= 1 + dD π∗(c̃r+1(ξ)φ(O(−1)))

= 1.

Then the corollary follows from corollary 3.7 by using the identity

π∗(cr(Q)Td−1(Q)) = π∗(cr(Q)Td(O(−1))π∗ Td−1(E))

+ dD π∗(cr(Q)Td(O(−1))T̃d−1(ξ)).

The following generalization of corollary 3.7 provides many relations between
integrals of Bott-Chern classes and is left to the reader.

Corollary 3.9. Let X be a complex manifold and let E = (E, hE) be a
rank r hermitian holomorphic vector bundle on X. Let π : P(E) −→ X be
the associated projective bundle. On P(E) we consider the tautological exact
sequence

ξ : 0 −→ O(−1) −→ π∗E −→ Q −→ 0

where all the vector bundles have the induced metric. Let P1 and P2 be invariant
power series in 1 and r − 1 variables respectively with coefficients in D and let
P3, . . . , Pk be invariant power series in r variables with coefficients in D. Let
P1(O(−1)) and P2(Q) be the associated Chern forms and let P̃3(ξ), . . . , P̃k(ξ)
be the associated Bott-Chern classes. Then

π∗(P1(O(−1)) • P2(Q) • P̃3(ξ) • · · · • P̃k(ξ))

is a closed differential form on X for any choice of the ordering in computing
the non associative product under the integral.

4 Cohomology of currents and wave front sets

The aim of this section is to prove the Poincaré lemma for the complex of
currents with fixed wave front set. This implies in particular a certain ∂∂̄-
lemma (corollary 4.7) that will allow us to control the singularities of singular
Bott-Chern classes.
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Let X be a complex manifold of dimension n. Following notation 1.3 recall
that there is a canonical isomorphism

H∗
Dan(X,R(p)) ∼= H∗(D∗

D(X, p)).

A current η can be viewed as a generalized section of a vector bundle and, as
such, has a wave front set that is denoted by WF(η). The theory of wave front
sets of distributions is developed in [25] chap. VIII. For the theory of wave front
sets of generalized sections, the reader can consult [24] chap. VI. Although we
will work with currents and hence with generalized sections of vector bundles,
we will follow [25].
The wave front set of η is a closed conical subset of the cotangent bundle of X
minus the zero section T ∗X0 = T ∗X \ {0}. This set describes the points and
directions of the singularities of η and it allows us to define certain products
and inverse images of currents.
Let S ⊂ T ∗X0 be a closed conical subset, we will denote by D∗

X,S the subsheaf
of currents whose wave front set is contained in S. We will denote by D∗(X,S)
its complex of global sections.
For every open set U ⊂ X there is an appropriate notion of convergence in
D∗

X,S(U) (see [25] VIII Definition 8.2.2). All references to continuity below are
with respect to this notion of convergence.
We next summarize the basic properties of wave front sets.

Proposition 4.1. Let u be a generalized section of a vector bundle and let P
be a differential operator with smooth coefficients. Then

WF(Pu) ⊆WF(u).

Proof. This is [25] VIII (8.1.11).

Corollary 4.2. The sheaf D∗
X,S is closed under ∂ and ∂̄. Therefore it is a

sheaf of Dolbeault complexes.

Let f : X −→ Y be a morphism of complex manifolds. The set of normal
directions of f is

Nf = {(f(x), v) ∈ T ∗Y | df(x)tv = 0}.

This set measures the singularities of f . For instance, if f is a smooth map
then Nf = 0 whereas, if f is a closed immersion, Nf is the conormal bundle of
f(X). Let S ⊂ T ∗Y0 be a closed conical subset. We will say that f is transverse
to S if Nf ∩ S = ∅. We will denote

f∗S = {(x, df(x)tv) ∈ T ∗X0 | (f(x), v) ∈ S}.

Theorem 4.3. Let f : X −→ Y be a morphism of complex manifolds that is
transverse to S. Then there exists one and only one extension of the pull-back
morphism f∗ : E ∗

Y −→ E ∗
X to a continuous morphism

f∗ : D
∗
Y,S −→ D

∗
X,f∗S .
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In particular there is a continuous morphism of complexes

D∗(Y, S) −→ D∗(X, f∗S).

Proof. This follows from [25] theorem 8.2.4.

We now recall the effect of correspondences on the wave front sets.
Let K ∈ D∗(X × Y ), and let S be a conical subset of T ∗Y0. We will write

WF(K)X = {(x, ξ) ∈ T ∗X0 | ∃y ∈ Y, (x, y, ξ, 0) ∈WF(K)}
WF′(K)Y = {(y, η) ∈ T ∗Y0 | ∃x ∈ X, (x, y, 0,−η) ∈WF(K)}

WF′(K) ◦ S = {(x, ξ) ∈ T ∗X0 | ∃(y, η) ∈ S, (x, y, ξ,−η) ∈WF(K)}.

Theorem 4.4. The image of the correspondence map

E∗
c (Y ) −→ D∗(X)
η 7−→ p1∗(K ∧ p∗2(η))

is contained in D∗(X,WF (K)X). Moreover, if S ∩WF′(K)Y = ∅, then there
exists one and only one extension to a continuous map

D∗
c (Y, S) −→ D∗(X,S′),

where S′ = WF(K)X ∪WF′(K) ◦ S.

Proof. This is [25] theorem 8.2.13.

We are now in a position to state and prove the Poincaré lemma for currents
with fixed wave front set. As usual, we will denote by F the Hodge filtration
of any Dolbeault complex.

Theorem 4.5 (Poincaré lemma). Let S be any conical subset of T ∗X0. Then
the natural morphism

ι : (E∗(X), F ) −→ (D∗(X,S), F )

is a filtered quasi-isomorphism.

Proof. Let K be the Bochner-Martinelli integral operator on Cn×Cn. It is the
operator

Ep,q
c (Cn) −→ Ep,q−1(Cn)
ϕ 7−→

∫
w∈Cn k(z, w) ∧ ϕ(w),

where k is the Bochner-Martinelli kernel ([21] pag. 383). Thus k is a differential
form on Cn × Cn with singularities only along the diagonal.
Using the explicit description of k in [21], it can be seen that WF (k) = N∗∆0,
the conormal bundle of the diagonal. By theorem 4.4, the operator K defines
a continuous linear map from Γc(C

n,D∗
Cn,S) to Γ(Cn,D∗

Cn,S). This is the key
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fact that allows us to adapt the proof of the Poincaré Lemma for arbitrary
currents to the case of currents with fixed wave front set.
We will prove that the sheaf inclusion

(EX , F ) −→ (DX,S , F )

is a filtered quasi-isomorphism. Then the theorem will follow from the fact
that both are fine sheaves.
The previous statement is equivalent to the fact that, for any integer p ≥ 0,
the inclusion

ι : E
p,∗
X −→ D

p,∗
X,S

is a quasi-isomorphism.
Let x ∈ X , since exactness can be checked at the level of stalks, we need to
show that

ιx : E
p,∗
X,x −→ D

p,∗
X,S,x

is a quasi-isomorphism. let U be a coordinate neighborhood around x and let
x ∈ V ⊂ U be a relatively compact open subset.
Let ρ ∈ C∞

c (U) be a function with compact support such that ρ |V = 1. We
define an operator

Kρ : D
p,q
X,S(U) −→ D

p,q−1
X,S (V ).

If T ∈ D
p,q
X,S(U) and ϕ ∈ E∗

c (V ) is a test form, then

Kρ(T )(ϕ) = (−1)p+qT (ρK(ϕ)).

Hence, using that ∂̄K(ϕ) +K(∂̄ϕ) = ϕ, and that ϕ = ρϕ, we have

(∂̄KρT +Kρ∂̄T + T )(ϕ) = −T (∂̄(ρ) ∧K(ϕ)).

Observe that, even if the support of ϕ is contained in V , the support of K(ϕ)
can be Cn; therefore the right hand side of the above equation may be non
zero.
We compute

T (∂̄(ρ) ∧K(ϕ)) = T

(
∂̄(ρ) ∧

∫

w∈Cn

k(w, z) ∧ ϕ(w)

)

= T

(∫

w∈Cn

∂̄(ρ) ∧ k(w, z) ∧ ϕ(w)

)
.

Since supp(ϕ) ⊂ V and ∂̄(ρ)|V ≡ 0, we can find a number ǫ > 0 such that,
if ‖z − w‖ < ǫ, then ∂̄(ρ) ∧ k(w, z) ∧ ϕ(w) = 0. Since the singularities of
k(w, z) are concentrated on the diagonal, it follows that the differential form
∂̄(ρ) ∧ k(w, z) ∧ ϕ(w) is smooth. Therefore, the current in V given by

ϕ 7−→ T

(∫

w∈Cn

∂̄(ρ) ∧ k(w, z) ∧ ϕ(w)

)
,
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is the current associated to the smooth differential form Tz

(
∂̄(ρ) ∧ k(w, z)

)
,

where the subindex z means that T only acts on the z variable, being w ∈ V
a parameter. This smooth form will be denoted by Ψ(T ).
Summing up, we have shown that, for any current T ∈ D

p,q
X,S(U) there exists a

smooth differential form Ψ(T ) ∈ E
p,q
X (V ) such that

T |V = −∂̄KρT −Kρ∂̄T −Ψ(T ).

Observe that we can not say that Ψ is a quasi-inverse of ιx because it depends
on the choice of ρ and it is not possible to choose a single ρ that can be applied
to all T . Hence it is not a well defined operator at the level of stalks. Let
now T ∈ D

p,∗
X,S,x be closed. It is defined in some neighborhood of x, say U ′.

Applying the above procedure we find a smooth differential form Ψ(T ) defined
on a relatively compact subset of U ′, say V ′, that is cohomologous to T . Hence
the map induced by ιx in cohomology is surjective. Let ω ∈ E

p,∗
X,x be closed

and such that ιxω = ∂̄T for some T ∈ D
p,∗−1
X,S,x . We may assume that ω and T

are defined is some neighborhood U ′′ of x. Then, on some relatively compact
subset V ′′ ⊂ U ′′, we have

ω |V ′′= ∂̄T |V ′′= −∂̄Kρω − ∂̄Ψ(T ).

Since Kρω and Ψ(T ) are smooth differential forms we conclude that the map
induced by ιx in cohomology is injective.

We will denote by D∗
D(X,S, p) the Deligne complex associated to D∗(X,S).

The following two results are direct consequences of theorem 4.5.

Corollary 4.6. The inclusion D∗
D(X,S, p) −→ D∗

D(X, p) induces an isomor-
phism

H∗(D∗
D(X,S, p)) ∼= H∗

Dan(X,R(p)).

Corollary 4.7. (i) Let η ∈ Dn
D(X, p) be a current such that

dD η ∈ Dn+1
D (X,S, p),

then there is a current a ∈ Dn−1
D (X, p) such that η+ dD a ∈ Dn

D(X,S, p).

(ii) Let η ∈ Dn
D(X,S, p) be a current such that there is a current a ∈

Dn−1
D (X, p) with η = dD a, then there is a current b ∈ Dn−1

D (X,S, p)
such that η = dD b.

�

5 Deformation of resolutions

In this section we will recall the deformation of resolutions based on the Grass-
mannian graph construction of [1]. We will also recall the Koszul resolution
associated to a section of a vector bundle.

Documenta Mathematica 15 (2010) 73–176
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The main theme is that given a bounded complex E∗ of locally free sheaves
(with some properties) on a complex manifold X , one can construct a bounded
complex tr1(E∗)∗ over a certain manifold W . This new manifold has a bira-
tional map π : W −→ X ×P1, that is an isomorphism over X × P1 \ {∞}. The
complex tr1(E∗)∗ agrees with the original complex over X×{0} and is particu-
larly simple over π−1(X×{∞}). Thus tr1(E∗)∗ is a deformation of the original
complex to a simpler one. The two examples we are interested in are: first,
when the original complex is exact, then W agrees with X × P1 and tr1(E∗)∗
was defined in 2.5. Its restriction to π−1(X × {∞}) is split; second, when
i : Y −→ X is a closed immersion of complex manifolds, and E∗ is a bounded
resolution of i∗OY , then W agrees with the deformation to the normal cone of
Y and the restriction of tr1(E∗)∗ to π−1(X ×{∞}) is an extension of a Koszul
resolution by a split complex. Note that, if we allow singularities, then the
Grassmannian graph construction is much more general.
The deformation of resolutions is based on the Grassmannian graph construc-
tion of [1], and, in the form that we present here, has been developed in [6] and
[20].
In order to fix notations we first recall the deformation to the normal cone and
the Koszul resolution associated to the zero section of a vector bundle.
Let Y →֒ X be a closed immersion of complex manifolds, with Y of pure
codimension n. In the sequel we will use notation 2.2. Let W = WY/X be the
blow-up of X × P1 along Y × {∞}. Since Y and X × P1 are manifolds, W
is also a manifold. The map π : W −→ X × P1 is an isomorphism away from
Y × {∞}; we will write P for the exceptional divisor of the blow-up. Then

P = P(NY/X ⊗N−1
∞/P1 ⊕ C).

Thus P can be seen as the projective completion of the vector bundle
NY/X ⊗ N−1

∞/P1 . Note that N∞/P1 is trivial although not canonically trivial.

Nevertheless we can choose to trivialize it by means of the section y ∈ OP1(1).
Sometimes we will tacitly assume this trivialization and omit N∞/P1 from the
formulae.
The map qW : W −→ P1, obtained by composing π with the projection q : X×
P1 −→ P1, is flat and, for t ∈ P1, we have

q−1
W (t) ∼=

{
X × {t}, if t 6=∞,
P ∪ X̃, if t =∞,

where X̃ is the blow-up of X along Y , and P ∩ X̃ is, at the same time, the
divisor at ∞ of P and the exceptional divisor of X̃ .
Following [6] we will use the following notations

P
f //

πP

��

W

π

��
Y × {∞} i∞ // X × P1
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i : Y −→ X,

W∞ = π−1(∞) = P ∪ X̃,
q : X × P1 −→ P1, the projection,
p : X × P1 −→ X, the projection,

qW = q ◦ π
pW = p ◦ π

qY : Y × P1 −→ P1, the projection,
pY : Y × P1 −→ Y, the projection,
j : Y × P1 −→ W the induced map,

j∞ : Y × {∞} −→ P.

Given any map g : Z −→ X ×P1, we will denote pZ = p ◦ g and qZ = q ◦ g. For
instance pP = p ◦ π ◦ f = pW ◦ f = i ◦ πP , where, in the last equality, we are
identifying Y with Y × {∞}.
We next recall the construction of the Koszul resolution. Let Y be a complex
manifold and let N be a rank n vector bundle. Let P = P(N ⊕ C) be the
projective bundle of lines in N ⊕ C. It is obtained by completing N with the
divisor at infinity. Let πP : P −→ Y be the projection and let s : Y −→ P be
the zero section. On P there is a tautological short exact sequence

0 −→ O(−1) −→ π∗
P (N ⊕ C) −→ Q −→ 0. (5.1)

The above exact sequence and the inclusion C −→ π∗
P (N ⊕C) induce a section

σ : OP −→ Q that vanishes along the zero section s(Y ). By duality we obtain
a morphism Q∨ −→ OP that induces a long exact sequence

0 −→
n∧
Q∨ −→ . . . −→

1∧
Q∨ −→ OP −→ s∗OY −→ 0.

If F is another vector bundle over Y , we obtain an exact sequence,

0 −→
n∧
Q∨ ⊗ π∗

PF −→ . . . −→
1∧
Q∨ ⊗ π∗

PF −→ π∗
PF −→ s∗F −→ 0. (5.2)

Definition 5.3. The Koszul resolution of s∗(F ) is the resolution (5.2). The
complex

0 −→
n∧
Q∨ ⊗ π∗

PF −→ . . . −→
1∧
Q∨ ⊗ π∗

PF −→ π∗
PF −→ 0

will be denoted by K(F,N). When N is a hermitian vector bundle, the ex-
act sequence (5.1) induces a hermitian metric on Q. If, moreover, F is also
a hermitian vector bundle, all the vector bundles that appear in the Koszul
resolution have an induced hermitian metric. We will denote by K(F,N) the
corresponding complex of hermitian vector bundles.

In particular, we shall write K(OY , N) if F = OY is endowed with the trivial
metric ‖1‖ = 1, unless expressly stated otherwise.
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We finish this section by recalling the results about deformation of resolutions
that will be used in the sequel. For more details see [1] II.1, [6] Section 4 (c)
and [20] Section 1.

Theorem 5.4. Let i : Y →֒ X be a closed immersion of complex manifolds,
where Y may be empty. Let U = X \ Y . Let F be a vector bundle over Y and
E∗ −→ i∗F −→ 0 be a resolution of i∗F . Then there exists a complex manifold
W = W (E∗), called the Grassmannian graph construction, with a birational
map π : W −→ X×P1 and a complex of vector bundles, tr1(E∗)∗, over W such
that

(i) The map π is an isomorphism away from Y × {∞}. The restriction of
tr1(E∗)∗ to X × (P1 \ {∞}) is isomorphic to p∗WE∗ restricted to X ×
(P1 \ {∞}). Moreover, If X̃ is the Zariski closure of U ×{∞} inside W ,

the restriction of tr1(E∗)∗ to X̃ is split acyclic. In particular, if Y is
empty or F is the zero vector bundle, hence E∗ is acyclic in the whole X,
then W = X × P1 and tr1(E∗)∗ is the first transgression exact sequence
introduced in 2.5.

(ii) When Y is non-empty and F is a non-zero vector bundle over Y , then
W (E∗) agrees with WY/X , the deformation to the normal cone of Y .
Moreover, there is an exact sequence of resolutions on P

0 // A∗
//

��

tr1(E∗)∗ |P //

��

K(F,NY/X ⊗N−1
∞/P1) //

��

0

0 // (j∞)∗F
= // (j∞)∗F

,

where A∗ is split acyclic and K(F,NY/X ⊗N−1
∞/P1) is the Koszul resolu-

tion.

(iii) Let f : X ′ −→ X be a morphism of complex manifolds and assume that
we are in one of the following cases:

(a) The map f is smooth.

(b) The map f is arbitrary and E∗ is acyclic.

(c) f is transverse to Y .

Then E′
∗ := f∗(E∗) is exact over f−1(U),

W ′ := W (E′
∗) = W ×

X
X ′,

with fW : W ′ −→ W the induced map, and we have f∗
W (tr1(E∗)∗) =

tr1(f
∗(E∗))∗.
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(iv) If the vector bundles Ei are provided with hermitian metrics, then one
can choose a hermitian metric on tr1(E∗)∗ such that its restriction to
X × {0} is isometric to E∗ and the restriction to U × {∞} is orthogo-
nally split. We will denote by tr1(E∗)∗ the complex tr1(E∗)∗ with such
a choice of hermitian metrics. Moreover, this choice of metrics can be
made functorial. That is, if f is a map as in item (iii), then

f∗
W (tr1(E∗)∗) = tr1(f

∗(E∗))∗

Proof. The case when E∗ is acyclic has already been treated. For the case
when Y is non-empty and F is non zero, we first recall the construction of the
Grassmannian graph of an arbitrary complex from [20], which is more general
than what we need here. If E is a vector bundle over X we will denote by E(i)
the vector bundle over X × P1 given by E(i) = p∗E ⊗ q∗O(i).

