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Abstract. We address the problem of classification of contact Fano
manifolds. It is conjectured that every such manifold is necessarily
homogeneous. We prove that the Killing form, the Lie algebra grading
and parts of the Lie bracket can be read from geometry of an arbitrary
contact manifold. Minimal rational curves on contact manifolds (or
contact lines) and their chains are the essential ingredients for our
constructions.
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1 Introduction

In this article we are interested in the classification of contact Fano manifolds.
We review the relevant definitions in §2. So far the only known examples of
contact Fano manifolds are obtained as follows. For a simple Lie group G
consider its adjoint action on P(g), where g is the Lie algebra of G. This action
has a unique closed orbit X and this X has a natural contact structure. In
this situation X is called a projectivised minimal nilpotent orbit, or the adjoint
variety of G. By the duality determined by the Killing form, equivalently we
can consider the coadjoint action of G on P(g∗) and X is isomorphic to the
unique closed orbit in P(g∗).

1Dedicated in memory of Marcin Hauzer.
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Conjecture 1.1 (LeBrun, Salamon). If X is a Fano complex contact mani-
fold, then X is the adjoint variety of a simple Lie group G.

This problem originated with a problem in Riemannian geometry. In [Ber55]
a list of all possible holonomy groups of simply connected Riemannian mani-
folds is given. The existence problem for all the cases has been solved locally.
Also compact non-homogeneous examples with most of the possible holonomy
groups were constructed with the unique exception of the quaternion-Kähler
manifolds. It is conjectured that the compact quaternion-Kähler manifolds
must be homogeneous (see [LeB95] and references therein).

Conjecture 1.2 (LeBrun, Salamon). Let M be a compact quaternion-Kähler
manifold. Then M is a homogeneous symmetric space (more precisely, it is
one of the Wolf spaces — see [Wol65]).

The relation between the conjectures is given by the construction of a twistor
space. The S2-bundle of complex structures on tangent spaces to a quaternion-
Kähler manifold M is called the twistor space of M . If M is compact, it has
positive scalar curvature, and then the twistor space X has a natural complex
structure and is a contact Fano manifold with a Kähler-Einstein metric. In
particular, the twistor space of a Wolf space is an adjoint variety. Hence Con-
jecture 1.1 implies Conjecture 1.2. Conversely, if X is a contact Fano manifold
with Kähler-Einstein metric, then it is a twistor space of a quaternion-Kähler
manifold — see [LeB95].
In order to study the non-homogeneous contact manifolds (potentially non-
existent) it is natural to assume PicX ≃ Z and further thatX is not isomorphic
to a projective space. This only exludes the adjoint varieties of types A and C
(see §2 for more details).
With this assumption, we take a closer look at three pieces of the homogeneous
structure on adjoint varieties: the Killing form B on g, the Lie algebra grading
g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 (see [LM02, §6.1] and references therein) and a
part of the Lie bracket on g. Understanding the underlying geometry allows us
to define the appropriate generalisations of these notions on arbitrary contact
Fano manifolds.
An essential building block for our constructions is the notion of a contact line
(or simply line) on X . These contact lines were studied by Kebekus [Keb01],
[Keb05] and Wiśniewski [Wiś00]. Also they are an instance of minimal rational
curves, which are studied extensively. The geometry of contact lines was the
original motivation to study Legendrian subvarieties in projective space (see
[Bucz09] for an overview and many details). We briefly review the subject of
lines on contact Fano manifolds in §3.1.
The key ingedient is the construction of a family of divisors Dx parametrised
by points x ∈ X (see §3.3). These divisors are swept by pairs of intersecting
contact lines, one of which passes through x. In other words, set theoretically
Dx is the set of points of X , which can be joined with x using at most 2
intersecting contact lines. The idea to study these loci comes from Wiśnie-
wski [Wiś00] where he observed, that (under an additional minor assumption)
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these loci contain some non-trivial divisorial components and he studied the
intersection numbers of certain curves on X with the divisorial components.
Here we prove all the components of Dx are divisorial and draw conclusions
from that observation going into a different direction than those of [Wiś00].

Theorem 1.3. Let X be a contact Fano manifold with PicX ≃ Z and assume
X is not isomorphic to a projective space. Then the locus Dx ⊂ X swept by the
pairs of intersecting contact lines, one of which passes through x ∈ X is of pure
codimension 1 and thus Dx determines a divisor on X. Let 〈D〉 ⊂ H0(O(Dx))
be the linear system spanned by these divisors. Let φ : X → P〈D〉∗ be the map
determined by the linear system 〈D〉 and let ψ : X → P〈D〉 be the map x 7→ Dx.
Then:

(i) both φ and ψ are regular maps.

(ii) there exists a unique up to scalar non-degenerate bilinear form B on 〈D〉,
which determines an isomorphism P〈D〉∗ ≃ P〈D〉 making the following
diagram commutative:

P〈D〉∗

≃

��
X

φ 33ffffffffffffff

ψ

++XXXXXXXXXXXXXX

P〈D〉.

(iii) The bilinear form B is either symmetric or skew-symmetric.

(iv) If X ⊂ P(g∗) is the adjoint variety of simple Lie group G, then 〈D〉 = g

and B is the Killing form on g.

With the notation of the theorem, after fixing a pair of general points x,w ∈ X
there are certain natural linear subspaces of 〈D〉, which we denote 〈D〉−2,
〈D〉−1, 〈D〉0, 〈D〉1 and 〈D〉2 (see §5 for details).

