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ABSTRACT. We determine a finite set of representatives of the set of
local solutions in a maximal lattice modulo the stabilizer of the lattice
in question for a quadratic Diophantine equation. Our study is based
on the works of Shimura on quadratic forms, especially [AQC] and
[IQD]. Indeed, as an application of the result, we present a criterion
(in both global and local cases) of the maximality of the lattice of
(11.6a) in [AQC]. This gives an answer to the question (11.6a). Asone
more global application, we investigate primitive solutions contained
in a maximal lattice for the sums of squares on each vector space of
dimension 4, 6, 8, or 10 over the field of rational numbers.
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1 INTRODUCTION

In this paper we study quadratic forms over global and local fields of charac-
teristic zero, i.e. over number fields and their p-adic completions. Let F' be
a field of one of these two types. We let g denote the ring of all integers in
F (in both global and local cases). We denote by p the maximal ideal of g
in the local case. Throughout the paper we mainly follow the notion and the
notation in Shimura’s book [AQC] and the paper [IQD]. We denote by V an
n-dimensional vector space over F. Let ¢ : V x V — F be a nondegenerate
symmetric F-bilinear form. We denote by ¢[z] the quadratic form ¢(z,z) on
V. By a maximal lattice L in V with respect to ¢, we understand a g-lattice L
in V, which is maximal among g-lattices on which the values p[z] are contained
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in g. For simplicity, when ¢ is fixed on V, we will often refer to a maximal
lattice in V, omitting reference to the ¢ needed to define it. All results in the
paper concern only maximal lattices in V. Let SO¥ be the special orthogonal
group of ¢. In this paper we consider the set of the solutions of the quadratic
Diophantine equation ¢[z] = ¢ in L, that is

Llgl={z € L | ¢[z] = q},

and
Lig,b] ={z € V | pla] = q,¢(z, L) = b},
where ¢ € gN F* and a fractional ideal b of F'.
Assume now that F is local, put C(L) = {y € SO¥ | Ly = L}, and take h € L
such that ¢[h] # 0. It was shown by Shimura that there exists a finite subset
A of SO? such that
Llp[a]] = | | haC(L)

a€A
([AQC, Theorem 10.3]) and

#{L[q,b]/C(L)} <1ifn>2

([IQD, Theorem 1.3]). Note that [AQC, Theorem 10.3] is true even when L is
not maximal. In Theorem 3.5 we shall obtain, using the proof of [AQC, Theo-
rem 10.3], an explicit complete set {ha},ea of representatives for L{p[h]]/C(L).
Also, we show that
Liglh]] = L[p[h], 2~ p7#lhD] if ¢ is anisotropic,
= L]Z.Ti‘g[h]) Lp[h],271p?] if ¢ is isotropic,
with the value 7(p[h]); see Theorem 3.5.

As a result of this theorem we prove Theorem 5.3: Suppose F is local and
n > 2. Then

LN (Fh)* is maximal in (Fh)* if and only if h € L{p[h], 2 p7 ¥

for h € L such that @[h] # 0. Here (Fh)* = {x € V | p(z,h) = 0}. We also
obtain the global version of the maximality of the lattice L N (Fh)* in (Fh)*
in Theorem 6.3. This theorem answers the question raised in [AQC, (11.6a)].

As a global application of Theorem 3.5, in Theorem 7.5 we give the criterion
of the existence of solutions contained in L[q, Z] and L|[q,27'Z] in both cases
when ¢ is a squarefree positive integer, by taking V. = QL (4 < n < 10, n
even), the sums of squares as ¢, and a maximal lattice L in V. It is known
that L[g] = Llg,27'Z] U L[q, Z]; see [AQC, (12.17)]. For example, when n = 6,
the set L[g,Z] = 0 if and only if ¢ — 1 € 4Z. When n = 10, the genus of L
consists of two SO¥-classes L1p50% and ASO? (cf. [CGQ, §3.2]). In this case,

L e L1pS0%,q=1o0r q—3€4Z; or

L[g,Z] =  if and only if
l9.2] = 0 if an Onyl{LEASOW,qBEALZ.
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We summarize the contents of the paper. In Section 2 we recall the notion
of Shimura [AQC] and [IQD] and introduce the basic facts of a local Witt
decomposition with respect to ¢. In Sections 3 through 5 we treat local cases.
In Section 3 we introduce the result obtained from the proof of [AQC, Theorem
10.3] and state the first result. In Section 4 we prove Theorem 3.5. In Section
5 we shall give a criterion of the maximality of the lattice L N (Fh)* in (Fh)t
in the local case. In Section 6 we prove the global version of Theorem 5.3. In
Section 7 we prove Theorem 7.5.

I would like to express my sincere thanks to Professor Koji Doi, who read the
manuscript and made several corrections and comments. I wish to thank Dr.
Manabu Murata for useful suggestions during the preparation of the paper.

NOTATIONS AND CONVENTIONS As usual, Z (resp. Zj) is the ring of rational
(resp. p-adic) integers, Q (resp. Qp) the field of rational (resp. p-adic) num-
bers. In this paper we consider the base field F' in two cases. One is a global
field and the other is a local field. When we do not need to specify the case of
F, we call it only “a field”.

If R is an associative ring with identity element, then R* is the group of units
of R. If K is a finite algebraic extension of a field F, then Dy, denotes the
relative discriminant of K over F'. Let 0, r be the different of K relative to
F.

If F is a local field, then for x € F'*, put

1 if Jx € F,
&(z) = ¢ —1 if F(y/x) is an unramified quadratic extension of F,
0 if F(y/z) is a ramified quadratic extension of F’

as in [NRQ, (3.3.1)].

If F is the field of quotients of a Dedekind domain g and V' an n-dimensional
vector space over F', then by a g-lattice in V', we understand a finitely generated
g-module in V that spans V over F. In particular, if a is a g-lattice in F, we
call a a g-ideal of F. We write dimp (V') for the dimension of V over F. We let
GL(V, F) denote the group of all F-linear automorphisms of V. If R = F or g,
then we write R} for the ring of all m x n-matrices with entries in R and let
GLn(R) = (Ry)*™.

If X is a set, then #X denotes the cardinality of X. If X is a disjoint union
of its subsets Y1, -+ ,Y,,, we write X = |, Y; or X = Y1 U---UY,,. Fora
subgroup H of a group G, we let [G : H] = #(H \ G).

We denote by d;; Kronecker’s delta. For a real number a, we let [a] denote the
greatest integer not greater than a.
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2 PRELIMINARIES

2.1. Let F be a field and we consider the pair (V, ) as in the introduction.
Define

SO? (V) ={a € GL(V, F) | det(a) = 1, p[za] = ¢[z] for all z € V'}.

We understand that GL(V, F') acts on V on the right. Let po = [p(zi, z5)]} ;-
for an F-basis {z;}?_; of V, then ¢y € GL,(F) such that ¢o = *¢g. Define the
discriminant of (V) by

(2.1) 8() = 6(V,p) = (=1)" "D/ det(ip0) F <2,

Let A(V) = A(V, ¢) be the Clifford algebra of ¢ (cf. [AQC, Chap. I Section 2]).
We say that (V7, 1) is isomorphic to (Va, p2) if there is an F-linear isomorphism
f of V1 onto V4 such that ¢;[x] = @a[zf] for any = € V;. If W is a subspace
of V, then we always consider (W, ), where ¢ is the restriction of ¢ to W
(Y[z] = ¢[z] for z € W).

For a g-lattice A in V', put

(2.2) A=AN={zeV|pA) c2 g},
C(A) ={y€SO?(V) | Ay= A}

By an integral lattice L in V' (with respect to ¢), we understand a g-lattice L
in V such that o[z] € g for every z € L. We call L maximal (with respect to
) if it is maximal among integral lattices in V. We note that L C L when L
is an integral lattice in V.

2.2. Here we assume that F'is a local field and L is a maximal lattice in V with
respect to ¢. Considering the maximality of L, we have a Witt decomposition
by [AQC, Lemma 6.5];

(2.4) V=243 (Ffi+Fe), L=N+Y(afi+ge),

i=1 i=1

where

(25)  pleies) = o(fi, f) =0, @lei fj) =270y,
(2.6) Z=A{z€V |ple,z)=p(fi,z) =0for all i},
(2.7) N={ze€Z| ¢[z] € g}.

Here the restriction of ¢ to Z is anisotropic and N is a unique maximal lattice
in Z by [AQC, Lemma 6.4]. We say that Z is a core subspace of V' with respect
to ¢. Until the end of Section 5, we fix these decompositions. Put ¢t = dimp(Z)
then n = 2r +t. We have t < 4 by [AQC, Theorem 7.6(ii)]. We call ¢ the core
dimension of (V, ¢).
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2.3. We introduce here the basic notions of (Z,¢) and of N, which play an
important role in this paper. Note that we use the same letters ¢ and ¢, for
simplification, in the following different cases (I) (2.10), (II) (2.13), and (III)
(2.15).

(I) Assume t =1 (cf. [AQC, §7.1 and §7.7(I)] and [IQD, §1.5(A)]). Take g € Z
such that

(2.8) N =gg
and put
(2.9) c = lgl.

Then Z = Fg and ¢[zg] = ca? for x € F. Furthermore we obtain ¢ € g* (resp.
cg=9p)if 6(¢)Ng#0D (resp. 6(p) Ng=10) by (2.7). Put

(2.10) cg = p° with 6§ € Z.
By (2.2) and (2.8), we easily see that
(2.11) N =2"1p 9.

(II) Next suppose t = 2 (cf. [AQC, §7.2 and §7.7(11)]). We can take g1,92 € Z
such that Z = Fig1 + Fgs and ¢(g1,¢92) = 0 by [EPE, Lemma 1.8]. Put

(2.12) b= ¢[g1] and ¢ = p[ga].

Put K = F + Fg192 in A(Z). Then K is a quadratic extension of F, which
is isomorphic to F(v/=bc), Z = Kga, and [zgs] = cNg,p(xz) for z € K. We
may assume ¢ € g~ or c¢g = p. Moreover when K is a ramified extension of F,
we can take ¢ € g*. Then by (2.7) we have N = tgy if K is either unramified
or ramified, where t is the valuation ring of K. We put

(2.13) cg = p° with é € Z.

(IIT) Suppose t = 3 (cf. [AQC, §7.3 and §7.7(III)] and [IQD, §1.5(B)]). There
exist g; € Z such that Z = Fg1+ Fgs+ Fgs and (g;,g;) = 0if ¢ # j by [EPE,
Lemma 1.8]. Put

(2.14) ¢ = ¢[g1]elg2]elgs]-

Then we can take ¢ € g* (resp. cg = p) if 5(p) Ng # 0 (resp. 5(p) Ng = 0).
We put

(2.15) cg = p° with § € Z.

Put ¢ = g19293, T = Fg192 + Fgags + Fgsg1, and B=F + T in A(Z). Then
B is a division quaternion algebra over F' and T' = {z € B | x +z* = 0}, where
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¢ is the main involution of B. Moreover we have Z = T'¢ and ¢[z(] = cxa* for
x € T. Then by (2.7),

(2.16) N=(TnP°)K,

where P = {z € B | zz* € p}. By [AQC, Theorem 5.13], there exist an
unramified quadratic extension K over F' and an element w € B such that
B = K + Kw, aw = wa* for each a € K, and w? € ng*. Here 7 is a prime
element of F. Let v be the valuation ring of K. There exists u € t such that
vt = glu] and v —u* € v* by [AQC, Lemma 5.7]. Put v = uw — u*. Then
T=Fv+ Kw. For a,a € g and b, 3 € t,
(2.17) pllav + bw' =) = —c(a®v® + w72 N (b)),
(2.18)

Pl(av +bw'2)¢, (av + fw'=2)0) = —27 e(2a00” + WP Trge p (b3")).