Let C̃∗ be the complex of locally free sheaves given by C̃i = Ei(i)⊕Ei−1(i− 1)
with differential given by d(a, b) = (b, 0). On X × (P1 \ {∞}) we consider,

for each i, the inclusion of vector bundles γi : Ei →֒ C̃i given by s 7−→ (s ⊗
yi, d s ⊗ yi−1). Let G be the product of the Grassmann bundles Gr(ni, C̃i)

that parametrize rank ni = rkEi subbundles of C̃i over X × P1. The inclusion
γ∗ :

⊕
Ei −→

⊕
C̃i induces a section s of G over X × A1.

Then W (E∗) is defined to be the closure of s(X×A1) in G. Since the projection
from G to X × P1 is proper, the same is true for the induced map π : W −→
X × P1. For each i, the induced map W −→ Gr(ni, C̃i) defines a subbundle

tr1(E∗)i of π∗C̃i. This subbundle agrees with Ei over X ×A1. The differential

of C̃∗ induces a differential on tr1(E∗)∗.

Assume now that the bundles Ei are provided with hermitian metrics. Us-
ing the Fubini-Study metric of O(1) we obtain induced metrics on C̃i. Over
π−1(X × (P1 \ {∞})) we induce a metric on tr1(E∗)i by means of the identifi-
cation with Ei. Over π−1(X × (P1 \ {0})) we consider on tr1(E∗)i the metric

induced by C̃i. We glue together both metrics with the partition of unity
{σ0, σ∞} of notation 2.2.

In the case we are interested there is a more explicit description of tr1(E∗)∗
given in [6] Section 4 (c). Namely, tr1(E∗)i is the kernel of the morphism

φ : p∗W C̃i = p∗WEi(i)⊕ p∗WEi−1(i− 1) −→ p∗WEi−1(i)⊕ p∗WEi−2(i− 1) (5.5)

given by φ(s, t) = (d s− t⊗ y, d t).
The only statements that are not explicitly proved in [6] Section 4 (c) or [20]
Section 1 are the functoriality when f is not smooth and the properties of the
explicit choice of metrics.

If the complex E∗ is acyclic, then the same is true for E′
∗ = f∗E∗. In this

case W = X × P1 and W ′ = X ′ × P1. Then the functoriality follows from the
definition of tr1(E∗)∗.
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Assume now that we are in case (iii)c. We can form the Cartesian square

Y ′ i′ //

g

��

X ′

f

��
Y

i // X

where i′ is also a closed immersion of complex manifolds. Then we have that
E′

∗ is a resolution of i′∗g
∗F . Hence W ′ = W (E′

∗) is the deformation to the
normal cone of Y ′ and therefore W ′ = W ×

X
X ′. Again the functoriality of

tr1(E∗)∗ can be checked using the explicit construction of [20] Section 1 that
we have recalled above.

Remark 5.6. (i) The definition of tr1(E∗) can be extended to any bounded
chain complex over a integral scheme (see [20]).

(ii) There is a sign difference in the definition of the inclusion γ used in [20]
and the one used in [6]. We have followed the signs of the first reference.

6 Singular Bott-Chern classes

Throughout this section we will use notation 1.3. In particular we will write

D̃n
D(X, p) = Dn

D(X, p)/ dD Dn−1
D (X, p),

D̃n
D(X,S, p) = Dn

D(X,S, p)/ dD Dn−1
D (X,S, p).

A particularly important current is W1 ∈ D1
D(P1, 1) given by

W1 = [
−1

2
log ‖t‖2]. (6.1)

With the above convention, this means that

W1(η) =
1

2πi

∫

P1

−1

2
log ‖t‖2 • η. (6.2)

By the Poincaré-Lelong equation

dDW1 = δ∞ − δ0. (6.3)

Note that the current W1 was used in the construction of Bott-Chern classes
(definition 2.11) and will also have a role in the definition of singular Bott-
Chern classes.

Before defining singular Bott-Chern classes we need to define the objects that
give rise to them.
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Definition 6.4. Let i : Y −→ X be a closed immersion of complex manifolds.
Let N be the normal bundle of Y and let hN be a hermitian metric on N .
We denote N = (N, hN ). Let rN be the rank of N , that agrees with the
codimension of Y in X . Let F = (F, hF ) be a hermitian vector bundle on Y of
rank rF . Let E∗ → i∗F be a metric on the coherent sheaf i∗F . The four-tuple

ξ = (i,N, F ,E∗). (6.5)

is called a hermitian embedded vector bundle. The number rF will be called
the rank of ξ and the number rN will be called the codimension of ξ.
By convention, any exact complex of hermitian vector bundles on X will be
considered a hermitian embedded vector bundle of any rank and codimension.

Obviously, to any hermitian embedded vector bundle we can associate the
metrized coherent sheaf (i∗F,E∗ → i∗F ).

Definition 6.6. A singular Bott-Chern class for a hermitian embedded vector
bundle ξ is a class η̃ ∈⊕p D̃

2p−1
D (X, p) such that

dD η =
n∑

i=0

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )]) (6.7)

for any current η ∈ η̃.
The existence of this class is guaranteed by the Grothendieck-Riemann-Roch
theorem, which implies that the two currents in the right hand side of equation
(6.7) are cohomologous.
Even if we have defined singular Bott-Chern classes as classes of currents with
arbitrary singularities, it is an important observation that in each singular
Bott-Chern class we can find representatives with controlled singularities. Let
N∗

Y,0 be the conormal bundle of Y with the zero section deleted. It is a closed
conical subset of T ∗

0 (X). Since the current

n∑

i=0

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )])

=

n∑

i=0

(−1)i[ch(Ei)]− Td−1(N) ch(F )δY

belongs to D∗
D(X,N∗

Y,0, p), by corollary 4.7, we obtain

Proposition 6.8. Let ξ = (i, N, F ,E∗) be a hermitian embedded vector bundle
as before. Then any singular Bott-Chern class for ξ belongs to the subset

⊕

p

D̃2p−1
D (X,N∗

Y,0, p) ⊂
⊕

p

D̃2p−1
D (X, p).

�
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This result will allow us to define inverse images of singular Bott-Chern classes
for certain maps.
Let f : X ′ −→ X be a morphism of complex manifolds that is transverse to Y .
We form the Cartesian square

Y ′ i′ //

g

��

X ′

f

��
Y

i // X

.

Observe that, by the transversality hypothesis, the normal bundle to Y ′ on X ′

is the inverse image of the normal bundle to Y on X and f∗E∗ is a resolution
of i′∗g

∗F . Thus we write f∗ξ = (i′, f∗N, g∗F , f∗E∗), which is a hermitian
embedded vector bundle.
By proposition 6.8, given any singular Bott-Chern class η̃ for ξ, we can find
a representative η ∈ ⊕pD2p−1

D (X,N∗
Y,0, p). By theorem 4.3, there is a well

defined current f∗η and it is a singular Bott-Chern current for f∗ξ. Therefore

we can define f∗(η̃) = f̃∗(η). Again by theorem 4.3, this class does not depend
on the choice of the representative η.
Our next objective is to study the possible definitions of functorial singular
Bott-Chern classes.

Definition 6.9. Let rF and rN be two integers. A theory of singular Bott-
Chern classes of rank rF and codimension rN is an assignment which, to each
hermitian embedded vector bundle ξ = (i : Y −→ X,N,F ,E∗) of rank rF and
codimension rN , assigns a class of currents

T (ξ) ∈
⊕

p

D̃2p−1
D (X, p)

satisfying the following properties

(i) (Differential equation) The following equality holds

dD T (ξ) =
∑

i

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )]). (6.10)

(ii) (Functoriality) For every morphism f : X ′ −→ X of complex manifolds
that is transverse to Y , then

f∗T (ξ) = T (f∗ξ).

(iii) (Normalization) Let A = (A∗, g∗) be a non-negatively graded orthog-
onally split complex of vector bundles. Write ξ ⊕ A = (i : Y −→
X,N,F ,E∗ ⊕ A∗). Then T (ξ) = T (ξ ⊕ A). Moreover, if X = Spec C

is one point, Y = ∅ and E∗ = 0, then T (ξ) = 0.
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A theory of singular Bott-Chern classes is an assignment as before, for all
positive integers rF and rM . When the inclusion i and the bundles F and N
are clear from the context, we will denote T (ξ) by T (E∗). Sometimes we will
have to restrict ourselves to complex algebraic manifolds and algebraic vector
bundles. In this case we will talk of theory of singular Bott-Chern classes for
algebraic vector bundles.

Remark 6.11. (i) Recall that the case when Y = ∅ and E∗ is any bounded
exact sequence of hermitian vector bundles is considered a hermitian em-
bedded vector bundle of arbitrary rank. In this case, the properties above
imply that

T (ξ) = [c̃h(E∗)],

where c̃h is the Bott-Chern class associated to the Chern character. That
is, for acyclic complexes, any theory of singular Bott-Chern classes agrees
with the Bott-Chern classes associated to the Chern character.

(ii) If the map f is transverse to Y , then either f−1(Y ) is empty or it has the
same codimension as Y . Moreover, it is clear that f∗F has the same rank
as F . Therefore, the properties of singular Bott-Chern classes do not mix
rank or codimension. This is why we have defined singular Bott-Chern
classes for a particular rank and codimension.

(iii) By contrast with the case of Bott-Chern classes, the properties above are
not enough to characterize singular Bott-Chern classes.

For the rest of this section we will assume the existence of a theory of singular
Bott-Chern classes and we will obtain some consequences of the definition.
We start with the compatibility of singular Bott-Chern classes with exact se-
quences and Bott-Chern classes.
Let

χ : 0 −→ Fn −→ . . . −→ F 1 −→ F 0 −→ 0 (6.12)

be a bounded exact sequence of hermitian vector bundles on Y . For j =
0, . . . , n, let Ej,∗ −→ i∗Fj be a resolution, and assume that they fit in a com-
mutative diagram

0 // En,∗
//

��

. . . // E1,∗
//

��

E0,∗
//

��

0

0 // i∗Fn
// . . . // i∗F1

// i∗F0
// 0

,

with exact rows. We write ξj = (i : Y −→ X,N,F j , Ej,∗). For each k, we
denote by ηk the exact sequence

0 −→ En,k −→ . . . −→ E1,k −→ E0,k −→ 0.
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Proposition 6.13. With the above notations, the following equation holds:

T (
⊕

j even

ξj)− T (
⊕

j odd

ξj) =
∑

k

(−1)k[c̃h(ηk)]− i∗([Td−1(N)c̃h(χ)]).

Here the direct sum of hermitian embedded vector bundles, involving the same
embedding and the same hermitian normal bundle, is defined in the obvious
manner.

Proof. We consider the construction of theorem 5.4 for each of the exact se-
quences ηk and the exact sequence χ. For each k, we have WX := W (ηk) =
X × P1 and we denote WY := W (χ) = Y × P1. On WY we consider the
transgression exact sequence tr1(χ)∗ and on WX we consider the transgression
exact sequences tr1(ηk)∗. We denote by j : WY −→WX the induced morphism.
Then there is an exact sequence (of exact sequences)

. . . −→ tr1(η1)∗ −→ tr1(η0)∗ −→ j∗ tr1(χ)∗ −→ 0.

We denote

tr1(χ)+ =
⊕

j even

tr1(χ)j , tr1(χ)− =
⊕

j odd

tr1(χ)j ,

tr1(ηk)+ =
⊕

j even

tr1(ηk)j , tr1(ηk)− =
⊕

j odd

tr1(ηk)j ,

and

tr1(ξ)+ = (j : WY −→WX , p
∗
YN, tr1(χ)+, tr1(η∗)+),

tr1(ξ)− = (j : WY −→WX , p
∗
YN, tr1(χ)−, tr1(η∗)−),

where here pY : WY −→ Y denotes the projection.
We consider the current on X × P1 given by W1 •

(
T (tr1(ξ)+)− T (tr1(ξ)−)

)
.

This current is well defined because the wave front set of W1 is the conormal
bundle of (X × {0}) ∪ (X × {∞}), whereas the wave front set of T (tr1(ξ)±) is
the conormal bundle of Y × P1.
By the functoriality of the transgression exact sequences, we obtain that

tr1(ξ)+ |X×{0}=
⊕

j even

ξj , tr1(ξ)− |X×{0}=
⊕

j odd

ξj .

Moreover, using the fact that, for any bounded acyclic complex of hermitian
vector bundles E∗, the exact sequence tr1(E∗) |X×{∞} is orthogonally split, we
have an isometry

tr1(ξ)+ |X×{∞}
∼= tr1(ξ)− |X×{∞} .

We now denote by pX : WX −→ X the projection. Using the properties that de-
fine a theory of singular Bott-Chern classes, in the group

⊕
p D̃

2p−1
D (X,N∗

Y,0, p),
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the following holds

0 = dD(pX)∗
(
W1 • T (tr1(ξ)+)−W1 • T (tr1(ξ)−)

)

=
(
T (tr1(ξ)+)− T (tr1(ξ)−)

)
|X×{∞} −

(
T (tr1(ξ)+)− T (tr1(ξ)−)

)
|X×{0}

− (pX)∗
∑

k

(−1)kW1 • (ch(tr1(ηk)+)− ch(tr1(ηk)−))

+ (pX)∗
(
W1 • j∗

[
Td−1(p∗YN) ch(tr1(χ)+)− Td−1(p∗Y N) ch(tr1(χ)−)

])

= −T (
⊕

j even

ξj) + T (
⊕

j odd

ξj) +
∑

(−1)k[c̃h(ηk)]− i∗[Td−1(N) • c̃h(χ)],

which implies the proposition.

The following result is a consequence of proposition 6.13 and theorem 2.24.

Corollary 6.14. Let Y −→ X be a closed immersion of complex manifolds.
Let χ be an exact sequence of hermitian vector bundles on Y as (6.12). For each
j, let ξj = (i : Y −→ X,N,F j , Ej,∗) be a hermitian embedded vector bundle.
We denote by ε the induced exact sequence of metrized coherent sheaves. Then

T (
⊕

j even

ξj)− T (
⊕

j odd

ξj) = [c̃h(ε)]− i∗([Td−1(N)c̃h(χ)]).

�

We now study the effect of changing the metric of the normal bundle N .

Proposition 6.15. Let ξ0 = (i, N0, F , E∗) be a hermitian embedded vector
bundle, where N0 = (N, h0). Let h1 be another metric in the vector bundle N
and write N1 = (N, h1), ξ1 = (i, N1, F , E∗). Then

T (ξ0)− T (ξ1) = −i∗[T̃d−1(N, h0, h1) ch(F )].

Proof. The proof is completely analogous to the proof of proposition 6.13.

We now study the case when Y is the zero section of a completed vector bundle.
Let F and N be hermitian vector bundles over Y . We denote P = P(N ⊕ C),
the projective bundle of lines in N ⊕ OY . Let s : Y −→ P denote the zero
section and let πP : P −→ Y denote the projection. Let K(F,N) be the Koszul
resolution of definition 5.3. We will use the notations before this definition.
The following result is due to Bismut, Gillet and Soulé for the particular choice
of singular Bott-Chern classes defined in [6].

Theorem 6.16. Let T be a theory of singular Bott-Chern classes of rank
rF and codimension rN . Let Y be a complex manifold and let F and N be
hermitian vector bundles of rank rF and rN respectively. Then the current
(πP )∗(T (K(F,N))) is closed. Moreover the cohomology class that it represents
does not depend on the metric of N and F and determines a characteristic
class for pairs of vector bundles of rank rF and rN . We denote this class by
CT (F,N).
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Proof. We have that

dD(πP )∗(T (K(F,N)))

= (πP )∗(dD T (K(F,N)))

= (πP )∗

(
r∑

k=0

(−1)k[ch(

k∧
Q

∨
)π∗

P ch(F )]− s∗[Td−1(N) ch(F )]

)

=
(
(πP )∗[cr(Q)Td−1(Q)]− [Td−1(N)]

)
ch(F )).

Therefore, the fact that the current (πP )∗(T (K(F ,N))) is closed follows from
corollary 3.8. The fact that this class is functorial on (Y,N, F ) is clear from the
construction Thus, the fact that it does not depend on the hermitian metrics
of N and F follows from proposition 1.7.

Remark 6.17. By theorem 1.8 we know that, if we restrict ourselves to the
algebraic category, CT (F,N) is given by a power series on the Chern classes
with coefficients in D. By degree reasons

CT (F,N) ∈
⊕

p

H2p−1
Dan (Y,R(p)).

Let 11 ∈ H1
D(∗,R(1)) be the element determined by the constant function with

value 1 in D1(∗, 1). Then CT (F,N)/11 is a power series in the Chern classes
of N and F with real coefficients.

7 Classification of theories of singular Bott-Chern classes

The aim of this section is to give a complete classification of the possible theories
of singular Bott-Chern classes. This classification is given in terms of the
characteristic class CT introduced in the previous section.

Theorem 7.1. Let rF and rN be two positive integers. Let C be a characteristic
class for pairs of vector bundles of rank rF and rN . Then there exists a unique
theory TC of singular Bott-Chern classes of rank rF and codimension rN such
that CTC = C.

Proof. We first prove the uniqueness. Assume that T is a theory of singular
Bott-Chern classes such that CT = C. Let ξ = (i : Y −→ X,N,F ,E∗) be a
hermitian embedded vector bundle as in section 6. LetW be the deformation to
the normal cone of Y . We will use all the notations of section 5. In particular,
we will denote by p eX : X̃ −→ X and pP : P −→ X the morphisms induced by
restricting pW . Recall that pP can be factored as

P
πP−→ Y

i−→ X.

The normal vector bundle to the inclusion j : Y × P1 −→ W is isomorphic
to p∗YN ⊗ q∗YO(−1). We provide it with the hermitian metric induced by the

metric of N and the Fubini-Study metric of O(−1) and we denote it by N
′
.
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By theorem 5.4 we have a complex of hermitian vector bundles, tr1(E∗)∗ such
that the restriction tr1(E∗)∗|X×{0} is isometric to E∗, the restriction tr1(E∗)∗| eX
is orthogonally split and there is an exact sequence on P

0 −→ A∗ −→ tr1(E∗)∗|P −→ K(F,N) −→ 0,

where A∗ is split acyclic and K(F,N) is the Koszul resolution. Recall that
we have trivialized N−1

∞/P1 by means of the section y of OP1(1). We choose a

hermitian metric in every bundle of A∗ such that it becomes orthogonally split.
For each k we will denote by ηk the exact sequence of hermitian vector bundles

0 −→ Ak −→ tr1(E∗)k|P −→ K(F,N)k −→ 0. (7.2)

Observe that the current W1 is defined as the current associated to a locally
integrable differential form. The pull-back of this form to W is also locally
integrable. Therefore it defines a current on W that we also denote by W1.
Moreover, since the wave front sets of W1 and of T (tr1(E∗)∗) are disjoint,
there is a well defined current W1 • T (tr1(E∗)∗). Then, using the properties of
singular Bott-Chern classes in definition 6.9, the equality

0 = dD(pW )∗
(
W1 • T (tr1(E∗)∗)

)

= (p eX)∗(T (tr1(E∗)∗)| eX) + (pP )∗(T (tr1(E∗)∗)|P )− T (ξ)

− (pW )∗

(
W1 •

(∑

k

(−1)k ch(tr1(E∗)∗)− (j∗(ch(p∗Y F )Td−1(N
′
))

))

holds in the group
⊕

k D̃2k−1(X, k). By properties 6.9(ii) and 6.9(iii),
T (tr1(E∗)∗)| eX = T (tr1(E∗)∗| eX) = 0.
By proposition 6.13 we have

T (tr1(E∗)∗|P ) = T (K(F,N))−
∑

k

(−1)k[c̃h(ηk)].

