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ABSTRACT. Let Ky be the finite unramified extension of Q, of degree
f and E any finite large enough coefficient field containing K. We
construct analytic families of étale (¢, I")-modules which give rise to
families of crystalline E-representations of the absolute Galois group
Gk, of Ky. For any irreducible effective two-dimensional crystalline
E-representation of G, with labeled Hodge-Tate weights {0, —k;} -,
induced from a crystalline character of G, ,, we construct an infinite
family of crystalline E-representations of G, of the same Hodge-Tate
type which contains it. As an application, we compute the semisim-
plified mod p reductions of the members of each such family.
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1 INTRODUCTION

Let p be a prime number and Qp a fixed algebraic closure of Q,. Let N be
a positive integer and ¢ = Y anq¢™ a newform of weight & > 2 over I';(N)
n>1

with character 1. The complex coefficients a,, are algebraic over Q and may
be viewed as elements of Q, after fixing embeddings Q — C and Q — Q,.
By work of Eichler-Shimura when k& = 2 and Deligne when k > 2, there exists
a continuous irreducible two-dimensional p-adic representation p, : Gg —
GL2(Q,) attached to g. If [ { pN, then p, is unramified at [ and det(X —
pg(Froby)) = X2 — ;X + 1 (1) I*~1, where Frob; is any choice of an arithmetic
Frobenius at [. The contraction of the maximal ideal of the ring of integers of
@p via an embedding Q — Qp gives rise to the choice of a place of Q above p,
and the decomposition group D), at this place is isomorphic to the local Galois
group G, via the same embedding. The local representation

pgp : Go, — GLa(Qp),

obtained by restricting p, to D,, is de Rham with Hodge-Tate weights {0, k—1}
([Tsu99]). If p t N the representation pg , is crystalline and the characteristic
polynomial of Frobenius of the weakly admissible filtered p-module Dy 4, =
Deris (pg,p) attached to py,, by Fontaine is X2 — a, X + ¢ (p) p*~* ([Fal39] and
[Sc90]). The roots of Frobenius are distinct if & = 2 and conjecturally distinct
if k>3 (see [CE98]). In this case, weak admissibility imposes a unique up to
isomorphism choice of the filtration of Dy, 4,, and the isomorphism class of the
crystalline representation pg, is completely determined by the characteristic
polynomial of Frobenius of Dy, 4, . The mod p reduction py ;, : Gg, — GL2 (Fp)
of the local representation pg ;, is well defined up to semisimplification and plays
a role in the proof of Serre’s modularity conjecture, now a theorem of Khare and
Wintenberger [[CW09a], [[KW09b], which states that any irreducible continuous
odd Galois representation p : Gg — GLa(F,) is similar to a representation of
the form p, for a certain newform g which should occur in level N(p), an integer
prime-to-p, and weight x(p) > 2, which Serre explicitly defined in [Ser&87]. If pg
is crystalline, the semisimplified mod p reduction pg , has been given concrete
descriptions in certain cases by work of Berger-Li-Zhu [BLZ04] combined with
work of Breuil [Bre03], which extended previous results of Deligne, Fontaine,
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Serre and Edixhoven, and more recently by Buzzard-Gee [BG09] using the p-
adic Langlands correspondence for GLy (Qp) . For a more detailed account and
the shape of these reductions see [Berl0, §5.2].

Recall that (up to unramified twist) all irreducible two-dimensional crystalline
representations of G, with fixed Hodge-Tate weights in the range [0; p] have
the same irreducible mod p reduction. Reductions of crystalline representations
of Go , = Gal(Q,/Q,s) with f # 1, where Qs is the unramified extension
of Q, of degree f, are more complicated. For example, in the simpler case
where f = 2, there exist irreducible two-dimensional crystalline representation
of GQp2 with Hodge-Tate weights in the range [0; p — 1] sharing the same
characteristic polynomial and filtration, with distinct irreducible or reducible
reductions (cf. Proposition 6.22).

The purpose of this paper is to extend the constructions of [BLZ04] to two-
dimensional crystalline representations of Gg e and to compute the semisim-
plified mod p reductions of the crystalline representatlons constructed. The
strategy for computing reductions is to fit irreducible representations of G,
which are not induced from crystalline characters of Gk, ; into families of rep-
resentations of the same Hodge-Tate type and with the same mod p reduction,
which contain some member which is either reducible or irreducible induced.

Serre’s conjecture has been recently generalized by Buzzard, Diamond and
Jarvis [BD.J] for irreducible totally odd two-dimensional F,-representations of
the absolute Galois group of any totally real field unramified at p, and has sub-
sequently been extended by Schein [Sch08] to cases where p is odd and tamely
ramified in F. Crystalline representations of the absolute Galois group of finite
unramified extensions of Q, arise naturally in this context of the conjecture of
Buzzard, Diamond and Jarvis, and their modulo p reductions are crucial for
the weight part of this conjecture (see [BDJ, §3]).

Let F be a totally real number field of degree d > 1, and let I = {r,..., 74}
be the set of real embeddings of F. Let k = (ky,, kry, ., kry, w) € NZTT with
k;, = wmod 2. We denote by O the ring of integers of F' and we let n # 0
be an ideal of O. The space Sk(U;(n)) of Hilbert modular cusp forms of level
n and weight k is a finite dimensional complex vector space endowed with
actions of Hecke operators T indexed by the nonzero ideals q of O (for the
precise definitions see [Tay89]). Let 0 # g € Sk(Ui(n)) be an eigenform for
all the Ty, and fix embeddings Q — C and Q — Q,. By constructions of
Rogawski-Tunnell [RT83], Ohta [Oht&4], Carayol [Car86], Blasius-Rogawski
[BR89], Taylor [Tay89], and Jarvis [Jar97], one can attach to g a continuous
Galois representation p, : Gp — GLQ(@p), where G is the absolute Galois
group of the totally real field F. Fixing an isomorphism between the residue field
of Q, with F,, the mod p reduction p, : Gr — GL2(F,) is well defined up to
semisimplification. A continuous representation p : Gp — GLa(F,) is called
modular if p ~ p, for some Hilbert modular eigenform g. Conjecturally, every
irreducible totally odd continuous Galois representation p : Gp — GLa(F)) is
modular ([BDJ]). We now assume that k., > 2 for all i. We fix an isomorphism

DOCUMENTA MATHEMATICA 15 (2010) 873-938



876 GERASIMOS DOUSMANIS

Qp ~ C and an algebraic closure F' of F. For each prime ideal p of O lying above
p we denote by F}, the completion of F' at p, and we fix an algebraic closure Fp of
F, and an F-embedding F— Fp. These determine a choice of a decomposition
group Dy, C G an isomorphism D, ~ G, . For each embedding 7 : F, — Qp,

let k- be the weight of g corresponding to the embedding 7 : F' — Qp < C.
By works of Blasius-Rogawski [BR93], Saito [Sai09], Skinner [Ski09], and T.
Liu [Liu09], the local representation py r, : Gp, — GL2(Q,), obtained by
restricting py to the decomposition subgroup GF,, is de Rham with labeled
Hodge-Tate weights {%=F=, W}T:F,ﬂa@pv where k& = max{k,,}. This has
also been proved by Kisin [IKisO8, Theorem 4.3] under the assumption that
pg,F, is residually irreducible. If p is odd, unramified in /' and prime to n,
then py r, is crystalline by works of Breuil [Bre99, Théoreme 1(1)] and Berger
[Ber04a, Théoreme IV.2.1].

In the newform case, assuming that pg , is crystalline, the weight of g and the
eigenvalue of the Hecke operator T), on g completely determine the structure of
the filtered ¢-module Deyis(pg,p). In the Hilbert modular newform case, assum-
ing that p,y r, is crystalline, the structure of Deris(pg, Fp) is more complicated
and the characteristic polynomial of Frobenius and the labeled Hodge-Tate
weights do not suffice to completely determine its structure. The filtration of
Deris(pg,rF, ) is generally unknown, and, even worse, the characteristic polyno-
mial of Frobenius and the filtration are not enough to determine the structure
of the filtered @-module Deyis(pg, Fp). In this case, the isomorphism class is

(roughly) determined by an extra parameter in (@;)fp_l (for a precise state-
ment see [Doul0, §86, 7]). As a consequence, if f, > 2 there exist infinite
families of non-isomorphic, irreducible two-dimensional crystalline representa-
tions of Gg i sharing the same characteristic polynomial and filtration.

For higher-dimensional crystalline E-representations of G ,, we mention that
even in the simpler case of three-dimensional crystalline representations of Gg,,
there exist non-isomorphic Frobenius-semisimple crystalline representations
sharing the same characteristic polynomial and filtration, with the same mod p
reductions with respect to appropriately chosen Galois-stable O pg-lattices. This
follows by applying the constructions of §4 to the higher-dimensional case, and
a proof is not included in this paper.

ACKNOWLEDGEMENTS. [ thank Fred Diamond for suggesting this problem and
for his feedback, Laurent Berger for useful suggestions, and Seunghwan Chang
for detailed comments on drafts. The last parts of the paper were written during
visits at the I.H.P. and the L.H.E.S. in Spring 2010. I thank both institutions
for their hospitality and the C.N.R.S. and the S.F.B. 478 “Geometrische Struk-
turen in der Mathematik” of Minster University for financial support.

1.1 PRELIMINARIES AND STATEMENT OF RESULTS

Throughout this paper p will be a fixed prime number, Ky = Qs the finite
unramified extension of @, of degree f, and E a finite large enough extension of
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K¢ with maximal ideal mg and residue field £g. We simply write K whenever
the degree over Q, plays no role. We denote by ox the absolute Frobenius of

K. We fix once and for all an embedding K & E and we let Tj =To0 aﬁ( for all

j=0,1,..., f — 1. We fix the f-tuple of embeddings | 7 |:= (70,741, ..., Tf—1) and

we denote E!"l := [ E.Themap ¢ : E® K — EI"l with éx(z @ y) =
T:K—E

(z7(y))- and the embeddings ordered as above is a ring isomorphism. The ring

automorphism 1 pRog : FQ K — F® K transforms via £ to the automorphism
¢ : BI"l — EI"l with ¢(zg,21,....,05-1) = (21,...,24_1,70). We denote by
e; = (0,...,1,...,0) the idempotent of EI™l where the 1 occurs in the 7j-th
coordinate for each j € {0,1,..., f — 1}.

It is well-known (see for instance [BM02, Lemme 2.2.1.1]) that every continuous
representation p : Gg — GLn(@p) is defined over some finite extension of Q.
Let p : Gx — GLg(V) be a continuous E-linear representation. Recall that
Deris (V) = (Beris ®q, V)¥% | where Beyis is the ring constructed by Fontaine in
[Fon88], is a filtered p-module over K with E-coefficients, and V is crystalline
if and only if Deyis(V) is free over E® K of rank dimg V. One can easily prove
that V' is crystalline as an E-linear representation of Gx if and only if it is crys-
talline as a Qp-linear representation of Gx (cf. [CDT99] appendix B). We may
therefore extend F whenever appropriate without affecting crystallinity. By a
variant of the fundamental theorem of Colmez and Fontaine ([CF00], Théoreme
A) for nontrivial coefficients, the functor V' — Dci5(V) is an equivalence of cate-
gories from the category of crystalline E-linear representations of G to the cat-
egory of weakly admissible filtered p-modules (D, ¢) over K with E-coefficients
(see [BMO2], §3). Such a filtered module D is a module over £ ® K and may
be viewed as a module over E!™! via the ring isomorphism ¢ defined above. Its
Frobenius endomorphism is bijective and semilinear with respect to the auto-

morphism ¢ of E!I™l. For each embedding 7; of K into E we define ID; := ¢;,D. We
-1

have the decomposition D = @ D;, and we filter each component D; by set-
i=0

i=
ting Fil'D; := ¢,Fi’D. An integer j is called a labeled Hodge-Tate weight with
respect to the embedding 7; of K in F if and only if ¢;Fil /D #+ e;Fil D and
is counted with multiplicity dimpg (eiFil_j]D)/ eiFil_HlD) . Since the Frobenius
endomorphism of D restricts to an E-linear isomorphism from D; to D;_; for
all 7, the components I; are equidimensional over E. As a consequence, there
are n = rankggk (D) labeled Hodge-Tate weights for each embedding, count-
ing multiplicities. The labeled Hodge-Tate weights of D are by definition the
f-tuple of multisets (W;),,, where each such multiset W; contains n integers,
the opposites of the jumps of the filtration of D;. For crystalline characters
we usually write (—ko, —k1,...,—ky_1) instead of {—k;},,. The characteristic
polynomial of a crystalline E-linear representation of G is the characteristic
polynomial of the El7l-linear map ¢/, where (D, p) is the weakly admissible
filtered p-module corresponding to it by Fontaine’s functor.

DEFINITION 1.1. A filtered @-module (D, ) is called F-semisimple, non-F-
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semisimple, or F-scalar if the E™\-linear map ¢! has the corresponding prop-
erty.

We may twist D by some appropriate rank one weakly admissible filtered ¢-
module (see Proposition 3.5) and assume that W; = {—w;,—1 < ... < —wjo <
—w;; < 0} for all ¢ = 0,1, ..., f — 1, for some non-negative integers w;;. The
Hodge-Tate weights of a crystalline representation V' are the opposites of the
jumps of the filtration of D¢,s(V'). If they are all non-positive, the crystalline
representation is called effective or positive. To avoid trivialities, throughout
the paper we assume that at least one labeled Hodge-Tate weight is strictly
negative.

NOTATION 1.2. Let k; be nonnegative integers which we call weights. Assume
that after ordering them and omitting possibly repeated weights we get wy <
wy < ... < wg_1, where wy is the smallest weight, wy the second smallest
weight,..., and wi_1, for some 1 < t < f, is the largest weight. The largest
weight wy—1 will be usually denoted by k. For convenience we define w_; = 0.
Let Iy = {0,1,.... f =1} and I = {i € Iy : k; > 0}. For j = 1,2,...,t — 1 we
let I; ={i € Ip: ki >wj_1} and for j =t we define I; = @. Let f+ = |Iar| be
the number of strictly positive weights.

For each subset J C Iy we write f; = Y e, and Elml = fr- ElI"l. We may

icJ

visualize the sets E'™! as follows: E\™l is the Cartesian product EY. Starting
with B!, we obtain E'™| by killing the coordinates where the smallest weight
occurs i.e. by killing the i-th coordinate for all i with k; = wo. We obtain E!™=!
by further killing the coordinates where the second smallest weight wy occurs
and so on.

For any vector & € E!"l we denote by x; its i-th coordinate and by Jz its
support {i € Iy : x; # 0}. We define as norm of & with respect to ¢ the

F=1 F-1
vector Nmy,(Z) := [] ¢"(&) and we write v,(Nmy(Z)) == v, | [] acl) , where
i=0 1=0

vy, 15 the normalized p-adic valuation of Qp. If 0 is an integer we write 7=
(0,0,....0) and v,(E) > € (resp. if vo(Z) > €) if and only if v,(x;) >  (resp.
vp(x;) > L) for all i. Finally, for any matriz A € M, (E'™) we define as its
@-norm the matriz Nmy,(A) := Ap(A)---pf ~1(A), with ¢ acting on each entry
of A.

In §3 we construct the effective crystalline characters of G ,. More precisely,
fori=0,1,..., f — 1 we construct E-characters x; of G, with labeled Hodge-
Tate weights —e; 11 = (0,...,—1,...0) with the —1 appearing in the (i + 1)-
place for all i, and we show that any crystalline E-character of Gk, with
labeled Hodge-Tate weights {—k;},, can be written uniquely in the form x =
K Xlgl : XIfQ ceee X’;f_’; . XI;O—1 for some unramified character n of Gk,. In the
same section we prove the following.
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THEOREM 1.3. Let {{;,liy s} = {0,k;}, where the k;i, ¢ = 0,1,...,f — 1 are
nonnegative integers. Let fT be the number of strictly positive k; and assume
that f+ > 1.

(i) The crystalline character x; = X6 oxkr Xﬁjf_‘; . Xé‘}_l of Gk,
has labeled Hodge-Tate weights (—Lo, —{1,...,—{l25_1) and does not ex-

tend to Gr,. The induced representation Indggf (XZ) is irreducible and
crystalline with labeled Hodge-Tate weights {0, —k;},.

(ii) Let V' be an irreducible two-dimensional crystalline E-representation of
G, with labeled Hodge-Tate weights {0, —k;},,, whose restriction to
Gk,, 1s reducible. There exist an unramified character n of Gk, and
nonnegative integers m;, i = 0,1,...,2f — 1, with {m;,m;1 ¢} = {0, k;}
foralli=0,1,..., f — 1, such that

K —
V@ Indg (Xoml S RTITIT al Xmeoil) .

K K . .
(iii) IndKif (x7) ~ IndK:ff (Xiw) if and only if X7 = Xm or X% = Xm, where

’ ’ e/ @’
Xg = Xgl ~Xf2 . ~~X2§cf:21 ~X21}71, with ¢ = {;+ y and indices viewed modulo

2.

(iv) Up to twist by some unramified character, there exist precisely 2f+_1 dis-
tinct isomorphism classes of irreducible two-dimensional crystalline E-
representations of Gg, with labeled Hodge-Tate weights {0, —k;}-,, in-
duced from crystalline characters of Gk,

Next, we turn our attention to generically irreducible families of two-
dimensional crystalline E-representations of G . For any irreducible effective
two-dimensional crystalline E-representation of G'x, with labeled Hodge-Tate
weights {0, —k;},, which is induced from a crystalline character of Gk,,, we
construct an infinite family of crystalline E-representations of G, of the same
Hodge-Tate type which contains it. The members of each of these families have
the same semisimplified mod p reductions which we explicitly compute.

Let V= Indj (Xgl VN X th}_l), where {0;, ;i s} = {0,k;}
for all « = 0,1, ..., f — 1, and assume that at least one k; is strictly positive.
Theorem 1.3 asserts that V; is irreducible and crystalline with labeled Hodge-
Tate weights {0, —k;},,. We describe the members of the family containing
Vz in terms of their corresponding by the Colmez-Fontaine theorem weakly
admissible filtered ¢-modules.

DEFINITION 1.4. We define the following four types of matrices

1- X'L' 1 y 2. pk% 0 5 U3 0 pk% y . 1 Xz B

DOCUMENTA MATHEMATICA 15 (2010) 873-938



880 GERASIMOS DOUSMANIS
where the X; are indeterminates. Let k = max{k;, i =0,1,..., f — 1} and let

— L% if k> p and k; # p for some i,
o 0 ifk<p—1ork;=p foralli.

Let P(?) = (P (X1),P2(X2),...., Pr(Xy)) be a matriz whose coordinates
P; (X;) are matrices of type 1,2,3 or 4. To each such f-tuple we attach a
type-vector = {1,2,3,4}f, where for any j = 1,2, ..., f, the j-th coordinate of
i is defined to be the type of the matriz P;. We write P(Y) = P;(Y) The set
of all f-tuples of matrices of type 1,2,3,4 will be denoted by P. There is no
loss to assume that the first f — 1 coordinates of P()_g) are of type 1 or 2 (see
Remark 6.13) and unless otherwise stated we always assume so. Matrices of

type t1 or ts are called of odd type while matrices of type to or ty are called of
even type.

