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Abstract. We study Q-Fano threefolds of large Fano index. In
particular, we prove that the maximum possible Fano index is attained
only by the weighted projective space P(3, 4, 5, 7).
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1. Introduction

The Fano index of a smooth Fano variety X is the maximal integer q(X) that
divides the anti-canonical class in the Picard group Pic(X) [IP99]. It is well-
known [KO73] that q(X) ≤ dimX + 1. Moreover, q(X) = dimX + 1 if and
only if X is a projective space and q(X) = dimX if and only if X is a quadric
hypersurface. In this paper we consider generalizations of Fano index for the
case of singular Fanos admitting terminal singularities.
A normal projective varietyX is called Fano if some positive multiple −nKX of
its anti-canonical Weil divisor is Cartier and ample. Such X is called a Q-Fano
variety if it has only terminal Q-factorial singularities and its Picard number
is one. This class of Fano varieties is important because they appear naturally
in the Minimal Model Program.
For a singular Fano variety X the Fano index can be defined in different ways.
For example, we can define

qW(X) := max{q | −KX ∼ qA, A is a Weil Q-Cartier divisor},

qQ(X) := max{q | −KX ∼Q qA, A is a Weil Q-Cartier divisor}.

If X has at worst log terminal singularities, then the Picard group Pic(X) and
Weil divisor class group Cl(X) are finitely generated and Pic(X) is torsion
free (see e.g. [IP99, §2.1]). Moreover, the numerical equivalence of Q-Cartier
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divisors coincides with Q-linear one. This implies, in particular, that the Fano
indices qW(X) and qQ(X) defined above are positive integers. If X is smooth,
these numbers coincide with the Fano index q(X) defined above. Note also
that qQ(X) = qW(X) if the group Cl(X) is torsion free.

Theorem 1.1 ([Suz04]). Let X be a Q-Fano threefold. Then qW(X) ∈
{1, . . . , 11, 13, 17, 19}. All these values, except possibly for qW(X) = 10, occur.
Moreover, if qW(X) = 19, then the types of non-Gorenstein points and Hilbert
series of X coincide with that of P(3, 4, 5, 7).

It can be easily shown (see proof of Proposition 3.6) that the index qQ(X)
takes values in the same set {1, . . . , 11, 13, 17, 19}. Thus one can expect that
P(3, 4, 5, 7) is the only example of Q-Fano threefolds with qQ(X) = 19. In gen-
eral, we expect that Fano varieties with extremal properties (maximal degree,
maximal Fano index, etc.) are quasihomogeneous with respect to an action
of some connected algebraic group. This is supported, for example, by the
following facts:

Theorem 1.2 ([Pro05], [Pro07]). (i) Let X be a Q-Fano threefold. As-
sume that X is not Gorenstein. Then −K3

X ≤ 125/2 and the equality
holds if and only if X is isomorphic to the weighted projective space
P(13, 2).

(ii) Let X be a Fano threefold with canonical Gorenstein singularities.
Then −K3

X ≤ 72 and the equality holds if and only if X is isomorphic
to P(13, 3) or P(12, 6, 4).

The following proposition is well-known (see, e.g., [BB92]). It is an easy exercise
for experts in toric geometry.

Proposition 1.3. Let X be a toric Q-Fano 3-fold. Then X is isomorphic to
either P3, P3/µ5(1, 2, 3, 4), or one of the following weighted projective spaces:

P(13, 2), P(12, 2, 3), P(1, 2, 3, 5), P(1, 3, 4, 5), P(2, 3, 5, 7), P(3, 4, 5, 7).

We characterize the weighted projective spaces above in terms of Fano index.
The following is the main result of this paper.

Theorem 1.4. Let X be a Q-Fano threefold. Then qQ(X) ∈
{1, . . . , 11, 13, 17, 19}.

(i) If qQ(X) = 19, then X ≃ P(3, 4, 5, 7).
(ii) If qQ(X) = 17, then X ≃ P(2, 3, 5, 7).
(iii) If qQ(X) = 13 and dim | −KX | > 5, then X ≃ P(1, 3, 4, 5).
(iv) If qQ(X) = 11 and dim | −KX | > 10, then X ≃ P(1, 2, 3, 5).
(v) qQ(X) 6= 10.
(vi) If qQ(X) ≥ 7 and there are two effective Weil divisors A 6= A1 such

that −KX ∼Q qQ(X)A∼Q qQ(X)A1, then X ≃ P(12, 2, 3).
(vii) If qW(X) = 5 and dim | − 1

5
KX | > 1, then X ≃ P(13, 2).

Note that in cases (iii) and (iv) assumptions about | −KX | are really needed.
Indeed, there are examples of non-toric Q-Fano threefolds with qQ(X) = 13
and 11.
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Example 1.5 ([BS07], see also Proposition 3.6). Let X = Xd ⊂ P(a1, . . . , a5)
be a general hypersurface of degree d. Assume that X is a Q-Fano with
qQ(X) ≥ 10 and such that OP(1)|X is a primitive element of Cl(X), then
X is one of the following:

(i) X = X12 ⊂ P(1, 4, 5, 6, 7), qQ(X) = 11, dim | −KX | = 10;
(ii) X = X10 ⊂ P(2, 3, 4, 5, 7), qQ(X) = 11, dim | −KX | = 8;
(iii) X ≃ X12 ⊂ P(3, 4, 5, 6, 7), qQ(X) = 13, dim | −KX | = 5.

In the proof we follow the use some techniques developed in our previous paper
[Pro07]. By Proposition 1.3 it is sufficient to show that our Q-Fano X is toric.
First, as in [Suz04], we apply the orbifold Riemann-Roch formula to find all
the possibilities for the numerical invariants of X . In all cases there is some
special element S ∈ |−KX | having four irreducible components. This S should
be a toric boundary, if X is toric. Further, we use birational transformations
like Fano-Iskovskikh “double projection” [IP99] (see [Ale94] for the Q-Fano
version). Typically the resulting variety is a Fano-Mori fiber space having
“simpler” structure. In particular, its Fano index is large if this variety is a
Q-Fano. By using properties of our “double projection” we can show that
the pair (X,S) is log canonical (LC). Then, in principle, the assertion follows
by Shokurov’s toric conjecture [McK01]. We prefer to propose an alternative,
more explicit proof. In fact, the image of X under “double projection” is a toric
variety and the inverse map preserves the toric structure. In the last section
we describe Sarkisov links between toric Q-Fanos that start with blow ups of
singular points.

Acknowledgements. The work was conceived during the author’s stay at
the University of Warwick in the spring of 2008. The author is grateful to
Professor M. Reid for invitation, hospitality and fruitful discussions. Part of
the work was done at Max-Planck-Institut für Mathematik, Bonn in August
2008. Finally, the author would like to thank the referee for careful reading the
manuscript and constructive suggestions.

2. Preliminaries, the orbifold Riemann-Roch formula and its
applications

Notation. Throughout this paper, we work over the complex number field C.
We employ the following standard notation:
∼ denotes linear equivalence;
∼Q denotes Q-linear equivalence.
Let E be a rank one discrete valuation of the function field C(X) and let D be a
Q-Cartier divisor on X . a(E,D) denotes the discrepancy of E with respect to

a boundary D. Let f : X̃ → X be a birational morphism such that E appears
as a prime divisor on X̃. Then ordE(D) denotes the coefficient of E in f∗D.

2.1. The orbifold Riemann-Roch formula [Rei87]. Let X be a threefold
with terminal singularities and let D be a Weil Q-Cartier divisor on X . Let
B = {(rP , bP )} be the basket of singular points of X [Mor85a], [Rei87]. Here
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each pair (rP , bP ) correspond to a point P ∈ B of type 1

rP
(1,−1, bP ). For

brevity, describing a basket we will list just indices of singularities, i.e., we
will write B = {rP } instead of B = {(rP , bP )}. In the above situation, the
Riemann-Roch formula has the following form

(2.2) χ(D) =
1

12
D · (D −KX) · (2D −KX)+

+
1

12
D · c2 +

∑

P∈B

cP (D) + χ(OX),

where

cP (D) = −iP
r2P − 1

12rP
+

iP−1
∑

j=1

bP j(rP − bP j)

2rP
.

Clearly, computing cP (D), we always may assume that 1 ≤ bP ≤ rP /2.

2.3. Now let X be a Fano threefold with terminal singularities, let q := qQ(X),
and let A be an ample Weil Q-Cartier divisor on X such that −KX ∼Q qA. By
(2.2) we have

(2.4) χ(tA) = χ(OX) +
t(q + t)(q + 2t)

12
A3 +

tA · c2
12

+
∑

P∈B

cP (tA),

where χ(OX) = 1 and

cP (tA) = −iP,t

r2P − 1

12rP
+

iP,t−1
∑

j=1

bP j(rP − bP j)

2rP
.

If q > 2, then χ(−A) = 0. Using this equality we obtain (see [Suz04])

(2.5) A3 =
12

(q − 1)(q − 2)

(

1−
A · c2
12

+
∑

P∈B

cP (−A)

)

.

In the above notation, applying (2.2), Serre duality and Kawamata-Viehweg
vanishing to D = KX , we get the following important equality (see, e.g.,
[Rei87]):

(2.6) 24 = −KX · c2(X) +
∑

P∈B

(

rP −
1

rP

)

.

Theorem 2.7 ([Kaw92a], [KMMT00]). In the above notation,

(2.8) −KX · c2(X) ≥ 0,
∑

P∈B

(

rP −
1

rP

)

≤ 24.

Proposition 2.9. Let X be a Fano threefold with terminal singularities and
let Ξ be an n-torsion element in the Weil divisor class group. Let BΞ be the
collection of points P ∈ B where Ξ is not Cartier. Then

(2.10) 2 =
∑

P∈BΞ

bP iΞ,P

(

rP − bP iΞ,P

)

2rP
.
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where iΞ,P is taken so that Ξ ∼ iΞ,PKX near P ∈ B and is the residue
mod rP . Assume furthermore that n is prime. Then

(i) n ∈ {2, 3, 5, 7}.
(ii) If n = 7, then BΞ = (7, 7, 7).†

(iii) If n = 5, then BΞ = (5, 5, 5, 5), (10, 5, 5), or (10, 10).
(iv) If n = 3, then

∑

P∈BΞ rP = 18.
(v) If n = 2, then

∑

P∈BΞ rP = 16.

Proof. By Kawamata-Viehweg vanishing theorem, Riemann-Roch (2.2), and
Serre duality we have χ(OX) = 1,

0 = χ(Ξ) = 1 +
∑

P cP (Ξ),

0 = χ(KX + Ξ) = 1 + 1

12
KX · c2(X) +

∑

P∈B
cP (KX + Ξ).

Subtracting we get

0 = −
1

12
KX · c2(X) +

∑

P∈B

(cP (Ξ) − cP (KX + Ξ)).