Moreover, we have

(pP )∗(T (K(F,N))) = i∗(πP )∗(T (K(F ,N))) = i∗CT (F,N).

By the definition of N ′ and the choice of its metric, there are two differential
forms a, b on Y , such that

ch(p∗Y F )Td−1(N
′
) = p∗Y (a) + p∗Y (b) ∧ q∗Y (c1(O(−1))).

We denote ω = −c1(O(−1)). By the properties of the Fubini-Study metric, ω
is invariant under the involution of P1 that sends t to 1/t. Then

(pW )∗

(
W1 • (j∗(ch(p∗Y F )Td−1(N

′
))
)

= i∗(pY )∗(W1 • (p∗Y a+ p∗Y bω)) = 0
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because the current W1 changes sign under the involution t 7−→ 1/t.

Summing up, we have obtained the equation

T (ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k)

)

−
∑

k

(−1)k(pP )∗[c̃h(ηk)] + i∗CT (F,N). (7.3)

Hence the singular Bott-Chern class is characterized by the properties of defi-
nition 6.9 and the characteristic class CT .

In order to prove the existence of a theory of singular Bott-Chern classes, we
use equation (7.3) to define a class TC(ξ) as follows.

Definition 7.4. Let C be a characteristic class for pairs of vector bundles of
rank rF and rN as in theorem 7.1. Let ξ = (i : Y −→ X,N,F ,E∗) be as in
definition 6.9. Let A∗, tr1(E∗)∗ and η∗ be as in (7.2). Then we define

TC(ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k)

)

−
∑

k

(−1)k(pP )∗[c̃h(ηk)] + i∗C(F,N). (7.5)

We have to prove that this definition does not depend on the choice of the metric
of tr1(E∗)∗ or the metric of A∗, that TC satisfies the properties of definition
6.9 and that the characteristic class CTC agrees with C.

First we prove the independence from the metrics. We denote by hk the her-
mitian metric on tr1(E∗)k and by gk the hermitian metric on Ak. Let h′k and
g′k be another choice of metrics satisfying also that (A∗, g

′
∗) is orthogonally

split, that (tr1(E∗)k, h
′
k)|X×{0} is isometric to Ek and that (tr1(E∗)k, h

′
k)| eX is

orthogonally split. We denote by η′k the exact sequence ηk provided with the

metrics g′ and h′. Then, in the group
⊕

p D̃2p−1(X, p), we have

∑

k

(−1)k(pP )∗[c̃h(ηk)]−
∑

k

(−1)k(pP )∗[c̃h(η′k)] =

∑

k

(−1)k(pP )∗

[
c̃h(Ak, gk, g

′
k)
]
−
∑

k

(−1)k(pP )∗

[
c̃h(tr1(E∗)k|P , hk, h

′
k)
]
.

(7.6)

Observe that the first term of the right hand side vanishes due to the hypothesis
of A∗ being orthogonally split for both metrics.

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 125

Moreover, we also have,

(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k, hk)

)
−

(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k, h
′
k)

)
=

(pW )∗

(∑

k

(−1)kW1 • dD c̃h(tr1(E∗)k, hk, h
′
k)

)
. (7.7)

But, in the group
⊕

p D̃2p−1(X, p),

(pW )∗

(∑

k

(−1)kW1 • dD c̃h(tr1(E∗)k, hk, h
′
k)

)
=

∑

k

(−1)k(p eX)∗[c̃h(tr1(E∗)k, hk, h
′
k)]| eX

+
∑

k

(−1)k(pP )∗[c̃h(tr1(E∗)k, hk, h
′
k)]|P )

−
∑

k

(−1)k[c̃h(tr1(E∗)k, hk, h
′
k)]|X×{0}. (7.8)

The last term of the right hand side vanishes because the metrics hk and h′k
agree when restricted to X ×{0} and the first term vanishes by the hypothesis
that tr1(E∗)∗| eX is orthogonally split with both metrics. Combining equations
(7.6), (7.7) and (7.8) we obtain that the right hand side of equation (7.5) does
not depend on the choice of metrics.
We next prove the property (i) of definition 6.9. We compute

dD TC(ξ) = −
∑

k

(−1)k
(
(p eX)∗ ch(tr1(E∗)k| eX) + (pP )∗ ch(tr1(E∗)k|P )

)

+
∑

k

(−1)k ch(tr1(E∗)k|X×{0})

−
∑

k

(−1)k(pP )∗
(
ch(Ak) + ch(K(F ,N)k)− ch(tr1(E∗)k|P )

)
.

Using that A∗ and that tr1(E∗)∗| eX are orthogonally split and corollary 3.8 we
obtain

dD TC(ξ) =
∑

k

(−1)k ch(Ek)−
∑

k

(−1)k(pP )∗ ch(K(F ,N)k)

=
∑

k

(−1)k[ch(Ek)]− (pP )∗[cr(Q)Td−1(Q)]

=
∑

k

(−1)k[ch(Ek)]− i∗[ch(F )Td−1(N)].
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We now prove the normalization property. We consider first the case when
Y = ∅ and E∗ is a non-negatively graded orthogonally split complex. We
denote by

Ki = Ker(di : Ei −→ Ei−1)

with the induced metric. By hypothesis there are isometries

Ei = Ki ⊕Ki−1.

Under these isometries, the differential is d(s, t) = (t, 0). Following the explicit
construction of tr1(E∗) given in [20], recalled in definition 2.5, we see that

tr1(E∗)i = p∗Ki ⊗ q∗O(i) ⊕ p∗Ki−1 ⊗ q∗O(i− 1) = Ki(i)⊕Ki−1(i− 1).

Moreover, we can induce a metric on tr1(E∗)∗ satisfying the hypothesis of
definition 2.9 by means of the metric of the bundles Ki and the Fubini-Study
metric on the bundles O(i). It is clear that the second and third terms of the
right hand side of equation (7.3) are zero. For the first term we have

∑

k

(−1)k(pW )∗W1 •
(
ch(tr1(E∗)k)

)

= (pW )∗

(∑

k

(−1)kW1 • ch(Kk(k)
⊥
⊕Kk−1(k − 1))

)

= (pW )∗ (W1 • (a+ b ∧ ω)) ,

where ω is the Fubini-Study (1, 1)-form on P1 and a, b are inverse images of
differential forms on X . Therefore we obtain that TC(E∗) = 0.

Now let ξ = (i : Y −→ X,N,F ,E∗) and let B∗ be a non-negatively graded
orthogonally split complex of vector bundles. By [20] section 1.1, we have that
W (E∗ ⊕B∗) = W (E∗) and that

tr1(E∗ ⊕B∗) = tr1(E∗)⊕ π∗ tr1(B∗).

In order to compute TC(ξ), we have to consider the exact sequences of hermitian
vector bundles over P

ηk : 0 −→ Ak −→ tr1(E∗)k|P −→ K(F ,N)k −→ 0,

whereas, in order to compute TC(ξ ⊕B∗), we consider the sequences

η′k :

0 −→ Ak⊕π∗(tr1(B)k)|P −→ tr1(E∗)k⊕π∗(tr1(B)k)|P −→ K(F ,N)k −→ 0.
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By the additivity of Bott-Chern classes, we have that c̃h(ηk) = c̃h(η′k). There-
fore

TC(ξ ⊕ B̄∗)− TC(ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗ ⊕B∗)k)

)

+ (pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)k)

)

= −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(B∗)k)

)

= 0.

The proof of the functoriality is left to the reader.
Finally we prove that CTC = C. Let Y be a complex manifold and let F and N
be two hermitian vector bundles. We write X = P(N ⊕C). Let i : Y −→ X be
the inclusion given by the zero section and let πX : X −→ Y be the projection.
On X we have the tautological exact sequence

0 −→ O(−1) −→ π∗
X(N ⊕ C) −→ Q −→ 0

and the Koszul resolution, denoted K(F ,N). We denote

ξ = (i : Y −→ X,N,F ,K(F,N)).

Using the definition of TC , that is, equation (7.5), and the fact that TC satisfies
the properties of definition 6.9, hence equation (7.3) is satisfied, we obtain that

i∗C(F,N) = i∗CTC (F,N)

Applying (πX)∗ we obtain that C(F,N) = CTC (F,N) which finishes the proof
of theorem 7.1.

8 Transitivity and projection formula

We now investigate how different properties of the characteristic class CT are
reflected in the corresponding theory of singular Bott-Chern classes.

Proposition 8.1. Let i : Y →֒ X be a closed immersion of complex manifolds.
Let F be a hermitian vector bundle on Y and G a hermitian vector bundle on
X. Let N denote the normal bundle to Y provided with a hermitian metric.
Let E∗ be a finite resolution of i∗F by hermitian vector bundles. We denote
ξ = (i : Y −→ X,N,F ,E∗) and ξ ⊗ G = (i : Y −→ X,N,F ⊗ i∗G,E∗ ⊗ G).
Then

T (ξ ⊗G)− T (ξ) • ch(G) = i∗(CT (F ⊗ i∗G,N))− i∗(CT (F,N)) • ch(G).
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Proof. Since the construction of tr1(E∗)∗ is local on X and Y and compatible
with finite sums, we have that

W (E∗) = W (E∗ ⊗G), tr1(E∗ ⊗G)∗ = tr1(E∗)∗ ⊗ p∗WG.

We first compute

(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗ ⊗G)∗)

)

= (pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)∗)p
∗
W ch(G)

)

= (pW )∗

(∑

k

(−1)kW1 • ch(tr1(E∗)∗)

)
ch(G). (8.2)

The Koszul resolution of i∗(F ⊗ i∗G) is given by

K(F ⊗ i∗G,N) = K(F,N)⊗ p∗PG.

For each k ≥ 0, we will denote by ηk ⊗ p∗PG the exact sequence

0 −→ Ak ⊗ p∗PG −→ tr1(E∗ ⊗G)k|P −→ K(F ,N)k ⊗ p∗PG −→ 0.

Then, we have

(pP )∗[c̃h(ηk ⊗ p∗PG)] = (pP )∗[c̃h(ηk) • p∗P ch(G)] = (pP )∗[c̃h(ηk)] • ch(G) (8.3)

Thus the proposition follows from equation (8.2), equation (8.3) and formula
(7.3).

Definition 8.4. We will say that a theory of singular Bott-Chern classes is
compatible with the projection formula if, whenever we are in the situation of
proposition 8.1, the following equality holds:

T (ξ ⊗G) = T (ξ) • ch(G).

We will say that a characteristic class C (of pairs of vector bundles) is compatible
with the projection formula if it satisfies

C(F,N) = C(OY , N) • ch(F ).

Corollary 8.5. A theory of singular Bott-Chern classes T is compatible with
the projection formula if and only if it is the case for the associated character-
istic class CT .
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Proof. Assume that CT is compatible with the projection formula and that we
are in the situation of proposition 8.1. Then

i∗CT (F ⊗ i∗G,N)) = i∗(CT (OY , N) • ch(F ⊗ i∗G))

= i∗(CT (OY , N) • ch(F )i∗ ch(G))

= i∗(CT (OY , N) • ch(F )) ch(G)

= i∗(CT (F,N)) • ch(G).

Thus, by proposition 8.1, T is compatible with the projection formula.
Assume that T is compatible with the projection formula. Let F and N be
hermitian vector bundles over a complex manifold Y . Let s : Y →֒ P := P(N ⊕
C) be the zero section and let π : P −→ Y be the projection. Then

CT (F,N) = π∗(T (K(F,N)))

= π∗(T (K(OY , N)⊗ π∗F ))

= π∗(T (K(OY , N)) • π∗ ch(F ))

= π∗(T (K(OY , N))) • ch(F )

= CT (OY , N) • ch(F ).

We will next investigate the relationship between singular Bott-Chern classes
and compositions of closed immersions. Thus, let

Y
�

� iY/X //
� s

iY/M

99X
�

� iX/M // M

be a composition of closed immersions. Assume that the normal bundles NY/X ,
NX/M and NY/M are provided with hermitian metrics. We will denote by ε
the exact sequence

ε : 0→ NY/X → NY/M → i∗Y/XNX/M → 0. (8.6)

Let PX/M = P(NX/M ⊕C) be the projective completion of the normal cone to
X in M . Then there is an isomorphism

NY/PX/M
∼= NY/X ⊕ i∗Y/XNX/M . (8.7)

We denote by NY/PX/M
the vector bundle on the left hand side with the her-

mitian metric induced by the isomorphism (8.7).
Let F be a hermitian vector bundle over Y , let E∗ −→ (iY/X)∗F be a resolution

by hermitian vector bundles. Let E
′

∗,∗ be a complex of complexes of vector
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bundles over M , such that, for each k ≥ 0, E
′

k,∗ −→ (iX/M )∗Ek is a resolution,
and there is a commutative diagram of resolutions

. . . // E′
k+1,∗

//

��

E′
k,∗

//

��

E′
k−1,∗

//

��

. . .

. . . // (iX/M )∗Ek+1 // (iX/M )∗Ek // (iX/M )∗Ek−1 // . . .

.

It follows that we have a resolution Tot(E
′

∗,∗) −→ (iY/M )∗F of (iY/M )∗F by
hermitian vector bundles.

Notation 8.8. We will denote

ξY →֒X = (iY/X , NY/X , F , E∗),

ξY →֒M = (iY/M , NY/M , F ,Tot(E
′

∗,∗)),

ξX →֒M,k = (iX/M , NX/M , Ek, E
′

k,∗).

We will also denote by ξY →֒PX/M
the hermitian embedded vector bundle

(
Y →֒ PX/M , NY/PX/M

, F ,Tot(π∗
PX/M

E∗ ⊗K(OX , NX/M ))
)
.

Let T be a theory of singular Bott-Chern classes, and let CT be its associ-
ated characteristic class. Our aim now is to relate T (ξY →֒X), T (ξY →֒M ) and
T (ξX →֒M,k).

Let WX be the deformation to the normal cone of X in M . As before we denote
by jX : X × P1 −→WX the inclusion.

We denote by W the deformation to the normal cone of jX(Y × P1) in WX .

This double deformation is represented in figure 1. There is a proper map
qW : W −→ P1 × P1. The fibers of qW over the corners of P1 × P1 are as
follows:

q−1
W (0, 0) = M,

q−1
W (∞, 0) = M̃X × {0} ∪ PX/M ,

q−1
W (0,∞) = M̃Y ∪ PY/M ,

q−1
W (∞,∞) = M̃X × {∞} ∪ P̃X/M ∪ PY/PX/M

,

where M̃X and M̃Y are the blow-up of M along X and Y respectively, PY/M =
P(NY/M ⊕ C) is the projective completion of the normal cone to Y in M ,

PY/PX/M
of the normal cone to Y in PX/M and P̃X/M is the blow-up of PX/M
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M

W
Y

PY/M

W̃X

PY×P1 M̃
X
×

P
1

W
Y
/P

WX

M̃X × {∞}

P̃X/M

PY/PX/M

W

P1 × P1

(0,∞)

(0, 0) (∞, 0)

(∞,∞)

PX/M

M̃X × {0}

M̃Y

Figure 1: Double deformation

along Y . The preimages by π of the different faces of P1 × P1 are as follows:

q−1
W (P1 × {0}) = WX ,

q−1
W ({0} × P1) = WY ,

q−1
W (P1 × {∞}) = W̃X ∪ PY ×P1 ,

q−1
W ({∞} × P1) = M̃X × P1 ∪WY/P ,

where WY is the deformation to the normal cone of Y in M , the component
W̃X is the blow-up of WX along jX(Y ×P1), while PY ×P1 = P(NY ×P1/WX

⊕C)
is the projective completion of the normal cone to jX(Y × P1) in WX and
WY/P is the deformation to the normal cone of Y inside PX/M . All the above
subvarieties will be called boundary components of W .
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We will use the following notations for the different maps.

pX : X × P1 −→ X pY : Y × P1 −→ Y

pY ×P1 : Y × P1 × P1 −→ Y × P1 pfMX×P1 : M̃X × P1 −→M

pWY/P
: WY/P −→M pWY : WY −→M

pWX : WX −→M pPY ×P1
: PY ×P1 −→M

pfWX
: W̃X −→M pPY/PX/M

: PY/PX/M
−→M

pPX/M
: PX/M −→M p ePX/M

: P̃X/M −→M

pPY/M
: PY/M −→M pW : W −→M

jY : Y × P1 −→WY j′Y : Y × P1 −→WX

jY ×P1 : Y × P1 × P1 −→W iY/PX/M
: Y −→ PX/M

πPX/M
: PX/M −→ X πPY/M

: PY/M −→ Y

πPY/P
: PY/PX/M

−→ Y πPY ×P1
: PY ×P1 −→ Y × P1

πfMX
: M̃X −→M πfMY

: M̃Y −→M

Note that the map pfMX×P1 factors through the blow-up M̃X −→ M and the

map pfWX
factors through the blow-up M̃Y −→ M , whereas the maps pWY/P

,
pPX/M

and p ePX/M
factor through the inclusion X →֒ M and the maps pPY ×P1

,

pPY/M
and pPY/PX/M

factor through the inclusion Y →֒M .

The normal bundle to X×P1 in WX is isomorphic to p∗XNX/M ⊗q∗XO(−1) and

we consider on it the metric induced by the metric on NX/M and the Fubini-

Study metric on O(−1). We denote it by NX×P1/WX
. The normal bundle to

Y × P1 in WX satisfies

NY ×P1/WX
|Y ×{0}

∼= NY/M

NY ×P1/WX
|Y ×{∞}

∼= NY/X ⊕ i∗Y/XNX/M .

On NY ×P1/WX
we choose a hermitian metric such that the above isomorphisms

are isometries. Finally, on the normal bundle to Y ×P1×P1 in W , we define a
metric using the same procedure as the definition of the metric of NX×P1/WX

.