Theorem 1.4. If X ⊂ P(g∗) is the adjoint variety of a simple Lie group G
with PicX ≃ Z and X not isomorphic to a projective space, then there exists
a choice of a maximal torus of G and a choice of order of roots of g, such that
〈D〉i = gi for every i ∈ {−2,−1, 0, 1, 2}, where g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2 is
the Lie algebra grading of g.

Finally, if X is the adjoint variety of G, then there is a rational map

[·, ·] : X ×X 99K P(g),

which is the Lie bracket on g (up to projectivisation). Also there is a divisor
D ⊂ X ×X , such that for general (x, z) ∈ D the Lie bracket [x, z] is in X . We
recover this bracket restricted to D for general contact manifolds:
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Theorem 1.5. For X and Dx and in Theorem 1.3, let D ⊂ X × X be the
divisor consisting of pairs (x, z) ∈ X × X, such that z ∈ Dx. There exists a
rational map [·, ·]D : D 99K X, such that [x, z]D = y, where y is an intersection
point of a pair of contact lines that join x and z. In particular, this intersection
point y and the pair of lines are unique for general pair (x, z) ∈ D. Moreover,
if X is the adjoint variety of a simple Lie group G, then [·, ·]D is the restricion
of the Lie bracket.

In §2 we introduce and motivate our assumptions and notation.
In §3 we review the notion of contact lines and their properties. We continue
by studying certain types of loci swept by those lines and calculate their di-
mensions. In particular we prove there Theorem 3.6, which is a part of results
summarised in Theorem 1.3. We also study the tangent bundle to Dx as a
subspace of TX .
In §4 we study the duality of maps φ and ψ introduced in Theorem 1.3 together
with the consequences of this duality. This section is culminated with the proof
of Theorem 1.3.
In §5 we generalise the Lie algebra grading to arbitrary contact manifolds and
prove Theorem 1.4.
In §6 we prove that certain lines are integrable with respect to a special distri-
bution on Dx and we apply this to prove Theorem 1.5.
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2 Preliminaries

Throughout the paper all our projectivisations P are naive. This means, if V
is a vector space, then PV = (V \ 0)/C∗, and similarly for vector bundles.
A complex manifold X of dimension 2n+ 1 is contact if there exists a vector
subbundle F ⊂ TX of rank 2n fitting into an exact sequence:

0 → F → TX
θ
→ L→ 0

such that the derivative dθ ∈ H0(
∧2
F ∗⊗L) of the twisted form θ ∈ H0(T ∗X⊗

L) is nowhere degenerate. In particular, dθx is a symplectic form on the fibre
of contact distribution Fx. See [Bucz09, §E.3 and Chapter C] and references
therein for an overview of the subject.
A projective manifold X is Fano, if its anticanonical divisor KX

∗ =
∧dimX

TX
is ample.
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If X is a projective contact manifold, then by Theorem of Kebekus, Peter-
nell, Sommese and Wiśniewski [KPSW00] combined with a result by Demailly
[Dem02], X is either a projectivisation of a cotangent bundle to a smooth pro-
jective manifold orX is a contact Fano manifold, with PicX ≃ Z. In the second
case, since KX ≃ (L∗)⊗(n+1), by [KO73], either X ≃ P

2n+1 or PicX = Z · [L].
Here we are interested in the case X 6≃ P2n+1. Thus our assumption spelled
out below only exclude some well understood cases (the projectivised cotan-
gent bundles and the projective space) and they agree with the assumptions of
Theorems 1.3, 1.4 and 1.5.

Notation 2.1. Throughout the paper X denotes a contact Fano manifold with
PicX generated by the class of L, where L = TX/F and F ⊂ TX is the contact
distribution on X . We also assume dimX = 2n+ 1.

From Theorem of Ye [Ye94] it follows that n ≥ 2.

We will also consider the homogeneous examples of contact manifolds (i.e. the
adjoint varieties). Thus we fix notation for the Lie group and its Lie algebra.

Notation 2.2. Throughout the paper G denotes a simple complex Lie group,
not of types A or C (i.e. not isomorphic to SLn nor Sp2n nor their discrete
quotients). Further g is the Lie algebra of G. Thus g is one of son (types B
and D), or one of the exceptional Lie algebras g2, f4, e6, e7 or e8.

The contact structure on P2n−1 = P(C2n) is determined by a symplectic form ω
on C2n. The precise relation between the contact and symplectic structures is
decribed for instance in [Bucz09, §E.1] (see also [LeB95, Ex. 2.1]). In particular,
for all x ∈ X , the projectivisation of a fibre of the contact distribution PFx
comes with a natural contact structure.
Let M be a projective contact manifold (in our case M = X with X as in
Notation 2.1 or M = P2n−1). A subvariety Z ⊂ M is Legendrian, if for
all smooth points z ∈ Z the tangent space TzZ is contained in the contact
distribution of M and Z is of pure dimension 1

2 (dimM − 1).
Recall from [Har95, Lecture 20] or [Mum99, III.§3,§4] the notion of tangent
cone. For a subvariety Z ⊂ X , and a point x ∈ Z let τxZ ⊂ TxX be the
tangent cone of Z at x. In this article we will only need the following elementary
properties of the tangent cone:

• τxZ is an affine cone (i.e. it is invariant under the standard action of C∗

on TxX).

• dimx Z = dim τxZ and thus if Z is irreducible, then dimZ = dim τxZ.

• If x ∈ Z1 ⊂ Z2 ⊂ X , then τxZ1 ⊂ τxZ2.

• If Z is smooth at x, then τxZ = TxZ.