For any vector @ = (a1, g, ..., af) € (pmmE)f we obtain a matrix

P (&) = (Py (1), P2 (a2) , ..., P (af))

by evaluating each indeterminate X; at ;. We view indices of f-tuples mod f,
so Py = Fy. To construct the family containing V; we choose the types of the
matrices P; as follows:

(1) Ifgl :0, P1 :tQ;

(2) Ifly =k >0, PL =t.

Fori=2,3,..., f —1 we choose the type of the matrix P; as follows:

(1) If ¢; = 0, then:

e If an even number of coordinates of (Pi, Ps,...,Pi_1) is of even type,
P =t

e If an odd number of coordinates of (Py, Py, ..., P,_1) is of even type, P, =
ty.

(2) If ¢; = k; > 0, then:

e If an even number of coordinates of (Pi, Ps,...,Pi_1) is of even type,
P =14

e If an odd number of coordinates of (Py, Py, ..., P;_1) is of even type, P; =
to.

Finally, we choose the type of the matrix Py as follows:
(1) If ¢4y = 0, then:

o If an even number of coordinates of (Pp, Ps,...,Pf_1) is of even type,
Py =ty
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o If an odd number of coordinates of (Pi,Ps,...,Pf_1) is of even type,
Py = ts.

(2) If by = k; > 0, then:
o If an even number of coordinates of (Pp,Ps,..., Pf_1) is of even type,
Py = ta;
o If an odd number of coordinates of (Pi,Ps,...,Pf_1) is of even type,
PO =1;.
We define families of rank two filtered ¢-modules (]D);E (d) ,cp) over EI"l by
equipping ]D);E (@) = E!"ln; @ E!™ln, with the Frobenius endomorphism defined
by (¢ (m) ¢ (12)) = (m,72) P* (@) and the filtration
Elrly @ En, if j<o,

Elmol (#ny +9mp)  if 1< 3§ < wo,
Bl (#ny +9m2)  if 1+we <j <ws, (1.1)

Fil' (D% (d)) =
Elmrel (@ +yne) if 1+ w2 <j<wpq,
0 if ] 2 1 + Wi—1,

where T = (2o, 21, ...,x5-1) and ¥ = (Yo, Y1, ..., Ys—1), with

(1, —ay) if P; has type 1 or 2,

(@i, ;) = { (—a;, 1) if P; has type 3 or 4. (12)

THEOREM 1.5. Let i be the type-vector attached to the f-tuple (P, Py, ..., Py)

defined above. For any & € (p™mp)”

(i) The filtered p-module D%(o?) is weakly admissible and corresponds to a

two-dimensional crystalline E-representations Vg(&) of G, with labeled
Hodge-Tate weights {0, —k;}+,;

.. z= K Vi Vi lof_ ¢
(i) Vi(0) = Ind!, (xol XPT XoF 2 -xg‘},l) ;

(iti) Vi (@) = Vi(0);
(=i, o f 2f 1
(iv) (VE (a)fo) = wgf,fo @ng,ﬂfoa where f = — > p'li;

(v) The residual representation Vi,; (@) is irreducible if and only if 1 +pf 1 j;

(vi) Any irreducible member of the family {Vg (@), ade (pmmE)f}, other

than Vg (0), is non-induced.
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Notice that in the cases where 1 + p/ { 3, all the members of the fam-

ily {VEZ (@), ae (pmmE)f} are forced to be irreducible. Next, we compute
the semisimplified reduction of any reducible two-dimensional crystalline F-
representation of Gk,. After enlarging E if necessary, any reducible rank
two weakly admissible filtered ¢-module D over E!7! with labeled Hodge-Tate

weights {0, —k;},, contains an ordered basis 7 = (71,72) in which the matrix

of Frobenius takes the form Mat, (¢) = ( @ g» ) such that Dy = (EI™1) 1 is
- *

a @-stable weakly admissible submodule (see Proposition 6.4). The filtration

of D in such a basis 1 has the form

Elrlpy @ EITn,  if j <0,
Elmol (Fm + gn2) if 1 < j < w,
Elmnl (Zn + gn2) if 14wy < j < wy,

Fil(D) =

BTl () + i) if 1+ wy—o < < wy_,
0 if 5> 1+ w1,

for some vectors Z, i € El"l with (z;,;) # (0,0) for all i. For each i € Iy, let

o Oif.ﬁi#o,
W{mﬁwza

THEOREM 1.6. Let V' be any reducible two-dimensional crystalline FE-
representation of Gx, with labeled Hodge- Tate weights {0, —k;} ., corresponding
to the weakly admissible filtered p-module D as above.

(i) There exist unramified characters n; of G, such that

o
V—(o wz)’

where ¥y =y - X"t -x;n_fg_l X7y and Yy =g - XU T
X T ey
T s.s. 8 B2 f=1 .
(i) (V1) = Wil Duwi, where B = — 3 mp' and Py =
i=0
F-1

> (mi— ki) p'.
=0

The computation of the semisimplified mod p reduction of a reducible two-
dimensional crystalline representation is easy and does not require the con-
struction of the Wach module (see §2.1 for the definition) corresponding to
some G -stable lattice contained in it. Computing the non-semisimplified
mod p reduction of a two-dimensional crystalline representations with reducible
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reduction is an interesting problem not pursued in this paper. For results of
this flavour for K = Q,2, see [CD0Y].

Up to twist by some unramified character, any split-reducible two-dimensional
crystalline FE-representations of G, with labeled Hodge-Tate weights
{0, —k;}., is of the form

¢ ¢ Op V) / el 2/7 Z/
‘/[’[/ (77) :n.Xol .X12 e Xff721 'Xf[)fl@XOl .X12 ..... Xff721 .><f0717

for some unramified character n and some nonnegative integers ¢; and ¢, such
that {¢;, ¢;} = {0, k;} for all 4. In Theorem 1.5 we showed that each irreducible
representation of G, induced from some crystalline character of G, , belongs
to an infinite family of crystalline representations of the same Hodge-Tate types
with the same mod p reductions. In the next theorem we prove the same for
any split-reducible, non-ordinary two-dimensional crystalline E-representation
of Gg,. We list the weakly admissible filtered ¢-modules corresponding to

these families. In order to construct the infinite family containing V; ; (1) , we

define a matrix P;()_g) € P by choosing the (f — 1)-tuple (P, P, ..., Py_1) as
in Theorem 1.5. If = 7. is the unramified character which maps the geometric
Frobenius Frobk, of Gk, to ¢, we replace the entry p* in the definition of the

matrix Py by c¢p®. The type of the matrix Py is chosen as follows:
(1) If ¢4y = 0, then:

o If an even number of coordinates of (Pp, Ps,...,Pf_1) is of even type,
Py = t3;

o If an odd number of coordinates of (Pi,Ps,...,Pf_1) is of even type,
Py =t4.

(2) If Vg = ko > 0, then:

o If an even number of coordinates of (Pp, Ps,...,Pf_1) is of even type,
Py =ty

o If an odd number of coordinates of (Pi,Ps, ..., Pf_1) is of even type,
Py =ts.

Using the matrices P;(?) we define families of two-dimensional crystalline E-
representations {Vg (@), ae (pmmE)f} of G, as in Theorem 1.5 and prove

the following.

THEOREM 1.7. Let i be the type-vector attached to the f-tuple (P, Py, ..., Py)
defined above.

(i) There exists some unramified character u such that Vg(ﬁ) ~u® ng/ (n);

=1

(ii) Assume that €+ 0 and 0 # 0. For any @ € (p™mp)’ , V(@) ~ VZ,;(G),
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N B B’ =l ; =l ;
(iii) VZ,Z/(H)IIKf =wy . Dw; ., where f=— 'Z:o Lipt and B = — 'Z:o Up'.
1= 1=

A family as in Theorem 1.7 can contain simultaneously split and non-split
reducible, as well as irreducible crystalline representations. For example, in

the family {VE(LB) (@), de (pmmE)Q}, the representation VE(L?’) (&) is split-

reducible if and only if @ = 6, non-split-reducible if and only if precisely one
of the coordinates «; of & is zero, and irreducible if and only if aga; # 0 (cf.
Proposition 6.21). The families of Wach modules which give rise to V51’3)(d’)
contain infinite sub-families of non-split reducible Wach modules which can be
used to compute the non-semisimplified mod p reduction of the correspond-
ing crystalline representations with respect to G ,-stable Og-lattices. Some
reducible two-dimensional crystalline representations with labeled Hodge-Tate
weights {0, —k;},, are easily recognized by looking at their trace of Frobe-
nius. More precisely, if Tr (gof ) € Oy, then the representation is reducible (cf.
Proposition 6.5), with the converse being false.

2 OVERVIEW OF THE THEORY

2.1 ETALE (p,T)-MODULES AND WACH MODULES

The general theory of (¢, I')-modules works for arbitrary finite extensions K of
Qp. However, a theory of Wach modules, which is our main tool and which we
briefly recall in this section, currently exists only when K is unramified over
Qp. We temporarily allow K to be any finite extension of Q,; we will go back
to assume that K is unramified after Theorem 2.2. Let K, = K((pn), where
(pn is a primitive p"-th root of unity inside @p, and let Koo = Up>1K,,. Let x :
Gk — Z, be the cyclotomic character, and let Hx = ker x = Gal(Q,/Ko) and
'k = Gx/Hgk = Gal(K~/K). Fontaine ([Fon90]) has constructed topological
rings A and B endowed with continuous commuting Frobenius ¢ and Gg,-
actions. Unless otherwise stated and whenever applicable, continuity means
continuity with respect to the topologies induced by the weak topologies of the
rings A and B. Let A = APE and By = IB%HK, and define Ag g := Op®z, Ak
and Bx g := E ®q, Bx. The actions of ¢ and 'k extend to Ax g and By g
by Og (resp. E, kg)-linearity, and one easily sees that Ax p = AgK and
Br,p = Bp¥

DEFINITION 2.1. A (¢,T')-module over Ak g (resp. By i) is an Ax g-module
of finite type (resp. a free B, g-module of finite type) endowed with a semilinear
and continuous action of I'x, and with a semilinear map ¢ which commutes
with the action of T. A (p,T')-module M over Ai g is called étale if o* (M) =
M, where ¢*(M) is the Ax g-module generated by the set p(M). A (¢,T)-
module M over By g is called étale if it contains a basis (e1, ...,eq) over Bg g
such that (¢(e1), ..., p(ea)) = (€1, ...,eq)A for some matricv A € GLq (Ak ).
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If V is a continuous E-linear representation of G, we equip the Bx g-module
D(V) := (Bg ®g V)"™ with a Frobenius endomorphism ¢ defined by (b @
v) := ¢(b) ® v, where ¢ on the right hand side is the Frobenius of Bg, and
with an action of I'x given by g(b ® v) := gb ® gv for any g € Gg. This
I'k-action commutes with ¢ and is continuous. Moreover, D(V) is an étale
(¢, I')-module over Bg . Conversely, if D is an étale (¢, I')-module over Bx g,
let V(D) := (B Qg 5 D)LP:1 , where p(b ® d) := ¢(b) ® ¢(d). The E-vector
space V(D) is finite dimensional and is equipped with a continuous E-linear
Gr-action given by ¢g(b ® d) := gb ® gd. We have the following fundamental
theorem of Fontaine.

THEOREM 2.2. [Fon90]

(i) There is an equivalence of categories between continuous E-linear repre-
sentations of Gk and étale (p,T')-modules over By g given by

D : Repy (Gk) — Mod &y (Bi,p) : V — D(V) i= (Bp @5 V),

with quasi-inverse functor

V: Mod ér) (Bx,g) = Repg (Gi) : D — V(D) := (Bg @5, D).

(ii) There is an equivalence of categories between continuous Og-linear rep-
resentations of Gk and étale (p,T')-modules over Ak g given by

D : Repo,, (Gx) — Mod&py (Ak.p) : T— D(T) == (Ap ®0, T)"*,
with quasi-inverse functor

T: Mod 'y (Ax.g) = Repo, (Gk) : D T(D) := (Ap ®a, , D)* -

We return to assume that K is unramified over Q. In this case A g has the form

A ={ > aurf:a, €Ok andngrzlooan = 0} for some element 7k which
can be thought of as a formal variable. The Frobenius endomorphism ¢ of Ay
extends the absolute Frobenius of Ok and is such that ¢(rx) = (1 +7x)P — 1.
The I'k-action of Ak is Og-linear, commutes with Frobenius, and is such that
Y(rr) = (1 + 75 )X — 1 for all v € Tg. For simplicity we write 7 instead of
7k . The ring Ak is local with maximal ideal (p), fraction field Bx = AK[%],
and residue field Ex := kg ((7)), where kg is the residue field of K. The
rings Ax, A g, Bx and By g contain the subrings A} = Ok|[r]], A}’E =
Or ®z, A}g, IB%;F( = A}[%] and IB%;F(’E = F Qq, IB%;F( respectively, and these
subrings are equipped with the restrictions of the ¢ and the I'x-actions of the
rings containing them. There is a ring isomorphism

E:akp— I Ol (2.1)

T:K—FE
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given by £(a®b) = (aro (b),am (b),...,arr—1 (b)), where 7 <§ ﬁnw") =
n=0

[ee] [ee]
S 7 (Ba)m™ for allb = Y. B, € Af. The ring Op([7]]":= [ Og[r]]
n=0 n=0 T:K—FE

is equipped via £ with commuting O g-linear actions of ¢ and ' given by

plao(m), a1 (m), ..., ap1(m)) = (1 (p(m)), - a1 (p(m), a0 (p(m)))  (2:2)
and (oo (m), a1 (7)), ...,ap—1(m)) = (o (ym), ca (Y7), ..., a1 (7)) (2.3)

for all v € I'k.

DEFINITION 2.3. Suppose k > 0. A Wach module over A}E (resp. IB%}}E)
with weights in [—k; 0] is a free AJ. -module (resp. B} ,-module) N of finite
rank, endowed with an action of U'xc which becomes trivial modulo w, and also

with a Frobenius map ¢ which commutes with the action of I'x and such that
©(N) C N and N/¢*(N) is killed by ¢*, where q := ¢(7) /7.

A natural question is to determine the types of étale (p,T")-modules which
correspond to crystalline representations via Fontaine’s functor. An answer is
given by the following theorem of Berger who built on previous work of Wach
[Wac96], [Wac97] and Colmez [Col99].

THEOREM 2.4. [Ber(/a]

(i) An E-linear representation V of Gy is crystalline with Hodge-Tate
weights in [—k; 0] if and only if D(V') contains a unique Wach module
N(V) of rank dimg V' with weights in [—k; 0]. The functor V +— N(V)
defines an equivalence of categories between crystalline representations
of Gk and Wach modules over IB%;F(E, compatible with tensor products,
duality and ezxact sequences. 7

(ii) For a given crystalline E-representation V, the map T — N(T) := N(V)N
D(T) induces a bijection between Gk -stable, Og-lattices of V' and Wach

modules over A}},E which are A}7E-lattices contained in N(V'). Moreover
D(T) =Ag g ®A;r< . N(T)

(i) If V is a crystalline E-representation of Gx, and if we endow N(V') with
the filtration Fi'N(V) = {z € N(V)|p(z) € ¢'N(V)}, then we have an
isomorphism

Deyis (V) — N(V')/wN(V)

of filtered @-modules over FE!! (with the induced filtration on
N(V)/mN(V)).

In view of Theorems 2.2 and 2.4, constructing the Wach module N(T") of a
G -stable Og-lattice T in a crystalline representation V' amounts to explicitly
constructing the crystalline representation. Indeed, we have

p=1
V= E®o, (Akp®, , NT)) .
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An obvious advantage of using Wach modules is that instead of working with
the more complicated rings Ak r and Bx g, one works with the simpler ones
A}’E and IB%;F(’E.

2.2  WACH MODULES OF RESTRICTED REPRESENTATIONS

In this section we relate the Wach module of an effective n-dimensional effective
crystalline E-representation Vi, of G, to the Wach module of its restriction
Vde to Gde.

PROPOSITION 2.5. (i) The Wach module associated to the representation
Vi, is given by

N(Vde) = B;r(df,E ®B;f,}~: N(VKf)7

where N(Vi ) is the Wach module associated to Vi, .

(ii) If Tk, is a Gg,-stable Op-lattice in Vi associated to the Wach-module
N(TKf), then Vyr contains some Gde -stable Og-lattice Tr, whose as-
sociated Wach module is

N(Tde) = A;—(df,E ®A;—(f,E N(TKf)'

Proof. (i) Since N(Vg,) is a free E}f,E—module of rank dimg V' contained in
D(Vk,), N := B;dny ®Bz+<f,E N(Vk,) is a free B}df’E—module of rank dimg V/

contained in D(Vg,, ) 2 D(Vk,). Moreover, N is endowed with an action of
I'k,; which becomes trivial modulo 7, and also with a Frobenius map ¢ which
commutes with the action of 'k, and such that p(N) C N and N/p*(N)
is killed by ¢". Hence N=N(Vk,, ) by the uniqueness part of Theorem 2.4(i).
Part (ii) follows immediately from Theorem 2.4(ii) since A-"I;df7E ®A1+<f,E N(Tg,)

is an A}df’E—lattice in N(Vg,, ). -

We fix once and for all an embedding T?(df : Kgg— FE and we let Tg(df =

Tlo(df o U%Qf for j =0,1,...,df — 1, where ok, is the absolute Frobenius of K.

We fix the df-tuple of embeddings | 7x,, [:= (T8, T, - Tf(fdfl). We adjust

the notation of §1.1 for the embeddings of K¢ into E to the relative situation
considered in this section. Let ¢ be the natural inclusion of K into Kgf, in
the sense that ¢ o OK; = 0Ky © L, where oK, I8 the absolute Frobenius of K.
This induces a natural inclusion of A;r( to A}df which we also denote by ¢. Let

Tf(f = TIO(df 010 ag(f for j = 0,1,..., f — 1. We fix the f-tuple of embeddings

1 . .. .
| 7, |:= (Tlo(f,r}(f,...,rlf(f ). Since the restriction of g, to Ky is o, we
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obtain the following commutative diagram

IS |7 4 |

Ak, p Og " [[x]]

o] !

133 | 7R g5 |
A}";df,E = OE “ [[Tr]]
where 6 is the ring homomorphism defined by

9(0[0,041, "';Oéffl) - (a07a17 ey Of 1, QO ALy ey X f— 15 ey (O, (VT -~-a04f*1)

d-times

= (050; Yy eeny af71)®d'

For any matrix A € M, ((’)gKf | [[7‘(‘]]) we denote by A®? the matrix obtained
by replacing each entry & of A by @®?. A similar commutative diagram is
obtained by replacing A} by Bf, and (’)lbe | [[7]] by OEK ! [[7‘(‘]][%] The following
proposition follows easily from the discussion above.

PROPOSITION 2.6. Let Vk,, Vk,,, Tk,, and Tk, be as in Proposition 2.5.

(i) If the Wach module N(Vi,) of Vi, is defined by the actions of p and I',

given by (p(m), e (n2), -+ o(n)) = n- Mk, and (y(m1),7(n2), ., 7(1mm)) =
R G}(f for all v € Tk, for some ordered basis 1 = (11,72, ..,7n), then

the Wach module N(Vde) of Vi, is defined by (M), (b)), -y o(m),)) =
ﬂ/ 'Hde and (v(n1), Y(02)s s () = ﬂ/ : G’Iy{df Jor all v € Fdea where

®d Y v )\ ¥
Ok, = (HKf) and Gde = (GKf) for all v € Tk, for some
ordered basis 1’ of N(Vi,;).