On WX we obtain a sequence of resolutions tr1(E
′
)n,∗ −→ (jX)∗p

∗
XEn. They

form a complex of complexes tr1(E
′
)∗,∗ and the associated total complex

Tot(tr1(E
′
)∗,∗) provides us with a resolution

Tot(tr1(E
′
)∗,∗)∗ −→ (j′Y )∗p

∗
Y F. (8.9)

The restriction of Tot(tr1(E
′
)∗,∗) to M is Tot(E

′

∗,∗). The restriction of each

complex tr1(E
′
)n,∗ to M̃X ×{0} is orthogonally split. Therefore the restriction

of Tot(tr1(E
′
)) to M̃X ×{0} is the total complex of a complex of orthogonally
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split complexes. So it is acyclic although not necessarily orthogonally split.

The restriction of each complex tr1(E
′
)n,∗ to PX/M fits in an exact sequence

0 −→ An,∗ −→ tr1(E
′
)n,∗|PX/M

−→ π∗
PX/M

En ⊗K(OX , NX/M )∗ −→ 0.

These exact sequences glue together giving a commutative diagram

Tot(A∗,∗)
�

� //

��

Tot(tr1(E
′
)∗,∗|PX/M

) // //

��

Tot(π∗
PX/M

E∗ ⊗K(OX , NX/M )∗)

��
0

�

� // (iY/PX/M
)∗F // // (iY/PX/M

)∗F

where the rows are short exact sequences. Even if the complexes (An)∗ are
orthogonally split, this is not necessarily the case for Tot(A∗,∗). To ease the
notation we will denote A∗ = Tot(A∗,∗).
Applying theorem 5.4 to the resolution (8.9), we obtain a complex of hermitian

vector bundles Ẽ′
∗ = tr1(Tot(tr1(E

′
)∗,∗)) which is a resolution of the coherent

sheaf (jY ×P1)∗p
∗
Y ×P1p∗Y F .

We now study the restriction of Ẽ′
∗ to each of the boundary components of W .

• The restriction of Ẽ′
∗ to WX is just Tot(tr1(E

′
)) which has already been

described. For each k ≥ 0, we will denote by η1
k the short exact sequence

of hermitian vector bundles on PX/M

Ak
�

� // Tot(tr1(E
′
)∗,∗|PX/M

)k
// // Tot(π∗

PX/M
E ⊗K(OX , NX/M ))k ,

whereas, for each n, k ≥ 0 we will denote by η1
n,k the short exact sequence

An,k
�

� // tr1(E
′
)n,k|PX/M

// // π∗
PX/M

En ⊗K(OX , NX/M )k .

• Its restriction to WY is tr1(Tot(E
′
)). It is a resolution of (jY )∗p

∗
Y F . Its

restriction to M̃Y is orthogonally split, whereas its restriction to PY/M

fits in an exact sequence

0 −→ B∗ −→ tr1(Tot(E
′
))∗|PY/M

−→ π∗
PY/M

F ⊗K(OY , NY/M ) −→ 0.

For each k ≥ 0 we will denote by η2
k the degree k piece of the above exact

sequence.

• Its restriction to M̃X × P1 is an acyclic complex, such that its further
restriction to M̃X × {0} is acyclic and its restriction to M̃X × {∞} is
orthogonally split.
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• Its restriction to WY/P fits in a short exact sequence

0→ tr1(A∗)→ Ẽ′
∗|WY/P

→ tr1(Tot(π∗
PX/M

E ⊗K(OX , NX/M )))→ 0.

For each k ≥ 0, we will denote by µ1
k the exact sequence of hermitian

vector bundles over WY/P given by the piece of degree k of this exact
sequence. The three terms of the above exact sequence become orthog-
onally split when restricted to P̃X/M . By contrast, when restricted to
PY/PX/M

they fit in a commutative diagram

C
1

∗

�

� //

��

C
2

∗
// //

��

C
3

��
tr1(A)∗|PY/PX/M

�

� //

��

Ẽ′
∗|PY/PX/M

// //

��

D
2

∗

��
0

�

� // D
1

∗
// // D

1

∗

where the complexes C
i

∗ are orthogonally split, and

D
1

∗ = π∗
PY/P

F ⊗K(OY , NY/PX/M
),

D
2

∗ = tr1(Tot(π∗
PX/M

E ⊗K(OX , NX/M )))|PY/PX/M
.

For each k ≥ 0, we will denote by η3
k the exact sequence corresponding

to the piece of degree k of the second row of the above diagram, by η4
k

that of the second column and by η5
k that of the third column. Notice

that the map in the third row is an isometry. We assume that the metric
on C1

∗ is chosen in such a way that the first column is an isometry. Since

the complexes C
i

∗ are orthogonally split, by lemma 2.17 we obtain

∑

k

(−1)k
(
c̃h(η3

k)− c̃h(η4
k) + c̃h(η5

k)
)

= 0. (8.10)

Note that the restriction of µ1
k to PX/M agrees with η1

k, whereas its re-
striction to PY/PX/M

agrees with η3
k.

• Its restriction to W̃X is orthogonally split.

• Finally its restriction to PY ×P1 fits in an exact sequence

D∗
�

� // Ẽ′
∗|PY ×P1

// // π∗
PY ×P1

p∗Y ×P1F ⊗K(OY ×P1 , NY ×P1/WX
) ,
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where D∗ is orthogonally split. For each k ≥ 0 we will denote by µ2
k the

piece of degree k of this exact sequence. Note that the restriction of µ2
k

to PY/M agrees with η2
k and the restriction of µ2

k to PY/PX/M
agrees with

η4
k.

On P1 × P1 we denote the two projections by p1 and p2. Since the currents
p∗1W1 and p∗2W1 have disjoint wave front sets we can define the current W2 =
p∗1W1 • p∗2W1 ∈ D2

D(P1 × P1, 2) which satisfies

dDW2 = (δ{∞}×P1 − δ{0}×P1) • p∗2W1 − p∗1W1 • (δP1×{∞} − δP1×{0}). (8.11)

The key point in order to study the compatibility of singular Bott-Chern classes
and composition of closed immersions is that, in the group

⊕
p D̃2p−1(M,p),

we have

dD(pW )∗

(∑

k

(−1)kW2 • ch(Ẽ′
k)

)
= 0.

We compute this class using the equation (8.11). It can be decomposed as
follows.

dD(pW )∗

(∑

k

(−1)kW2 • ch(Ẽ′
k)

)
=

(pfMX×P1)∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|fMX×P1)

)
(a)

+ (pWY/P
)∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|WY/P

)

)
(b)

− (pWY )∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|WY )

)
(c)

− (pfWX
)∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|fWX

)

)
(d)

− (pPY ×P1
)∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|PY ×P1

)

)
(e)

+ (pWX )∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|WX )

)
(f)

=: Ia + Ib − Ic − Id − Ie + If

We compute each of the above terms.
(a) Since the restriction Ẽ′|fMX×{∞}

is orthogonally split, we have

Ia = −(πfMX
)∗c̃h(Ẽ′|fMX×{0}).
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But, using lemma 2.17 and the fact, for each k, the complexes tr1(E
′
)k,∗|fMX

are orthogonally split, we obtain that Ia = 0.

(b) We compute

Ib =(pWY/P
)∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|WY/P

)

)

=(pWY/P
)∗

(
W1 •

∑

k

(−1)k(− dD c̃h(µ1
k) + ch(tr1(A∗)k)

+ ch(tr1(Tot(π∗
PX/M

E ⊗K(OX , NX/M )))k))

)

=
∑

k

(−1)k(−(pPY/PX/M
)∗c̃h(η3

k)− (p ePX/M
)∗c̃h(µ1

k| ePX/M
) + (pPX/M

)∗c̃h(η1
k))

− c̃h(A)

− (iX/M )∗(πPX/M
)∗T (ξY →֒PX/M

) + (iY/M )∗CT (F,NY/PX/M
)

−
∑

k

(−1)k(pPY/PX/M
)c̃h(η5

k),

where ξY →֒PX/M
is as in notation 8.8.

By corollary 2.19 and the fact that the exact sequences Ak,∗ are orthogonally

split, the term c̃h(A) vanishes.

Also by corollary 2.19 we can see that

∑

k

(−1)k(p ePX/M
)∗c̃h(µ1

k| ePX/M
)

vanishes.

Therefore we conclude

Ib =
∑

k

(−1)k(−(pPY/PX/M
)∗c̃h(η3

k) + (pPX/M
)∗c̃h(η1

k))− (pPY/PX/M
)c̃h(η5

k)

− (iX/M )∗(πPX/M
)∗T (ξY →֒PX/M

) + (iY/M )∗CT (F,NY/PX/M
).

(c) By the definition of singular Bott-Chern forms we have

Ic = −T (ξY →֒M ) + (iY/M )∗CT (F,NY/M )−
∑

k

(−1)k(pPY/M
)∗c̃h(η2

k),

(d) Since the restriction of Ẽ′
∗ to W̃X is orthogonally split, we have Id = 0.
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(e) We compute

Ie =(pPY ×P1
)∗

(∑

k

(−1)kW1 • ch(Ẽ′
k|PY ×P1

)

)

=(pPY ×P1
)∗

(
W1 •

∑

k

(−1)k
(
− dD c̃h(µ

2
k) + ch(Dk)

+ ch(π∗
PY ×P1

p∗Y F ⊗K(OY ×P1 , NY ×P1/WX
)k)
)
)
.

The term
∑

(−1)k ch(Dk) vanishes because the complex D∗ is orthogonally
split. We have

∑

k

(−1)k(pPY ×P1
)∗(W1 • ch(π∗

PY ×P1
p∗Y F ⊗K(OY ×P1 , NY ×P1/WX

)k))

= (iY/M )∗ ch(F )•(pY )∗

(
W1 • π∗

PY ×P1

∑

k

(−1)k ch(K(OY ×P1 , NY ×P1/WX
)k)

)

= (iY/M )∗ ch(F ) • (pY )∗
(
W1 • Td−1(NY ×P1/WX

)
)

= (iY/M )∗ ch(F ) • T̃d−1(εN ), (8.12)

where εN is the exact sequence (8.6).
Therefore we obtain

Ie = −
∑

k

(−1)k(pPY/PX/M
)∗c̃h(η4

k) +
∑

k

(−1)k(pPY/M
)∗c̃h(η2

k)

+ (iY/M )∗ ch(F ) • T̃d−1(εN ).

(f) Finally we have

If =−
∑

k

(−1)kT (ξX →֒M,k) +
∑

k

(−1)k(iX/M )∗CT (Ek, NX/M )

−
∑

k,l

(−1)k+l(pPX/M
)∗c̃h(η1

k,l).

By corollary 2.19 we have that
∑

m,l

(−1)m+l(pPX/M
)∗c̃h(η1

m,l) =
∑

k

(−1)k(pPX/M
)∗c̃h(η1

k).

Thus

If =−
∑

k

(−1)kT (ξX →֒M,k) +
∑

k

(−1)k(iX/M )∗CT (Ek, NX/M )

−
∑

k

(−1)k(pPX/M
)∗c̃h(η1

k).
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Summing up all the terms we have computed, and taking into account equation
(8.10) and the fact that

CT (F,NY/M ) = CT (F,NY/PX/M
)

we have obtained the following partial result.

Lemma 8.13. Let iY/M = iX/M ◦ iY/X be a composition of closed immersions
of complex manifolds. Let T be a theory of singular Bott-Chern classes with
CT its associated characteristic class. Let ξY →֒M , ξX →֒M,k and ξY →֒PX/M

be as

in notation 8.8, and let ε be as in (8.6). Then, in the group
⊕

p D̃2p−1(M,p),
the equation

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k)−
∑

k

(−1)k(iX/M )∗CT (Ek, NX/M )

+ (iX/M )∗(πPX/M
)∗T (ξY →֒PX/M

) + (iY/M )∗ ch(F ) • T̃d−1(εN ) (8.14)

holds.

In order to compute the third term of the right hand side of equation (8.14)
we consider the following situation

Y ×X PX/M
j //

π

��

PX/M

π

��
Y

s

UU

i // X

s

UU
.

To ease the notation, we denote PX/M by P , Y ×
X
PX/M by X ′ and we denote by

P ′ the projective completion of the normal cone to X ′ in P and by πP ′ : P ′ −→
X ′, πX′/Y : X ′ −→ Y and πP ′/Y : P ′ −→ Y the projections. Observe that
X and X ′ intersect transversely along Y . Moreover, NY/X′ = i∗Y/XNX/M ,
NX′/P = π∗

X′/YNY/X and NY/P = NY/X⊕NY/X′ . We use these identifications
to define metrics on NY/X′ , NX′/P and NY/P . Therefore the exact sequence

0 −→ NY/X′ −→ NY/P −→ i∗Y/X′NX′/P −→ 0

is orthogonally split.
We apply the previous lemma to the composition of closed inclusions

Y →֒ X ′ →֒ P,

the vector bundle F over Y and the resolutions

π∗F ⊗ j∗K(OX , NX/M )∗ −→ s∗F

π∗E∗ ⊗K(OX , NX/M )k −→ j∗(π
∗F ⊗ j∗K(OX , NX/M )k).
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We denote by ξY →֒P and ξX′ →֒P,k the hermitian embedded vector bundles cor-
responding to the above resolutions. If iY/P ′ : Y →֒ P ′ is the induced inclusion,

we denote by ξY →֒P ′ the hermitian embedded vector bundle
(
iY/P ′ , NY/P ′ , F ,Tot(π∗

P ′j∗K(OX , NX/M )⊗K(OX′ , NX′/P )⊗ (πP ′/Y )∗F )
)
.

Note that the hermitian embedded vector bundle ξY →֒P agrees with the her-
mitian embedded vector bundle denoted ξY →֒PX/M

in lemma 8.13. Moreover,
we have that

ξX′ →֒P,k = π∗ξY →֒X ⊗K(OX , NX/M )k.

Applying lemma 8.13, we obtain

T (ξY →֒PX/M
) =

∑

k

(−1)kT (ξX′ →֒PX/M ,k)

−
∑

k

(−1)kj∗CT (π∗F ⊗ j∗K(OX , NX/M )k, NX′/P )

+ j∗(πP ′ )∗T (ξY →֒P ′) (8.15)

By proposition 8.1,

∑

k

(−1)kT (ξX′ →֒PX/M ,k) =
∑

k

(−1)kT (π∗ξY →֒X ⊗K(OX , NX/M )k)

= T (π∗ξY →֒X) •
∑

k

(−1)k ch(K(OX , NX/M )k)

+
∑

k

(−1)kj∗CT (π∗F ⊗ j∗K(OX , NX/M )k, NX′/P )

−
∑

k

(−1)kj∗CT (π∗F,NX′/P ) • ch(K(OX , NX/M )k) (8.16)

We now want to compute the term (iX/M )∗(πPX/M
)∗j∗(πP ′ )∗T (ξY →֒P ′).

Observe that we can identify

P ′ = P(i∗Y/XNX/M ⊕ C)×
Y

P(s∗NX′/P ⊕ C),

where s∗NX′/P is canonically isomorphic to NY/X .
Moreover

(iX/M )∗(πPX/M
)∗j∗(πP ′ )∗T (ξY →֒P ′) = (iY/M )∗(πP ′/Y )∗T (ξY →֒P ′).

Definition 8.17. We denote

Cad
T (F,NY/X , i

∗
Y/XNX/M ) = (πP ′/Y )∗T (ξY →֒P ′)

and we define

ρ(F,NY/X , i
∗
Y/XNX/M ) = CT (F,NY/M )− Cad

T (F,NY/X , i
∗
Y/XNX/M ). (8.18)
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Lemma 8.19. The current Cad
T (F,NY/X , i

∗
Y/XNX/M ) is closed and defines a

characteristic class of triples of vector bundles. Therefore ρ is also a charac-
teristic class. Moreover the class ρ does not depend on the theory of singular
Bott-Chern classes T .

Proof. The fact that Cad
T (F,NY/X , i

∗
Y/XNX/M ) is closed and determines a char-

acteristic class is proved as in 6.16. The independence of ρ from to T is seen

as follows. We denote by K
′

∗ the complex

Tot(π∗
P ′j∗K(OX , NX/M )⊗K(OX′ , NX′/P ))⊗ (πP ′/Y )∗F .

This complex is a resolution of (iY/P ′)∗F

Let W be the blow-up of P ′ × P1 along Y ×∞, and let tr1(K
′
)∗ be the defor-

mation of complexes on W given by theorem 5.4. Just by looking at the rank

of the different vector bundles we see that the restriction of tr1(K
′
)∗ to PY/P ′ ,

the exceptional divisor of this blow-up, is isomorphic (although not necessarily
isometric) to the Koszul complex K(F,NX/M )∗. Then, by equation (7.3)

T (ξY →֒P ′)− (iY/P ′)∗CT (F,NY/M ) =

− (pW )∗

(
W1 •

∑

k

(−1)k ch(tr1(K
′
)k)

)

−
∑

k

(−1)k(pP )∗c̃h(tr1(K
′
)k|PY/P ′

,K(F ,NX/M )k).

Since the right hand side of this equation does not depend on the theory T ,
the result is proved.

Using equations (8.15), (8.16), lemma 8.19 and the projection formula, we
obtain

(πPX/M
)∗T (ξY →֒PX/M

) =
(
T (ξY →֒X)− (iY/X)∗CT (F,NY/X)

)

• (πPX/M
)∗
∑

k

(−1)k ch(K(OX , NX/M )k)

+ (πPX/M
)∗j∗(πP ′)∗T (ξY →֒P ′)

=
(
T (ξY →֒X)− (iY/X)∗CT (F,NY/X)

)
• Td−1(NX/M )

+ (iY/X)∗C
ad
T (F,NY/X , i

∗
Y/XNX/M )

=
(
T (ξY →֒X)− (iY/X)∗CT (F,NY/X)

)
• Td−1(NX/M )

+ (iY/X)∗CT (F,NY/M )− ρ(F,NY/X , i
∗
Y/XNX/M ).

(8.20)

Joining this equation and lemma 8.13 we obtain the main relationship between
singular Bott-Chern classes and composition of closed immersions.
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Proposition 8.21. Let iY/M = iX/M ◦ iY/X be a composition of closed im-
mersions of complex manifolds. Let T be a theory of singular Bott-Chern
classes with CT its associated characteristic class. Let ξY →֒M , ξX →֒M,k and

ξY →֒PX/M
be as in notation 8.8 and let ε be as in (8.6). Then, in the group

⊕
p D̃2p−1(M,p), we have the equation

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k) + (iX/M )∗(T (ξY →֒X) • Td−1(NX/M ))

+ (iY/M )∗ ch(F ) • T̃d−1(εN )

+ (iY/M )∗C
ad
T (F,NY/X , i

∗
Y/XNX/M )

− (iX/M )∗((iY/X)∗CT (F,NY/X) • Td−1(NX/M ))

− (iX/M )∗
∑

k

(−1)kCT (Ek, NX/M )

We can simplify the formula of proposition 8.21 if we assume that our theory
of singular Bott-Chern classes is compatible with the projection formula.