Since τxZ is a cone, let PτxZ ⊂ PTxX be the corresponding projective variety.
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3 Loci swept out by lines

A rational curve l ⊂ X is a contact line (or simply a line) if degL|l = 1.
LetRatCurvesn(X) be the normalised scheme parametrising rational curves on
X , as in [Kol96, II.2.11]. Let Lines(X) ⊂ RatCurvesn(X) be the subscheme
parametrising lines. Then every component of Lines(X) is a minimal compon-
ent of X in the sense of [HM04]. We fix H 6= ∅ a union of some irreducible
components of Lines(X).
By a slight abuse of notation, from now on we say l is a (contact) line if and
only if l ∈ H. For simplicity, the reader may choose to restrict his attention
to one of the extreme cases: either to the case H = Lines(X) (and thus
be consistent with [Wiś00] and the first sentence of this section) or to the
case where H is one of the irreducible components of Lines(X) (and thus be
consistent with [Keb01, Keb05]). In general it is expected that Lines(X) (with
X as in Notation 2.1) is irreducible and all the cases are the same.

3.1 Legendrian varieties swept by lines

We denote by Cx ⊂ X the locus of contact lines through x ∈ X . Let C x :=
PτxCx ⊂ P(TX). Note that with our assumptions both Cx and C x are closed
subsets of X or P(TxX) respectively.
The following theorem briefly summarises results of [Keb05] and earlier:

Theorem 3.1. With X as in Notation 2.1 let x ∈ X be any point. Then:

(i) There exist lines through x, in particular Cx and C x are non-empty.

(ii) Cx is Legendrian in X and C x ⊂ P(Fx) and C x is Legendrian in P(Fx).

(iii) If in addition x is a general point of X, then C x is smooth and each
irreducible component of C x is linearly non-degenerate in P(Fx). Further
Cx is isomorphic to the projective cone over C x ⊂ P(Fx), i.e. Cx ≃ C̃ x ⊂
P(Fx⊕C), in such a way that lines through x are mapped bijectively onto
the generators of the cone and restriction of L to Cx via this isomorphism
is identified with the restriction of OP(Fx⊕C)(1) to C̃ x. In particular all
lines through x are smooth and two different lines intersecting at x will
not intersect anywhere else, nor they will share a tangent direction.

Proof. Part (i) is proved in [Keb01, §2.3].
The proof of (ii) is essentially contained in [KPSW00, Prop. 2.9]. Explicit
statements are in [Keb01, Prop. 4.1] for Cx and in [Wiś00, Lemma 5] for C x.
Also [HM99] may claim the authorship of this observation, since the proof in
the homogeneous case is no different than in the general case.
Assume x ∈ X is a general point. The statements of (iii) are basically [Keb05,
Thm 1.1], which however assumes (in the statement) that H is irreducible.
This is never used in the proof, with the exception of the argument for the
irreducibility of Cx — see however Remark 3.2. Thus C x is smooth and Cx is
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isomorphic to the cone over C x as claimed. Each irreducible component C x

is non-degenerate in PFx by [Keb01, Thm 4.4] — again the statement is only
for C x, not for its components, however the proof stays correct in this more
general setup. In particular, [Keb01, Lemma 4.3] implies that Cx polarised by
L|Cx

is not isomorphic with a linear subspace with polarised by O(1). Thus
the other results of this theorem give alternate (but more complicated) proof
of that generalised non-degeneracy.

�

Remark 3.2. Note that (assuming H is irreducible) Kebekus [Keb05] also stated
that Cx and C x are irreducible for general x. However it was observed by
Kebekus himself together with the author that there is a gap in the proof.
This gap is on page 234 in Step 2 of proof of Proposition 3.2 where Kebekus
claims to construct “a well defined family of cycles” parametrised by a divisor
D0. This is not necessarily a well defined family of cycles: Condition (3.10.4)
in [Kol96, §I.3.10] is not necessarily satisfied if D0 is not normal and there
seem to be no reason to expect that D0 is normal. As a consequence the map
Φ: D0 → Chow(X) is not necessarily regular at non-normal points of D0 and
it might contract some curves.

Let us define:

C2 ⊂ X ×X

C2 := {(x, y) | y ∈ Cx} ,

i.e. this is the locus of those pairs (x, y), which are both on the same contact
line. Again this locus is a closed subset of X ×X .
Analogously, define:

C3 := C2 ×X C2

so that:

C3 ⊂ X ×X ×X

C3 := {(x, y, z) | y ∈ Cx, z ∈ Cy} .

Finally, for x ∈ X we also define C2
x:

C2
x ⊂ X ×X ≃ {x} ×X ×X

C2
x := {(y, z) | y ∈ Cx, z ∈ Cy} ,

with the scheme structure of the fibre of C3 under the projection on the first
coordinate. Since for all x ∈ X all irreducible components of Cx are of dimen-
sion n (see Theorem 3.1) we conclude:

Proposition 3.3. All C2, C2
x, C

3 are projective subschemes, they are all of
pure dimension, and their dimensions are:

• dimC2 = 3n+ 1.
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• dimC2
x = 2n.

• dimC3 = 4n+ 1.

�

3.2 Joins and secants of Legendrian subvarieties

For subvarieties Y1, Y2 ⊂ PN recall that their join Y1 ∗ Y2 is the closure of the
locus of lines between points y1 ∈ Y1 and y2 ∈ Y2. Note that the expected
dimension of Y1 ∗ Y2 is dimY1 + dimY2 + 1. We are only concerned with two
special cases: either Y1 and Y2 are disjoint or Y1 = Y2.

Lemma 3.4. If Y1, Y2 ⊂ PN are two disjoint subvarieties of dimensions k − 1
and N−k respectively, then their join Y1∗Y2 fills out the ambient space, i.e. this
join is of expected dimension.