From (2.16) and (2.17),

(2.19) N = (gv + w™2)¢ = (gv + gw' ™2 + guw!~20)(.
From (2.2) and (2.19),

(2.20) N — (2*113’51; + w1

Put Trg/p(x) = 2 + 2* and Ng,p(x) = zz* for x € B.

(IV) Finally assume t = 4 (cf. [AQC, Theorem 7.5 and §7.7(IV)]). There exist
a division quaternion algebra B over F' and an F-linear isomorphism v : B — Z
such that plzy] = za* for € B, where ¢ is the main involution of B. Then
N = 9. Here O is the unique maximal order of B.

3 A COMPLETE SET OF REPRESENTATIVES FOR L[q]/C(L)

Until the end of Section 5, we assume that F'is a local field and L is a maximal
lattice in V' with respect to . In this section, we first introduce the facts
obtained from the proof of [AQC, Theorem 10.3]. After that, we state our first
main theorem.

3.1. We suppose that V and L are represented as in (2.4). If r > 1, put
M =N+, (gfi +gei). We consider M = N if r = 1. Then

(3.1) L=gfi+M+ge
for every r > 1. For 0 < i€ Z and ¢ € gN F*, put
(3:2) Xi(q) ={z € M| ¢lz] —qep'}.

Note that X;(q) D Xi+1(q). Hereafter we take a prime element 7 of F' and fix
it.
We obtain the following theorem from the proof of [AQC, Theorem 10.3].
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3.2 THEOREM. (Shimura) Let the notation be as above. Let h € L such that
wlh] # 0 and v € Z such that plhlg = p¥. Put C = C(L) in the notation of
(2.3). Let t, e1, and f1 be as in §2.2.

(1) Suppose r = 0. Then

hCU (—h)C, C={1} ift=1,

Llelhl] = {hC ift>1.

S

(2) Suppose n = 2r = 2. Then L[p[h]] = |I/_, (7" f1 + [h]7~"e1)C.
0

(3) Suppose n > 2, r >0, and M[plh]] = 0. Put
(33) ko = min({k € Z | Xi(plh]) = 0).
Then
el = U WA+ el - eblelc:

i=0 beX,(¢[h])/piM

Here b runs over all elements of X;(¢[h])/p*M.
(4) Suppose that n > 2, r > 0, M[p[h]] # 0, and that there exists a finite subset
B of M[plh]] such that M[p[h]] = UpepbC(M). Then

Liel=J U  (+ye)C

bEB yeg/20(b,M)

3.3 LEMMA. Let the notation be the same as in Theorem 3.2. We let q €

gN E>*. Assume r > 2. If there are a finite number of elements xqg, -,z of
M such that
(3.4) Mlq] = Ul_qx; C(M) and p(z;, M) = 27 1p",

then we have Lg] = UT_yz;C and p(z;, L) = 27 1p".

Proof. From (3.4) and Theorem 3.2(4),
(3.5) Lig=J U @i+yec.
i=0yeg/p’
We fix 0 < i < 7. By (2.5), (2.6), (3.1), and (3.4),
_ 27t if y € p,
o(zi +yer, L) = oz, M) +2 yg = ¢ : ;
27lyg ify ¢y’

From this and [IQD, Theorem 1.3],

Llg,27 9" ifyeyp’,

(3.6) (zi +ye1)C = Llg, p(xi +ye1, L)] = {L[q 271yg] ify ¢ p'.
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For y € g such that y ¢ p?, if yg = p? then 0 < j < i — 1. Thus we see that
Uyeg/pi(zi +ye1)C = Ui_oLlg,27'p’] and L[g,27'p"] = x;,C by (3.6). From
this and (3.5) we obtain

Lig = L|_| L[q72‘1pj]] = Zlg. 27 = | wic:

i=0 Lj=0 i=0

Clearly ¢(z;, L) = 27p* by (2.5), (2.6), (3.1), and (3.4). This completes the
proof. O

3.4 LEMMA. In the Witt decomposition of V' of (2.4), let N be as in (2.7). Let
q be an element of gN F* and & as in Notation. Let t and c be as in §2.2 and
§2.3, respectively. Then we obtain the following assertions:

(1) If t =1, then N|q] # 0 if and only if £(cq) = 1.

(2) Assume t =2. Let K, v, and 0 be as in §2.3(I1). Let v € Z such that

qg = p”. Then Nq] # 0 if and only if c™1q € Nk r(t). Moreover if K is
unramified over F, then this is the case if and only if v =6 (mod 2).

(3) If t =3, then Nq] # 0 if and only if £(—cq) # 1.

(4) If t = 4, then we have N|q] # 0 for all g € gN F*.

(5) Let L be a mazximal lattice in V and r as in (2.4). If r > 0, then we have
Lig) # 0 for all g € gN F*.

Proof. We may assume that:

ift=1,then Z = F, N =g, and ¢[z] = cz? for x € F}

if t =2, then Z = K, N =, and p[r] = cNg/p(x) for z € K;

ift=3,then Z=T, N =T NP, and p[z] = cNp/r(z) = —ca? for x € T
ift =4, then Z = B, N =9, and p[z] = Ng,p(x) for x € B

in (2.4); see §2.3. Then (1) and the first statement of (2) are trivial. We prove
the second assertion of (2). Assume that ¢t = 2 and K is unramified over F,
then 7t = q and N, p(t*) = g* by [BNT, Chapter VIII, Proposition 3]. Here
g is the maximal ideal of r. From these, we obtain the second assertion of
(2). Assume t = 3. Noticing that B is division, the “only if”-part of (3) is
immediate. If {(—cq) # 1, then F(y/—c~1q) is a quadratic extension of F,
and hence there exists z € B such that z ¢ F and 22 = —c !¢ by [AQC,
Proposition 5.15(ii)]. We easily see that z € T'NB~%, and hence N[q] # 0.
Assume t = 4. Then we see that Np,p(9) = g from [AQC, Theorem 5.13] and
[AQC, Proposition 5.15(i)]. This implies (4). Finally we prove (5). Assume
r > 0. Since L can be represented as in (2.4), we have f; + ge; € L[q] for every
q € gN F* with e; and f; in (2.4). This completes the proof. O

Now, our first main result in this paper can be stated as follows:

3.5 THEOREM. Let L be a mazimal lattice in V and put C = C(L) as in
Theorem 3.2. Let £ be as in Notation. Let ¢ € gN F* and v € Z such that
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qg = p¥. Let k € Z such that 2g = p*. Letr, t, e, fr, and N be as in §2.2.
For0<i€Z and x € N, put

q — ¢lz]

Tt

(3.7) hiz=z+ ey, kiw= T fr+x+ er, Ui =1 fr + qn e,

Then we have

(3.8) Liq] = |_| uC =

ueER

Lig,27'p7(@)] ifr=0,
LT Lig, 27" ifr> 1.

Here the set R and the index 7(q) are defined as follows:
(i) Supposet =0 and r > 1. Then

_ {61};/:0 ZfT = 1,
{379 ifr>2,

(3.9) m(q) = [v/2].
Moreover

LCUL,;C ifr=1and0<i<v/2,
(3.10) Lig27 '] =< £, ,C ifr=1, ve2Z, andi=v/2,

0;C ifr>2.

(ii) Suppose t = 1. Let ¢ be as in (2.9) and 6 as in (2.10). Let us define an
integer d € Z as follows: Dp( jeq)/F = p? when &(cq) = 0 (in the ordinary
sense) and d = 1 when &(cq) = —1 (This is only for a simplification of the
following statements (3.11) and (3.12)). When &(cq) = 1, we take any element
y of Nq| and fiz it (By Lemma 3.4(1), N|q] # 0). When 2 € p, £(cq) # 1, and
v =0 (mod 2), take any element z of N[sq] and fix it, with

(3.11) s €14 n2H1=dg* such that ¢ Lqn®~" € s71g*2

(As for the existence of s and z, see (4.30) and (4.31), respectively.) Then R
and 7(q) are given as follows:

{xy} ifr =0 and {(cq) = 1,
(U {hiy ™ ifr > 1 and §(cq) =1,
R= 9 (ki3 ifr>1, &lcg) #1
v=4 (mod 2), and 2 € p,

{EZ—}Z-TL%) otherwise,

K+ gL if €(cq) =1,
(3.12) 7(¢9) =<K+ [%H} if €(eq) #1, v=94 (mod 2), and 2 € p,

[%} otherwise.
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Moreover

(3.13)
yC U (—y)C  if r=0, &(cq) =1, and i = 7(q),
yC ifr>1, &(cq) =1, and i = T(q),

i i ifr>1, =1,
L[q,271p1] _ h%yc Zf?" f(Cq) and i < T(q)
ki.C ifr > 1, &(cq) #
V= (mod 2), and 2 € p,

ne otherwise.

(iii) Suppose t = 2. Let ¢ and § be as in (2.12) and (2.13), respectively. Let K
and t be as in §2.3(I1). Let 0 be the different of K relative to F. Let d € Z
such that Dg/p = p? when 0 # v. Put d = 1 when 0 = v (This is the same
simplification as in (i) ). When ¢™'q € N r(x), we take any element y of N|q]
and fiz it (By Lemma 3.4(2), N[q] #0). When ¢ 'q ¢ Nk, p(x) and d > 1, we
take any element z of N|sq] and fix it, with

(3.14) s€1+m%1gX such that ¢ 'qn™ € s Ny p (™).

(As for the existence of s and z, see (4.32) and (4.33), respectively.) Then R
and 7(q) are given as follows:

{y} ifr=0 and ¢c'q € Ng,p(v),
{whU{hiy} 10 ifr =1 and g € Ny (v),
B {kz Z}‘r(q) if?" > 17 cflq ¢ NK/F('C), and d > 1,
{¢; }T(Q) otherwise,
VTM ifc_lquK/F(t) and 0 =,
(3.15) 1@ =1 |32 delae Ngw() ando £,
%‘H} otherwise.

Moreover

yC if c g € Nk /p(t) and i = 7(q),
hiyC  if clq € Ngyp(x) and i < 7(q),
ki.C  ifclq ¢ Niyp(t) and d > 1,
l;C otherwise.

(3.16) Llg2~'p’] =

(iv) Suppose t = 3. Let ¢ and ¢ be as in (2.14) and (2.15), respectively. When
&(—cq) # 1, we take any element y of Nq| and fix it (By Lemma 3.4(3),
Nlq] # 0). When £(—cq) = 1 and 2 € p, we take any element z of N[sq] and
fiz it, with

(3.17) s € 14 4g such that s ¢ g*>
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(As for the existence of s and z, see (4.34) and (4.35), respectively.) Then R
and 7(q) are given as follows:

{y} if r =0 and £(—cq) # 1,
U {hi, 9™ ifr =1 and €(—cq) # 1,
- {kz-,z}?:(%) ifr>1, {(—cq) =1, and 2 € p,
{Ei}ii%) ifr>1, &(—cq) =1, and 2 € g*,
m (5] if £(—cq) =1,
rgt if€(—cq) #1 and v #6  (mod 2
(3.18) 7(q) = 2 iy Z‘ff( cq) #1 andv#6 (mod 2),
K+14+=5=2% if&{(-cq) =0, v=05 (mod2), and2cp,
K+ L otheruwise,

where d € Z such that Dp( /=zq)/r = p?. Moreover

yC if §(—cq) #1 and i = 7(q),
10 JhiyC o if&(—cq) #1 and i < 7(q),
(3.19) Lla.27w'] = ki.C  if&(—cq) =1 and 2 € p,
;C if §(—cq) =1 and 2 € g*.

(v) Suppose t = 4. Take any element y of Nlqg| and fix it. Then R and 7(q)
are given as follows:

_ i} ifr=0,
(U}l e >,
(3.20) 7(¢) =[(v+1)/2].
Moreover
1 JyC ifi=1(q),
(3:21) Lla2"w'] = {hi,yC if i < 7(q).