Since niΞ,P ≡ 0 mod rP ,

0 = −
1

12
KX · c2(X) +

1

12

∑

P∈B

(

rP −
1

rP

)

−
∑

P∈B

bP iΞ,P

(

rP − bP iΞ,P

)

2rP
.

This proves (2.10).
Now assume that n is prime. If P ∈ BΞ, then n | rP . Write rP = nr′P . Since

rP | niP , iP = r′P i
′
P , where n ∤ i′P . Let ( )n be the residue mod n. Then

2 =
∑

P∈BΞ

bP i′Ξ,P r
′
(

nr′P − bP i′Ξ,P r
′
P

)

2nr′P
=
r′P (bP i

′
Ξ,P )n

(

n− (bP i′Ξ,P )n

)

2n
.

Therefore,

4n2 =
∑

P∈BΞ

rP (bP i′Ξ,P )n

(

n− (bP i′Ξ,P )n

)

.

Denote ξP := (bP i′Ξ,P )n. Then 0 < ξP < n, gcd(n, ξP ) = 1, and

4n =
∑

P∈BΞ

r′P ξP (n− ξP ) ≥
n2

4

∑

P∈BΞ

r′P , 16 ≥ n
∑

P∈BΞ

r′P .

If n ≥ 11, then
∑

r′P = 1, n | r′P , and rP ≥ n2 ≥ 121, a contradiction.
Therefore, n ≤ 7. Consider the case n = 7. Then ξP (n− ξP ) = 6, 10, or 12.
The only solution is BΞ = (7, 7, 7). The case n = 5 is considered similarly. If
n = 3, then ξP (n− ξP ) = 3 and

∑

rP = 3
∑

r′P = 18. Similarly, if n = 2,
then ξP (n− ξP ) = 1 and

∑

rP = 2
∑

r′P = 16. This finishes the proof. �

†More delicate computations show that this case does not occur. (We do not need this.)
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3. Computations with Riemann-Roch on Q-Fano threefolds of
large Fano index

Lemma 3.1 (see [Suz04]). Let X be a Fano threefold with terminal singularities
with q := qW(X), let A := − 1

q
KX , and let r be the Gorenstein index of X.

Then

(i) r and q are coprime;
(ii) rA3 is an integer.

Lemma 3.2. Let X be a Fano threefold with terminal singularities.

(i) If −KX ∼ qL for some Weil divisor L, then q divides qW(X).
(ii) If −KX ∼Q qL for some Weil divisor L, then q divides qQ(X).
(iii) qW(X) divides qQ(X).
(iv) Let q := qQ(X) and let KX + qA∼Q 0. If the order of KX + qA in the

group Cl(X) is prime to q, then qW(X) = qQ(X).

Proof. To prove (i) write −KX ∼ qW(X)A and let d = gcd(qW(X), q). Then
d = u qW(X) + vq for some u, v ∈ Z. Hence, dA = u qW(X)A + vqA ∼
quL+ qvA = q(uL+ vA). Since A is a primitive element of Cl(X), q = d and
q | qW(X).
(ii) can proved similarly and (iii) is a consequence of (ii).
To show (iv) assume that Ξ := KX + qA is of order n. By our condition
qu + nv = 1, where u, v ∈ Z. Put A′ := A − uΞ. Then qA′ = qA − quΞ =
qA− Ξ ∼ −KX . Hence, q = qW(X) by (i) and (iii). �

Lemma 3.3. Let X be a Fano threefold with terminal singularities.

(i) qQ(X) ∈ {1, . . . , 11, 13, 17, 19}.
(ii) If qQ(X) ≥ 5, then −K3

X ≤ 125/2.

Proof. Denote q := qQ(X) and write, as usual, −KX ∼Q qA. Thus n(KX +
qA) ∼ 0 for some positive integer n. The element KX + qA defines a cyclic
étale in codimension one cover π : X ′ → X so that X ′ is a Fano threefold with
terminal singularities and KX′ + qA′ ∼ 0, where A′ := π∗A. Let σ : X ′′ → X ′

be a Q-factorialization. (If X ′ is Q-factorial, we take X ′′ = X ′). Run K-MMP
on X ′′: ψ : X ′′

99K X̄ . At the end we get a Mori-Fano fiber space X̄ → Z.
Let A′′ := σ−1(A′) and Ā := ψ∗A

′′. Then −KX̄ ∼ qĀ. If dimZ > 0, then for
a general fiber F of X̄/Z, we have −KF ∼ qĀ|F . This is impossible because
q > 3. Thus dimZ = 0 and X̄ is a Q-Fano.
(i) By Lemma 3.2 the number q divides qW(X̄). On the other hand, by Theo-
rem 1.1 we have qW(X̄) ∈ {1, . . . , 11, 13, 17, 19}. This proves (i).
To show (ii) we note that −K3

X̄
≥ −K3

X′′ = −K3
X′ ≥ −K3

X′′ . Here the first
inequality holds because for Fanos (with at worst log terminal singularities)
the number − 1

6
K3 is nothing but the leading term in the asymptotic Riemann-

Roch and dim | − tKX′′ | ≤ dim | − tKX̄ |. Now the assertion of (ii) follows from
Theorem 1.2. �

From Lemmas 3.2 and 3.3 we have
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Corollary 3.4. Let X be a Fano threefold with terminal singularities.

(i) If −KX ∼ qL for some Weil divisor L and q ≥ 5, then q = qW(X).
(ii) If −KX ∼Q qL for some Weil divisor L and q ≥ 5, then q = qQ(X).

Lemma 3.5 (cf. [Suz04]). Let X be a Fano threefold with terminal singularities
and let q := qW(X). Assume that qW(X) ≥ 8. Then one of the following
holds:

q = 8, B = (32, 5), (32, 5, 9), (3, 5, 11), (3, 7), (3, 9), (5, 7), (7, 11),
(7, 13), (11),
q = 9, B = (2, 4, 5), (23, 5, 7), (2, 5, 13),
q = 10, B = (7, 11),
q = 11, B = (2, 3, 5), (2, 5, 7), (22, 3, 4, 7),
q = 13, B = (3, 4, 5), (2, 32, 5, 7),
q = 17, B = (2, 3, 5, 7),
q = 19, B = (3, 4, 5, 7).

In all cases the group Cl(X) is torsion free.

Proof. We use a computer program written in PARI [PARI] ‡. Below is the
description of our algorithm.
Step 1. By Theorem 2.7 we have

∑

P∈B
(1− 1/rP ) ≤ 24. Hence there is only

a finite (but very huge) number of possibilities for the basket B = {[rP , bP ]}.
In each case we know −KX · c2(X) from (2.6). Let r := lcm({rP }) be the
Gorenstein index of X .
Step 2. By Lemma 3.3 qQ(X) ∈ {8, . . . , 11, 13, 17, 19}. Moreover, the condi-
tion gcd(q, r) = 1 (see Lemma 3.1) eliminates some possibilities.
Step 3. In each case we compute A3 and −K3

X = q3A3 by formula (2.5). Here,
for D = −A, the number iP is uniquely determined by qiP ≡ bP mod rP and
0 ≤ iP < rP . Further, we check the condition rA3 ∈ Z (Lemma 3.1) and the
inequality −K3

X ≤ 125/2 (Lemma 3.3).
Step 4. Finally, by the Kawamata-Viehweg vanishing theorem we have
χ(tA) = h0(tA) for −q < t. We compute χ(tA) by using (2.4) and check
conditions χ(tA) = 0 for −q < t < 0 and χ(tA) ≥ 0 for t > 0.
At the end we get our list. To prove the last assertion assume that Cl(X)
contains an n-torsion element Ξ. Clearly, we also may assume that n is prime.
By Proposition 2.9 we have

∑

n|ri
ri ≥ 16. Moreover,

∑

n|ri
ri ≥ 18 if n = 3.

This does not hold in any case of our list. �

Proposition 3.6. Let X be a Q-Fano threefold with qQ(X) ≥ 9. Let q :=
qQ(X) and let −KX ∼Q qA. Then the group Cl(X) is torsion free, qW(X) =
qQ(X), and one of the following holds:

‡The PARI code is available at http://mech.math.msu.su/department/algebra/staff/

prokhorov/q-fano.
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dim |kA|

q B A3 |A| |2A| |3A| |4A| |5A| |6A| |7A| | −K|

9 (2, 4, 5) 1

20
0 1 2 4 6 8 11 19

9 (2, 2, 2, 5, 7) 1

70
−1 0 0 1 1 2 3 5

10 (7, 11) 2

77
−1 0 1 1 3 4 6 13

11 (2, 3, 5) 1

30
0 1 2 3 5 7 9 23

11 (2, 5, 7) 1

70
0 0 0 1 2 3 4 10

11 (2, 2, 3, 4, 7) 1

84
−1 0 0 1 1 2 3 8

13 (3, 4, 5) 1

60
0 0 1 2 3 4 5 19

13 (2, 3, 3, 5, 7) 1

210
−1 −1 0 0 0 1 1 5

17 (2, 3, 5, 7) 1

210
−1 0 0 0 1 1 2 12

19 (3, 4, 5, 7) 1

420
−1 −1 0 0 0 0 1 8

Proof. First we claim that qW(X) = qQ(X). Assume the converse. Then,
as in the proof of Lemma 3.3, the class of KX + qA is a non-trivial n-torsion
element in Cl(X) defining a global cover π : X ′ → X . We have KX′ + qA′ ∼ 0,
where A′ = π∗A. Hence X ′ is such as in Lemma 3.5 and by Corollary 3.5 we
have Cl(X ′) ≃ Z · A′ and qW(X ′) = qQ(X ′) ≥ q. The Galois group µn acts
naturally on X ′. Consider, for example, the case q = 11 and BX′ = (2, 3, 5) (all
other cases are similar). Then X ′ has three cyclic quotient singularities whose
indices are 2, 3, and 5. These points must be µn-invariant. Hence the variety
X has cyclic quotient singularities of indices 2n, 3n, and 5n. By Lemma 3.2 we
have gcd(q, n) 6= 1. In particular, n ≥ 11. This contradicts (2.8). Therefore,
qW(X) = qQ(X) and so X is such as in Lemma 3.5.
Now we have to exclude only the case q = 9, B = (2, 5, 13). But in this case
by (2.6) and (2.5) we have A3 = 9/130 and −KX · c2 = 621/130. On the
other hand, by Kawamata-Bogomolov’s bounds [Kaw92a] we have 2673/130 =
(4q2−3q)A3 ≤ 4KX ·c2 = 1242/65 [Suz04, Proposition 2.2]. The contradiction
shows that this case is impossible. Finally, the values of A3 and dimensions of
|kA| are computed by using (2.5) and (2.4). �

Corollary 3.7. Let X be a Q-Fano threefold satisfying assumptions of (i)-(v)
of Theorem 1.4. Then X has only cyclic quotient singularities.