(ii) If the Wach module N(Tg ) of Tx, is defined by the actions of ¢ and ',

given by (¢(m), #(n2), ., o(n)) = n- Uk, and (y(n1),7(n2), ., 7(m)) =
Q-G}f for ally € T, for some ordered basis 1 = (11,72, ..., ), then the

Wach module N(Tr,;) of Tk, is defined by ((m),¢(n2), - (11,)) =

0 Tk, and (Y1), Y(13), - v(np)) = 0" - G, for all v € Tk, where
®d

O, = (HKf)®d and Gl(df = (Gl(f) for all v € Tk, for some

ordered basis 1’ of N(Vi,, ).

CORrROLLARY 2.7. If Vi, s a two-dimensional effective crystalline
E-representation of Gr, with labeled Hodge-Tate weights {0, —k;}r,,
i = 0,1,....,f — 1, then Vg, is an effective crystalline E-representation of
Gr, with labeled Hodge-Tate weights {0, —k;}r,, i = 0,1,...df — 1, with
kj =kj for alli,5=0,1,...,df —1 with i = jmod f.
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Proof. By Proposition 2.6 there exist ordered bases 7 and 7" of N(Vk,) and
N(Vk,, ) respectively, such that ¢ (Q) =g, v (Q) =" Gl(f for all v €

Ik, and ¢ (77_/) — ﬂ/' (HKf)(X’d7 ~y (ﬂ/) — ﬂ/ . (G}V(f)(gd for all v € Ik, By
Theorem 2.4, z € Fill (N(Vy,)) if and only if ¢ (z) € ¢/N(Vk,), from which
it follows that Fi¥' (N(Vic,,)) = (Fi¥ (N(VKf)))®d for all j. By Theorem 2.4,
D(Vk,) ~ N(Vk,)/mN(Vk,) as filtered p-modules over E'™! This implies
that Fil (D(Viy)) = (Filj (]D)(VKf))>®d for all j and the corollary follows. [

3 ErFECTIVE WACH MODULES OF RANK ONE

In this section we construct the rank one Wach modules over Og[[7]]l"! with
labeled Hodge-Tate weights {—k;},.

DEFINITION 3.1. Recall that ¢ = @ where ¢ (r) = (14 m)P — 1. We define
¢ = q and g, = ¢""(q) for all n > 1. Let A\ = [] (q”fT“). For each
n=0

A
v € 'k, we define Ay, = $\f7

LEMMA 3.2. For each v € TI'k, the functions Ay and Af~ € Qp[[n]] have the
following properties:

(i) As(0) =1;
(ii) Mgy €1+ 72y [[7]].

Proof. (i) This is clear since 2% — 1 for all n > 1. (ii) One can easily check
that -L € 1+ 7Z, [[7]]. From this we deduce that Ay, € 1+ 7Z, [[7]]. O

Consider the rank one module N = = (Og[[7]]'™!) n equipped with the semilin-
ear ¢ and I'-actions defined by ¢(n) = (c- ¢*,¢"2, ..., ¢" =1, ¢*)n and v(n)=
(97 (7), 95 (1), g} _1(7), gg (7)) for all v € I'e, where ¢ € Of. We want to de-
fine the functions g;(7) = g (7) € Og[[7]] appropriately to make N; . a Wach

module over Og[[x]]I”l. The actions of ¢ and v should commute and a short
computation shows that gg should satisfy the equation

ko
7q Yq g 1
QDf(go) = 9o <—> sp(_)kl L. C,Of 1(_)kf_ . (31)
q q q
LEMMA 3.3. Equation 3.1 has a unique = lmod 7 solution in Z,|[r]] given by
go = )‘]Ji?v@()‘fﬁ)kl 902()‘f,'y)]€2 T ‘Pf_l()\f,’v)kf’l.
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Proof. Notice that pf(A\;) = % and ¢f (yAp) = gyﬁf), hence A, = ’:\Tff solves

the equation ¢/ (u) = u (%) . It is straightforward to check that

90 = Ao pn) 1@ (A )2 ol T (A )M

is a solution of equation 3.1. By Lemma 3.2, g9 = lmod 7. If go and g{, are
two solutions of equation 3.1 congruent to 1mod 7, then (‘Z—z) € Zp|[r]] is fixed

by ¢/ and is congruent to 1mod 7, hence equals 1. O

Commutativity of ¢ with the I'x-actions implies that
—(Loykr gy Dyke P2 Doykpoa G F =Ty YRo L F O\ YR L 2P 2\ YRt
9 (vq) w(vq) @ (vq) e (M) %" (Ar) e T (Ary)

9 \kf_o d \kp_1 2 ko 3 k1 f+1 kp_q
— o(=— O (Ary) 00" (Apy) et T (A, )
vq) (vq) (Ar)" 0" (Afq) (Ar4)
gr—-1= (,;]q)kf71¢(Af»w)k0‘P2(Af,w)kl ‘PS()‘J‘,“/)I€2 " "pf(Af,“/)kfﬂ’

gr—2=(

and Lemma 3.2 implies that ¢g; = Imod 7 for all i.

PROPOSITION 3.4. We equip N; . = (Ogp[[n]]l"l) n with semilinear ¢ and

L -actions defined by o(n) = (c - ¢, q",....,¢" 1, ¢")n and ~(n) =
(97 (7), 95 (1), g1 (7), g9 (m))n for the gi(m) = g](m) defined above, where

¢ € OF. The module Ny, is a Wach module over Og|[x]]/"! with labeled Hodge-

Tate weights {—k;}r,. Moreover, D; = =~ E" ® (NE o/ T™Ng C) as filtered -
. ol ; ;

modules over E™| where Dg .= (E|T|) 1 is the filtered p-module with Frobenius

endomorphism p(n) = (c-pF,pk2, .. pFi-1 pko)n and filtration

Elmoly if § < wo,
Elmly if 14w <j <w,
Fill (DE C) ¢
, E'”H‘n if 1+wio <j<w,
0 if 5> 1+ w1

Proof. (i) To prove that I'xx acts on N,;c, it suffices to prove that g;*7*(m) =
9" v1(g)?) for all 41,72 € Tk and i € Iy. This follows immediately from the
cocycle relations

q q q
= Y a:nd )\ 1v2 = )\ i Y )\ v2),
ye(@) )" (72(@) frnre = Afn M1 (Ara2)

and the definition of the g (7). Since g; (7) = 1mod 7 for all i € Iy, the action of
Ik on N /mNp s trivial. (ii) Let & = max{ko, k1,...,kr_1} and let *(N; )
be the Op[[r]]/"-linear span of the set p(N; ). Let ¢ = ¢! and ¢; = 1 if
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f
i # 1. Since ¢Fn = Z‘; (" Ficies) (n) € ¢* (Nj ), it follows that q* kills
Nz /" (N ). (idd) To compute the filtration of Ni ., we use the fact that 7 |
¢(x) if and only if 7/ | x for any x € Op[[n]]. Let x = (20, x1,...,251)n € Np .
By Theorem 2.4, x € FﬂjNEC if and only if p(z) € ¢/N _ or equivalently ¢/ |
ga(:ci)qki for all ¢ € Iy. If j < k; there are no restrictions on the x;, whereas if
j > k; this is equivalent to x; = Omod 77 ~%:. Therefore,

eilNg . if j <k,

FiIN. — .
e FiPNg | { e R Og([rlln  if > 14 k.

This implies that

{ e BTl if § <k,

E Q) eiFil (Nﬁvc/”NEc) 0  ifj>1+4k.

Il
OE

For the filtration, we have

f—1
BN @ Fil (Ng Nz ) = @D | BT Q) eiFil (N /7N )
ol i= ol

Recall from Notation 1.2 that after ordering the weights k; and omitting pos-
sibly repeated weights we get wg < wy < ... < wy—1. By the formulas above,

ETT( S ei)n if j < wo,
icly

El] > ei |n if 14wy <j<wp,
{i€ly:ki>wo}

Fil(D; ) =14 EI7l > ei|n if T4+w <j<ws
{i€lo:ki>w1}

EIT] ( > ei>77 if 1+wp o <j<w g,

{i€lp:ki>wi_2}

if j>14we—q.
The formula for the filtration follows immediately, recalling that I; = {i € Ij :

k; > w;j_1} for each j = 1,2,...,¢ — 1, and Elml .= EBf > e; | for each
i€l,
r=20,1,...,t — 1. The isomorphism of filtered p-modules is obvious.

PROPOSITION 3.5. Let ko, ki, ...,kf_1 be arbitrary integers.
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(i) The weakly admissible rank one filtered @-modules over E™! with labeled
Hodge- Tate weights {—k;}., are of the form Dy . = (EI™) n, with ¢(n) =
(ag, a1, ...,ap_1)n for some & = (o, a1,...,00-1) € (EX)T such that
vp(Nmy (@) = > ki and

i€lp

Elmoly if j < wy,
Elmnly if 14wy <j < wi,
FOO )= e
Elmi=aly i 14w <j <wy,
0 if 5> 14w 1.

(ii) The filtered p-modules Dy . and Dﬁﬁ are isomorphic if and only if k=
# and Nm, (&) = Nm,,(5).

Proof. Follows easily arguing as in [Doul0], §§4 and 6. O

COROLLARY 3.6. All the effective crystalline E-characters of Gy are those
constructed in Proposition 3.4.

Let ¢ € O and k= (=Fk1,—ka,...,—ky_1,—ko) . We denote by x_ j the crys-
talline character of Gk corresponding to the Wach module N | = (Og/[x]] |T|) 7
with ¢ action defined by p(e) = (c-¢**, ¢*2, ..., ¢*/=1, ¢¥)n and the unique com-
muting with it I'x-action defined in Proposition 3.4. When ¢ = 1 we simply
write xj. By Proposition 3.4 the crystalline character x; := x., has labeled
Hodge-Tate weights —e;4; for all ¢. By taking tensor products we see that
Xe ik = Xei X’gl - XII” ceees X’;f_’; . X];O_l. As usual, we denote by Frob, be the
geometric Frobenius of Gg, and by Frobg the geometric Frobenius of Gx. We
have the following.

LEMMA 3.7. (i) The unramified character of G, which maps Froby, to c
equals x, g for any c € OF;

(i) For any i =0,1,..., f —1, (Xi)\GK = Xi - Xi+f, where the character on
2f

the left hand side is a character of Gk, and the characters on the right
hand side are characters of G,,;

(i) If x is a crystalline character of Gk, with labeled Hodge-Tate weights
{=ki}r,, i = 0,1,..., f — 1, its restriction to Gr,, has labeled weights
{=ki}r,, 1=0,1,..,2f =1, with ksy5 =Fk; for allt=0,1,..., f — 1;

(iv) If x and ¥ are crystalline characters of G, then X(Gryy = wIGde if

and only if x = n -, where n is an unramified character of G, which
maps Frobg, to a d-th root of unity.
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Proof. (i) Let {/c be any choice of an f-th root of ¢ in E. The filtered ¢p-module
with trivial filtration and ¢(e) = {/c - e corresponds to the unramified char-

acter 1) of Gig, which maps Frob, to {/c. Since the Frobg, = (Frobp)‘fo , the
restriction of . of  to Ky maps Frobg, to ¢. By Proposition 2.6 the rank one
filtered ¢-module corresponding to the unramified character 7. has trivial fil-
tration and Frobenius ¢(e) = ({/c, {/c, ..., {/c) e, and by Proposition 3.5(ii) the
latter is isomorphic to the rank one filtered p-module with trivial filtration and
o(e) = (¢, 1,...1) e. Part (ii) follows from the definition of the characters x; and
Proposition 2.6. Part (iii) follows immediately from part (ii). For part (iv) it
suffices to prove that any crystalline character n of G, with trivial restriction
to Gx 4 1S an unramified character of G'g ; which maps Frobg, to a d-th root
of unity. The restriction of n to Gk, has all its labeled Hodge-Tate weights
equal to zero, and by Corollary 2.7 so does 7. By part (i)  is an unramified

character of Gk, which maps Frobg, to some constant, say c. The restriction
d

| Kag
d-th root of unity and part (iv) follows. O

of n to Gde is trivial and maps Frobde = (Frobe) to c?, therefore ¢ is a

Let x be any E-character of Gk, and let h € Gg,. Since K is unramified over
Qy, it is h-stable and the character x" with x" (g) := x (hghfl) is well defined.

n(

We have hx =: o ") for a unique integer n (h) modulo f. We denote by T (x)
the rank one Opg-representation of G defined by ve = x () e for any basis
element e and any v € Gg.

LEMMA 3.8. Let x be the crystalline character corresponding to the Wach mod-
ule defined in Proposition 3.4, and let h € Gq,. Let n1 = (i_z‘_Kl) -n. The rank
one module N := (Og[[x]]I"1) n1 endowed with semilinear Frobenius and T k-
actions defined by

o(m) = (C gFrrieny | gRreaonm qsz*"UL)) m and
_ hyh =1 hyh ™t hyh™?t hyh ™t
v(m) = (ngrlJrn(h*l)’ 9fr2-n(h) > 92f—1-n(h) 92f—n(h)> n,

where the indices are viewed modulo f, is a Wach module whose corresponding
crystalline character is x".

Proof. Tt is trivial to check that N* with the above defined actions is a Wach
p=1
module. By Theorems 2.2 and 2.4, T (x) ~ (AKE ®pt N (T (X))) , hence

there exists some o € Ag g such that p(a®n) = a®n and y(a®n) =
X (7) (ae®@n) for all v € Gg. This is equivalent to

p(a) &t (e g, q™,...d") @n=a®nand (3.2)
v(a)- &7 (g?,gg,---y}fl,gg) @n=xaen (3.3)

for all v € Gk, where £ is the isomorphism defined in formula 2.1. A little
computation shows that for any (xg,z1,...,25-1) € Og[[x]]'"!,

R (€ (@0, @1,y 21)) = & (Tpmn(h)s T 1—n(h)s - Taf—1-n(n)) - (3.4)
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Let oy :==h la € Ag g. We show that ¢ (0 @ m) = a1 @ and v (g @ ;) =
X" (7) (a1 ® my) for all v € Gk. Indeed,

el @m)=¢((h " a)@e(m)
- hilcp(a) : 571 (C ! qkf+17n(h)a qkf+27n(h) PR} qk2f7n(h)) Qm
3.4, _ I _
= hlo(a) b (e g g B ) @by
2
32 Haen) =a@n.

Also,
-1 —1( hyh™1! hyh 1 h~yh ™1 hyh ™1
y(ar ®@m) =7 (h a) € (gfjrl—n(hy gfer—n(h)""’ 92;,17n(h)7 92,77n(h>) ©m
ot (h e (g g g g ) )

= (x (Myh ) a®n) =x" (7) (a1 @m)

for all v € Gi. By Theorems 2.2 and 2.4, it follows that the crystalline character
which corresponds to N* is x". O

COROLLARY 3.9. If x is a crystalline E-characters of G with labeled Hodge-
Tate weights {—k;},,, the character X" is crystalline with labeled Hodge-Tate
weights {—li}r,, where £; = kg i pnepy for all i, with the indices f + i —n (h)
viewed modulo f.

COROLLARY 3.10. The representation

K k k koy— k
VKf ~ IndKﬁf (X()l 'X12 ..... ngff_gl 'XQ;_l)

is crystalline. Moreover, Vi, is irreducible if and only if ki # kiyy for some
ie{0,1,.., f—1}.

Proof. Since Vk,, is crystalline, Vg, is crystalline. The corollary follows from
Mackey’s irreducibility criterion and Corollary 3.9. O

ProPOSITION 3.11. Let Vi be an irreducible two-dimensional crystalline E-
representation of Gg, with labeled Hodge-Tate weights {0, —k;},, whose re-
striction to G, , is reducible. There exist some unramified character n of Gk,
and some nonnegative integers £;, i = 0,1,...,2f — 1 with {{;, liy s} = {0, k;}
foralli=0,1,...,f =1 and €; # {1 ¢ for some i € {0,1,..., f — 1}, such that

K i ‘ lof_ ¢
Vi, =n® IndKsz (Xo1 X1t XoF g * XQ‘}71> )
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Proof. Let x be a constituent of Vg, . By Corollary 3.6, x = x.- Xgl 'X? ~~~~~

Xﬁjf_’é . Xé‘}_l for some ¢ € O and some integers ¢;. Let n be the unramified

character of G, which maps Frobg, to /c. Arguing as in the proof of Lemma

3.7(i) we see that the restriction of 1 to Gk, is x., hence Xf)l 'X? ..... X?f,«_}l .
xg‘}_2 is a constituent of (n™' ® VKf)lef . Since n~1 @ Vi, is irreducible,
- K 4 V4 Lo Y]
n ! & VKf ~ IndKif (Xol . X12 e X22ff_21 . X2(}_1)

by Frobenius reciprocity. By Mackey’s formula and Corollary 3.9,

4 4 Laf— b4
Vics, =~ (Xc e X22ff721 'Xg(},l) @
4 4 laf_ 0
@ (Xc . XOH—f ,X12+f A 'Xzi}fle 'X2:}f71> ,

where the indices of the exponents of the second summand are viewed modulo
2f. By Corollary 2.7, the restricted representation Vk,, has labeled Hodge-
Tate weights {0,—k;}-, ¢ = 0,1,2,...,2f — 1, where k1 = k; for all i =
0,1,..., f — 1. The labeled Hodge-Tate weights of the direct sum of characters
in formula 3 with respect to the embedding 7; of Koy to E are {—{;, —l;ys}
foralli=0,1,2,...,2f — 1, with the indices i + f viewed modulo 2f. Therefore
{li,lix ¢} ={0,k;} for all i = 0,1, ..., f — 1. The rest of the proposition follows
from Corollary 3.10. O

ProprosiTION 3.12. Up to twist by some unramified character, there ex-

n
ist precisely 27 ~1 distinct isomorphism classes of irreducible crystalline
two-dimensional E-representations of Gk, with labeled Hodge-Tate weights
{0, =ki}+,, whose restriction to G,, is reducible.

Proof. In Proposition 3.11, notice that ¢;; y = k;—{; foralli = 0,1, ..., f—1. The
corollary follows since Indgif (x) ~ Indggf () if and only if {x, X"} = {v,¥"},
where h is any element in G, lifting a generator of Gal (Kas/Ky) . O

4  FAMILIES OF EFFECTIVE WACH MODULES OF ARBITRARY WEIGHT AND
RANK

We extend the method used by Berger-Li-Zhu in [BLZ04] for two-dimensional
crystalline representations of Gg,, in order to construct families of Wach mod-
ules of effective crystalline representations of Gx of arbitrary rank. Fixing a
basis, we need to exhibit matrices IT and G, such that IIp(G,) = G,~(II) for
all v € I'k, with some additional properties imposed by Theorem 2.4. In the
two-dimensional case, for representations of G, and for a suitable basis, it is
trivial to write down such a matrix IT assuming that the valuation of the trace
of Frobenius of the corresponding filtered ¢-module is suitably large, and the
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main difficulty is in constructing a I'x-action which commutes with II. When
K # Q,, finding a matrix II which gives rise to a prescribed weakly admis-
sible filtration seems to be already hard, even in the two-dimensional case.
Assuming that such a matrix II is available, it is usually very hard to explicitly
write down the matrices G,. There are exceptions to this, for example some
split-reducible two-dimensional crystalline representations. In the general case,
instead of explicitly writing down the matrices G, we prove that such matrices
exist using a successive approximation argument.

