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ABSTRACT. We prove within the Hartree-Fock theory of pseudo-
relativistic atoms that the maximal negative ionization charge and
the ionization energy of an atom remain bounded independently of
the nuclear charge Z and the fine structure constant « as long as Za
is bounded.
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1 INTRODUCTION

A long standing open problem in the mathematical physics literature is the
Tonization conjecture. It can be formulated as follows. Consider atoms with
arbitrarily large nuclear charge Z, is it true that the radius (see Definition [[J)
and the maximal negative ionization remain bounded? A positive answer to
this question in the non-relativistic Hartree-Fock model has been given by the
second author in [23]. One of the aims of the present paper is to extend the
result taking into account some relativistic effects. The ionization conjecture
for the full Schrodinger theory is still open both in the non-relativistic and
relativistic case. See [13], [16], [T7], [6], [ and [22] for some Z-dependent
bounds on the maximal negative ionization. The best result is that N(Z) = Z+
O(Z*) with a = 47/56 where N(Z) denotes the maximal number of electrons
a nucleus of charge Z binds (see [6], [1] and [22]) .

1 The authors wish to thank Heinz Siedentop for suggesting the problem. Support from
the EU IHP network Postdoctoral Training Program in Mathematical Analysis of Large
Quantum Systems, contract no. HPRN-CT-2002-00277 is gratefully acknowledged. Jan
Philip Solovej was supported by a grant from The Danish Council for Independent Research
— Natural Sciences.
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As a model for an atom with nuclear charge Z and N electrons we consider (in
units where i = m = e = 1) the operator

N

H=Y o '(VAtal-a-2% > L

1 )
i=1 i 1<i<j<N [xi = ;]|

where « is Sommerfeld’s fine structure constant. The operator H acts on a
dense subset of the N body Hilbert space Hp := AN, L*(R3;C?) of antisym-
metric wave functions, where ¢ is the number of spin states. The operator H
is bounded from below on this subspace if Za < 2/7 (see [0] for N = 1, [5] and
[19] for N > 1). In this paper we will consider the sub-critical case Za < 2/7.
Let us notice here that to define the operator H there is an issue. Indeed for
Za < 2/7 the nuclear potential is only a small form perturbation of the kinetic
energy and hence one needs to work with forms to define the operator H. This
has been done in detail in [2].

The quantum ground state energy is the infimum of the spectrum of H con-
sidered as an operator acting on Hp. In the Hartree-Fock approximation one
restricts to wave-functions 1) which are pure wedge products, also called Slater
determinants:

Y(X1,01,%2,02,... ., XN, 0N) = o det(ui(x;,05)) -1, (2)

with {u;}¥; orthonormal in L2?(R3;CY). The u;’s are also called orbitals.
Notice that |[9)[|z2(rs~ cavy = 1. The Hartree-Fock ground state energy is

EYY(N, Z, a) = inf{q(s,)|s) € Q(H) and ¢ a Slater determinant},

with g the quadratic form defined by H and Q(H) the corresponding form
domain.

One of the main result of the paper is the following.

THEOREM 1.1. Let Z > 1 and o > 0. Let Zao = k and assume that 0 < k <
2/w. There is a constant @@ > 0 depending only on k such that if N is such
that a Hartree-Fock minimizer exists then N < Z + QE

The idea of the proof is the same as in [23]. One shows that the Thomas-
Fermi model is a good approximation of the Hartree-Fock model except in the
region far away from the nucleus. We first introduce some notation in order to
introduce the Hartree-Fock and Thomas-Fermi models.

2 In order to prove this result we need that N < CZ for a positive constant C. We do
not include a proof of this fact here for simplicity and since a much stronger result has been
proved by Lieb in [I3] for «Z < 1/2. The needed extension of this result of Lieb to aZ < 2/7
will appear in [3] (see Theorem [[H below).
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1.1 NOTATION
Let e be the quadratic form with domain Hz (R3,C?) such that
e(u,v) = (E(p)2u, E(p)2v) for all u,v € H?(R?,CY), (3)

where E(p) denotes the operator E(iV) = v—A + a~2. Asusual (u, v) denotes
the scalar product of u and v in L?(R3,C?). Let V(x) := Za/|x| and v be the
quadratic form with domain H?2 (R3,CY%) defined by

v(u,v) = (V%u, V%’u) for all u,v € H%(RS,(C‘I). 4)
From [I0, 5.33 p.307] we have
X 2 2 ~ 1
[ <2 [ plfep apor femb@io) )
R |X] T JRrs

with f the Fourier transform of f. Thus since Za < 2/m and E(p) > |p| it
follows that v(u,u) < e(u, ) for all u € H2 (R3,CY).

In the following t denotes the quadratic form associated to the kinetic energy;
i.e. for all u,v € Hz(R?, CY)

N
£
S
—~
o
=
N
4
=
—~
(=)
=

t(u,v) :== a te(u,v) — a2 (u,v) = o H(T(p)

with T'(p) := E(p) —a~ L.

A density matriz v is a self-adjoint trace class operator that satisfies the oper-
ator inequality 0 < v < Id. A density matrix v : L2(R?;C%) — L?(R3;CY) has
an integral kernel

7600 y.7) = D0 A0 (v ) ™)

where \j,u; are the eigenvalues and corresponding eigenfunctions of . We
choose the u;’s to be orthonormal in L?(R3,C?). Let p, € L*(R3) denote the
1-particle density associated to v given by

q

Py () =D Njluy(x,0) .

o=1 j
We define
A = {7 density matrix: Tr[T'(p)y] < +o0}, (8)
where for v € A written as in (@) Tr[T(p)y] := Tr[E(p)y] — o~ ! Tr[y] and
Tr[E(p)y] =Y Aje(uj, uy). 9)
J

Similarly we use the following notation Tr [V] := 7, Ajv(uy, uy).

REMARK 1.2. If v € A then p, € L*(R3) since v is trace class and p, €
LA3(R3). The second inclusion follows from Daubechies’ inequality, a gener-
alization of the Lieb-Thirring inequality (see Theorem [Z3).
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1.2 HARTREE-FOCK THEORY

In Hartree-Fock theory one considers wave functions that are pure wedge prod-
ucts and that satisfy the right statistics: determinantal wave functions as in (@2).
To define the HF-energy functional it is convenient to use the one to one corre-
spondence between Slater determinants and projections onto finite dimensional
subspaces of L?(R3,C%). Indeed if ¢ is given by (@) and ~ is the projection
onto the space spanned by w1, ..., ux the energy expectation depends only on
v: (¢, Hy) = EUF (). Here EUF defines the HF-energy functional

EM(7) = o™ T[(T(p) = V1] + D(y) — £z (), (10)

where D(v) is the direct Coulomb energy

//p7 dxdy,
R3 JR3 |X—Y|

and €x(y) is the exchange Coulomb energy

Treq
/ / re I’yxy)l Tres [[v(x,¥)] ixdy.
R3 JR3 |X*

where we think of the integral kernel v(z,y) as a ¢ x ¢ matrix.
Using projections we can define as follows the HF-ground state.

DEFINITION 1.3 (The HF-ground state). Let Z > 0 be a real number and N > 0
be an integer. The HF-ground state energy is

E"™(N,Z,a) = inf {7 (1) :7* =7, y € A, Trh]=N}.

If a minimizer exists we say that the atom has a HF ground state described by
HF
i

We may extend the definition of the HF-functional from projections to density
matrices in A. We first notice that if v € A, then all the terms in EH¥(v) are
finite. From (B) it follows that

Vyl = Z Ajv(ug, uj) < Z Aje(ug,uz) = Tr[E(p)y].

On the other hand if v € A then Pv € LY(R®) N L3 (R?) (see Remark 7).
By Holder’s inequality p, € L$ (R3) and hence D(v) is bounded by Hardy-
Littlewood-Sobolev’s inequality. The boundness of the exchange term follows
from 0 < £z(v) < D(y). On the other hand if + is a density matrix with v ¢ A
then EUF(y) = 0o. Here we use also that Za < 2/m.

Extending the set where we minimize, we could have lowered the ground state
energy and/or changed the minimizer. That this is not the case follows from
Lieb’s variational principle.
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THEOREM 1.4 (Lieb’s variational principle, [I2]). For all N non-negative inte-
gers it holds that

inf{E"(y) iy € A, ¥* =7, Trly] = N} =inf{"F(7) : y € A, Tr}y] = N},

and if the infimum over all density matrices is attained so is the infimum over
projections.

The following existence theorem for the HF-minimizer in the pseudo-relativistic
case has been recently proved in [2].

THEOREM 1.5. Let Za < 2/7 and let N > 2 be a positive integer such that
N<Z+1.

Then there exists an N -dimensional projection Y'¥ = YUV (N, Z o) minimizing
the HF-energy functional EMY given by ), that is, E™F (N, Z,a) is attained.
Moreover, one can write

N
,YHF (X7 g,Y, T) = Z Ui(X, U)ui (ya T)*a
i=1

with u; € L*(R3,C9), i = 1,..., N, orthonormal, such that the HF-orbitals
{u;} ¥, satisfy:

1. hywru; = gjug, with 0> ey > ey > -+ > e > —a ' and
Z
hoe = T(p) = | Ol‘ + oM x| = K, (11)
x

where p¥ denotes the density of the HF-minimizer and for f € H%(R?’)
N q
(e o) = Y i) D [ wily )" Syl vl .
i=1 r=1"R

2. u; € C*(R3\ {0},C9) fori=1,...,N;
3. u; € HY(R3\ Bg(0)) for all R>0 andi=1,...,N.

In the opposite direction the following result gives an upper bound on the
excess charge.

THEOREM 1.6. Let aZ < % If N is a positive integer such that N > 27 + 1
there are no minimizers for the HF-energy functional.

This theorem for Za < 1/2 was proved by Lieb in [[3]. With an improved
approximation argument the proof can be extended to Za < 2/m (see [3]).
Notice that both proofs work not only in the Hartree-Fock approximation but
for the minimization problem on /\NLQ(R?’).
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DEFINITION 1.7. Let v1F be the HF-minimizer. The function

VA HF
OF (x) = = —/ Py dy for x € R3,
x| Jrs x =

is called the HF-mean field potential and

VA HF
P (x) .= = —/ P ) dy for x € R3,
x| Jiyj<r x|

is the HF-screened nuclear potential.

DEFINITION 1.8. We define the HF-radius REI“;V(V) to the v last electrons by

/ P (x) dx = v.
x| > RY" (v)

1.3 A BIT OF THOMAS-FERMI THEORY

In this subsection we present briefly the Thomas-Fermi theory and especially
the result that will be used in the rest of the paper. We refer the interested
reader to [IT].

Let U be a potential in L5/2(R3) + L>®(R?) with

inf{||W o : U —W € L3(R?)} = 0.

Then the TF-energy functional is defined by

/RS p(x) 3 dx — /RS U(x)p(x)dx + 1 /Rz /RS % ixdy.

on non-negative functions p € L53(R3) N L'(R?). As before, ¢ denotes the
number of spin states.
We recall some properties of the TF-model, see [I8].

EF (p) = 35(%)

o

THEOREM 1.9. Let U be as above. For all N’ > 0 there exists a unique non-
negative pi¥ € L%/3(R3) such that [ pf¥ < N’ and

e (V) = b (p) 0 € LR, [ olx) i < V)

There exists a unique chemical potential uf* (N'), with 0 < pufF(N') < supU,
such that pEF is uniquely characterized by

() + (V) [ b0 dx
R3
= WH{EI () + (V) [ px)dxi0 < pe LPER)NLIEY)).
]R3
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Moreover pii¥ is the unique solution in L%/3(R3) N L' (R®) to the TF-equation

2

L) (0" (%) = [U(x) = i * x| = uiF(N)], -

If ufF(N') > 0 then [ pfF = N'. For all p > 0 there is a unique minimizer
0<pe L3R NLYR?) to EFF(p) + 1 [ p-

One defines the TF-mean field potential o, the TF-screened nuclear potential
®7*, and the TF-radius Ry ;(v) to the v last-electron similarly as in Defini-
tions [ and [CY replacing the HF-density with the TF-density.

THEOREM 1.10. If U(x) = Z/|x| (the Coulomb potential), then the minimizer
ofé' , under the condition [ p < N, exists for every N. Moreover, uEF (N) =
0 if and only if N > Z.

When U(x) = Z/|x| we denote the minimizer of the TF-functional, under the
condition [ p < Z, simply by p™F and Ik p'F = Z. Correspondingly ¢TF and
®LF denote, respectively, its mean field and screened nuclear potential. With
this notation

ET (™) = —eg 25, (12)

where e is the total binding energy of a neutral TF-atom of unit nuclear charge.
We recall here a result due to Sommerfeld on the asymptotic behavior of the
TF-mean field potential, see [23, Th. 4.6].

THEOREM 1.11 (Sommerfeld asymptotics). Assume that the potential U is con-
tinuous and harmonic for |x| > R and that it satisfies hm|13_‘c|~>oo =0.

Consider the correspondmg TF-mean field potential oY and assume that
ufF < 1lr{1£flullf ot (x). With ¢ = (=7 +/73)/2 define

TF -3
- ey (x) 2 ¢
a(R) := 117n<11131f|i1|1pr{<m) *1}7"
TF TF
TF B L Pu (X) — Uy ¢
AR ) o= it sup |G e — 1)

Then we find for all |x| > R

IN

4, 2
S (1 AR, )| =) x| ™* + " and

4_2 — — — —
AT (x) = max {55 1+ a(R)xI™) 2~ v(udF)xI 7},

eit (%)

where

vpg") = Juf (R)Ix| =€) 72| 7%, " [ }.

For easy reference we give here the estimate on the TF-mean field potential
corresponding to the Coulomb potential.
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THEOREM 1.12 (Atomic Sommerfeld estimate, [23, Thm 5.2-5.4]). The atomic
TF-mean field potential satisfies the bound

Z , {Z Z%} - (g2 1 Z

— —min< —,— ¢ < X gmm{—’f—,—}, 13

] 250 <% &) % Tt I« (13)
2

with 26y = 73375273¢" 3, and for x| >R>0

P! (x) > B (1 + a(R)lx|7¢) 2=,

47_[_2
2¢2
where ¢ and a(R) are defined in Theorem [LT1.

COROLLARY 1.13. Let ¢ and By be defined as in Theorem LN and [LI4 re-
spectively. Then the TF-mean field potential satisfies the bound

7 Zs

= - if |x| < BoZ3
x| 26
(,DTF(X) Z | |

(1+aZ 5 [x[")2x|™  if x| > fozZ 3,

3
2

with a = 35(3%n /(4B ) — 1).