The proof of this theorem will be given in the following Section 4. Here we
insert one elementary lemma:

3.6 LEMMA. Let F be a local field and L a mazimal lattice in V. Let k € Z
such that 2g = p~. Then for ¢ € g and i € Z, we have L[q,p'] C L[q| if and
only if i > —k.

Proof. From (2.2), clearly i > —r if and only if Llg,p’] C L[g]. Here [AQC,

Lemma 6.2(3)] implies L[q] = L[g]. This proves the lemma. O

3.7 COROLLARY. Let the notation be the same as in Theorem 3.5. Assume
Liq] # 0 for g € gN F*. Then for everyi € Z,

i=7(q) ifn=t,
1<7(q) otherwise.

Lig, 279" # 0 = {
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Proof. For 0 < ¢ € Z, the result follows from Theorem 3.5 and Lemma 3.6.
Assume i < 0. Clearly Llg,27p’] = =« - L[r=2%'¢q,271g]. Here Lemma 3.6
implies L[r=2!q,271g] C L[r=2q]. Since 7* - L{x~2%iq] = (n'L)[q] D L[q], we
obtain L[r~2%q] # 0. Applying Theorem 3.5 to (V, ), L, and 7~ 2'¢, we find
that if n = t then L{r—2q] = L{r=2¢,2 " p7(" "] and 7(7~2¢) = r(q) — i >
0. Therefore L[r~2%iq,271g] = 0, and hence L[q,27'p] = (). If n # ¢, then
Lirm=%¢q,27g] # ) by Theorem 3.5, and hence L[g,27*p’] # 0. This completes
the proof. O

4 PROOF OF THEOREM 3.5

4.1. We first prove Theorem 3.5(i). Assume ¢ = 0. Then L[q] # 0 for all
q € gN F* by Lemma 3.4(5).
First suppose = 1. Then L = gf; + gey by (2.4). We obtain

(4.1) Llg) = [ | tc

by Theorem 3.2(2) with ¢; in (3.7). We have clearly

27 1pt if0<i<y/2],

4.2) ;L) =27 nlg+ 27 lyn g = .
(4.2) (i, L) T'g qr'g {2_113”_1 i (/2]

from (2.5). Assume v € 2Z. Then

(43) @(fia L) = SD(EV—Z') L) = 2_1pi

for 0 < < (v —2)/2 and @({, /2, L) = 27 'p*/? by (4.2). Thus £,C UL,_;C C
Llg,27'p%] for 0 < i < (v —2)/2 and £,»,C C L[g,27'p"/?]. On the other
hand, we have L[g,27'pY] C Llg] for 0 < i < v/2 by Lemma 3.6. Hence
6;C U, ;C = Lig,27'p"] for 0 < i < (v—2)/2 and £,,,C = L[g,27'p"/?].
From this and (4.1) we obtain the assertion in the case r = 1, ¢ = 0, and
v € 27Z. Next assume v ¢ 2Z. Then

(4.4) 0, L) = p(ly—s, L) = 27 1p!

for 0 <i < (v—1)/2. Thus ¢;,CU¥,_;C = L[g,2 1 p’] for 0 <i < (v—1)/2, in
the same manner as in the case v € 2Z. This proves the assertion when r =1
and t = 0.

Next suppose = 2. Then L = gf; + M + gey by (3.1). We obtain

(4.5) 0 # Mlq] = Ui_ot:C(M)

by Theorem 3.2(2) and Lemma 3.4(5). In this case we can not apply Lemma
3.3 since we have (4.3) and (4.4) in the notation of (4.1). By (4.5) and Theorem
3.2(4),

L[q] = U U (fz + ael)C.

=0 a€g/2¢(¢;,M)
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Since

[y #0<i<[v2
2p(4;, M) = {pu—i if i > [v/2]

by (4.2), we have

[v/2]
(4.6) Llq {U U (4; + aer) }U{ U U (¢; + beq) }
i=0 acg/p’ j>[v/2] beg/pv—i

For 0 <i < [v/2] and a € g/p?,

2= 1pt  if a € p?
Ui+ aey, L) = p(l;, M) +2 tag = N
@(l; +aer, L) = p(;, M) ag {2_1ag fady

by (2.5) and (3.1). Therefore by [IQD, Theorem 1.3],

Llg,27'p"]  ifa€yp’,

(4.7) (l; + ae1)C = Lig, p(£; + ae1, L)] = {L[q 2-lag] ifadp'.

Similarly we have

Llg,27'p=9] ifbep”,

(4.8) (l; +be)C = {L[q, 2= 1pg] ifb¢pv=a

for j > [v/2] and b € g/p”~7. From (4.7) and (4.8), the argument in the proof
of Lemma 3.3 shows that

[v/2] [v/2]
(4.9) U U @+ae)c=|]uc, 6C=Lig27p],
=0 acg/p? =0
(4.10) U U w+ve)c= || 40 4,6 =Lig 27"
j>[v/2] beg/pr—i i>[v/2]

Combining (4.6), (4.9), and (4.10), we have

[v/2] v /2] [v/2]
L[q]:(u&C’)U(u ejc):|_|Lq,2 pi] |_|€C’
i=0 >[v/2] i=0

and L[g,27'p?] = £;C. This proves our theorem in the case » = 2 and ¢ = 0.
As for the case r > 3, we apply (repeatedly, if necessary) Lemma 3.3 and [IQD,
Theorem 1.3] to this case, we can reduce the proof to the case r = 2. This
completes the proof of (i).
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4.2 LEMMA. Let F' be a local field. Assume 2 € p and let kK € Z such that
2g = p”. Let & be as in Notation. Put

(4.11) g(a) =max({e€Z | e<2k+1 and a € (1 +p°)g*?})
for a € g*. Then we obtain the following assertions:
(1) For a € g*,

2k+1—d if&(a) =0,
(4.12) e(a) =4 2k if £(a) = —1,
2k + 1 if €(a) =

where d € Z such that Dp( /z)/r = p?.

(2) If £(a) =0, then we have 2k > e(a) ¢ 2Z.

(3) If0 < £ <2k and £ € Z, ¢ 2Z, then g*?> N (1 4+ 7tg*) = 0.

(4) If a € (1 +7g*)g*? with 0 < £ € Z, ¢ 27Z and <(a) < 2k, then (a) = /.
(5) If a € (1 +7wg*)g*? with0 < L € Z, ¢ 27Z and ¢(a ):21<a—|—1 then

e(a) < 0.

Proof. Assertions (1) and (2) are in [NRQ, Lemma 3.5]. (3): If there exists
an element b € g* such that b € 1+ w’g*, then b € Z,. Here Z;, = {z €
g% | 22 — 1 € p’} as in [NRQ, §3.4]. By [NRQ, (3.5.1)], Z, = 1 + p{+1/2,
and hence we can take y € g such that b = 1 + 7(¢+1/2y. Then % = 1 +
7ty (2n=HD/2 4y € 14p“+ since 271 (¢+1) < k. This gives a contradiction.
Thus we obtain (3). (4): We find ¢ < e(a) from (4.11), (4.12), and [NRQ,
Lemma 3.2(1)]. Clearly

(4.13) (L+7g°)g" 1 (1 + @) # 0.

If ¢ < £(a), then (4.13) contradicts (3) settled above, and hence £ = €(a). (5):
By (4.12), we have {(a) = 1. Thus

(4.14) g 2N (1 +xatg*) #£0.
If ¢ < e(a) = 26+ 1, then (4.14) contradicts (3). This completes the proof. [

4.3. Now we prove (ii), (iii), (iv), and (v) of Theorem 3.5. We may assume
that:

ift=1,then Z = F, N =g, and ¢[z] = ca® for z € F;

if t =2, then Z = K, N = ¢, and ¢[z] = cNg/p(z) for x € K;
ift=3,then Z =T, N = gv+w!' ™%, and ¢[z] = cNp,r(z) for z € T}
if t =4, then Z = B, N = O, and ¢[z] = Np/p(z) for z € B.

Then for z,w € Z,

cxw ift=1,
27 eTrg p(zw?)  if t =2,
27 eTrg plaw')  if t =3,

2_1T7“B/F(xw‘) if t = 4.

(4.15) olx,w) =
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Here p € Gal(K/F) such that p # 1. In this §4.3 we prove the theorem in the
case 7 = 0 and ¢ > 0. Note that L = N in this case. If L[q] # 0, then

(4.16) Lig = {yCU(—y)C ift=1,

yC otherwise

by Theorem 3.2(1). Here, y is any element of L[g] and fix it until the end of
84.3. This proves the first equality of (3.8) in this case. From Lemma 3.6 and
(4.16),

(4.17) Llq] = Llg, ¢(y, L)]

for 1 <t < 4. Note that ¢(y, L) C 27 !g since L is an integral lattice in V. To
prove the second equality of (3.8) we determine the ideal ¢(y, L) as the next
step.

(4.18) We let 11 denote the normalized order function of F.

First suppose ¢t = 1, then C' = {1}. Here Lemma 3.4(1) implies that L[q] # 0
if and only if £(cq) = 1. Since y?> = ¢~'¢q, we have ¢(y, L) = cyg = p*+9/2 by
(4.15).

Next suppose ¢ = 2. We have L[g] # 0 if and only if ¢ '¢q € Ng,p(r) by Lemma
3.4(2). From [BNT, Chapter VIII, Propositon 4] and (4.15), we see that

2-lpWH9)/2 ifp =t
_9—1 _ )
ol L) =27 eTrueyplye) = {2—1p[<u+d>/2] it £t

Note that we take ¢ € g* if K is ramified over F'; see §2.3.
Suppose t = 3. By Lemma 3.4(3),

(4.19) L[g] # 0 if and only if £(—cq) # 1.

Take m € Z such that ¢(y, L) = 27'p™. Let us determine m. Let ux be the
normalized order function of K. Since L = gv + w! ™2 = v(g + w!~2%), we
can put y = v(a + bw'~2%) with @ € g and b € v. Then by (2.18), ¢(y,L) =
271c(2ag + w2(1_25)TTK/F(bt)), and hence

(4.20) m = min(k + 6 + p(a), 1 + pr(b) — 9).

We have also

(4.21) ¢ = olyl = —cv’(a® = WP Ny (b))

by (2.17), and hence

(4.22) v—208 =min(2u(a),1 + 2(ux (b)) —9)).
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Assume v £ § (mod 2). Then v —§ =14 2(ux(b) —9) < 2u(a) by (4.22), and
hence 271 (v—30+1) = 1+uk(b)—8 < k+5+pu(a). Thus we find m = 271 (v—5+
1) by (4.20). Next assume v =6 (mod 2). Then v—§ = 2u(a) < 14+2(puk (b)—0)
by (4.22). If 2 € g*, then K+ 27 (v +8) = K + 6 + pa) < 1+ uk(b) — 0,
and hence m = k + 27 (v + §) from (4.20). If 2 € p, then Lemma 4.2 implies
e(—c tqr®™Y) < 2k since £(—clqn®™Y) # 1 by (4.19). Put g = —c¢ 1qnd~7,
then

o, JEB)  ife(B) <
(4.23) W) = {2n+1 if () =
see the proof of [NRQ, Lemma 4.5]. By (4.21),
(4.24)
1)725 _ (ﬂ(57u)/2a)2(1 7w2(1725)a72NK/F(b)) c (1 —w2(1725)a72]\7K/F(b))gX2.