Let S={X;;i=0,1,....,m—1} be a set of indeterminates, were m > 1 is any
integer. We extend the actions of ¢ and I'x defined in equations 2.2 and 2.3

on the ring Og[[7]]”l ;== [] Ogl[7]] to an action on Og[[x, S]]l := ]
T:K—FE T:K—FE
Og|[m, S]], by letting ¢ and ' act trivially on each indeterminate X;. We let

¢ and T'g act on the matrices of M := M, (Og[[r,S]]'"!) entry-wise for any
integer n > 2. For any integer s > 0, we write 7° = (7%, 7%, ..., 7%) , and for any
a € Og|[r, S]] and any vector 7 = (79,71, ...,7f—1) With nonnegative integer
coordinates we write a” = (™, o™, . ..,a"=1). As usual, we assume that k;
are nonnegative integers and we write k := w;—1 = max{ko, k1,..., kr—1}. Let
{ > k be any fixed integer. We start our constructions with the following
lemma.

LEMMA 4.1. Let II; = IL;(S), i =0,1,..., f — 1 be matrices in M, (Og[[r,S]])
such that det(Il;) = c;q®, with ¢; € Og[[x]]*. We denote by T1(S) the ma-
triz (i, s, ..., T;_1,1lo) and view it as an element of M via the natural
isomorphism MS ~ M, (Og|[r,S])"l. We denote by P; = Pi(S) the reduc-
tion of Il;mod m for all i. Assume that for each ~v € 'k there exists a matriz
GSf) = GSf) (S) € M such that:

1. Gﬁf)(S) = Tdmod 7t

2. GY(S) ~TI(S)p(GY (S)(TN(S) ™) € 7MY,

3. There is no nonzero matric H € M,(Og[[S]]"") such that HU =
p/tUH for some t > 0, where U = Nmy(P) and P = P(S) =
(P, Py, ..., Pr_1,P);

4. For each s > ¢ + 1 the operator

H i H—QH(p Q") : My (05 [1S])) — M, (Op[[S])). (4.1)
where Qf = P1Py--- Pr_1 Py, is surjective.
Then for each v € L'k there exists a unique matriz G~(S) € MS such that
(i) G4(S) = Tdmod 7 and
(1) T(S)p(G+(8)) = G5 (S)V(I(S)).
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Proof. Uniqueness: Suppose that both the matrices G (S) and G’ (S) satisfy
the conclusions of the lemma and let H = G/v (8)G,(S)~t. We easily see that
H € Id+ #M¥S and HII(S) = II(S)p (H). We'll show that H = Id. We
write H = Id + w'H; + - - , where H; € M,(Og[[S]]'"!) for some ¢ > 1 and
(S) = P+ 7PW + 72P®?) 4 ... and we will show that H; = 0. Since
HII(S) = II(S)p (H), we have (H — Id)I(S) = I(S)p(H — Id). We divide
both sides of this equation by 7! using that p(m) = g¢m, and reduce mod .
Since ¢ = pmod m, this gives H;P = p'Py (H;) which implies that H,U =
p/tUp/ (H;), where U = Nm,,(P). Since ¢ acts trivially on X; and Op, the
map ¢/ acts trivially on M, (Og[[S]]I"!). Therefore H,U = p/*UH; and H; = 0
by assumption (iii) of the lemma.

Existence: Fix a v € I'. By assumptions (i) and (ii) of the lemma, there exists

a matrix Gq(e) €Id+ 7" Mn‘S such that
L J4 -1 >0 (4
G — lI(S)cp(G( ))’y(II(S) ) =7 R®

for some matrix R = R (y) € MS. We shall prove that for each s >
¢ + 1 there exist matrices R®®) = R®)(y) € M and G(Vs) € Mg such that
G = GY Ymod # 1 MS and G\ — II(S)p(GS))y(T1(S) ™) = #*R(). Let

GSYS) = Ggffl) + 7 H®) | where H®) € M,(Og[[S]]"!) and write R(®) =
R®) 4 7. C with C € MS. We need

(G50 + 7V HO ) —11(S) (p(G5 )+ (1) (HD)) 1(11(S) ™) € 70,

or equivalently

GE™D ~ I(S)p(GL I (II(S) ™) + 7V O -

~ (0TI S)p (HD) 4 (1(S) 1) € 7M.
The latter is equivalent to

FEDRED L 26=D g _ (qr) VIS (H<S>) ~VIL(S) ™) € 7 M,
which is in turn equivalent to
HE — DS (H(S)) A(II(S)™Y) = —REVmod 7M.

This holds if and only if

H® — 5=Dp(8) (H(S)) P(S)' = —RGD, (4.2)

Notice that p~DP(S)™' € M,(Op[[S]]"!) since s —1 > £ > k =
max{ko, k1, ..., ky—1}. We write

HE) — (H1<5>7 H . H}‘i)l, H§S)>
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and (s=1) pls—1) (s=1) p(s—1)
A (s— 5(s—1) B(s—1 5(s—1) B(s—1
_ R (Rl RSV L RV RS )
Equation 4.2 is equivalent to the system of equations in M, (Og [[S]])

HY P HE - (07 P = RV, (4.3)

where i = 1,2, ..., f, with indices viewed mod f. These imply that

Hl(s) - Qle(s) (pf(s—l)thl) _ Rgsfl) i QlRés—l)(p(s_l)Qfl)Jr
+ QRS (P TVQyY) + + Qp RSV (p YN,

where Q; = P, --- P, forall t =1,2,..., f. From equations 4.3 we see that the
matrices Hi(s), 1 =2,3,..., f, are uniquely determined by the matrix Hfs), S

it suffices to prove that the operator defined in formula 4.1 contains

O

A= Rgsq) + QlRésfl)(p(s_nQ?) + Q2R§571)(p2(3—1)Q2—1) I
+Qr1 By TV TIITNQ )

in its image. Since p'*~YQ; ! € M, (Og[[S]]) for all 4, this is true by as-

sumption (iv) of the lemma. We define G, (S) = 1i>m Gﬁf) (S) and the proof is
§— 00

complete. O

Let M, be the ring M, (Og [[S]]) /I where I is the ideal of M, (Og [[S]]) gen-
erated by the set {p-Id, X; Id: X; € S}. We use the notation of Lemma
4.1 and its proof, and we are interested in the image of the operator H —

H— QfH(pfojfl) : J\A4; — ]\A4; where bar denotes reduction modulo 1.

PROPOSITION 4.2. If the operator

Hs H—QuH(p'Q;") - My, — M, (4.4)

s surjective, then for each s > € + 1 the operator defined in formula 4.1 is
surjective.

F=1
Proof. Case (i). s > k+ 2. In this case f(s —1) — > k > f(s—1—k) >
i=0

f > 1. Since Q7' = Pyt P P, Prt and det(P;) = ¢pt, it follows that
p Q! € pM,(Og([S]). Let B be any matrix in M, (Og [[S]]) . We write

B=B-Q;B(p7Q;") +pB:
for some matrix By € M,, (Og [[S]]) . Similarly,
By =DB1 - QB (pf(sfl)Qfl) +pB>
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for some matrix By € M, (O [[S]]) and

B = (B+pB1) - Qs (B +pbB) (Pf(sfl)Qfl) +p°Bs.

Continuing in the same fashion we get
N N
B = <ZPZB’L> — Qf (ZPILB’L> (pf(‘s_l)Q;1> +pN+1BN+1
i=0 i=0

o0
for some matrix Byi1€ M, (O [[S]]) with By = B. Let H = > p'B;. Then
i=0
H e M, (Og[[S]) and B=H — Q;H (pﬂs—l)Q;l) .
Case (ii). ¢ = k and s = k + 1. We reduce modulo the ideal I defined before
Proposition 4.2. Let A be any element of M, (O [[S]]). The operator

H— H—QpH (pféthl) . M, — M,

contains A = Amod I in its image by the assumption of the lemma. Let
A=Ay — Qs (pfeQJTl) mod I for some matrix Ay € M, (Og[[S]]). We

write

A=Ay —QrAo (pflel) +pBy, +XoBo + -+ X181

for matrices B; € M,, (Og [[S]]). Similarly B; = BY — QBY (pflel) mod [
for matrices BY € M, (Og [[S]]) and for all i. Then
A= Ao - QAo (pQF") +pBY, - Qs (0BS) (»70Q7") +
+XoBY - Qs (XoBY) (@) +
et X By = Qr (X1 BY_y) (p7°Q7 ") mod 12,
therefore

A= (Ao +pBS + XoBY + -+ X,;n_1BY,_ 1)~

m—1
—Q (Ao +pBY + XoBY + -+ X;_1BY ) (pﬂQ;I) mod I2.
By induction, A= H — Q;H (pfle) for some H € M,, (Og [[S]]) - O

The surjectivity assumption of Proposition 4.2 is usually trivial to check thanks
to the following proposition.

PRrROPOSITION 4.3. Assume that £ > k or £ = k and the weights k; are not all
equal. Then the operator defined in formula 4./ is surjective.
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Proof. The proposition follows immediately because det Qy = ¢pkrtratFks
where ¢ = ¢ 163+ -+ ¢y, since fl >k +---+kyandpe€ I O

The following lemma summarizes the results of this section. We use the nota-
tion of Lemma 4.1.

LEMMA 4.4. Let ¢ > k be a fixed integer. We assume that for each v € 'y
there exists a matrix Ggf) = Ggf) (S) € MS such that:

1. G(f)(S) = Tdmod 7t
2. GY(S8) —I(S)p(GY (S)V(TI(S) 1) e 7 M;

3. There is no nonzero matric H € M,(Og[[S]]™") such that HU =
p tUH for some t > 0;

4. If £ =k and k = k; for all i, we additionally assume that the operator

H H—QH(p'Q;") : M, — M,
18 surjective.
Then for each v € Tk there exists a unique matriz G~ (S) € MS such that
(i) G4(S) = Tdmod 7T, and
(1) T(S)p(G(5)) = G~ (S)Y(IL(S)).
S|

For any vector @ = (ao,a1,...,ar—1) € my we denote by II(ad) =
(IIy (a1), 2 (a2), ...,y _1(af—1),Io(ap)) the matrix obtained from II(S) =
(I (X1), IIp(X9), ... L1 (Xy—1),IIo(X0)) by substituting a; € mg in each
indeterminate X; of II;(X).

PROPOSITION 4.5. For any d = (ag, a1, ...,a5-1) € mg‘ and any vy1,72,7 € I'k,

the following equations hold:
(i) Griry (@) = Go, (@)71(G, (@) and
(i) I(@)p(G+(@)) = G (@) (IL(a)).

Proof. Both matrices G,,(S) and G, (S)71(G+,(S)) are = Tdmod 7 and are
solutions in A of the equation II(S)p(A) = Ay(II(S)). They are equal by the
uniqueness part of Lemma 4.1. The second equation follows from part (ii) of
the same lemma. O

S

For any vector @ € mj ' we equip the module N(@) = & (Og[[r]]I"!)n;

@

with semilinear ¢ and T'i-actions defined by (¢(m1), (7723 () =
(71572, -, 1)IN@) and ((m1),7(02); -+, 7(Mn)) = (11,712, -+ 1) G (@) for any
v € T'k. Proposition 4.5 implies that (y1vy2)z= 71 (722) and ga(’y:n) = v(p(x))
for all z € N(@) and v,71, 72 € I'x. Since G (&) = Idmod 7, it follows that I'x
acts trivially on N(@)/7N(@).
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PROPOSITION 4.6. For any d € mlgl, the module N(@) equipped with the ¢
and T g -actions defined above is a Wach module over Og[[x]]!"! corresponding
(by Theorem 2.4) to some G-stable Og-lattice inside some n-dimensional
crystalline E-representation of G with Hodge-Tate weights in [—k; 0].

Proof. The only thing left to prove is that ¢*N(@) C »*(N(@)). Since det(IL;) =
ciq" we have det II(@) = (c1¢*, c2q", ..., cog") and

(@"m, ¢"n2, ..., " 1n)
= (m,m2, ...y Nn) det TI(Q) (cl_lqk*k1 , cQ_lqksz7 ey co_lqk*ko)
= (12, ) (@) - adj (I(@))) (e 10" 51", g g™ ™)
= ((m), (1), s 0(0a)) - (adjIL(@)) (e7'q* ™ ey tq" 2, e g ).
Hence (¢*n1,¢"n2, ..., ") € ¢*(N(@)) and ¢*N(@) C ¢*(N(a)). O

We proceed to prove the main theorem concerning the modulo p reductions of
the crystalline representations corresponding to the families of Wach modules
constructed in Proposition 4.6. By reduction modulo p we mean reduction
modulo the maximal ideal mg of the ring of integers of the coefficient field F.
If T is a Gg-stable Opg-lattice in some E-linear representation V of G, we

denote by V = kg @ T the reduction of V' modulo p, where kg is the residue
OF

field of Op. The reduction V depends on the choice of the lattice T, and a
theorem of Brauer and Nesbitt asserts that the semisimplification

V= <kE®T>
Op

is independent of T. Instead of the precise statement “there exist G -stable
Opg-lattices Ty and Ty inside the E-linear representation V and W of Gx

respectively, such that kg @ Ty ~ kg @ Tw”, we abuse notation and write
OE OE

V ~ W. Foreachd € m‘gl, let V(@) = E®p,, T(&), where T(&) = T(D(d)), and

D(@) = Ak g @ N(@). The representations V (d) are n-dimensional crystalline
Ak m

E-representations of G with Hodge-Tate weights in [—k; 0]. Concerning their

mod p reductions, we have the following theorem.

THEOREM 4.7. For any d € mlgl, the isomorphism V(@) ~ V(0) holds.

Proof. We prove that the kp-linear representations kr & T(@) and kz @ T(0)
OE OE
of G are isomorphic. Since II(S) and G.(S) € Mg, we have G ()
G, (0)ymod mg and T1(@) = I1(0)mod mp. As (¢, T'x)-modules over kg((r))7!,
D(@) /mpD(a@) ~ D(0)/mpD(0). Hence T (D(a@)/mgD(@)) ~ T (D(ﬁ) /mpD(0)
where T is Fontaine’s functor on representations mod mg. Since Fontaine’s
functor is exact, T (D(@)/mgD(d)) ~ T(a)/mgT(d) and T(d@)/mgT(d) =~
T(0)/mgT(0). O

)

N——
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5 FAMILIES OF TWO-DIMENSIONAL CRYSTALLINE REPRESENTATIONS

The main difficulty in applying Lemma 4.4 is in constructing the matrices
G(f) (8) which satisfy conditions (1) and (2). Conditions (3) and (4) are usually
easy to check. Throughout this section we retain the notations of Lemma 4.4.
We denote by E;; the 2 x 2 matrix with 1 in the (7, j)-entry and 0 everywhere
else. Recall that E;; - By = 61 - By, where § is the Kronecker delta function.
Also recall our assumption that at least one of the weights k; is strictly positive.

PROPOSITION 5.1. The operator H — H — QfH(pfeQJTl) . My — My is sur-
jective, unless £ =k, k= k; for all i and Qf € {E1, Ea}.

Proof. Tt is straightforward to check that Q; = E;; for some i, j € {1,2} and

Es it Qf = Enn,
E1nn it Qf = Eaa,
—E1p if Qf = Ena,
—FEy1 if Qp = Eor.

pkeQJ?lmod I =

If Q¢ = E; (respectively Eas), the image is the set of matrices with zero (1,2)
(respectively (2, 1)) entry, while if Q5 = Ei2 or Q5 = E9; the operator becomes

hi1 hiz hi1 hiz + ha
( ha1  haa > — < ha1 hao >
h11 h12 hll h12
—
( ha1  has ) ( ha1 + hiz  hoo )

respectively and is clearly surjective. The proposition follows from Proposition
4.3. O

and

LEMMA 5.2. If the matriz Qy = Py Py --- Pr_1 Py (with Py = Py) does not have
eigenvalues which are a scalar multiple of each other, then the matrix U =
Nmy(P), where P = (P, Pa,...,P;_1,P), satisfies condition (3) of Lemma
4-4.

Proof. Let H € M,(Og|[[S]]'"!) be a nonzero matrix such HU = p/*UH for
some t > 0. We write H = (Hy,Hy,...,Hy) and U = (U3, Us,...,Uy). Since
P-oU) P! = U, we have PiUH_lPZ-_I = U; for all . Since @y = Uy, none
of the U; has eigenvalues which are a scalar multiple of each other. If H is
invertible then U; = @ has eigenvalues with quotient p’t which contradicts
the assumption of the lemma. If H is nonzero and not invertible, there exists
an index i such that H;U; = p/* U;H; and rank (H;) = 1. There also exists an
invertible matrix B such that

BH;B~' = < o0 )

921 0
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with (a1, 01) # (0,0). Let I' = BU; B~! and write I' = (v;;) . The equation
H,U; = p’tU;H; is equivalent to p/'T BH; B~' = BH,; B~'T" which implies that
Y12 = 0 and pftmloql = aj171- If a;; # 0, then ;7 = 0 a contradiction
since I' is invertible. If 11 = O7 then pftagl’}/gg = 21711 and pft’)/QQ = Y11
(since a1 # 0). Since y12 = 0, the latter implies that T" has two eigenvalues
with quotient pf*. This in turn implies that U; and its conjugate Qs = U; have
eigenvalues with quotient pf* and contradicts the assumption of the lemma.
Hence H = 0. |

In the two-dimensional case, instead of checking condition (3) of Lemma 4.4 it
is often more convenient to use following corollary.

COROLLARY 5.3. If Tr(Qy) € Qp, then the matriz U = Nmy(P) satisfies
condition (3) of Lemma 4.4.

Proof. Since the determinant of 0y is a nonzero scalar, the eigenvalues of Q)¢
are a scalar multiple of each other if and only if Tr (Qy) is a scalar. O

5.1 FAMILIES OF RANK TWO WACH MODULES

We now apply Lemma 4.4 for matrices II; as in the following definition.

DEFINITION 5.4. For a fized integer £ > k = max{ko, ki,...,kr_1} we define
matrices of the following four types

. g 0 b Xip(zi) 1
1- Xst(Zz) 1 s L2 Ciqki 0 )

fo: 1 Xio(z) , 0 g™
3 0 cigk e 1 Xip(z) )7

where X; is an indeterminate, ¢; € Og, and z; is a polynomial of degree <
¢ — 1 in Zy[n] such that z; = p™mod w, where m, = |£=L|. Matrices of
type t1 or t3 are called of odd type while matrices of type to or ty are called of
even type. We write Hz(S) = (IIi(X1), H2(X2), ..., L1 (X5-1), o (Xo)) with
i= (i1,42, .., if—1,10) the vector in {1,2,3,4}f whose j-th coordinate i; is the
type of the matriz I1; for all j € Iy. We call i the type-vector attached to the
matriz f-tuple Hf(S).