Proof. Let p ∈ P
N be a general point and consider the projection π : PN 99K

PN−1 away from p. Let Zi = π(Yi) for i = 1, 2. Since p is general, dimZi =
dimYi and thus Z1 ∩ Z2 is non-empty. Let q ∈ Z1 ∩ Z2 be any point. The
preimage π−1(q) is a line in PN intersecting both Y1 and Y2 and passing through
p.

�

Recall, that the special case of join is when Y = Y1 = Y2 and σ2(Y ) := Y ∗ Y
is the secant variety of Y .

Proposition 3.5. • Let Y ⊂ P2n−1 be an irreducible linearly non-
degenerate Legendrian variety. Then σ2(Y ) = P

2n−1.

• Let Y1, Y2 ⊂ P2n−1 be two disjoint Legendrian subvarieties. Then Y1∗Y2 =
P2n−1.

Proof. If Y is irreducible, then this is proved in the course of proof of
Prop. 17(2) in [LM07].
If Y1 and Y2 are disjoint, then the result follows from Lemma 3.4.

�

3.3 Divisors swept by broken lines

Following the idea of Wiśniewski [Wiś00] we introduce the locus of broken lines
(or reducible conics, or chains of 2 lines) through x:

Dx :=
⋃

y∈Cx

Cy.

Documenta Mathematica 15 (2010) 821–841



Duality and Integrability on Contact Fano . . . 829

Note that Dx is a closed subset of X as it can be interpreted as the image of
projective variety C2

x ⊂ X × X under a proper map, which is the projection
onto the last coordinate. By analogy to the case of lines consider also:

D2 ⊂ X ×X

D2 := {(x, z) | ∃y∈Cx
s.t. z ∈ Cy} ,

i.e. D2 is the projection of C3 onto first and third coordinates. Thus again D2

is a closed subset of the product. Set theoretically Dx is the fibre over x of
(either of) the projection D2 → X and if we consider D2 as a reduced scheme,
then we can assign to Dx the scheme structure of the fibre.
It follows immediately from the above discussion and Proposition 3.3, that
every component of Dx has dimension at most 2n and every component of D2

has dimension at most 4n+ 1. In fact the equality holds.

Theorem 3.6. Let x ∈ X be any point. Then the locus Dx is of pure codimen-
sion 1.

Proof. Assume first that x ∈ X is a general point. Recall, that C2
x ⊂ X ×X

has two projections:

C2
x

π2
// //

π1

��
��

Dx

Cx

Fix (Dx)
• to be an irreducible component of Dx. Then (Dx)

• is dominated by
some component (C2

x)
• of C2

x. Dimension of (C2
x)

• is equal to 2n by Proposi-
tion 3.3.
For y ∈ Cx the fiber π1

−1(y) ⊂ C2
x is equal to {y} × Cy. In particular, by

Theorem 3.1(ii) the fibers of π1 have constant dimension n. Thus (C2
x)

• is
mapped onto an irreducible component (Cx)

• of Cx. Finally, let C′ be an
irreducible component of the preimage π1

−1(x) which is contained in (C2
x)

•.
Note that C′ can be identified with an irreducible component of Cx, because
π1

−1(x) = {x} × Cx.
We claim that the projectivised tangent cone Pτx(Dx)

• contains the join of two
tangent cones

(PτxC
′) ∗ (Pτx(Cx)

•) ⊂ PFx ⊂ PTxX.

The proof of the claim is a baby version of [HK05, Thm 3.11]. There however
Hwang and Kebekus assume Cx is irreducible and thus their results do not
neccessarily apply directly here. Let l0 be a general line through x contained
in C′ and let l be a general line through x contained in (Cx)

•. To prove the
claim it is enough to show there exists a surface S ⊂ Dx containing l0 and l
which is smooth at x, since in such a case TxS ⊂ τxDx and PTxS is the line
between PTxl and PTxl0.
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We obtain S by varying l0. Consider Hl ⊂ H the parameter space for lines on
X , which intersect l. By Theorem 3.1(iii) the space Hl comes with a projection
ξ : Hl 99K l, which maps l′ ∈ Hl to the intersection point of l and l′, and which
is well defined on an open subset containg all lines through x.
By generality of our choices, l0 is a smooth point of Hl and ξ is submersive at
l0. In the neighbourhood of l0 choose a curve A ⊂ Hl smooth at l0 for which
ξ|A is submersive at l0. Then the locus in X of lines which are in A sweeps a
surface S ⊂ X , which is smooth at x, contains l0, and contains an open subset
of l around x. Thus the claim is proved and:

(PτxC
′) ∗ (Pτx(Cx)

•) ⊂ Pτx(Dx)
• (3.7)

Now we claim that Fx ⊂ τxDx. For this purpose we separate two cases.
In the first case C′ = (Cx)

•. Then PτxC
′ is non-degenerate by Theorem 3.1

and thus
(PτxC

′) ∗ (Pτx(Cx)
•) = σ2(PτxC

′) = P(Fx)

by Proposition 3.5. Combining with (3.7) we obtain the claim.
In the second case C′ and (Cx)

• are different components of Cx. Then by gen-
erality of x and by Theorem 3.1, the two tangent cones (PτxC

′) and (Pτx(Cx)
•)

are disjoint. Thus again

(PτxC
′) ∗ (Pτx(Cx)

•) = P(Fx)

by Proposition 3.5. Combining with (3.7) we obtain the claim.
Thus in any case for a general x ∈ X , every component of Dx has dimension
at least 2n. The dimension can only jump up at special points when one has a
fibration, thus also at special points every component of Dx has dimension at
least 2n. Earlier we observed that dimDx ≤ 2n, thus the theorem is proved.