COROLLARY 1.14. The TF-screened nuclear potential satisfies

ol (x) < 3°2q* |x|~* for all x € R3.

x| q>

COROLLARY 1.15. The following estimate holds

/ (6™ (x)) b dx
R3

Wik

sy
ol

|~

IN

437—2qZ.

Proof. By the TF-equation and since u™F = 0 we find

o

L6 pEax =23 (528 [ () Fax

The estimate follows from the atomic Sommerfeld upper bound. O

1.4 CONSTRUCTION AND MAIN RESULTS

We present the basic idea for the proof of Theorem [[Jl Let us consider an
atomic system with N > 2 fermionic particles and a nucleus of charge Z > 1
with Za = k and 0 < k < 2/7. We assume that N > Z and that N is such
that a HF-minimizer exists. That is: there exists a density matrix yHF € A
such that Tr[y"F] = N and

EMF(YIF) = inf {MF () 1y =4*,0 <y < I, Ti[y] = N}.
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Let p™ be the TF-minimizer with potential U(x) = Z/|x| and under the
condition [ p™ = Z. We know that such a minimizer exists and that the
corresponding chemical potential is zero (see Theorem [LT).

Denoting by p''F the density of the minimizer v¥, we find for all 7 > 0

N o= [ e
[ e st elax [ e [0 i

By the equalities above and since fIXI - pTF(x)dx < Z, Theorem [l follows
from the following result.

THEOREM 1.16. There exist r > 0 and positive constants c¢; and co independent
of N and Z but possibly depending on k such that

/ [pHF (x) — ptF (x)] dx < ¢1 and / P (x)dx < cy.

x| <7 |x|>r

The following theorem is the principal ingredient in the proof of the previous
one and is the main technical estimate in the paper.

THEOREM 1.17. Let Za =k, 0 < k < 2/m. Assume N > Z > 1.
Then there exist universal constants ag > 0, 0 < € < 4 and Cypr and Cs
depending on k such that for all o < g
HF TF —4

D) (%) = Py (x)| < Cofx| ™ + O
This main estimate is proven by an iterative procedure. We first prove the
estimate for small x (i.e. |x| < BoZ~3), then for intermediate x (i.e. up to a
fixed distance independent of Z) and finally for big x.
By proving Theorem [LTA we also get the following interesting results. The
proofs of those are given in Section [

THEOREM 1.18 (Asymptotic formula for the radius). Let Za =k, 0 < k < 2/7.
Both liminfz ., RYY, (v) and limsup,_, ., RYY (v) are bounded and behave
asymptotically as

=
o

2

™

33

1 1
v's +o(v3) as v — oo.

Wi

q

THEOREM 1.19 (Bound on the ionization energy of a neutral atom). Let Za =
k, 0 <k <2/m and Z > 1. The ionization energy of a neutral atom EMF(Z —
1,2) — EY¥(Z,Z) is bounded by a universal constant.

THEOREM 1.20 (Potential estimate). Let Za =k, 0 < k < 2/m. For all Z >'1
and N with N > Z for which a HF minimizer exists with [ P = N, we have

() — P (0] < Aglx T+ Ay,

with Ag, A1 and €9 universal constants.
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2 PREREQUISITES

In this section we recall some results that will be used in the rest of the paper.
Localization of the kinetic energy. The following is the IMS formula corre-
sponding to the operator T'(p).

THEOREM 2.1 ([I9]). Let xi, i =0, ..., K, be real valued Lipschitz continuous
functions on R3 such that Zfio X7 (x) = 1 for all x € R®. Then for every
feH'A(R?)

K K
t(faf) = Zt(X'Lfa X’Lf) - a_l Z(fa L’Lf))
=0 i=0

where L; is a bounded operator with kernel

Litey) = g LIy atx-y), (14)

where Ko is a modified Bessel function of the second kind.

REMARK 2.2. As in [Z]), App.A, pages 94-98] we use the following integral
formula for the modified Bessel function

Ks(t) :t/ e VEH2 ds 1> 0.
0

We recall that this function is decreasing and smooth in RT. Moreover,

+oo
/ tPKo(t) dt =32 and K (t) <16 t e~ 2" fort > 0. (15)
0

The integral is computed in [Z1, (A6)] while the estimate follows directly from
the integral formula for Ko by estimating v/s2 +1 > % + %s

Generalization of the Lieb-Thirring inequality. This result due to Daubechies
generalizes the Lieb-Thirring inequality to the pseudo-relativistic case.

THEOREM 2.3 (Daubechies’ inequality, [4]). Fory € A

TN > | Galp, ()i,

where Gqo(p) = %oﬁ‘lC’g(a(p/C’)%) —a tp with C = .163q, q the number of
spin states and g(t) = t(1 +2)2 (1 4 262) — In(t + (1 4 £2)2).
REMARK 2.4. The function G, defined in the previous theorem is convexr and
it has the following behavior:

= min {%aC_%p%, %C_%p%} < Go (p) < 3 min {%ac_%p%, %C’_%p%} .
(16)
(The proof of the estimate above is in Appendiz A.) Notice that when a ™\, 0
then a=*Gy(p) tends to a constant times p°/3.
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THEOREM 2.5 (Generalization of the Lieb-Thirring inequality, []). Let f~!
be the inverse of the function f(t) == Vt2+a= 2 —a 1, t > 0, and define
F(s) = [y dt [f~X(t)]>. Then for any density matriz vy it holds

T(T(p) U] = ~Ca [ F(UGIDa,
with C' < 0.163.
REMARK 2.6. Since f~1(t) = (t* + 2a~')'/2 we find for F
F(s) = 230473/2/ t3/2(1 + %at)S/Q dt  for s >0, (17)
0

and since by convezity (1 + %at)% <V2+ %(at)% we have

F(s) < %oﬁgsg + ﬁs‘l for s > 0.

Hence for any density matriz v and potential U € L3 (Rs) NnL* (R3)

T(T(0) ~ U] = ~Cq [ (S0 2061 + 5lUGolax. (19

Coulomb norm estimate. We present here only the definition of Coulomb norm
and the result we need. For a more complete presentation we refer to [23,
Sec.9].

DEFINITION 2.7. For f,g € Lg(R3) we define the Coulomb inner product
f(x)g(y
D(f.9) :=%/ 0 ixay,
rs Jrs X — Yl

and the corresponding norm ||g|lc := D(g,9)2.

In the following we write the direct term in the HF-energy functional using
the Coulomb scalar product: ie. D(vy) = D(py,py) = D(py). Similarly, for
p € LY(R3) N L3 (R3) the term D(p) denotes D(p, p).
The next proposition follows as Corollary 9.3 in [23].

PROPOSITION 2.8. For s > 0, x € R? and f € L3 (R?) it holds

R B (e AR Ca I
X—y|<s

Moreover, for k>0

/ Mdy</ V& 40 ot k14 1o
ly A

<ix| X=¥1 7 T Jagx e XY
where A(|x|, k) denotes the annulus

A(lx], k) = {y € R : (1 - 2k)|x] < ly| < [x]}.
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2.1 IMPROVED RELATIVISTIC LIEB-THIRRING INEQUALITIES

A major difference between the pseudo-relativistic HF-model and the non-
relativistic one studied in [23] is that the boundness of the functional does not
yield a bound on the L3 norm of the HF-density p''F in the pseudo-relativistic
case. By Theorem 23 and Remark EZ7] we see that we can control only the L3-
norm of p¥. Therefore one cannot estimate the term p"¥ * [x|~! in L'-norm
simply by Holder’s inequality with p = 5/2 and ¢ = 5/3. To estimate it we are
going to use a combined Daubechies-Lieb-Yau inequality.

The following lemma can be found in [Z, pages 98-99f.

LEMMA 2.9. For f € S(R?),

e—Hlxl® 2y < T 1 e
|, S < o (1 T@)1)

1 2

with p=7""a~~.

The following is a slight generalization of the Daubechies-Lieb-Yau inequality
formulated in Theorem 2.8 in [24].

THEOREM 2.10 (Daubechies-Lieb-Yau inequality). Assume that the potential
U e L} (R®) satisfies

loc
0> -U(x) > —xlx|™' for |x| < max{a, R}, (19)
fora,R>0 and 0 < k < 2/7. Then we have
T[T (p) —U]- > —Crk*2a732RY2 — Ck*a?

~C (a3 Ux)|? + [Ux)[!) dx.
|x|>R

Proof. If (v/2 — 1)/n < Kk < 2/m then x%2a73/2RY2 4 ko=t > Ck2a~!
and the result follows immediately from Theorem 2.8 in [24] observing that for
R > « the two integrals of the potential on {& < |x| < R} are bounded by the
constants.

If0 <k < (V2—1)/7 we write
U(x) = e_u‘x‘2U(I)X|x|<R + (1 - e_ltlxlz)U(I)X|x|<R + U(x)X\xDR

with g = o277, Using ([@) and Lemma EZ we find that

T(p) — U(x) > 5T(p) — #(1 — e **) x| LX<k — UX)Xjxl> &-

N~

3The result of the lemma and the proof given in [24] are actually due to us, but we commu-
nicated the result to the authors of [24], where it is referred to as a a private communication.
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Hence from the generalization of the Lieb-Thirring inequality Theorem 3] (see

(X)) we obtain

hr)-Ul- 2 -C | |<Ra_%(li(1—e—u\X\2)|X|—1))% dx
-C P e AT
/|x|<R( ( E)

Since the two first integrals above are estimated below by —Ck%/2a3/2R'/2 —
Cr*a~! we get the result in the theorem. O

By Theorem IO we find

HF
K/ P W) 4o < TT(P)yF] + CirZi RY + Con®Z, (20
-yl<r X =Yl

with x € [0,2/7], Kk = Za and R > 0 parameters to be chosen. This is the
inequality that we use to estimate p"F x |x|~! (see proof of Lemma 2 below).

2.1.1 BOUND ON THE HARTREE-FOCK ENERGY

As a first application of Theorem EZT0 we can give a lower bound to the HF-
energy.

THEOREM 2.11 (Bound on the HF-energy). Let N > 0, Z > 0 and such that
Za=k with0 < k < 2/m. Then

EYF(N,Z) > —2C3Z°N5 — Ck222,
with C the constant in Theorem [Z10

Proof. Let v be a N-dimensional projection. Since the electron-electron inter-
action is positive we see that

EUE () > o 'TY[(T(p) —
— o ' T{(T(p) - ﬁxxx\<3)v] — o I (1= X <r)]

with R > 0 a parameter to be chosen. By Theorem EZI0 we find

K
| .

EM(y) > —2032°Ns — Cx*22,
using that kK = Za and by choosing R = C-3Z-1N3. O
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3 NEAR THE NUCLEUS

In this section we prove the estimate in Theorem [[T47 in the region near the
nucleus (i.e. at distance of Z~%).

We again assume that N > Z and that an HF-minimizer VHF exists for this
N and Z. We denote the density of v7F by pHF. We assume throughout that
aZ =k is fixed with 0 < k < 2/m and Z > 1.

LEMMA 3.1. Let Za = k be fized with 0 < k < 2/7 and Z > 1. Let G, be the
function defined in Theorem [ZZ3. Then, there exists ag > 0 such that for all
a < o

a bt | G (x)dx < CZ73, o ' T[T (p)yIF] < 0273
- (21)
and |p™ — p"F|E < 027,
with C' a universal constant depending only on k.

Proof. Let u € (0,1) be such that p='x < 2/7. Notice that here we need
k < 2/m. Splitting the kinetic energy into two parts we find

EMET) = (1= pa ' T (EW"] + DHTF) - Ex(yM)
T T (p) - ﬁwm] .

and introducing p € L3 (R3) N L (R?), p > 0, to be chosen

= (1=pa ' T[T+ plp— o™+ (1 - wDE™)  (22)

Z 1
—Ex(y") = pD(p) + p Trl(a ™ T (p) = (= — p+ )],
(MIXI IXI)
Here || - || denotes the Coulomb norm defined in Definition X and we used
that () p(y)
P (x)p(y
o= "1 = D) — [ [ Y dxdy + DG,

The estimates in the claim will follow from [Z2)) with different choices of p and
p. The main idea is to relate, up to lower order term, the last term on the right
hand side of ([2) to the TF-energy of a neutral atom of nuclear charge Zu 1.
This has been done in [21]. For completeness and easy reference we repeat the
reasoning in Propositions [B] and in Appendix

To prove the first inequality in (ZII) we choose p as the minimizer of the TF-
energy functional of a neutral atom with charge u~!Z. Since the corresponding
TF-mean field potential is Z/(pu|x|)—p*1/|x| by Proposition[B2in Appendix|[B]
we find

Z 1

il Y] > —C1Z5 + D(p). (23)

Te[(a™'T'(p) — ( |
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Here we use ([[). Since EMF(yHY) < 0 from @) and Z3) leaving out the
positive terms we find

0 > (1-pa 'TTEW"] - Ex(y") - C125. (24)

From Z4)) and Theorem 23 we get

(1-wa™t [ Gu(p™ (%) dx < (1 - pa T[T (p)yTF] < Ex(+1F) + C1 25,

R3
(25)
It remains to estimate the exchange term. By the exchange inequality (see [15])

4
Ex(yHF) < 1.68/ (p"F (x)) ® dx.
R3
To proceed we separate R? into two regions. Let us define
Y={xeR:a(C " (x))* > 2}, (26)

with the same notation as in [[). By Remark B, Gy, (p7F (x)) > Cy(pF (x)) 3
in ¥ and a7 1G, (pMF (x)) > C3(p"(x))s in R3\ ¥. Hence by Holder’s inequal-
ity we find

Ex(y") < 1.68/2(pHF(x))% dx

+1.68</ (pHF(x))% dx) : (/ P (x) dx) :
R3\E R3\S
1
<c, Ga(pHF(x))dx+C5(/ 07 Gl () dx) " N¥.(27)
R3 R3
Choosing g such that 1 — pu > 2C4a for a < ay, from [Z8) and 1) we find

St [ Ga(p (o)< 2+ G [ 0 Galp o ax) N
R3 R

3

The first estimate in (Z1]) follows from the estimate above using that 22 —bz—c <
0 implies 22 < b? + 2c¢ and that N < 2Z + 1 (Theorem [CH). The second
inequality in (ZII) follows then from (ZH) and the bound on the exchange term.
To prove the third inequality in 1) we estimate from above and from below
EHF(yHF) " For the one from below we choose in 2) = 1 and p = pTF the
TF-minimizer of a neutral atom with nucleus of charge Z. We find

N
EMF (YT = " (ui, (a7 T(p) =" )ui) + || " = p (I = D(p™) - Ex(4"F).

i=1

(28)

DOCUMENTA MATHEMATICA 15 (2010) 285-345



300 ANNA DALL’ACQUA AND JAN PHILIP SOLOVEJ

From ([Z8) and the proof of Proposition [B2 (see (B3D)), we find

3

gHF () > 2t / da(p™ (q))F — 0221/ (29)
—D(p™) +||p™F — p™F |2 — Ex(41F).