Hence if £(8) < 2k, that is £(—cq) = 0 from Lemma 4.2, then Lemma 4.2(4)
and (4.23) imply €(8) = 1 — 26 — 2p(a) + 2uk (b), and hence 1 + g (b) — 6 =
271 e(B)+1)+27 (v —0) < k+pu(a)+d. Thusm =2"1(e(B)+1)+27 (v —4)
from (4.20). Here Lemma 4.2(1) implies £(8) = 2k + 1 — d, where d € Z such
that Dp(/=cq)/r = pe. Therefore m = k+ 1+ (v — 6 —d)/2. If e(3) = 2k, then
Lemma 4.2(5), (4.23), and (4.24) imply 2k +1 < 1—2§ — 2u(a) + 2ux(b), and
hence 14 px(b) =6 > K+ p(a) +6. Thus m =k + pla) +d =+ (v +9)/2
from (4.20). Consequently we obtain

2 lp=0+1)/2 if y £ §  (mod 2),
(4.280y, L) =  ptt(r=0=dD/2 if y =§ (mod 2), 2 € p, &(—cq) =0,
p(rt)/2 otherwise

under the assumption t = 3, r = 0, and &(—cq) # 1. Here d € Z such that
Dp(y=cqyr = p?. We see the second equality of (3.8) by (4.17) and (4.25).
Moreover combining this with (4.16), we obtain the theorem in the case r =0
and ¢t = 3.

Finally suppose t = 4. Then Lemma 3.4(4) implies L[g] # 0 for every q €
g N F>*. From [AQC, Theorem 5.9(2), (6), (7)] and (4.15), we see that

(4.26) oy, L) = 2*1TTB/F(q3u(NB/F(y))) — 9 lpl+1)/2)

where B = {x € O | Ng/p(x) € p}, with u of (4.18). This completes the proof
of our theorem in the case » = 0 and ¢t > 0.

4.4. Here we prove the theorem in the case r > 1 and ¢ > 0. First we note that
when r > 2 we apply (repeatedly, if necessary) Lemma 3.3 and [IQD, Theorem
1.3] to this case, we can reduce the proof to the case r = 1.

Thus hereafter until the end of §4.7, we assume r = 1. Then L = gf; + N +gey
by (2.4). Assume 1 <t < 4. We recall here Lemma 3.4. We know that L[q] # 0
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for all g € gN £ and

E(eq) =1 ift =1,
(4.27) Nlgl #0 <= qc'qe Ngyp(r) ift=2,
&(—cq) #1 if t = 3.

When t = 4, we have N[q] # () for every ¢ € gN F*.

4.5. 1In this § we prove the theorem in the case r = 1,1 <t < 4, and N{q| # 0.
Applying Theorem 3.2(1) and (4), we find

Lg) = { {Uaeg/&p(y,N)(y + ael)C} U [Uaeg/w(—y,z\/)(*y +ae)C|  ift =1,
UaGg/Qap(y,N)(y + aeq)C otherwise,

where y is any element of N[q] and fix it. Since p(y+ae1, L) = ¢(—y+aey, L),
we obtain (y + ae1)C = (—y + ae1)C by [IQD, Theorem 1.3]. Thus L[q] =
Usea/20(y,5) (¥ + ae1)C for 1 < ¢ < 4. We have already obtained our theorem
in the case r = 0 and t > 0. Thus p(y, N) = 2~ 7@, Put simply 7 = 7(q).
The same argument as in the proof of Lemma 3.3 shows that

Lig,27'p"] ifaep”,

C =
(erael) {L[Q,Q_lpu(a)] if a ¢ pT

with g of (4.18). If 7 > 1, then 0 < p(a) < 7 —1 for a € g such that a ¢ p7.
Thus

T

L= |J (+ae)C=|]Llg27"p],

a€g/pT =0

Lig,27 "] = yC, and L[q,27'pY] = (y + 7le;)C for 0 <i <7 —1. If 7 =0,
then it is clear that L[q] = yC = L[q,27'g]. This proves the theorem in the
case r =1, t > 0, and Nq] # 0.

4.6. In §§4.6 and 4.7 we assume r = 1, ¢ > 0, and N[g] = (. Then 1 <t < 3
since N|q] # 0 for all ¢ € gN F* if t = 4. By Theorem 3.2(3),

rko—1

(4.28) Lig=J U HkuC

=0 beX;(q)/p'N
with k; 5 in (3.7). Let us determine k¢ in this §4.6. With the notation of (3.2)
(4.29) 0€ X.(q)

since g € p¥, and hence kg > v with the notation of (3.3). Suppose t = 1, then
&(eq) # 1 by (4.27) and the assumption N[g] = (). First assume 2 ¢ p or v # §
(mod 2). If there exists + € X,11(q), then 22 € ¢ 1q(1 + p) by (3.2). This
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implies ¥ = § (mod 2), and hence 2 ¢ p. Then by [NRQ, Lemma 3.2(1)], we
have 1+p C g*2, which contradicts £(cq) # 1. Thus ko = v+ 1 by (4.29). Next
assume 2 € p and v = (mod 2). Then e(c~1qm®~") < 2k from &(cq) # 1 and
Lemma 4.2. Hereafter we put ¢ = e(c~qn®~"). There exist

(4.30) sel+n°g* and a € g* such that ¢ lqn®" = s 1a?

by (4.11). From this we have ¢(r(*~9/2a)? = s¢, and hence
(4.31) Nsq] # 0.

Since Nsq] C X, +:(q), we obtain X,1.(q) # 0, and hence ko > v + £ in the
notation of (3.3). If there exists 2 € X, 1.11(q), then we can take a € p*+e+!
such that cx? + a = ¢. Thus ¢ 'qn®" = (1 4+ ¢ o~ 2a)(70~)/22)? € (1 +
pt1)g*?, which contradicts (4.11). Hence ko = v + & + 1. Moreover Lemma
4.2(1) implies that: if £(cq) = —1, then ¢ = 2k, and hence ko = 2k + v + 1; if
§(cq) = 0and Dp( jeq)/r = p?, then € = 2k+1—d, and hence kg = 2k+v+2—d.
Next suppose t = 2, then ¢~'q ¢ Nk, p(r) by (4.27). Let d be as in Theorem
3.5(iii). If X,4a(q) # 0, then ¢ 'q € Ng/p(r)(1 4 p?) C Ng,p(r) by [BNT,
Chapter VIII, Proposition 3] or the conductor-discriminant theorem according
as 0 = vor 0 # v. This contradicts ¢ 'q¢ ¢ Nk, p(r). Thus kg < v + d.
In particular if @ = v or q, that is d = 1, then kg = v + 1 from (4.29).
Here q is the maximal ideal of t. Assume 0 = q? and d > 1. Take a prime
element mx of K such that Nk p(nx) = 7. We see that 2 € p by [BNT,
Chapter VIII, Corollary 3 of Proposition 7]. By local class field theory, we
have (1 + p?~ 1) Ny p(v*) = g*. Thus there exist

(4.32) s €1+ m% g and a € v* such that ¢ 'qgr ™" = s 'Ng,p(a).

Note that ¢ € g* since K is ramified over F'; see §2.3. Then cNg, g (7} ) = sq,
and hence

(4.33) Nsq] # 0.

We obtain N[sq] C X, t4-1(q) by the definition of s. Thus kg = v +d.
Finally suppose ¢ = 3. Then &(—cq) = 1 by (4.27), and hence v = § (mod 2).
Forbe gand 0 <m € Z, put

Yo () ={y €N |y’ —bep™}
as in [NRQ, (4.1.3)]. Then X;(q) = n*=9/2Y;_,(—c'qr®~") if i > v. The
proof of [NRQ, Lemma 4.2(2)] shows that Y,,(—c " tqm®~") =) for m > 2x + 1

even for cg = p. Thus ko < v +2k+ 1. If 2 € g*, then kg = v + 1 by (4.29).
Assume 2 € p. There exists

(4.34) 5 € 14 4g such that s ¢ g**
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by [NRQ, Lemma 3.2(1)], then {(s) = —1 from Lemma 4.2(1). Thus {(—csq) =
—1, and hence, by Lemma 3.4(3),

(4.35) Nsq] # 0.
We find Nsq] C X,4124(q), and hence kg = v + 25 + 1. Consequently we have

v+2k+2—-d ift=1,&(cq)#1, v=46 (mod 2), and 2 € p,

v+d ift=2, c'q ¢ Ng,p(r), and d > 1,
Ko =
0 v+2k+1 ift=3, {(—cq) =1, and 2 € p,
v+1 otherwise.

This completes the determination of the number k.

4.7. Now, in (4.28) we have ¢(kip, L) = 27" + (b, N) + 27 (g — p[b])p~*
by (2.5), (2.6), and (2.7) for 0 < i < kg — 1 and b € X;(q). Let m(i,b) € Z
such that ¢(k;p, L) = 2-1pm(B:) - Here [IQD, Theorem 1.3] implies kipyC =
L[g,2 7 'p™@Y)]. We have 0 < m(i,b) < u(q — ¢[b]) —i < (kg — 1) — 4 in the
notation of (3.3), with p of (4.18). From this and m(i,b) < i, we see that

)-
(4.36) 0 <m(i,b) < [(ko — 1)/2]

for 0 <i < kp—1andb e X;(q). On the other hand, when ko = v + 1, put
z = 0; when kg > v + 1, take any element z € N[sq] and fix it. Here s is of
(4.30), (4.32), or (4.34) according as t = 1, 2, or 3. Then z € X,,-1(q). We
assert that

(4.37) m(i,z) =1

for 0 <1i < [(ko—1)/2]. Indeed, if z = 0, then it is obvious. Suppose z € N|sq].
Then p(q — p[z]) = ko — 1. From the theorem in the case r = 0 and ¢ > 0, we
find that

prt9)/2 ift=1,3
QO(Z,N) = {21 [(v+d)/2] . B
p if t =2.
Therefore
m(z’z): mln(l K+(V+5/25(H0_1)_Z) 1ft:133a
min(i, [(v + d)/2], (ko — 1) — 1) ift =2.

From this, we obtain (4.37). As a consequence, from (4.36) and (4.37),

Ko—1 [(ko—1)/2] _
U U ki yC = |_| Llg, 27 'p"]
i=0 beX;(q)/piN i=0

and L[q,27'p?] = k; ,C. This completes the proof.
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5 THE MAXIMALITY OF LN (Fh)t

In this section still the field F' is local and we prove the second main Theorem
5.3 as an application of Theorem 3.5. We first prepare two lemmas.

5.1 LEMMA. Let & be as in Notation. Let o € F* such that £(a) # 1. Let o be
the valuation ring of F'(\/a), qo the mazimal ideal of 0, 0p( /z)/F the different
of F(y/a) relative to F, and p the normalized order function of F. Then we
obtain the following assertions:

(1) If 2 € g% and p(a) € 2Z, then dp( /zy/F = 0.
(3) If 2 € p, p(e) € 2Z, (@) = 0, and Vp(/my/ 7 = A4, then d € 2Z.

Proof. The first two assertions are well known. Assertion (3) follows from
Lemma 4.2(1), (2). O

5.2 LEMMA. Let H be an integral lattice in V. Let t be the core dimension of
V. Let 6(p) be defined as in (2.1). Assume n & 2Z and () Ng™ = 0. Then
we have H is mazimal in V if and only if [H : H) = [g : 2p]. Here H is defined
as in (2.2).

Proof. Assume that H is maximal in V. Then [AQC, Lemma 6.9] implies
[H: H] = [L: L] with L of (2.4). Since L = N +3__, (g + ge;), we have [L :
L] =[N : N]. By (2.8), (2.11), (2.19), and (2.20), we obtain [N : N] = [g : 2p]
since § = 1. Thus we obtain the “only if”-part of the assertion. Conversely, we
assume that H is an integral lattice in V' such that

(5.1) [H : H] = [g: 2p].

By [AQC, Lemma 6.2(1)], there exists a maximal lattice Hy in V such that
H C Hy. Then

(5.2) HcHycHyCH.