Corollary 8.22. With the hypothesis of proposition 8.21, assume furthermore
that T is compatible with the projection formula. Then

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k) + (iX/M )∗(T (ξY →֒X) • Td−1(NX/M ))

+ (iY/M )∗ ch(F ) • T̃d−1(εN )

+ (iY/M )∗

[
Cad

T (F,NY/X , i
∗
Y/XNX/M )− CT (F,NY/X) • Td−1(i∗Y/XNX/M ))

−CT (F, i∗Y/XNX/M ) • Td−1(NY/X)
]

Proof. Since T is compatible with the projection formula, then CT is also.
Therefore, using the Grothendieck-Riemann-Roch theorem for closed immer-
sions at the level of analytic Deligne cohomology classes, we have

∑

k

(−1)kCT (Ek,NX/M ) = CT (OX , NX/M ) •
∑

k

(−1)k ch(Ek)

= CT (OX , NX/M ) • (iY/X)∗(ch(F ) •Td−1(NY/X))

= (iY/X)∗(i
∗
Y/XCT (OX , NX/M ) • ch(F ) • Td−1(NY/X))

= (iY/X)∗(CT (F, i∗Y/XNX/M ) • Td−1(NY/X)),

which implies the result.

Definition 8.23. Let T be a theory of singular Bott-Chern classes. We will
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say that T is transitive if the equation

T (ξY →֒M ) =
∑

k

(−1)kT (ξX →֒M,k) + (iX/M )∗(T (ξY →֒X) • Td−1(NX/M ))

+ (iY/M )∗ ch(F ) • T̃d−1(εN ) (8.24)

holds. When equation (8.24) is satisfied for a particular choice of complex
immersions and resolutions, we say that the theory T is transitive with respect
to this particular choice.

We now introduce an abstract version of definition 8.17.

Definition 8.25. Given any characteristic class C of pairs of vector bundles,
we will denote

Cρ(F,N1, N2) := C(F,N1 ⊕N2)− ρ(F,N1, N2),

where ρ is the characteristic class of definition 8.17.

Note that, when T is a theory of singular Bott-Chern classes we have

Cρ
T (F,N1, N2) = Cad

T (F,N1, N2).

Definition 8.26. We will say that a characteristic class C (of pairs of vector
bundles) is ρ-Todd additive (in the second variable) if it satisfies

C(F,N1 ⊕N2) = C(F,N1) • Td−1(N2) + C(F,N2) • Td−1(N1) + ρ(F,N1, N2)

or, equivalently,

Cρ(F,N1, N2) = C(F,N1) • Td−1(N2) + C(F,N2) • Td−1(N1).

A direct consequence of corollary 8.22 is

Corollary 8.27. Let T be a theory of singular Bott-Chern classes that is
compatible with the projection formula. Then it is transitive if and only if the
associated characteristic class CT is ρ-Todd additive.

Since we are mainly interested in singular Bott-Chern classes that are transitive
and compatible with the projection formula, we will study characteristic classes
that are compatible with the projection formula and ρ-Todd-additive in the
second variable. Since we want to express any characteristic class in terms of
a power series we will restrict ourselves to the algebraic category.

Proposition 8.28. Let C be a class that is compatible with the projection
formula and ρ-Todd additive in the second variable. Then C determines a
power series φC(x) given by

C(OY , L) = φC(c1(L)), (8.29)
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for every complex algebraic manifold Y and algebraic line bundle Y . Con-
versely, given any power series in one variable φ(x), there exists a unique
characteristic class for algebraic vector bundles that is compatible with the pro-
jection formula and ρ-Todd additive in the second variable such that equation
(8.29) holds.

Proof. This result follows directly from the splitting principle and theorem
1.8.

Remark 8.30. The utility of corollary 8.27 and proposition 8.28 is limited by
the fact that we do not know an explicit formula for the class ρ(OY , N1, N2).
This class is related with the arithmetic difference between PY (N1 ⊕N2 ⊕ C)
and PY (N1 ⊕C)×

Y
PY (N2 ⊕C), the second space being simpler than the first.

The main ingredients needed to compute this class are the Bott-Chern classes
of the tautological exact sequence. Therefore the work of Mourougane [29]
might be useful for computing this class.

Recall that an additive genus is a characteristic class for algebraic vector bun-
dles S such that

S(N1 ⊕N2) = S(N1) + S(N2).

Let φ(x) =
∑∞

i=0 aix
i be a power series in one variable. There is a one to one

correspondence between additive genus and power series characterized by the
condition that S(L) = φ(c1(L)), for each line bundle L.
Since the class ρ does not depend on the theory T it cancels out when con-
sidering the difference between two different theories of singular Bott-Chern
classes.

Proposition 8.31. Let C1 and C2 be two characteristic classes for pairs of
algebraic vector bundles that are compatible with the projection formula and
ρ-Todd-additive in the second variable. Then there is a unique additive genus
S12 such that

C1(F,N)− C2(F,N) = ch(F ) • Td(N)−1 • S12(N). (8.32)

We can summarize the results of this section in the following theorem.

Theorem 8.33. There is a one to one correspondence between theories of sin-
gular Bott-Chern classes for complex algebraic manifolds that are transitive and
compatible with the projection formula, and formal power series φ(x) ∈ R[[x]].
To each theory of singular Bott-Chern classes corresponds the power series φ
such that

CT (OY , L) = 11 • φ(c1(L)), (8.34)

for every complex algebraic manifold Y and every algebraic line bundle L. To
each power series φ it corresponds a unique class C, compatible with the pro-
jection formula and ρ-Todd-additive in the second variable, characterized by
equation (8.34) and a theory of singular Bott-Chern given by definition 7.4.
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Even if we do not know the exact value of the class ρ another consequence of
corollary 8.27 is that, in order to prove the transitivity of a theory of singular
Bott-Chern classes it is enough to check it for a particular class of compositions.

Corollary 8.35. Let T be a theory of singular Bott-Chern classes compatible
with the projection formula. Then T is transitive if and only if for any compact
complex manifold Y and vector bundles N1, N2, the theory T is transitive with
respect to the composition of inclusions

Y →֒ PY (N1 ⊕ C) →֒ PY (N1 ⊕ C)×Y PY (N2 ⊕ C)

and the Koszul resolutions. �

We can make the previous corollary a little more explicit. Let π1 and π2 be the
projections from P := PY (N1 ⊕ C)×Y PY (N2 ⊕ C) to P1 := PY (N1 ⊕ C) and
P2 := PY (N2 ⊕ C) respectively. Let K1 = K(OY , N1) and K2 = K(OY , N2)
be the Koszul resolutions in P1 and P2 respectively. Then,

K = π∗
1K1 ⊗ π∗

2K2

is a resolution of OY in P . Then the theory T is transitive in this case if

T (K) = π∗
2T (K2) • π∗

1(cr1
(Q1) • Td−1(Q1)) + (i1)∗(T (K1) • p∗1 Td−1(N2)),

where r1 is the rank of N1, Q1 is the tautological quotient bundle in P1 with
the induced metric, i1 : P1 −→ P is the inclusion and p1 : P1 −→ Y is the
projection.
The singular Bott-Chern classes that we have defined depend on the choice of
a hermitian metric on the normal bundle and behave well with respect inverse
images. Nevertheless, when one is interested in covariant functorial properties
and, in particular, in a composition of closed immersions, it might be interesting
to consider a variant of singular Bott-Chern classes that depend on the choice
of metrics on the tangent bundles to Y and X .

Notation 8.36. Let ξ = (i : Y −→ X,N,F ,E∗ → i∗F ) be a hermitian em-
bedded vector bundle. Let TX and TY be the tangent bundles to X and Y
provided with hermitian metrics. As usual we write Td(Y ) = Td(T Y ) and
Td(X) = Td(TX). We put

ξc = (i : Y −→ X,TX , TY , F , E∗ → i∗F ).

By abuse of notation we will also say that ξc is a hermitian embedded vector
bundle. In this situation we denote by ξNY/X

the exact sequence of hermitian
vector bundles

ξNY/X
: 0 −→ TY −→ i∗TX −→ NY/X −→ 0.

If there is no danger of confusion we will denote N = NY/X and therefore

ξN = ξNY/X
.
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Definition 8.37. Let T be a theory of singular Bott-Chern classes. Then the
covariant singular Bott-Chern class associated to T is given by

Tc(ξc) = T (ξ) + i∗(ch(F ) • T̃d−1(ξNY/X
)Td(Y )) (8.38)

Proposition 8.39. The covariant singular Bott-Chern classes satisfy the fol-
lowing properties

(i) The class Tc(ξc) does not depend on the choice of the metric on NY/X .

(ii) The differential equation

dD Tc(ξc) =
∑

k

(−1)k ch(Ek)− i∗(ch(F ) • Td(Y )) • Td−1(X) (8.40)

holds.

(iii) If the theory T is compatible with the projection formula, then

Tc(ξc ⊗G) = Tc(ξc) • ch(G).

(iv) If, moreover, the theory T is transitive, then, using notation 8.8 adapted
to the current setting, we have

Tc(ξY →֒M,c) =
∑

k

(−1)kTc(ξX →֒M,k,c)

+ (iX/M )∗(Tc(ξY →֒X,c) • Td(X)) • Td−1(M). (8.41)

(v) With the hypothesis of corollary 6.14, we have

Tc(
⊕

j even

ξj,c)− Tc(
⊕

j odd

ξj,c) = [c̃h(ε)]− i∗([c̃h(χ) • Td(Y )]) • Td−1(X).

(8.42)

Proof. All the statements follow from straightforward computations.

9 Homogeneous singular Bott-Chern classes

In this section we will show that, by adding a natural fourth axiom to definition
6.9, we obtain a unique theory of singular Bott-Chern classes that we call
homogeneous singular Bott-Chern classes, and we will compare it with the
classes previously defined by Bismut, Gillet and Soulé and by Zha.
In the paper [6], Bismut, Gillet and Soulé introduced a theory of singular Bott-
Chern classes that is the main ingredient in their construction of direct images
for closed immersions.
Strictly speaking, the construction of [6] only produces a theory of singular
Bott-Chern classes in the sense of this paper when the metrics involved satisfy
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a technical condition, called Condition (A) of Bismut. Nevertheless, there is
a unique way to extend the definition of [6] from metrics satisfying Bismut’s
condition (A) to general metrics in such a way that one obtains a theory of
singular Bott-Chern classes in the sense of this paper.
In his thesis [32], Zha gave another definition of singular Bott-Chern classes,
and he also used them to define direct images for closed immersions in Arakelov
theory.
We will recall the construction of both theories of singular Bott-Chern classes
and we will show that they agree with the theory of homogeneous singular
Bott-Chern classes.
We warn the reader that the normalizations we use differ from the normal-
izations in [6] and [32]. The main difference is that we insist on using the
algebro-geometric twist in cohomology, whereas in the other two papers the
authors use cohomology with real coefficients.
Let rF and rN be two positive integers. Let Y be a complex manifold and let
F and N be two hermitian vector bundles of rank rF and rN respectively. Let
P = P(N ⊕ C) and let s be the zero section. We will follow the notations of
definition 5.3. Then T (K(F,N)) satisfies the differential equation

dD T (K(F,N)) = crN (Q)Td−1(Q) ch(π∗
PF )− s∗(ch(F )Td−1(N)).

Therefore, the class

ẽT (F ,N) := T (K(F,N)) • Td(Q) • ch−1(π∗
PF )

satisfies the simpler equation

dD ẽT (F ,N) = [crN (Q)]− δY . (9.1)

Observe that the right hand side of this equation belongs to D2rN

D (P, rN ). Thus
it seems natural to introduce the following definition.

Definition 9.2. Let T be a theory of singular Bott-Chern classes of rank
rF > 0 and codimension rN . Then the class

ẽT (F ,N) = T (K(F,N)) • Td(Q) • ch−1(π∗
PF )

is called the Euler-Green class associated to T . The class T (K(F,N)) is said
to be homogeneous if

ẽT (F ,N) ∈ D̃2rN−1
D (P, rN ).

A theory of singular Bott-Chern classes of rank 0 is said to be homogeneous if it
agrees with the theory of Bott-Chern classes associated to the Chern character.
Finally, a theory of singular Bott-Chern classes is said to be homogeneous if its
restrictions to all ranks and codimensions are homogeneous.

The main interest of the above definition is the following result.
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Theorem 9.3. Given two positive integers rF and rN there exists a unique
theory of homogeneous singular Bott-Chern classes of rank rF and codimen-
sion rN .

Proof. The proof of this result is based on the theory of Euler-Green classes.
Let P = P(N ⊕ C) be as before, and let s denote the zero section of P . Let
D∞ be the subvariety of P that parametrizes the lines contained in N . Then
D∞ = P(N).

Lemma 9.4. There exists a unique class ẽ(P,Q, s) ∈ D2rN−1
D (P, rN ) such that

(i) It satisfies

dD ẽ(P,Q, s) = [crN (Q)]− δY . (9.5)

(ii) The restriction ẽ(P,Q, s)|D∞
= 0.

Proof. We first show the uniqueness. Assume that ẽ and ẽ′ are two classes
that satisfy the hypothesis of the theorem. Then ẽ′ − ẽ is closed. Hence it
determines a cohomology class in H2rN−1

Dan (P, rN ). Since, by theorem 1.2, the
restriction

H2rN−1
Dan (P, rN ) −→ H2rN−1

Dan (D∞, rN ) (9.6)

is an isomorphism, condition (ii) implies that ẽ′ = ẽ. Now we prove the exis-
tence. Since Y is the zero locus of the section s, that is transversal to the zero
section of Q, we know that the currents [crN ] and δY are cohomologous. There-

fore there exists an element ã ∈ D̃2rN−1
D (P, rN ) such that dD ã = [crN (Q)]−δY .

Since Q restricted to D∞ splits as an orthogonal direct sum

Q|D∞
= S ⊕ C (9.7)

where the metric on the factor C is trivial, and the section s restricts to the
constant section 1, we obtain that ([crN (Q)]− δY )|D∞

= 0. Therefore ã deter-
mines a class in H2rN−1

Dan (P, rN ). Using again that (9.6) is an isomorphism, we

find an element b̃ ∈ H2rN−1
Dan (P, rN ), such that ẽ = ã− b̃ satisfies the conditions

of the lemma.

We continue with the proof of theorem 9.3. We first prove the uniqueness.
Let T be a theory of homogeneous singular Bott-Chern classes. The splitting
(9.7) implies easily that the restriction of the Koszul resolution K(F ,N) to
D∞ is orthogonally split. By the functoriality of singular Bott-Chern classes,
T (K(F,N))|D∞

= 0. Thus the class

ẽT (F ,N) := T (K(F,N)) • Td(Q) • ch−1(π∗
PF ) ∈ D̃2rN−1

D (P, rN )

satisfies the two conditions of lemma 9.4. Therefore ẽT (F ,N) = ẽ(P,Q, s) and

T (K(F,N)) = ẽ(P,Q, s) • Td−1(Q) • ch(π∗
PF ), (9.8)
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where the right hand side does not depend on the theory T . In consequence
we have that

CT (F,N) = (πP )∗T (K(F,N)) (9.9)

does not depend on the theory T . Thus by the uniqueness in theorem 7.1 we
obtain the uniqueness here.
For the existence we observe

Lemma 9.10. The current

C(F,N) = (πP )∗(ẽ(P,Q, s) • Td−1(Q)) • ch(F )

is a characteristic class for pairs of vector bundles of rank rF and rN .

Proof. We first compute, using equation (9.5) and corollary 3.8,

dD C(F,N) = (πP )∗
(
dD ẽ(P,Q, s) • Td−1(Q)

)
• ch(F )

= (πP )∗
(
([crN (Q)]− δY ) • Td−1(Q)

)
• ch(F )

= (πP )∗
(
crN (Q) • Td−1(Q)

)
• ch(F )− Td−1(N) • ch(F )

= 0.

Thus C(F,N) determines a cohomology class. This class is functorial by con-
struction. By proposition 1.7 this class does not depend on the metric and
defines a characteristic class.

By the existence in theorem 7.1 we obtain a theory of singular Bott-Chern
classes TC that is easily seen to be homogeneous.

A reformulation of theorem 9.3 is

Theorem 9.11. There exists a unique way to associate to each hermitian em-
bedded vector bundle ξ = (i : Y −→ X,N,F ,E∗) a class of currents

T h(ξ) ∈
⊕

p

D̃2p−1
D (X,N∗

Y,0, p)

that we call homogeneous singular Bott-Chern class, satisfying the following
properties

(i) (Differential equation) The equality

dD T
h(ξ) =

∑

i

(−1)i[ch(Ei)]− i∗([Td−1(N) ch(F )]) (9.12)

holds.

(ii) (Functoriality) For every morphism f : X ′ −→ X of complex manifolds
that is transverse to Y ,

f∗T h(ξ) = T h(f∗ξ).
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(iii) (Normalization) Let A = (A∗, g∗) be a non-negatively graded orthogonally
split complex of vector bundles. Write ξ ⊕ A = (i : Y −→ X,N,F ,E∗ ⊕
A∗). Then T h(ξ) = T h(ξ ⊕ A). Moreover, if X = Spec C is one point,
Y = ∅ and E∗ = 0, then T h(ξ) = 0.

(iv) (Homogeneity) If rF = rk(F ) > 0 and rN = rk(N) > 0, then, with the
notations of definition 9.2,

T h(K(F ,N)) • Td(Q) • ch−1(π∗
PF ) ∈ D̃2rN−1

D (P, rN ).

�

The class ẽ(P,Q, s) of lemma 9.4 is a particular case of the Euler-Green classes
introduced by Bismut, Gillet and Soulé in [6]. The basic properties of the
Euler-Green classes are summarized in the following results.

Proposition 9.13. Let X be a complex manifold, let E be a hermitian holo-
morphic vector bundle of rank r and let s be a holomorphic section of E that
is transverse to the zero section. Denote by Y the zero locus of s. There is a
unique way to assign to each (X,E, s) as before a class of currents

ẽ(X,E, s) ∈ D̃2r−1
D (X,N∗

Y,0, r)

satisfying the following properties

(i) (Differential equation)

dD ẽ(X,E, s) = cr(E)− δY . (9.14)

(ii) (Functoriality) If f : X ′ −→ X is a morphism transverse to Y then

ẽ(X ′, f∗E, f∗s) = f∗ẽ(X,E, s). (9.15)

(iii) (Multiplicativity) Let E1 and E2 be hermitian holomorphic vector bun-
dles, and let s1 and s2 be holomorphic sections of E1 and E2 respectively
that are transverse to the zero section and with zero locus Y1 and Y2. We
write E = E1 ⊕ E2 and s = s1 ⊕ s2. Assume that s is transverse to the
zero section; hence Y1 and Y2 meet transversely. With this hypothesis we
have

ẽ(X,E, s) = ẽ(X,E1, s1) ∧ cr2
(E2) + δY1

∧ ẽ(X,E2, s2)

= ẽ(X,E1, s1) ∧ δY2
+ cr1

(E1) ∧ ẽ(X,E2, s2).

