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1. Introduction

In [15], Segal described a functor from (small) symmetric monoidal categories
to infinite loop spaces, or equivalently, connective spectra. This functor is often
called the K-theory functor: When applied to the symmetric monoidal cate-
gory of finite rank projective modules over a ring R, the resulting spectrum is
Quillen’s algebraic K-theory of R. A natural question is then which connective
spectra arise as the K-theory of symmetric monoidal categories? Thomason
answered this question in [18], showing that every connective spectrum is the
K-theory of a symmetric monoidal category; moreover, he showed that the
K-theory functor is an equivalence between an appropriately defined stable
homotopy category of symmetric monoidal categories and the stable homotopy
category of connective spectra.
This paper provides a new proof of Thomason’s theorem by constructing a new
homotopy inverse to Segal’s K-theory functor. As a model for the category of
infinite loop spaces, we work with Γ-spaces, following the usual conventions
of [1, 4]: We understand a Γ-space to be a functor X from Γop (finite based
sets) to based simplicial sets such that X(0) = ∗. A Γ-space has an associated
spectrum [15, §1] (or [4, §4] with these conventions), and a map of Γ-spaces
X → Y is called a stable equivalence when it induces a stable equivalence of
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the associated spectra. We understand the stable homotopy category of Γ-
spaces to be the homotopy category obtained by formally inverting the stable
equivalences. The foundational theorem of Segal [15, 3.4], [4, 5.8] is that the
stable homotopy category of Γ-spaces is equivalent to the stable category of
connective spectra.
On the other side, the category of small symmetric monoidal categories admits
a number of variants, all of which have equivalent stable homotopy categories.
We discuss some of these variants in Section 3 below. For definiteness, we state
the main theorem in terms of the category of small permutative categories
and strict maps: The objects are the small permutative categories, i.e., those
symmetric monoidal categories with strictly associative and unital product,
and the maps are the functors that strictly preserve the product, unit, and
symmetry. Segal [15, §2] constructed K-theory as a composite functor K ′ =
N ◦ K′ from permutative categories to Γ-spaces, where K′ is a functor from
permutative categories to Γ-categories, and N is the nerve construction applied
objectwise to a Γ-category to obtain a Γ-space. We actually use a slightly
different but weakly equivalent functor K = N ◦ K described in Section 3.
A stable equivalence of permutative categories is defined to be a map that
induces a stable equivalence on K-theory Γ-spaces. (We review an equivalent
more intrinsic homological definition of stable equivalence in Proposition 3.8
below.) We understand the stable homotopy category of small permutative
categories to be the homotopy category obtained from the category of small
permutative categories by formally inverting the stable equivalences.
In Section 4, we construct a functor P from Γ-spaces to small permutative
categories. Like K, we construct P as a composite functor P = P ◦ S, with
P a functor from Γ-categories to permutative categories and S a functor from
simplicial sets to categories applied objectwise. The functor S is the left adjoint
of the Quillen equivalence between the category of small categories and the
category of simplicial sets from [7, 17]; the right adjoint is Ex2N , where Ex is
Kan’s right adjoint to the subdivision functor Sd. As we review in Section 2,
we have natural transformations

(1.1) N S X ←− Sd2X −→ X and S NX −→ X

which are always weak equivalences, where we understand a weak equivalence
of categories as a functor that induces a weak equivalences on nerves. The
functor P from Γ-categories to permutative categories is a certain Grothendieck
construction (homotopy colimit)

P(X ) = A
∫
AX ,

we describe in detail in Section 4. In brief, A is a category whose objects are the
sequences of positive integers ~m = (m1, . . . ,mr) including the empty sequence,
and whose morphisms are generated by permuting the sequence, maps of finite
(unbased) sets, and partitioning; for a Γ-category X , we get a (strict) functor
AX from A to the category of small categories satisfying

AX (m1, . . . ,mr) = X (m1)× · · · × X (mr)
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and AX () = X (0) = ∗ (the category with a unique object ∗ and unique mor-
phism). The concatenation of sequences induces the permutative product on
PX with ∗ in AX () as the unit. In Section 4, we construct a natural transfor-
mation of permutative categories and natural transformations of Γ-categories

(1.2) PKC −→ C and X ←− WX −→ KPX ,

where W is a certain functor from Γ-categories to itself (Definition 4.8). In
Section 5, we show that these natural transformations are natural stable equiv-
alences, which then proves the following theorem, the main theorem of the
paper.

Theorem 1.3. The functor P from Γ-spaces to small permutative categories
preserves stable equivalences. It induces an equivalence between the stable ho-
motopy category of Γ-spaces and the stable homotopy category of permutative
categories, inverse to Segal’s K-theory functor.

The arguments actually prove a “non-group-completed” version of this theorem.
To explain this, recall that a Γ-space X is called special [4, p. 95] when the
canonical map X(a ∨ b) → X(a) ×X(b) is a weak equivalence for any finite
based sets a and b; we define a special Γ-category analogously. Note that
because of the weak equivalences in (1.1), a Γ-category X is special if and
only if the Γ-space NX is special, and a Γ-space X is special if and only if
the Γ-category SX is special. For special Γ-spaces, the associated spectrum
is an Ω-spectrum after the zeroth space [15, 1.4]; the associated infinite loop
space is the group completion of X(1). For any permutative category C, KC
is a special Γ-space and KC is a special Γ-category. We show in Corollary 5.5
that the natural transformation PKC → C of (1.2) is a weak equivalence for
any permutative category C, and we show in Theorem 4.10 and Corollary 5.6
that the natural transformations WX → X and WX → KPX of (1.2) are
(objectwise) weak equivalences for any special Γ-category X . We obtain the
following theorem.

Theorem 1.4. The following homotopy categories are equivalent:

(i) The homotopy category obtained from the category of small permuta-
tive categories by inverting the weak equivalences.

(ii) The homotopy category obtained from the subcategory of special Γ-
spaces by inverting the objectwise weak equivalences.

Theorem 1.3 implies that for an arbitrary Γ-space X , the Γ-space KPX is a
special Γ-space stably equivalent to X . A construction analogous to P on the
simplicial set level produces such a special Γ-space more directly: For a Γ-space
X , we get a functor AX from A to based simplicial sets with

AX(m1, . . . ,mr) = X(m1)× · · · ×X(mr)

and AX() = X(0) = ∗. Define

EX = hocolimAAX.
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Using the Γ-spaces X(n ∧ (−)), we obtain a Γ-space EΓX ,

EΓX(n) = E(X(n ∧ (−)))/NA,

with EX → EΓX(1) a weak equivalence. The inclusion of X(1) as AX(1)
provides a natural transformation of simplicial sets X(1) → EX and of Γ-
spaces X → EΓX . In Section 6, we prove the following theorems about these
constructions.

Theorem 1.5. For any Γ-space X, the Γ-space EΓX is special and the natural
map X → EΓX is a stable equivalence. If X is special, then the natural map
X → EΓX is an objectwise weak equivalence.

Theorem 1.6. For any Γ-space X, the simplicial set EX has the natural struc-
ture of an E∞ space over the Barratt-Eccles operad (and in particular the struc-
ture of a monoid).

The previous two theorems functorially produce two additional infinite loop
spaces from the Γ-space X , the infinite loop space of the spectrum associated
to EΓX and the group completion of EX . Since the map X → EΓX is a
stable equivalence, it induces a stable equivalence of the associated spectra and
hence the associated infinite loop spaces. The celebrated theorem of May and
Thomason [12] then identifies the group completion of EX .