To estimate from above EUF(yHF) we may proceed exactly as in [23, page
543] using that o *T'(p) < 1|p|?. For completeness we repeat the main ideas.
We consider v the density matrix that acts identically on each of the spin
components as

31pI2<e™F (q)

Here I1;, 4 is the projection onto the space spanned by h?9(x) := hy(x—q)e’P>
where h is the ground state (normalized in L?(R?)) for the Dirichlet Laplacian
on the ball of radius Z—° with s € (1/3,2/3) to be chosen. One sees that
Tr[y] = Z < N since

3/2
py(x) = 52 (0TF)P 2w hE(x) = pT x B2 (%),

where we have used the TF-equation. Hence EHF(y) > &HF(1HF) Now we
estimate from above % (7). Since o™ !'T(p) < 3|p|? and Ex(y) > 0 we find

EF (4) < Tr[(—1A - |—?|m +D(py) =,

and proceeding as in [23, page 543])
9 7% 2s 4
= // 2lpl* dpda — 52N — [ 1ps(x) dx 4 Dipy).
3Ip[2<¢™ () RS

Computing the integral and summing and subtracting the term [ pTFOTE we

get

ey < 2 / (@) da— Z2EN - [ (0™ (x) dx
R3 R3
- [ (00 = 5" ix =206 £ Do) (30)

By Newton’s theorem one sees that D(p,) < D(p™F) and that

TF _ TF
R? Ix|<Z—=

x| |

In the last step we use Holder’s inequality and Corollary [LTH From (B0) using
the TF-equation, that N < 2Z + 1 (Theorem [[H) and optimizing in s we find

£ (7) < - g [ (P (@)Fda+ CZEE D). (3)
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Hence from [Z9) and (&l) we obtain

HpHF _ pTFHQC < CZ% T + Ex(y1F).

wlen

The last estimate in (Z]) follows from the estimate above since Ex(y1F) < CZ
using ([@7) and the estimate just proved on a~! [ G, (p"'F (x)) dx. O

LEMMA 3.2. Let Za = k be fized with 0 < k < 2/7 and Z > 1. Then, there
exists an ag > 0 such that for all o < ap, p > 0 and x € R3 with |x| < BZ*HTM
we have

O (o) — I ()] < O/ (1 + BERE [x 5048 |~ 785

x| x|

Proof. By the definition of screened nuclear potential we have

HF(\ _ TF
W at]< [ PO,
lyI<lx| [x— vl
and for all k£ > 0 by Proposition 8
HF TF
3. _1 py)+tpy
S 2%k 1|X| 3 |‘pHF_pTFHC+/ ( ) ( )dy (32)
A(x],k) Ix -yl
Since HpTF||L%(R3) < CZ*% (Corollary [CTH) and
1 1 1
/ by <sapxlin)t, (33)
A(lx|,k) [x =y 2
(see [23] page 549) one finds
TF
/ Py < ozt xpbEd. (34)
A(|x],k) Ix — vl

The term with the HF-density has to be treated differently since we do not
have a bound for the L3-norm of pF. For a R € Rt to be chosen later we
consider the splitting

HF HF HF
/ fx —(y)| dy = /A(\x\ K) fx —(y)| dy+/A<|x| k) fx —(y)| dy- (35)
A(]x],k) y CYISR y SYI<R Yy

ES Ix

We consider these two terms separately. Let ¥ be defined as in (0); i.e.
the region where Gq(p"F) behaves like (pHF)3 (Remark El). By Hélder’s
inequality we find

HF 1 3
pr(y) / 1 7 / HF 22 5 )
dy < ———dy (P (y))3dy
A(lx],k — A(|x],k .
( |>})% |x — y] ( £|y||>})% |x — y] ) ( yes )

Ix—yl |x
1 5 3
+ / — 5y / P (y)) * dy
( Ak |x = y] ) ( y€R3\E( ) )
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From the inequality above, Remark 24 and estimate 1) we get

pHF(y)d < CR7%|X|%1€%Z+C|X|%]€%Z% (36)
A} x| yo= :
Ix—y|>R

On the other hand for the second term on the right hand side of B3) by &)
and Lemma Bl we find

HF
/ P W)y < czh 4 mEZY), (37)
x—y|<R |X - y|

Hence from B2)), Lemma BTl &), @8) and @), we get
ASE> 11 1,3 4
[Pl (%) — D (x )I<O(| |1/2k+z |3k + RS |x|Sk3Z + R2Z% 4 Z3).
(38)
Choosing k such that Z3 = Z3|x|5k5, i.e. k = [x|"'Z~% and R such that
R™%Z1721 = Z3 ie. R=Z"! we find

4
3

@ (x) — ®F (x)| < O(x|3 285 4 Z3).

The claim follows using that |x| < Bz . O

THEOREM 3.3. Let Za = k be fized with 0 < k < 2/m and Z > 1. Then there
exists an ag > 0 such that for all a < o and x € R? with |x| < 62’% we have

O (x) — DL (x)| < B> (14 37 + B3 + F2175 x| 1956 ) || T 7. (39)
Moreover if |x| < Bz—=* “ for p < 134% then

D88 (x) — @i (x)| < OB~ (14 52 4 B3 + BP0 x| o0 x| ~4Fe() | (40)

. 49 24—24p— L+
with a(p) = 66(11 o Tatieys b(w) =2+ 1—36—‘;7; 2L and () = & —

3
21%(824;?0 strictly positive constants.

Proof. Proceeding as in the proof of Lemma B2 up to BH) we get
2RI — SR )| < C(k'x|72 2" 4 ZEx|E RS 4 R R x| kR 2)
HF
"% )
|

x—y|<R |X - y|

for R € RT to be chosen. It remains to estimate the last term on the right
hand side of (). For ‘small’ R which is relevant for small x we already did it
in Lemma B2 for ‘big’ R which is relevant for big x we use Proposition [B1] in
Appendix
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Take v < 1/263 to be chosen. If |x| < B3Z~"5" then by Lemma B

1 (x) <I>|x|<>|sCﬁﬁa+ﬁn<f+w|x|—2?f+13>>|x|*4+1“+*”~. (42)

If instead |x| > 8Z~" 5", let Hy be the Hamiltonian defined in (BZ) with P = x
and v = Z. Then by the definition of Hx and taking the HF-minimizer as a
trial wave function we have

HF
YeAN | L?(R?) |x—y|<R Ix -yl
lla=1
HF
yeA [x—y|<R |X - Y|

Since 3|p|> > a7 !'T(p), infyca EMF(y) is estimated from above by the HF-
ground state energy of the non-relativistic model (i.e. when the kinetic energy
is given by ——A) Moreover, this last one can be estimated from above by

ETF(pTF) 4 CN'5Z2 (see |18 and [T1]). Hence we find

HF(

x—y|<R |X_Y|

On the other hand since |x| > Z~ 5" choosing for some [ > 1+7 ,R<pz7t/4
from Proposition [Blit follows that there exists a constant depending only on
% such that for ¢ € ((1+4+)/3, min{l,3/5}), and for every 1) € AN | L?(R3) with
ll2 = 1 we have

5 t

(. H) > €7 () — O 4 5728

Hence combining the two inequalities above we find

l\J

/ W) 4y < (8112 + 52230, (43)
|

x—y|<r X =Yl
From (I and the inequality above we get
|(I)le( X) — ‘I’\x\( x)| < Ck 'x|"2Z't® 4 CZ5 x| ks
+CR™ |x|8kSZ+C(51/2 VALt a0)

Choosing k such that 223~ = Z3|x|5k3, i.e k = [x|71Z20-5%) and R such
that Z2B3~t) ~ R=8 Zz1t16(1-51) e R = BZ~5+2% /4 we find

@05 (x) = Ol (x)| < C(x|2 277130 + (812 4+ 572)22(79). (44)

Notice that R < 3Z~!/4 is satisfied choosing | = 4t¢/3. Then for x such that
B2~ < |x| < BZ~% we find

B[ (x) — T (x)| < O(Ix|" B FIFHTFE 4 (/2 4 g72) 200 |x|736G—1),
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Optimizing in ¢ gives t = 1/3 4+ 1/99. For this value of t we get

BT (x) — o (x)| < C(1 + B2)5% 6 x|~ *Fs. (45)

x| [x]
Inequality (BY) follows from (Z) and (EH) choosing v such that 4v/(1 +v) =
1/66, i.e. v = 1/263.
n the other hand from or x such that _1T§x§ _%We n
On the other hand f f h that 82~ "5 BZ~5" we find
|‘1>E(IT(X) _ q)lTxFl(X)| < C|X|%*%(1—71+%t)5%(1—71+%t)

FOEY? 4 ) O x| T 0,

Optimizing in ¢ gives t = 1/3 4 1/99 — -k u. For this value of ¢ we get

D1 (x) — o1 (x)| < (1 + 3832 s+ o x|~ e T
Inequality ) follows from the one above and ([2) choosing v such that 4v/(1+

49
) = waon s O

4 THE EXTERIOR PART

In this section we complete the proof of Theorem [CTA We first estimate the
exterior integral of the density and study the minimization problem that the
exterior part of the minimizer satisfies. Then we prove the main estimate in
Theorem [[T7Ain an intermediate zone, i.e. far from the nucleus but not further
than a fixed distance independent of Z. To study this area we need first to
construct a TF-model that gives a good approximation of the HF-density in
this intermediate zone. By the estimate on the exterior integral of the density
we can then also prove Theorem [LT4 in the region far away from the nucleus.

4.1 'THE EXTERIOR INTEGRAL OF THE DENSITY

The main result of this section is the following lemma.

LEMMA 4.1 (The exterior integral of the density). Assume that for some
R,0,e >0 )
|l (%) = P (x)] < ofx| 7, (46)

x|

holds for |x| < R. Then for 0 <r <R
[ 060~ 0 dx| < or 0t (47)
|x|<r

and
HF < -3
/ P (x)dx < C(1+or® )(1 +7r73), (48)
|x|>r

with C' a universal constant.

DOCUMENTA MATHEMATICA 15 (2010) 285-345



EXCESS CHARGE FOR PSEUDO-RELATIVISTIC ATOMS. . . 305

We proceed similarly as in the proof of Lemma 10.5 in [23]. Since we need to
localize we first present some technical lemmas that will take care of the error
terms due to the localization. The localization error that will appear in the
argument below (see (B])) will be in the form of an operator L similar to the
error ([[d) in the IMS formula. We estimate this error in Lemma E3

REMARK 4.2. Let 0 < (81 < .. < B4 be real numbers with possibly B4 = co. Let
us denote X.(B, 3;) = {x € R® : Bir < |x| < Bjr}. Then we have

3 3

1y _ o\2 157205 —B1 40 —a"r(B3—02)

//XEET(ﬂl,ﬂz) Ko™ |x —y|)" dxdy < =3 7&_&047"@ 3—P2)
y € X.(0s, 54)

The proof of this estimate is given in Appendiz [Al

LEMMA 4.3. Letr >0 and A\,v € (0,1). Let x_ be the characteristic function
of By(1—1)(0) and xo be the characteristic function of the sector {x € R3 :
r(l—v) < |x| <r(l+v)/(1 =N} Letn be a Lipschitz function such that
0<nx)<1foralxeR3 nx)=0if|x| <7 nx)=1if|x| >r(1-N)""!
and |Vn|lso s bounded. Let L denote the operator with integral kernel

a”? (n(x) = n(y))(n(x) x| = n(¥)ly]) Koo Yx—y]).  (49)

L(XaY):W |X*y|2

Then for every function f € L*(R3) we have

oY, LA < 3D M) [xof 2+ D0 A r)e 2 ™ Ix_fI2 4+ a (£, Qf)],

with D(n, A7) == || V1]l (% + 1) and Q a positive semi-definite operator
such that L
=1

Tr[Q] < CD(n, A\, r)a tr2e 2% 7,
with C' depending only on \ and v.
Proof. As a first step we decompose the operator L. We introduce a third
cut-off function y; such that 1 = x_(x) + xo(x) + x4+ (x) for all x € R3.
We decompose the operator L with respect to these characteristic functions as
follows:

L = x_L(xo+ x+) + (xo + x4+ )Lx— + xoLx+ + x+Lxo + xoLxo-

We proceed similarly as in [24, Proof of Theorem 2.6 (Localization error)]. For
I'1,T's bounded operators from (I'; — I'y)(I'y — T'2)* > 0 it follows

D5 + Pol'y < I + TaIs. (50)

We are going to use several times this inequality with different choices of I'y
and I's.
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As a first choice we consider I'y = /e1x— and I's = 1//e1(x0 + x4 )Lx— with
g1 > 0 to be chosen. Using ([&l) we get

[(f, (x=L(xo + x+) + (xo + x+)Lx-) ) < exllx-fl3 + é(f,Qlf% (51)

with Q1 = (x0 + x+)Lx? L(xo0 + x+).- We estimate now the trace of Q1. By
the definition of 7, x—, xo and x4 it follows that

Tr[Q4] :/ / LA(x,y) dxdy < %@D(n,&rﬁr%’aq“’.
[x[<r(1-v) J|y|>r

In the last step we use the definition of L, Remark EE2 and the definition of the
constant D(n, \,r) given in the statement of the lemma.

Now we choose I'y = {/e2x0 and I's = 1/\/5X+LX0 with €9 > 0 to be chosen.
Proceeding as above we get

|(f, (x4 Lxo + xoLx+) /)| < e2llxof 5 + —(f, Q2f), (52)

1
€2
with Q2 = x4+ Lx3Lx+ and such that

21 (1—1)3(1-))3 =1 v
Tr[Qs] < G LU Dy 6 p)2 e 7ot

It remains to study the term yoLxo. This one has to be treated differently. By
Schwartz’s inequality one gets

(o) < £ [ xablF (53)

since [ps |L(x, y)|dxdy < % D(n,\, ).

1
The claim follows from @&II), (B2) and (B3) choosing e1 = D(n, A\, r)ae” 2% 17‘”,
g2 = %2 D(n, A,r) and with Q := 2 Q1 + £ Qa. O

DEFINITION 4.4 (The localization function). Fiz 0 < A < 1 and let G : R®* — R
be given by

ifIx| <1,
- 1)(1—,\)171—1 Fl1<xl <=M
if (=21 < x|

G(x) :=

INERVERS
=
Ll

. o . o Ix|
Let v > 0 and define the outside localization function 0,(x) = sin(G(=")).
REMARK 4.5. From the definition it follows that || V0, |~ < Z352r~ 1.