The polynomials z; appearing in the entries of the matrices II; will be defined
shortly. We will also define functions ], y; € 1 + 7wZ,|[[r]] such that

J4 14 - 0 rS
G ~T(S)p(G ) (I1(S) ) € 7 M3

for all v € 'k, where

G\ = diag ((xg, x], ...,x’}fl) , (yg, v, ...,y;Ll)) :
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Let

T(S) = (Oél,OéQ,...Oéf_l,OéQ) (617B2)"'aﬁf—1560) ith Q; B’i
( ) ( (’7177%"';’7]”*1;’70) (61752a"'a 6f*1a50) W Vi

belonging to the set

(e 0) (Ko 1) (5 ey (9 e AL

For each ¢ = 1,2, ..., f we demand that all of the elements

v e (@]) (v0) = Bip (y)) (i) B (y)) (vau) — cup (2]) (v8s)

i ei (vq)" ei (vg)"™ ’
(5.1)
g e wd) () =i () (vBs) i () (v00) = diep (i) ()
o ei (vq)™ 7 e (vg)"™
(5.2)

of Ogl[r, Xo, ..., X¢—1]][¢"!] which belong to Og[[r]][¢"!] are zero, and those
which contain an indeterminate belong to 7*Og[[7, Xo, ..., Xy—1]], where in the
formulas above ¢; = 1 if II; has type 1 or 3 and ¢; = —1 if II; has type 2 or 4.
As usual lower indices are viewed modulo f.

PROPOSITION 5.5. For each 1, equations 5.1 and 5.2 imply that

2= (L) s tud) andui, = (%)4 o(@)). 63

: v YL, 7y a) if w] =y,
with £; € {0,k;}, w] € {«], vy}, 0 =ki —{;, and (w]) = 5 i) —
y! if w] =a].

Proof. If 11, is of type 1, then 3; = 0, oy = ¢;¢® and §; = 1. We must have
g (x]) =] | (vq)" and ¢ (y) =y, ;. The proposition holds with ¢; = k;,
w] =], 0} =0, and (w;Y)/ = y]. The cases where II; is of type 2,3, or 4 are
identical. O

From Proposition 5.5 it follows that

zg = <ii:[: ¢’ <%>Si> o <Z}) and yg = Cl:[: @' <%>S;> o <<Z?)I> :
(5.4)

I
with s}, s; € {€;, 00} If Z;Z =z, then (z}) =yJ, and by Lemma 3.3 equations

7

5.4 have unique = 1lmod 7 solutions given by
f-1 f-1
x) = H ©' (Af4)" and yg = H 0 (M) (5.5)
i=0 i=0
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I
IfIf 2} = yg, then (z}) =z and equations 5.4 imply that

f-1 si s
A i q
AT (e () o () ) oo

- (4N s (i)Si 2f (41 5.7
Yo 4O<so (vq) © ,yq o™ (yg) (5.7)

1=

@
I
- o

which by Lemma 3.3 have unique = 1mod 7 solutions given by

f—1

73 = [T (¢ Oara)™ - ¢4 (o)), (5.8)
=0
f-1

ud =TT (¢ Oar)™ 0" (ar)™). (5.9)
=0

Equations 5.3 for ¢ = f give the unique = 1mod 7 solutions for $},1 and 9}717
and continuing for i = f—1, f —2,...,2, we get the unique = 1mod 7 solutions
for 2] and y;. We now define the polynomials z; so that for each v € ', the
%

matrix G(f) = Idmod 7 satisfies the congruence G(f)fH(S)cp(G(f) (II(S)™1) e
7M.

LEMMA 5.6. Let R = {;ami € Qpl[n]] : Vp(ai)—i—p%'l >0 forall i > 0}. The
set R endowed with the addition and the multiplication of Q,[[x]] is a subring
of Qpl[r]] which is stable under the ¢ and the T i -actions. Moreover,

(i) (%)jEl €R for alln > 1 and (\f)TL € R for all f > 1;

(ii) Let b = cp™b*, where ¢ € OF, n € Z, and b* € R\ {0} is such that
b€ 1+ 7Zy[[x]] for all v € Tk. If £ > 1 is a fired integer, there

vb*
exists some polynomial z = z({,b) € Zy[n] with deg,z < ¢ —1 and
z = p™mod 7, where my = L%J, such that z — 'yz% € mZy[[x]] for

all v € T'k.

Proof. We notice that the coefficients a; of 7% in 1 are such that vp(ai)—i—p%l >0
for all i = 0,1,.... Motivated by this we consider the set R of all functions of
Qp[[r]] with the same property. This is a ring with the obvious operations,

+1
stable under ¢ and I'x. One easily checks that (%) € R and therefore

+1
(%) € R for all n > 1 from which (i) follows easily. (ii) Since I'x acts

trivially on O} we may replace b by ¢~ 'b and assume that ¢ = 1. We write

b= p"b*. Let p™b = z + a, where a € 7‘Q,[[7]] and deg, »z < £ — 1, for integer
=1

m which will be chosen large enough so that z € Z,[n]. Let z = > z;n?. Since
3=0
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p™Tb* = z+a and b* € R, we have vp(z;) —m—n+ p%l >0 for all j > 0. We
need vp(z;) > —1forall j =0,1,...,¢ — 1 and it suffices to have m +n — % >
—1. We choose m = L%J —n. Then z € Z, [r],deg, z < {—1and z = p™*t" =
p™mod 7, For any v € ', z — fyz% =pmb —a—by(b™1) (p™(vb) — va) =
by(b~Y)va—a € ©¢Qy,[[7]]. Since z € Z, [7] and by(b~!) € 1+ 7Z,[[x]], we have
z— fyz% € 7%, [[7]] = Z, [[7]] N 7°Qy[[x]] for all v € Tk. O

LEMMA 5.7. For any v € ' and i € Iy,

(i) =],y € 1+ nly [[n]];

(ii) o] = o= and y; = Aj’g% for some a; and b; with (a;)" and (b;)™" € R.

Proof. (i) is clear by the definition of the z],y] and Lemma 3.2. (ii) Let i = 0.

=1 )
If 2} = xg, by equation 5.5 we have z; = -, where ag = ‘Ho o' (A\f)” € R.
=

Since (Af)™' € R and R is ¢-stable, (ao)™" € R. If z} = yg, by equation
ffl . . . v

5.8 we have zj = 2%, where ap = [] ((p’ (Ap)* it ()\f)é’) € R, therefore
i=0

(ao)il € R. The proof for y; and (bi)il is similar. For 27, notice that 2}, =

b (el (3)7) : :
(%) o (w)) = (:(1:00)7((]‘5))”) with co € {ao,bo}. Since (ag)™", (bo)™" € R, it

2.\ £l
follows that 2}, € R. Since ((p (co) (%) f) € R, it follows that (a;_1)™" €

‘R. Similarly y}_l and (bf,1)il € R. The lemma follows by induction. O

To define the polynomials z; we will also need the following lemma.

LEMMA 5.8. If a € 7'Og[[r]] and 0 < k < € is an integer, then £2L ¢

(o)
©tOg|[r]].
Proof. Since 2% = lmod , it suffices to prove that ‘P;?) € m*Og([r]]. Let a =
7B for some 3 € Op[[r]]. We have ¢ (%) = ¢ (M) 0 (B) = ¢"FrlFp (B).
Hence % =7kp (7%) = kg =krl=kp (B) = 7'¢"Fp (B) € Tt Or][r]). O

PROPOSITION 5.9. Let k = max{ko, ki,....,kr_1}, let £ > k be a fized integer
and let my = L%J. There exist polynomials z; € Zy [w] with deg, z; < € —1
such that z; = p™mod 7 with the following properties:

(i) Gﬁf) = I_glmod T
(ii) G —T1(S)p(G )y (I1(S) 1) € #MS for each € Tk.
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Proof. Suppose that P; is of type 2 and «; = X;(z;) for some polynomial z; to
be defined. Then 8; =1 and B¢ (y]) = z]_; (v3;) implies that 2] | = ¢ (y;).
We need

S ’/TZOE[[,]R XO; () Xf*l]]

X (50(21)90 (x]) - 933—180(’721'))

ki
(va)

for all v € T'k. By Lemma 5.8 it suffices to define z; so that zx] — y]vz; €

tOg[[r]] for all v € Tk. Since z] € 1+ 7Z, [[x]] for all v € FK, this is

v v

equivalent to z; — y—fyzl € WEOE[[ ]l. By Lemma 5.7 we have % = vb’ where
b=a;(b;) ' eR. Since % celt 7y [[7]], the existence of the z; follows from
Lemmata 5.6 and 5.7. The proof for P; of type 1,3 and 4 is identical. O

PROPOSITION 5.10. If a(m) = Z anm™ € Qp[n]] is such that vy, (a;) > 0 for

alli=0,1,2,...,p— 2 and vy, (oz,, 1) > —1, then the first p — 1 coefficients of
a(m)? are in Z,. In particular, the first p— 1 coefficients of the p-th power of
any element ofR are in ZLy.

Proof. Follows easily using the binomial expansion. O

ProrosiTioN 5.11. If k; = p for all i, then there exist polynomials z; €
Zy 7] with deg,z; < p — 1 such that z; = lmod =, and such that G(f) -
IL(S) (G )y (I(S) 1) € 7P M for any v € T

Proof. Assume that P; is of type 2 and let =] and y] be as in the proof of
Proposition 5.9. First we notice that the exponents s; and s} in formulas
5.5 or 5.8 and 5.9 for the x] and y] are either 0 or p. With the notation

5
of Lemma 5.7 we have %# = ¢o (’yco_l) , where ¢y = ao_lbo. The formulas for
0

ay ! and by in the proof of Lemma 5.7 imply that they are both p-th powers of
elements of R. From the same formulas and Lemma 3.2 it follows that ay ' (0) =
bp (0) = 1. By Lemma 5.10, ¢g = 7o + a for some polynomial zy € Z,[n] of
degree < p — 1 and constant term 1 and some a € 7PQ,[[]]. For any v € 'k,

5
20— y—‘%’yzo =cg—a—cy (’yco_l) (yeo — va) =cp (’yco_l) ya—a € wPQy[[x]]. Since

Y €1+ 7Z,|[x]] and 2 € Z,[r], 2 MZO € Zp[x]] N 7P Qp|[n]) = 7 Zp|[7]].

The proof for the other z; is snmlar using formulas 5.3 and noticing that
+1

(%) € 1+ 7Z,][[n]]. The proof for P; of type 1, 3 or 4 is identical. O

REMARK 5.12. If k; = p for all i, then there exist polynomials z; € Zj, [r]
with deg, z; < p—1 and z; = lmod 7 which satisfy properties (i) and (ii) of
Proposition 5.9. This follows immediately from Proposition 5.11.

Next, we explicitly determine when Tr (Qy) & @p. We first need some defini-
tions.
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DEFINITION 5.13. (i) We define Cy to be the set of f-tuples (Pi, Pa, ..., Py)
where the types of the matrices P; are chosen as follows: Py € {ta,t3}.
Fori = 23,...f =1, P € {ta,t3} if an even number of coordinates
of (P1,Pa,...,Pi_1) is of even type, and P; € {t1,t4} if an odd number
of coordinates of (Py, Pa,...,Pi_1) is of even type. Finally, Py = t3 if
an even number of coordinates of (Py, P, ..., Pr_1) is of even type, and
Py = ty otherwise.

(i) We define Cy to be the set of f-tuples (Py, P, ..., Py) where the types of the
matrices P; are chosen as follows: Py € {t1,t4}. Fori=2,3,...,f—1, P, €
{t1,t4} if an even number of coordinates of (P1,Pa,...,P;_1) is of even
type, and P; € {ta,t3} if an odd number of coordinates of (Py, Pa, ..., Pi_1)
is of even type. Finally, Py = t1 if an even number of coordinates of
(P, Py, ..., Py_1) is of even type, and Py = to otherwise.

In Definition 5.13 the type of the matrix Py has been chosen so that an even
number of coordinates of the f-tuple (Py, Ps, ..., Pr—_1, Pp) is of even type.

DEFINITION 5.14. (i) We define C; to be the set of f-tuples (Pi, Pa, ..., Py)
where the types of the matrices P; are chosen as follows: Py € {ta,13}.
Fori = 2,3,...,f — 1, P, € {ta,ts} if an even number of coordinates
of (P1,Pa,...,Pi_1) is of even type, and P; € {t1,t4} if an odd number
of coordinates of (Py, Pa,...,Pi_1) is of even type. Finally, Py = to if
an even number of coordinates of (Py, P, ..., Pr_1) is of even type, and
Py = t1 otherwise.

(i) We define C5 to be the set of f-tuples (Py, Pa, ..., Py) where the types of
the matrices P; are chosen as follows: Py € {t1,ts4}. Fori=2,3,..., f—1,
P, € {t1,t4} if an even number of coordinates of (Pi,Pa,...,Pi_1) is
of even type, and P; € {ta,t3} if an odd number of coordinates of
(P, Pay ..., P,_1) is of even type. Finally, Py = t4 if an even number
of coordinates of (P, Pa, ..., Pr_1) is of even type, and Py = t3 otherwise.

In Definition 5.14 the type of the matrix Fy has been chosen so that an odd
number of coordinates of the f-tuple (Pi, Ps, ..., Pr—1, Py) is of even type.

LEMMA 5.15. Assume that f > 2 and, as before, let Q¢ = P1Ps--- Py.

(i) If (P1,Ps,...,P;) € Cf, then Q; = ( 3 g ) with 3,7y nonconstant

polynomials in X1, Xa,..., Xy (with Xy = Xo), linearly independent over
Qp, and o nonscalar.

(it) If (P1, Py, ..., Py) € C5, then Q; = ( 3 g ) with B,~ nonconstant poly-

nomials in X1, Xo, ..., X7, linearly independent over Qp, and § nonscalar.
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0 o
mial in X1, Xo, ..., X5, and o, 0 nonzero scalars.

(1ii) If (P1, P, ..., Py) € C1, then Qf = ( a p ) with B a nonzero polyno-

(iv) If (P, Py,....P;) € Cy, then Qp = [ @

mial in X1, Xo, ..., X5, and o, 0 nonzero scalars.

g ) with v a nonzero polyno-

Proof. Follows easily by induction on f. O
LEMMA 5.16. Assume that f > 2.

(i) If an odd number of coordinates of (Pi,Pa,...,Pf) is of even type, then
Qf has one of the following forms:

(a) Qf = (3 g) with 3,7 mnonconstant polynomials 1in

X1, Xo,..., X5, linearly independent over @p, and & nonscalar.
This case occurs if and only if (P1, P, ..., Py) € C5.

b) Qy = (: g) with B, mnonconstant polynomials in

X1,Xs,..., Xy, linearly independent over @p, and o nonscalar.
This case occurs if and only if (P1, P, ..., Py) € C}.

(c) In any other case, Qf = ( : g ) with 8,7 nonconstant polyno-

mials in X1, Xo,..., X5, linearly independent over @p, ad # 0, and
Tr (Qf) nonscalar.

(i1) If an even number of coordinates of (Pi, Ps, ..., Pt) is of even type, then
Qf has one of the following forms:

0 o
a, 6 nonzero scalars. This case occurs if and only if (P1, P, ..., Py) €
1.

(d) Q5 = < o p ) with B a nonzero polynomial in X1, Xo, ..., Xy, and

(e) Qf = ( : g ) with v a nonzero polynomial in X1, Xo, ..., X¢, and

a, 6 nonzero scalars. This case occurs if and only if (P, P, ..., Py) €
Cs.

(f) In any other case, Qf = < : g ) with B,~ nonconstant polyno-

mials in X1, Xo,..., Xy, linearly independent over @p, ay # 0 and
Tr (Qy) is nonscalar.
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Proof. By induction on f. If f = 2 the proof of the lemma is by a direct
computation. Suppose f > 3. Case (i). An odd number of coordinates of
(P1, Py, ..., Py) is of even type.

(a) If an odd number of coordinates of (Py, Ps, ..., Pr_1) is of even type, then
Py € {t1,t3}. We have the following three subcases:

(@) Q1 = ( 3 g ) with 3,7 nonconstant polynomials in X1, Xo,,,.X7_1,

linearly independent over @p, and ¢ nonscalar. If Py = ¢, then @y is as in
case (c), and by Lemma 5.15 (Py, Ps, ..., Py) ¢ CY U Cs. If Py = t3, then Qy is
as in case (a). By the inductive hypothesis (P1, P, ..., Pf—1) € C5, and since
Py = t3, (Pl, P, ..., Pf) S C;

(B) Qs—1 = < ?; g ) with 3,y nonconstant polynomials in X1, X»,,,. X1,

linearly independent over @p, and o nonscalar. If By = #1, then Q) is as in case
(b). By the inductive hypothesis (Pi, Ps, ..., Pr_1) € Cf, and since Py = t1,
(P1, Py, ..., Py) € Cf. If Py =ts, then Q is as in case (c), and by Lemma 5.15
(P, Py, ..., Pp)  CTUCS.

(v) Qp-1 = ( 3 g ) with 3,~ nonconstant polynomials in X1, Xo,,,.X7_1,
linearly independent over Q,, ad # 0, and Tr (Q) nonscalar. If Py € {t1,t3}
then @y is as in case (c), and by Lemma 5.15 (P, P, ..., Py) € C7 U C5.

(b) If an even number of coordinates of (Pi, Pa, ..., Pf_1) is of even type, then
Py € {ta,ts}. We have the following three subcases:

(@) Q-1 = < g g ) with f a nonzero polynomial in X1, Xo,,, . Xs 1,
and «a,d nonzero scalars. If Py = ty, then @y is as in case (b). Since
(Pl,PQ,...,Pf_l) € C1 and Py = to, (Pl,PQ,...,Pf) S Cf If Py = t4, then
Qy is as in case (c), and by Lemma 5.15 (P, Pa, ..., Py) ¢ CT U C3.

(B) Qe—1 = ( : g ) with v a nonzero polynomial in Xy, Xo,,,.Xy_1, and
«, 0 nonzero scalars. If Py = t, then @y is as in case (c), and by Lemma
5.15 (P, Py, ..., Py) & CTUC5. If Py = ta, then Qy is as in case (a). Since
(Pl,PQ, ...,Pffl) € Cy and Py = ty4, (Pl,PQ, ...,Pf) S Cék

(v) Q-1 = ( : g > with 8,7 nonconstant polynomials in X, Xo,,,. Xy,

linearly independent over Q,, ay # 0 and Tr(Qy) is nonscalar. Then
(P1,Ps,...;Pp_q) ¢ C1UCy. If Py € {to,ta}, then Qy is as in case (c), and
by Lemma 5.15 (Py, P, ..., Py) ¢ C; UC3.

Case (ii). An even number of coordinates of (Py, P, ..., Py) is of even type.
The rest of the lemma is proved by a case-by-case analysis similar to that of
Case (i). O

COROLLARY 5.17. Tr (Qy) € Q, if and only if (Py, Pa, ..., Pf_1, Py) € C1 U Co.

REMARK 5.18. If (P, Ps,...,Py) € C1 U Cy, the filtered w-modules DZE (6)
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are weakly admissible and the corresponding crystalline representation is split-

reducible and ordinary (see §6.3). The filtered @-modules D;E (&) make sense
f-1

foranya e Of;. One can check by induction that Tr ((pf) = 1—|—piz=:0 kl, therefore

whenever ]D);E (@) is weakly admissible the corresponding crystalline represen-

tation is reducible (see Proposition 6.5). Since we have not constructed the

Wach modules which give rise to these filtered modules, weak admissibility is
not automatic and has to be checked.

We now turn our attention to condition (iv) of Lemma 4.4. By Proposition
5.1 the problematic cases are those with ¢ = k, all the weights k; equal and
Q¢ € {E11, Ea2}. We have the following.

LEMMA 5.19. If Q¢ = E11 then (Py,..,Ps) € Ch; (ii) If Qf = Eoa, then
(Pry ...y Pf) e Cs.

Proof. By induction on f. First, we notice that

E22 lfP:tla
Pmod (p-Id, X;-Id) = gi illzig,
FEoyp if P =ty4.