Corollary 1.7. For any Γ-space X, the group completion of the E∞ space
EX is equivalent to the infinite loop space associated to X.

As a consequence of Theorem 1.5, the Γ-space EΓX is homotopy initial among
maps from X to a special Γ-space. Theorem 1.6 then identifies EX ≃ EΓX(1)
as a reasonable candidate for the (non-completed) E∞ space of X . Motivated
by Theorem 1.4, we propose the following definition.

Definition 1.8. We say a map of Γ-spaces X → Y is a pre-stable equivalence
when the map EX → EY is a weak equivalence.

With this definition we obtain the equivalence of the last three homotopy cat-
egories in the following theorem from the theorems above. We have included
the first category for easy comparison with other non-completed theories of E∞

spaces; we prove the equivalence in Section 6.

Theorem 1.9. The following homotopy categories are equivalent:

(i) The homotopy category obtained from the category of E∞ spaces over
the Barratt-Eccles operad (in simplicial sets) by inverting the weak
equivalences.

(ii) The homotopy category obtained from the category of Γ-spaces by in-
verting the pre-stable equivalences.

(iii) The homotopy category obtained from the subcategory of special Γ-
spaces by inverting the objectwise weak equivalences.

(iv) The homotopy category obtained from the category of small permuta-
tive categories by inverting the weak equivalences.
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The previous theorem provides a homotopy theory for permutative categories
and Γ-spaces before group completion, which now allows the construction of
“spectral monoid rings” associated to Γ-spaces. For a topological monoid M ,
the suspension spectrum Σ∞

+M has the structure of an associative S-algebra
(A∞ ring spectrum) with M providing the multiplicative structure. The spec-
tral monoid ring is a stable homotopy theory refinement of the monoid ring
Z[π0M ], which is π0Σ

∞
+M or πS0M . For a Γ-space X , we can use EX in place

of M and Σ∞
+ EX is an E∞ ring spectrum with the addition on EX providing

the multiplication on Σ∞
+ EX . The spectral group ring of the associated infinite

loop space, Σ∞
+ Ω∞X , is the localization of Σ∞

+ EX with respect the multiplica-

tive monoid π0EX ⊂ πS0 EX . Spectral monoid rings and algebras arise in
the construction of twisted generalized cohomology theories (as explained, for
example, in [3, 2.5] and [2]), and the localization Σ∞

+ EX → Σ∞
+ Ω∞X , specif-

ically, plays a role in current work in extending notions of log geometry to
derived algebraic geometry and stable homotopy theory (see the lecture notes
by Rognes on log geometry available at [14]).

Acknowledgments. This paper owes an obvious debt to the author’s col-
laborative work with A. D. Elmendorf [5, 6]; the author thanks A. D. Elmen-
dorf for many useful conversations and remarks. The author thanks Andrew
J. Blumberg for all his help.

2. Review of Γ-categories and Γ-spaces

This section briefly reviews the equivalence between the homotopy theory of Γ-
spaces and of Γ-categories. We begin by introducing the notation used through-
out the paper.

Notation 2.1. We denote by n the finite set {1, . . . , n} and n the finite based
set {0, 1, . . . , n}, with zero as base-point. We write N for the category with
objects the finite sets n for n ≥ 0 (with 0 the empty set) and morphisms the
maps of sets. We write F for the category with objects the finite based sets n
for n ≥ 0 and morphisms the based maps of based sets.

We typically regard a Γ-space or Γ-category as a functor from F to simplicial
sets or categories rather than from the whole category of finite based sets.

Definition 2.2. A Γ-space is a functor X from F to simplicial sets with
X(0) = ∗. A map of Γ-spaces is a natural transformation of functors from F
to simplicial sets. A Γ-category is a functor X from F to the category of small
categories with X (0) = ∗, the category with the unique object ∗ and the unique
morphism id∗. A map of Γ-categories is a natural transformation of functors
from F to small categories.

We emphasize that X must be a strict functor to small categories: For φ : m→
n and ψ : n → p, the functors X (ψ ◦ φ) and X (ψ) ◦ X (φ) must be equal (and
not just naturally isomorphic). A map of Γ-categories f : X → Y consists of a
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sequence of functors fn : X (n) → Y(n) such that for every map φ : m → n in
F , the diagram

X (m)
fm

//

X (φ)

��

Y(m)

Y(φ)

��

X (n)
fn

// Y(n)

commutes strictly. In particular, applying the nerve functor objectwise to a Γ-
category then produces a Γ-space. We use this in defining the “strict” homotopy
theory of Γ-categories.

Definition 2.3. A map X → Y of Γ-spaces is a weak equivalence if each
map X(n) → Y (n) is a weak equivalence of simplicial sets. A map of Γ-
categories X → Y is a weak equivalence if the induced map NX → NY is a
weak equivalence of Γ-spaces.

More important than weak equivalence is the notion of stable equivalence,
which for our purposes is best understood in terms of very special Γ-spaces. A
Γ-space X is special when for each n the canonical map

X(n) −→ X(1)× · · · ×X(1) = X(1)×n

is a weak equivalence. This canonical map is induced by the indicator maps
n→ 1 which send all but one of the non-zero element of n to 0. For a special
Γ-space, π0X(1) is an abelian monoid under the operation

π0X(1)× π0X(1) ∼= π0X(2) −→ π0X(1)

induced by the map 2 → 1 sending both non-basepoint elements of 2 to the
non-basepoint element of 1. A special Γ-space is very special when the monoid
π0X(1) is a group.

Definition 2.4. A map of Γ-spaces f : X → Y is a stable equivalence when for
every very special Γ-space Z, the map f∗ : [Y, Z]→ [X,Z] is a bijection, where
[−,−] denotes maps in the homotopy category obtained by formally inverting
the weak equivalences. A map of Γ-categories X → Y is a stable equivalence
when the induced map NX → NY of Γ-spaces is a stable equivalence.

Equivalently, a map of Γ-spaces is a stable equivalence if and only if it induces
a weak equivalence of associated spectra [4, 5.1,5.8].
In order to compare the homotopy theory of Γ-spaces and Γ-categories, we use
the Fritsch-Latch-Thomason Quillen equivalence of the category of simplicial
sets and the category of small categories [7, 17]. We call a map in the cate-
gory of small categories a weak equivalence if it induces a weak equivalence on
nerves. The nerve functor has a left adjoint “categorization functor” c, which
generally does not behave well homotopically. However, c ◦ Sd2 preserves weak
equivalences, where Sd2 = Sd ◦ Sd is the second subdivision functor [8, §7].
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An Inverse K-Theory Functor 771

The functor Ex2N is right adjoint to c Sd2, and for any simplicial set X and
any category C, the unit and counit of the adjunction,

X −→ Ex2Nc Sd2X and c Sd2 Ex2NC −→ C,

are always weak equivalences. Since the natural map X → Ex2X is always a
weak equivalence and the diagrams

Sd2X //

∼

��

Nc Sd2X

∼

��

c Sd2NC

∼

��

X
∼ //

∼

66Ex2 Sd2X // Ex2Nc Sd2X c Sd2 Ex2NC
∼ // C

commute, we have natural weak equivalences

(2.5) Nc Sd2X ←− Sd2X −→ X and c Sd2NC −→ C.

The functor Sd2 takes the one-point simplicial set ∗ to an isomorphic simplicial
set; replacing Sd2 by an isomorphic functor if necessary, we can arrange that
Sd2 ∗ = ∗.

Definition 2.6. Let S be the functor from Γ-spaces to Γ-categories obtained
by applying c Sd2 objectwise.