LEMMA 4.6. For all v > 0 and \,v € (0,1) the density p"'¥' of the minimizer
satisfies

/ PP (x)dx < 14242 sup |x|<I>£I(1“I_)\) (x) + R?
[x|>r(1—X)"1 |x|=r(1—-X)
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with

1
R =6D\)r! / P (x) dx +2DN)(r "IN + Cra=2)e” 2% ",

7‘(1—1/)<|x|<rif;

with D) := (1 +7/(2A(1 — \))7/(2)) and C = C(\, v).

Proof. Let ’yHF be the minimizer. By the variational principle, VHF is a projec-
tion onto the subspace spanned by u1,...,uy. These functions u; satisfy the
Euler Lagrange equations h.uru; = gu4, €; < 0, for i = 1,..., N, with A ur
defined in ().

Given 7 a function in C1(R?) with support away from zero, we find

0>Z€1/ s (%)) x|n? (x dX*Z/ wi(x)*|x[n? (x) hyneu; (x)dx.

Since 7T (p)u; € L*(R3) (Theorem [CH (3)), using the Euler-Lagrange equa-
tions and treating all the terms, except the kinetic energy, as in [23, Formula
(63)] we get

0> o lzmm @) = Z [ o xR o

1— 2 x 2
/ / () — Toon 7y 2] IO PO
R? /RS x —yl
([ o™ e )dx) 5 [ e G (54)
R3 R3
Now we look at the kinetic energy term. For each i € {1,..., N} we may write

Re(uin| - [,nT(p)ui) = Re(uin| - |, T'(p)(nui)) + Re(uin| - |, [n, T(p)]ui), (55)

where [A, B] denotes the commutator of the operators A and B. The first term
on the right hand side of (BH) is non-negative by the result of Lieb in [I3].
Notice that here we may use that nu; € H'(R?) (see Theorem [H (3)).
Hence, from (B4)) and (BH) we find

IZRe wil Lo @) = 2 [ 0 o ()i

/]Ra /]RS T (y) = Trea 47 (x, )] I =G ) e

Ix -yl

(/]R3 PHF(X)UQ(X)CZX>2 - %/}RS PpIF (x)n? (x)dx. (56)

+

N[=
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By a density argument we may choose n = 6, the localization function defined
in Definition EE4l Reasoning as on page 541 of [23], we get

N 2
0 > a—lzRe(u“ﬂ : |7[77,T(p)]ui)+%(/R3 pHF(X)ng(X)dX>

(et sw el ) [ p TR 67)
|x|=r(1-X) R3

It remains to estimate the first term on the right hand side of (7). With the
same arguments used in the proof of the IMS formula, it can be rewritten as

N

N
a”! ZRG(WH o T(P)ui) = —a™ D (us, Luy), (58)

i=1

where L is the operator defined in (). Using Lemma B3 and since ||V7|e =
IVO,|lco < 7/ (2Ar) we find, with D()) defined as in the statement,

N
ail‘ Z(uz, L)
i=1

HF”1

-1
< 3D Hxop" I + DN te 2 T Ix_p

-1

1
+CD(N)ra=2e"2% ™V, (59)

where xo,x— and C are as defined in the statement of Lemma Hence
combining () with (), using the definition of yo and that ||x_p"F||; < N
we have

1
0o > —3D()\)7°_1/ P (x) dx — D\)r~te 2% VN

r(l—y)<|x|<rif;

1 2
—~CD(\)ra=2e 2% "V 4 %(/ pHF(x)nQ(x)dx)
R3

(e sw el 60) [ oM G
|x|=r(1-X) R3

The claim follows using that 22 — Bx — C < 0 implies < B + /C. O

Proof of Lemma[{_d] We proceed as in [23, page 551]. The first estimate follows
directly from the equality

/ (PFF (x) — pTF (x)) dx = 7 / (BHF (1) — BT (1) do,
|x|<r S2

and @f). To prove [EX) we use Lemma ELH We first notice that for 0 < 8 < v
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and v such that ry < R
/ P (y)dy < ‘ / (" (y) =P (y) dy‘
rB<lyl<ry lyl<ry

+‘ /quﬁ(pHF(Y) —p(y) dy} + /y|>rﬁ P (y) dy

< Or 3B (1 + 07“6/). (60)

Here we used ) and that by the TF-equation and (3]
15 2 o
/ P (y) dy < SZ=p70r 0,
ly|>rp

Since fIXI>T pHF < f\x\>2r/3 p" to prove the claim we estimate this second

integral. By Lemma EZ] with r replaced by r/2, A = % and v = % we get

/ o P (x)dx <9+ 3r sup @?,58()() +R3,
x|>2r

|x|=3r/8

with R defined as in the statement of Lemma EL6 By ({f) and Corollary [CT4
we find

sup @?TF/S(X) < Cor ' 4 sup q)gTF/S(X) <C(+or)r
|x|=3r/8 |x|=3r/8

Moreover, from (@) with 8 = 1/4 and v = 1, since N < 2Z + 1 and the
boundness of Rt 3 z — 2Pe ™% for all p > 0, we find

R<Cr*(1+o0r)+rY).

The claim follows directly. O

4.2 SEPARATING THE INSIDE FROM THE OUTSIDE

We consider the exterior part of the minimizer, i.e. the density matrix
AIE .= g,~1FY,., (61)

with 60, as defined in Definition EE4l This density matrix almost minimizes a
new energy functional where there is no exchange term. Indeed sufficiently
far away from the nucleus the electrons are far apart and hence their mutual
interaction is small.

We define an auxiliary energy functional on A (see ([{)) given by

EA(7) = Tr[(a ' T(p) — @)y + D(py). (62)
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THEOREM 4.7. Let r > 0 and \,v € (0,1). Let x;" denote the characteristic
function of R®\ B,.(0). The density matriz v2¥ defined in (E1)) satisfies

EA ) < {47 1y € Asupp(p,) © B3\ Bo(0), 1oy 1y < ™ e 1} + R,

where

%a’lrd

R = (x+ %7“_1)7"_1/ P (x) dx + a2 (1 + ar™?)e
(1= (1=1)<x]

+ea(rf") +C (@0 00) " + 0 (@l )]

r(1-N<|x|< 55
and c,d are positive constants depending only on v and \.

Proof. We proceed as in [23, pages 532-6]. The first step of the proof is a
localization. Once again we have to treat carefully the localization error coming
from the kinetic energy. This is the main difference with [23]. For completeness
we repeat the main ideas of the reasoning.

We consider the following partition of unity of R?: 1 = 62(x) + 63(x) + 62 (x)
with 0, defined as in Definition E24l and

fo(x) := (93(17,\) (x) — 93("))5 and 0_(x) := (1 - 93(17,\) (X)) 2
Associated to this partition of unity we define
%%IF = 0py1¥0y and AHF .= 9_~HFp_.

We prove the claim by showing that for all density matrices v € A such that
supp(p,) € B3\ B,(0) and |[p, |1 < |9 x;t |1 it holds that

EANIF) + EFF(yHF) — R < EMF(4IF) < €4(y) + ETF(4HF). (63)

The proof of the upper bound in (@3) is as in [23, page 533].
To prove the lower bound as a first step we localize. By Theorem ZT] we find

o " TY[T(p)y™] = o P T[T (P) (% gt )]
N

—a! Z(Uu (Lr + Lo + L_)uy),
=1

where L, Ly and L_ are defined as the L;’s in ([d]).

We first estimate the error term. The procedure is similar to the one used
in the proof of Lemma We introduce three cut-off functions: yx_ be the
characteristic function of B,.(1_x)(1-4)(0), x» the characteristic function of R3\
Brif—i (0) and xo defined by xo(x) = 1 — x.(x) — x_(x) for all x € R3. Notice
that y_ and x, are the characteristic functions of sets where 6_, 6y and 6, are
constants. For k € {—,0,7} we have the following splitting

Li = x—Lir(xo + xr) + (xo + xr) Lex— + XrLkXo + XoLkXr + XoLkXo0,
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and proceeding as in the proof of Lemma with €1 x,€2,1 to be chosen we
find

(fiLef) < erllx—fI5 + i i (f,Q1f) + e2rlixofII5 + e5,(f, Q2f)
+ 5| V05 3 I xo f113-

with operators (1 and @2 being positive semi-definite operators with

Tr[@1] < %angknér%—a*wu—/\)
2 [ P VA
Tr(Qz) < G2t I Voillhr?e TR,

Choosing then

IR
e = 22| V6% and ek = o VO |2 e 2 Y,

since ([ VO[3 + V0012, + [IVO-[I3) < 37/(4A%)r=2 and [|p" x |1 < N we
get

N

_ 2 2 o5 Ll -1 _

o 1§ (Uiy(Lr+LO+L7)Ui) < %7’ 2||PHFX0||1+Z%7" 26 sa rr(l )\)N
1=1

1 1 _
+ ca_Qe S rv(l A).

Here c is a constant that depends only on v and .
Hence from (B4), the inequality above and since N <2Z + 1 we find

_ Z
M) 2 T [(a7 ) ) O 4ol + 5]+ DO
_l,-t
—Ex(yHF) — % 2 p xoll1 — da”2(1 + ar~2)e 2 rd

The constants ¢, d depend only on A and v. Proceeding as in [23] we get

EM () > () 4 EARI) — Ea(nl1F) — da (1 4 ar D)3 T
+Tr [ (a7'T(p) — Oy ()47
—(zx + %7’*1)7"71 / P (x) dx.
Ix|=r(1-A)(1-v)
The claim follows using Theorem O

4.3 COMPARING WITH AN OUTSIDE THOMAS FERMI

At this point we introduce an “Outside Thomas Fermi”: a TF-energy functional
whose minimizer approximates the HF-density at a certain distance from the
nucleus.
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Let r» > 0 such that
111 (x) — © 8 (x)| < ofx| (64)

I
for all |x| < r for some ¢ > 0 and ¢’ > 0. Let V,. be the potential defined by

Vi) = 0060 = { Qa0 (65)

Here and in the following x;f(x) := 1 — x,(x), x € R3, where y, is the
charactpristic function of the ball of radius r centered at 0. Notice that
V. € L2 (R?) + L>(R3) with

nf{|Wlloo : V, — W € L3 (R*)} =0.

Let £2TF be the TF-functional EEF corresponding to the potential V,. defined
in @3). Let p2TF be the unique minimizer of £2TF under the condition

/Rg p(x)dx < /|y>r P (y)dy,

(see Theorem [CH). Then p@TF is solution to the OTF-equation

2
2\ 3 2
3 (%) (P25 = [P — pd™] (66)

where OTF

PO = Vi — [ Ly,

R X =Yl

is the OTF-mean field potential and xOTF is the corresponding chemical poten-
tial. From (BH) (and u@TF > 0) we see that the support of p@TF is contained
in R3\ B,(0).
In the intermediary zone instead of comparing directly @E{I‘: and CIDEIT we com-
pare first the HF-density with the OTF-density and then the OTF—Aensity with
the TF-density. When comparing the TF and OTF there is no difference with
the non-relativistic case and for brevity we refer for the proofs to [23].
We start by studying the behavior of the minimizer and mean field potential
of the OTF. The proof of the following bounds is in [23, page 557-558] in the
case ¢ = 2 and it can be directly generalised to the other values of q.

LEMMA 4.8 ([23, Lem.12.1]). For all y € R3 we have
O (y) < 34271 2|y |~ and p T (y) < 392~ ¢ 2nly|C.
Let By be as defined in Theorem [LI3, then for all |y| > BoZ~3 we have
P (y) = Cly[™" and p™" (y) = Cly|™".
With r,0,&' such that @) holds and or¢ < 1 we have for all |y| > r
PP (y) < CrC and 92" (y) < [Vi(y)l < Ot
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LEMMA 4.9 ([23] Lem.12.2]). With r,0,e’ such that @) holds for all |x| <r
we have

/ - (P (y) — P (y))dy < or 3t

For x € R3 with |[x| > r we may write

@E(‘F (x) — (I)lTxFl (x) = A1(r,x) + A2 (r, x) + A3z(r, %), (67)
where
Ai(rx) = ¢ (x) = 9" (x),
OTF _ TF
Ap(rx) = / pr () =P () dy
ly|>|x| Ix -yl
and OTF HF
As(r,x) = / pr () =P () dy.
r<lyl<|x| Ix -yl

4.3.1 ESTIMATE ON A; AND A,

LEMMA 4.10 ([23, Lem.12.4)). Let N > Z. Given €';0 > 0 there ezists a
constant D > 0 such that for all v with BoZ~3 <r < D for which @) holds
for all |x| < r, then uO™ =0 and

SR X1+ ar¢[x|7) 72 < 0T (x) < B Ix|TH(1 + Aré|x[7C) for [x| >,

where a, A are universal constants and ¢ = (=7 + /73)/2.

LEMMA 4.11 ([23, Lem.12.5)). Let N > Z. Given €',0 > 0 there exists a

constant D > 0 depending only on €', o such that for all r with ﬁOZ_% <r<D
for which @) holds for |x| <r, then for all |x| >

|A1(r,x)] < Clx|7*7%r¢ and |Ax(r,x)| < Clx| 450,
with ¢ = (=74 +/73)/2 and C a universal constant.
The proof of the previous lemmas is in [23| p. 558-564].

4.3.2  ESTIMATE ON |x; p"F — pOTF| o

LEMMA 4.12. Let G, be the function defined in Theorem 23 and p!IF (x) be
the one-particle density of the density matriz vI'¥' defined in (Ell). Let Za = k
fized, 0 < k < 2/m and Z > 1.

Given constants €',0 > 0 there exists D < % such that for all r with 60Z*% <
r < D for which [84)) holds for |x| <r, it follows that

a! RaGa(pI;IF(X)) dx < o ' T[T (p)y,""]

IN

QR+ Cr "+ Cr / pHF (x) dx,
R3
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with C a universal positive constant and R as defined in Theorem [£. 7

Proof. The first inequality follows directly from Theorem To prove the
second inequality we proceed as in Lemma Bl In this case we are interested
only in the exterior part of the minimizer. Hence, instead of considering the
HF-energy functional we consider the auxiliary functional £4, defined in (E2),
applied to the “exterior part of the minimizer” ¥

Splitting the kinetic energy in two terms we find
E4() 2 307 T[T (p) ] + D(py") + 5 Te[(a™ ' T (p) — 28,7) 7. (68)
Since ®MF(x) is harmonic for |x| > 7 and going to zero at infinity

o (x) < ﬂ sup M (y) for |x| > .
lyl=

Hence, since supp(pf¥') C R3\ B,.(0) we find

2r
= sup &' (y)y, =

Ti(a™ T (p) — 201)1] = Tr(a™ T(p) = 7 sup

Adding and subtracting 2D(p, pF) for p € LY(R3) N L3(R?), p > 0, to be
chosen

= Tr[(a 'T(p)— /]R3 /]Rd |x—y| dxdy. (69)

where for simplicity of notation here and in the following V), is defined as
Vo(x) := 2 supjy =, @17 (y) — p* -

From (@), (X)) and the definition of the Coulomb norm and scalar product
(Definition 7)) we find

EYT) = 3o T[T (p)n ] + 5 D(0) 2||p T pll%
—35D(p) + 5 Tr[(a” (P) p) " (70)
N
> Lot Te[T( f1+4 Z (0rui, (@' T (p) — V,)0,ru;) — 3D(p),

denoting by u; the HF-orbitals.