Proof. Indeed, in these cases the indices of points in the basket B are distinct
numbers and moreover B contains no pairs of points of indices 2 and 4. Then
the assertion follows by [Mor85a], or [Rei87] �

Corollary 3.8. Let X be a Q-Fano threefold with qQ(X) ≥ 9. Then
dim |A| ≤ 0.

Computer computations similar to that in Lemma 3.5 allow us to prove the
following.
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Lemma 3.9. Let X be a Fano threefold with terminal singularities, let q :=
qW(X), and let A := − 1

q
KX .

(i) If q ≥ 5 and dim |A| > 1, then q = 5, B = (2), and A3 = 1/2.
(ii) If q ≥ 7 and dim |A| > 0, then q = 7, B = (2, 3), A3 = 1/6.

3.10. Proof of (vi) and (vii) of Theorem 1.4. (vii) Apply Lemma 3.9.
Then the result is well-known: in fact, 2A is Cartier and by Riemann-Roch
dim |2A| = 6 = dimX + 3. Hence X is a variety of ∆-genus zero [Fuj75], i.e.,
a variety of minimal degree. Then X ≃ P(13, 2).
(vi) Put q := qQ(X), Ξ := KX + qA, and Ξ1 := A − A1. By our assumption
nΞ ∼ nΞ1 ∼ 0 for some integer n. If either Ξ 6∼ 0 or Ξ1 6∼ 0, then elements
Ξ and Ξ′ define an étale in codimension one finite cover π : X ′ → X such
that KX′ + qA′ ∼ 0 and A′ ∼ A′

1, where A′ := π∗A and A′
1 := π∗A1. If

Ξ ∼ Ξ1 ∼ 0, we put X ′ = X . In both cases, the following inequalities hold:
qW(X ′) ≥ 7 and dim |A′| ≥ 1. By Lemma 3.9 we have B(X ′) = (2, 3) and
qQ(X ′) = qW(X ′) = 7. Note that the Gorenstein index of X ′ is strictly less
than qW(X ′). In this case, X ′ ≃ P(12, 2, 3) according to [San96]. § Now it
is sufficient to show that π is an isomorphism. Assume the converse. By our
construction, there is an action of a cyclic group µp ⊂ Gal(X ′/X), p is prime,
such that π is decomposed as π : X ′ → X ′/µp → X . Here X ′/µp is a Q-Fano
threefold and there is a torsion element of Cl(X ′/µp) which is not Cartier
exactly at points where X ′ → X ′/µp is not étale. There are exactly four such
points and two of them are points of indices 2 and 3. Thus the basket of X ′/µp

consists of points of indices p, p, 2p, and 3p. This contradicts Proposition 2.9.

Lemma 3.11. Let X be a Q-Fano threefold with q := qQ(X). If there are three
effective different Weil divisors A, A1, A2 such that −KX ∼Q qA∼Q qA1∼Q qA2

and A 6∼ A1, then q ≤ 5.

Proof. Assume that q ≥ 6. As in 3.10 consider a cover π : X ′ → X . Thus on
X ′ we have A′ ∼ A′

1 ∼ A′
2 and −KX′ ∼ qA′. Moreover, dim |A′| = 1 according

to Lemma 3.9. In this case, the action of Gal(X ′/X) on the pencil |A′| is
trivial (because there are three invariant members A′, A′

1, and A
′
2). But then

A ∼ A1 ∼ A2, a contradiction. �

4. Birational construction

4.1. Let X be a Q-Fano threefold and let A be the ample Weil divisor that
generates the group Cl(X)/∼Q. Thus we have −KX ∼Q qA. Let M be a mobile
linear system without fixed components and let c := ct(X,M ) be the canon-
ical threshold of (X,M ). So the pair (X, cM ) is canonical but not terminal.
Assume that −(KX + cM ) is ample.

Recall that, for any point P ∈ X , the class of KX is a generator of the local
Weil divisor class group Cl(X,P ).

§The result also can be easily proved by using birational transformations similar to that
in §4.
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Lemma 4.2. Let P ∈ X be a point of index r > 1. Assume that M ∼ −mKX

near P , where 0 < m < r. Then c ≤ 1/m.

Proof. According to [Kaw92b] there is an exceptional divisor Γ over P of dis-
crepancy a(Γ) = 1/r. Let ϕ : Y → X be a resolution. Clearly, Γ is a prime
divisor on Y . Write

KY = ϕ∗KX +
1

r
Γ +

∑

δiΓi, MY = ϕ∗
M − ordΓ(M )Γ− ordΓi

(M )Γi,

where MY is the birational transform of M and Γi are other ϕ-exceptional
divisors. Then

KY + cMY = ϕ∗(KX + cM ) + (1/r − c ordΓ(M ))Γ + . . .

and so 1/r − c ordΓ(M ) ≥ 0. On the other hand, ordΓ(M ) ≡ m/r mod Z
(because mKX + M ∼ 0 near P ). Hence, ordΓ(M ) ≥ m/r and c ≤ 1/m. �

4.3. In the construction below we follow [Ale94]. Let f : X̃ → X be a K+cM -

crepant blowup such that X̃ has only terminal Q-factorial singularities:

(4.4) KX̃ + cM̃ = f∗(KX + cM ).

As in [Ale94], we run K + cM -MMP on X̃. We get the following diagram
(Sarkisov link of type I or II)

(4.5)

X̃ //___

f

����
��

��
��

X̄
g

��?
??

??
??

X X̂

where the varieties X̃ and X̄ have only Q-factorial terminal singularities,
ρ(X̃) = ρ(X̄) = 2, f is a Mori extremal divisorial contraction, X̃ 99K X̄ is
a sequence of log flips, and g is a Mori extremal contraction (either divisorial
or fiber type). Thus one of the following possibilities holds:

a) dim X̂ = 1 and g is a Q-del Pezzo fibration;

b) dim X̂ = 2 and g is a Q-conic bundle; or

c) dim X̂ = 3, g is a divisorial contraction, and X̂ is a Q-Fano threefold.

In this case, denote q̂ := qQ(X̂).

Let E be the f -exceptional divisor. In all what follows, for a divisor D on X ,
let D̃ and D̄ denote strict birational transforms of D on X̃ and X̄ , respectively.
If g is birational, we put D̂ := g∗D̄.

Claim 4.6 ([Ale94]). If the map g of (4.5) is birational, then Ē is not an
exceptional divisor. If g is of fiber type, then Ē is not composed of fibers.

Proof. Assume the converse. If g is birational, this implies that the map g ◦
χ ◦ f−1 : X 99K X̂ is an isomorphism in codimension 1. Since both X and X̂
are Fano threefolds, this implies that g ◦ χ ◦ f−1 is in fact an isomorphism.
On the other hand, the number of K + cM -crepant divisors on X̂ is less than
that on X , a contradiction. If dim X̂ ≤ 2, then Ē is a pull-back of an ample
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Weil divisor on X̂ . But then nĒ is a movable divisor for some n > 0. This
contradicts exceptionality of E. �

4.7. Notation. If |kA| 6= ∅, let Sk ∈ |kA| be a general member. Write

(4.8)

KX̃ = f∗KX + αE,

S̃k = f∗Sk − βkE,

M̃ = f∗M − β0E.

Then

(4.9) c = α/β0.

Remark 4.10. If α < 1, then a(E, |−KX |) < 1. On the other hand, 0 = KX +
|−KX | is Cartier. Hence, a(E, |−KX |) ≤ 0 and KX̃ + f−1

∗ |−KX | is linearly
equivalent to a non-positive multiple of E. Therefore, f−1

∗ |−KX | ⊂ |−KX̃ | and
so

dim|−KX̄ | = dim|−KX̃ | ≥ dim|−KX |.

In our situation X has only cyclic quotient singularities (see Corollary 3.7). So,
the following result is very important.

Theorem 4.11 ([Kaw96]). Let (Y ∋ P ) be a terminal cyclic quotient singularity

of type 1

r
(1, a, r − a), let f : Ỹ → Y be a Mori divisorial contraction, and let

E be the exceptional divisor. Then f(E) = P , f is the weighted blowup with
weights (1, a, r − a) and the discrepancy of E is a(E) = 1/r.

We call this f the Kawamata blowup of P .

4.12. Notation. Assume that g is birational. Let F̄ be the g-exceptional
divisor and let F̃ and F be its proper transforms on X̃ and X , respectively.
Let n be the maximal integer dividing the class of F̄ in Cl(X̄). Let Θ be an

ample Weil divisor on X̂ that generates Cl(X̂)/∼Q. Write

Ŝk ∼Q skΘ and Ê ∼Q eΘ,

where sk, e ∈ Z, sk ≥ 0, e ≥ 1. Note that sk = 0 if and only if S̄k is contracted
by g.

Lemma 4.13. In the above notation assume that the group Cl(X) is torsion

free. Write F ∼ dA, where d ∈ Z, d ≥ 1. Then Cl(X̂) ≃ Z⊕ Zn and d = ne.

Proof. Write F̄ ∼ nḠ, where Ḡ is an integral Weil divisor. Then Ē ∼ eΘ̄+ kḠ
for some k ∈ Z and Cl(X̂) ≃ Cl(X̄)/F̄Z ≃ Z⊕ Zn. We have

Zd ≃ Cl(X)/〈F 〉 ≃ Cl(X̄)/〈Ē, F̄ 〉 ≃ Z⊕ Z/〈eΘ̄ + kḠ, nḠ〉.

Since the last group is of order ne, we have d = ne. �

From now until the end of this section we consider the case where X̂ is a surface.
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Lemma 4.14. Assume that X̂ is a surface. Then X̂ is a del Pezzo surface with
Du Val singularities of type An. The linear system |−KX̂ | is base point free. If

moreover the group Cl(X) is torsion free, then so is Cl(X̂) and there are only
the following possibilities:

(i) K2

X̂
= 9, X̂ ≃ P2;

(ii) K2

X̂
= 8, X̂ ≃ P(12, 2);

(iii) K2

X̂
= 6, X̂ ≃ P(1, 2, 3);

(iv) K2

X̂
= 5, X̂ has a unique singular point, point of type A4.