We then obtain the natural weak equivalences of Γ-spaces and Γ-categories (1.1)
from (2.5). Inverting weak equivalences or stable equivalences, we get equiva-
lences of homotopy categories.

Proposition 2.7. The functors N and S induce inverse equivalences between
the homotopy categories of Γ-spaces and Γ-categories obtained by inverting the
weak equivalences.

Proposition 2.8. The functors N and S induce inverse equivalences between
the homotopy categories of Γ-spaces and Γ-categories obtained by inverting the
stable equivalences.

Since both the weak equivalences and stable equivalences of Γ-spaces provide
the weak equivalences in model structures (see, for example, [4]), the homotopy
categories in the previous propositions are isomorphic to categories with small
hom sets.

3. Review of the K-theory functor

This section reviews Segal’s K-theory functor from symmetric monoidal cate-
gories to Γ-spaces and some variants of this functor. All the material in this
section is well-known to experts, and most can be found in [5, 10, 11, 18]. We
include it here to refer to specific details, for completeness, and to make this
paper more self-contained.
For a small symmetric monoidal category C, we typically denote the symmetric
monoidal product as � and the unit as u. We construct a Γ-category KC as
follows.
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Construction 3.1. Let KC(0) = ∗ the category with a unique object ∗ and
the identity map. For n in F with n > 0, we define the category KC(n) to have
as objects the collections (xI , fI,J) where

• For each subset I of n = {1, . . . , n}, xI is an object of C, and
• For each pair of disjoint subsets I, J of n,

fI,J : xI∪J −→ xI � xJ

is a map in C

such that

• When I is the empty set ∅, xI = u and fI,J is the inverse of the unit
isomorphism.
• fI,J = γ◦fJ,I where γ is the symmetry isomorphism xJ�xI ∼= xI�xJ .
• Whenever I1, I2, and I3 are mutually disjoint, the diagram

xI1∪I2∪I3
fI1,I2∪I3 //

fI1∪I2,I3

��

xI1 � xI2∪I3

id�fI2,I3

��

xI1∪I2 � xI3
fI1,I2�id

// xI1 � xI2 � xI3

commutes (where we have omitted notation for the associativity iso-
morphism in C). We write fI1,I2,I3 for the common composite into a
fixed association.

A morphism g in KC(n) from (xI , fI,J) to (x′I , f
′
I,J) consists of maps hI : xI →

x′I in C for all I such that h∅ is the identity and the diagram

xI∪J
hI∪J //

fI,J

��

x′I∪J

f ′

I,J

��

xI � xJ
hI�hJ

// x′I � x′J

commutes for all disjoint I, J .

The categories KC(n) assemble into a Γ-category as follows. For φ : m→ n in
F and X = (xI , fI,J) in KC(m), define φ∗X = Y = (yI , gI,J) where

yI = xφ−1(I) and gI,J = fφ−1(I),φ−1(J)

(replacing ∗ with u or vice-versa if m or n is 0), and likewise on maps. We
obtain a Γ-space by applying the nerve functor to each category KC(n).

Definition 3.2. For a symmetric monoidal category C, KC is the Γ-space
KC(n) = NKC(n).

In terms of functoriality, K is obviously functorial in strict maps of symmetric
monoidal categories, i.e., functors F : C → D that strictly preserve the prod-
uct �, the unit object and isomorphism, and the associativity and symmetry
isomorphisms. In fact, K extends to a functor on the strictly unital op-lax
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maps: An op-lax map of symmetric monoidal categories consists of a functor
F : C → D, a natural transformation

λ : F (x� y) −→ F (x) � F (y),

and a natural transformation ǫ : F (u) → u such that the following unit, sym-
metry, and associativity diagrams commute,

F (u� y)

F (η)

��

λ // F (u)� F (y)

ǫ

��

F (x� y)
F (γ)

//

λ

��

F (y � x)

λ

��

F (y) u� F (y)
η

oo F (x)� F (y)
γ

// F (y)� F (x)

F (x� y)� F (z)

λ

((QQQQQQQQQQQQ

F ((x � y)� z)

F (α)

��

λ

88ppppppppppp

(F (x) � F (y))� F (z)

α

��

F (x� (y � z))

λ
&&NNNNNNNNNNN

F (x) � (F (y)� F (z))

F (x) � F (y � z)

λ

66mmmmmmmmmmmm

where η, γ, and α denote the unit, symmetry and associativity isomorphisms,
respectively. An op-lax map is strictly unital when the unit map ǫ is the
identity (i.e., F strictly preserves the unit object). A strictly unital op-lax map
C → D induces a map of Γ-categories KC → KD sending (xI , fI,J) in KC(n) to
(F (xI), λ ◦ F (fI,J)) in KD(n), and likewise for morphisms.
We will need the following additional structure in Section 5. Recall that an
op-lax natural transformation ν : F → G between op-lax maps is a natural
transformation such that the following diagrams commute.

F (x� y)
ν //

λ

��

G(x � y)

λ

��

F (u)
ν //

ǫ

  B
BB

BB
BB

B
G(u)

ǫ

~~||
||

||
||

F (x) � F (y)
ν�ν

// G(x) �G(y) u

An op-lax natural transformation between strictly unital op-lax maps induces a
natural transformation between the induced maps of Γ-categories, compatible
with the Γ-structure. We summarize the discussion of the previous paragraphs
in the following proposition.
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Proposition 3.3. K and K are functors from the category of small symmet-
ric monoidal categories and strictly unital op-lax maps to the category of Γ-
categories and the category of Γ-spaces, respectively. An op-lax natural trans-
formation induces a natural transformation on K and a homotopy on K between
the induced maps.

In particular, by restricting to the subcategory consisting of the permutative
categories and the strict maps, we get the functors K andK in the statements of
the theorems in the introduction. These functors admit several variants, which
extend to different variants of the category of symmetric monoidal categories.

Variant 3.4. In the construction of K, we can require the maps fI,J to be iso-
morphisms. This is Segal’s original K-theory functor as described for example
in [11]. The natural domain of this functor is the category of small symmet-
ric monoidal categories and strictly unital strong maps; these are the strictly
unital op-lax maps where λ is an isomorphism.

Variant 3.5. In the construction of K, we can require the maps fI,J to go the
other direction, i.e.,

fI,J : xI � xJ −→ xI∪J .

This is the functor called Segal K-theory in [5]; its natural domain is the
category of small symmetric monoidal categories and strictly unital lax maps.
A lax map C → D consists of a functor and natural transformations

λ : F (x)� F (y) −→ F (x � y) and ǫ : u −→ F (u)

making the evident unit, symmetry, and associativity diagrams commute. Put
another way, (F, λ, ǫ) defines an op-lax map C → D if and only if (F op, λ, ǫ)
defines a lax map Cop → Dop.