�

Proposition 3.8. If X is the adjoint variety of G, and x ∈ X, then Dx is the
hyperplane section of X ⊂ P(g) perpendicular to x via the Killing form.

Proof. Let X = G/P , where P is the parabolic subgroup preserving x.
Notice, that Dx must be reduced (because D is reduced and Dx is a general
fibre of D). Also Dx is P -invariant, because the set of lines is G invariant and
Dx is determined by x and the geometry of lines on X . We claim, there is a
unique P -invariant reduced divisor on X , and thus it must be the hyperplane
section as in the statment of proposition.
So let ∆ be a P -invariant divisor linearly equivalent to Lk for some k ≥ 0. Also
let ρ∆ be a section of Lk which determines ∆. The module of sections H0(Lk)
is an irreducible G-module by Borel-Weil theorem (see [Ser95]), with some
highest weight ω. Since the Lie algebra p of P contains all positive root spaces,
by [FH91, Prop. 14.13] there is a unique 1-dimensional p-invariant submodule
of H0(Lk), it is the highest weight space H0(Lk)ω. So ρ∆ ∈ H0(Lk)ω and ∆
is unique.
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The hyperplane section of X ⊂ P(g) perpendicular to x via the Killing form is
a divisor in |L|, and it is P -invariant, and so are its multiples in |Lk|. So by
the uniqueness ∆ must be equal to k times this hyperplane section. Thus ∆ is
reduced if and only k = 1 and so Dx is the hyperplane section.

�

3.4 Tangent bundles restricted to lines

Let l be a line through a general point y ∈ X . Recall from [Keb05, Fact 2.3]
that:

TX |l ≃ Ol(2)⊕Ol(1)
n−1 ⊕Ol

n−1 ⊕Ol
2

F |l ≃ Ol(2)⊕Ol(1)
n−1 ⊕Ol

n−1 ⊕Ol(−1)

T l ≃ Ol(2)

and for general z ∈ l:

TCz|l\{z} ≃ Ol(2)⊕Ol(1)
n−1.

If x ∈ X is a general point and y ∈ Cx is a general point of any of the
irreducible components of Cx and l is a line through y, then we want to express
TDx|l in terms of those splittings. In a neighbourhood of l the divisor Dx is
swept by deformations lt of l = l0 such that lt intersects Cx. By the standard
deformation theory argument taking derivative of lt by t at a point z ∈ l, we
obtain that:

TzDx ⊃
{

s(z) ∈ TzX | ∃s ∈ H0(TX |l) s.t. s(y) ∈ TyCx
}

(3.9)

Moreover, at a general point z we have equality in (3.9). If we mod out TX |l
by the rank n positive bundle (TX |l)>0 := Ol(2)⊕Ol(1)

n−1, then we are left
with a trivial bundle Ol

n+1. Thus, since by Theorem 3.6 the dimension of
TzDx = 2n for general z ∈ l, the vector space TyCx must be transversal to
(TX |l)

>0 at y. In particular, if z 6= y, then dimension of the right hand side
in (3.9) is 2n and thus (3.9) is an equality for each point z ∈ l, such that z is
a smooth point of Dx.
We conclude:

Proposition 3.10. Let x ∈ X be a general point and y ∈ Cx be a general point
of any of the irreducible components of Cx and l be any line through y. Then
there exists a subbundle Γ ⊂ TX |l such that:

Γ = Ol(2)⊕Ol(1)
n−1 ⊕Ol

n,

Γ ∩ F |l = Ol(2)⊕Ol(1)
n−1 ⊕Ol

n−1 = (F |l)
≥0

and if z ∈ l is a smooth point of Dx, then TzDx = Γz.

�
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4 Duality

An effective divisor ∆ on X is an element of divisor group (and thus a positive
integral combination of codimension 1 subvarieties of X) and also a point in
the projective space P(H0OX(∆)) or a hyperplane in P(H0OX(∆)∗). In this
section we will constantly interchange these three interpretations of ∆. In order
to avoid confusion we will write:

• ∆div to mean the divisor on X ;

• ∆P to mean the point in P(H0OX(∆)) or in a fixed linear subsystem.

• ∆P⊥ to mean the hyperplane in P(H0OX(∆)∗) or in dual of the fixed
subsystem.

In §3.3 we have defined D ⊂ X ×X , which we now view as a family of divisors
on X parametrised by X . Since the Picard group of X is discrete and X is
smooth and connected, it follows that all the divisorsDx are linearly equivalent.
Thus let E ≃ L⊗k be the line bundle OX(Dx). Consider the following vector
space 〈D〉 ⊂ H0(E):

〈D〉 := span {sx : x ∈ X} where sx is a section of E vanishing on Dx.

Hence P〈D〉 is the linear system spanned by all the Dx.

Further, consider the map

φ : X → P〈D〉∗

determined by the linear system 〈D〉, i.e. mapping point x ∈ X to the hyper-
plane in P〈D〉 consisting of all divisors containing x.

Remark 4.1. Note that φ is regular, since for every x ∈ X there exists w ∈ X ,
such that x /∈ Dw (or equivalently, w /∈ Dx).

Since E is ample, it must intersect every curve in X and hence φ does not
contract any curve. Therefore φ is finite to one.

Proposition 4.2. If X is an adjoint variety, then k = 1, i.e. E ≃ L. If k = 1
and the automorphism group of X is reductive, then X is isomorphic to an
adjoint variety.