Suppose that Qf = FEy; and f = 2. Then P € {to,t3}. If P, = t3 then
Py = t4 and if P; = t3 then Py = t3. Suppose Qf = FEy; and f > 2. Then
Qf,l = Ey and Py = t3 or Qf,l = FEip and Py = t4. In the first case
the inductive hypothesis implies that (P, P,...,Pf—1) € Cy and Py = t3.
If an even number of coordinates of (Pi, Ps,...,Pr_2) is of even type, then
Pr_y = t3. In this case an even number of coordinates of (Pi, Pa, ..., Pr_1)
is of even type and Py = t3, hence (Pi,...,Pr) € Cq. If an odd number of
coordinates of (Pp, P, ..., Pf_2) is of even type, then Py_; = t4. In this case an
even number of coordinates of (P, Ps, ..., Pr_1) is of even type and Py = t3,
hence (Pi,...,Py) € Ci. Now assume that Qf,l = Fi» and Py = t4. This
implies that either Qf_g = 9, Py_1 = t4 and Py = t4 which is absurd since
in this case Qf =0, or Qf_g = FEi1, Pro1 =ty and Py = 4. If f = 3, then
Py, =t3, P, =tg, P3 =t4 and the lemma holds. If f > 4 and an even number
of coordinates (Pi, Pa, ..., Pr_3) is of even type, then Py_o = t3, Pr_1 = to
and Py = t4. Then an odd number of coordinates (P, Ps, ..., Pr_1) is of even
type and P; = t4, hence (P, ..., P;) € Ci. If an odd number of coordinates
(P1, Py, ..., Py_3) is of even type, then Py_g = t4, Pf_1 =ty and Py = t4. Then
an odd number of coordinates (Py, Py, ..., Py_1) is of even type and Py = tq4,
hence (P, ..., Py) € Cy. Part (ii) is proved similarly. O

COROLLARY 5.20. If (Py, Py, ..., P;) € P and Tr (Qf) & Q,, then the operator

H H—QfH(pferjl) : Mg — MQ

18 surjective.
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5.2  CORRESPONDING FAMILIES OF RANK TWO FILTERED ©-MODULES

Let TI1(S) = (I (X1), Mo (X2), ..., ;1 (X5 1), Io(Xo)) with 7 € {1,2,3,4}/
and matrices II;(X;) as in Definition 5.4. The definition of the II; and P; =
II;mod 7 depends on the choice of the z; in Proposition 5.9 and therefore on
£. For the rest of the paper we assume that (Pp, Ps, ..., Py) € C1 U Cy and we
choose ¢ = k = max{ko, k1, ..., kf—1}.

PROPOSITION 5.21. For any v € I'k, there exists a unique matriz G,(S) =
G (S) € M§ such that:

(i) G4(S) = Tdmod T

(i) II'(S)p(G(S)) = G (S)yII(S)).
Proof. Conditions (1) and (2) of Lemma 4.4 are satisfied by Proposition 5.9.
Condition (3) of Lemma 4.4 is satisfied by the assumption that (Py, P, ..., Py) &
C7 U Cy and Corollaries 5.3 and 5.17. Finally, condition (4) of Lemma 4.4 is

satisfied by Proposition 5.1 and Lemma 5.19. The proposition follows from
Lemma 4.4. O

For any d € mé we equip the module Ni(d') = (0[] m B (Op(x]]") no
with semilinear ¢ and I'k-actions de%ned as in Proposition 4.6. For any
a e mé we consider the matrices of GLo (E‘T‘) obtained from the matrices

Pi(@) = (P1(X1), Pa(X3), ..., Pr_1(X5_1), Po(Xg)) by substituting X; = a; in
P;(X;). We define families of filtered ¢-modules ]D)iE (@) = (B m @ (E") n,

with Frobenius endomorphisms given by (p(n1), p(n2)) = (7]1,7]2)]3;(6:), and
filtrations given by

Elmlyy @EIy, ifj<o0,
Elmol (& + gp) i 1 < j < wo,

. - |7'Il‘ 7 Y7 3 <4<
FﬂJ(DZE (@) = E (@m + y772) . .1.f I4+wo <j <w,
Bl (@ + gn) if 1+ wi—e < j < wiy,
0 lf.j > 1 + w1,
(5.10)
where & = (2o, 21, ...,x5-1) and ¥ = (Yo, Y1, ..., Yf—1) with
- _J (1,=a;) if P; has type 1 or 2,
(@i, 4i) = { (—a;,1) if P; has type 3 or 4, (5.11)

and a; = a;%;(0) for all i. Since ¢ = k, Remark 5.12 implies that «; € p™mp for
all ¢, where

— L%J if k> p and k; # p for some 1,
o 0 if k<p-—1ork; =pforall i.
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PROPOSITION 5.22. For any d € mé the filtered @-modules (]D);E (@), ) defined
above are weakly admissible and ]D);E (@) ~ FI"l ® (NZ;(&')/WN%(&')) as filtered
O\T\

E
@-modules over EI™!.

Proof. By Theorem 2.4, &y + s € Filj(N;E(d')) if and only if o(Z)p(n)+
o(Y)p(n2) € qjN;E(d’) or equivalently

eip(@)p(m) + eip(§)p(n2) € ¢’ eiNL(@) for all i € Io, (5.12)

with the idempotents e; as in §1.1. We fix some ¢ € I and calculate in the case
s PN SR . .

where II; is of type 2. Then II;(a;) = ( 1 asp(=) and equation 5.12 is
¢ | p(yi)a", .
¢ | o(xi + yiaizi).
for any © € Og[[n]]. If j > 1+ k;, then z;,y; = Omod 7. If 1 < j < k;, the
system above is equivalent to 77 | x; + y;a;z;. Since a;z; = a;mod T,

equivalent to { We use that ¢/ | ¢(z) if and only if 7/ | 2

QYieimn + Yieinz + WN’:;(@') if 1< j<k,

(i -+ eagine -+ wNL(@) =

where 7; = yimod 7 can be any element of Q. Since Fil” (N%(&')/wN%(@')) =
(OFym @(OF . we get

o ei( O ym @ ei(Og e if § <0,

i Fil (NL(@) /7NL(@) = e(OD (@i + iine)  if 1<) <k,
with ;7 = (0,...,24,...,0), e;i" = (0, ...y, ...,0) and (z4,9;) = (=, 1). Cal-
culating for the other choices of II;(a;) we see that for all ¢ € Iy, (z;,y;) is as in
. g - f_l . - -
formula 5.10. Since FiP(NZE(&)/wN%(ﬁ)) = @ e;FiV (N%(d’)/ﬂN%(d’)), arguing
i=0

as in the proof of Proposition 3.4 we get

(O M @OF e it j<o,
(O fr1o (@ + ) i 1< j < w,
Filj(N%(a)/er%(a)) _ ) (O @+ gne) i L wo < < w,

(O 1y (@ +g) i 1+wis < j S wis,
0 if j>1+w,

with & = (zo,21,...,25-1) and ¥ = (yo,¥1,...,ys—1) and (z;,y;) as in formula
5.10. The isomorphism D?. (@) ~ Bl ® (N(@)/nN(a)) is now obvious. [
ol

The crystalline representation corresponding to DZE (@) is denoted by Vg &
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6 REDUCTIONS OF CRYSTALLINE REPRESENTATIONS

In this section we explicitly compute the semisimplified modulo p reductions of
the families of crystalline representations constructed in §5. We will need the
following lemma.

LEMMA 6.1. Let F be any field, G any group and H any finite index subgroup.
Let V' be an irreducible finite-dimensional FG-module whose restriction to H
contains some FH-submodule W with dimp V' = [G : H|dimp W. Then V =~
md$ (W).

Proof. By Frobenius reciprocity there exists some nonzero o €
Hompq(Ind$ (W), V). Tt is an isomorphism because V is irreducible and
Ind$ (W) and V have the same dimension over F. O

We start with the reductions of crystalline characters and reducible two-
dimensional crystalline representations of Gx. The embeddings 7; of Ky into

F fixed in the introduction induce embeddings of residue fields ka 5 kg
The level f fundamental characters wy 7 of Ik, are defined by composing the
embeddings 7; with the homomorphism I s k:;x( obtained from local class
field theory, with uniformizers corresponding to geometric Frobenius elements.
We recall the following lemma which follows immediately from [BDJ, Lemma
3.8], where the x; are as in §3.

LEMMA 6.2. (i) (Xi)qu = w;}iﬂ fori=0,1,...f=1; (i) wg 7 = W} forall
i; (i) w;;{’;j =wrz; () w= ] wyz, where w is the cyclotomic character

icly
modulo mg.

Our next goal is to compute the determinant of a two-dimensional crystalline
representations in terms of its labeled Hodge-Tate weights. To do this, we will
need some facts about weakly admissible filtered @-modules which we briefly
recall. For the missing details we refer to [Doul(0]. We remark that similar
results for odd p have been obtained by Imai in [Ima09].

PROPOSITION 6.3. Let (D, ) be a rank two F-semisimple, nonscalar filtered
@-module over EI™l with labeled Hodge- Tate weights {0, —k;}r,. After enlarging
E if necessary, there exists an ordered basis n of D over EIl with respect to

-

which the matriz of Frobenius takes the form Mat,(¢) = diag(d,d) for some

vectors @,6 € (E*)\™ with Nm,, (a@) # wa(g). The filtration in the same basis
has the form of formula 5.10 for some vectors @, € EI™l with (x;,y;) # (0,0)
for all i € Iy. We call such a basis n a standard basis of (D, ). The Frobenius-

fized submodules are 0, D, Dy := (EM) m and Dy := (EM) 12. The module D
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is weakly admissible if and only if

(1) Vp(wa(&)wa(g)) = Z ki;

i€ly

(2) vp(Nmy(a)) > Z ks

{iEI[)I y,,:O}
(3) Vp(wa(g)) > Z k.
{iEIo: (L‘,,=0}

Assuming that D is weakly admissible,

(i) The filtered o-module D is irreducible if and only if both the inequalities
(2) and (3) above are strict;

(ii) The filtered p-module D is split-reducible if and only if both inequalities
(2) and (3) are equalities, or equivalently I5 N Jz N Jz = @. In this case,
the only nontrivial weakly admissible submodules are D;, i = 1,2, and we
have D = Dy € Do;

(iii) In any other case the filtered p-module D is reducible, non-split.

In the Proposition above, if v,(Nm,(&)) = > ki, the only nontriv-
{iEI[): y,,:O}
ial weakly admissible submodule is (D1, ). If v,(Nm,(0)) = > ki,
{iEIo: (L‘,,=0}

the only nontrivial weakly admissible submodule is (Dg, ). If (D, ¢) is not
F-semisimple, after extending F if necessary, there exists an ordered basis
n = (n1,m2) of D over E!l with respect to which the matrix of Frobenius takes
the form

for some vectors & € (EX)I"l and ¥ € E (see [Doul0, §2.1]). The filtration
in this basis has the shape of formula 5.10. The filtered @g-module (D, ) is
weakly admissible if any only if 2 - v,(Nmy (&) = > k; and vp(Nm,(&)) >
icly

> k;. The corresponding crystalline representation is irreducible if and
{iEI():(L‘,,=O}
only if the latter inequality is strict and reducible, non-split otherwise. In this
case, the only ¢-stable weakly admissible submodule is (D2, ¢) (see also [Doul0,
§ 5.4]). If (D, ) is F-scalar, there exists an ordered basis n = (11, 72) of I over

QL oL

Mty (o) =

=21 Ly

EI"l with respect to which Mat, (¢) = diag (a 1, f) for some o € E* and
the filtration is as in formula 5.10. The only ¢-stable submodules are the D,
i=1,2and D(c) = (EI"l) (g + ¢~ 1) for any c € E* (cf. [Doul0, §5.3]).
To summarize, we have the following.
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PROPOSITION 6.4. Let (D, ) be a reducible weakly admissible rank two filtered
@-module over EI™l with labeled Hodge- Tate weights {0, —k;}r,. After enlarging
E if necessary, there exists an ordered basis 11 = (11,72) of D over E\™l with

—

respect to which the matriz of Frobenius takes the form Mat, (¢) = < @ g» )
- *

and is such that Dy = (E|T|) 12 is a p-stable, weakly admissible submodule.
The following propositions which will be used in §§ 6.2 and 6.3.

PROPOSITION 6.5. A rank two weakly admissible effective filtered p-module
(D, ) with labeled Hodge-Tate weights {—k;,0};, and vy, (Tr(pf)) = 0 is re-
ducible.

Proof. If D is F-semisimple and nonscalar, see [Doul0, Corollary 7.2]. Suppose
that this is not the case. Since we assume that k; > 0 for at least one i, for any
F-scalar or non-F-semisimple filtered ¢-module with labeled weights {—k;,0}~,,
Vp (Tr(gof)) # 0. Indeed, in this case there exists an ordered basis 1 of D over

EI"l with respect to which the matrix of Frobenius takes the form

0

a

for some vectors @ € (EX)!"l and ¥ € E (see [Doul0, §2.1]). Weak admissibility

implies that 2 - vp,(Nmy(&)) = > ki > 0 (see [Doul0, Propositions 4.3 and
iclo

4.4]), therefore vy, (Tr(¢7)) = vp (2 - Nmy(@)) > 0. O

Mat, (i) = <

=L 2y

The following lemma allows us to compute determinants of two-dimensional
crystalline representations in terms of their labeled Hodge-Tate weights.

LEMMA 6.6. If (D,¢) is a rank two weakly admissible filtered p-module
over K with E-coefficients and labeled Hodge-Tate weights {0, —k;}.,, then
(Ao kD, ALgp) is weakly admissible with labeled Hodge-Tate weights
{71171'}7'1"

Proof. Let n = (n1,n2) be a standard basis of (D, ¢) such that Mat,(y) is as

in Proposition 6.4 and FillD as in Formula 5.10. Clearly (A2@)(m A o) =
a-o0(m Amnz). Since Fil(DAD) = Y~ (Fi'DAggx Fil’?D) and JzU Jy = Io,
Jitj2=j

a simple computation yields

Elmol(n Ang) if § < wo,

, Elmnl(n Ame) if 14wy <j < wi,
FIDAD)={ e
Bl Amg) if 1T+wi—o < j < wyoa,
0 ifj>1+weq,

from which the statement about the labeled Hodge-Tate weights follows imme-
diately. Weak admissibility is clear. |
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COROLLARY 6.7. IfV is the crystalline representation corresponding to D, then

k _ p—
det Voo ykroxbo Xet s X8 and (det V), ~ wf .,
f=1
where n is an unramified character of Gx and a = — > p'k;.
i=0

Proof. By Proposition 3.4 and Lemma 6.6 the crystalline character detV &
1

(X’e“é cxhr ~X§f:; ~X’§‘f371) has labeled Hodge-Tate weights {0},. If the

corresponding filtered p-module has Frobenius endomorphism ¢(n) = @-n, then

by Proposition 3.5 Nm,, (@) = ¢- I for some ¢ € EX with v, (¢) = 0. Lemma 3.7

-1
implies that detV ® (Xle“; : xé“f S -XE;:; -Xé“‘;fl) is the unramified char-

acter of Gx which maps Frobg to c. The rest of the corollary follows from
Lemma 6.2. O

We recall the following well-known proposition in which the field K has absolute
inertia degree f and is not assumed to be unramified over Q,.

PROPOSITION 6.8. [Bre(7, Prop. 2.7] Let p: Gx — GLo(F,) be a continuous

representation. Then
~ wg’} *
~ 7
it 0wy

for some integer m. The representation p is irreducible if and only 1+ p/ { m,
and in this case x = 0.

COROLLARY 6.9. Let x be a crystalline character of Gk,, with labeled Hodge-
Tate weights {—k;}.,, where the k; are arbitrary integers for alli =0,1,...,2f—
1, and let V = Indggf (x) . The residual representation V is irreducible if and

2f—1

only if 1L +pf t 3 pk;.
1=0

Proof. Follows immediately from Lemma 6.2 and Proposition 6.8. O

6.1 REDUCTIONS OF REDUCIBLE TWO-DIMENSIONAL CRYSTALLINE REPRE-
SENTATIONS

In this section we compute the semisimplified modulo p reduction of any re-
ducible two-dimensional crystalline representation of G, .

LEMMA 6.10. Let ko, k1, ..., kf—1 be arbitrary integers and let

Eloly if j < wy,
Elmly if 14w <j<wy,
Filp=¢ ... (6.1)
By i 14 w,_0 < § <wyo,
0 if §>1+we1.
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For each i € Iy,

. Eloly i j <k
T — e;E'oly if j < kK,
elitD { 0 ifr>1+k.
Proof. Let k; = w, for some r € {1,...,t — 1}. Since w, > w,_1 we have i € I,
from the definition of I,.. Similarly, since k; = w, we have i € I,.;1. The same is
clear for r = 0. Hence e; f1, = e; and e; fr,, = 0 for all r. Multiplying formula
6.1 by e;, we get

e;Elmoly if j <y,

Ty
e;FirD { 0 ifr>14 w,.

O

—

o

Let D be as in Proposition 6.4 and let Mat,(¢) = ( g» ) . The filtration is
- *

as in formula 5.10 for some vectors #, i € E!7l. By Proposition 2.10 in [Doul(]
(or by a direct computation),

D, if j<o0,
) ' E‘TIU,ElT]Q lf 1 S] S wO;
Fill(Dy) =Dy NFilD=¢ ...
Emt*l’flm if 1+wi2<j<wa,
0 if .7 Z 1+ Wt—1,

where I,z = I, N J. = {i € I, : x; = 0}. Let 5= (00,01, ...,07—1). By Lemma
6.10,
e;ElTlpy i §<0
eiFil(Dy) = Bl frmn if 1 < j < ki,
0 ifj > 14k,

therefore the labeled Hodge-Tate weight of Dy with respect to the embedding
T; i
o 0 if ZT; 75 0 5
m{ ki if 2 = 0,

and (D9, p2) corresponds to the effective crystalline character x ed XZ;L .

Xeghooeee ngcf:;, where ¢ = < I 51-) -p ‘€0 The following theorem follows
i€lp
immediately from Corollary 6.7.

THEOREM 6.11.  (3)
o Yo
v=(% 5L )

— m m myg—1 _ k1—m ko —m
where = my - X XE Xege and P2 =120 Xey T Xey TR
kp—1=mys_1  ko—m :
T Xef_o “Xeg_, 0 where n; are unramified characters of Gk, .
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(ii)

— s.8.
(Vi) ™ = win, @it

f-1 ) f-1 )
where a; = — Y m;p" and ag = Y, (m; — k;) p'.
i=0 i=0

. S.8.
Notice that for an ordered basis is in Proposition 6.4, (V| [Kf) only depends
on the filtration with respect to that basis.

6.2 PROOF OF THEOREM 1.5

Let {¢;,li1 ¢} ={0,k;} for i =0,1,..., f — 1 and assume that at least one k; is
strictly positive. In this section we construct infinite families of crystalline rep-
resentations of Hodge-Tate type {0, —k;},, which contain the irreducible rep-

resentations Vy = IndGZ:f (Xf;é X Xﬁﬁ’;:; . ngf,l) of Proposition 3.11,

and have the same mod p reductions with V. We choose f-tuples of matrices
(I, Iy, ..., II¢) (with II; = II), where the types of the matrices II; (recall
Definition 5.4) are chosen as follows:

(1) If¢1=0,1I; € {tg,t;g};

(2) Ift1 =k > 0,11, {tl,t4}.