We also have variants which loosen the unit condition, but the constructions
occur most naturally by way of functors between different categories of small
symmetric monoidal categories. The inclusion of the category with strictly
unital op-lax maps into the category with op-lax maps has a left adjoint U .
Concretely, UC has objects the objects of C plus a new disjoint object v. Mor-
phisms in UC between objects of C are just the morphisms in C, and morphisms
to and from v are defined by

UC(x, v) = C(x, u), UC(v, x) = ∅, UC(v, v) = {idv},

for x an object of C and u the unit in C. We obtain a symmetric monoidal
product on UC from the symmetric monoidal product on C with v chosen to
be a strict unit (i.e., v � x = x for all x in UC); the inclusion of C in UC is
then op-lax monoidal and the functor UC → C sending v to u is strictly unital
op-lax (in fact, strict). Then K◦U defines a functor from the category of small
symmetric monoidal categories and op-lax maps to Γ-categories.
To compare these variants and to understand K, we construct weak equiva-
lences

(3.6) pn : KC(n) −→ C × · · · × C = C
×n.
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Define pn to be the functor sends the object (xI , fI,J) of KC(n) to the object
(x{1}, . . . , x{n}) of C

×n, and likewise for maps. This functor has a right adjoint
qn that sends (y1, . . . , yn) to the system (xI , fI,J) with

x{i1,...,ir} = (· · · (yi1 � yi2)� · · · )� yir

for i1 < · · · < ir and the maps fI,J induced by the associativity and symmetry
isomorphisms. In the case n = 1, these are inverse isomorphisms of categories,
and under these isomorphisms, (3.6) is induced by the indicator maps n→ 1.
Because an adjunction induces inverse homotopy equivalences on nerves, this
proves the following proposition.

Proposition 3.7. For any small symmetric monoidal category C, KC is a
special Γ-space with KC(1) isomorphic to NC.

Similar observations apply to the variant functors above. We have natural
transformations relating the strictly unital strong construction to both the
strictly unital lax and op-lax constructions. It follows that the K-theory Γ-
spaces obtained are naturally weakly equivalent. Likewise, the constructions
with the weakened units map to the constructions with strict units. Since
the map UC → C induces a homotopy equivalence on nerves, these natural
transformations induce natural weak equivalences of Γ-spaces.
Recall that we say that a functor between small categories is a weak equiv-
alence when it induces a weak equivalence on nerves. As a consequence of
the previous proposition, the K-theory functor preserves weak equivalences.
As in the introduction, we say that a strictly unital op-lax map of symmetric
monoidal categories is a stable equivalence if it induces a stable equivalence
on K-theory Γ-spaces, or equivalently, if it induces a weak equivalence on the
group completion of the nerves. Quillen’s homological criterion to identify the
group completion [13] then applies to give an intrinsic characterization of the
stable equivalences.

Proposition 3.8. A map of symmetric monoidal categories C → D is a stable
equivalence if and only if it induces an isomorphism of localized homology rings

H∗C[(π0C)
−1] −→ H∗D[(π0D)

−1]

obtained by inverting the multiplicative monoids π0C ⊂ H0C and π0D ⊂ H0D.

Although not needed in what follows, for completeness of exposition, we offer
the following well-known observation on the homotopy theory of the various
categories of symmetric monoidal categories. Recall that we say that a functor
between small categories is a weak equivalence when it induces a weak equiv-
alence on nerves. The following theorem can be proved using the methods of
[10, 4.2] and [6, 4.2].

Theorem 3.9. The following homotopy categories are equivalent:

(i) The homotopy category obtained from the category of small permuta-
tive categories and strict maps by inverting the weak equivalences.
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(ii) The homotopy category obtained from the category of small symmet-
ric monoidal categories and strict maps by inverting the weak equiva-
lences.

(iii) The homotopy category obtained from the category of small symmetric
monoidal categories and strictly unital strong maps by inverting the
weak equivalences.

(iv) The homotopy category obtained from the category of small symmetric
monoidal categories and strictly unital op-lax maps by inverting the
weak equivalences.

(v) The homotopy category obtained from the category of small symmetric
monoidal categories and strictly unital lax maps by inverting the weak
equivalences.

4. Construction of the inverse K-theory functor

In this section we construct the inverse K-theory functor P as a Grothendieck
construction (or homotopy colimit) over a category A described below. We
construct the natural transformations displayed in (1.2) relating the composites
KP and PK with the identity. This section contains only the constructions;
we postpone almost all homotopical analysis to the next section.
We begin with the construction of the category A. As indicated in the in-
troduction, we define the objects of A to consist of the sequences of positive
integers (n1, . . . , ns) for all s ≥ 0, with s = 0 corresponding to the empty se-
quence (). We think of each ni as the finite (unbased) set ni, and we define
the maps in A to be the maps generated by maps of finite sets, permutations
in the sequence, and partitioning ni into subsets. We make this precise in the
following definition.

Definition 4.1. For ~m = (m1, . . . ,mr) and ~n = (n1, . . . , ns) with r, s > 0, we
define the morphisms A(~m,~n) to be the subset of the maps of finite (unbased)
sets

m1 ∐ · · · ∐mr −→ n1 ∐ · · · ∐ ns
satisfying the property that the inverse image of each subset nj is either empty
or contained in a single mi (depending on j). For the object (), we define
A((), ~n) consist of a single point for all ~n in A and we define A(~m, ()) to be
empty for ~m 6= ().

For a Γ-category X , let AX () = X (0) and

AX (n1, . . . , ns) = X (n1)× · · · × X (ns).

For a map φ : ~m→ ~n in A, define

Aφ : X (m1)× · · · × X (mr) −→ X (n1)× · · · × X (ns)

as follows. If s = 0, then r = 0 and φ is the identity, and we take Aφ to be the
identity. If r = 0 and s > 0, we take Aφ to be the map X (0)→ X (nj) on each
coordinate. If r > 0, then by definition, for each j, the subset nj of

n1 ∐ · · · ∐ ns
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has inverse image either empty or contained in a single mi for some i; if the
inverse image is non-empty, then φ restricts to a map of unbased sets mi → nj ,
which we extend to a map of based sets mi → nj that is the identity on
the basepoint 0. In this case, we define Aφ on the j-th coordinate to be the
composite of the projection

X (m1)× · · · × X (mr) −→ X (mi)

and the map X (mi)→ X (nj) induced by the restriction of φ. In the case when
the inverse image of nj is empty, we define Aφ on the j-th coordinate to be the
composite of the projection

X (m1)× · · · × X (mr) −→ ∗ = X (0)

and the map X (0)→ X (nj). An easy check gives the following observation.

Proposition 4.2. A is a functor from the category of small Γ-categories to
the category of functors from A to the category of small categories.

We can now define the functors P and P , at least on the level of functors to
small categories.

Definition 4.3. Let PX = A
∫
AX . Let P = P ◦ S.

More concretely, the category PX has as objects the disjoint union of the
objects of AX (~n) where ~n varies over the objects of A. For x ∈ AX (~m) and
y ∈ AX (~n), a map in PX from x to y consists of a map φ : ~m→ ~n in A together
with a map φ∗x→ y in AX (~n), where φ∗ = Aφ is the functor AX (~m)→ AX (~n)
above.

Variant 4.4. We can regard AX as a contravariant functor on Aop and form
the contravariant Grothendieck construction P laxX = Aop

∫
AX . This has the

same objects as PX but for x ∈ AX (~m) and y ∈ AX (~n), a map in P laxX from
x to y consists of a map φ : ~n → ~m in A together with a map x → φ∗y. This
functor is better adapted to the category of symmetric monoidal categories
and strictly unital lax maps. All results and constructions in this paper admit
analogues for P lax, replacing “op-lax” with “lax” in the work below.