From the “only if”-part of the lemma, which is settled above, we obtain [1170 :
Hp] = [g : 2p]. Combining this with (5.1) and (5.2), we obtain H = Hj, and
hence H is maximal in V. O

We remark that the index [H : H] of a maximal lattice H in V is given in
[AQC, Lemma 8.4(iv)] when n € 2Z or §(p) Ng* # 0.
Now, for h € L such that o[h] # 0, put

(5.3) (Fh)*: ={z €V | p(x,h) =0}.

5.3 THEOREM. Let L be a maximal lattice in V and 7(q) as in (3.8) for a
given q € gN F*. Assumen > 2. Then for h € L such that p[h] # 0, we have

LN (Fh)t is mazimal in (Fh)t < h € L[gp[hL 2*1p‘f(<P[h])]_
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Hereafter we prove this theorem until the end of §5.14.

5.4. Before stating the proof let us recall the basic notion and terminology
in the previous subsections, which will be needed in the next arguments. Put
q = plh], then h € L[g]. Put simply 7 = 7(¢). We have

Lig,271p] if r =0,
5.4 Lig) = _
o4 . {uz_oL[q,zlpﬂ ifr>1

by (3.8). Hence h € L[gq,271p?] for some 0 <i < 7. Put W = (Fh)L. Our aim
is to show that L N W is maximal in W if and only if i = .
We have a Witt decomposition of V' with respect to ¢

(5.5) V=Z+> (Ffi+Fe;), L=N+> (af;+ge))

Jj=1 Jj=1

as in (2.4). Let ¢ be the core dimension of (V, ¢). Let £ be as in Notation.
Assume ¢t = 1. Let ¢ and § be as in (2.9) and (2.10), respectively. For ¢, let d
and s be as in Theorem 3.5(ii).

Assume t = 2. Let b and ¢ be as in (2.12) and § as in (2.13). Let K and t be
as in §2.3(IT). Let g be the maximal ideal of v and p € Gal(K/F) such that
p # 1. Let @ and d be as in Theorem 3.5(iii). Then

(5.6) K is isomorphic to F' (v —bc),
(5.7) 0 =0g/r =q" when d # .

For ¢, let s be as in Theorem 3.5(iii).

Assume ¢t = 3. Let ¢ and § be as in (2.14) and (2.15), respectively. For ¢, let s
be as in Theorem 3.5(iv).

Let §(p) be as in (2.1). We may assume that: if ¢ =1 or 3 and §(p) Ng* # 0,
then ¢ € g*; if t = 1 or 3 and 6(¢) N g™ = 0, then cg = p; if ¢ = 2, then
b,c e g* Umg™; if t =2 and K is ramified over F', then ¢ € g*; see §2.3.

5.5. First suppose that:

t=1,r>1, and £(cq) = 1; or
t=2andc ¢ € Nk /p(t); or
t =3 and {(—cq) # 1; or
t=4.

This assumption is equivalent to N[q] # @ by Lemma 3.4. Here 0 # q = ¢[h],
h € L. Then h € L[g,27'p?] for some 0 < i < 7 by (5.4). We obtain

o yC ifi=r,
5.8 Lig, 27 'p] =
(58) .29 {hi,yc ifi<r

by (3.13), (3.16), (3.19), and (3.21). Here, y is any element of N[g] and fix it.
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We first prove that L N W is maximal in W when ¢ = 7. In this case, h €
Llg,27p™] = yC by (5.8). Therefore there exists v € C such that y = hy.
We have L N (Fy)* = (LN W)y since Ly = L and (Fy)t = W+. Therefore
LN (Fy)*t is maximal in (Fy)* if and only if L N W is maximal in W. Hence
we assume h =y and W = (Fy)t. Now, we have

W=(ZnW) +i(Ffj + Fej)

j=1

since h € N, (5.3), and (5.5). This is a Witt decomposition of W with respect
to the restriction of ¢ to W. Moreover we obtain

(5.9) LQW:(NQW)-i-zT:(gf_j-Fgej), NNW ={ze€ZnW | o[z] € g}

j=1

from (2.7) and (5.5). Thus by [AQC, Lemma 6.5, L N W is maximal in W
when ¢ = 7.

Next suppose ¢ < 7. We shall show that L N W is not a maximal lattice in W
in this case. We obtain h € h; ,C by (5.8). Thus we may assume h = h; ,. By
(3.8), N[q] = N[g,2~'p7]. From this,

(5.10) p(y, N) =2""p".

We see that

(5.11)
r—1 )

W:X+Z(Ffj+Fej),X: {ae, + x =277 p(y, ) fr | a € F,x € Z},

j=1
r—1 .

LAW =H+Y (af; +g¢,). H = {ae, + 2 — 2x 7oy, 2)f, | a € g,z € N}
j=1

by the definition of h;, (in (3.7)), (5.3), (5.5), and (5.10). Take
(5.12) w € N such that ¢(y,w) = -2 77
and fix it. Put u =77~ f,. + w — © " Tpw]e,, v = 1 Te,, and

Y = {z — 21" "p(x,w)e, | * € Z such that p(z,y) = 0}.

Then we find that X = Y 4+ Fu + Fv is a Witt decomposition of X by a
straightforward calculation. Here X is defined as in (5.11). Put A = {k €
Y | ¢lk] € g}, then A + gu + gov is maximal in X by [AQC, Lemma 6.5]. We
assert that H C A + gu + gv. Indeed, it is clear that v ¢ H since ¢ — 7 < 0.
For any ¢ = ae, +x — 21 'p(y,z)f, € H, put £ = —271 " "p(y,r) and n =
ar™ "t 4 21T p(y, z)plw] + 2¢(x, w) with w in (5.12). Then a straightforward
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computation shows that £&,n € g and ¢ — &u — nv € A by (5.10). Therefore
H C A+ gu+ gv. Thus H is not maximal in X, and hence L N W is not
maximal in W by [AQC, Lemma 6.3]. This completes the proof in the case

Nig] # 0.

5.6. Let us now suppose that:

t=0andr > 1;or
t=1,r>1,&(cq) #1, and 2 € g*; or
t=1,r>1,€&(cq) #1,and v Z ¢ (mod 2); or
t=2,r>1,c1q¢ Ng/p(t), and 0g/p = t; or
t=2,r>1,¢'q¢ Ng/p(x), and 0x/p = q; or
t=3,r>1&(—cq)=1,and 2 € g*.

Here v € Z such that gg = p¥ with 0 # ¢ = p[h], h € L. In this case we obtain

Ll = I_IJT»ZOEJ-C’ %ft >lorr>2,
U ;¢ ift=0andr=1

with ¢; in (3.7) and 7 = [v/2] of Theorem 3.5. Moreover
(5.13) Nlg]=10

by Lemma 3.4. We have h € L[g,2~'p?] for some 0 < i < 7 by (5.4). Hereafter
until the end of §5.7 we prove the theorem in the case t > 1 or r > 2. Then

L[g, 27 p ] =4Cfor 0<i<T

by (3.10), (3.13), (3.16), and (3.19). Thus we may assume h = ¢; and W =
(Fe;)* since h € ¢,C. -
In this §5.6 we determine [(LNW) : LN W]. Put

(5.14) w= f, —qr e,

with e, and f, in (5.5). Then

(5.15) IV:%Fw+Z)+§iGU}+Fq)

j=1

from the definition of ¢; (in (3.7)), (5.3), and (5.5). We understand that:
Z;;}(Ff] + Fej) = {0} when t > 0 and r = 1; Z = {0} when ¢ = 0 and
r > 2. We assert that (5.15) is a Witt decomposition. Indeed, it is clear when
t=0and r > 2. Assume t > 1. If plaw + 2] = 0 for a € F and « € Z, then
olr] = gr=*a?. If a # 0, then this is the case if and only if pla~!7'z] = ¢,
and hence N[q] # (. This contradicts (5.13). Thus a = 0, and hence z = 0.
Therefore the restriction of ¢ to Fw + Z is anisotropic. Combining this with
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(2.5), (2.6), and (5.14), we see that (5.15) is a Witt decomposition. Now, we
have

r—1

(5.16) LOW = (gw+N)+> (af; +ge))

Jj=1
by (5.5) and (5.15). Therefore a straightforward computation shows that

r—1
(5.17) (LOW) =2""p""w+ N+ (af; + ge;)

j=1
from (2.2) with (5.16). Combining (5.16) with (5.17), we have
(5.18) (LOW):LNW]=[g:2p""%]-[N:NJ].

Here we obtain the index [N : N] by [AQC, Lemma 8.4(iv)] and Lemma 5.2.
Combining this with (5.18), we have

(5.19)

(LNW): LNW]

: 2pY 2] ift=0andr>2,

: 4pv 2] ift=1,r>1,&(cq) #1, and 2 € g*,

D 4pv 2] ift=1,r>1,&(cqg) #1, andv £ (mod 2),
D2prTEA]ift=2r>1,c7q ¢ Ng/p(r), and d =,
D2pYT 2 if =27 >1,¢7q ¢ Ng/p(r), and 0 =q,
cpvTEHR2Ol it =31 > 1,&(—cq) =1, and 2 € g*.

o «a @«

©

T o EmEmaa

©

Note that: if ¢ =2, 7 > 1, and 0 =, then ¢~ !¢ ¢ Nk, p(r) if and only if v # §
(mod 2) by Lemma 3.4(2);if t =3,7>1,&(—cq) =1, and 2 € g*, then v = §
(mod 2).

5.7. In this § we still assume ¢ > 1 or > 2. For an integral lattice R in W,
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the following assertion holds:

(5.20)

R is maximal in W

[g:2p¥~27) ift=0andr > 2,
[g: %] ift=1,r>1,&(cq) # 1,
andv=¢ (mod 2),
R R = [g: 4p] ift=1,r>1,&(cq) # 1,
and v 20 (mod 2),
[g:2p' 1] ift=2,r>1,c'q¢ Ng/r(r), and 0 =r,
[g:2p" "2 ift=2,r> l,c_1q¢NK/F(t), and 0 = q,
[g:p?] ift=3,r>1,&(—cq) =1, and 2 € g*.

Note that if ¢t = 1, r > 1, £(cq) # 1, and v = 6 (mod 2), then 2 € g*. If
(5.20) holds, then combining (5.19) with (5.20), we obtain our theorem in the
case t > 1 or r > 2 since L N W is an integral lattice in W. Let us prove
(5.20). We observe a core subspace Fw + Z of W with w of (5.14). If t = 0
and r > 2, then dimp(Fw + Z) = 1 and §(Fw + Z,¢) = plw|F*? = —qF*2.
Here 6(Fw + Z, ) is defined as in (2.1). This implies 6(Fw + Z,p) N g* #
if v € 2Z and §(Fw + Z,0) Ng* = 0 if v ¢ 2Z. Therefore we have (5.20)
by [AQC, Lemma 8.4(iv)] and Lemma 5.2 when ¢t = 0 and r > 2. Assume
t=1,7r>1, and &(cq) # 1. Since plw] = —gn~% and Z = Fg with g of
(2.8), (F'w + Z, ) is isomorphic to (F'(y/cq),v), where ¥[z] = cNp( jeq)/r(7)
for x € F(,/cq), as explained in §2.3(II). Suppose v = ¢ (mod 2), then 2 € g*.
Thus Lemma 5.1(1) implies that F'(\/cq) is unramified. Therefore we have
(5.20) in this case by [AQC, Lemma 8.4(iv)]. Next suppose v # ¢ (mod 2), then
Op( @) /F = 29F(/zg) by Lemma 5.1(2), where dr (/a7 is the maximal ideal of
the valuation ring of F'(\/cq). Therefore [AQC, Lemma 8.4(iv)] implies (5.20)
when t =1, r > 1, &(cq) # 1, and 2 € g* or v # § (mod 2). Assume t = 2,
r>1, and ¢ 'q ¢ Ng,p(r), then dimp(Fw + Z) = 3. Since Z = Fgy + Fgo
with g1 and g7 in (2.12) and pw] = —gn~2%!, we have

(5.21) S(Fw+ Z,p) = beqF 2.