Proof. By the main result of [MP08b] the surface X̂ has only Du Val singular-

ities of type An. Since ρ(X̂) = 1 and X̂ is uniruled, −KX̂ is ample. Further,

since both X̄ and X̂ have only isolated singularities and Pic(X̄/X̂) ≃ Z, there

is a well-defined injective map g∗ : Cl(X̂) → Cl(X̄). Hence the group Cl(X̂) is
torsion free whenever Cl(X) is. The remaining part follows from the classifica-
tion of del Pezzo surfaces with Du Val singularities (see, e.g., [MZ88]). �

Lemma 4.15. Let ϕ : Y → Z be a Q-conic bundle (we assume that Y is Q-
factorial and ρ(Y/Z) = 1). Suppose that there are two prime divisors D1 and
D2 such that ϕ(Di) = Z, the log divisor KY +D1+D2 is ϕ-linearly trivial and
canonical. Suppose furthermore that Z is singular and let o ∈ Z be a singular
point. Then o ∈ Z is of type Ar−1 for some r ≥ 2 and there is a Sarkisov link

Ỹ
σ

����
��

��
��

χ //_______ Ȳ
ϕ̄

��>
>>

>>
>>

Y
ϕ

''OOOOOOOOOOOOOO Z̄
δ

wwoooooooooooooo

Z

where σ is the Kawamata blowup of a cyclic quotient singularity 1

r
(1, a, r − a)

over o, χ is a sequence of flips, ϕ̄ is a Q-conic bundle with ρ(Ȳ /Z̄) = 1, and
δ is a crepant contraction of an irreducible curve to o. Moreover, if D̄i is the
proper transform of Di on Ȳ , then the divisor KȲ + D̄1 + D̄2 is linearly trivial
over Z and canonical.

Proof. Regard Y/Z as an algebraic germ over o. Since Di are generically sec-
tions, the fibration ϕ has no discriminant curve. By [MP08c] the central fiber
C := ϕ−1(o)red is irreducible and by the main result of [MP08b] Y/Z is toroidal,
that is, it is analytically isomorphic to a toric contraction:

Y ≃ (C2 × P1)/µr(a, r − a, 1)

for some r, a ∈ Z with r ≥ 2 and gcd(a, r) = 1. Here the map Y → Z
is the projection to Z ≃ C2/µr(a, r − a). In particular, Y has exactly two
singular points and these points are cyclic quotients of types 1

r
(1, a, r− a) and
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1

r
(−1, a, r − a). Since the pair (Y,D1 + D2) is canonical, D1 ∩ D2 = ∅. On

the other hand, the divisor D1+D2 ∼ −KY must contain all points on indices
> 1. Hence Sing(Y ) = (D1 +D2) ∩ C. Further, the divisors Di are quotients
of two disjointed sections of C2 × P1 → C2 by µr. Therefore, Di · C = 1/r.

Now consider the Kawamata blowup σ : Ỹ → Y of C ∩ D1. Let E be the
exceptional divisor and let D̃i be the proper transform of Di. Since KỸ =

σ∗KY + 1

r
E and the pair (Y,D1 +D2) is canonical, we have

KỸ + D̃1 + D̃2 = σ∗(KY +D1 +D2).

It is easy to check locally that the proper transform C̃ of the central fiber C
does not meet D̃1. Moreover, C̃ ∩ E is a smooth point of Ỹ and E. Thus we
have D̃1 · C̃ = 0, E · C̃ = 1, and D̃2 · C̃ = D2 ·C = 1/r. Hence, KỸ · C̃ = −1/r.

Since the set-theoretical fiber over o in Ỹ coincides with E ∪ C̃, the divisor
−KỸ is ample over Z and C̃ generates a (flipping) extremal ray R. Run the
MMP over Z in this direction, i.e., starting with R. Assume that we end up
with a divisorial contraction ϕ̄ : Ȳ → Z̄. Then ϕ̄ must contract the proper
transform Ē of E. Here Z̄/Z is a Mori conic bundle and the map Y 99K Z̄ is
an isomorphism in codimension one, so it is an isomorphism. Moreover, Z̄/Z
has a section, the proper transforms of Di. Hence the fibration Z̄/Z is toroidal
over o. Consider Shokurov’s difficulty [Sho85]

d(W ) := #{exceptional divisors of discrepancy < 1}.

Then d(Y ) = d(Z̄) = 2(r − 1). On the other hand,

d(Z̄)− 1 ≤ d(Ȳ ) < d(Ỹ ) = r − 1 + a− 1 + r − a− 1 = 2r − 3

(because the map Ỹ 99K Ȳ is not an isomorphism). The contradiction shows
that our MMP ends up with a Q-conic bundle. Clearly, the divisorKȲ +D̄1+D̄2

is linearly trivial and canonical. By [MP08b] the surface Z̄ has at worst Du
Val singularities of type A. Hence the morphism δ is crepant [Mor85b]. �

Corollary 4.16. In the above notation assume that Ȳ is a toric variety. Then
so is Y .

Corollary 4.17. Notation as in Lemma 4.15. Assume that the base surface
Z is toric. Then so is Y .

Proof. Induction by the number e of crepant divisors of Z. If e = 0, then Y
is smooth and Y ≃ P(E ), where E is a decomposable rank-2 vector bundle on
Z. �

Proposition 4.18. In notation of 4.3, let X̂ be a surface. Let Γ ∈ |−KX̂ | and
let G := g−1(Γ). Suppose that there are two prime divisors D1 and D2 such

that g(Di) = X̂ and KX̂ +D1 +D2 + G ∼ 0. Then the pair (X̄,D1 +D2) is

canonical. If furthermore the surface X̂ is toric, then so are X̄ and X.

Proof. Clearly, we may replace Γ with a general member of | − KX̂ |. Note
that G is an elliptic ruled surface and KG +D1|G +D2|G ∼ 0. Hence divisors
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D1|G and D2|G are disjointed sections. This shows that D1 ∩ D2 is either
empty or consists of fibers. Assume that D1 ∩ D2 6= ∅. We can take Γ so
that G ∩D1 ∩D2 = ∅. By adjunction −KD1

∼ Ḡ|D1
+D2|D1

. Since D1 is a

rational surface (birational to X̂), the divisor Ḡ|D1
+D2|D1

must be connected,
a contradiction. Thus, D1 ∩D2 = ∅.
Therefore both divisors D1 and D2 contain no fibers and so D1 ≃ D2 ≃ X̂ .
Then the pair (X̄,D1 + D2) is PLT by the Inversion of Adjunction. Since
KX̄ + D1 +D2 is Cartier, this pair must be canonical. The second assertion
follows by Corollary 4.17. �

5. Case qQ(X) = 10

Consider the case qQ(X) = 10. We assume that a Q-Fano threefold with
qQ(X) = 10 exists and get a contradiction applying Construction (4.5).
By Proposition 3.6 the group Cl(X) is torsion free and B = (7, 11). Recall also
that

(5.1) |A| = ∅, dim |2A| = 0, and dim |3A| = 1.

For r = 7 and 11, let Pr be a (unique) point of index r. In notation of §4, take
M := |3A|. By (5.1) there exist a (unique) irreducible divisor S2 ∈ | − 2KX |
and M is a pencil without fixed components. Let S3 ∈ M = |3A| be a general
member.
Apply Construction (4.5). Notations of 4.3 and 4.7 will be used freely. Near
P11 we have A ∼ −10KX, so M ∼ −8KX . By Lemma 4.2 we get c ≤ 1/8. In
particular, the pair (X,M ) is not canonical. For some a1, a2 ∈ Z we can write

KX̃ + 5S̃2 = f∗(KX + 5S2)− a1E ∼ −a1E,

KX̃ + 2S̃2 + 2S̃3 = f∗(KX + 2S2 + 2S3)− a2E ∼ −a2E.

Therefore,

(5.2)
KX̄ + 5S̄2 + a1Ē ∼ 0,

KX̄ + 2S̄2 + 2S̄3 + a2Ē ∼ 0,

where dim |S2| = 0 and dim |S3| = 1. Using (4.8) we obtain

(5.3)
5β2 = a1 + α,

2β2 + 2β3 = a2 + α.

Since S3 ∈ M is a general member, by (4.9) we have c = α/β3 ≤ 1/8, so

(5.4) 8α ≤ β3 and a2 ≥ 15α+ 2β2.

5.5. First we consider the case where f(E) is either a curve or a Gorenstein
point on X . Then α and βk are non-negative integers. In particular, a2 ≥ 15.
From (5.2) and (5.4) we obtain that g is birational. Indeed, otherwise restricting
the second relation of (5.2) to a general fiber V we get that −KV is divisible
by some number a′ ≥ a2 ≥ 15. This is impossible because V is either P1 or a
smooth del Pezzo surface.
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Thus g is birational and X̂ is a Q-Fano. Again from (5.2) and (5.4) in notation
of 4.12 we get

−KX̂ ∼ 2Ŝ2 + 2Ŝ3 + a2Ê ∼Q (2s2 + 2s3 + a2e)Θ,

where s2, s3 ≥ 0, e ≥ 1, and a2 ≥ 15. This immediately gives us qQ(X̂) ≥ 15

and e = 1, that is, Ê∼Q Θ. By Proposition 3.6 the group Cl(X̂) is torsion free.

In particular, Ê ∼ Θ and |Θ| 6= ∅. On the other hand, again by Proposition
3.6 we have |Θ| = ∅, a contradiction.

5.6. Therefore f(E) is a non-Gorenstein point Pr of index r = 7 or 11. By
Theorem 4.11 f is Kawamata blowup and α = 1/r. Near Pr we can write
A ∼ −lrKX , where lr ∈ Z and 10lr ≡ 1 mod r. Then Sk + klrKX is Cartier
near Pr. Therefore, βk ≡ klrα mod Z and so βk = klr/r +mk, where mk =
mk,r ∈ Z. Explicitly, we have the following values of α, βk, and ak:

r α β2 β3 a1 a2

7 1

7

3

7
+m2

1

7
+m3 2 + 5m2 1 + 2m2 + 2m3

11 1

11

9

11
+m2

8

11
+m3 4 + 5m2 3 + 2m2 + 2m3

Claim 5.7. If r = 7, then m3 ≥ 1.

Proof. Follows from c = α/β3 ≤ 1/8. �

If g is not birational, then, as above, restricting relations (5.2) to a general
fiber V we get

−KV ∼ 5S̄2|V + a1Ē|V ∼ 2S̄2|V + 2S̄3|V + a2Ē|V ,

where E|V 6= 0 and S2|V , S3|V , and E|V are proportional to −KV (because

ρ(X̄/X̂) = 1). Since V is either P1, or a smooth del Pezzo surface, S2|V = 0
and ai ≤ 3. So, r = 7. By the above claim and computations in the table we
have a2 = 3, m1 = 1, and m2 = 0. Hence, a1 = 2. But then

−KV ∼ 2Ē|V ∼ 2S̄3|V + 3Ē|V ,

a contradiction.
Thus g is birational. Below we will use notation of 4.12. Since S̄3 is moveable,
s3 ≥ 1. Put

u := s2 + em2, v := s3 + em3.

5.8. Case: r = 11. Since Cl(X)/∼Q ≃ Z·Θ, pushing down (5.2) to X̂ we
obtain the following relations

(5.9)
q̂ = 5s2 + (4 + 5m2)e = 5u+ 4e,

q̂ = 2s2 + 2s3 + (3 + 2m2 + 2m3)e = 2u+ 2v + 3e.