(iv) (Line bundles) If L is a hermitian line bundle and s is a section of L,
then

ẽ(X,L, s) = − log ‖s‖. (9.16)
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Proof. Bismut, Gillet and Soulé prove the existence by constructing explicitly
an Euler-Green current in the total space of E and pulling it back to X by the
section s. For the uniqueness, first we see that properties (i) and (ii) imply
that, if h0 and h1 are two hermitian metrics in E, then

ẽ(X, (E, h0), s)− ẽ(X, (E, h1), s) = c̃r(E, h0, h1). (9.17)

We now consider π : P = P(E⊕C) −→ X , with the tautological exact sequence

0 −→ O(−1) −→ π∗E ⊕ C −→ Q −→ 0

On Q we consider the metric induced by the metric of E and the trivial met-
ric on the factor C, and let sQ the section of Q induced by the section 1
of C. Let D∞ be as in lemma 9.4. Then properties (ii) to (iv) imply that
ẽ(P,Q, sQ)|D∞

= 0. Hence by lemma 9.4 ẽ is uniquely determined. Finally, let
f : X −→ P be the map given by x 7−→ (s(x) : −1). Then f∗Q ∼= E, although
they are not necessarily isometric, and f∗sQ = s. Therefore, the functoriality
and equation (9.17) determine ẽ(X,E, s).

To prove the existence, we use lemma 9.4, functoriality and equation (9.17) to
define the Euler-Green classes. It is easy to show that they are well defined
and satisfy properties (i) to (iv).

Equation (9.8) relating homogeneous singular Bott-Chern classes and Euler-
Green classes in a particular case can be generalized to arbitrary vector bundles.

Proposition 9.18. Let X be a complex manifold, E a hermitian vector bundle
over X, s a section of E transversal to the zero section and i : Y −→ X the
zero locus of s. Let K(E) be the Koszul resolution of i∗OY determined by E
and s. We can identify NY/X with i∗E. We denote by NY/X the vector bundle
with the metric induced by the above identification. Then

T h(i,OY , NY/X ,K(E)) = ẽ(X,E, s) • Td−1(E).

Proof. Let P = P(E ⊕ C). We follow the notation of proposition 9.13. We
denote by h0 the original metric of E and by h1 the metric induced by the
isomorphism E ∼= f∗Q. Observe that h0 and h1 agree when restricted to Y ,
because the preimage of Q by the zero section agrees with E. Hence there is
an isometry NY/X

∼= i∗f∗Q. We denote T h(K(E)) = T h(i,OY , NY/X ,K(E)).
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Then we have

T h(K(E)) = f∗T h(K(OX , E)) +
∑

i

(−1)ic̃h(

i∧
E∨, h0, h1)

= f∗(ẽ(P,Q, sQ) • Td−1(Q)) + c̃r(E, h0, h1) • Td−1(E, h1)

+ cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h1)− c̃r(E, h0, h1) • Td−1(E, h1)

+ c̃r(E, h0, h1) • Td−1(E, h1) + cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h0)− ẽ(X,E, s) • dD T̃d−1(E, h0, h1)

+ cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h0)− dD ẽ(X,E, s) • T̃d−1(E, h0, h1)

+ cr(E, h0) • T̃d−1(E, h0, h1)

= ẽ(X,E, s) • Td−1(E, h0) + i∗T̃d−1(E, h0, h1)|Y
= ẽ(X,E, s) • Td−1(E),

which concludes the proof.

Theorem 9.19. The theory of homogeneous singular Bott-Chern classes is
compatible with the projection formula and transitive.

Proof. We have

CT h(F,N) = (πP )∗T
h(K(F ,N))

= (πP )∗(ẽ(P,Q, s) • Td−1(Q) • ch(π∗
PF ))

= (πP )∗(ẽ(P,Q, s) • Td−1(Q)) • ch(F )

= CT h(OY , N) • ch(F ).

Thus CT h is compatible with the projection formula.
We now prove the transitivity. Let Y , N1 and N2 be as in corollary 8.35.
We follow the notation after this corollary. Then applying proposition 9.18 we
obtain

T h(K) = ẽ(P, π∗
1Q1 ⊕ π∗

2Q2, s1 + s2) • Td−1(π∗
1Q1 ⊕ π∗

2Q2), (9.20)

where si denote the tautological section of Qi or its preimage by πi.
Then, by proposition 9.13 (iii), taking into account that Y1 = P2,

T h(K) = π∗
1(cr1

(Q1)Td−1(Q1)) • π∗
2(ẽ(P2, Q2, s2)Td−1(Q2))

+ (i1)∗(ẽ(P1, Q1, s1)Td−1(Q1) • p∗1 Td−1(N2)). (9.21)

Documenta Mathematica 15 (2010) 73–176



152 José I. Burgos Gil and Răzvan Liţcanu

Applying again proposition 9.18 we obtain

T h(K) = π∗
1(cr1

(Q1)Td−1(Q1)) • π∗
2(T h(K2)) + (i1)∗(T

h(K1) • p∗1 Td−1(N2)).
(9.22)

Thus, by corollary 8.35 the theory of homogeneous singular Bott-Chern classes
is transitive.

We next recall the construction of singular Bott-Chern classes of Bismut, Gillet
and Soulé. Let i : Y −→ X be a closed immersion of complex manifolds and
let ξ = (i,N, F ,E∗) be a hermitian embedded vector bundle. We consider the
associated complex of sheaves

0→ En
v→ . . .

v→ E0 → 0,

where we denote by v the differential of this complex.
This complex is exact for all x ∈ X \ Y . The cohomology sheaves of this
complex are holomorphic vector bundles on Y which we denote by

Hn = Hn(E∗|Y ), H =
⊕

n

Hn.

For each x ∈ Y and U ∈ TxX we denote by ∂Uv(x) the derivative of the map v
calculated in any holomorphic trivialization of E near x. Then ∂Uv(x) acts on
Hx. Moreover, this action only depends on the class y of U in Nx. We denote
it by ∂yv(x). Moreover (∂yv(x))

2 = 0; therefore the pull-back of H to the total
space of N together with ∂yv is a complex that we denote by (H, ∂yv).
On the total space of N , the interior multiplication by y ∈ N turns

∧
N∨ into a

Koszul complex. By abuse of notation we denote also by ιy the operator ιy⊗ 1
acting on

∧
N∨⊗F . There is a canonical isomorphism between the complexes

(H, ∂yv) and (
∧
N∨ ⊗ F, ιy). An explicit description of this isomorphism can

be found in [3] §1.
Let v∗ be the adjoint of the operator v with respect to the metrics of E∗. Then
we have an identification of vector bundles over Y

Hk = {f ∈ Ek | vf = v∗f = 0}.

This identification induces a hermitian metric on Hk, and hence on H . Note
that the metrics on N and F also induce a hermitian metric on

∧
N∨ ⊗ F .

Definition 9.23. We say that ξ = (i, N, F ,E∗) satisfies Bismut assumption
(A) if the canonical isomorphism between (H, ∂yv) and (

∧
N∨ ⊗ F, ιy) is an

isometry.

Proposition 9.24. Let ξ = (i, N, F ,E∗) be as before, with N = (N, hN ) and
F = (F, hF ). Then there exist metrics h′Ek

over Ek such that the hermitian

embedded vector bundle ξ
′

= (i, N, F , (E∗, h
′
E∗

)) satisfies Bismut assumption
(A).
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Proof. This is [3] proposition 1.6.

Let ∇E be the canonical hermitian holomorphic connection on E and let V =
v + v∗. Then

Au = ∇E +
√
uV

is a superconnection on E.
Let ∇H be the canonical hermitian connection on H . Then

B = ∇H + ∂yv + (∂yv)
∗

is a superconnection on H .
Let NH be the number operator on the complex (E, v), that is, NH acts on Ek

by multiplication by k, and let Trs denote the supertrace. Recall that here we
are using the symbol [ ] to denote the current associated to a locally integrable
differential form and the symbol δY to denote the current integration along a
subvariety, both with the normalizations of notation 1.3.
For 0 < Re(s) ≤ 1/2 let ζE(s) be the current on X given by the formula

ζE(s) =
1

Γ(s)

∫ ∞

0

us−1

{[
Trs

(
NH exp(−A2

u)
)]

− i∗

[∫

N

Trs

(
NH exp(−B2)

)]}
du. (9.25)

This current is well defined and extends to a current that depends holomorphi-
cally on s near 0.

Definition 9.26. Assume that ξ = (i,N, F ,E∗) satisfies Bismut assumption
(A). Then we denote

TBGS(ξ) = −1

2
ζ′E(0).

By abuse of notation we will denote also by TBGS(ξ) its class in⊕̃
pD̃2p−1

D (X, p).

Let now ξ = (i,N, F , (E∗, hE∗
)) be general and let ξ

′
= (i,N, F , (E∗, h

′
E∗

)) be
any hermitian embedded vector bundle satisfying assumption (A) provided by
proposition 9.24. Then we denote

TBGS(ξ) = TBGS(ξ
′
) +

∑

i

(−1)ic̃h(Ei, hEi , h
′
Ei

),

where c̃h(Ei, hEi , h
′
Ei

) is as in definition 2.13.

Remark 9.27. This definition only agrees (up to a normalization factor) with
the definition in [6] for hermitian embedded vector bundles that satisfy assump-
tion (A).
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Theorem 9.28. The assignment that, to each hermitian embedded vector bun-
dle ξ, associates the current TBGS(ξ), is a theory of singular Bott-Chern classes
that agrees with T h.

Proof. First we have to show that, when ξ does not satisfy assumption (A)

then TBGS(ξ) is well defined. Assume that ξ
′′

= (i,N, F , (E∗, h
′
E∗

)) is another
choice of hermitian embedded vector bundle satisfying assumption (A). By
lemma 2.17 we have that

c̃h(Ei, hi, h
′
i) + c̃h(Ei, h

′
i, h

′′
i ) + c̃h(Ei, h

′′
i , hi) = 0.

By [6] theorem 2.5 we have that

TBGS(ξ
′
)− TBGS(ξ

′′
) =

∑

i

(−1)ic̃h(Ei, h
′
Ei
, h′′Ei

).

Summing up we obtain that TBGS(ξ) is well defined.
If the hermitian embedded vector bundle ξ satisfies Bismut assumption (A)
then, by [6] theorem 1.9, TBGS(ξ) satisfies equation (6.10). If ξ does not
satisfy assumption (A) then, combining [6] theorem 1.9 and equation (2.4), we
also obtain that TBGS(ξ) satisfies equation (6.10).
The functoriality property is [6] theorem 1.10.
In order to prove the normalization property, let ξ = (i : Y −→ X,N,F ,E∗)
be a hermitian embedded vector bundle that satisfies assumption (A) and let
A be a non-negatively graded orthogonally split complex of vector bundles on
X . Observe that A is also a (trivial) hermitian embedded vector bundle. Then
A and ξ ⊕A also satisfy assumption (A). By [6] theorem 2.9

TBGS(ξ ⊕A) = TBGS(ξ) + TBGS(A).

But by [5] remark 2.3, TBGS(A) agrees with the Bott-Chern class associated
to the Chern character and the exact complex A. Since A is orthogonally split
we have TBGS(A) = 0. Now the case when ξ does not satisfy assumption (A)
follows from the definition.
By [6] theorem 3.17, with the hypothesis of proposition 9.18, we have that

TBGS(i,OY , NY/X ,K(E)) = ẽ(X,E, s) • Td−1(E)

= T h(i,OY , NY/X ,K(E)).

From this it follows that CT BGS = CT h and by theorem 7.1, TBGS = T h.

We now recall Zha’s construction. Note that, in order to obtain a theory of
singular Bott-Chern classes, we have changed the normalization convention
from the one used by Zha. Note also that Zha does not define explicitly a
singular Bott-Chern class, but such a definition is implicit in his definition of
direct images for closed immersions. Let Y be a complex manifold and let
N = (N, h) be a hermitian vector bundle. We denote P = P(N ⊕ C). Let
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π : P −→ Y denote the projection and let ι : Y −→ P denote the inclusion as
the zero section. On P we consider the tautological exact sequence

0 −→ O(−1) −→ π∗N ⊕OP −→ Q −→ 0.

Let h1 denote the hermitian metric on Q∨ induced by the metric of N and the
trivial metric on OP and let h0 denote the semi-definite hermitian form on Q∨

induced by the map Q∨ −→ OP obtained from the above exact sequence and
the trivial metric on OP . Let ht = (1 − t2)h0 + t2h1. It is a hermitian metric

on Q∨. We will denote Q
∨

t = (Q∨, ht). Let ∇t be the associated hermitian
holomorphic connection and let Nt denote the endomorphism defined by

d

d t
〈v, w〉t = 〈Ntv, w〉 .

For each n ≥ 1, let Det denote the alternate n-linear form on the space of n by
n matrices such that

det(A) = Det(A, . . . , A).

We denote det(B;A) = Det(B,A, . . . , A).
Zha introduced the differential form

ẽZ(Q
∨
) =
−1

2
lim
s→0

∫ 1

s

det(Nt,∇2
t ) d t (9.29)

which is a smooth form on P \ ι(Y ), locally integrable on P . Hence it defines a

current, also denoted by ẽZ(Q
∨
) on P . The important property of this current

is that it satisfies
dD eZ(Q∨) = cn(Q1)− δY . (9.30)

In [32], Zha denotes by C(Q
∨
) a form that differs from ẽZ by the normalization

factor and the sign. We denote it by ẽZ because it agrees with the Euler-Green
current introduced in [6].

Proposition 9.31. The equality

ẽZ(Q∨) = ẽ(P,Q1, sQ)

holds.

Proof. With the notations of lemma 9.4, both classes satisfy equation (9.30)
and their restriction to D∞ is zero. By lemma 9.4 they agree.

Definition 9.32. Let ξ = (i : Y −→ X,N,F ,E∗) be as in definition 6.9. Let
A∗, tr1(E)∗ and η∗ be as in (7.2). Then we define

TZ(ξ) = −(pW )∗

(∑

k

(−1)kW1 • ch(tr1(E)k)

)

−
∑

k

(−1)k(pP )∗[c̃h(ηk)] + (pP )∗(ch(π∗
pF )Td−1(Q1)ẽZ(Q

∨

1 )). (9.33)
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It follows directly from the definition that TZ is the theory of singular Bott-
Chern classes associated to the class

CZ(F,N) = (pP )∗(ch(π∗
pF )Td−1(Q1)ẽZ(Q

∨

1 )). (9.34)

Theorem 9.35. The theory of singular Bott-Chern classes TZ agrees with the
theory of homogeneous singular Bott-Chern classes T h.

Proof. The result follows directly from theorem 7.1, equation (9.34) and propo-
sition 9.18.

Next we want to use 8.33 to give another characterization of T h. To this end
we only need to compute the characteristic class CT h(OY , L) for a line bundle
L as a power series in c1(L).

Theorem 9.36. The theory of homogeneous singular Bott-Chern classes of
algebraic vector bundles is the unique theory of singular Bott-Chern classes
of algebraic vector bundles that is compatible with the projection formula and
transitive and that satisfies

CT h(OY , L) = 11 • φ(c1(L)),

where φ is the power series

φ(x) =
1

2

∞∑

n=0

(−1)n+1Hn+1

(n+ 2)!
xn,

and where Hn = 1 + 1
2 + 1

3 + · · ·+ 1
n , n ≥ 1 are the harmonic numbers.

We already know that T h is compatible with the projection formula and tran-
sitive. Thus it only remains to compute the power series φ.

Let L = (L, hL) be a hermitian line bundle over a complex manifold Y . Let
z be a system of holomorphic coordinates of Y . Let e be a local section of L
and let h(z) = h(ez, ez). Let P = P(L ⊕ C), with π : P −→ Y the projection
and ι : Y −→ P the zero section. We choose homogeneous coordinates on P
given by (z, (x : y)), here (x : y) represents the line of Lz ⊕ C generated by
xe(z) + y1, where 1 is a generator of C of norm 1. On the open set y 6= 0 we
will use the absolute coordinate t = x/y. Let

0 −→ O(−1) −→ π∗(L⊕ C) −→ Q −→ 0

be the tautological exact sequence. The section s = {1} is a global section of
Q that vanishes along the zero section. Moreover we have

‖s‖2(z,(x:y)) =
xx̄h(z)

yȳ + xx̄h(z)
=

tt̄h

1 + tt̄h
.
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Then (recall that we are using the algebro-geometric normalization)

c1(Q) = ∂∂̄ log ‖s‖2 (9.37)

= ∂∂̄ log
tt̄h

1 + tt̄h
(9.38)

= ∂

(
1 + tt̄h

tt̄h

t∂̄(t̄h)(1 + tt̄h)− t2t̄h∂̄(t̄h)

(1 + tt̄h)2

)
(9.39)

= ∂

(
t∂̄(t̄h)

tt̄h(1 + tt̄h)

)
(9.40)

= ∂

(
∂̄(t̄h)

t̄h

)
1

1 + tt̄h
− t̄∂(ht) ∧ ∂̄(t̄h)

t̄h(1 + tt̄h)2
(9.41)

=
π∗c1(L)

1 + tt̄h
− ∂(th) ∧ ∂̄(t̄h)

h(1 + tt̄h)2
. (9.42)

We now consider the Koszul resolution

K : 0 −→ Q∨ s−→ Op −→ ι∗OX −→ 0.

We denote by T h(K) the singular Bott-Chern class associated to this Koszul
complex. Then, by proposition 9.13 and proposition 9.18,

T h(K) = −1

2
Td−1(Q) log ‖s‖2.

In order to compute π∗T
h(K) we have to compute first π∗c1(Q)n log ‖s‖2. But

c1(Q)n =
π∗c1(L)n

(1 + tt̄h)n
− n

(
π∗c1(L)

(1 + tt̄h)

)n−1
∂(th) ∧ ∂̄(t̄h)

h(1 + tt̄h)2
.

Therefore

π∗c1(Q)n log ‖s‖2 = −nc1(L)n−1 1

2πi

∫

P1

∂(th) ∧ ∂̄(t̄h)

h(1 + tt̄h)n+1
log

tt̄h

1 + tt̄h

= −nc1(L)n−1 1

2πi

∫ 2π

0

∫ ∞

0

log
r2

1 + r2
−2ir d θ d r

(1 + r2)n+1

= nc1(L)n−1

∫ 1

0

log(1 − w)wn−1 dw

= −c1(L)n−1Hn,

where Hn, n ≥ 1 are the harmonic numbers. Since

Td−1(Q) =
1− exp(−c1(Q))

c1(Q)
=

∞∑

n=0

(−1)n

(n+ 1)!
c1(Q)n,
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we obtain

CT h(OY , L) = π∗T
h(K) =

1

2

∞∑

n=0

(−1)n+1Hn+1

(n+ 2)!
c1(L)n

11.

Then, a reformulation of proposition 8.31 is

Corollary 9.43. Let T be a theory of singular Bott-Chern classes for algebraic
vector bundles that is compatible with the projection formula and transitive.
Then there is a unique additive genus ST such that

CT (F,N)− CT h(F,N) = ch(F ) • Td(N)−1 • ST (N). (9.44)

Conversely, any additive genus determines a theory of singular Bott-Chern
classes by the formula (9.44).