Suppose 0 = t. Then v # ¢ (mod 2) by Lemma 3.4(2). Since K is unramified
over F, we have bg = cg(= p°) by Lemma 5.1(2). Thus (5.21) implies &(Fw +
Z,p)Ng* =0if 6 =0and §(Fw+ Z,p)Ng* # (0 if § = 1. From this we obtain
(5.20) by [AQC, Lemma 8.4(iv)] and Lemma 5.2 in this case. Next suppose
0 = q. Here Lemma 5.1 implies bg = p since ¢ € g*. Therefore (5.21) implies
S(Fw+ Z,o)Ng* =0if v € 2Z and 6(Fw + Z,p) N g~ # 0 if v ¢ 2Z. Hence
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we have (5.20) by [AQC, Lemma 8.4(iv)] and Lemma 5.2 when t = 2, r > 1,
¢ 'q ¢ Ngyp(r), and 0g p = vor q. Finally if t =3, r > 1, £(—¢q) = 1, and
2 € g*, then dimp(Fw + Z) = 4, and hence [AQC, Lemma 8.4(iv)] implies
(5.20). This proves the theorem in the case when N[g] = 0, L[g] = LI;¢;C, and
t>1lorr>2.

5.8. In this § we prove the theorem in the case t = 0 and r = 1. Then

Lig.2-1y] — {&c b€ ift=0, =1, and i #v/2,

0;C ift=0,r=1, andi =v/2
for 0 <i < 7, by (3.10). Since h € L[g,27p?] for some 0 < i < 7 by (5.4), we
may assume that h = ¢; or h = {,_; when i # v/2 and h = ¢; when i = v/2. If
h = {; for 0 <4 < 7 (including the case h = £, /3), we can obtain the assertion
in the same way as §§5.6 and 5.7. Assume h = ¢,_; for 0 < < v/2. Put here
w=f1 —qr 2* Ve, Then we see that

W= (Ft, )" = Fw, LOW =p" % w, and (LOW) =2 'gw

in a similar way as §5.6. Thus [(LNW) : LNW] = [g : 2p*~%']. Therefore we
obtain the theorem in the same way as in the case when ¢t = 0 and r > 2 since
[w]F*? = —qF*2. This completes the proof in the case when N[q] = () and
L[q] = I_IjEjC.

5.9. Finally we suppose that:

t=1,r>1,v=4 (mod 2), £(cq) # 1, and 2 € p; or

t=2,r>1,¢c1q¢ Nk /p(t), and d > 1; or
t=3,r>1&(—cq)=1,and 2 € p.

Note that ¢ € g% when t =2, r > 1, ¢7'q ¢ Ng,p(r), and d > 1. Then we
have

(5.22) Lig) = | | k;-C and k; .C = L[g,2™"p’]
j=0

with k; ., in (3.7), from (3.8), (3.13), (3.16), and (3.19). Here z is any element
of N[sq] with s of (3.11), (3.14), or (3.17) of Theorem 3.5 according as t = 1,2,
or 3. We fix z. We obtain

(5.23)

k[ ift=1,r>1,{(cq) #1, v =0 (mod 2), and 2 € p,
T=q [“] ift=2,r>1,c'q¢ Ng/r(x), and d > 1,
K+ [5] ift=3r>16-cq)=1, and2 €p

from (3.12), (3.15), and (3.18), where k € Z such that 2g = p”. Moreover, by
Lemma 3.4,

(5.24) Nlq] = 0.
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Applying Theorem 3.5 to (Z, ), N, and sq, we have N[sq] = N[sq,2~ 1p7(9)]
by (3.8). Here

K+ ift=1,7>1,&(cq) # 1,

v=4 (mod 2), and 2 € p,
vid ift=2r>1c"'q¢ Ng/p(x), and d > 1,
K+VT(5 ift=3,r>1,{(—cqg)=1, and 2 €p

(5.25)7(sq) =

from (3.12), (3.15), and (3.18). Thus
(5.26) @(z, N) =27 1p7 (9,
Assume h € L[g,27p"] for some 0 < i < 7. Then by (5.22), h € k; .C, and

hence we may assume h = k; .. Hereafter we show that L N W is maximal in
W if and only if ¢ = 7. Put

(5.27) zy =77 f — 7% (g — gl2])er]

with e, and f, in (5.5). Then

(5.28) olr1] =727 (s — 1)g and 7" 'z, € L.
By a straightforward computation, we obtain
(5.29)
r—1
wW=X +Z(Ffj + Fej), X ={ax;+z—2n""¢(x,2)e, |a€ F,x € Z}
j=1

with z; of (5.27). Then (5.29) is a Witt decomposition. Indeed, if plazy +
x—21"(z,2)e,] =0 for a € F and z € Z, then ¢[z — 7~ "az] = (77 "a)?q.
Assuming a # 0, we have p[r7a" 'z — 2] = ¢, and hence N[q] # 0. This
contradicts (5.24). Thus a = 0, and hence x = 0. Therefore the restriction of
¢ to X is anisotropic. Combining this with (2.5), (2.6), and (5.27), we see that
(5.29) is a Witt decomposition. Now, we easily see that 27 ~‘p(z, z) € g for
x € N from (5.23), (5.25), (5.26), and 0 < ¢ < 7. From this and (5.28),
(5.30)
r—1
Lnw = HJrZ(gfjJrgej), H = {az1+x—21""p(z,2)e, |a € p” "2 € N}.
j=1

By [AQC, Lemma 6.3(1)], LNW is maximal in W if and only if H is maximal
in X. Thus we consider the lattice H in X instead of LN W in W.

5.10. In this § we first determine the structure of N under the assumption of
§5.9. Now we put

(5.31) Y = {keZ | gk z) =0} and 2 = 7/,
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Then Z = Fz + Y.
First assume ¢ = 1, r > 1, v = § (mod 2), {(cq) # 1, and 2 € p. Since
plalg =p’,

(5.32) N =gz.

Next assume t = 2, 7 > 1, ¢ 'q ¢ Ng,p(r), and d > 1. Then Lemma 5.1(1)
and (2) imply 2 € p. Take y € Y such that Y = Fy, then

(5.33) Z = Fz + Fy.

Thus from (2.1) and (2.12), we have ¢[z1]p[y|F*? = —56(Z, p) = beF*2, and
hence we may assume

6539 Plealolyl(be) ™ = {jr S
where
(5.35) A=v—2[v/2].

From (5.6) and (5.34), we see that F' + Fz1y C A(Z, ) is isomorphic to K.
Here we identify F' 4+ Fzyy with K. Suppose bg = p. Then

(5.36) d=2k+1

by ¢ € g*, Lemma 5.1(2), and (5.7). Put

z1  if v e 2Z,
z, =
y ifv ¢ 2Z.

Then ¢[z,] € g* from (5.31) and (5.34), and hence Z = Kz, and N = vz, by
(5.33). We find z1y € v and (219 — (21y)?)t = 29 = 9, and hence v = g[z1y] by
[AQC, Lemma 5.6(ii)]. Thus

(5.37) N = gz1 + gy.

Next suppose b € g*. Then bc € g* and 2 € p from ¢ € g*, d > 1, and Lemma
5.1(1). Thus there exist

(5.38) a, 3 € g% such that — bec = a~2(1 4+ 72" T1=4p)
by d > 1 and Lemma 4.2(1). Put n = 7(?=29)/2(1 + ar~*219) in K with X of
(5.35). Then 7 is a root of an Eisenstein equation x? — 2r(4=2%)/2x — 73 = 0,

and hence 7 is a prime element of K and (n — 1)t = (2n — 27(472K)/2)e = 2.
Here x is an indeterminate. Thus v = g[n] by [AQC, Lemma 5.6(ii)]. By (5.31)
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and (5.34), we have ¢[y]g = p*. From this and =t = —x~1+(d=28)/23-1(1
an~*z1y), we obtain

(5.39) N =ty =gy +gn M2y 4 (—1)YarMply]z].

Finally assume t =3, r > 1, £(—cq) =1, and 2 € p. Then v =6 (mod 2), and
hence ¢[z]g = p°. We can take

(5.40) Y1,y2 € Y so that Y = Fy; + Fys and (y1,y2) = 0

by [EPE, Lemma 1.8]. Then we may assume

(5.41) olyilelys] € g~
(5.42) —elz]elylelyl F** = 6(Z,p) = —cF*?

by (2.14), (5.31), and (5.40). Put
(56.43) T = Fyryo+ Fz1y1 + Fz1y2, Ky = F+Fiye, B=F+T, ( = 211192

in A(Z). Moreover put ¢; = p[z1]e[y1]elyz]. Then Z = T(, Y = Kyys, B
is a division quaternion algebra over F, c1g = cg, and ¢[x(] = c1Np,p(z) for
x €T. From £(—cq) = 1 and (5.42), we have (y1y2)>F*? = sF'*2. Thus Ky is
an unramified quadratic extension of F' by (3.17). We may assume

(5.44) elnle = ely2lg =g or oly] Tg=elyla=1p

by (5.41). Then we see that

i ifr=0 (mod2)
5.45 —pto =gt |
(5.45) ely2lg =1p {g ifr=1 (mod 2)

as shown below. Put
w = 2191 and v = Y1ys.

Then B = Ky + Kyw, wv = —vw, w?g = p*~1 v € KyNT, and v € g* from
(5.31), (5.40), (5.41), (5.42), (5.43), and (5.45). Therefore

(5.46) N = (gv+tyw H¢ = g2y + tyyo;

see §2.3. Here ty is the valuation ring of Ky. Now we assert (5.45). Indeed, if
this is not the case, then

s _Jg ifv=0 (mod 2),
Plzla = _{p ifr=1 (mod 2)
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by (5.44). Since Ky is unramified over F, there exists § € B such that B =
Ky + Ky#0, 0°g = p, and 0y192 = —y1y20 by the proof of [AQC, Theorem
5.13]. Then we easily see that § € Fz1y; + Fziy2. Put J = Fz1y1 + Fz190
and ¢[z] = Np,p(z) for x € J. We consider the Clifford algebra A(J,v) of
Y. Put Kj = F + Fzyy; - 2192, then J = K 21y, ¥[z12]g = p?°, and K is
isomorphic to F(/s) which is an unramified quadratic extension of F. Thus
Lemma 3.4(2) implies A ;[4[0]] = 0, where A; is a maximal lattice in J. Since
6%g = p, this gives a contradiction, and hence p[ys]g = p'—°.

5.11. Put

(5.47) zy = 1 Az — 217 2]e,).

Then @[za] = p[z1] with z; in (5.31). From (5.30), (5.32), (5.37), (5.39), and

(5.46),

(5.48) H=

p‘riizl +gl'2 ift = 1,7’2 17§(CQ> 7& 17
v=4 (mod 2), and 2 € p,

"z + gro + gy ift=2,r>1,c"'q¢ Ng/p(t),d> 1,
and bg = p,

Py + g3 + gy ift:2,7’21,071q¢NK/F(t),d>1,
and b € g*,

pT i+ gwa +ryye  ift=3,7>1,6(—cq) =1, and 2 € p

with z1 of (5.27), y € Y satisfying (5.34), y2 of (5.40), and vy in (5.46).

Moreover x3 is given as

(5.49) wy = m MO 4 (1) ar Aol

with A of (5.35).

5.12. On the other hand for the space X in (5.29) we put

(5.50) A={z e X | ¢[z] € g}.

Then [AQC, Lemma 6.4] implies that A is a unique maximal lattice in X. Here
we put

(5.51) w=—7'(qg — ¢lz]) el fr + 2 — 7 p[2]e,
with e, and f, in (5.5). Then we find that
(5.52)
vy = V2w + 77 (g — ¢l2]) T Hel2]aa],
(5.53)
plw] = (1 —5)"'sq,
(5.54)

X=Fzi+Fw+Y, pa,w)=0,Y ={ke X | pk,x1)=p(k,w) =0}.