Proof. If X is the adjoint variety of G, and x ∈ X , then Dx is the hyperplane
section of X ⊂ P(g) by Proposition 3.8.

If k = 1 and the automorphism group of X is reductive, since φ is finite to one,
we can apply Beauville Theorem [Bea98]. Thus X is isomorphic to an adjoint
variety.

�
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4.1 Dual map

In algebraic geometry it is standard to consider maps determined by linear
systems (such as φ defined above). However in our situation, we also have
another map determined by the family of divisors D. Namely:

ψ : X → P〈D〉

x 7→ Dx
P.

So let S ⊂ OX ⊗ 〈D〉∗ ≃ X × 〈D〉∗ be the pullback under φ of the universal
hyperplane bundle, i.e. the corank 1 subbundle such that the fibre of S over x
is Dx

P⊥ ⊂ 〈D〉∗. We note that P(S) is both a projective space bundle on X
and also it is a divisor on X × P〈D〉∗. Also D = (idX ×φ)∗P(S) as divisors.
We can also consider the line bundle dual to the cokernel of S → OX ⊗ 〈D〉∗,
i.e. the subbundle S⊥ ⊂ OX ⊗ 〈D〉. This line subbundle determines section
X → X × P〈D〉, where x 7→ (x,Dx

P). So ψ is the composition of the section
and the projection:

X → X × P〈D〉 → P〈D〉.

Every map to a projective space is determined by some linear system. We claim
the ψ is determined by 〈D〉, precisely the system that defines φ and thus that
there is a natural linear isomorphism between P〈D〉 and P〈D〉∗.

Proposition 4.3. We have ψ∗OP〈D〉(1) ≃ E and the linear system cut out by
hyperplanes

ψ∗H0
(

OP〈D〉(1)
)

:=
{

ψ∗s : s ∈ 〈D〉∗
}

⊂ H0(E)

is equal to 〈D〉.

Proof. For fixed x ∈ X let φ(x)⊥ ⊂ P〈D〉 be the hyperplane dual to φ(x) ∈
P〈D〉∗. To prove the proposition it is enough to prove

ψ∗(φ(x)⊥) = Dx
div. (4.4)

Since we have the following symmetry property of D:

x ∈ Dy ⇐⇒ y ∈ Dx,

the set theoretic version of (4.4) follows easily:

y ∈ ψ∗(φ(x)⊥) ⇐⇒ ψ(y) ∈ φ(x)⊥ ⇐⇒ Dy
P⊥ ∋ φ(x) ⇐⇒ Dy ∋ x.

However, in order to prove the equality of divisors in (4.4) we must do a bit more
of gymnastics, which translates the equivalences above into local equations.
The details are below.
The pull back of φ(x)⊥ by the projection X×P〈D〉 → P〈D〉 is just X×φ(x)⊥.
Then the pull-back of the product by the section X → X × P〈D〉 associated
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to S⊥ is just the subscheme of X defined by
{

y ∈ X | (S⊥)y ⊂ φ(x)⊥
}

(loc-
ally, this is just a single equation: the spanning section of S⊥ satisfies the
defining equation of φ(x)⊥). But this is clearly equal to the dual equation
{y | P(Sy) ∋ φ(x)}. If we let ρx be the section

ρx : X → X ×X

ρx(y) := (y, x)

then we have:

ψ∗(φ(x)⊥) = ρx
∗ ◦ (idX ×φ)∗(P(S)) = ρx

∗(D) = Dx
div

as claimed.
�

Thus we have a canonical linear isomorphism f : P〈D〉∗ → P〈D〉 giving rise to
the following commutative diagram:

P〈D〉∗

≃

��
X

φ 33ffffffffffffff

ψ

++XXXXXXXXXXXXXX

P〈D〉.

(4.5)

We will denote the underlying vector space isomorphism 〈D〉∗ → 〈D〉 (which
is unique up to scalar) with the same letter f . The choice of f combined with
the canonical pairing 〈D〉 × 〈D〉∗ → C, determines a non-degenerate bilinear
form B : 〈D〉 × 〈D〉 → C, with the following property:

B(φ(x), φ(y)) = 0 ⇐⇒ (x, y) ∈ D ⇐⇒ x ∈ Dy ⇐⇒ y ∈ Dx. (4.6)

Proposition 4.7. If X is the adjoint variety of G, then 〈D〉 = H0(L) ≃ g and
B is (up to scalar) the Killing form on g.

Proof. Follows immediately from Proposition 3.8 and Equation 4.6.
�

Corollary 4.8. φ(x) = φ(y) if and only if Dx = Dy.

Proof. It is immediate from the definition of ψ and from Diagram (4.5).
�

4.2 Symmetry

Note that B has the property that for x ∈ X ,

B(φ(x), φ(x)) = 0

(because x ∈ Dx).
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Proposition 4.9. The bilinear form B is either symmetric or skew-symmetric.

Proof. Consider two linear maps 〈D〉 → 〈D〉∗:

α(v) := B(v, ·) and β(v) := B(·, v).

If v = φ(x) for some x ∈ X , then

ker
(

α(v)
)

= span
(

ker
(

α(v)
)

∩ φ(X)
)

= span
(

φ(Dx)
)

and analogously ker(β(v)) = span(φ(Dx)). So ker(α(v)) = ker(β(v)) and hence
α(v) and β(v) are proportional. Therefore there exists a function λ : X → C

such that:

λ(x)α(φ(x)) = β(φ(x)).

So for every x, y ∈ X we have:

B(φ(x), φ(y)) = λ(x)B(φ(y), φ(x)) = λ(x)λ(y)B(φ(x), φ(y))

and hence:

∀(x, y) ∈ X ×X \D λ(x)λ(y) = 1.