We now choose p as the minimizer of the TF-energy functional of a neutral
atom with Coulomb potential and nuclear charge 2r sup)y|_, @M (y). Then V,
is the corresponding TF-mean field potential and we see that the last two terms
on the right hand side of ([l) are like the ones in the claim of Proposition B2
The only difference is due to the presence of the localization function 6,. We
now prove that these terms give the TF-energy modulo lower order terms. The
method is the same as that of Proposition We repeat the main steps
since in this case the scaling depends on r. Notice that since r > 5y Z =3 the
contribution is coming only from the “outer zone”.
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Let ¢ € C5°(R?) be spherically symmetric, normalized in L?(R3) and with
support in B1(0). Let us define g,(x) := r~3g(xr~2) and 1, := g2. Since V, is
sub-harmonic on |x| > 0, we see from the support properties of ¢, and 6, that

N

Z(G,-ui, (™ 'T(p) — Vp)0ru;) > Z (Orug, ( (p) = Vo *9)0ru;) = ...

i=1

For p,q € R? we define the coherent states gP9(x) := g,(x — q)eP*. By the
formulas (BIA) and (BID) with Lq the operator defined in the equation below

BID) we get

N ¢
-1 dpd —aV,(q (0
a /R3/R3PQ( a Z::Z:: L, gPd

N
—aTt ) /R \ /R | dxda (0rui) (x)(Lqbrui) (x), (71)

where u{ denotes the j-th spin component of the orbital u;. By the choice of
the function g, and with the same arguments that led to ([BIJ) in the appendix
we find

N
=3 /}R 3 /}R i [0,1) () (L) (x)

N
< 3 10:uill3 Vg, |3 Vol(supp(gr)) < Cr= o1 (72)
i=1
In the first term on the right hand side of ([[Il) the integrand is zero if |q| <
1r% since in this case supp(6,) N supp(gaP) = @ (by the choice D < 4/5).
To estimate it further from below we consider only the negative part of the
integrand

N g
e [ [ dpda (T(0) = aVi@) Y- D[0P )

i=1 j=1
> ghpa’! / 4 dpda (T(p) — V(). (73)
T(p)<aV,(a)

where we have used that 0 < Zivzl (6,1, gP9)|? <1 (Bessel’s inequality). We
split the domain of integration in p as follows

{p€ R3 : T(p) <aV,(q)} =X UX,

with 1,3, disjoint and ; = {p € R* : 1|p|*> < V,(q)}. We treat these two
contributions separately. We have

o //q%,.z dpdq (T'(p) —aV,(q)) = - //qbl 2dpda [Vy(@))4 = ...

pPEX: pPEX:2
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and computing the integral, using that (1 + :c)% <1+ %:L’ + 322

=0 da@al +at V@) = ~catr - catr .
lal> %2
(74)

In the last step we used that [V,(q)]+ < 2747 SUP|x|=r ®HF(x) and that by the
hypothesis and Corollary [CT4
rsup & (x) < O, (75)
|x|=r
choosing D such that ore < 1.
Since T'(p) > 3a|p|? — a®|p|* we find

o //qpl » dpdq (T(p) — aVj,(q))

ir
pPEX:

Y

1
jal>4 dpda (5Pl = Vo(@) —50® [ [ . dpdap|’. (76)

1
5pI°<V,(a) 3IpI?<V,(a)

Computing the last integral we find

[ ] s dpdalpl’ < Cori2r sup o (x))% < Ca®r=%.  (77)
4

|x|=r
LpI*<V,(a)

While for the first term on the right hand side of ([[@), computing the integral
with respect to p, we get

—+ ol

dpdq (3p* - V,(q)) = —4r33 dq [V,(q)]

>1p2
lal> % la|>4r2

) R AC)

Hence collecting together (), (), (&) (@), [Z0) and the inequality above
we find

11

Tilla T(0) - Vol = ~ 54 [ ax (V00T - Cr - Cr F =
R3

= 1572

since ﬁOZ_% < r implies ﬁoa% < k3r. From the TF-equation that p satisfies
it follows that

2.2 5 _ _ 11
2 [ dx g% = [ G0V, 00 dx— oty - 0
= EM(p) + D(p) = Crtplll — Cr .
Hence from ([{0) and the inequality above we get using ([2) and ()

EATTY > Lo ' T([T(p)yF] - Cr T — Cr o |1

The claim follows since £4(yHF) < R by the result of Theorem EZ7 considering
as a trial density matrix v = 0. O
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LEMMA 4.13. Let N' € N and Za = k be fived, 0 < k < 2/m and Z > 1. Let
e; be the first N' negative eigenvalues of the operator a='T'(p) — cpf;)TF acting
on functions with support on {x € R3 : |x| > r}.

Given constantse',o > 0 there exists D < 4/5 such that for all r with 60Z*% <

r < D for which [8) holds for |x| <r, for all u € (0,1) and s < r we have

3 2 _ _3 _3 _
oz —(Eie [ @)t da- Cr S - Cut s
- q|>r
—C(1—p)"2r % —C(1 — p)s 2N/,
with C a positive constant.

Proof. Let f; be the eigenfunctions (normalized in L?*(R3, C?)) corresponding

to the eigenvalues e;, j = 1,.., N'. Let g € C§°(R3) with support in B;(0) and

define g,(x) = s~ 2g(x/s) for a positive parameter s, s < r. We then write for
€(0,1)

.
Zej S (F5. (@7 T (p) — @OV f;) = By + Ba,
Jj=1

where

Nl

Bi = > (i (1= ma ' T(p) — o™ « g2) ),
j=1
.

By = > (fj,(na'T(p) — 2™ + 02T x g2) f;).
Jj=1

We estimate these two terms separately. Considering for p, q € R? the coherent
states gP9(x) := e’P*g,(x — q) using (BIA) and ([BID), we find

B = gy [[(0-mam ) - 0™ Zug, ? dadp

NI
~-wat Y [ xR Laf) (). (78)
o Ure Jre
Estimating the error term as done in (B32)) and previous inequalities we get
N’ -
(=pa 3 [ [ txddl I Eas) ) < 1= s 2N
j=1

Since we are interested in an estimate from below and 9T (q) < 0 for |q| < 7,
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from ([F) we find

N
e [ (= wa ) 0T (@) D (5 97 dadp
jal>r =

—C(1 —p)s 2N'. (79)

We estimate now the first term on the right hand side of [@). Considering
only the negative part of the integrand and since Z (i g2 ]? < 1 we get

ﬁ//q»((l_”)a_lﬂ o Z|fw 9| dadp

> e [ e (0007 T0)— 60T () dpda
(1= ' T(P)<ey ™ (a)

Now we split the domain of integration in p as follows
peR :a~ (1 - W)T(p) < O (@)} = T4 U,

with 1,5 disjoint and ¥1 = {p € R : (1 — p)|p|?/2 < pOTF(q)}. We treat
these two contributions separately. Then

//Cl|>r, (1= o 'T(p) — ¢2"" (q))dpdq

pPEX2

OTF
z G //qb, J+dpdq =

and since in the domain of integration

20 @ < I < 12 0™ (@ (1 + 0?0 (@)

we get

C_o? /|q|>rd a (0™ (@)1 + 5 [0 (@)

(-t
_ﬁog(r 11 + mr 15)7 (80)

using Lemma EET0 in the last step.
Since V1 +12 > 1+ (1/2)t2 — (1/8)t*, we get

(2”)3//01\», —wa ' T(p) — ¢ (a))dpdg

pPEX)

Y

e //q\» = w3pl* = 7" (@) — §(1 = p)a’|p|*)dpda.

pPEX)
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The last term gives by Lemma EET0

@ [[., dpialpl! =% [ da (i @)k < Caley Tt
la|>r

pPEX:

(81)
While for the other terms computing the integral with respect to p, we get

iy //q|>r )31pI> — 7" (a))dpdg

pPEX,
— ()i ks /| e @) (52)
q|>r

For the term By using Theorem EXH and Remark B2l we find

5
By > —Cq(pu~ 3 ||[pOTF — OTF w0213+ il — 02T gl 12).

From the choice of g it follows that OTF — @OTF x g2 <V, — V. % g2 and the
term V,. — V,. % g2 is non-zero only for 7 — s < |x| < r + s. Hence by Lemma LY
and since s < r

o™ =02 g2 411

njotolon

§/ [Vr(x)—VT*gQ(x)]_%dxg Cr=8s, (83)
r—s<|x|<r+s

and similarly ||[pQTF — @OTF % g2] || < Cr~'4s. The claim follows from (),

(m)v (B:[Da (m) and (EE) using that 6004% < n%r_ 0

LEMMA 4.14. Let G, be the function defined in Theorem [Z33 and pH¥ (x) the
one-particle density of the density matriz yY defined in ([Bll). Let Za = k be
fized, 0 < k < 2/m and Z > 1.

There exists ag > 0 such that given €',0 > 0 there exists D < 1/4 such that
for all o < ag and r with 60Z_% < r < D for which @) holds for |x| <r, we
have

[V

;o — pOTF || < Crm s and

84
71/ GoOF P (x))dx < Cr 7, o ' Tx[T(p)yHF) < Cr7, (84)

with C' a universal positive constant.

Proof. The idea of the proof is the same as that of Lemma Bl In this case
we are interested only in the exterior part of the minimizer. Hence, instead
of considering the HF-energy functional we estimate from above and below
the auxiliary one £4, defined in (G2), applied on the “exterior part of the
minimizer” y1¥.

Step I. Estimate from above on E4(yHF). Let us consider v the density matrix

that acts identically on the spin components and on each as

v = ﬁ //1 Ilp q dpdq,
51P[2<epPTF (q)
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where j € {1,...,¢} is the spin index, Il  is the projection onto the space
spanned by hP9(x) = hs(x — q)eP* where hg is the ground state for the
Dirichlet Laplacian on the ball of radius s for 0 < s < r. By the OTF-equation
@8) and since uOTF = 0 (see Lemma EIT) we see that p.(x) = pOTF x| hs|?(x).
Moreover, by Lemma EET0

=30 = 54 [ (2T axeCs I (s)

Since [®HF], € L (R?), by [23, Lemma 8.5] for \' € (0,1) we may find 4 such

loc

that supp(p5) C {x: [x| > 1}, ps(x) < py(x) for x € R? and

Trl(—3A = ®77)3] < T(—3A = X7 @ )] + Ly / V()] dx

T
%<1

r
Y

+%(2§—/T)2 /x< p(x) dx. (86)

Since [p5 < [py = [pPTF < [x;pHF we may choose 7 as a trial density
matrix in Theorem B and we find for A, v to be chosen

EANT) <€) + R < Te[(—3A — 1F)7] + R + D(p3),

T

since  !'T(p) < i|p|?. Notice that R depends on A and v. From (&) it
follows that

E4T) < (=54 — xR )] + Ll/ Ve ()} dx
[x|< 1:;/
HaE [ mdrREDE). 6D
x|<i=%

From the OTF-equation (B8) and Lemma ELT0 we get

/ py(x) dx < / pOTF (x) dx < Cr3.
x| <15

2—X/
TN [x|< e vad

While since V;.(y) < Cr~=* (Lemma EEX) and is non-zero only for |y| > r

’

r
1—X/

2
3

Hence, from (BH) and (1) and the inequalities above we find choosing \' = r
) < HOEE [ 06 dx— [ Vi, () dxt O
R3 R3

+Cr T A R4+ D(ps) =....
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Here we used that A < 1/2 which follows by the bound on D. Since p5 < p,,
D(p5) < D(p,). Moreover by Newton’s Theorem D(p,) < D(pQTF). Hence
we get

< ETR™) + [ VG0 () () -+ O

+COr T 4 R. (88)

We study now the second term on the right hand side of ). Since p, =

pOTF % |hg|?, rewriting

[ VG0 ) =, (o) = [ 9T GOV ) = Vi ()

R3

Since s < 7, V;. is harmonic on |x| > r and pO@TF vanishes for |x| < r one sees

that the integrand on the right hand side of the equation above is non-zero
only for r < |x| < r + s. Hence by Lemma EJ

V(o)™ ) < g ) i < [ pOTF (x)V; (x) dx < Cr~"s.

R3 r<|x|<r+s

Choosing s = r3 we find from (BX) that

EA(,YHF) < EOTF(p9TF) +Or TR LR, (89)

s

It remains to estimate R. From Lemma BTl choosing A, v < 1/2 and D such
that ore’ <1 we find

(ﬁ + %)/ pHF(x) dx < Cr—5)\—2.
[x|>r(1=-A)(1-v)

By Lemma R (B3) and since A < 1/2 we get

/(1 N<x|< (q)?(ix)(x))% dx < CrTA,
r(l— <|x|<

T
1—X

and similarly
a3/ (@,%I(Fl_)\) (x))* dx < Cr~4),
r(1-N<|x|<55

since r > (BoZ -3 implies ar—3 < By 3k. Hence from the expression of R and
the boundness of tPe~?t for ¢t > 0, we find

R < Ex(YIF) £ Cr5A2 + Or " (90)
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We estimate now the exchange term. By the exchange inequality ([I5] or [23,
Th.6.4]) and proceeding as in ([24) we find by Lemma E] and Lemma T2

1
2

ex™) < € [ Gall" e+ OrE (a7 | Galol" (o))

< CaR+Car "+ Cr 3 (R4 T2,

Hence choosing g such that 1 — Ca > 1/2 for all a < ap we get from the
inequality above and (@)

IR<COr 23R4+ +Cr A2+ 0r "),

that gives
R<CEPA2HNTT). (91)

The second two inequalities in ([B4) follow from the estimate above and lem-
mas Tl and choosing A\ = 1/2 and replacing r with r/2.