DOCUMENTA MATHEMATICA 15 (2010) 347-385



ON THE SOLUTIONS OF QUADRATIC DIOPHANTINE EQUATIONS 377

Here Y is given in (5.31) and x4 is of (5.47).

5.13. In §85.13 and 5.14 we determine the structure of A in the above (5.50).
In §5.13 we suppose that: t=1,r > 1, v =§ (mod 2), 2 € p, and {(cq) # 1; or
t=2,1r>1,¢"'q¢ Ngyp(r),d>1,and bg=p;or t =3, r > 1, {(—cq) =1,
and 2 € p. (The case when t =2, r > 1, ¢ 1q ¢ Ngp(t), d > 1, and b € g*
will be treated in §5.14.) To prove the theorem in this case, it suffices to show
that

(5.55)

A:

gr1 + gxo ift=1,r>1,&(cq) #1,v=75 (mod 2), and 2 € p,
gr1 + gre + gy ift=2r>1,c1q¢ Ng/p(t),d > 1, and bg = p,
gr1 +gratryye ift=37r>1,&(—cq)=1, and2€p

by (5.48).
First we shall show that

(5.56) g1 + gao is maximal in Fzq + Fw.

For the purpose, we consider the Clifford algebra A(Fz1+Fw) of the restriction
of ¢ to Foq1 + Fw. Put E = F + Fwzy in A(Fx1 + Fw). Then we obtain that

(5.57) Fxy + Fw = Exy, @lzx] = ¢[21]Ng/p(z) for z € E,

and E is isomorphic to F(y/s) since (wwz1)?F*? = sF*2 by (5.28) and (5.53).
First we suppose that:

t=1,r>1,&(cq)=0,v¢2Z,2€p,and 6 =1; or
t=1,r>1,&(cq) =-1,vr=4 (mod 2), and 2 € p; or
t=2,r>1,¢"q¢ Ng/r(r), d > 1, and bg = p; or
t=3,r>1&(—cq)=1,and 2 € p.

Then

(5.58) _ pd ift=1,r>1,6(cq) =0,v¢2Z,2€p, and § =1,
OME[E = g otherwise.

Indeed, ift = 1,7 > 1,&(cq) =0,v ¢ 2Z,2 € p,and § = 1, then cqF'*? = sF*2.
Thus we have (5.58) by the definition of d; see Theorem 3.5(ii). If t =1, r > 1,
&(eq) = =1, v =6 (mod 2), and 2 € p, then from (3.11), Lemma 4.2(1), and
cq ¢ F*?, we have £(s) = 2k with € of (4.11). Thus we obtain (5.58). If t = 2,
r>1,c¢'q¢ Ngp(r), d > 1, and bg = p, then (s) = 2« from (3.14), (5.36),
and ¢7'q ¢ Nk, p(v). If t =3, 7> 1, &(—cq) =1, and 2 € p, then clearly we
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have (5.58) by (4.34) and Lemma 4.2(1). Therefore we have (5.58) for all cases.
Now, by (5.23), (5.36), and Lemma 5.1(3),

e+ w+1=d)/2 ift=1,1r>1,8(cq) =0,v¢2Z,2€p, and 0 = 1,
= K+ [v/2] otherwise.
Thus by (3.11), (3.14), (3.17), and (5.28), we have
(5.59)
g ift=1,r>1,&(cq) =0,v ¢ 2Z,2 € p, and § =1,
p° ift=1,7>1,&(cq) =—1,v=65 (mod2), and 2 € p,
L T I ¢ Ny p(v),d > 1, and bg = p,
p’  ift=3,r>1,6(—cq) =1, and 2 € p.

Therefore tgz; is a unique maximal lattice in Exz1, where tg is the valuation
ring of E. Since Ng/p(z227"') = @lza]plz1]™! € g, we have zp27' € tp.
By (5.52) and (5.58), Ng/r(v227" — (z227')P#)g = Dg/p, where 1 # pp €
Gal(E/F). Thus [AQC, Lemma 5.6(ii)] implies tg = glzoz;'], and hence
gx1 + gao is a maximal lattice in Fzq in this case.

Next suppose that t =1, 7 > 1, £(cq) = 0, v € 2Z, 2 € p, and § = 0. Then
d € 2Z by Lemma 5.1(3). From this and (5.23), 7 = k + 27 !(v — d). Thus
o[z1]g = p from (3.11) and (5.28). Put n = 2 4=%(1 4 n"p[z] twz,) € E,
then 7 is a root of an Eisenstein equation x2 — 272 4=rx — gd=2r 2] "1 (q —
¢[z]) = 0. Here x is an indeterminate. Therefore n is a prime element of
E and (n — nPE g = (2n — 27r271d_"‘)tE = 0p/p. Here tg and pp are the
same symbols as above. Thus tg = g[n] by [AQC, Lemma 5.6(ii)]. From
olr1]lg = p, we have A = vgn~try = gxy + gn~txy with A of (5.50). Since
= —xr=2 g2 (g — ¢[z]) "1 (1 — 77 plz] " lway ), we obtain A = gay + gas.
This proves (5.56).

Now, we obtain (5.55) when t =1, r > 1, v =46 (mod 2), {(cq) # 1, and 2 € p
by (5.56). When ¢ > 1, we have

(5.60)

[(g71 + gr2) : go1 + goo] =

lg:p?] ift=2r>1,c"¢¢ Ng/p(r),d > 1, and bg = p,
lg:p%] ift=3,r>1,¢—cq) =1, and 2 € p.

by (5.56), (5.57), (5.58), (5.59), and [AQC, Lemma 8.4(iv)]. Put

Ao — J8Y ift=2,r>1,c'q¢ Ng/rp(r),d > 1, and bg = p,
v tyya ift=3,r>1&(—cq) =1, and 2 € p.

Then Ay is maximal in Y. Indeed, if t =2, r > 1, c7lq ¢ Ng/p(v), d > 1,
and bg = p, then dimg(Fy) = 1. We have p[ylg = p'~ from (5.31) and
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(5.34), and hence gy is maximal in Y by [AQC, Lemma 6.4]. If t =3, r > 1,
&(—cq) =1, and 2 € p, then Ky in (5.43) is unramified over F' and Y = Ky ys.
Also we have @[kys] = ¢[y2] Nk, /p(k) for k € Ky. Thus tyys is maximal in Y’
by (5.45) and [AQC, Lemma 6.4]. Since Ay is maximal in Y, [AQC, Lemma
8.4(iv)] and Lemma 5.2 imply

5, Ay] = [g:2p'A]  ift=2,r>1,c"'q¢ Ng/p(r),d > 1, and bg = p,
oo [g:p2=9] ift=3,7>1,(—cq) =1, and 2 € p.

Combining this with (5.60), we obtain

[(gz1 + g2z + Ay) : gz1 + g2z + Ay] = [(go1 + g22) : gy + go] - [Ay : Ay]
[g:2p'" ™ ift=2,r>1,c7'q¢ Ng/p(x),d > 1,
= and bg = p,
[g:p?] ift=3,7>1,&(—cq) =1, and 2 € p.
Therefore gzy + gze + Ay is maximal in X by [AQC, Lemma 8.4(iv)] and
Lemma 5.2. Note that p[z1]o[w]elylg = p*~2"! by (5.34), (5.53), and (5.59),

whent=2r>1¢c1¢¢ Ng/p(t), d > 1, and bg = p. Therefore we obtain
(5.55).

5.14. Finally, we suppose that ¢t = 2, r > 1, ¢ 'q ¢ Ng/r(r), d > 1, and
b € g*. We have already obtained

(5.61) H =gr" 'z + go3 + gy

by (5.48), with z1 of (5.27), y satisfying (5.34), and z3 of (5.49). Our aim is
to show that H coincides with the unique maximal lattice A in X if and only
if i = 7, with A of (5.50). For the purpose, we shall find a g-basis of A in a
similar way as §2.3(III) (cf. (2.19)).

We consider the Clifford algebra A(X) of the restriction of ¢ to X. Put

— A1

To z1 and wy = - @I/ 2y,

with A of (5.35) and w of (5.51). Then {zg, wo,y} is an F-basis of X satisfying
(a0, wo) = ©(wo,y) = ¢(y,x0) =0 by (5.54) and Y = Fy with Y in (5.31).
Thus we obtain

X = TXCX and QD[.’L'CX] = CXNB/F(ZC) for x € Tx.
Here
Tx = Frowo + Faoy + Fwoy, B = F + Tx,cx = e[zo]elwolply], (x = Towoy.

Note that B is a division quaternion algebra over F'. Moreover we have cxg =
p* by (5.28), (5.34), and (5.53). Therefore

(5.62) A= (Tx NP~ Nx,
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where f = {z € B | N p(v) € p}. Put
(5.63) wx = —zlc)_(l,ux = zgg)_(lw)_(l, and vy = ux —ul
in B, where ¢ is the main involution of B. Then we assert that
(5.64) A = [gux + (9 + gux)wx]Cx = gz1 + gos + gux(x.
Indeed, we have w% g = p'=2* by (5.34) and (5.53). Thus we obtain
NB/F(UX) — C;{lNB/F(wX)—lﬂ.d—2n—2)\(p[y](_7_[.2n+1—dﬁ) c g><,
Np/r(vx) = Np/p(ux — u'y)
= dn” P [ Tey) (s + 7)Y (s — 1) 7 € g

by (5.28), (5.34), (5.38), (5.49), and (5.53). Note that 2s+1 > d by d > 1 and
Lemma 4.2. Thus [AQC, Lemma 5.6(ii)] implies that F'+ Fux is an unramified
quadratic extension of F' and g 4 gux is the valuation ring of F' + Fuy. Also
we have vy € glux]|*. We see that B = (F + Fux) + (F + Fux)wx and
vxwx = —wxvx by a straightforward caluculation. Combining these with
(5.62), we obtain the first equality of (5.64) in the same way as §2.3(III). The
second equality of (5.64) is trivial from (5.63). This proves (5.64).

Now, we consider the g-base of both H and A, that is, {7" 'z, z3,y} and
{x1,23,vxCx}; see (5.61) and (5.64) above. We see that

vx(x = 2t TN 20w+ (= 1) N 20wy
= A(n""zy) + Bxz + Cy
with
= —2¢[ylpl2](g — p[z]) Tt tATRTIAN/2 g pimT
(— )u2a—17r>\—1+2*1d €,
= (=125 o™t + aplylplw]r ) € g*
by (5.23), (5.34), (5.38), (5.53), and d > 1. Thus

A

B 1

C 1

7r'rfi 0 77r7'7iAcfl
1

(77 'z, 23, y) = (21,23, 0x(x )Y, V= 0 -BC™!
0 0 c-!

Since v € g3 and det(y)g = p” ¢, we obtain H = A if and only if i = 7, also in
this case. This completes the proof.

6 GLOBAL RESULTS

In this section we assume that F is a global field and L is a maximal lattice in
V' with respect to . We state two global results which are derived from the
local cases.
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6.1. Let h be the set of nonarchmedean primes of F' and fix v € h. We let
F,, denote the completion of F' at v. Then F, is a local field. Let g, be the
valuation ring of F, and p, the maximal ideal of g,. We also write p, for the
prime ideal of g corresponding to v. Put X, = X @ F,, for a subspace X of V
and A, = A®g g, for a g-lattice A in V. Let ¢, be the F,-bilinear extension of
¢ to V,, x V,,. We consider (V,, ¢,). By [AQC, Lemma 9.4(iii)], L, is a maximal
lattice in V,. For ¢ € gN F* such that L,[q] # 0, put

(6.1) 7(q) = max({i € Z | Ly[q] D Lu[g, 27 p}] # 0}).
This is given by (3.9), (3.12), (3.15), (3.18), and (3.20) for every v € h.