Assume that u = 0. Then q̂ = 4e. The only solution of (5.9) with q̂ allowed by
Proposition 3.6 is the following: q̂ = 8, v = 1, e = 2. Hence, s2 = 0 and s3 = 1.
In particular, dim |Θ| ≥ dim |S3| = 1. On the other hand, by Lemma 4.13 the
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group Cl(X̂) is torsion free and by Lemma 3.9 the divisor Θ is not moveable,
a contradiction.
Therefore, u ≥ 1. By the first relation in (5.9) q̂ ≥ 9. Hence the group Cl(X̂)
is torsion free (Proposition 3.6). Then by Lemma 4.13 we have F ∼ eA. Since
|A| = ∅, e ≥ 2. Again by (5.9) q̂ ≥ 13 and e is odd. Thus, e = 3, u = 1, and
q̂ = 17. Further, s3 + em3 = v = 3 and s3 = 3 (because S̄3 is moveable). By
Proposition 3.6 we have 1 = dim |S3| ≤ dim |3Θ| = 0, a contradiction.

5.10. Case: r = 7. Recall that m3 ≥ 1 by Claim 5.7. As in 5.8 write

(5.11)
q̂ = 5s2 + (2 + 5m2)e = 5u+ 2e,

q̂ = 2s2 + 2s3 + (1 + 2m2 + 2m3)e = 2u+ 2v + e.

Hence, v = s3 + em3 ≥ 1 + e.
If u = 0, then q̂ = 2e = 2v + e, e = 2v, and q̂ = 4v ≥ 4(1 + e) = 4(1 + 2v), a
contradiction. If u = 2, then q̂ is even ≥ 12. Again we have a contradiction.
Assume that u ≥ 3. Using the first relation in (5.11) and Proposition 3.6 we
get successively

u = 3, q̂ ≥ 17, |Θ| = ∅, e ≥ 2, q̂ ≥ 19, |2Θ| = ∅, e ≥ 3,

and so q̂ ≥ 21, a contradiction.
Therefore, u = 1. Then q̂ = 5+ 2e = 2+ 2v + e and 2v = 3+ e = 2v ≥ 2 + 2e.
So, e = 1, v = 2, q̂ = 7. Since m3 ≥ 1, s3 = v−em3 = 1. Hence, Ŝ3∼QΘ. Since

dim |Ŝ3| ≥ 1, by (vi) of Theorem 1.4 we have X̂ ≃ P(12, 2, 3). In particular,

the group Cl(X̂) is torsion free. By Lemma 4.13 the divisor F generates the
group Cl(X). This contradicts |A| = ∅.
The last contradiction finishes the proof of (v) of Theorem 1.4.

6. Case qQ(X) = 11 and dim | −KX | ≥ 11

In this section we consider the case qQ(X) = 11 and dim | − KX | ≥ 11. By
Proposition 3.6 the group Cl(X) is torsion free and B = (2, 3, 5). Recall that

dim |A| = 0, dim |2A| = 1, and dim |3A| = 2.

It is easy to see that, for m = 1, 2, and 3, general members Sm ∈ |−mKX | are
irreducible. For r = 2, 3, 5, let Pr be a (unique) point of index r. In notation
of §4, take M := |2A|. By the above, M is a pencil without fixed components.
Apply Construction (4.5). Near P5 we have A ∼ −KX and M ∼ −2KX. By
Lemma 4.2 we get c ≤ 1/2. In particular, the pair (X,M ) is not canonical.

Proposition 6.1. In the above notation, f is the Kawamata blowup of P5 and
X̂ is a del Pezzo surface with Du Val singularities with K2

X̂
= 5 or 6. Moreover,

for k = 1, 2 and 3, the image Ck := g(S̄k) is a curve on X̂ with −KX̂ ·Ck = k.

Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3 ∈ Z:

(6.2)

KX̄ + 11S̄1 + a1Ē ∼ 0,

KX̄ + S̄1 + 5S̄2 + a2Ē ∼ 0,

KX̄ + 2S̄1 + 3S̄3 + a3Ē ∼ 0,
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(6.3)

11β1 = a1 + α,

β1 + 5β2 = a2 + α,

2β1 + 3β3 = a3 + α.

Since S2 ∈ M is a general member, by (4.9) we have c = α/β2 ≤ 1/2, so
2α ≤ β2 and a2 ≥ 9α + β1. Since 2S1 ∼ S2, we have 2β1 ≥ β2. Thus β1 ≥ α
and a1, a2 ≥ 10α.
First we consider the case where f(E) is either a curve or a Gorenstein point on
X . Then α and βk are integers, so a1, a2 ≥ 10. Restricting (6.2) to a general
fiber of g we obtain that g is birational. Moreover, in notation of 4.12 we have

q̂ ≥ 15, the group Cl(X̂) is torsion free, and Ê ∼ Θ. In particular, |Θ| 6= ∅.
This contradicts Proposition 3.6.

6.4. Therefore P := f(E) is a non-Gorenstein point of index r = 2, 3 or 5. As
in 5.6 we have the following values of βk and ak:

r β1 β2 β3 a1 a2 a3

2
1

2
+m1 m2

1

2
+m3 5 + 11m1 m1 + 5m2 2 + 2m1 + 3m3

3
2

3
+m1

1

3
+m2 m3 7 + 11m1 1 +m1 + 5m2 1 + 2m1 + 3m3

5
1

5
+m1

2

5
+m2

3

5
+m3 2 + 11m1 2 +m1 + 5m2 2 + 2m1 + 3m3

Claim 6.5. If r = 2 or 3, then m2 ≥ 1.

Proof. Follows from 1/2 ≥ c = α/β2 = 1/rβ2. �

Assume that g is birational. By Proposition 3.6 and Remark 4.10 we have
dim | − KX̂ | ≥ | − KX | = 23. So, in notation of 4.12, q̂ ≤ 11. If S̄1 is not
contracted, then by the first relation in (6.2) we have q̂ ≥ 11 + a1 ≥ 13, a
contradiction. Therefore the divisor S̄1 is contracted. By Lemma 4.13 the
group Cl(X̂) is torsion free and Ê ∼ Θ. Hence, q̂ = a1 ≤ 7, m1 = 0, and r 6= 5.
But then m2 ≥ 1 (see Claim 6.5) and a2 ≥ 5. This contradicts the second
relation in (6.2).
Therefore g is of fiber type. Restricting (6.2) to a general fiber we get ai ≤ 3.
Thus, r = 5 and a1 = a2 = a3 = 2. Moreover, divisors S̄1, S̄2, and S̄3 are
g-vertical. Since S̄3 is irreducible and dim |S̄3| = 2, the variety X̂ cannot be

a curve. Therefore X̂ is a surface and the images g(S̄1), g(S̄2), and g(S̄3) are
curves. Since dim |S̄1| = 0, we have dim |g(S̄1)| = 0. Hence, K2

X̂
≤ 6 and g(S̄1)

is a line on X̂. By Lemma 4.14 there are only two possibilities: X̂ ≃ P(1, 2, 3)

and X̂ is an A4-del Pezzo surface. �

6.6. Consider the case where X̂ is an A4-del Pezzo surface. Assume that S̄6

is g-vertical. By Riemann-Roch for Weil divisors on surfaces with Du Val
singularities [Rei87] we have dim |S̄6| = dim |g(S̄6)| = 6. On the other hand,

dim |S̄6| = dim |S6| = 7, a contradiction. Thus g(S̄5) = X̂. Since KX + S5 +
S6 ∼ 0,

KX̄ + S̄5 + S̄6 + Ē ∼ 0.
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Therefore S̄6 and Ē are sections of g. By Proposition 4.18 the pair (X̄, S̄6+ Ē)

is canonical. Now since S̄5 is nef, the map X̄ 99K X̃ is a composition of steps
of the KX̄ + S̄6 + Ē-MMP. Hence the pair (X̃, S̃6 + E) is also canonical. In

particular, S̃6 ∩ E = ∅ and so P5 = f(E) /∈ S6, a contradiction.

6.7. Now consider the case X̂ ≃ P(1, 2, 3). As above, if g(S̄5) is a curve, then
dim |g(S̄5)| = 5 and g(S̄5) ∼ 5g(S̄1). On the other hand, g(S̄5) ∼ − 5

6
KX̂ . But

then dim |g(S̄5)| = 4, a contradiction. Therefore, g(S̄5) = X̂. Similar to (6.2)
we have KX̄ +2S̄5 + S̄1 + a4Ē ∼ 0. This shows that a4 = 0 and S̄5 is a section
of g. Thus we can write KX̄ + S̄5 + G + Ē ∼ 0, where G is a g-trivial Weil
divisor, i.e., G = g∗Γ for some Weil divisor Γ. Pushing down this equality to
X we get G ∼ 6S̄1, i.e., Γ ∈ | −KX̂ |. By Proposition 4.18 varieties X̄ and X
are toric. This proves (iv) of Theorem 1.4.

7. Case qQ(X) = 13 and dim | −KX | ≥ 6

In this section we consider the case qQ(X) = 13 and dim | − KX | ≥ 6. By
Proposition 3.6 B = (3, 4, 5). Recall that

dim |A| = dim |2A| = 0, dim |3A| = 1, dim |4A| = 2, and dim |5A| = 3.

Therefore, for m = 1, 3, 4, and 5, general members Sm ∈ | − mKX | are
irreducible. For r = 3, 4, 5, let Pr be a (unique) point of index r. In notation
of §4, take M := |4A|. Since 1 = dim |3A| > dimM = 2, the linear system
M has no fixed components. Apply Construction (4.5). Near P5 we have
A ∼ −2KX and M ∼ −3KX . By Lemma 4.2 we get c ≤ 1/3. In particular,
the pair (X,M ) is not canonical.

Proposition 7.1. In the above notation, f is the Kawamata blowup of P5, g
is birational, it contracts S̄1, and X̂ ≃ P(13, 2). Moreover, in notation of 4.12

we have Ŝ3 ∼ Ŝ4 ∼ Ê ∼ Θ and Ŝ5 ∼ 2Θ.

Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3 ∈ Z:

(7.2)

KX̄ + 13S̄1 + a1Ē ∼ 0,

KX̄ + S̄1 + 4S̄3 + a2Ē ∼ 0,

KX̄ + S̄1 + 3S̄4 + a3Ē ∼ 0,

(7.3)

13β1 = a1 + α,

β1 + 4β3 = a2 + α,

β1 + 3β4 = a3 + α.