The category A has the structure of a permutative category under concate-
nation of sequences, with the empty sequence as the unit and the symmetry
morphisms induced by permuting elements in the sequences. The category of
small categories is symmetric monoidal under cartesian product and the functor
AX : A → Cat associated to a Γ-category X is a strong symmetric monoidal
functor. For formal reasons, then the Grothendieck construction PX natu-
rally obtains the structure of a symmetric monoidal category; we can describe
this structure concretely as follows. For any object x in AX (~m), we can write
x = (x1, . . . , xr) for objects xi in X (mi); then for y in AX (~n),

x� y = (x1, . . . , xr, y1, . . . , ys) ∈ ObAX (m1, . . . ,mr, n1, . . . , ns),

where we understand the unique object of AX () as a strict unit. The product
on maps admits an analogous description. This concrete description makes it

Documenta Mathematica 15 (2010) 765–791



778 Michael A. Mandell

clear that PX is in fact a permutative category. Moreover, a map X → Y of
Γ-categories induces a strict map of permutative categories PX → PY. We
obtain the following theorem.

Theorem 4.5. P defines a functor from the category of Γ-categories to the
category of permutative categories and strict maps.

Next we construct the natural transformations of (1.2). Starting with a sym-
metric monoidal category C, we construct the map PKC → C using the ho-
motopy colimit property of the Grothendieck construction. Specifically, we
construct functors α~m from APKC(~m) to C and suitably compatible natural
transformations for the maps in A.
For each ~m in A, define the functor

α~m : AKC(~m) = KC(m1)× · · · × KC(mr) −→ C

to take the object ~X = (X1, . . . , Xr) to

(· · · (x1m
1
� x2m

2
)� · · · )� xrmr

where Xi = (xiI , fI,J) for I ⊂ mi, and likewise for maps in KC(~m). For ~m = (),
we understand α() to include the category AKC() = ∗ in C as the unit u and
the identity on u.
For a map φ in A from ~m to ~n, define

αφ : α~m(y1, . . . , yr) −→ α~n(φ∗(y1, . . . , yr))

to be the map induced by the associativity, symmetry, and inverse unit isomor-
phisms in C and the maps f iI1,...,Ik in yi: if φ sends mi into nj1 , . . . , njt , then

composing maps f iI,J in yi gives a well-defined map

fI1,...,It : x
i
mi
−→ (· · · (xiI1 � xiI2)� · · · )� xiIt

where Ik is the subset of mi landing in njk . The map αφ is a natural transfor-
mation of functors from α~m to α~n ◦ φ∗. Moreover, given a map ψ from ~n to ~p
in A, the following diagram commutes

α~m ~X
αφ

//

αψ◦φ

��

α~n(φ∗ ~X)

αψ

��

α~p((ψ ◦ φ)∗ ~X) = α~p(ψ∗φ∗ ~X)

for any ~X in APKC(~m).

Definition 4.6. Let α : PKC → C be the functor A
∫
AX → KC that sends

~X in AKC(~m) to α~m ~X and sends the map

φ : ~m −→ ~n, f : φ∗ ~X −→ ~Y

to the map α~n(f) ◦ αφ in C.

Examining the construction of α and the symmetric monoidal structure on
PKC, we obtain the following theorem.
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Theorem 4.7. The functor α : PKC → C satisfies the following properties.

(i) α is a strictly unital strong map of symmetric monoidal categories.
(ii) α is natural up to natural transformation in strictly unital op-lax maps.
(iii) α is a strict map when C is a permutative category.
(iv) α is natural in strict maps.

The meaning of (ii) and (iv) is that for a strictly unital op-lax map F : C → D,
the diagram

PKC //

α

��

PKD

α

��

C // D

commutes up to natural transformation, namely, the natural transformation

λ : F (x1 � · · ·� xr) −→ F (x1)� · · ·� F (xr)

which is part of the structure of the op-lax map. When C → D is a strict map,
the diagram commutes strictly (the natural transformation is the identity).
For the remaining natural transformation in (1.2), note that for a Γ-category
X , we have a canonical inclusion ι : X (n) → KPX (n) sending an object x in
X (n) to the object ιx = (xI , fI,J) in KPX (n) with

xI = πI∗(x) ∈ X (m) = AX (m)

for m = |I|, I = {i1, . . . , im} with i1 < · · · < im, and πI : n→m the map that
sends ik to k and every other element of n to 0. The map

fI,J : xI∪J −→ xI � xJ = (xI , xJ ) ∈ AX (|I|, |J |)

is induced by the map (|I ∪J |)→ (|I|, |J |) in A corresponding to the partition
of the ordered set I ∪ J into I and J . This does not fit together into a map of
Γ-categories: For a map φ : m→ n in F ,

ι(φ∗x)I = πI∗(φ∗x), but φ∗(ιx)I = πφ
−1I

∗ (x).

Writing φ′ for the map in N corresponding to the restriction of φ to the map
φ−1I → I, then

πI ◦ φ = φ′ ◦ πφ
−1I

in F . We can interpret φ′ as a map

πφ
−1I

∗ (x) −→ πI∗(φ∗x)

in PX . These maps in turn assemble to a map

ωφ : φ∗ιx −→ ιφ∗x

in KPX , natural in x.

Definition 4.8. For a Γ-category X , letWX (n) be the category whose objects
consist of triples (y, x, g) with y an object of KP(n), x an object of X (n) and
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g : y → ιx a map in KP(n). The morphisms of WX (n) are the commuting
diagrams. For φ : m→ n in F , define

WX (φ) : WX (m) −→WX (n)

to be the functor that takes (y, x, g) to (φ∗y, φ∗x, ωφ ◦ φ∗g).

We note for later use that for (y, x, g) an object inWX (n), writing y = (yI , fI,J)
with yI in PX , we must have each yI in AX () or AX (mI) for some mI . This
is because ιxI is in AX (n) and maps in A cannot decrease the length of the
sequence.
We claim that the categories WX (n) and functors WX (φ) assemble into a
Γ-category. For φ : m→ n, ψ : n→ p, and I ⊂ p, write

πI ◦ ψ ◦ φ = ψ′ ◦ πψ
−1I ◦ φ = ψ′ ◦ φ′ ◦ πφ

−1(ψ−1I)

as above, with ψ′ : ψ−1I → I and φ′ : φ−1(ψ−1I)→ ψ−1I the restrictions of ψ
and φ, using the natural order on I ⊂ p, ψ−1I ⊂ n, and φ−1(ψ−1I) ⊂ m to

view these as maps in F . Then ψ′ ◦ φ′ : (ψ ◦ φ)−1I → I is the restriction of
ψ ◦ φ; this is the check required to see that the diagram

π
(ψ◦φ)−1I
∗ x

//

##H
HH

HH
HH

HH
πψ

−1I
∗ (φ∗x)

zzvv
vv

vv
vv

v

πI∗((ψ ◦ φ)∗x)

in PX commutes. Examination of the structure maps fI,J in ιx shows that
the diagram

(ψ ◦ φ)∗ιx
ψ∗ωφ

//

ωψ◦φ
##G

GG
GG

GG
GG

ψ∗ι(φ∗x)

ωψ
||xxxx

xxxx

ι((ψ ◦ φ)∗x)

in KPX commutes. This proves the following theorem.

Theorem 4.9. The maps WX (φ) above make WX into a Γ-category.

Since WX is natural in maps of Γ-categories X , we can regard W as an endo-
functor on Γ-categories. By construction, the forgetful functors ω : WX → X
and υ : WX → KPX are natural transformations of endofunctors. For fixed
n, the functor WX (n) → X (n) is a left adjoint: The right adjoint sends x in
X (n) to (ιx, x, idιx) in WX (n). It follows that ω is always a weak equivalence
of Γ-categories. We summarize this in the following theorem.