Step II. Estimate from below on £4(yHF). Adding and subtracting D(pQTF)
and Tr[pQTF * ﬁ%{{F] we write

EAT) = Te[(a™'T(p) — M)y T+ 1o = oI = D), (92)

using that V,. = ®IF on the support of pHF. The first term on the right hand
side of ([@2) is estimated from below by the sum of the first N’ eigenvalues of
the operator a™'T(p) — 99T acting on the functions with support on {x :
|x| > r}. Here N’ denotes the smallest integer bigger than Tr[y!¥]. Hence by

Lemma T3 we find for p € (0,1) and s <7

3 5 _ _3 _3 _
EAIF) > (12, / (69T (@)F da— O Ssut - Cpt s

—C(1 - u)*%r*‘r’ -C(1- u)s*2</R3 pHF(x) dx + 1)

+p?™ = p G = D ™) = .

T T ’

Notice the factor g due to spin. Choosing D such that ore < 1, by lemmas £
and EET0 we find

/ p?F(x) dx < Cr~3 and / [(pTOTF(q)ﬁ dg < Cr".
R3 R3

Hence considering p < 1/2

3 3 _ _ _3 _3 _
> —225h /3[‘PSTF(Q)]J2F dq—Cr= 7 —Cr8su=2 —Cu3r5s
R

O3 [ pOTF — pHF 2 — D0

T

By the OTF-equation (@f) and since pOTF has support where pOTF > 0 we
find .
= EOTE (M) = Or TS 4 | p?T = 12
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2 2

choosing p = %r 5s3 ands=r".
Hence combining the inequality above with [Bd) and (@) we find

1pOTF — pHF|2, < Or TS £ CrOAT2 4 AT, (93)

We study now ||x;p''F — plIF||c. By Hardy-Littlewood-Sobolev inequality we

find

6 &
I = Al < g o™ -l <o [ o et ax) "L 9)
r<|x|<Ex

To estimate the last term in (@) we are going to use the second estimate in
&) that we have just proved. With ¥ defined as in ([0 we find by Hélder’s
inequality

/r§x§ . % dx < (/rswx\,pHF(X)% dx)lgo(/,«gxg - 1dx>%ﬂ

T—X xEY T—X
HF 5 % 2_75
(foa 007 ([ 1
eR\E r<Ix| <25

< COr oA 4 Or 5 A,
From the estimate above, [@3) and (@) it then follows
™ = o e < o™ = o lle + 1o = 0P e
<Cr it + Cr A 24 )2 4 C(rm T A2 42,

that gives the claim choosing A = r# o

4.3.3 ESTIMATE ON Asj

LEMMA 4.15. Let G4 be the function defined in Theorem [Z3. Let Zao = Kk
fized, 0 < k < 2/m and Z > 1.

There exists ag > 0 such that given €', > 0 there exists a constant D < 1/4
depending only on &' and o such that if @) holds for all |x| < D, then for all
a < ag

ofl/ Go(p"F (y))dy < C|x|™7 for all |x| < D,
ly|>]x|

with C a universal positive constant.

Proof. If |x| < BoZ~% we find by Lemma BT

04_1/ Ga(p™ (y))dy < a7 | Ga(p"(y))dy < CZ5 < C|x|7".
yI>[x| RS

While if D > |x| > foZ =3 the claim follows from the second estimate in

ED). O
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LEMMA 4.16. Let Za = k fized, 0</{<2/7r Z>1and0<p< 143

There exists og such that given €',0 > 0 there exists a constant D < 1/4
depending only on & and o such that for all a < «ag and for all v with
BoZ~ 3 <r <D for which @) holds for |x| <r, then for all x with |x| > r

3p

|As(r,x)| < C(|):|)1_127’_4+1w

with C' > 0 a universal constant.

Proof. We proceed similarly as in Theorem B33 By the formula for A3, Propo-
sition and Lemma T4 we get

OTF/(<,\ _ -HF ) )
A0l [ ) Py okt E (99)

By Holder’s inequality, Lemma EET0, the OTF-equation (EH) and B3) we find

pOTF( ) 21 1.1
/ Pr _Y) dy < Cr™ 7% |x|5k5. (96)
A(x| k) Ix -yl
Once again, to estimate fA(‘x‘ 0 % dy we have to proceed differently

than in 23, Lem.12.7] since pF is not in L3 (R?). We consider the following
splitting

+( )pHF(y) v — pHF(y) dy 4+ pHF(y) p
Al Xr \Y Ix —y| = ALk x— Y lyl>r x -yl v
(Ix[,k) [x—y|>R,|y|>r Ix—y|< (97)

for R > 0 to be chosen. By Hoélder’s inequality, Theorem EZ3 Remark 2221 ([B3)
and Lemma EET4] we get

P (y) .
dy < CaiR™ |x| sksr~ +C7“__|x| Sk5. (98)
AlxLk)  |x—y]
Ix—y|>R,|y|>r

It remains to study the second term on the right hand side of {@). Let v € R
be such that va < 2/7. We consider the density matrix vf/l‘; defined in (&)
with A = 1/2. From Theorem ZT0 it follows that for x such that |x| > r

— v 51
Tr[(a 'T(p) — jXBR(x)(-))’y?/FQ] > —C(v2R2 +v%a?).

-
Hence we find
HE P,y
V/ xf(Y)wdy < V/ /2 )dy
ly—x|<R Ix -yl ly—x|<R [X =¥

Tr[o ' T(p)yh] + C(v3 R? + v'a?)

IN
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and by Lemma ET4]

PHF (Y) 1 3 5l 2
/ () dy <Cv~lr 7+ C(v2R2 + v3a?). (99)
ly—x|<R |X - y|

Hence from (@3), @4), @) and @@3) it follows that

|As(r,x)| < Cv T+ CWiR? +1°02) + Cat R ¥|x|sksr™ 7
+OrF |x|FkY + Ok x| Er 8T,

So choosing v = 1/2(507“_1)% (that gives va < 2/m), k such that
o x5kt = k7Ux|72r 36, ie. k = |[x|"®r1 and R such that

— 4T x|12, Le. R=o2|x|"Tir 18

N
+
ool= —
sl

a%R’%|x|§1—52r
[As(r,x)| < C’(r_4+137_uu + |x|7ﬁr7%7ﬁa +r TR 4 |x|T127’*4*T18).

Finally since rla 5" < 50_1/@177“, the claim follows for |x| > r and p <
1/(109). O

4.4 THE INTERMEDIATE REGION

Here we prove the main estimate in Theorem [CLTd up to a fixed distance inde-
pendent of Z.

LEMMA 4.17 (Iterative step). Let Za = k fized with 0 < k < 2/w. Consider
w= ﬁ% and assume N > Z > 1.

Then there exists ag > 0 such that for all §,&',0 > 0 with 6 < &g, where dy is
some universal constant, there exists constants o, C<Iz$ > 0 depending only on
0 and a constant D = D(g',0) > 0 depending only on €', o with the following

property. For all o < ag and Ry < D satisfying that ﬁOZ_kT“ < Ré""; and
that @) holds for all |x| < Ry, there exists Ry > Ry such that
|5 (%) = g ()| < Cglx| =

x| x|
for all x with Ry < |x| < Ry.

Proof. Let D > 0 depending on o, &’ be the smaller of the values of D occurring
in Lemma EETTl and Lemma EET8 Given § > 0. We consider Ry < D satisfying
60Z*17TM < R(IJJ”S and such that (G4 holds for all |x| < Ry.

Set Rl = Ry~ and r = RE*%. Then we have o2~ 3 < foZ~ 5" <r < Ry < D
we can therefore apply Lemma EETT] and Lemma EET6 From (B7) we obtain
that for all x| > r and all a < g

1BHF (x) — @TF (x)| < Ofx|~4=%r¢ + c(@) ey

x| x|
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Since for Ry < |x| < R{, we have

x| < ﬂ < [x[°
X

and thus
[P (x) — @] (x)| < Clx| 7+ + CJx| A3 x| TR ),

Hence choosing dy sufficiently small there are C% and €2 such that the claim
holds. o

LEMMA 4.18. Let Za = k fized with 0 < k < 2/w. Assume N > Z > 1.
Then there exist universal constants ag, € € (0,4) and D,Cy > 0, D < 1/4,
such that for all @ < ag and x with |x| < D we have

[P (%) — L ()| < x|

Proof. We fix u = 11 49 as in Lemma EET7 Since p < by Theorem -

11 49’
we know that there exists

|Pf () — @5 ()] < C(L+ 67 + 572 + B°1x[) 37~ |x| =4+ (100)

We first show that we may choose § small enough such that if we choose R'*% =
BoZ 5" we have for all |x| < R that

[P (%) — QL (%)| < Cglx|~*F%. (101)
Let 8 > 0 be such that (62’1%)1” BoZ 5", ie. B0 = By 205" . Hence
from ([[) we find for all |x| < Bz—s"
|20 (0) — R ()l < C(L+ 5%+ 87 + B 1x|) 8> 5 278 5" x| 74F 2

and by the choice of 8 (and Gy < 1)

s 1—p

01 (x) — 0[N (x)| < O(1+ 2275 4 zith 5" 4 zr 5t (o 75t

_ i
7(2-9)5" 35 785" |x|~4+%,

Hence if § is small enough we may choose a universal constant C% such that
(@) holds.
Let now 0 be small enough so that we may apply Lemma EETAl This give
constant €5 and C} (depending only on §) and for all o, > 0 a constant
D < 1/4. Now choose ¢ = max{C}%,Cg} and ¢/ = min{a/2,e2}. Now o,&’
and D are universal constants. To prove the claim we shall prove that for all
x| <D

@1 (%) — L] (%)] < ofx| =4+ (102)
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We have to prove that D belongs to the set
M={0< R <1/4: Inequality (A holds for all |x| < R}.

We reason by contradiction. If this was not true then D > Ro = sup M and
in particular Ry < 1/4. From ([l and the choice of o and ¢’ it follows that
cither R > 1/4 or R € M. In the first case then Ry = supM = 1/4 > D
that contradlcts our hypothesis. On the other hand if R € M, then R1+5 >
RS = 3,Z~"5". It then follows from Lemma BT that there exists Ry eM
with R}, > Rpy. This contradicts also our hypothesis. O

4.5 THE OUTER ZONE AND PROOF OF THEOREM [[L11

The proof of Theorem [T follows directly from Lemma ELT8 and the following
result.

LEMMA 4.19. Let Za =k, 0 < k < 2/m. Assume N > Z > 1. Let D,e and
Cs be the constants introduced in Lemma [{-1§

Then there exist ag > 0 and a universal constant Cpy > 0 such that for all
a < ap and x with |x| > D we have

[Pl () — @l (%)] < Cr.

Proof. Here C;, i =1,...,6 denote positive universal constants. We write
TF HF
P+ W)
B o) — B8 o) < [0 ()~ O () + [ W) gy
D<|y|<|x| Ix -yl
(103)

Since ®1¥(x) — ®TF(x) is harmonic for [x| > D and tends to zero at infinity
we have by Lemma

@D (x) — @17 (x)| < sup [OF(x) — @L" (x)] < CpD ™. (104)
|x|=D

For the second term on the right hand side of ([[IJ) we write

TF HF
/ p(y)+p (y) dy
D<ly|<Ix]| Ix —y|

T HF
P (y)+p(y) 4 TF HF
< d — dy. (105
y

By Lemma BTl Lemma LTS estimate ([[3) and the TF-equation we find
[ 6w Ty < G0+ CoDAY (D) DS (106)
D<|y|
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It remains to estimate the first term on the right hand side of (IH). By
Holder’s inequality, estimate () and the TF-equation we get

TF
P (y)
/x—y\<D/4 |x —y| dy < 02(/
vI>D vi=p

To estimate the term with the HF-density we use Theorem EZIIL Let vHF be
the exterior HF-density matrix as defined in @l) with r = D/2 and X\ = 1/2.
Then by Theorem EZT0 with v = 8§D ~3

3
(0" (y))Fdy)" D < D74 (107)

_ vo 15
a” ' Tr[(T(p) - EXB%(x)('))’Yg%] > —Cy(D2v? + 1v'a?),
and thus
HF
PRy
/ b/2Y) dy < CsD*a” ! Te[T(p)vpys] + Ce DY,
|x—y|<D/4 Ix -yl

Here we use that D > 23,23 (for & < ap) and D < 1/4. By Lemma BT we
conclude

HF Py (¥)
/ b Z—Y gy S/ PR gy <C;D™*. (108)
x—yl<D/4 Ix—yl x—yl<p/a X =yl

The claim follows collecting together formula ([[3J) to formula [F). O

5 Proors oF THEOREMS [T, [CTR, [CT9 AnD [0

In this section we always assume the following: Za = k with 0 < k < 2/x and
N>Z>1.

Proof of Theorem [Tl Assume that a HF-minimizer exists with [ p"* = N.
Let p™F be the minimizer of the TF-energy functional of the neutral atom with
nuclear charge Z. Then for R > 0 to be chosen

= TFX X HFX_TFX < HFX -
N \x\<Rp (x) d +/|x|<R(p (x)—p " (x)) d +/|x|>Rp (x) dx. (109)

By Theorem [[TA we know that there exist universal positive constants
e, 00, Cayr and Cg such that for all @ < o and x € R?
|PHF (x) — T (x)| < Co|x|74 4 Cr. (110)

x| x|
Let Zy be such that Zpag = k. Then a < ag corresponds to Z > Zjy. Let us
choose R such that Co R™*t¢ = (). Then from (M), ((I0) and Lemma Tl
for all Z > Zy we find
N < / p ¥ (x) dx + 205 R3¢ + C(1 + CoRE)(R3 +1) < Z + Q.
|x|<R
The claim follows choosing Q = maX{Q, Zo+ 1}. O
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Proof of Theorem [LI8. Let p¥ be the density of the HF-minimizer in the
neutral case N = Z. We have

[ 060 -0 = | /|x|<R<pHF<X) — " (x))dx]

R
| [ dw(@lF (Ro) - OFF (Rw))
47 S2
§ C¢R73+E + CMRa
where in the last step we have used Theorem [T Notice that for Z sufficiently
big a < ag where g is the constant given in Theorem [LTA By the TF-
equation, Theorem we then find

2 2
31 2R3 CeR P —CyR < / pHF (x)dx
q |x|>R
427 4 —3+e
< 3 =5R 7 +CeR T + CuR,
q
from which the claim follows directly by the definition of HF-radius. o

Proof of Theorem [LI4. Since EUY(Z —1,Z) > EM"F(Z, Z) the ionization en-
ergy is bounded from below by zero. If Z is smaller than a universal constant
then we can also bound the ionization energy with a universal constant using
Theorem ZTT11

It remains to estimate from above the ionization energy when Z is larger than
a universal constant. We first construct a density matrix v such that Tr[y] <
Z—1. Let 0_ :=(1— 9?«(1—)0)% for r, A positive parameters and 6, defined in
Definition BEE2l We consider the density matrix v1F := §_~HFg_ where ~HF
is the HF-minimizer in the neutral case. By an opportune choice of r we will
then have Tr[y¥] < Z — 1. Indeed,

T[] = /]R pF (%) dx —/R Hf(lf/\)(x)pHF(x) dx < Z — / ‘ P (%) dx.
3 3 x|>7r

We now choose \ = % Let R > 0 be such that Cpy = CsR*+¢ where
Cu, Co, € are the constants in Theorem [CTA Then R is a universal constant.
We consider Z large enough so that §yZ ~3 < R where 0o is the constant in
Theorem [[T2A This gives that Z has to be larger than some universal constant.