Fori=2,3,..., f — 1, we choose the type of the matrix II; as follows:

(1) If ¢; = 0, then:

e If an even number of coordinates of (IIy,Ils,...,II;_1) is of even type,
I; € {t2,t3};

e If an odd number of coordinates of (IIy,Ils,...,II;_1) is of even type,
II; € {tl,t4}.

(2) Ift; = k; > 0, then:

e If an even number of coordinates of (IIy,Ils,...,II;_1) is of even type,
II; € {tl,t4};

e If an odd number of coordinates of (IIy,Ils,...,II;_1) is of even type,
II; € {tg,tg}.

Finally, we choose the type of the matrix Iy as follows:
(1) If £y = 0, then:

o If an even number of coordinates of (IIy,IIs,...,IIy_1) is of even type,
o = t4;

o If an odd number of coordinates of (IIy,IIy,....,IIy_q) is of even type,
HO = 3.

(2) If 4y = ko > 0, then:
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o If an even number of coordinates of (IIy,IIs,...,IIy_1) is of even type,
Iy = to;

o If an odd number of coordinates of (II;,IIs,...,IIf_1) is of even type,
Iy = t4.

Notice that from the choice of Ilp, an odd number of coordinates of
(I, Iy, ..., IIy) is of even type. Let i = (i1,49,...,70) € {1,2,3,4} be the
type-vector attached to (II, I, ...,II;). For the matrices II;, we assume that
¢; = 1 for all 7. Let P; = II,mod = for each ¢ and notice that from the choice
of the matrices II, it follows that (Pi, P, ..., Py) ¢ C1 U Cy. The type of P;

is defined to be the type of II;. For any d € mé we consider the families of
crystalline F-representations Vg (@) of Gk, with labeled Hodge-Tate weights
{0, —k;}, constructed in §5.2. We prove the following.

PROPOSITION 6.12. (i) Vg(ﬁ) = Indﬁf (Xﬁé oxlE e A ~X£gf71) and

Vg (0) is irreducible;
(i) For any d € mé, Vi,; (@) = V%(ﬁ),

- S.8.
. =i h
(iii) For any d € mé, <V;;(a)|lkf) = wgf,ﬂ;@wgf,ﬂ?o’ where B =
2f—1

- > Pl
1=0

(v) Vi,; (@) is irreducible if and only if 1+ p/ 1 B;

(v) Any irreducible member of the family {Vg (@), ae mé}, other than

Vg(ﬁ), is non-induced.

Proof. We restrict Vg(@) to Gk,,. By the construction of the representa-
tion Vg(@) in §5.1, there exists some G ,-stable lattice (T%((Y))G in-
Ky
side Vé(ﬁ) whose Wach module has ¢-action defined by (¢ (1), ¢ (n2)) =
(11,72) TI(0), where TI(0) = (IT; (0),1I5 (0),...,IT;_; (0), I, (0)) . By Propo-

sition 2.6, the Wach module of the Gk, -stable lattice (T’%(ﬁ) o in-
Ko

side (Vg(ﬁ))‘g is defined by (¢ (1), (12)) = (11,72) T1(0)*?, therefore
Koy

the filtered p-module corresponding to (Vi 4>‘G has Frobenius endomor-

Koy

s

=
O,

phism (¢ (m),¢ (n2)) = (nl,ng)P(6)®2. By Corollary 2.7 the restricted rep-

resentation (V]g(O) G has labeled Hodge-Tate weights ({0, —k;}), , i =
Kof )
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0,1,...,2f — 1, with k;4y = k; for i = 0,1, ..., f — 1, and filtration as in formula

5.10 for some vectors Z, ¥, with the sets I; being defined with respect to the

2f weights above. We prove that (VEZ (6))| is reducible and determine its
Ko

irreducible constituents. First, we change the basis to diagonalize the matrix

of Frobenius. We see that

P(0) = R (Bi,%)_, with {Bl,ﬁj} = {1,p*} if P, has type 2 or 4,
Y diag (@i,éi) , with {a;,d;} = {1,p*} if P, has type 1 or 3,

where R (B_Z-,’yi) is the 2 x 2 matrix with 3; in the (1,2) entry, ; in the (2,1)
entry, and zero on the diagonal. Let Qg = Id,

0 = Id ifPle{tl,t;g},
1= R if P € {tg,t4},

where R:= R(1,1),

Id if Qi,1 = Id and Pz S {tl,t3},

B RifQ; 1 =1d and P; € {t27t4},
Qi = Rif Q,-1 =R and P; € {t1,t3},
IdifQ;,—1 =R and P; € {t27t4}

(6.2)

for i =2,3,...,2f — 1. Let Q = (Qo, @1, ..., Q27—1) . By the definition of the
matrices Q;, the matrix Q - P(0)%% - ¢ (Q~') is diagonal. By induction, Qo =
Id and

Id if an even number of coordinates
of (P1,Ps,...,P;) is of even type,
Qi = (6.3)
R if an odd number of coordinates
of (Py, Py, ..., P;) is of even type,

fori=1,2,...,2f — 1, where Py y = P; for i = 0,1, ..., f — 1. We claim that
for each i =0,1,..., f — 1, Q; = Id if and only if Q;;s = R. Indeed, for i =0,
Qo = Id. Since an odd number of coordinates of (P, Pa, ..., Py) is of even type,
QR = R. Let gj; be the r-th coordinate of the (i, j)-entry g; of ) for each
i,j7 € {1,2} and r € {0,1,...,2f — 1}. Assume that i € {1,2,..., f — 1}. From
the definition of the matrices ); we see that

1 if an even number of coordinates

_ of (P, Ps,...,P;) is of even type,
a1 = (6-4)

0 if an odd number of coordinates

of (P1,Ps,..., P;) is of even type.
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For any ¢ = 0,1, ..., f — 1 we have

1 if an even number of coordinates of
(P, Py, ..., Py, ..Piyy) is of even type,
= 6.5
d11 (6.5)
0 if an odd number of coordinates of
(P, Py, ..., Py, ..Py5) is of even type.

Since an odd number of coordinates of (P, Ps, ..., Py) is of even type and P; =
Py ¢ for all ¢, this is equivalent to

1 if an odd number of coordinates

_ of (P1,Ps,..., P;) is of even type,
0’ = (6.6)

0 if an even number of coordinates

of (P, Ps,...,P;) is of even type,
which implies that qﬁrf =1-¢i, foralli =0,1,..., f—1. Similarly q:;rf =1-gq;;
for all entries ij. Consider the ordered basis ¢ = ({1, (2) defined by ((1,¢2) :=
(m,m2) Q7 '. In the ordered basis ¢ the filtration is as in formula 5.10 with the
vector I_"’I]l -+ ]77]2 replaced by - ((711 . <1 -+ (712 . CQ) -+ 37 ((712 . <1 -+ (722 . CQ) . Let
Z=2Z-q11+Y q12 and W = Z- 12 + - ¢o2. From the definition of the matrices

@, the matrix of Frobenius in this new basis is the diagonal matrix

diag (X, ﬁ) =
(Qo-Pr-Qrt s Qo1 Py Q7 Qs Pran Q7lyss Qa1 - Po- Q).

f—1

We prove that Nmy,(\) = Nm,, (f) = pigﬂ o 1. First we see that A\ju; = pFi
for all ¢. Since Q; = Id if and only if Q;;y = R, a case by case analysis for
the choices of Q); and Q;11, bearing in mind that P, s = F;, implies that
Qi Piy1 - Qi = diag (N1, para) if and only if Qi - Prygin - Qilpy =
diag (f4i+1, Ai+1) - Therefore,

2f 1
II @i Pus-@ih)
i=0
F-1 f-1
= H (Qi- Py - Qi) - (Qi-‘,—f e Q;rlfH)
i=0 i=0
f—1 ' f-1 ' fil .
= H diag (Niy1, pit1) - | | diag (i1, Aiv1) = pi=0 - Id.
i=0 i=0

Next we notice that § = 1 — Z and 1o = 1 — @11, s0 Z = T - 41 + (T—f) .

(T— (j’n> =142-%-q11 — 11 — 4. Since z; and ¢i, € {0,1} for all i, z; = 0 if
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and only if ¢}; =1 and 2; = 0, or ¢{; = 0 and z; = 1. Recall from formula 5.11
that x; = 0 if and only if P, € {¢3,t4} and z; = 1 if and only if P; € {t1,t2}.
This combined with the definition of the matrices @; gives

i=0and Py € {t37t4}, or

1 >1, P; € {ts,t4} and an even number of coordinates
zi=0& < of (P, Ps,...,P;) is of even type, or (6.7)

i>1, P, € {t1,t2} and an odd number of coordinates
of (Py, Py, ..., P;) is of even type.

Similarly,
i=0and P € {tl,tg}, or
i>1, P, € {t1,t2} and an even number of coordinates
zi=1& of (Py, Ps,..., P;) is of even type, (6.8)

i>1, P, € {ts,t4} and an odd number of coordinates
of (P, Py, ..., P;) is of even type.

We claim that z;1p =1—z;foralli =0,1,..., f —1. Indeed, z;4 f = 1+2 2445~

qﬁ’f — qﬁ‘f — Ziqp. Since P; = Py, we have z; = ;45 for all 7, and since
qﬁf =1- q{l we get zipr = 1 — 2z;. Since z € {0,1} for all 4,
2f—1 f-1 f—1 -1
SUED SRS SRR oI
i=0 i=0 i=0 i=0
Zi=0 Zq,=0 Zi+f=0
=1 2f—1
Since v, (Nmy, (f)) = Y. ki = > ki, Proposition 6.3' implies that the rep-
i=0 i=0

Zi =0

resentation (Vg(ﬁ)) is reducible. If Dy := (ElTK2f|) (a2, by [Doul0, proof

K2f

of Prop. 4.3] (or by a direct computation),

Dy if j <0,
FilD, = { (Bl ) G it 1w <5 w0 = 0,101,
0 it > 1+ w1,

(6.9)
where I; s = I;n{j € {0,1,..,2f — 1} : z; = 0}. Let ¢ € {0,1,...,2f — 1}.

1F-semisimplicity is not assumed here, but the part of Proposition 6.3 used still holds.
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Arguing as in Lemma 6.10 we see that

e BIm2r ¢, if <0,
. 2f—-1
eFilDy ={ e | 3 e | B sl if 1< <k,
zTT:=00
0 if > 1+ k.
Hence | |
.y Elmerle, if §<0
iFilDy = © 2l
crmR { 0 if j>1

if z; =1 and
eiBTer G i < ki,
0 if 7>214k
if z; = 0. The labeled Hodge-Tate weight of Dy with respect to the embedding
7; of Koy into E is 0 if z; =1 and —k; if z; = 0. Next we prove that

{OH@Q
zZ; =

QEM%{

1ifl; =k >0

fori=0,1,...,f — 1, and

[ 1if4; =0,

ZiJrf{ 0if ¢; =k; > 0.

Since zi4r = 1 — z; for all ¢ = 0,1,..., f — 1, it suffices to prove the first
formula. Suppose that ¢; = 0. Then P; € {to,t3} and by formula 6.7, z; = 0.
If ¢4 = k; > 0, then P, € {t1,t4} and formula 6.7 implies that z; = 1. Let
i€{1,2,...,f — 2} and assume that ¢; = 0. If an even number of coordinates
of (P, P,...,P,_1) is of even type, then P; € {t2,t3} and formula 6.7 implies
z; = 0. Arguing similarly we see that if ¢; = k; > 0, formula 6.8 implies z; = 1.
Finally, assume that i = f and £; = 0. If an even number of coordinates of
(P1, Py, ..., Py_1) is of even type, then Py = Py = t4 and formula 6.7 implies
that zp = zy = 0. We finish the proof by verifying similarly the remaining cases.
By the formulas above, the labeled Hodge-Tate weight of Dy with respect to
the embedding 7; is

—k; if 6, =0,

{ 0 ifl;=k >0

fori=0,1,...,f — 1 and

—k; if&':k’i>0,
0 if¢; =0

fori=f,f+1,...,2f — 1. Therefore the labeled Hodge-Tate weight of Dy with
respect to the embedding 7; is

— (ki =€) ifi=0,1,...f—1
—; ifi=ff+1,..,2f—1.
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Since {¢;,li+f} = {0,k;} for all ¢ = 0,1,...,f — 1, the labeled Hodge-
Tate weights of Dy are (—fo,—L1,...,—ls_1,—Ls,—Lsi1,...,—lap_1). Since
f—1
ki o
Nm,, (fi) = pi=0 -1, Proposition 3.5 implies that the crystalline character

corresponding to Ds is Xﬁf, . Xﬁf ~~~~~ Xﬁi’;j; . xﬁ‘; e Suppose that Vg (6) is re-

ducible. Then there exists some irreducible constituent of Vg (6) whose restric-

tion to G, is Xﬁf, X ~~X£i§j§ ~X£gf71. Since the labeled weights of the latter

character are (—fo, —{1,...,—ls_1,—ly,...,—Llo5_1), Corollary 2.7 implies that
Ui =Ly foralli=0,1,.., f—1. Since {{;,4i+ s} = {0,k;} for i = 0,1, ..., f—1,
and since some labeled weight is strictly positive this is absurd. Hence VEi (6)

- . . i . Log
is irreducible and its restriction to Gg,, contains Xf;é . Xﬁﬁ ~~~~~ Xear s - Xﬁ‘; i
as an irreducible constituent. By Frobenius reciprocity,
T — Ky ¢ 2 lag—1 8
VE(0) = Indye] (Xep - xel o Xess_z " Xegs_, ) -

This finishes the proof of part (i). Part (ii) follows from Theorem 4.7
and parts (iii) and (4) follow from Corollary 6.9. For part (iv), no-

tice that any irreducible induced member of Vg (@) has the form 7. -

/ / i / .
Indﬁf (Xgé 'Xgi S Xeapa ~x§gf_1) for some unramified character 7. and
some nonnegative integers with {¢;,¢;, ,} = {0,k;} for all i (see Proposi-
f—1

- > ki
tion 3.11). All the members of V(@) have determinant (=1) pi=0 ", where

¢ is the number of even coordinates of 7. This equals the determinant of
’ ’ Z’ ’ .

Indggf (Xﬁ}) Xz “ Xeah_s -Xﬁgf,l) and forces the unramified character 7,

to be trivial. Hence the only irreducible induced member of our family is

V(D). O
REMARK 6.13. Let R be as in the proof of Proposition 6.12. If A is a set of
2x 2 matrices, let RA:={R-A: A€ A} and AR :={A-R: A e A}. We write

{ti,t;} for a set which contains matrices of type t; and t;. Then R{t1,t2} =

{tlatQ}) R{t37t4} = {t3)t4}) {t17t2}R = {t37t4} and {t3)t4}R = {tlatQ}- In
the definition of the matrices P; we may always assume that P; € {t1,t2} for
allt=1,2,...f — 1. Indeed, let Qo = R, and fori=1,2,....f — 1 let

o, _ [ Tdif Pic {tta),
v R ifR-G{t3,t4}.

After changing the basis by the matriz Q = (Qo,Q1,...,Q7—1) we have
P, € {ty,t2} for all © = 1,2,...f — 1. By the definition preceding Proposi-
tion 6.12, the type of the matrix Py € {t1,l2,ts,t4} is uniquely determined by
(P, Py, ..., P5_1).

THEOREM 6.14. Theorem 1.5 holds.
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Proof. Follows from Proposition 6.12 and Remark 6.13. O

EXAMPLE 6.15. Let f = 2 and k; > 0 for i = 0,1. Up to twist by some
unramified character, there exist two distinct isomorphism classes of irreducible
two-dimensional crystalline E-representations of Gk, with labeled Hodge-Tate
weights ({0, —ko}, {0, —k1}) induced from crystalline characters of Gk, .

(i) If by = ko and €1 = kq, then from the definition of the matrices I1; preceding
Proposition 6.12 and Remark 6.13, (111,11y) = (t1,t2) . Let P, = I;mod m. The
polynomials z; in the definition of the matrices I1; are such that z; = p™mod T,

where m = L%’lﬂ}—l
—

For any @ = (ag, a1) € m% we consider the family of crystalline representations

(1,2)

|, unless ko = k1 = p in which case we define m = 0.

P constructed in §5.2. The corresponding family of filtered p-modules is
(DL2 ), with (o (m) s () = (m,m2) PA2(@), where

PU2(G) = ( (Pklvaopmg ((1)7(1)) )

(arp™, pro

and the filtrations are

E%n @ E*ns it 7<0,
Fﬂj(]D)(}’Q)) — E? (5711 + 37 712) lf 1< .7 < w-Oa
k.d ENfr (Z-m+7-n2) if 14+wo <j<w,
0 i > 14w,
(6.10)
with wy = min{ko, k1 } and wy = max{ko, k1},

(0,1) if ko < ki,
I =1 (1,0) if ky < ko,
(0,0 if ko = ki,

and (Z,9) = ((1,1),(0,0)) . We have

(1,2) Ko (. k k
E,G — IndKi (Xe& . Xeg) 5

and for any @ € m%,

S.S.
—(1,2) —(ko+pk1) —(ko+pk1)p?
((VE@ . ™ Wz Wi,z -
Ko

Let o; = a;p™ and A = a1 +pFrog. Assume that A% # —4p*otk and let eq # ¢,
be the distinct roots of the characteristic polynomial X2 —A-X +pFotkt  Arguing

as in the proof of Proposition 2.2 in [Doull], we get the following “standard
parametrization” for the family VE(IJ’Q),

€1
@ (m) = (Leo)m, ¢(n2) = (h 7) 2,
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where

€1 (61 —A—i—pklao)

g (0 — A+ pFrayg)

(notz;ce that e; # A — aop™ ), and filtrations are as in Formula 6.10 with ¥ =
y = 1.