Theorem 4.10. The maps υ : WX → KPX and ω : WX → X are natural
transformations of endofunctors on Γ-categories, and ω is a weak equivalence
for any X .
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5. Proof of Theorems 1.3 and 1.4

This section provides the homotopical analysis of the functors and natural
transformations constructed in the previous section. This leads directly to
the proof of the main theorem, Theorem 1.3, and its non-completed variant,
Theorem 1.4.
Most of the arguments hinge on the following lemma of Thomason [16]:

Lemma 5.1 (Thomason). Let A be a small category and F a functor from
A to the category of small categories. There is a natural weak equivalence of
simplicial sets

hocolimANF −→ N(A
∫
F ).

The natural transformation is easy to describe. We write an object of A
∫
F as

(~n, x) with ~n an object of A and x an object of F~n, and we write a map in A
∫
F

as (φ, f) : (~n, x) → (~p, y) where φ : ~n → ~p is a map in A and f : F (φ)(x) → y
is a map in F~p. Then a q-simplex of the nerve N(A

∫
F ) is a sequence of q

composable maps

(~n0, x0)
(φ1,f1)

// (~n1, x1)
(φ2,f2)

// · · ·
(φq,fq)

// (~nq, xq).

Likewise, a q-simplex in the homotopy colimit consists of a sequence of q com-
posable maps in A together with q composable maps in F (~n0):

~n0
φ1

// ~n1
φ2

// · · ·
φq

// ~nq

x0
f1

// x1
f2

// · · ·
fq

// xq.

The natural transformation sends this simplex of the homotopy colimit to the
simplex

(~n0, x0)
(φ1,f1)

// (~n1, x
′
1)

(φ2,f
′

2)// · · ·
(φq,f

′

q)
// (~nq, x

′
q),

where x′k = F (φk,...,1)(xk) and f
′
k = F (φk−1,...,1)(fk) for φk,...,1 = φk ◦ · · · ◦ φ1.

A Quillen Theorem A style argument proves that this map is a weak equivalence
[16, §1.2].
Applying Thomason’s lemma to the Grothendieck construction A

∫
AX , we get

the following immediate observation.

Proposition 5.2. P preserves weak equivalences.

The following theorem provides the main homotopical result we need for the
remaining arguments in this section.

Theorem 5.3. Let X be a special Γ-category. Then the inclusion of X (1) in
PX is a weak equivalence.

Proof. Recall that N denotes the category with objects n = {1, . . . , n} and
morphisms the maps of sets. We have an inclusion η : N → A sending 0 to ()
and n to (n) for n > 0. We have a functor ǫ : A → N sending ~n = (n1, . . . , ns)
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to n with n = n1 + · · ·+ns. Let BX be the functor from A to small categories
defined by

BX (~n) = ǫ∗X (~n) = X (ǫ(~n)) = X (n).

Then the maps n → nj coming from the partition of n as ~n induce a natural
transformation of functors BX → AX . The hypothesis that X is special implies
that this map is an objectwise weak equivalence. Now applying Thomason’s
lemma, it suffices to show that the inclusion of NX (1) in hocolimANBX is a
weak equivalence.
Since BX = ǫ∗X as a functor on A and X = η∗BX as a functor on N , we have
canonical maps

(5.4) hocolimN NX −→ hocolimANBX −→ hocolimN NX

induced by ǫ and η. The composite map on hocolimN NX is induced by ǫ◦η =
IdN , and is therefore the identity. The composite map on hocolimANBX is
induced by η ◦ ǫ. We have a natural transformation from η ◦ ǫ to the identity
functor on A induced by the partition maps,

η ◦ ǫ(~n) = (n) −→ (n1, . . . , ns) = ~n.

Because

BX (η ◦ ǫ(~n)) = X (n) = BX (~n),

we get a homotopy from the composite map on hocolimANBX to the iden-
tity. In other words, we have shown that the maps in (5.4) are inverse homo-
topy equivalences. Since 1 is the final object in N , the inclusion of NX (1) in
hocolimN NX is a homotopy equivalence, and it follows that the inclusion of
NX (1) in hocolimANBX is a homotopy equivalence. �

When X = KC for a small symmetric monoidal category C, we have the canon-
ical isomorphism KC(1) ∼= C, and the composite map

C ∼= KC(1) −→ PKC −→ C

is the identity on C. Since KC is always a special Γ-category, we get the following
corollary.

Corollary 5.5. The natural map α : PKC → C is always a weak equivalence.

We also get a comparison for KPX when X is special.

Corollary 5.6. If X is special, then υ : WX → KPX is a weak equivalence.

Proof. Let X be a special Γ-category. The restriction of the map ω to the 1-
categories, WX (1)→ X (1), is an equivalence of categories, and the composite
map

X (1) −→WX (1) −→ KPX (1) = PX

is the map in the theorem, and therefore a weak equivalence. It follows that
the restriction of υ to the 1-categories is a weak equivalence. Since the map
ω : WX → X is a weak equivalence, WX is also a special Γ-category, and it
follows that υ is a weak equivalence. �
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Together with Proposition 2.7 and Theorem 4.10, Corollaries 5.5 and 5.6 prove
Theorem 1.4. To prove Theorem 1.3, we need to see that the map υ is always
a stable equivalence. For this we use the following technical lemma.

Lemma 5.7. The diagram

WKPX
υ //

ω
&&M

MMMMMMMMMM KPKPX

Kα

��

KPWX
KPυoo

KPω
xxqqqqqqqqqqq

KPX

commutes up to natural transformation of maps of Γ-categories. All maps in
the diagram are weak equivalences.

Proof. The weak equivalence statement follows from the diagram statement
since α and ω are always weak equivalences and K and P preserve weak equiv-
alences. For the diagram statement, it suffices to show that the diagrams

WKC
υ //

ω
%%J

JJJJJJJJ KPKC

Kα

��

PKPX

α

��

PWX
Pυoo

Pω
yyss

sssssss
s

KC PX

commute up to natural transformation of maps of Γ-categories (on the left) for
all C and up to op-lax natural transformation (on the right) for all X .
On the left, starting with an object (y, x, g) inWKC(n), the top left composite
takes this to Kα(y) and the diagonal arrow takes this to x; the effect on maps
in WKC(n) admits the analogous description. Since Kα(ιx) = x, Kα(g) is a
map from Kα(y) to x, which is natural in WKC(n), and compatible with the
Γ-structure.
On the right, consider an element X = (X1, . . . , Xs) in AWX (~n), where Xi =
(yi, xi, gi) is an object in WX (ni). As per the remark following Definition 4.8,
we can write yi = (yiI , fI,J) for y

i
I some object of X (mI) (thought of as AX (m)

or AX ()) for some mI , where I ranges over the subsets of ni. The left down
composite sends X to

α(y1, . . . , ys) = (y1mn1

, . . . , ysmns
)

since the symmetric monoidal product in PX is concatenation. An analogous
description applies to maps of X in PWX . The diagonal in the diagram sends
X to (x1, . . . , xs) and we have the map

(gimni
) : (yimni

) −→ (ιximni

) = (xi).

in PX . This map is natural in X in PWX and is a strictly monoidal natural
transformation. �

Proof of Theorem 1.3. Given Propositions 2.7 and 2.8, Theorem 4.10, and
Corollaries 5.5 and 5.6, it suffices to show that the map υ : WX → KPX
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is always a stable equivalence. Writing [−,−] for maps in the homotopy cat-
egory obtained by formally inverting the weak equivalences, we need to show
that

υ∗ : [KPX ,Z] −→ [WX ,Z]

is a bijection for every very special Γ-category Z. Since K and P preserve weak
equivalences, they induce functors on the homotopy category. Using this and
the fact that υ is a weak equivalence for a special Γ-category, we get a map

R : [WX ,Z] −→ [KPX ,Z]

as follows: Given f in [WX ,Z], the map Rf in [KPX ,Z] is the composite

KPX
KPω−1

// KPWX
KPf

// KPZ
υ−1

// WZ
ω // Z.