10 The arithmetic Riemann-Roch theorem for regular closed im-
mersions

In this section we recall the definition of arithmetic Chow groups and arithmetic
K-groups. We see that each choice of an additive theory of singular Bott-Chern
classes allows us to define direct images for closed immersions in arithmetic K-
theory. Once the direct images for closed immersions are defined, we prove
the arithmetic Grothendieck-Riemann-Roch theorem for closed immersions. A
version of this theorem was proved earlier by Bismut, Gillet and Soulé [6] when
there is a commutative diagram

Y i //

f

��@
@

@

@

@

@

@

X
g

��
Z

,

where i is a closed immersion and f and g are smooth over C. The version
of this theorem given in this paper is due to Zha [32], but still unpublished.

The theorem of Bismut, Gillet and Soulé compares g∗ ĉh(i∗E) with f∗ ĉh(E),

whereas the theorem of Zha compares directly ĉh(i∗E) with i∗ ĉh(E). The main
difference between the theorem of Bismut, Gillet and Soulé and that of Zha is
the kind of arithmetic Chow groups they use. In the first case these groups
are only covariant for proper morphisms that are smooth over C; thus the
Grothendieck-Riemann-Roch can only be stated for a diagram as above, while
in the second case a version of these groups that are covariant for arbitrary
proper morphisms is used.
Since each choice of a theory of singular Bott-Chern classes gives rise to
a different definition of direct images for closed immersions, the arithmetic
Grothendieck-Riemann-Roch theorem will have a correction term that depends
on the theory of singular Bott-Chern classes used. In the particular case of the
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homogeneous singular Bott-Chern classes, which are the theories used by Bis-
mut, Gillet and Soulé and by Zha, this correction term vanishes and we obtain
the simplest formula. In this case the arithmetic Grothendieck-Riemann-Roch
theorem is formally identical to the classical one.
Let (A,Σ, F∞) be an arithmetic ring [18]. Since we will allow the arithmetic
varieties to be non regular and we will use Chow groups indexed by dimension,
following [20] we will assume that the ring A is equidimensional and Jacobson.
Let F be the field of fractions of A. An arithmetic variety X is a scheme flat and
quasi-projective over A such that XF = X × SpecF is smooth. Then X := XΣ

is a complex algebraic manifold, which is endowed with an anti-holomorphic
automorphism F∞. One also associates to X the real variety XR = (X,F∞).
Following [13], to each regular arithmetic variety we can associate different
kinds of arithmetic Chow groups. Concerning arithmetic Chow groups, we
shall use the terminology and notation in op. cit. §4 and §6.
Let Dlog be the Deligne complex of sheaves defined in [13] section 5.3; we refer
to op. cit. for the precise definition and properties. A Dlog-arithmetic variety
is a pair (X , C) consisting of an arithmetic variety X and a complex of sheaves
C on XR which is a Dlog-complex (see op. cit. section 3.1).
We are interested in the following Dlog-complexes of sheaves:

(i) The Deligne complex Dl,a,X of differential forms on X with logarithmic
and arbitrary singularities. That is, for every Zariski open subset U of
X , we write

E∗
l,a,X(U) = lim

−→
U

Γ(U,E ∗
U
(logB)),

where the limit is taken over all diagrams

U
ι //

ι

��@
@

@

@

@

@

@

@

U

β

��
X

such that ι is an open immersion, β is a proper morphism, B = U \ U ,
is a normal crossing divisor and E ∗

U
(logB) denotes the sheaf of smooth

differential forms on U with logarithmic singularities along B introduced
in [8] .

For any Zariski open subset U ⊆ X , we put

D∗
l,a,X(U, p) = (D∗

l,a,X(U, p), dD) = (D∗(El,a,X(U), p), dD).

If U is now a Zariski open subset of XR, then we write

D∗
l,a,X(U, p) = (D∗

l,a,X(U, p), dD) = (D∗
l,a,X(UC, p)

σ, dD),

where σ is the involution σ(η) = F ∗
∞η as in [13] notation 5.65.
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Note that the sections of D∗
l,a,X over an open set U ⊂ X are differential

forms on U with logarithmic singularities along X \U and arbitrary sin-
gularities along X \ X , where X is an arbitrary compactification of X .
Therefore the complex of global sections satisfy

D∗
l,a,X(X, ∗) = D∗(X, ∗),

where the right hand side complex has been introduced in section §1. The
complex D∗

l,a,X is a particular case of the construction of [12] section 3.6.

(ii) The Deligne complex Dcur,X of currents on X . This is the complex in-
troduced in [13] definition 6.30.

When X is regular, applying the theory of [13] we can define the arithmetic

Chow groups ĈH
∗
(X ,Dl,a,X) and ĈH

∗
(X ,Dcur,X). These groups satisfy the

following properties

(i) There are natural morphisms

ĈH
∗
(X ,Dl,a,X) −→ ĈH

∗
(X ,Dcur,X)

and, when applicable, all properties below will be compatible with these
morphisms.

(ii) There is a product structure that turns ĈH
∗
(X ,Dl,a,X)Q into an associa-

tive and commutative algebra. Moreover, it turns ĈH
∗
(X ,Dcur,X)Q into

a ĈH
∗
(X ,Dl,a,X)Q-module.

(iii) If f : Y −→ X is a map of regular arithmetic varieties, there are pull-back
morphisms

f∗ : ĈH
∗
(X ,Dl,a,X) −→ ĈH

∗
(Y,Dl,a,Y ).

If moreover, f is smooth over F , there are pull-back morphisms

f∗ : ĈH
∗
(X ,Dcur,X) −→ ĈH

∗
(Y,Dcur,Y ).

The inverse image is compatible with the product structure.

(iv) If f : Y −→ X is a proper map of regular arithmetic varieties of relative
dimension d, there are push-forward morphisms

f∗ : ĈH
∗
(Y,Dcur,Y ) −→ ĈH

∗−d
(X ,Dcur,X).

If moreover, f is smooth over F , there are push-forward morphisms

f∗ : ĈH
∗
(Y,Dl,a,Y ) −→ ĈH

∗−d
(X ,Dl,a,X).

The push-forward morphism satisfies the projection formula and is com-
patible with base change.
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(v) The groups ĈH
∗
(X ,Dl,a,X) are naturally isomorphic to the groups defined

by Gillet and Soulé in [18] (see [12] theorem 3.33). When X is generi-

cally projective, the groups ĈH
∗
(X ,Dcur,X) are isomorphic to analogous

groups introduced by Kawaguchi and Moriwaki [27] and are very similar
to the weak arithmetic Chow groups introduced by Zha (see [11]).

(vi) There are well-defined maps

ζ : ĈH
p
(X , C) −→ CHp(X ),

a: C̃2p−1(XR, p) −→ ĈH
p
(X , C),

ω : ĈH
p
(X , C) −→ ZC2p(XR, p),

where C is either Dl,a,X or Dcur,X . For the precise definition of these
maps see [13] notation 4.12.

When X is not necessarily regular, following [20] and combining with the defi-
nition of [13] we can define the arithmetic Chow groups indexed by dimension

ĈH∗(X ,Dl,a,X) and ĈH∗(X ,Dcur,X) (see [12] section 5.3).

They have the following properties (see [20]).

(i) If X is regular and equidimensional of dimension n then there are iso-
morphisms

ĈH∗(X ,Dl,a,X) ∼= ĈH
n−∗

(X ,Dl,a,X),

ĈH∗(X ,Dcur,X) ∼= ĈH
n−∗

(X ,Dcur,X).

(ii) If f : Y −→ X is a proper map between arithmetic varieties then there is
a push-forward map

f∗ : ĈH∗(Y,Dcur,Y ) −→ ĈH∗(X ,Dcur,X).

If f is smooth over F then there is a push-forward map

f∗ : ĈH∗(Y,Dl,a,Y ) −→ ĈH∗(X ,Dl,a,X).

(iii) If f : Y −→ X is a flat map or, more generally, a local complete intersec-
tion (l.c.i) map of relative dimension d, there are pull-back morphisms

f∗ : ĈH∗(X ,Dl,a,X) −→ ĈH∗+d(Y,Dl,a,Y ).

If moreover, f is smooth over F , there are pull-back morphisms

f∗ : ĈH∗(X ,Dcur,X) −→ ĈH∗+d(Y,Dcur,Y ).
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(iv) If f : Y −→ X is a morphism of arithmetic varieties with X regular, then
there is a cap product

ĈH
p
(X ,Dl,a,X)⊗ ĈHd(Y,Dl,a,Y ) −→ ĈHd−p(Y,Dl,a,Y )Q,

and a similar cap-product with the groups ĈHd(Y,Dcur,Y ). This product
is denoted by y ⊗ x 7→ y.fx,

For more properties of these groups see [20].
We will define now the arithmetic K-groups in this context. As a matter of
convention, in the sequel we will use slanted letters to denote a object defined
over A and the same letter in roman type for the corresponding object defined
over C. For instance we will denote a vector bundle over X by E and the
corresponding vector bundle over X by E.

Definition 10.1. A hermitian vector bundle on an arithmetic variety X , E ,
is a locally free sheaf E with a hermitian metric hE on the vector bundle E
induced on X , that is invariant under F∞. A sequence of hermitian vector
bundles on X

(ε) . . . −→ En+1 −→ En −→ En−1 −→ . . .

is said to be exact if it is exact as a sequence of vector bundles.
A metrized coherent sheaf is a pair F = (F , E∗ → F ), where F is a coherent
sheaf on X and E∗ → F is a resolution of the coherent sheaf F = FC by
hermitian vector bundles, that is defined over R, hence is invariant under F∞.
We assume that the hermitian metrics are also invariant under F∞.

Recall that to every hermitian vector bundle we can associate a collection of
Chern forms, denoted by cp. Moreover, the invariance of the hermitian metric
under F∞ implies that the Chern forms will be invariant under the involution
σ. Thus

cp(E) ∈ D2p
l,a,X(XR, p) = D2p(X, p)σ.

We will denote also by cp(E) its image in D2p
cur,X(XR, p). In particular we have

defined the Chern character ch(E) in either of the groups
⊕

pD2p
l,a,X(XR, p) or⊕

pD2p
cur,X(XR, p). Moreover, to each finite exact sequence (ε) of hermitian

vector bundles on X we can attach a secondary Bott-Chern class c̃h(ε). Again,
the fact that the sequence is defined over A and the invariance of the metrics
with respect to F∞ imply that

c̃h(ε) ∈
⊕

p

D̃2p−1
l,a,X (XR, p) =

⊕

p

D̃2p−1(X, p)σ.

We will denote also by c̃h(ε) its image in
⊕

p D̃
2p−1
cur,X(XR, p). The Bott-Chern

classes associated to exact sequences of metrized coherent sheaves enjoy the
same properties.
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Definition 10.2. Let X be an arithmetic variety and let C∗(∗) be one of the
two Dlog-complexes Dl,a,X or Dcur,X . The arithmetic K-group associated to the

Dlog-arithmetic variety (X , C) is the abelian group K̂(X , C) generated by pairs

(E , η), where E is a hermitian vector bundle on X and η ∈⊕p≥0 C̃2p−1(XR, p),
modulo relations

(E1, η1) + (E2, η2) = (E , c̃h(ε) + η1 + η2) (10.3)

for each short exact sequence

(ε) 0 −→ E1 −→ E −→ E2 −→ 0 .

The arithmetic K ′-group associated to the Dlog-arithmetic variety (X , C) is

the abelian group K̂ ′(X , C) generated by pairs (F , η), where F is a metrized

coherent sheaf on X and η ∈⊕p≥0 C̃2p−1(XR, p), modulo relations

(F1, η1) + (F2, η2) = (F , c̃h(ε) + η1 + η2) (10.4)

for each short exact sequence of metrized coherent sheaves

(ε) 0 −→ F1 −→ F −→ F2 −→ 0 .

We now give some properties of the arithmetic K-groups. As their proofs are
similar, in the essential points, to those of analogous statements in, for example,
[18] in the regular case and [20] in the singular case, we omit them.

(i) We have natural morphisms

K̂(X ,Dl,a,X) −→ K̂(X ,Dcur,X) and K̂ ′(X ,Dl,a,X) −→ K̂ ′(X ,Dcur,X).

When applicable, all properties below will be compatible with these mor-
phisms.

(ii) K̂(X ,Dl,a,X) is a ring. The product structure is given by

(F1, η1)·(F2, η2) = (F1⊗F2, ch(F1)•η2+η1•ch(F2)+dD η1•η2) (10.5)

(iii) K̂(X ,Dcur,X) is a K̂(X ,Dl,a,X)-module.

(iv) There are natural maps

K̂(X , C) −→ K̂ ′(X , C)

that, when X is regular, are isomorphisms.

(v) The groups K̂ ′(X ,Dl,a,X) and K̂ ′(X ,Dcur,X) are K̂(X ,Dl,a,X)-modules.
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(vi) There are natural maps

ω : K̂ ′(X , C) −→
⊕

p

ZC2p(p)

that send the class of a pair (F , η) with F = (F , E∗ → FC) to the form
(or current)

ω(F , η) =
∑

i

(−1)i ch(Ei) + dD η.

(vii) When X is regular, there exists a Chern character,

ĉh: K̂(X , C)Q −→
⊕

p

ĈH
p
(X , C)Q,

that is an isomorphism. Moreover, if C = Dl,a,X this isomorphism is
compatible with the product structure. If X is not regular, there is a
biadditive pairing

K̂(X ,Dl,a,X)⊗ ĈH∗(X ,Dl,a,X) −→ ĈH∗(X ,Dl,a,X)Q,

and a similar pairing with the groups ĈH∗(X ,Dcur,X), which is denoted

in both cases by α ⊗ x 7→ ĉh(α) ∩ x. For the properties of this product
see [20] pg. 496.

(viii) If Y and X are arithmetic varieties and f : Y → X is a morphism of
arithmetic varieties, f induces a morphism of rings:

f∗ : K̂(X ,Dl,a,X)→ K̂(Y,Dl,a,Y ).

When f is flat, the inverse image is also defined for the groups
K̂ ′(X ,Dl,a,X). Moreover, if fC is smooth, the inverse image can be de-

fined for the groups K̂(X ,Dcur,X) and, when in addition f is flat, for the

groups K̂ ′(X ,Dcur,X).

In what follows we will be interested in direct images for closed immersions.
Since the direct images in arithmetic K-theory will depend on the choice of a
metric, we have the following

Definition 10.6. A metrized arithmetic variety is a pair (X , hX) consisting of
an arithmetic variety X and a hermitian metric on the complex tangent bundle
TX that is invariant under F∞.

Let (X , hX) and (Y, hY ) be metrized arithmetic varieties and let i : Y −→ X
be a closed immersion. Over the complex numbers, we are in the situation of
notation 8.36. In particular we have a canonical exact sequence of hermitian
vector bundles

ξN : 0 −→ TY −→ i∗TX −→ NY/X −→ 0 (10.7)
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where the tangent bundles TY , TX are endowed with the hermitian metrics hY ,
hX respectively and the normal bundle NY/X is endowed with an arbitrary
hermitian metric hN . We will follow the conventions of notation 8.36.
We next define push-forward maps, via a closed immersion, for the elements
of the arithmetic K-group of a metrized arithmetic variety. We will define two
kinds of push-forward maps. One will depend only on a metric on the complex
normal bundle NY/X . By contrast, the second will depend on the choice of
metrics on the complex tangent bundles TX and TY . The second definition
allows us to see K ′( ,Dcur,Y ) as a functor from the category whose objects are
metrized arithmetic varieties and whose morphisms are closed immersions to
the category of abelian groups.
As we deal with hermitian vector bundles and metrized coherent sheaves, both
definitions will involve the choice of a theory of singular Bott-Chern classes. In
order for the push forward to be well defined in K-theory we need a minimal
additivity property for the singular Bott-Chern classes.

Definition 10.8. A theory of singular Bott-Chern classes T is called additive
if for any closed embedding of complex manifolds i : Y →֒ X and any hermi-
tian embedded vector bundles ξ1 = (i,N, F 1, E1,∗), ξ2 = (i,N, F 2, E2,∗) the
equation

T (ξ1 ⊕ ξ2) = T (ξ1) + T (ξ2)

is satisfied.
Let C be a characteristic class for pairs of vector bundles. We say that it is
additive (in the first variable) if

C(F1 ⊕ F2, N) = C(F1, N) + C(F2, N)

for any vector bundles F1, F2, N on a complex manifold X .

The following statement follows directly from equation 7.5:

Proposition 10.9. A theory of singular Bott-Chern classes T is additive if
and only if the corresponding characteristic class CT is additive in the first
variable.

Note that a theory of singular Bott-Chern classes consists in joining theories
of singular Bott-Chern classes in arbitrary rank and codimension (definition
6.9). The property of being additive gives a compatibility condition for these
theories, by respect to the hermitian vector bundles F (with the notation used
in definition 6.9). Note also that if a theory of singular Bott-Chern classes is
compatible with the projection formula then it is additive.

Definition 10.10. Let T be an additive theory of singular Bott-Chern classes,
and let Tc be the associated covariant class as in definition 8.37. Let
i : (Y, hY ) −→ (X , hX) be a closed immersion of metrized arithmetic varieties
and let N = NY/X = (NY/X , hN ) be a choice of a hermitian metric on the
complex normal bundle. The push-forward maps

iTc
∗ , i

T
∗ : K̂(Y,Dcur,Y ) −→ K̂ ′(X ,Dcur,X)
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are defined by

iTc
∗ (F , η) = [((i∗F , E∗ → (i∗F)C), 0)]− [(0, Tc(ξc))]

+ [(0, i∗(ηTd(Y )i∗ Td−1(X)))] (10.11)

iT∗ (F , η) = [((i∗F , E∗ → (i∗F)C), 0)]− [(0, T (ξ))]

+ [(0, i∗(ηTd−1(NY/X)))]. (10.12)

Here
0→ En → . . .→ E1 → E0 → (i∗F)C → 0

is a finite resolution of the coherent sheaf (i∗F)C by hermitian vector bundles,
ξ = (i,NX/Y ,FC, E∗) is the induced hermitian embedded vector bundle on X ,

and ξc = (i, TX , TY ,FC, E∗) as in definition 8.37.
We can extend this definition to push-forward maps

iTc
∗ , i

T
∗ : K̂ ′(Y,Dcur,Y ) −→ K̂ ′(X ,Dcur,X)

by the rule

iTc
∗ (F , η) = [((i∗F ,Tot(E∗,∗)→ (i∗F)C), 0)]−

∑

i

(−1)i[(0, Tc(ξi,c))]

+ [(0, i∗(ηTd(Y )i∗ Td−1(X)))], (10.13)

iT∗ (F , η) = [((i∗F ,Tot(E∗,∗)→ (i∗F)C), 0)]−
∑

i

(−1)i[(0, T (ξi))]

+ [(0, i∗(ηTd−1(NY/X)))], (10.14)

where 0→ En → · · · → E0 → FC → 0 is a resolution of FC by hermitian vector
bundles, E∗,∗ is a complex of complexes of vector bundles over X , such that,
for each i ≥ 0, Ei,∗ → i∗Ei is also a resolution by hermitian vector bundles and
ξi = (i, NX/Y , Ei, Ei,∗) is the induced hermitian embedded vector bundle and

ξi,c is as in definition 8.37. We suppose that there is a commutative diagram
of resolutions

. . . // Ek+1,∗ //

��

Ek,∗ //

��

Ek−1,∗ //

��

. . .