6.2 PROPOSITION. Let the notation be as above. Let L be a maximal lattice
inV and g € gN F*. Let t, be the core dimension of (Vy,¢,) for v € h. Put
n = dimp(V). Then for a g-ideal a =[], oy, biv such that a C g, we have

bU =Ty ] = tva
Lig,2 ) £ 0 = { W= T@) A=t
iy <Ty(q) otherwise

for all v € h.

Proof. Assume L[g,27'a] # 0. For every v € h, we have L[g,27%a] C
Ly[g, 27 pi] since p(z, L)y, = pu(x,Ly) for any x € V. Thus we obtain
0 # Lylg,2 %] C Lylg] by Lemma 3.6, and hence Corollary 3.7 implies
the assertion. O

6.3 THEOREM. Let the notation be the same as in Proposition 6.2. Let L be a
mazximal lattice in V. Assume n > 2. Then for h € L such that ¢[h] # 0, we
have

LN (Fh)t is mazimal in (Fh)* < h e L[p[h], 27" H p;”(“’[h])]
veh
Here (Fh)t = {zx €V | ¢(z,h) =0}.

Proof. Put W = (Fh)*. Then we see that W,, = (F,h)* in V,, for all v € h.
By [AQC, Lemma 9.4(iii)], L N W is maximal in W if and only if L, N W, =
(LNW), is maximal in W, for every v € h; Moreover Theorem 5.3 shows that

this is the case if and only if h € L,[¢[h], 2_1p;”(¢[h])} for all v € h. Since
o(h, L)y = @y(h, Ly), the assertion holds. O

This theorem answers the question raised in [AQC, (11.6a)].

7 SUMS OF SQUARES

7.1. Put V = Q! and p(x,y) = x-ty for z,y € V. Let L be a maximal lattice in
V and {e;}" ; the standard Q-basis of V in this section. Then ¢[z] = Y | 2?

i=1"1

DOCUMENTA MATHEMATICA 15 (2010) 347-385



382 TAKASHI YOSHINAGA

for x = 2?21 zie; € V. Hereafter we assume that ¢ is a squarefree positive
integer. By [AQC, (12.17)],

Llg) = L[g,27'Z] U L[g, Z].

Here we apply our results on L[g] in this case and investigate the sets L[q, 271Z]
and L[g,Z] when 4 <n < 10 and n € 2Z. As for the case n ¢ 27Z, we can refer
to [AQC, Section 12].

7.2 LEMMA. Assumemn > 4. Let L be a mazximal lattice in V and q a squarefree
positive integer. Then

n=0 (mod 8); or

n=+1 (mod8) and (—1)""V/2¢g#1 (mod 4); or
n==42 (mod8) and (—1)"2/4g=3 (mod 4); or
n=4 (mod8) andg=1 (mod 2)

L(q,Z) =0 if

and L|q,27'Z] =0 if n =4 and ¢ =0 (mod 2).

Proof. Let p be a rational prime number. The core dimension t, of (V}, ¢;) is
given by [AQC, (7.12a) and (7.12b)]. Let ¢, be asin §2.3 when 1 <t, <3. Bya
Witt decomposition of V}, as in (2.4), we have (—1)"=%)/2¢,QX% = §(V,,, ¢,) =
Q;Q for t, = 1,3. From this and [AQC, §7.15], we can take ¢, so that ¢, € Z
when p # 2 and

(—1)(n=t2)/2if ¢y = 1,3,
Co =
Tl DA ey =2

when p = 2. Let 7,(¢) be as in (6.1). Then we see that

1 ifn=+1 (mod8),p=2, and (~1)""D/2g=1 (mod 4);
orn==42 (mod8),p=2, and (—1)""2/4g#3 (mod 4);
Tpo(P)1F orn=23 (mod 8) and p =2;
orn=4 (mod8),p=2, and ¢ =0 (mod 2),

0 otherwise

by Theorem 3.5 and Lemma 4.2(1). Note that Ng /=1, /q,(Z[vV—1l3) = (1 +
475)Z5*. Combining (7.1) with Proposition 6.2, the assertion holds. O

If n = £1 (mod 8), then this lemma is a restatement of [AQC, Lemma
12.13(ii))].

7.3. Put
n/2

(72) Ln = Z61 + Z€2 + Z(ZGQZ‘,1 + Zggz)
=2
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for 4 <n=2,4,6 (mod 8), where ga; = 27! (e2;_3 + €2;_2 + €2;_1 + €2;). Then
L,, is maximal in V by [CGQ, Lemma 3.1]. When n = 10, we put

(7.3) A=H+M

with a maximal lattice H (resp. M) in E§:1 Qe; (resp. Qeg + Qeyp). Then A
is a maximal lattice in V' by [NRQ, §6.8]. Hereafter we suppose 4 < n < 10 and
n € 2Z. By [AQC, §12.12], if n < 10, then the genus LSO% of L (cf. [AQC,
§89.3 and 9.7]) equals to the SO?-class LSO¥. Here SO% is the adelization of
SO%. If n = 10, then [CGQ, §3.2] and [AQC, Lemma 9.23(i)] imply LSO% =
L1pSO% LASO®.

7.4 LEMMA. Let L, be as in (7.2) and q a squarefree positive integer. Assume
n=4,6, or 10. Then we obtain the following assertions:

(1)Assume n = 4. Then we have Ly[q, 27 Z] = 0 if and only if ¢ =0 (mod 2)
and L4lq,Z) = 0 if and only if g =1 (mod 2).

(2) If n > 4, then Ly,[q,271Z] # 0.

(3) If n >4 and ¢ =0 (mod 2), then Ly,[q,Z] # 0.

(4) If n =6 and ¢ =3 (mod 4), then Lg[q,Z] # 0.

(5) Assume n =10 and ¢ =1 (mod 4). Then we have Lio|q,Z] = 0 if and
only if ¢ = 1.

Proof. (1): Assume n = 4. Since L4 is maximal in V/,

Lilg = L4[q,27'Z) ifg=1 (mod 2),
M= Lale, 2] ifg=0 (mod ?2)

by Lemma 7.2. We have 2?21 Ze; C Ly, and hence

(7.4) Ly4[q] # 0 for any squarefree positive integer g.

This proves (1). (2): Assume n > 4. We can take x € L4 so that p[z] = g or
g—1 according as ¢ =1 (mod 2) or ¢ =0 (mod 2) by (7.4). If g =1 (mod 2),
then put h = z; if ¢ = 0 (mod 2), then put h = 2 + e5. By (1) settled above,
h € Ly[q,27'Z] in both cases. This proves (2). In the proof of (3) and (4) we
take

4 4
(7.5) Y= Zyiei € Z Ze; such that p[y] = ¢

i=1 i=1

for a given ¢. (3): Suppose n > 4 and ¢ = 0 (mod 2). Since ¢ is even and
squarefree, at least two of y1, 42, y3, and y4 are even. We may assume ys, y4 €
2Z. Then y € L,[q, Z] from (1). This proves (3). Now, for h =" | h;e; € V
such that @[h] = ¢, we have

n 3
(7.6)  h€LplgZl <= hed Zejand Y hgj y € 2Z for 2 < j < n/2.
=1 k=0
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(4): Supposen = 6 and ¢ = 3 (mod 4). Then one and only one of y1, y2, y3, and
y4 in (7.5) is even. We may assume y; € 2Z. Put h = 2?21 yi€; + yses, then
h € Lg[q, Z] by (7.6). This proves (4). (5): Assume n =10 and ¢ =1 (mod 4).
Then Lip[1,Z] = O by (7.6). If ¢ > 1, then there exists z = 221:1 zi€; €
2?21 Ze; such that 2?21 22=471(q—5). Put h= Zle 2z;€9; + Z?Zl €2j-1-
Then h € Liglg, Z] by (7.6). This completes the proof. O

7.5 THEOREM. Let L be a maximal lattice in V and q a squarefree positive
integer. We assume 4 <n < 10 and n € 2Z. Then

n=4andg=1 (mod 2); or

n=6andg=1 (mod4); or
L{g,Z) =0 if and only if {n=28; or

n=10,L € L1050%,q=1 orgq=3 (mod 4); or

n=10,L € ASO¥,¢q=3 (mod 4)

and L|q,27'Z) = 0 if and only if n = 4 and ¢ = 0 (mod 2). Here Lio (resp.
A) is of (7.2) (resp. (7.3)).

Proof. If n = 4,6, or, n = 10 and LSO¥Y = L1950%, then we have LSO¥ =
L,SO%. Therefore we obtain the assertion by Lemma 7.2 and Lemma 7.4.
Assume n = 8. Then Lemma 7.2 implies L[q] = L[q,27Z]. By [AQC, Lemma
6.2(1)], we may assume 2?21 Ze; C L, and hence L[g] # 0. This proves our
theorem in the case n = 8. Next assume n = 10 and LSO¥ = ASO¥. Then
we may put L =A. For e =h+m € H+ M = A, we have p[z] = p[h] + ¢[m]
and ¢(z,A) = ¢(h, H) + @(m, M). Thus we obtain H[q,271Z] C A[q,271Z].
From this and the result of the case n = 8, we have A[g,27'Z] # 0. Next we
consider Alq, Z]. We see that Lg + Zf7 + Zgs (resp. Zeg + Zeqo) is maximal
in Z?Zl Qe; (resp. Qeg + Qeqp) by [CGQ, Lemma 3.1]. Here Lg and gg are
given in (7.2) and f7 = 271(e; + e3 + €5 + e7). Thus we can put

A:H+M:L6+Zf7+Zgg+Zeg+Zelo.

Then, for 2 = 2321 x;e; € V such that ¢[h] = ¢, we have

(7.7)
10 3 3
x€ANgZl <=z € ZZei, Z$2k+1 € 27, ngj_k €27 for 2 < j < 4.
i=1 k=0 k=0

Assuming ¢ # 3 (mod 4), we take y so that (7.5). Then at least two of y1, Y2, ys,
and y4 are even. We may assume y1,y2 € 2Z. Put h = y1e1+y2e2+yseg+yaeio,
then h € Alg,Z] by (7.7). Therefore if Alg,Z] = 0, then ¢ = 3 (mod 4).
Combining this with Lemma 7.2, we obtain our theorem. o

DOCUMENTA MATHEMATICA 15 (2010) 347-385



ON THE SOLUTIONS OF QUADRATIC DIOPHANTINE EQUATIONS 385

REFERENCES

[CGQ] T. Hiraoka, On the class number of the genus of Z-maximal lattices
with respect to quadratic form of the sum of squares, J. Math. Kyoto
Univ. 46-2 (2006), 291-302.

[EPE] G. Shimura, Euler Products and Eisenstein Series, CBMS Regional Con-
ference Series in Mathematics, No.93, Amer. Math. Soc. , 1997.

[NRQ] G. Shimura, The number of representations of an integer by a quadratic
form, Duke Math. J. 100 (1999), 59-92.

[AQC] G. Shimura, Arithmetic and Analytic Theories of Quadratic Forms
and Clifford Groups, Mathematical Surveys and Monographs, vol 109
,Amer. Math. Soc. (2004).

[IQD] G. Shimura, Integer-Valued Quadratic Forms and Quadratic Diophan-
tine Equations, Documenta Math. 11 (2006), 333-367

[BNT] A. Weil, Basic Number Theory, Springer-Verlag, Berlin, Heidelberg,
and New York, 1967.

Takashi Yoshinaga
Department of Mathematics
Ritsumeikan University
Kusatsu

Shiga 525-8577

Japan
tyt24349Q@pl.ritsumei.ac.jp

DOCUMENTA MATHEMATICA 15 (2010) 347-385



386

DOCUMENTA MATHEMATICA 15 (2010)