To see that the composite map on [WX ,Z] is the identity, consider the following
diagram,

X WX
ω

∼
oo

f
// Z

WX

ω ∼

OO

υ

��

WWX
Wω

∼
oo

ω ∼

OO

Wf
//

υ

��

WZ

ω ∼

OO

υ ∼

��

KPX KPWX
KPω

∼oo
KPf

// KPZ

which commutes by naturality. We see that Wω is a weak equivalence (as
marked) by the two-out-of-three property since ω is always a weak equivalence.
The map R(f)◦υ is the composite map in the homotopy category of the part of
this diagram starting from the copy of WX in the first column and traversing
maps and inverse maps to Z by going down, right twice, and then up twice; this
agrees with the composite map in the homotopy category obtained by going
up and then right twice, f ◦ ω−1 ◦ ω = f .
On the other hand, starting with g in [KPX ,Z], then

R(g ◦ υ) = ω ◦ υ−1 ◦ KP(g ◦ υ ◦ ω−1).

The solid arrow part of the diagram

KPX WKPX
Wg

//

υ∼

��

ω

∼
oo WZ

υ∼

��

ω

∼
// Z

KPWX
KPυ

//

KPω

OO

KPKPX
KPg

//

Kα

ff

KPZ

commutes and Lemma 5.7 implies that the whole diagram commutes in the
homotopy category. By naturality of ω, the composite ω ◦ Wg ◦ ω−1 is g, and
it follows that R(g ◦ υ) is g. �
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6. Special Γ-spaces and non-completed E∞ spaces

This section explores the analogue in simplicial sets of the construction of P in
small categories, which provides a functor E from Γ-spaces to E∞ spaces over
the Barratt-Eccles operad. This section is entirely independent from the rest
of the paper and we have written it to be as self-contained as possible without
being overly repetitious. We assume familiarity with Γ-spaces, but not with
Γ-categories or permutative categories (except where we compare E and P in
Proposition 6.5).
Definition 4.1 describes a categoryA whose objects are the sequences of positive
integers (including the empty sequence). We think of a positive integer as
a finite (unbased) set, and maps between sequences ~m = (m1, . . . ,mr) and
~n = (n1, . . . , ns) are generated by permuting elements in the sequence, maps of
finite sets, and partitioning finite sets. For a Γ-space X , let AX be the functor
from A to based simplicial sets with

AX(~n) = X(n1)× · · · ×X(ns)

for s > 0 and AX() = ∗. In terms of the maps in A, a permutation of sequences
induces the corresponding permutation of factors; a map of finite unbased
sets φ : n → p induces the corresponding map X(φ) (for the corresponding
φ : n→ p); a partition n = p

1
∐ · · · ∐ p

t
induces the map

X(n) −→ X(p1)× · · · ×X(pt)

induced by the maps n → pi that pick out the elements of the subset pi and
send all the other elements to the basepoint. We consider the homotopy colimit.

Definition 6.1. Let EX = hocolimAAX .

It is clear from the definition that E preserves weak equivalences. The proof of
the remainder of the following theorem is identical to the proof of Theorem 5.3.

Theorem 6.2. E preserves weak equivalences. If X is a special Γ-space, then
the inclusion of X(1) in EX is a weak equivalence.

Recall that the Barratt-Eccles operad E has as its n-th simplicial set E(n) =
NTΣn the nerve of the translation category on the n-th symmetric group Σn,
with operadic multiplication induced by block sum of permutations. For any
permutation σ in Σn, we have a functor

σ : A×n −→ A

induced by permutation and concatenation:

σ(~m1, . . . , ~mn) = (mσ1
1 , . . . ,mσ1

rσ1
,mσ2

1 , . . . ,mσn
rσn

).

Permutation induces a natural transformation

AX×n −→ AX

covering σ; we therefore get an induced map on homotopy colimits

σ∗ : (EX)×n −→ EX.
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For any other element σ′ ∈ Σn, the permutation σ′σ−1 induces a natural
transformation between functors

σ, σ′ : A×n −→ A,

compatible with the natural transformations AX×n → AX covering them.
These fit together to induce a map

(6.3) E(n)× EX×n ∼= NTΣn × hocolimA×n AX×n −→ EX.

An easy check of the definitions proves the following proposition, a restatement
of Theorem 1.6.

Proposition 6.4. The maps (6.3) define an action of the operad E on the
simplicial set EX. This action is natural in maps of the Γ-space X. Thus, E
defines a functor from Γ-spaces to E∞ spaces over E.

To compare the functor E with the functor P , recall that the nerve of a
permutative category has the natural structure of an E space with the map
σ∗ : NC×n → NC (for σ in Σn) induced by the permutation and the permuta-
tive product. In Section 5, we reviewed the map from the homotopy colimit
of the nerve to the nerve of the Grothendieck construction, which we can now
interpret as a natural transformation EN → NP . The following proposition is
clear from explicit description of the map in that section.

Proposition 6.5. For a Γ-category X , the canonical map ENX → NPX is
a map of E spaces and a weak equivalence.

Next we define the Γ-space version of the functor EX . For this we use the
Γ-spaces Xn defined by

Xn(m) = X(nm),

where we use lexicographical ordering to make nm a functor ofm from F to F .
Taking advantage of the fact that nm is also a functor of n, the construction
EX(−) defines a functor from F to simplicial sets. However, since we require
Γ-spaces to satisfy X(0) = ∗, we need a reduced version.

Definition 6.6. Let EΓX be the Γ-space with EΓX(n) the based homotopy
colimit in the category of based simplicial sets

EΓX(n) = hocolim∗
A AXn.

The inclusions ηn : Xn(1)→ EΓX(n) now assemble to a map of Γ-spaces X →
EΓX . Since A has an initial object (), the nerve NA is contractible. The map

EXn = hocolimA AXn −→ (hocolimAAXn)/NA = hocolim∗
AAXn = EΓX(n)

is therefore a weak equivalence. Applying Theorem 6.2 objectwise to the map
X → EΓX , we get the following theorem.

Theorem 6.7. EΓ preserves weak equivalences. If X is a special Γ-space, then
the natural map X → EΓX is a weak equivalence.

We prove the following theorem at the end of the section.
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Theorem 6.8. For a Γ-space X, EΓX is a special Γ-space.

Finally, we need one further variant of this construction. Let AEX be the
functor from A to simplicial sets with

AEX(~n) = EXn1
× · · · × EXns

and AE() = EX0 = E∗: Although EX(−) is not a Γ-space, it is an F -space
(functor from F to simplicial sets), and this is all that is needed for the con-
struction of the functor AEX . Let E2X be the simplicial set

E2X = hocolimAAEX

(homotopy colimit in the category of unbased simplicial sets). The map of
F -spaces EX(−) → EΓX(−) induces a weak equivalence AEX → AEΓX and

a weak equivalence E2X → E(EΓX).
The advantage of E2X over E(EΓX) is that we can construct a map E2X →
EX as follows. For each ~m in A, we have a map

AEX(~m) = EXm1
× · · · × EXmr

∼= hocolimA×r (AXm1
× · · · ×AXmr )

−→ hocolimAAX = EX

induced by the functor ρ~m : A×r → A, defined by

ρ~m : (~n1, . . . , ~nr) 7→ (m1n1,1, . . . ,m1n1,s1 ,m2n2,1, . . . ,mrnr,sr)

(where ~ni = (ni,1, . . . , ni,si)), together with the canonical isomorphism

AXm1
(~n1)× · · · ×AXmr (~nr)

∼= AX(ρ~m(~n1, . . . , ~nr))

covering ρ~m. These maps are compatible with maps ~m in A, and so induce
a map α : E2X → EX . The technical fact about this map we need is the
following lemma, which is an easy check of the construction.