. . . // i∗Ek+1
// i∗Ek

// i∗Ek−1
// . . .

.

hence a resolution Tot(E∗,∗) −→ (i∗F)C by hermitian vector bundles.

Note that, whenever the push-forward iT∗ appears, we will assume that we have
chosen a metric on NY/X .
The two push-forward maps are related by the equation

iTc
∗ (F , η) = iT∗ (F , η)−

[(
0, i∗

(
ω(F , η)T̃d−1(ξN )Td(Y )

))]
, (10.15)

where ξN is the exact sequence (10.7).
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Proposition 10.16. The push-forward maps iT∗ , iTc
∗ are well defined. That is,

they do not depend on the choice of a representative of a class in K̂, nor on the
choice of metrics on the coherent sheaf (i∗F)C. The first one does not depend
on the choice of metrics on TX nor on TY , whereas the second one does not
depend on the choice of a metric on the normal bundle NY/X . Moreover, if i is
a regular closed immersion or X is a regular arithmetic variety, then iTc

∗ and
iT∗ can be lifted to maps

iTc
∗ , iT∗ : K̂(Y,Dcur,Y ) −→ K̂(X ,Dcur,Y ).

Proof. The fact that iT∗ only depends on the metric on N and not on the
metrics on TX and TY and that for iTc

∗ is the opposite, follows directly from
the definition in the first case and from proposition 8.39 in the second.
We will only prove the other statements for iTc

∗ , as the other case is analogous.
We first prove the independence from the metric chosen on the coherent sheaf

(i∗F)C. If E∗ → (i∗F)C, E
′

∗ → (i∗F)C are two such metrics, inducing the

hermitian embedded vector bundles ξ respectively ξ
′
, then, using corollary 6.14

Tc(ξ
′

c)− Tc(ξc) = T (ξ
′
)− T (ξ) = c̃h(ε),

where ε is the exact complex of hermitian embedded vector bundles

ε : 0 −→ ξ −→ ξ
′ −→ 0,

where ξ
′
sits in degree zero.

Therefore, by equation 10.4,

[((i∗F , E∗ → (i∗F)C), 0)]− [(0, Tc(ξc))]

= [((i∗F , E′

∗ → (i∗F)C), 0)]− [(0, Tc(ξ
′

c))].

Since the last term of equation 10.11 does not depend on the metric on (i∗F)C,
we obtain that iTc

∗ does not depend on this metric.
For proving that the push-forward map iTc

∗ is well defined it remains to show

the independence from the choice of a representative of a class in K̂(Y,Dcur,Y ).
We consider an exact sequence of hermitian vector bundles on Y

ε : 0 −→ F1 −→ F −→ F2 −→ 0

and two classes η1, η2 ∈
⊕

p≥0 D̃2p−1
cur (Y, p). We also denote ε the induced exact

sequence of hermitian vector bundles on Y . We have to prove

iTc
∗ ([(F , η1 + η2 + c̃h(ε)]) = iTc

∗ ([(F1, η1)]) + iTc
∗ ([(F2, η2)]). (10.17)

Since it is clear that iTc
∗ (0, η1 + η2) = iTc

∗ (0, η1) + iTc
∗ (0, η2), we are led to prove

iTc
∗ ([(F , c̃h(ε)]) = iTc

∗ ([(F1, 0)]) + iTc
∗ ([(F2, 0)]). (10.18)
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We choose metrics on the coherent sheaves (i∗F1)C, (i∗F2)C and (i∗F)C re-
spectively:

E1,∗ −→ (i∗F1)C , E2,∗ −→ (i∗F2)C , E∗ −→ (i∗F)C.

We denote ξ1, ξ2, ξ the induced hermitian embedded vector bundles. We obtain
an exact sequence of metrized coherent sheaves on X :

ν : 0 −→ i∗F1 −→ i∗F −→ i∗F2 −→ 0.

Then, using the fact that the theory T is additive and equation (8.42) we have

Tc(ξ1,c) +Tc(ξ2,c)−Tc(ξc) = [c̃h(ν)]− i∗([c̃h(ε) •Td(Y )]) •Td−1(X). (10.19)

Moreover, by the relation (10.4),

[(i∗F1, 0)] + [(i∗F2, 0)] = [(i∗F , c̃h(ν))]. (10.20)

Hence, we compute,

iTc
∗ ([(F , c̃h(ε)])− iTc

∗ ([(F1, 0)])− iTc
∗ ([(F2, 0)])

= [(i∗F , 0)]− [(i∗F1, 0)]− [(i∗F2, 0)]

− [(0, Tc(ξc))] + [(0, Tc(ξ1,c))] + [(0, Tc(ξ2,c))]

+ [(0, i∗([c̃h(ε)] • Td(Y ) • i∗ Td−1(X)))]

= −[(0, i∗([c̃h(ε)] • Td(Y ) • i∗ Td−1(X))))]

+ [(0, i∗([c̃h(ε)] • Td(Y ) • i∗ Td−1(X))))]

= 0.

The proof that iTc
∗ for metrized coherent sheaves is well defined is similar. The

proof of its independence from choice of a metric on NY/X or from the choice
of the resolutions and metrics in X is the same as before. Now let

0 −→ F ′ −→ F −→ F ′′ −→ 0

be a short exact sequence of metrized coherent sheaves on Y. This means that

we have resolutions E
′

∗ → F ′
C, E∗ → FC and E

′′

∗ → F ′′
C . Using theorem 2.24

we can suppose that there is a commutative diagram of resolutions

0 → E
′

∗ → E∗ → E
′′

∗ → 0
↓ ↓ ↓

0 → F ′
C → FC → F ′′

C → 0,

(10.21)

with exact rows. Moreover, we can assume that the complexes of complexes

E
′

∗,∗, E∗,∗, E
′′

∗,∗ used in definition 10.10 are chosen compatible with diagram
(10.21). Thus we obtain a commutative diagram

0 → TotE
′

∗,∗ → TotE∗,∗ → TotE
′′

∗,∗ → 0
↓ ↓ ↓

0 → i∗F ′
C → i∗FC → i∗F ′′

C → 0.

(10.22)
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We denote by ν the exact sequence of metrized coherent sheaves on X defined
by diagram (10.22). We denote χi the exact sequence of hermitian vector
bundles on Y

χi : 0 −→ E
′

i −→ Ei −→ E
′′

i −→ 0,

and by ε the exact sequence of metrized coherent sheaves on X

εi : 0 −→ i∗E
′

i −→ i∗Ei −→ i∗E
′′

i −→ 0.

Moreover, let ξi, ξ
′

i and ξ
′′

i denote the hermitian embedded vector bundles

defined by the above resolutions and Ei, E
′

i and E
′′

i respectively and let ξi,c,

ξ
′

i,c and ξ
′′

i,c be as in definition 8.37. Then, using proposition 2.38 and equation
(8.42) we obtain

c̃h(ν) =
∑

i

(−1)ic̃h(ε)

=
∑

i

(−1)i(Tc(ξ
′

i,c) + Tc(ξ
′′

i,c)− Tc(ξi,c)) (10.23)

+
∑

i

(−1)ii∗(c̃h(χi) • Td(Y )) • Td−1(X)

Now the proof follows as before, but using equation (10.23) instead of equation
(10.19).

If X is a regular arithmetic variety, the lifting property follows from the iso-
morphism between the K̂-groups and the K̂ ′-groups.

Suppose now that i : Y −→ X is a regular closed immersion and let [F , η] ∈
K̂(Y,Dcur,Y ). Then it follows from [2] III that the coherent sheaf i∗F can be
resolved

0 −→ En −→ . . . −→ E0 −→ i∗F −→ 0

with Ei locally free sheaves on X . Moreover we endow the vector bundles
Ei induced on X with hermitian metrics and so we obtain a metric on the
coherent sheaf i∗F and the corresponding hermitian embedded vector bundle
ξ. Using the independence from the resolutions and on the metrics we see that
the equation 10.11 defines an element in K̂(X ,Dcur,X).

Proposition 10.24. For any element α ∈ K̂ ′(Y,Dcur,Y ) we have

ω(iTc
∗ (α))Td(X) = i∗(ω(α)Td(Y )) (10.25)

ω(iT∗ (α)) = i∗(ω(α)Td−1(NY/X)) (10.26)

Proof. We will prove the statement only for iTc
∗ . We consider first a class

of the form [F , 0]. Using equation (8.38) we obtain, after choosing a metric
Ei −→ (i∗F)C, and considering the induced hermitian embedded vector bundle
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ξc:

ω(iTc
∗ ([F , 0]))Td(X) =

(∑
(−1)i ch(Ei)− dD Tc(ξc)

)
Td(X)

= i∗(ch(F ) • Td(Y ) • i∗ Td−1(X)i∗(Td(X)))

= i∗(ch(F ) • Td(Y ))

= i∗(ω([F , 0])Td(Y ))

Taking now a class of the form [0, η] we obtain:

ω(iTc
∗ ([0, η])) Td(X) = dD

(
i∗(ηTd(Y )i∗ Td−1(X))

)
Td(X)

= i∗ dD(ηTd(Y ))

= i∗(ω([0, η]) Td(Y ))

and hence the equality 10.25 is proved.

The next proposition explains the terminology “compatible with the projection
formula” and “transitive” that we used for theories of singular Bott-Chern
classes. The second statement is the main reason to introduce the push-forward
iTc
∗ .

Proposition 10.27. If the theory of singular Bott-Chern classes is compatible
with the projection formula, we have that, for α ∈ K̂ ′(Y,Dcur,Y ) and β ∈
K̂(X ,Dl,a,X) the following equalities hold

iTc
∗ (αi∗β) = iTc

∗ (α)β,

iT∗ (αi∗β) = iT∗ (α)β.

If moreover the theory of singular Bott-Chern classes is transitive and
j : (Z, hZ) −→ (Y, hY ) is another closed immersion of metrized arithmetic
varieties, then

(i ◦ j)Tc
∗ = iTc

∗ ◦ jTc
∗ .

Proof. We prove first the projection formula. For simplicity we will treat the
case when α ∈ K̂(Y,Dcur,Y ). Let α = (F , η), let ξc = (i, TX , TY ,FC, E∗) be a
hermitian embedded vector bundle and let β = (E , χ). Using equations (10.11)
and (10.5), we obtain

iTc
∗ (αi∗β)− iTc

∗ (α)β = −
∑

i

(−1)i ch(Ei) • χ+ dD(Tc(ξc)) • χ

+ i∗(ch((F)C) • Td(Y ))) • Td−1(X) • χ
+ Tc(ξc) • ch(EC)− Tc(ξc ⊗ EC)

= Tc(ξc ⊗ EC)− Tc(ξc) • ch(EC).

Therefore, if T is compatible with the projection formula, then the projection
formula holds.
The fact that, if moreover T is transitive then (i ◦ j)Tc

∗ = iTc
∗ ◦ jTc

∗ follows
directly from the definition and equation (8.41).
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If i : Y −→ X is a regular closed immersion between arithmetic varieties, then
the normal cone NY/X is a locally free sheaf. The choice of a hermitian metric

on NY/X determines a hermitian vector bundle NY/X . If now i : (Y, hY ) −→
(X , hX) is a closed immersion between regular metrized arithmetic varieties,
then the tangent bundles TY and TX are virtual vector bundles. Since over C

they define vector bundles, we can provide them with hermitian metrics and
denote the hermitian virtual vector bundles by T X and T Y . There are well

defined clases T̂d(Y) = T̂d(T Y) and T̂d(X ) = T̂d(T X ).

The arithmetic Grothendieck-Riemann-Roch theorem for closed immersions
compares the direct images in the arithmetic K-groups with the direct images
in the arithmetic Chow groups.

Theorem 10.28 ([6], [32]). Let T be a theory of singular Bott-Chern classes
and let ST be the additive genus of corollary 9.43.

(i) Let i : Y −→ X be a regular closed immersion between arithmetic vari-
eties. Assume that we have chosen a hermitian metric on the complex
bundle NY/X . Then, for any α = (F , η) ∈ K̂(Y,Dcur,Y ) the equation

ĉh(iT∗ (α)) = i∗(ĉh(α)T̂d
−1

(NY/X ))− a(i∗(ch(FC)Td−1(NY/X)ST (N))
(10.29)

holds.

(ii) Let i : (Y, hY ) −→ (X , hX) be a closed immersion between regular

metrized arithmetic varieties. Then, for any α = (F , η) ∈ K̂(Y,Dcur,Y )
the equation

ĉh(iTc
∗ (α))T̂d(X ) = i∗(ĉh(α)T̂d(Y))− a(i∗(ch(FC)Td(Y )ST (N)))

(10.30)
holds.

Proof. The proof follows the classical pattern of the deformation to the normal
cone as in [6] and [32].

Let W be the deformation to the normal cone to Y in X . We will follow the
notation of section 5. Since i is a regular closed immersion, there is a finite
resolution by locally free sheaves

0→ En → · · · → E1 → E0 → i∗F → 0.

We choose hermitian metrics on the complex bundles Ei = (Ei)C. The im-
mersion j : Y × P1 −→ W is also a regular immersion. The construction of
theorem 5.4 is valid over the arithmetic ring A. Therefore we have a resolution
by hermitian vector bundles

0→ G̃n → · · · → G̃1 → G̃0 → i∗F → 0.
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such that its restriction to X × {0} is isometric to E∗. Its restriction to X̃ is
orthogonally split, and its restriction to P = P(NY/X ⊕ OY) fits in a short
exact sequence

0 −→ A∗ −→ Ẽ∗|P −→ K(F ,NY/X ) −→ 0,

where A∗ is orthogonally split and K(F ,NY/X ) is the Koszul resolution. We
denote by ηk the piece of degree k of this exact sequence. Let t be the absolute
coordinate of P1. It defines a rational function in W and

d̂iv(t) = (X0 + P + X̃ , (0,−1

2
log tt))

The key point of the proof of the theorem is that, in the group ĈH
∗
(X ,Dcur,X),

we have

(pW)∗(ĉh(Ẽ∗)d̂iv(t)) = 0.

Using the definition of the product in the arithmetic Chow rings we obtain

(pW)∗(ĉh(Ẽ∗)d̂iv(t)) = ĉh(E∗)− (p eX )∗ĉh(Ẽ∗| eX )− (p eP)∗ĉh(Ẽ∗|P )

+ a((pW )∗(ch((Ẽ∗)C) •W1)). (10.31)

But we have

ĉh(E∗) = ĉh(iT∗ (F)) + a(T (ξ)), (10.32)

(p eX )∗ĉh(Ẽ∗| eX ) = 0, (10.33)

(p eP)∗ĉh(Ẽ∗|P) = i∗(πP )∗(ĉh(K(F ,NY/X ))−
∑

k

(−1)k a(c̃h(ηk))). (10.34)

Moreover, by equation (7.3),

a((pW )∗(ch((Ẽ∗)C) •W1)) = − a(T (ξ))−
∑

k

(−1)k a(c̃h(ηk)))

+ a(i∗CT (FC,NC)). (10.35)

Thus we are led to compute i∗(πP )∗ĉh(K(F ,NY/X )). This is done in the
following two lemmas.

Lemma 10.36. Let Y be an arithmetic variety, N a rank r hermitian vector
bundle over Y and denote P = P1(N ⊕ OY), and Q the tautological quotient
bundle. Let Y0 be the cycle defined by the zero section of P. Then

ĉr(Q) = (Y0, (cr(QC), ẽ(PC,QC, s))), (10.37)

where ẽ(PC,QC, s) is the Euler-Green current of lemma 9.4.

Documenta Mathematica 15 (2010) 73–176



Singular Bott-Chern Classes 173

Proof. We know that ĉr(Q) = (Y0, (cr(QC), ẽ)) for certain Green current ẽ. By
definition this Green current satisfies

dD ẽ = cr(QC)− δYC
.

Moreover, since the restriction of QC to D∞ has a global section of constant
norm we have that ẽ|D∞

= 0. Therefore, by lemma 9.4,

ẽ = ẽ(PC,QC, s).

Lemma 10.38. The following equality hold:

(πP )∗ĉh(K(F ,N )∗) =

ĉh(F)T̂d−1(N ) + a(CT (F ,N )− ch(FC)Td−1(NY/X)ST (N)). (10.39)

Proof. We just compute, using lemma 10.36,

(πP)∗ĉh(K(F ,N )∗) = (πP )∗
∑

k

(−1)k ĉh(

k∧
Q∨

)ĉh(π∗
PF)

= (πP )∗(ĉr(Q)T̂d−1(Q))ĉh(F)

= T̂d−1(N )ĉh(F) + a((πP )∗(ẽTd−1(Q)) ch(F ))

= T̂d−1(N )ĉh(F) + a((πP )∗(T
h(K(F,N))) ch(F ))

= T̂d−1(N )ĉh(F) + a(CT h(F,N))

= T̂d−1(N )ĉh(F) + CT (F,N)− a(Td−1(N) ch(F )ST (N)).

The equation (10.29) follows by combining equations (10.31), (10.32), (10.33),
(10.34), (10.35) and (10.39).
The equation (10.30) follows from equation (10.29) by a straightforward com-
putation.

Since T is homogeneous if and only if ST = 0, in view of this result, the the-
ory of homogeneous singular Bott-Chern classes is characterized for being the
unique theory of singular Bott-Chern classes that provides an exact arithmetic
Grothendieck-Riemann-Roch theorem for closed immersions. By contrast, if
one uses a theory of singular Bott-Chern classes that is not homogeneous,
there is an analogy between the genus ST and the R-genus that appears in the
arithmetic Grothendieck-Riemann-Roch theorem for submersions.
Since there is a unique theory of homogeneous singular Bott-Chern classes, the
following definition is natural.
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Definition 10.40. Let i : (Y, hY ) −→ (X , hX) be a closed immersion of
metrized arithmetic varieties, the push-forward map

i∗ : K̂ ′(Y,Dcur,Y ) −→ K̂ ′(X ,Dcur,Y )

is defined as i∗ = i
T h

c
∗ .

Corollary 10.41. The push-forward map makes K̂ ′( ,Dcur,Y ) and

K̂( ,Dcur,Y ) functors from the category of regular metrized arithmetic varieties
and closed immersions to the category of abelian groups.

Corollary 10.42. Let i : (Y, hY ) −→ (X , hX) be a closed immersion of regular
metrized arithmetic varieties, then

ĉh(iT∗ (α))T̂d(X ) = i∗(ĉh(α)T̂d(Y)). (10.43)

Remark 10.44. Combining theorem 10.28 with [16] we can obtain an arith-
metic Grothendieck-Riemann-Roch theorem for projective morphisms of regu-
lar arithmetic varieties.
In a forthcoming paper we will show that the higher torsion forms used to define
the direct images for submersions can also be characterized axiomatically.
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Răzvan Liţcanu
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