Since S4 ∈ M is a general member, by (4.9) we have c = α/β4 ≤ 1/3, 3α ≤ β4
and a3 ≥ 8α + β1. Since 4S1 ∼ S4, we have 4β1 ≥ β4. Thus β1 ≥ α and
a1 ≥ 12α.
First we consider the case where f(E) is either a curve or a Gorenstein point
on X . Then α and βk are integers. In particular, a1 ≥ 12. From the first
relation in (7.2) we obtain that g is birational. Moreover, in notation of 4.12
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we have q̂ ≥ 13 and Ê ∼ Θ. In particular, |Θ| 6= ∅. By Proposition 3.6 we
have q̂ = 13, a1 = 13, S̄1 is contracted, and α = 1. This contradicts (7.3).
Therefore P := f(E) is a non-Gorenstein point of index r = 3, 4 or 5. By
Theorem 4.11 α = 1/r. Similar to 5.6 we have (here mk ∈ Z≥0)

r β1 β3 β4 β5 a1 a2 a3

3 1

3
+m1 m3

1

3
+m4

2

3
+m5 4 + 13m1 m1 + 4m3 1 +m1 + 3m4

4 1

4
+m1

3

4
+m3 m4

1

4
+m5 3 + 13m1 3 +m1 + 4m3 m1 + 3m4

5 2

5
+m1

1

5
+m3

3

5
+m4 m5 5 + 13m1 1 +m1 + 4m3 2 +m1 + 3m4

Claim 7.4. If r = 3 or 4, then m4 ≥ 1.

Proof. Follows from 1/3 ≥ c = α/β4 = 1/rβ4. �

If g is not birational, then a1 = 3, r = 4, m4 ≥ 1, and a3 ≥ 3. In this case,
a2 = a3 = 3, g is a generically P2-bundle, and divisors S̄1, S̄3, S̄4 are g-vertical.
Since dim |S̄4| > 1 and the divisor S̄4 is irreducible, we have a contradiction.
Therefore g is birational. Below we will use notation of 4.12.
By Proposition 3.6 we have dim | −KX̂ | ≥ | −KX | = 19 and q̂ ≤ 13. From the
first relation in (7.2) we see that S̄1 is contracted. By Lemma 4.13 the group

Cl(X̂) is torsion free and Ê ∼ Θ. Moreover, m1 = 0 (because 13m1 < a1e =
q̂ ≤ 13). Thus q̂ = a1 = 4, 3, and 5 in cases r = 3, 4, and 5, respectively.
In cases r = 3 and 4 we have q̂ ≥ 3 + a3 ≥ 6, a contradiction. Therefore,
r = 5, q̂ = 5, and s3 = s4 = 1. Since dim |Θ| ≥ 1, by (vi) of Theorem

1.4 we have X̂ ≃ P(13, 2). Since dim |S5| = 3 and dim |Θ| = 2, s5 ≥ 2.
Similar to (7.2)-(7.3) we have KX̄ + S̄3 + 2S̄5 + a4Ē ∼ 0, 2s5 + a4 = 4, and
a4 = β3+2β5−α = m3+2m5. Thus, s5 = 2 and a4 = β5 = 0, i.e., P5 /∈ S5. �

Lemma 7.5. (i) S1 ∩ S3 is a reduced irreducible curve.
(ii) S1 ∩ S3 ∩ S4 = {P5}.

Proof. (i) Recall that A3 = 1/60 by Proposition 3.6. Write S1 ∩ S3 = C + Γ,
where C is a reduced irreducible curve passing through P5 and Γ is an effective
1-cycle. Suppose, Γ 6= 0. Then 1/4 = S1 · S3 · S5 > S5 · C. Since P5 /∈ S5,
C 6⊂ S5 and S5 · C ≥ 1/4, a contradiction. Hence, S1 ∩ S3 = C.
(ii) Assume that S1 ∩ S3 ∩ S4 ∋ P 6= P5. Since 1/5 = S1 · S3 · S4 = S4 · C and
P, P5 ∈ S4 ∩ C, we have C ⊂ S4. If there is a component C′ 6= C of S1 ∩ S4

not contained in S5, then, as above, 1/3 = S1 · S4 · S5 ≥ S5 ·C + S5 ·C
′ ≥ 1/2,

a contradiction. Thus we can write S1 ∩ S4 = C + Γ, where Γ is an effective
1-cycle with SuppΓ ⊂ S5. In particular, P5 /∈ Γ. The divisor 12A is Cartier at
P3 and P4. We get

1

5
= 12A3 = 12A · S1 · (S4 − S3) = 12A · Γ ∈ Z,

a contradiction. �
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Lemma 7.6. Let X be a Q-Fano threefold and D = D1 + · · ·+D4 be a divisor
on X, where Di are irreducible components. Let P ∈ X be a cyclic quotient
singularity of index r. Assume that KX+D∼Q0, P /∈ D4, D1∩D2∩D3 = {P},
and D1 ·D2 ·D3 = 1/r. Then the pair (X,D) is LC.

Proof. Let π : (X♯, P ♯) → (X,P ) be the index-one cover. For k = 1, 2, 3, let

D♯
k be the preimage of Dk and let D♯ := D♯

1 +D♯
2 +D♯

3. By our assumptions

D♯
1 ∩ D♯

2 ∩ D♯
3 = {P ♯}. Since D1 · D2 · D3 = 1/r, locally near P ♯ we have

D♯
1 ·D

♯
2 ·D

♯
3 = 1. Hence D♯ is a simple normal crossing divisor (near P ♯). In

particular, (X♯, D♯) is LC near P ♯ and so is (X,D) near P .
Thus the pair (X,D) is LC in some neighborhood U ∋ P . Since D1∩D2∩D3 =
{P}, P is a center of LC singularities for (X,D). Let H be a general hyperplane
section through P . Write λD4∼QH , where λ > 0. If (X,D) is not LC in X \U ,
then the locus of log canonical singularities of the pair (X,D+ǫH−(λǫ+δ)D4)
is not connected for 0 < δ ≪ ǫ ≪ 1. This contradicts Connectedness Lemma
[Sho92], [Kol92]. Therefore the pair (X,D) is LC. �

7.7. Proof of (iii) of Theorem 1.4. By Lemma 7.6 the pair (X,S1 +S3 +
S4+S5) is LC. Since KX+S1+S3+S4+S5 ∼ 0, it is easy to see that a(E, S1+

S3+S4+S5) = −1. ThusKX̃+S̃1+S̃3+S̃4+S̃5 = f∗(KX+S1+S3+S4+S5) ∼ 0.

Therefore the pairs (X̄, S̄1 + S̄3 + S̄4 + S̄5 + Ē) and (X̂, Ŝ3 + Ŝ4 + Ŝ5 + Ê)

are also LC. It follows from Proposition 7.1 and its proof that X̂ ≃ P(13, 2),

Ê ∼ Ŝ3 ∼ Ŝ4 ∼ Θ, and Ŝ5 ∼ 2Θ. We claim that Ŝ3 + Ŝ4 + Ŝ5 + Ê is a
toric boundary (for a suitable choice of coordinates in P(13, 2)). Let (x1 : x′1 :
x′′1 : x2) be homogeneous coordinates in P(13, 2). Clearly, we may assume that

Ê = {x1 = 0}, Ŝ3 = {x′1 = 0}, and Ŝ4 = {αx1 + α′x′1 + α′′x′′1 = 0} for some

constants α, α′, α′′. Since (X̂, Ŝ3+Ŝ4+Ê) is LC, α
′′ 6= 0 and after a coordinate

change we may assume that Ŝ4 = {x′′1 = 0}. Further, the surface Ŝ5 is given by
the equation βx2+ψ(x1, x

′
1, x

′′
1 ) = 0, where β is a constant and ψ is a quadratic

form. If β = 0, then Ŝ3 ∩ Ŝ4 ∩ Ê ∩ Ŝ5 6= ∅ and the pair (X̂, Ŝ3 + Ŝ4 + Ŝ5 + Ê)
cannot be LC. Thus β 6= 0 and after a coordinate change we may assume that
Ŝ5 = {x2 = 0}. Therefore Ŝ3 + Ŝ4 + Ŝ5 + Ê is a toric boundary. Then by

Lemma 7.8 below the varieties X̄, X̃, and X are toric. This proves (iii) of
Theorem 1.4.

Lemma 7.8 (see, e.g., [McK01, 3.4]). Let V be a toric variety and let ∆ be the
toric (reduced) boundary. Then every valuation ν with discrepancy −1 with

respect to KV +∆ is toric, that is, there is a birational toric morphism Ṽ → V
such that ν corresponds to an exceptional divisor.

8. Case qQ(X) = 17

Consider the case qQ(X) = 17. By Proposition 3.6B = (2, 3, 5, 7) and |A| = ∅,
dim |2A| = dim |3A| = dim |4A| = 0, dim |5A| = dim |6A| = 1, dim |7A| =
2. Therefore, for m = 2, 3, 5, and 7 general members Sm ∈ | − mKX | are
irreducible. For r = 2, 3, 5, 7, let Pr be a (unique) point of index r. In
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notation of §4, take M := |5A| and apply Construction (4.5). Near P7 we have
A ∼ −5KX and M ∼ −4KX . By Lemma 4.2 we get c ≤ 1/4. In particular,
the pair (X,M ) is not canonical.

Proposition 8.1. In the above notation, f is the Kawamata blowup of P7, g
is birational, it contracts S̄2, and X̂ ≃ P(12, 2, 3). Moreover, in notation of

4.12 we have Ŝ3 ∼ Ŝ5 ∼ Θ, Ê ∼ 2Θ, and Ŝ7 ∼ 3Θ.

Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3 ∈ Z:

(8.2)

KX̄ + 7S̄2 + S̄3 + a1Ē ∼ 0,

KX̄ + S̄2 + 5S̄3 + a2Ē ∼ 0,

KX̄ + S̄2 + 3S̄5 + a3Ē ∼ 0,

(8.3)

7β2 + β3 = a1 + α,

β2 + 5β3 = a2 + α,

β2 + 3β5 = a3 + α.

Since S5 ∈ M is a general member, by (4.9) we have c = α/β5 ≤ 1/4, so
4α ≤ β5 and a3 ≥ 11α+ β2. Since S2 + S3 ∼ S5, we have β2 + β3 ≥ β5 ≥ 4α.
Hence, a1 ≥ 6β2 + 3α and a2 ≥ 4β3 + 3α.
First we consider the case where f(E) is either a curve or a Gorenstein point
on X . Then α and βk are integers. In particular, a3 ≥ 11 and by the third
relation in (8.2) we obtain that g is birational. Moreover, in notation of 4.12

we have q̂ ≥ 11. In particular, the group Cl(X̂) is torsion free and so Ê ≥ 2Θ.
Hence, q̂ ≥ 2a3 ≥ 22, a contradiction.
Therefore P := f(E) is a non-Gorenstein point of index r = 2, 3, 5 or 7. Similar
to 5.6 we have α = 1/r and

r β2 β3 β5 β7 a1 a2 a3

2 m2
1

2
+ m3

1

2
+ m5

1

2
+ m7 7m2 + m3 2 + m2 + 5m3 1 + m2 + 3m5

3 1

3
+ m2 m3

1

3
+ m5

2

3
+ m7 2 + 7m2 + m3 m2 + 5m3 1 + m2 + 3m5

5 1

5
+ m2

4

5
+ m3 m5

1

5
+ m7 2 + 7m2 + m3 4 + m2 + 5m3 m2 + 3m5

7 3

7
+ m2

1

7
+ m3

4

7
+ m5 m7 3 + 7m2 + m3 1 + m2 + 5m3 2 + m2 + 3m5

Claim 8.4. (i) If r = 2, then m5 ≥ 2 and m2 +m3 ≥ 2.
(ii) If r = 3, then m5 ≥ 1 and m2 +m3 ≥ 1.
(iii) If r = 5, then m5 ≥ 1.