Lemma 6.9. The diagram

EX
η

//

Eη

��

id

##G
GGG

GGG
GG E2X

α

��

E2X α
// EX

commutes where η is induced by the inclusion of EX as AEX(1) and Eη is
induced by the inclusion of AX in AEX.

Applying the lemma to Xn, we get a commuting diagram of F -spaces. We can
turn this into a diagram of Γ-spaces by taking the quotient by EX0 = E∗ or
E2X0 = E2∗ at each spot. We then get a commutative diagram of Γ-spaces

EΓX
η

//

Eη

��

id

''PPPPPPPPPPPPP
E2X(−)/E

2∗

α

��

E2X(−)/E
2∗

α
// EΓX.
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We note that E2∗ is contractible, and since EΓX is special, η is weak equiv-
alence. It follows that all maps in the diagram are weak equivalences. Since
both

η : EΓX −→ EΓEΓX and EΓη : EΓX −→ EΓEΓX

factor through the corresponding map EΓX → E2X/E2∗, we get the following
proposition.

Proposition 6.10. The maps η and EΓη from EΓX to EΓEΓX coincide in
the strict homotopy category of Γ-spaces, i.e., the homotopy category obtained
by formally inverting the objectwise weak equivalences.

We use this observation to prove the following theorem, which together with
Theorems 6.7 and 6.8 imply Theorem 1.5.

Theorem 6.11. For any Γ-space X, η : X → EΓX is a stable equivalence.
Moreover η is the initial map from X to a special Γ-space in the strict homotopy
category of Γ-spaces.

Proof. We need to show that for any special Γ-space Z, the map η induces a
bijection [EΓX,Z]→ [X,Z] where [−,−] denotes maps in the strict homotopy
category of Γ-spaces. Since EΓ preserves weak equivalences, it induces a functor
on the strict homotopy category. Given a map g in [X,Z], EΓg is a map in
[EΓX,EΓZ], and since η : Z → EZ is a weak equivalence, we can compose with
the map η−1 in the strict homotopy category to get an element Rg = η−1 ◦EΓg
in [EΓX,Z]. By naturality of η, R is a retraction. By examination of the solid
arrow commuting diagram

X
η

// EΓX
g

//

η∼

��

Z

η∼

��

EΓX
EΓη

//

id

99

EΓEΓX
EΓg

// EΓZ

and applying the previous proposition, we see that R is a bijection. �

The previous theorem also provides the final piece for the proof of Theorem 1.9.

Proof of Theorem 1.9. The equivalence of (iii) and (iv) is Theorem 1.4 proved
in the last section. The previous theorem proves the equivalence of (ii) and (iii),
and [12, 1.8] (and the argument for [9, 1.1]) prove the equivalence of (i) and (iii).

�

We close with the proof of Theorem 6.8. We thank Irene Sami for help putting
together this argument.

Proof of Theorem 6.8. It suffices to show that for every j > 0, the map

(6.12) EXj+1 −→ EXj × EX
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is a weak equivalence. Using EXj in place of EΓX(j) has the advantage that
we can write EXj × EX as a homotopy colimit:

EXj × EX ∼= hocolimA×A(AXj ×AX).

For clarity in formulas that follow, we will use brackets [m] rather than bold
m to denote finite based sets.
The map (6.12) is induced by the diagonal functor A → A×A and the natural
transformation

AXj+1(~m) −→ AXj(~m)×AX(~m).

We get a map

(6.13) EXj × EX −→ EXj+1

induced by the concatenation functor A×A → A and the natural transforma-
tion

AXj(~m)×AX(~n) −→ AXj+1(~m� ~n)

(where � denotes concatenation), sending

X([jm1])× · · · ×X([jmr]) −→ X([(j + 1)m1])× · · · ×X([(j + 1)mr])

by the map induced by the inclusion of [j] in [j + 1], and the map

X([n1])× · · · ×X([ns]) −→ X([(j + 1)n1])× · · · ×X([(j + 1)ns])

induced by including the non-basepoint element 1 of [1] as the element j + 1
of [j + 1]. We show that (6.12) and 6.13 are inverse generalized simplicial
homotopy equivalences.
First we show that the composite on Ej+1 is (generalized simplicial) homotopic
to the identity. We denote the composite on Ej+1 as (D, d). It is induced by
the functor D : A → A that sends ~m to the concatenation ~m � ~m and the
natural transformation

d : Xj+1(mi) =

X([(j + 1)mi]) −→ X([(j + 1)mi])×X([(j + 1)mi]) = Xj+1(mi,mi)

induced in the first factor by sending the element j+1 of [j+1] to the basepoint
and induced in the second factor by sending the elements 1, . . . , j of [j + 1] to
the basepoint.
We construct a new map (H,h) from En+1 to itself and simplicial homotopies
from (H,h) to (D, d) and from (H,h) to the identity as follows. Let H be the
functor A → A that sends (m1, . . . ,mr) to ((j + 1)m1, . . . , (j + 1)mr) and let

h : AXj+1(~m) = AX((j + 1)m1, . . . , (j + 1)mr)

−→ AX((j + 1)2m1, . . . , (j + 1)2mr) = AXj+1(H~m)

be the natural transformation induced by the diagonal map in F from [j + 1]
to [(j + 1)2]; then the functor H and natural transformation h induce a map
(H,h) from EXj+1 to itself.
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We have a natural transformation φ from H to D formed by concatenation and
permutation from the maps

((j + 1)mi) −→ (mi,mi)

in A sending collapsing the first j copies ofmi to the firstmi by the codiagonal
map and sending the last copy of mi onto the second mi. The composite map

AXj+1(~m)
h // AXj+1(H ~m)

AXj+1(φ)
// AXj+1(D~m)

is d. Thus, the natural transformation φ induces a homotopy between the maps
(H,h) and (D, d) on the homotopy colimit Ej+1.
Likewise, we have a natural transformation ψ from H to the identity induced
by the maps ((j + 1)mi) → (mi) in A that collapse the j + 1 copies of mi by
the codiagonal. Since the composite

AXj+1(~m)
h // AXj+1(H~m)

AXj+1(ψ)
// AXj+1(~m)

is the identity, it follows that ψ induces a homotopy from H to the identity
on EXj+1. This constructs the generalized simplicial homotopy equivalence
between the composite map and the identity map on EXj+1.
The argument for the other composite is easier: The composite on EXj ×EX
is induced by the functor D2 from A×A to itself

D2(~m,~n) = (~m� ~n, ~m� ~n)

and the natural transformation

d2 : AXj(~m)×AX(~n) −→ AXj(~m� ~n)×AX(~m� ~n)

induced on the first factor by the inclusion of ~m in ~m � ~n and on the second
factor by the inclusion of ~n in ~m� ~n. Since these maps

(~m,~n) −→ (~m� ~n, ~m� ~n)

assemble to a natural transformation in A × A from the identity functor to
D2, they induce a homotopy on EXj ×EX between the identity and the map
induced by D2, d2. �
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