Taking three different points we see that λ is constant and λ ≡ ±1. Therefore
±α(φ(x)) = β(φ(x)) and by linearity this extends to ±α = β so B is either
symmetric or skew-symmetric as stated in the proposition.

�

Example 4.10. If X is one of the adjoint varieties, then B is symmetric (because
the Killing form is symmetric).

Remark 4.11. Consider P2n+1 with a contact structure arising from a sym-
plectic form ω on C2n+2. Recall, that this homogeneous contact Fano manifold
does not satisfy our assumptions, namely, its Picard group is not generated
by the equivalence class of L — in this case L ≃ OP2n+1(2). However, Wiś-
niewski in [Wiś00] considers also this generalised situation and defines Dx to
be the divisor swept by contact conics (i.e. curves C with degree of L|C = 2)
tangent to the contact distribution F . Then for the projective space Dx is
just the hyperplane perpendicular to x with respect to ω. And thus in this
case 〈D〉 = H0 (OP2n+1(1)) and the bilinear form B defined from such family
of divisors would be proportional to ω, hence skew-symmetric.

Proof of Theorem 1.3. Dx is a divisor by Theorem 3.6. φ is regular by
Remark 4.1. ψ is regular by (4.5). The non-degenerate bilinear form B is con-
structed in §4.1. It is either symmetric or skew-symmetric by Proposition 4.9.
In the adjoint case B is the Killing form by Proposition 4.7.

�
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Corollary 4.12. If B is symmetric, then ψ(X) ⊂ P〈D〉 is contained in the
quadric B(v, v) = 0.

Corollary 4.13. If x ∈ X, then ψ(Cx) is contained in a linear subspace of

dimension at most
⌊

dim 〈D〉
2

⌋

.

Proof. If y, z ∈ Cx, then z ∈ Dy, so B(ψ(y), ψ(z)) = 0. Therefore
span(ψ(Cx)) is an isotropic linear subspace, which cannot have dimension big-

ger than
⌊

dim 〈D〉
2

⌋

.

�

5 Grading

Suppose X ⊂ Pg is the adjoint variety of G. Assume further that a maximal
torus and an order of roots in g has been chosen, then g has a natural grading
(see [LM02, §6.1]):

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2

where:

(i) g0 ⊕ g1 ⊕ g2 is the parabolic subalgebra p of X .

(ii) g0 is the maximal reductive subalgebra of p.

(iii) for all i ∈ {−2,−1, 0, 1, 2} the vector space gi is a g0-module.

(iv) g2 is the 1-dimensional highest root space,

(v) g−2 is the 1-dimensional lowest root space.

(vi) The restriction of the Killing form to each g2 ⊕ g−2, g1 ⊕ g−1 and g0
is non-degenerate, and the Killing form B(gi, gj) is identically zero for
i 6= −j.

(vii) The Lie bracket on g respects the grading, [gi, gj ] ⊂ gi+j (where gk = 0
for k /∈ {−2,−1, 0, 1, 2}).

In fact the grading is determined by g−2 and g2 together with the geometry of
X only. So let X be as in Notation 2.1 and let x and w be two general points
of X . Define the following subspaces of 〈D〉:

• 〈D〉2 to be the 1-dimensional subspace ψ(x);

• 〈D〉−2 to be the 1-dimensional subspace ψ(w);

• 〈D〉1 to be the linear span of affine cone of ψ(Cx ∩Dw);

• 〈D〉−1 to be the linear span of affine cone of ψ(Cw ∩Dx);
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• 〈D〉0 to be the vector subspace of 〈D〉, whose projectivisation is:

⋂

y∈Cx∪Cw

f(Dy
P⊥)

In the homogeneous case this is precisely the grading of g.

Proof of Theorem 1.4. First note that the classes of the 1-dimensional
linear subspaces g2 and g−2 are both in X (as points in Pg). Moreover, they are
a pair of general points, because the action of the parabolic subgroup P < G
preserves g2 and moves freely g−2. This is because T̂[g

−2]X = [g−2, g] = [g−2, p].
So fix x = [g2] and w = [g−2]. We claim the linear span of Cx (respectively Cw)
is just g2 ⊕ g1 (respectively g−2 ⊕ g−1). To see that, we observe the lines on
X through x are contained in the intersection of X and the projective tangent
space P(T̂xX) ⊂ P(g). In fact this intersection is equal to Cx: if y 6= x is a
point of the intersection, then the line in Pg through x and y intersects X with
multiplicity at least 3, but X is cut out by quadrics (see for instance [Pro07,
§10.6.6]), so this line must be contained in X . Also Cx is non-degenerate in
P(F̂x) ⊂ P(T̂xX). However F̂x is a p-invariant hyperplane in P(T̂xX) and the
unique p-invariant hyperplane in

T̂xX = [g, g2] = [g−2, g2]⊕ g1 ⊕ g2

is

F̂x = [g−1 ⊕ g0 ⊕ g1 ⊕ g2, g2] = g1 ⊕ g2.

Further we have seen in Proposition 3.8 that Dx (respectively Dw) is the inter-
section of P(g2

⊥B ) = P(g2 ⊕ g1 ⊕ g0 ⊕ g−1) and X (respectively P(g−2 ⊕ g−1 ⊕
g0 ⊕ g1) and X). Equivalently, f(Dx

P⊥) = P(g2 ⊕ g1 ⊕ g0 ⊕ g−1). Thus:

Cx ∩Dw = Cx ∩ f(Dw
P⊥) = Cx ∩ P(g−2 ⊕ g−1 ⊕ g0 ⊕ g1) = Cx ∩ P(g1).