?zz) If by = ¢1 = 0. Again, taking into account Remark 6.13, we may only con-
sider the case (I11,11y) = (ta,t3) . For each @ € m% consider the family V(2ﬁ3) of

two-dimensional crystalline E-representations of Gk, with labeled Hodge Tate
weights {0, —k;}-,, i = 0,1. We have

2,3 Ky [k k K> (\k k
56 ) ~ IndKj (Xezl 'Xe?) = IndKi (Xeé 'Xeg) :

)\:)\(ao):

)

For any @ € m%,

5.5.
—(2.,3) —(ko+pk1) —(ko-+pk1)p?
(VE a ) = Wyr Wi,
’ I,

Notice that the family { , € m%} of case (i) coincides with the fam-

ily { (2, 3), ac mE}, as the second family is obtained from the first one by

changmg the basis by the matriz Q = (R, R).
(m) Let f =2,0y =0 and £, = k1 > 0. Then (I1;,1y) = (t1,t4) . For each d €

m2, consider the family Vf 4) of two-dimensional crystalline E-representations
of Gk, with labeled Hodge Tate weights {0, —k;},, i =0,1. Then

1,4 K k ki
Vig" = Indiz (xf - x¥y)

and for any @ € m%,

S.8.
70 _ —(pk1+pko) —(pk1+pko )P
Ka ), = War, Wi, 70
2

Let oy = a;p™ and A = ag+pFoay. Assume that A% # —4pFotkr and let eq # ¢,
be the distinct roots of the characteristic polynomial X% — A-X +pFotk - Arguing
as in the proof of Proposition 2.2 in [Doull], we get the following “standard

parametrization” for the family V(lf)

o (m)=(1,e0)m, ¢ (n2) = (A%l) 72,

where

€1 : . (A—proag —e)
€0 (A —phoay —&q)

)\)\(al)<

(notice that e; # A—a1p*° ), and filtrations as in Formula 6.10 with ¥ = §f = I
(i) If f =2 4y = ko > 0 and {1 = 0. Then (I1;,I1y) = (to, t1) and this gives
the family obtained in case (iii).
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EXAMPLE 6.16. If f = 2, kg > 0 and ky = 0. Then up to unramified twist,
Indgf1 (X’;g) s a unique isomorphism class of two-dimensional crystalline irre-
ducible E-representations of G, with labeled weights ({0, —ko}, {0,0}) induced
from Gg,. We have

29~ ndf (k) ~ Indfz (xk)

’

and for any @ € m3,,

S.S8.
—(2,3) —ko —p?ko
<<VE,5 T = Wy 7, Wy z -
2

EXAMPLE 6.17. Let f = 3, k; > 0 for all i = 0,1,2. Up to twist by some
unramified character, there exist 4 distinct isomorphism classes of irreducible
two-dimensional crystalline E-representations of Gk, with labeled Hodge-Tate
weights ({0, —ko}, {0, —k1}, {0, —ka}) induced from Gi,. One of those classes
s represented by Indgz (X’g(g . X’;f . X’;g) . For the families containing it we have
bi=Fk >0 fO?” all i = 0,1,2. Since kg > 0, Il = to ing =ty and Iy = t1
if g = t1. Hence (111, g, o) € {(ts,ta,t2), (ta,t1,t1), (t1,t2,t1), (t1,13,t2)}
By Remark 6.13 we may only consider the case (111,112, Ily) = (t1,ta,t1). For
any @ € m3,, consider the the families Vlz(lj’l)

representations of G, with labeled Hodge— Tate weights {0, —k;},,, i = 0,1,2.
We have

of two-dimensional crystalline E-

1,2,1 K k & &
VALY = maffs (8 xkxE).

and for any @ € m3,,

s.s. .
(7(17211)) - w*(k0+pk1+p2k2) —(ko+phk1+pk2 ) p®
‘IKg

Ea 6,70 We, 7o

6.3 PROOF OF THEOREM 1.7

Let Vi () = nxi X% X% @ xeh-xed - xeh_, with {€:, 0} = {0, k;}
for all ¢, where n = 7. is the unramified character of Gk, which maps the
geometric Frobenius Frobg, of Gk, to ¢ € Oj. As usual, we assume that at
least one k; is strictly positive. We choose f-tuples of matrices (II1, o, ..., IIf)
(with ITy = IIj) as follows:

(1) If¢y =011 € {tg,t3};

(2) Ifléy =k >0,1II; € {tl,t4}.

Fori=2,3,..., f — 1, we choose the type of the matrix II; as follows:

(1) If ¢; = 0, then:

e If an even number of coordinates of (IIy,Ils,...,II;_1) is of even type,
I; € {t2,t3};

e If an odd number of coordinates of (IIy,Ils,...,II;_1) is of even type,
Hi S {t17t4}.
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(2) Ift; = k; > 0, then:

e If an even number of coordinates of (IIy,Ily,...,II;_1) is of even type,
I; € {t1,ta};

e If an odd number of coordinates of (IIy,Ils,...,II;_1) is of even type,
II; € {tg,tg}.

Finally, we choose the type of the matrix Il as follows:
(1) If ¢4y = 0, then:

o If an even number of coordinates of (IIy,IIs,...,IIy_1) is of even type,
Iy = ts;

o If an odd number of coordinates of (II;,IIs,...,IIf_1) is of even type,
Iy = t4.

(2) If 4y = k; > 0, then:

o If an even number of coordinates of (IIy,IIy,....,II;_1) is of even type,
Iy = ty;

o If an odd number of coordinates of (IIy,IIs,....,IIy_1) is of even type,
HO = ta.

Notice that the type of IIy has been chosen so that an even number of coordi-
nates of (IIy, I, ..., IT¢) is of even type. We choose the units ¢; appearing in the
entries of the matrices II; in Definition 5.4 so that ¢; = 1 foralli =1,2, ..., f—1,
and ¢y = c. Let i be the type-vector attached to (II1,IIy,...,IIy). We exclude
those vectors i for which (I}, Iy, ..., IIf) € Cy U Cq, which is to exclude the
cases where £ = 0 or ¢ = 0. For any a € mé we consider the families of
crystalline F-representations Vg (@) of Gk, with labeled Hodge-Tate weights
{0, —k;}, constructed in §5.2.

PROPOSITION 6.18. (i) For any type vector i chosen as above there exists
some unramified character p such that p ® Vé(ﬁ) ~Vrp (n);

(i) For any d € mé, Vi,; (@) ~ VZ,;(G) and

-1 -1
where a« = — > 4ip* and o/ = — Y, Lip'.
i i=0

=1
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Proof. For simplicity assume that 7 = 1. The general case follows by choos-
ing the unit ¢y in the definition of Ily appropriately. We restrict VEZ(G) to

Gk,,;. By the construction of the representation Vg(ﬁ) in §5.1, there ex-

ists some G ,-stable lattice (T%(G))G inside Vg(ﬁ) whose Wach mod-
Ky

ule has @-action defined by (¢ (m),¢ (n2)) = (n1,12) - II(0). By Proposi-

).
tion 2.6, the Wach module of the Gk,,-stable lattice (T%(ﬁ) . inside
Ko
(Vg(ﬁ)) is defined by (¢ (m),9 (12)) = (m1,72) - T1(0)%?, therefore the

Koy
filtered p-module corresponding to (Vé(ﬁ)) . has Frobenius endomorphism
Ko

(o (M), (m2)) = (n1,m2)- P (0)®2 . The restricted representation (Vg(@)) o
Ko

has labeled weights ({0,—k;}), , i = 0,1,...,2f — 1, with kjy; = k; for
1 =20,1,..., f — 1, and filtration as in formula 5.10 for some vectors Z, 1y, with
the sets I; being defined with respect to the 2f weights above. We prove that
(Vg (6)) . is reducible and determine its irreducible constituents. First we
Ka
change the lgasis to diagonalize the matrix of Frobenius. We define matrices
Q; as in the proof of Proposition 6.12, and we let Q@ = (Qo, @1, ..., Q27—1) . By
the definition of the matrices @Q;, the matrix @ - P (0)®2 S (Q‘l) is diagonal.
By the proof of Proposition 6.12, Qo = Id and for : =1,2,...,2f — 1, Q; is as
in formula 6.3. We claim that for each i = 0,1,..., f — 1, @Q; = Qi+ ¢. Indeed,
from the definition of the matrices Q; we see that ¢}, and qﬁf are as in for-
mulas 6.4 and 6.5 respectively in the proof of Proposition 6.12. Since an even
number of coordinates of (P, P, ..., Py) are of even type, qﬁ’f = ¢¢,. Simi-
larly, q:;'f = qj; for any entry (i,7) . Consider the ordered basis ¢ = ((1,(2)
defined by (¢1,¢2) == (m1,m2) - QL. Let @;; be th (i, j)-entry of Q. In the new
basis ¢ the filtration is as in formula 5.10 with the vector Zn; + g2 replaced
by & (qi1-CG+q12-C)+Y-(i2- G+ G- C2). Let Z2=2-¢11 + - qi2 and
W = T Q12 +Y-G22. The matrix of Frobenius in this new basis is the diagonal ma-

trix diag (X, ﬁ) . Arguing as in Proposition 6.12, and taking into account that

q:;rf =gq;; for all 7 = 0,1,..., f — 1 and all entries (i,7) we see that z. ¢ = z,
for all r. From the proof of the same proposition, z; = 0 if and only if ¢, =1
and 7; = 0 or ¢¢; = 0 and x; = 1. Formula 5.11 implies that z; = 0 if and
only if P; € {t4,t3} and x; = 1 if and only if P, € {t2,t1}. Since z; = z;4 5 and
k‘i = k‘i_;_f for all i = O7 1, ceey f — 17

2f—1 f—1 f—1 f—1 f—1 f—1
k; =2 k; =2 ki + 2 ki + 2 ki + 2 k;
i=0 i=0 =0 i=0 i=0 i=0
z;=0 zi=0 Qi=R Qi=R Q;=Id Q;=I1d
P;=t, P;=to Pi=t3 Pi=ty
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2f-1
We now show that the (2,2) entry of [] (QiPiHQ;rll) is the p™, where
i=0
n—22k+22k+22k+22k (6.11)
Qq Qq— Ql_ld Ql_Id
Pi= tl Pi=t> P;=ts3 Pi=ty

Since the matrices QZ-PZ-HQ;_II are diagonal, and since Q¢ = Q; and P4y =
P; for all 7,

2f—1 f-1 f-1
[1 @Pnei)= [T (@Pnae)” - II (@Pw@i)”
=0 0 =4 0254
Pii1=ty Pii1=t3
f-1 ) f-1 ) f-1 )
(QiP1Q7) - H (QiP1Q7Y) : H (QiP1QY)
Qi=1d Q.=1a a=r
Pip1=ty Pip1=t> Pip1=ty
! , = 2 it 2
@Pn@Qy) I @Pweih)” - I (@PaQiy)
a2 O=r 2R
Pit1=t3 Pit1=t1 Pit1=ts

We notice that when @; = Id and P, 1 = t4, then by formula 6.2, Q;11 = R

-1
and Q; Piy1 Q;_ll = diag (pki“, 1) . Therefore the product  [] (QiPH_l Q;_ll)
gﬁiﬂd
Piy1=tq
2f—1
has no contribution to the (2,2) entry of ] (QZ—HHQ;_II). Similarly, the
i=0
products
_ — f-1
H (QiPi1Q114) . H (QiPi+1Q;}) and H (QiPi1Qih)
Q:=1a Ql— G=r
Pip1=t1 Piy1=t3 Piy1=t>
2f—1
have no contribution to the (2,2) entry of [] (QiPH_l Q;_ll) . We now compute
i=0
f—1
the product [] (QiPZ-HQ;rll) . Formula 6.2 implies that if @Q; = R and
O=r
Pii1=t

P11 = t1 then Q;1 = R, therefore QiPZ-HQ;_ll = diag (1,pki+1) . Again, by
formula 6.2, @Q; = R and P;y; = t; is equivalent to Q;+1 = R and P41 = ;.
Hence
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f-1 f—1 f—1

H (QiPi1Q7) = H (QiPiQ ) = H diag (1, p"*+1)
Qii:ZOR Q::O:R Qii::OR
Pii1=t1 Piyi=t1 Pi=t,

which contributes the fourth summand of the right hand side of equation 6.11.
The claim made before formula 6.11 follows arguing similarly for the remaining
2f—1
cases. Hence v, (Nmy, (7)) = Z k;. Proposition 6.3 implies that (Va 6)
=0
zZ—O
is reducible and (D, ) is a weakly admissible submodule, where Dy = (E2f ) .
C2. By [Doul0, proof of Prop. 4.3] (or by a direct computation),

‘GKQ

D, it j<o,
FilD, — (E‘%f') Fro.Go if 1+wiy <j<wforalli=0,1,..t—1,
0 i 5> 14w,

(6.12)
where I; > = I;N{j € {0,1,...,2f — 1} : z; = 0}. As in the proof of Proposition
6.12, the labeled weight for the embedding 7; is 0 if z; = 1 and —k; if z; = 0.
Next, we prove that for i =0,1,..., f — 1

R -
This is proved exactly as in Proposition 6.12, taking into account that an even
number of the coordinates of (Pi, Pa, ..., Py) is of even type. We have z; = 0
for all ¢ if and only if ¢; = 0 for all ¢ if and only if (II1,II,....IIf) € C4
and z; = 1 for all 7 if and only if ¢; = k; > 0 for all ¢ if and only if
(Hl,HQ, ....IIf) € Cy, cases excluded. Therefore neither of the summands of

Vq( ) is unramified. By the discussion above the labeled weights of Dy are

(— , =l é'f 1=, =10, ..., E'f 1) By formula 6.13, v, (Nmy, (1)) =
2f—1 2f—1
ki = Z ¢;. By Proposition 3.5 and Lemma 3.7, the corresponding crys-

i=0 i=0
z;=0

. . o 4 2 £
ta}hne character is ¢ = el - Xes -+ - Xef 2 Xef ) Xeo Xel ~~~~~ Xej;f; “Xej_, - If
Vlg (0) is irreducible, then by Frobenius reciprocity VE( 0) = Indgﬁ ; (), which

is absurd by Corollary 3.10. Hence Vg(@) is reducible and contains an irre-
ducible constituent which restricts to ¢. By Lemma 3.7(iv) the only choices

are 141 -Xﬁé - Xﬁﬁ ----- Xﬁ’; Lt oxhe e and we are done after twisting by n+1. The
rest of the proposition follows as in the proof of Proposition 6.12. O

THEOREM 6.19. Theorem 1.7 holds.

Proof. Follows from Proposition 6.18, taking into account Remark 6.13. O
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EXAMPLE 6.20. Let f = 2, o = 0 and {1 = ky. Let (II1,I1y) = (t1,t3) with
co = c1 = 1. After possibly twisting by nt1 we have VE(LS) (6) ~ X’;é D x’e“f

In the next proposition we study closer the F-semisimple members of this family
assuming that ¢ = 1.

PROPOSITION 6.21. Assume that V.5

f (@) is F-semisimple.

(i) VE(I’3) ( @) is irreducible if and only if apaq # 0, and is non-induced for
all but finitely many such &

(ii) 12(1’3) (&) is non-split reducible if and only if precisely one of the coordi-
nates o; of d is zero;

(i1i) The families {VE(I’B) ((a0,0)), ap € p™mpg \ {O}} and
{VE(I’B) ((0,01)), a1 € pP"mpg \ {0}} are disjoint;

(iv) ];(1’3)(6) is split-reducible.

Proof. The weakly admissible filtered ¢-module corresponding to Vg(l’g) (&) has
Frobenius endomorphism

k1 a
(o)) = (o) ((B00) o))
and filtration

(Ex E)Ym @(E x E)ny if j <0,

(E x E)fr,(Zm +yn2) if 1 <5 < wo,

(E X E)fr,(@m +ynz) if 14+wo <j <w,
0 if 7 >1+w,

Fill (D) = (6.14)

with ¥ = (—ap,1) and §¥ = (1, —a1). We diagonalize the matrix of Frobe-
nius arguing as in the proof of Proposition 2.2 in [Doul0]. The character-
istic polynomial is X2 — (pk‘) + pFr + aooq) X + pFotkr and we assume that
(p’“0 +pF + a0a1)2 #+ 4pkotki 50 that its roots €y and €, are distinct. We have
the following cases.

Case (1). agay # 0. We change the basis to £ = (£1,&2) , where

&1 =

((50 — M — ) au,

ao(e0—e1) (20— ) (e0—p*0 —apar ) (e1—p*1 —agan)
(2c0e1—pM0e1—pFeo—avaner) (e1—pP0 —agar) )

ao(eo—e1)(e1=p" ) (g0 —p*0 —apar ) (e1=p*1 —apar )
(25051*17)“051*;0’“150*04004151)(61*17)“0*040011) "2

+ ((50 —p" — apan) oy,

and
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I
N
Il

k

(51*13

N

ag(fo—fl)(fl—ivkl —Oéoa1)(€1—pk0 —cmal)
26061*Pk"El*PklEo*aoalEl)(El —pho *010011) n

1 —aga) (g0 — M), (

ok ok ag(ag—el)(ﬂ—pkl—aoal)(fl—pko—aoa1)
+((€1 P Oéooq) (51 p 1)7 (25061*;D’%mfpkleofaoalsl)(gl*Pkofaoa 2

In the ordered basis £ we have ¢ (&1) = (1, £0)& and ¢ (&) = (A, ) &,

where

N (20 — p™ — aponr) . (e1 —p™ — o) . (22081 — pFoer — p*eg — aparer)
(e1 — M —apar) (g0 — pFo — apa) (28081 — progg — phre; — apanep)’

and the filtration is as in formula 6.14, with @ + yn replaced by & + &o.
By Proposition 6.3, the representation VE(I’3) ( @) is irreducible. Arguing as in
the proof of Proposition 6.12(iv) we see that the representations VE(I’B) ( @) are
non-induced with the possibility of at most finitely many exceptions.

Case (2). ap =0, a1 # 0. We argue as above and see that in the ordered basis

€ = (§Ia€2) ) where

ko k1
P —p (651 _
= and & = <1’ W) = <W P ’“) 7

we have ¢ (&) = (1, pk"){l and ¢ (&) = ()\ (a1), %) &, with X (aq) =

041_1 (pko —pkl). The filtration in this basis is given by formula 6.14, with

I + yne replaced by & + (0,1)&. By Proposition 6.3 the representation
12(1’3) ((0, 1)) is reducible and non-split.

Case (3). a1 = 0,a9 # 0. In the ordered basis § = ({1,§2), where

k:l kO
pag Qg Qop
§1 =12 — (pk1 — R g pko) m and & = (pikl — R 1) 71,
k .
we have ¢ (&) = (1, pko) & and (&) = ()\ (), %) &, with
Mag) = aal (pkl —pk")pkl_kﬂ. The filtration in the basis & is

given by formula 6.14, with #my + yn2 replaced by (1,0)& + &. By
Proposition 6.3, 12(1’3) ((ag,0)) is reducible, non-split. By [Doul0,
Proposition 7.1] it follows that there are no isomorphisms between
members of the families {VE(I’S) ((2v0,0)), ag € p"mp \ {0}} and

(Vi ((0,01)), o1 € pmmp\ {0}}.

Case (4). ap = a1 = 0. Then ¢ (1) = (pkl,l) m and @ () = (1’pk0) 12,
while the filtration is as in formula 6.14,with & = (0,1) and ¥ = (1,0). Since
Jz N Jy = &, Proposition 6.3 implies that V];(I’B)(ﬁ) is split-reducible. O
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PROPOSITION 6.22. Let 0 < vy, (€;) < ko + k1 with eg # 1 such that epe1 =
pFotEL and assume that 0 < k; < p—1. Define the families of filtered p-modules
D (\) with

o (m)=(1,e0)m, ¢ (m2) = (A%l) 72,

and filtrations as in formula 6.10 with © = §j = 1. These filtered modules are
weakly admissible, irreducible, sharing the same characteristic polynomial and
filtration. Let V' (\) be the corresponding to D (\) crystalline representations of
Gog ,-

p

() If X\ = %(M), where o € mpg, then (V(A)I@;ﬁ) =

pFla—e;

—(k0+pk1) @ —(ko+pk1)p?

4 ,TO ,7'0

9 . - ss
(i) If X\ = (i—;) (;3’6137::})7 where o € mpg, then (V(A)ll@z) =
w—(pk1+p2ko) @w—(pk1+p2ko)p2

4,70 4,70

and V () is irreducible;

and V' (\) is irreducible;

T . T —pk

(i11) If A =1, then V (X\) is reducible and V ()‘)Il@p = wy T; Duw, 2.

Proof. The common characteristic polynomial is X2 — (g9+¢1)X +
pFotki Parts (i) and (ii) follow from Examples 6.15 (i) and (iii) using
the “standard parametrization” for the families S 2 and Vfl 4), and taking

into account that m = 0 and Proposition 6.8. Part (iii) follows from Proposi-
tion 6.21(i) and a little computation to prove that if p*o + p*t + agag = g9 + &1
and gge; = pFotF1 then A = 1. O
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