For r such that 8yZ "% <r < R by Theorem [CT7 we find
|BF (x) — ®LF(x)| < 2Cs|x| 74T for all |x| < 7.

x| x|

Since [ pTF = [ pHF, by the choice of r and Lemma BTl we get

HE () dx = TF (%) dx TF (%) — pHF (%)) dx
/W” ) /Wp ) +/ (677 (x) — o ()

|x|<r

>/ p F(x)dx — 2Cer™3Te > Cr=2 — 2Cer™3%. (111)
|x|>r
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In the last step we used the TF-equation, Corollary [[T3 and that r > 5y Z -3,
Finally, it follows from ([[T]) by choosing r sufficiently small that f\x\>r PHF > 1

and hence that Tr[y"F] < Z — 1. We may choose r sufficiently small by taking
Z large enough. Notice that r can be chosen universally and so Z has to be
larger than some universal constant.

By the last estimate in the proof of Theorem B we find

£F (1F) < EF (1F) — £4(011F) + R,
with R and 4IF as defined in the statement of Theorem L1 Since EMF (vHF) >

EWF(Z-1,7) and ERF (4HF) = EH¥(Z 7) it remains to prove that —&4 (vHF)+
R is bounded from above by some universal constant. Here we use repeteadly
that 7 is a universal constant. By estimate @) we see that R < Cr~7 a
universal constant. To estimate from below £4(yHF) we first leave out the
kinetic energy term and the direct term since these are positive. Moreover,
since ®IIF is harmonic for |x| > 7 and tends to zero at infinity we see that

r r

.
sup ®F(y) + — sup |2} F (y) — " (y)l,

(I)HF (X) <
" lyl=r %] |y|=r

sup @, (y) <

|X| ly|=r o |X|

which is bounded by C’/|x|, C’ a universal constant, by Theorem [[T7 and
Corollary [CTAl It then follows that

C’ c’
EAG) =~ = =5 [ i,
: T Jix|>r
that is bounded from below by a universal constant using Lemma ETl O

Proof of Theorem[LZIl. Let ag be the constant appearing in Theorem [[LT7 and
Zy be such that agZy = k. The claim follows directly for Z < Zy since both
functions are bounded for |x| large, while for |x| small the functions are bounded
by a constant times |x| 7.

The case Z > Zj corresponds to o < ag and for such values of @ we can use the
result in Theorem [[T7l We separate the case small x, intermediate x and large
x. Once again, comparing with the proof in the non-relativistic case ([23]) we
have to do an extra splitting for small x.

By the definition of the mean field potential and Proposition we find

TF (1) _ SHF (5 TF ooy (_ L 1
#0000l < [ ) ()
P2

Since p™F is bounded in Lg—norm, we find using Holder’s inequality, Corol-
lary [CTH and Lemma Bl that

6TF (x) — P ()] < /

Ix—y|<s

]. ]. 1 7 1 3
HF L7 1 143
—— —Z)+C(s5Z Z .
p(y)(|x_yl S) (s5Z5 +s 22 722)

(112)
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For the integral with the HF-density we need to split the region where the
HF-density is bounded in L5-norm from the one where it is bounded in L3-
norm. Proceeding as in the proof of Lemma (from BH) to BD) replacing
the integrals on A(|x|, k) with integrals on |x — y| < s) using the results of
Lemma BTl we get with R € (0, s) to be chosen

4
3

+R3Z%). (113)

/ pHF(y)( ! —1) < C(Z%s%—l—R*%(aZ%)%—i-Z
x—y|<s |X_Y| s
Recall that Zo = £ is fixed. Choosing s such that Zss5 = Z3 (i.e. s = Z~3)
and R such that R-5Z = R2Z3 (i.e R = Z~3; notice that R < s) we get from
[T2) and (T3)

077 () — oM (x) < C(25 + Z6).

The claim follows from this inequality for x € R? such that |x| < 302 -5 for

v > 0. We consider v < ﬁ

If |x| > ﬁOZ_&T7 then proceeding as for very small x and as in the proof of
Theorem B3 up to inequality E3) we get for ¢ € (H'TW, %), I>tand R < By Z~"
| (x) — oM (x)| < C(SéZ% +s 27 L RRgs g 4 Z%(Bft)).

Here we have also used that Za is a constant. So choosing s such that $57% =
Z:3-1 (ie. s = Z273), R such that R-8Z1t16 16t = Z2(-1) (ie. R =

Z~6%2t) and optimizing in ¢ (i.e. t = 1+ 221) we obtain

" () — " ()| < 07557 (114)
Notice that ¢ > H'T”, R < s by the choice of t and that R satisfies the condition
R < BoZ7 ', 1 > t, for Z sufficiently big. The claim then follows from ([T4) for
x € R3 such that x|+ < 3oZ~ 3 for § < 3 Wefix § = 1.

We turn now to study intermediate x. Let D < 1 be such that Cj; < Ce D4+
with Cys, Cg, € the constants in Theorem [Tl Then for all x such that |x| < D
|<I>EC‘F(X) - @Ej(x” < 203 |x| 74T,

Moreover we choose 1120_ such that Lemma EETT holds. Let x be such that
BoZ~3 < |x|'T0 < DT with 0 < p < 6. We set 7 = |x|*#. Then 323 <
r < D. We write o™ (x) — """ (x) = ¢ (x) — 0P (x) + P T (x) — ¢"'F (x)
with OTF the mean field potential of the OTF-problem defined in Subsec-
tion =3l By the choice of 7 and D and LemmaBETTlwe get since |x| > r = |x|!T#

o™ (%) = P ()] < Clx| 70 (115)

for |x| > r with ¢ = (74 +/73)/2. For the other two terms we see

(pHF(X) OTF(X) _ / P?TF(Y) - X:F(Y)PHF (y) dy,

e x —yl
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and proceeding as for small x with the Coulomb-norm estimate Proposition

EX by Lemma T4 and inequality (@)

7 1
r—zts

1
S5
[0 () =T ()| < O S+

— +R i (ar )i4+v w2 R? +V3a2) .
rs S2

21
5 —

146
Choosing v = ﬁg’r%m, so that va < k < 2/m, s such that s5r—
P EtesT2 (i.e. s =r!T21) and choosing R such that the two terms where it

S—p
appears are equal (i.e. R = r2+9ﬁ; notice that R < s) we get
P17 (%) = 2P ()| < OO 4 1O,

)
since ar 314 is bounded and r < 1. Collecting together the inequality above
1
and ([[TH) and using that r = |x|1*# the claim follows for 3oZ~3 < |x|'T? <
)
DT, We fix w=24/2.
It remains to study the case of large x, i.e. |x| > DT with D, 4, i universal

)
constants. For simplicity of notation we fix the universal constant A := DT
We first notice that

TF( HF(

y)—p

y)d
Ix —yl

PP () — 6TF (x) = DI () — BTF (x) + / P .
ly|> x|

The difference of the first two terms is bounded by a universal constant for
|x| > A by the result in Theorem [[T7A To estimate the last integral we split it
as follows

/ P @) =P / P 4ot / ) 4
ly|> x| |x — y] - |)\()/_Iil)dl |x — y] M;l\i\l |x — y]

I< |x—

TF HF d )
+ /y|>|x|(” ) + 7" (y)) dy

Since |x| > A the third term on the right hand side is bounded by a universal
constant by Lemma Bl (for pt'F) and Corollary [CT3 (for pTF). We estimate
the first term by Holder’s inequality and Corollary[LTH We get a bound on the
second term proceeding as in (@) (using Theorem EZT0) and choosing v = %

and R = 1. We obtain

TF HF
/ pr(y)t+p (Y)dygc( “% 4 AT 4 o?).
ly|>]x |x —y]

|
[x—y|<1

Then there exists a universal contant A’ such that [pF (x) — TF (x)| < A’ for
|x| > A. O
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A TECHNICAL LEMMAS

ProoOF oF ([[H) By the definition of the function G, the inequalities in (IH)
are equivalent to the following ones

3t*min{2t,1} < g(t) — 8¢* < 2t min{2¢,1} for ¢t > 0. (A1)

As before we use the substitution ¢ = a(p/C)3.

The estimates in (AJ)) follow directly from the study of the function g separating
the cases t < g and t > %

PROOF OF REMARK Using the estimate on K given in ([H) we find

//x € 5,(8, ) K2la'Ix—yl)* dxdy
y € 2,:(0s, B1)

-1
e—o -yl

< 0 [f e s m) ooy o
¥ € S (B, 1)

< (16)2a4ealr(ﬁ3ﬁ2)4ﬂ/(ﬁ ; )p*de /z: s )dx,
I 3— P02 ™ 1,P2

since |x — y| > (83 — fB2)r. The claim follows computing the two integrals.

A.1 FOURIER TRANSFORM

In the present sub-section we present our notation for the Fourier transform
(as in [20]). Given f € L?(R3) we denote its Fourier transform by

F(p) = F(f)(p) = / P f(x)ix.

(2m)?
Let f,g € L*(R3). The following formulas hold:
L F(f*g)(p) = (27)2 f(P)§(P);
2. F(fg)(p) = (2m) 73 (f  9)(p);
3. if g(x) = e ** then §(p) = (21) 2 e~ IPI7/(4N);

4. |x[7* = w2 (D(%)! fOJrOO e~mXPANS —1d) for 0 < a < n (see [T4, page

Moreover,
(X0 = 2 [ L2ap

7 Jrs [k —p|2 T
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B LARGE Z-BEHAVIOR OF THE ENERGY

In [21] the author studies the large Z-behavior of the ground state energy for
problem (). In this work we are going to use the same construction in several
points (Lemmas Bl EETA Theorem B3 ....) and with, in certain cases, a
slightly different Hamiltonian. For convenience we repeat here the main ideas
of the proof. We do it as it is needed in the proof of Theorem since in
this case the proof is more involved. We remark that in our proof we use a
localisation less than in [2Z1]. Thanks to Theorem EZT0 and [24), Theorem 2.8]
it is sufficient to consider the region near the nuclei and the one far away from
the nuclei. There is no need for an intermediate region.

PROPOSITION B.1. Let Za = k be fixzed with 0 < k < 2/mw and Z > 1. Let
us consider P € R, with |P| > BZ=5" for B> 0 and p € (0,4/5). Let
Z >v >0 and R > 0 be such that R < $Z~'/4 for some l—gﬁ < l. Moreover,
let pTF denote the minimizer of the TF-energy functional of a neutral atom
with nucleus of charge Z. Consider the Hamiltonian

N
A4 1
=100 - )+

, (B2)
i=1 i<j - XJ|

acting on A, L*(R3; CY).

Then for all t € (X2 min{l, 2}) and ¢ € AL L2(R?), with |[¢]|]s = 1,

(W, Hpw) > € (") — C(5% + 57%)23 73,
with C' depending only on q and k.

Proof. Since ETF(pTF) = —¢gZ3 (see () to prove the claim it is sufficient to
show that the TF-energy gives a lower bound to the quantum energy modulo
lower order terms. In the proof we first reduce to a one-particle operator. Then
we localize the energy separating the contribution from the regions near the
nuclei from the contribution from the region far away from them. Finally we
study the contribution of each of these terms. The main contribution to the
energy is given by the region far away from the nuclei. This region will give
the TF-energy.

In the following, s = (3 —t)/4 (t < s < 2/3).

In the proof C' denotes a generic positive constant depending only on ¢ and «.
Reduction to a one-particle problem. We are going to estimate from below Hp
by a one-particle operator. This allows us to consider only Slater determinants
when minimizing the energy.

Let g € C°(R3), g > 0 be spherically symmetric with supp(g) C Bi(0)
and such that |g|lz = 1. Starting from these g we define ®4(x) :=

DOCUMENTA MATHEMATICA 15 (2010) 285-345



EXCESS CHARGE FOR PSEUDO-RELATIVISTIC ATOMS. . . 335

(8/(82%))~3¢2(8Z°x/3). Then by Newton’s theorem

lewle Z// XZ_Ix y(IXJ )dXdy:

1<J 1<)

1]1

and introducing p € LY(R?) N L3 (R?), p > 0, to be chosen

L / / (X, ®s(xi = %) = p()) (1, 8s(x —¥) = 2(y)

= dxdy
Ix —yl
+ Z/ / ()dxdy D(p // dxdy
R3 JR3 |X— R3 JR3 |X—Y|
1 ;
> zpms*m—D(p)—cng%@w-lz&. (B3)

In the last inequality we use that the first term on the left hand side of (B3)
is non-negative and that

CI)S CI)S ) 2 2
R3 JR3 |X—y| R3 JR3 |X—y|
CB2°19% 355

by definition of ®; and Hardy-Littlewood-Sobolev’s inequality. Hence

IN

N
Z v
Hp > “Ipp) — 2 - Y . o,
B M i e A=)
~D(p) = Cllg*IENB~" Z*. (B4)

Choice of the localization. The localization will be given by the following func-
tions x1, x2 € C§°(R?):

1 if x| < 1827, 1 if x—P|<ipz7t,
x1(x) = ) ‘11 i 2(x) := ) ‘11 _, (B5)
0 if x| > 38277, 0 if [x-P|>36Z
and x3 € C*(R3) such that 37 | x?(x) = 1 for all x € R3. Moreover we ask
that

VX1 0, VX200, Vs lloe < 2767127 (B6)

Here t is the parameter given in the statement of the proposition. Notice that
by the assumptions on R and P the functions defined above give a well defined
partition of unity of R3. Moreover, Bg(P) is a subset of {x € R3 : xa(x) = 1}.
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The localization in the energy expectation. We insert now the localization in
the energy expectation. As already observed, since we reduced the operator
to a one-particle operator in the energy expectation it is sufficient to consider
Slater determinants: i.e. ¥ =u1 A---Auy Wlth {u;}, orthonormal functions
in L2(R3,C%). We may assume that u; € H?> (R3,(C‘1) fori=1,...,N.