Cx∩P(g1) is non-degenerate in P(g1), thus 〈D〉1 = g1 and analogously 〈D〉−1 =
g−1.
It remains to prove 〈D〉0 = g0.

P〈D〉0 =
⋂

y∈Cx∪Cw

f(Dz
P⊥)

= (Cx ∪ Cw)
⊥B

= P(g2 ⊕ g1 ⊕ g−1 ⊕ g−2)
⊥B

= P(g0).

�

We also note the following lemma in the homogeneous case:
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Lemma 5.1. If X is the adjoint variety of G, then

X ∩ P(g1) ⊂ Cx

where x is the point of projective space corresponding to g2.

Proof. Suppose y ∈ X ∩Pg1 and let l ⊂ Pg be the line through x and y. Note
that l ⊂ P(g1⊕ g2). Since g1⊕ g2 ⊂ [g, g2] = T̂xX , hence l∩X has multiplicity
at least 2 at x. Thus l ∩ X has degree at least 3 and since X is cut out by
quadrics, l is contained in X .

�

6 Cointegrable subvarieties

Definition 6.1. A subvariety ∆ ⊂ X is F -cointegrable if Tx∆ ∩ Fx ⊂ Fx is a
coisotropic subspace for general point x of each irreducible component of ∆.

Note that this is equivalent to the definition given in [Bucz09, §E.4] — this
follows from the local description of the symplectic form on the symplectisation
of the contact manifold (see [Bucz09, (C.15)]).
Clearly, every codimension 1 subvariety of X is F -cointegrable.
Assume ∆ ⊂ X is a subvariety of pure dimension, which is F -cointegrable and
let ∆0 be the locus where Tx∆∩Fx ⊂ Fx is a coisotropic subspace of dimension
dim∆ − 1. We define the ∆-integrable distribution ∆⊥ to be the distribution
defined over ∆0 by:

∆⊥
x := (Tx∆ ∩ Fx)

⊥dθ ⊂ Fx

We say an irreducible subvariety A ⊂ X is ∆-integral if A ⊂ ∆, A ∩∆0 6= ∅,
and TA ⊂ ∆⊥ over the smooth points of A ∩∆0.

Lemma 6.2. Let A1 and A2 be two irreducible ∆-integral subvarieties. Assume
dimA1 = dimA2 = codimX ∆. Then either A1 = A2 or A1 ∩ A2 ⊂ ∆ \∆0.

�

Theorem 6.3. Consider a general point x ∈ X. Then:

(i) Dx (as reduced, but possibly not irreducible subvariety of X) is F -cointe-
grable.

(ii) For general y in any of the irreducible components of Cx all lines through
y are Dx-integral.

(iii) For general z in any of the irreducible components of Dx the intersection
Cx ∩Cz is a unique point and the chain of two lines connecting x to z is
unique.
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Proof. Part (i) is immediate, since Dx is a divisor, by Theorem 3.6.
To prove part (ii) let l be a line through y. Then by Proposition 3.10:

TzDx ∩ Fz = (F |l)
≥0

and for general z ∈ l we have (TzDx ∩ Fz)⊥dθz ⊂ Fz is the O(2) part, i.e. the
part tangent to l. So l is Dx-integral as claimed.
To prove (iii), let U ⊂ X be an open dense subset of points u ∈ X where two
different lines through u do not share the tangent direction and do not meet
in any other point. Note that since x is a general point, x ∈ U and thus each
irreducible component of Cx and Dx intersects U . Thus generality of z implies
that z ∈ U and thus each irreducible component of Cz and Dz intersects U .
Also Cx ∩ Cz intersects U . So fix y ∈ Cx ∩ Cz ∩ U .
By (ii) and Lemma 6.2 the line lz through z which intersects Cx is unique. In
the same way let lx be the unique line through x intersecting Cz. Thus

Cx ∩ Cz = lx ∩ lz.

In particular, y ∈ lx ∩ lz. But since y ∈ U the intersection lx ∩ lz is just one
point and therefore:

Cx ∩ Cz = {y} .

�

As a consequence of part (iii) of the theorem the surjective map π13 : C
3 → D

is birational. Thus consider the inverse rational map D 99K C3 and compose
it with the projection on the middle coordinate π2 : C3 → X . We define the
composition to be the bracket map:

[·, ·]D : D 99K C3 π2→ X.

In this setting, for (x, z) ∈ D, one has [x, z]D = y = Cx ∩ Cz, whenever the
intersection is just one point.

Theorem 6.4. If X is the adjoint variety of G, then the bracket map defined
above agrees with the Lie bracket on g, in the following sense: Let ξ, ζ ∈ g

and set η := [ξ, ζ] (the Lie bracket on g). Denote by x, y and z the projective
classes in Pg of ξ, η and ζ respectively. If x ∈ Dz and η 6= 0, then the bracket
map satisfies [x, z]D = y.

Proof. It is enough to prove the statement for a general pair (x, z) ∈ D.
Suppose further w ∈ Cz is a general point. Then the pair (x,w) ∈ X ×X is a
general pair. Thus by Theorem 1.4, we may assume ξ ∈ g2 and ζ ∈ g−1. The
restriction of the Lie bracket to [ξ, g−1] determines an isomorphism g−1 → g1 of
g0-modules. In particular the minimal orbit X ∩Pg−1 is mapped onto X ∩Pg1
under this isomorphism. In particular y ∈ X ∩ Pg1 ⊂ Cx (see Lemma 5.1).
Analogously y ∈ Cz , so y ∈ Cx ∩ Cz.

�
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