Proof. Note that 1/4 ≥ c = α/β5 = 1/rβ5 and rβ5 ≥ 4. This gives us inequal-
ities for m5. The inequalities for m2 +m3 follows from β2 + β3 ≥ β5. �

From this we have min(a1, a2, a3) ≥ 3. Moreover, the equality min(a1, a2, a3) =
3 holds only if r = 7. Therefore the contraction g can be of fiber type only if
a1 = 3, r = 7, m2 = m3 = 0, min(a1, a2, a3) = 3, r = 7, m2 = m3 = m5 = 0,
a3 = 2, and a2 = 1. Then g is a del Pezzo fibration of degree 9 and by the
first relation in (8.2) divisors Ŝ2 and Ŝ3 are g-vertical. But then a2 = 3, a
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contradiction. From now on we assume that g is birational. Thus we use
notation of 4.12 as usual.
Since S̄5 is moveable, it is not contracted. Therefore, s5 ≥ 1. By (8.2) we have

q̂ = 7s2 + s3 + a1e,

q̂ = s2 + 5s3 + a2e,

q̂ = s2 + 3s5 + a3e.

Put
u := s2 + em2, v := s3 + em3, w := s5 + em5.

8.5. Case: r = 2. Then a3 ≥ 7 and q̂ ≥ 3s5 + a3 ≥ 10. Hence the group
Cl(X̂) is torsion free. So, e ≥ 2 and q̂ ≥ 3s5 + 2a3 ≥ 17. In this case, |Θ| = ∅.
Therefore, s5 ≥ 2 and q̂ ≥ 3s5 + 2a3 ≥ 20, a contradiction.

8.6. Case: r = 3. Then

q̂ = 7s2 + s3 + (2 + 7m2 +m3)e = 7u+ v + 2e,

q̂ = s2 + 5s3 + (m2 + 5m3)e = u+ 5v,

q̂ = s2 + 3s5 + (1 +m2 + 3m5)e = u+ 3w + e.

Assume that u > 0. Then q̂ ≥ 9. Hence the group Cl(X̂) is torsion free and
e ≥ 2. Since dim |S5| = 1 and dim |Θ| ≤ 0, we have s5 ≥ 2. Since m5 ≥ 1 (see
Claim 8.4), we have w ≥ 4 and q̂ > 13. In this case, s5 ≥ 5, a contradiction.
Therefore, u = 0, m2 = 0, s3 6= 0, m3 ≥ 1, and v ≥ 2. So, q̂ = 5v ≥ 10. Then
we get a contradiction by (v) of Theorem 1.4.

8.7. Case: r = 5. Then

q̂ = 7s2 + s3 + (2 + 7m2 +m3)e = 7u+ v + 2e,

q̂ = s2 + 5s3 + (4 +m2 + 5m3)e = u+ 5v + 4e,

q̂ = s2 + 3s5 + (m2 + 3m5)e = u+ 3w.

From the first two relations we have 3u = 2v + e and 1 ≤ u ≤ 2. Further,
q̂ − 4u = 3(v + e), so q̂ ≡ u mod 3.
If u = 2, then e is even and q̂ = 14 + v + 2e ≥ 18. So, q̂ = 19, a contradiction.
Thus u = 1, 3 = 2v+e, and q̂ = 7+v+2e ≥ 9. By (v) of Theorem 1.4 q̂ is odd.
Hence, v is even, e = 3, v = 0, q̂ = 13. In this case, s5 + 3m5 = w = 4. By
Claim 8.4 m5 = s5 = 1. Note that the group Cl(X̂) is torsion free and s2 = 1.
Thus dim |Θ| > 0. This contradicts Proposition 3.6.

8.8. Case: r = 7. Then

q̂ = 7s2 + s3 + (3 + 7m2 +m3)e = 7u+ v + 3e,

q̂ = s2 + 5s3 + (1 +m2 + 5m3)e = u+ 5v + e,

q̂ = s2 + 3s5 + (2 +m2 + 3m5)e = u+ 3w + 2e.

Assume that u > 0. Then q̂ ≥ 10, the group Cl(X̂) is torsion free and so e ≥ 2,
q̂ ≥ 13, u = 1. From the first two relations we get q̂ + 2 = 7v. Hence, v = 3,
q̂ = 19, e = 3, and s2 = 0. This contradicts the equality 1 = u = s2 + em2.
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Therefore, u = 0 and s2 = m2 = 0. From the first two relations we get q̂ = 7v.
Thus, q̂ = 7, v = 1, e = 2, w = 1, m3 = m5 = 0, and s3 = s5 = 1. By Lemma
4.13 the group Cl(X̂) is torsion free and so dim |Θ| ≥ dim |S̄5| > 0. From (vi)

of Theorem 1.4 we have X̂ ≃ P(12, 2, 3). In particular, dim |Θ| = 1. Further,
similar to (8.2) we have

KX̄ + S̄3 + 2S̄7 + a4Ē ∼ 0,

β3 + 2β7 = a4 + α.

This gives us a4 = 2β7 and s7 + a4 = 3. Since dim |S7| = 2, s7 > 1, s7 = 3,

Ŝ7 ∼ 3Θ, a4 = 0, and β7 = 0, i.e., P7 /∈ S7.

�

Lemma 8.9. (i) S2 ∩ S3 is a reduced irreducible curve.
(ii) S2 ∩ S3 ∩ S5 = {P7}.

Proof. (i) Similar to the proof of (i) of Lemma 7.5.
(ii) Put C := S3 ∩ S4. Assume that S2 ∩ S3 ∩ S5 ∋ P 6= P7. Since 1/7 =
S2 ·S3 ·S5 = S5 ·C and P, P7 ∈ S5∩C, we have C ⊂ S5. If there is a component
C′ 6= C of S2 ∩ S5 not contained in S7, then, as above, 7/15 = S2 · S7 · S7 ≥
S7 · C + S7 · C

′ ≥ 2/5, a contradiction. Thus we can write S2 ∩ S5 = C + Γ,
where Γ is an effective 1-cycle with SuppΓ ⊂ S7. In particular, P7 /∈ Γ. The
divisor 30A is Cartier at P2, P3, and P5. We get

120

210
= 120A3 = 30A · S2 · (S5 − S3) = 30A · Γ ∈ Z,

a contradiction. �

Now the proof of (ii) of Theorem 1.4 can be finished similar to 7.7: the pair

(X̂, Ŝ3 + Ŝ5 + Ê + Ŝ7) is LC and the corresponding discrepancy of S̄2 is equal
to −1.

9. Case qQ(X) = 19

Consider the case qQ(X) = 19. By Proposition 3.6 B = (3, 4, 5, 7) and |A| =
∅, |2A| = ∅, dim |3A| = dim |4A| = dim |5A| = dim |6A| = 0, dim |7A| =
1. Therefore, for m = 3, 4, 5, and 7 general members Sm ∈ | − mKX | are
irreducible. For r = 3, 4, 5, 7, let Pr be a (unique) point of index r. In
notation of §4, take M := |7A| = |S7| and apply Construction (4.5). Near P5

we have A ∼ −4KX and M ∼ −3KX . By Lemma 4.2 we get c ≤ 1/3. In
particular, the pair (X,M ) is not canonical.

Proposition 9.1. In the above notation, f is the Kawamata blowup of P5, g
is birational, it contracts S̄3, and X̂ ≃ P(12, 2, 3). Moreover, in notation of

4.12 we have Ŝ4 ∼ Ŝ7 ∼ Θ, Ê ∼ 3Θ, and Ŝ5 ∼ 2Θ.
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Proof. Similar to (5.2)-(5.3) we have for some a1, a2, a3, a4 ∈ Z:

(9.2)

KX̄ + 5S̄3 + S̄4 + a1Ē ∼ 0,

KX̄ + S̄3 + 4S̄4 + a2Ē ∼ 0,

KX̄ + S̄4 + 3S̄5 + a3Ē ∼ 0,

KX̄ + S̄5 + 2S̄7 + a4Ē ∼ 0,

(9.3)

5β3 + β4 = a1 + α,

β3 + 4β4 = a2 + α,

β4 + 3β5 = a3 + α,

β5 + 2β7 = a4 + α.

Remark 9.4. Since S7 ∈ M is a general member, by (4.9) we have c =
α/β7 ≤ 1/3, so 3α ≤ β7 and a4 ≥ 5α + β5. Further, S3 + S4 ∼ S7. Thus,
β3 + β4 ≥ β7 ≥ 3α, a1 ≥ 4β3 + 2α, and a2 ≥ 3β4 + 2α.

Assume that X̂ is a surface. Then X̂ is such as in Lemma 4.14. From the first
and second relations in (9.2) we obtain that S3 and S4 are g-vertical. Since
dim |S̄k| = 0, dim |g(S̄k)| = 0, k = 3, 4. Hence, K2

X̂
≤ 6 and the curves g(S̄k)

are in fact lines on X̂. In particular, g(S̄3) ∼ g(S̄4). This implies S̄3 ∼ S̄4 and
S3 ∼ S4, a contradiction.
Now assume that X̂ is a curve and let G be a general fiber of g. Clearly,
divisors S̄3 and S̄4 are g-vertical. If the divisor S̄5 is also g-vertical, then
k3S̄3 ∼ k4S̄4 ∼ k5S̄5 ∼ G, where the ki are the multiplicities of corresponding
fibers. Considering proper transforms on X we get 3k3 = 4k4 = 5k5 and so
k3 = 20k, k4 = 14k, k5 = 12k for some k ∈ Z. This contradicts the main result
of [MP08a]. Therefore the divisor S̄5 is g-horizontal. In this case, the degree
of the general fiber is 9. As above we have k3S̄3 ∼ k4S̄4 ∼ G, 3k3 = 4k4. So,
k3 = 4k, k4 = 3k, k ∈ Z. Again by [MP08a] g has no fibers of multiplicity
divisible by 4.
From now on we assume that g is birational. Then in notation of 4.12,

(9.5) q̂ = 5s3 + s4 + a1e = s3 + 4s4 + a2e = s4 + 3s5 + a3e.