From (B4)) and Theorem Pl we find with ¢ = u; A+ Aun

3
> (i hxgui) = D(p) = Cllg? I3 NG~ 2°

N
<¢7HP¢> Z Z
i=1 j=1
N 3
- ZZ(Ui;Ljui)a (B7)

i=1 j=1

with p
. 1
b o) - 2 XBr(P) (") bprd, Bl

|- | |- =P

and L; is the operator (defined in Theorem Bl that gives the error due to the
localization in the kinetic energy. We first estimate this error term. Using the
definition of L; we find for all j € {1,2,3},i€ {1,...,N}

a2 _
(ui, Ljug) < WHvXngo/ Ko (o™ x = y|)|us ()||ui(x)| dxdy.
We then obtain by using Schwarz’s inequality

0SS L) < <o ZH wlt X / Ky~ |2l)dz < CNG~22%,
=1

=1 j5=1
(B8)
since from (I3

/Kg(a_1|z|)dz:a3/ K>(|2]) dz=47ra3/ 2Ky (t) dt = 672a°. (BY)
R3 R3 0

Collecting together (BZ) and ([BR) we get

2

3
(¥, Hpy) ZZZ Xty hjui) — D(p) —CB~2Z' 3 —C g~ 27444 (B10)

Here we used that N < 27 4+ 1, the choice of s and that we may choose g such
that ||Vg|3 < 2.

Near the nuclei. When j = 1 in the summation in the first term on the right
hand side of (BI0) we find

N

N
Z
Z(Xwi,hxwz Z xiui, (@~ T (p) — |.|)X1Ui),

=1
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since X g, (p)X1 = 0 by the choice of x1, and the term @4 p* ﬁ is non-negative.
Then by Theorem EZZT0 we find

N

_ A
Z(Xlui7hX1Ui) > Tra lT(p)_WX\x\<%ﬁZ—‘]—

> —CpY2Z8Y2 _ k272, (B11)

i=1

To estimate from below the term corresponding to j = 2 in the sum on the
right hand side of (BI)) we use [24] Theorem 2.8]. Here we need the result in
[24] (instead of Theorem EZIM) because of the presence of the two nuclei. Notice
that Theorem EZI0 can be extended to include also different nuclei. We have

N N

_ Z v
> (xoui hxaus) > > (xaui, (o 'T(p) — = — P \Br(P))X2Ui)
2 2 X kP
_ VA v
> Trfa 1T(P) - EX|x7P\<%ﬁZ*t - WXBR(P)L,
and by [24, Theorem 2.8] we get
N
75/2 74
Z(XQUi;hXQUi) > —CZz°2aY? - C/ (—5/2 +a3—4> dx
=1 1BZ-t>|x—P|>a x| x|
5/2 A
-C ( +a? ) dx
R>|x—P|>a |X*P|5/2 |X7 P|4
> —CrY222 - 0pYrz5/2t2 _ ok? 22 (B12)

Here we used that ¢t <[ and Za = &.
The outer zone. This region gives the main contribution to the energy. The
term in (BI0) that we still have to study is

N
> " (xsui, hxsui) — D(p) (B13)

i=1

We start by estimating the first term in (BI3) using coherent states.
We consider again the function g € C§°(R?) introduced at the beginning of the
proof and we define the function

9:(x) = (B/(82°)) % 9(82°x/) = B (x), (B14)

with s the same parameter as before. For simplicity of notation we write
V:=Z/|x| — p*1/|x|. Then

Z 1 ~ 1 Z
— =k Pk —=VxP;, — ZP,x — 4+ —.
| I x| [x|
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Since supp(gs) Nsupp(xs) = @ by Newton’s Theorem we find

N N
Z(XSUia hxsu;) = Z(X3um (@7 'T(p) = V &) xzui). (B15)
i=1 i=1
We consider the coherent states gP9 defined for p,q € R?® by
gP(x) = gs(x — @)e P,

1

The following formulas hold for f € Hz(R3,C)

f, f) = dp | dq(f,g>?) (989, f),
RS RS
(f,Vxgif) = (23r>3 IR3dp | daV(@) (£29) (629, /) (B16)
and
(f,T(p)f) g dp g dq T(p) (f,g2%) (659, f)
- [ ix [ daFBL ), (B17)
RS RS

where L, has integral kernel
2 —1
_ (0% 2K2(a |X_Y|)
Ly(x,y) = mws(x —q) — gs(y — a) W
Using these formulas we can rewrite ([BIH) as follows

N

Z(X3um (a™'T(p) = V x @) x3u;)

N .
_ / dp / da(T(p) ~ aV(@) 30 Y (xsud g2

j=1i=1

N
a3 [ ax [ danani v ) B18)

Here uf is the j-th spin component of u;. We start by estimating the error
term, the last term on the right hand side of (BIS). From the definition of Lg
it follows

-2
« _
Lo(%,y) < 5 Vo5 Z Koo 5 = ¥1) (Xeupp(0.) (X = @) + Xsupp(g) (Y — @),

and by the definition of the function g;
[ Lalxy) da < gl a 257225 Ka(a ™ ix - )
R
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By the estimate above, Schwarz’s inequality, ([B3) and the choice of s we find

N
a Yy / dx / dq xsui(x)(Lqxsu)(x) < C||Vg|2,872Z%> 12N, (B19)
R3 R3

It remains to study the first term on the right hand side of (BIS). In order to
get an estimate from below we consider only the negative part of the integrand.
Moreover, since if |q| < 8Z /8 then supp(x3g??) = 0 (because Z~* > Z~*
since s > t) we find

q
1 -1
ot [ do [ da(T(p) V(@) 30 vl g2

j=11i=1

> q

CTaEEs dp (T(p) —aV(q)) = ..., (B20)

1 / dq i
la|>iBZ-¢ T(p)—aV(q)<0

where we also use that Zf\;l |(xsul, g7 Q)2 < 1 (Bessel’s inequality). We split
now the integral as a sum of two terms

= b at //%|p|247(q)§0 dqdp (T(p) — aV(q))

lal>g62~"*

b0 [ fopsariere dadp (T0) V@), (821
lal>£827"

We consider these two terms separately. The second term in (B2l gives a
lower order contribution. Indeed

el //%|p|22a‘7<q>2T<p> dqdp (T(p) ~ aV(a))

la|>ipBz~"

dadp [V(@)}+ = ...,

Y

__q
(2m)? / jﬁmq)ﬁwmq)} )2 2[p|> [V (@)]+)?
lal>382~"

and computing the p-integral

2

. _C/qzégzt da V(@] (1 + SV (@)

Nl

)=

Using (1+ )% <1+ 32+ 322 and that [V(qQ)]+ < Z/|q| we get computing
the integral

= 00 [ sy da V@0 + LIV (@)

_Cﬁ_% I§}2Z3/2+t/2 — C/@4ﬁ_%21/2+3t/2.

(B22)

Y
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Here we use that Za = k.
Since V1 +z > 1+ /2 —23/8 for all z > 0, we have

T(p) > as|p|* — % |p|*,

and, for the first term on the right hand side of (BZI]), we obtain

3550 o vrqeo dadp (T(0) ~ V(@) >
lal>5B827"

@y //%Ipﬂwq)sodqdp (3lpf° = za®Ip[* = V(@) = ...
lal>162~"

Y

Computing now the integral with respect to p, we find
5 ~

—-is [ W@ida-car [ (V)
la|>£82-* lal>£82Z—¢

We see that the second term on the right hand side of ([B23) gives a lower order
contribution since it is of the same order as the one in (BZJ).

Collecting together (BI0), (BID), (BT, (BIQ), (BIF), (BI9), (B22) and (B23)

(W, Hpw) > —C(5%+ 5225212 _ 2 /W[V(q)]

dq. (B23)

—+ ol

dq — D(p). (B24)

—+ ol

Here we used also that N < 2Z + 1, the choice of s and that ¢t < 3/5.

Now we choose p = pTF the minimizer of the TF-energy functional of a neutral
atom with Coulomb potential and nuclear charge Z. Hence p'F satisfies the
TF-equation

2\2 TR, \2 -
3(5)° 0 ()7 = V)l
since V is the TF-mean field potential. Notice that here we use that the
chemical potential of a neutral atom is zero. By the choice of p from the
TF-equation it follows from (B24) that

wlo

N LA YCOLY VA

q
TF
rs ||

5TF(pTF) o C’(ﬂ% + 6—2)25/2—t/2 )

The claim follows. O

PROPOSITION B.2. Let p™F be the minimizer of the TF-energy functional of a
neutral atom with nuclear charge Z. Let Za = k be fized with 0 < k < 2/7
and Z > 1.
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Then there is a constant depending only on k and q such that for all {u;}}., C
Hz(R3;CY) orthonormal in L2(R3) we have

N
> (i, (07T (p) — ")) — D(p™T) > £TF (pTF) — 02*F%

i=1
with D(-) = D(-,-) the Coulomb scalar product.

Proof. Since ETF(pTF) = —¢uZ7 (see ([[F)) to prove the claim it is sufficient to
show that the TF-energy gives a lower bound to the quantum energy modulo
lower order terms. In the proof we localize the energy separating the contribu-
tion from the region near the nucleus to the one far away. The region far away
from the nuclei will give the TF-energy.

In the proof C' denotes a generic universal positive constant.

Choice of the localization. The localization will be given by the functions y; €
Cs°(R3) and ya € C*°(R3) such that: 0 < x1,x2 < 1, x3+x% =1in R3,

1 if x| <2273/,
xalx) = { 0 if [x] > 32735, (B25)

Moreover we ask that
Hle”oovHv)@Hoo < 2273/5, (B26)

The localization in the energy expectation. We insert now the localization in
the energy expectation. From Theorem Bl we find

(us, (07 'T(p) — ¢ F)u;) — D(p™) (B27)

WE

i=1

=

2 N 2
> (Guis (@7 T(p) — ¢ )xgui) = D) — a7t (wi, Ljug),

1j=1 i=1 j=1

Y

2

with L; is the operator (defined in Theorem ETl) that gives the error due to
the localization in the kinetic energy. We first estimate this error term. Since
N <2Z+1 we find as in (BY) that

N 2
ZZ ui, Liug) < CZ%5N < Cz*+/5. (B28)

Near the nucleus. Since

N
> Gaw, (@' (p) — ¢ )xaws) > Trla ' T(p) — 0" Xjxj<az-2/5) -

i=1
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by Theorem IO with R = 3Z3/5 we find

N
Z(Xlui7 (o 'T(p) — o™ )x1uw) > —C 25 — Ck2 22, (B29)
i=1
Here we use that Za = k.
The outer zone. This region gives the main contribution to the energy.
Let g € C§°(R3), g > 0 be spherically symmetric with supp(g) C B1(0)
and such that |lg]lz = 1. Starting from these g we define ®z(x) :=
(Z73/%)=3¢%(xZ>/%) and

g2(x) == (Z273/%)" 3 g(xZ2%/%) = B2 (x).

Since supp(gz) N supp(xz2) = by Newton’s Theorem we find

N N

D (i, (@7 T(P) = ™ xaws) = Y (xats, (7 T(p) — @™ % B)xous).
i=1 i=1
(B30)
We consider the coherent states gg’q defined for p,q € R? by

95%(x) = gz(x — q)e” P
Using formulas (BIf) and ([BIZ) we can rewrite (B30) as follows

N
> (xeui, (@' T(p) — ¢ * g7)xaw)

N
e [ dp [ da(T(e) o™ (@) 33 e g

j=1i=1

N
- ;/m dx /Rg dq x2ui(x)(Lgxaui)(x), (B31)

Here ug is the j-th spin component of u;. We start by estimating the error
term, the last term on the right hand side of (B3)). We find as in (BIJ) that

N
o1 [ ix [ daNanB(Laxau)(x) < CIVgILZN. (B32)
=1 /R* JR3

It remains to study the first term on the right hand side of (B31)). In order to
get an estimate from below we consider only the negative part of the integrand.
Moreover, since if |q| < Z73/% then supp(x295?) = 0 we find

q N
(271r)3 ot / dp dq (T (p) — Oé(,D Z Z I( XQuz,gZ
R? R? j=11i=1
2 (2@3071/ dq dp (T(p) — ap™(q)) = ..., (B33)
la|>Z—3/5 T(p)—apTF(q)<0

DOCUMENTA MATHEMATICA 15 (2010) 285-345



EXCESS CHARGE FOR PSEUDO-RELATIVISTIC ATOMS. . . 343

where we also use that Zfil |(xzu, gg’Q)F < 1 (Bessel’s inequality). We split
now the integral as a sum of two terms

50 [ [ g0 dadp (2(0) — ™ (@)
la|227°/°

@0 [ s dadp (T(6) — 0™ (@), (B31)

la|>2z—3/°

We consider these two terms separately. The second term in (B34l gives a
lower order contribution. Indeed

#a_l //%IplzzawTF(q)ZT(p) dadp (T(p) — o™ (a))

la|>2—%/%
> ——‘1—3// , ; dadp [p™T (q))+ = ...
= @0 [ Je?[eTF +200 1) 2 2 pl> (200 T (@)]4) 2 ’
lal>z~%/°

and computing the integral in p

3 [0}
= da [¢™ (@) ((1+ =
jal 2235

Using (1+2)% <1+ S+ 222 and that [p™F (q)]4+ < Z/|q| we get computing
the integral

—+ N
—_
_|_

_Ca? / da [
lq|>Z-3/5

> —Or2Z%2 5 — OKiZ5.

8 ! (B35)

Since V1 +z > 1+ /2 —23/8 for all z > 0, we have
T'(p) > azlp|* — a’glp[*,

and, for the first term on the right hand side of (B34)), we obtain

(23‘_)3 a~! /\/%|p|27<pTF(q)SO dqdp (T(p) - aSDTF(Q)) >
la|>z~%/°

@5 [fope gz dadp 1B~ el ™ (@)
la|>z=3/%

Y

Computing now the integral with respect to p, we find

3 5 ;
=i / o™ (q)]2 dgq — Ca? / (" (@))% dq.  (B36)
la|>Zz—3/5 la|>2z—3/5

DOCUMENTA MATHEMATICA 15 (2010) 285-345



344 ANNA DALL’ACQUA AND JAN PHILIP SOLOVEJ

We see that the second term on the right hand side of (B36) gives a lower order
contribution since it is of the same order as the one in (B3H).

Starting from (B24), by (B23), (B29), (B32), (B33) and (B34) we find

N
> (ui, (@' T(p) = ¢ )wi) — D(p™™) (B37)
i=1
3
> _C(Z2+1/5 + 72 + Z271/5 + Z7/5) _ 1252_7r(12 /RS [(,DTF(Q)]_% dq — D(pTF).
The result follows from the TF-equation. O
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