Consider the case where f(E) is either a curve or a Gorenstein point on X .
Then α and βk are integers. By Remark 9.4

a1 + a2 = 5(β3 + β4) + β3 − 2α ≥ 13α ≥ 13.

On the other hand, from (9.5) we obtain 2q̂ ≥ 6s3 + 5s4 + 13 ≥ 18. So, q̂ ≥ 9

(both S̄3 and S̄4 cannot be contracted). In this case, the group Cl(X̂) is torsion

free and by Lemma 4.13 we have Ê ≥ 3Θ. Since a4 ≥ 5, we have Ê ∼ 3Θ,
q̂ ≥ 15, and S̄3 is contracted. In this situation, |Θ| = ∅, so s5, s7 ≥ 2. This
contradicts the fourth relation in (9.2).
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Therefore P := f(E) is a non-Gorenstein point of index r = 3, 4, 5 or 7. Similar
to 5.6 we have α = 1/r and

r β3 β4 β5 β7 a1 a2 a3

3 m3
1

3
+ m4

2

3
+ m5

1

3
+ m7 5m3 + m4 1 + m3 + 4m4 2 + m4 + 3m5

4 1

4
+ m3 m4

3

4
+ m5

1

4
+ m7 1 + 5m3 + m4 m3 + 4m4 2 + m4 + 3m5

5 2

5
+ m3

1

5
+ m4 m5

3

5
+ m7 2 + 5m3 + m4 1 + m3 + 4m4 m4 + 3m5

7 2

7
+ m3

5

7
+ m4

1

7
+ m5 m7 2 + 5m3 + m4 3 + m3 + 4m4 1 + m4 + 3m5

Claim 9.6. (i) If r = 3 or 4, then m7 ≥ 1 and m3 +m4 ≥ 1.
(ii) If r = 7, then m7 ≥ 1.

Proof. To get inequalities for m7 we use 1/3 ≥ c = α/β7 = 1/rβ7, rβ7 ≥ 3.
The inequalities for m3 +m4 follows from β3 + β4 ≥ β7. �

Thus, in all cases a1, a2 ≥ 1. Put

u := s3 + em3, v := s4 + em4, w := s5 + em5.

9.7. Case: r = 3. Then u+ v > e(m3 +m4) ≥ e by Claim 9.6. Further,

q̂ = 5s3 + s4 + (5m3 +m4)e = 5u+ v,

q̂ = s3 + 4s4 + (1 +m3 + 4m4)e = u+ 4v + e,

q̂ = s4 + 3s5 + (2 +m4 + 3m5)e = v + 3w + 2e.

If u = 0, then v = q̂ = e + 4v, a contradiction.
Assume that u ≥ 2. Then q̂ ≥ 10, u ≤ 3, the group Cl(X̂) is torsion free and
by Lemma 4.13 we have e ≥ 3. If u = 2, then v ≥ 2, q̂ ≥ 13, v = q̂ − 10, and
e ≤ q̂ − 2 − 4v ≤ 2, a contradiction. If u = 3, then v = 2, e = 6, q̂ = 17, and
m3 = m4 = 0. This contradicts Claim 9.6.
Therefore, u = 1. Then v = q̂ − 5, 19 = e + 3q̂, and q̂ ≤ 6. We get only one
solution: q̂ = 6, u = v = w = e = 1. Recall that m3 +m4 ≥ 1 by Claim 9.6.
Hence either s3 = 0 and Ŝ4 ∼Q Ŝ5 ∼Q Ê∼Q Θ or s4 = 0 and Ŝ3 ∼Q Ŝ5 ∼Q Ê∼Q Θ.

In both cases Ŝ5 6∼ Ê (otherwise S̄5 ∼ Ē + lF̄ for some l ∈ Z and so S5 ∼ lF ,
a contradiction). Then we get a contradiction by Lemma 3.11.

9.8. Case: r = 4. As in the previous case, u+ v > e and

q̂ = 5s3 + s4 + (1 + 5m3 +m4)e = 5u+ v + e,

q̂ = s3 + 4s4 + (m3 + 4m4)e = u+ 4v.

If u is even, then so is q̂. Hence, q̂ ≤ 10. From the first relation we have u = 0,
q̂ = 4v, and e = 3v. This contradicts u+ v > e. Therefore u is odd.
Assume that u = 1. Then q̂ = 5 + v + e = 1 + 4v and e = 3v − 4. Since
u + v > e, there is only one possibility: v = e = 2, q̂ = 9. Then the group
Cl(X̂) is torsion free. By Lemma 4.13 we have F ∈ |2A| 6= ∅, a contradiction.
Finally, assume u ≥ 3. Then u = 3 and q̂ = 15 + v + e = 3 + 4v ≥ 16. Thus,
q̂ = 19, v = 4, and e = 0, a contradiction.
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9.9. Case: r = 7. Then

q̂ = 5s3 + s4 + (2 + 5m3 +m4)e = 5u+ v + 2e,

q̂ = s3 + 4s4 + (3 +m3 + 4m4)e = u+ 4v + 3e,

q̂ = s4 + 3s5 + (1 +m4 + 3m5)e = v + 3w + e.

In this case, u = (3v + e)/4 > 0. Assume that u ≥ 2. Then q̂ ≥ 13 and the

group Cl(X̂) is torsion free. By Lemma 4.13 we have e ≥ 3. Further, u = 2,
and q̂ ≥ 17. We get m3 = 0, s3 = 2, e ≥ 4, q̂ = 19, e = 4, and v = 1. This
contradicts the last relation.
Therefore, u = 1. Then 3v + e = 4. Assume that e = 4. Then v = 0, q̂ = 13,
w = 3, s4 = 0, s3 = 1, and m4 = m3 = 0. Since dim |Θ| = dim |2Θ| = 0, we
have s5 ≥ 3. Recall thatm7 ≥ 1 by Claim 9.6. Hence, β7 ≥ 1 and a4 = 2β7 ≥ 2.
This contradicts the fourth relation in (9.2).

Therefore, e < 4. In this case, e = 1, v = 1, and q̂ = 8. Then Ê∼QΘ and either

Ŝ3 ∼Q Θ or Ŝ4 ∼Q Θ (because u = v = 1). This contradicts (vi) of Theorem 1.4.

9.10. Case: r = 5. From (9.2) we obtain

(9.11)

q̂ = 5s3 + s4 + (2 + 5m3 +m4)e = 5u+ v + 2e,

q̂ = s3 + 4s4 + (1 +m3 + 4m4)e = u+ 4v + e,

q̂ = s4 + 3s5 + (m4 + 3m5)e = v + 3w.

Then e = 3v − 4u. If u ≥ 2, then e = 3v − 4u ≤ 3v − 6, and so v ≥ 3. Hence,
q̂ ≥ 15 and the group Cl(X̂) is torsion free. By Lemma 4.13 we have e ≥ 3. So
q̂ = 19, e = 3, s3 = 0, and 2 = u = em3 ≥ 3, a contradiction.
Assume that u = 1, then e = 3v− 4 and v ≥ 2. Further, q̂ = 7v− 3 = v+3w ≤
19. We get q̂ = 11 and e = 2. This contradicts Lemma 4.13.
Therefore, u = 0. Then e = 3v, q̂ = 7v = 7, v = 1, e = 3, and w = 2. By
Lemma 4.13 the group Cl(X̂) is torsion free. Thus s3 = 0, i.e., S̄3 is contracted,
s4 = 1, s5 = 2, and m5 = β5 = 0. This means, in particular, that P5 /∈ S5.
From the fourth relation in (9.2) we get a4 = 1 and s7 = 1. In particular,

dim |Θ| > 0 and X̂ ≃ P(12, 2, 3) by (vi) of Theorem 1.4.

�

Lemma 9.12. (i) S3 ∩ S4 is a reduced irreducible curve.
(ii) S3 ∩ S4 ∩ S7 = {P5}.

Proof. (i) Similar to the proof of (i) of Lemma 7.5.
(ii) Put C := S3 ∩ S4. Assume that S3 ∩ S4 ∩ S7 ∋ P 6= P5. Since 1/5 =
S3 ·S4 ·S7 = S7 ·C and P, P5 ∈ S7∩C, we have C ⊂ S7. If there is a component
C′ 6= C of S3 ∩ S7 not contained in S5, then, as above, 1/4 = S3 · S7 · S5 ≥
S5 · C + S5 · C

′ ≥ 2/7, a contradiction. Thus we can write S3 ∩ S7 = C + Γ,
where Γ is an effective 1-cycle with Supp Γ ⊂ S5. In particular, P5 /∈ S5. The
divisor 84A is Cartier at P3, P4, and P7. We get

9

5
= 84A · S3 · (S7 − S4) = 84A · Γ ∈ Z,
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a contradiction. �

Now the proof of (i) of Theorem 1.4 can be finished similar to 7.7.

10. Toric Sarkisov links

Proposition 10.1. Let X be a toric Q-Fano threefold and let P ∈ X be a
cyclic quotient singularity of index r. Let f : X̃ → X be the Kawamata blowup
of P ∈ X. Then a general member of | − KX | is a normal surface having
at worst Du Val singularities. The linear system | − KX | has only isolated

base points. In particular, −KX̃ is nef and big. The map f : X̃ → X can be
completed by a toric Sarkisov link (cf. (4.5)).

Proof. This can be shown by explicit computations in all cases of Proposition
1.3. Consider, for example, the case X = P(3, 4, 5, 7). Let x3, x4, x5, x7 be
quasi-homogeneous coordinates in P(3, 4, 5, 7). A section S ∈ | −KX | is given
by a quasi-homogeneous polynomial of degree 19. By taking this polynomial
as a general linear combination of x53x4, x

3
3x

2
5, x

4
3x7, x4x

3
5, x

3
4x7, x5x

2
7 we see

that the base locus of | − KX | is the union of four coordinate points and the
surface S has only quotient singularities. Since KS is Cartier, the singularities
of S are Du Val. Further, we can write KX̃ + S̃ = f∗(KX +S) ∼ 0, where S̃ is

the proper transform of S. Hence, S̃ ∈ | −KS̃| and the linear system | −KX̃ |
has only isolated base points outside of f−1(P ). In particular, −KX̃ is nef.

It is easy to check that −K3

X̃
> 0, i.e., −KX̃ is big. Recall that ρ(X̃) = 2.

So, the Mori cone NE(X̃) has exactly two extremal rays, say R1 and R2. Let
R1 is generated by f -exceptional curves. If −KX̃ is ample, we run the MMP
starting from R2. Otherwise we make a flop in R2 and run the MMP. Clearly,
we obtain Sarkisov link (4.5). �

Explicitly, for weighted projective spaces from Proposition 1.3, we have the

following diagram of Sarkisov links. Here an arrow X1

1

r−→ X2 indicates that
there is a Sarkisov link described above that starts from the Kawamata blowup
of a cyclic quotient singularity of index r > 1 on X1 and the target variety is
X2.
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