Fuss-Catalan Numbers in Noncommutative Probability

WOJCIECH MŁOTKOWSKI¹

Received: January 3, 2010

Communicated by Friedrich Götze

ABSTRACT. We prove that if $p, r \in \mathbb{R}$, $p \ge 1$ and $0 \le r \le p$ then the Fuss-Catalan sequence $\binom{mp+r}{m} \frac{r}{mp+r}$ is positive definite. We study the family of the corresponding probability measures $\mu(p, r)$ on \mathbb{R} from the point of view of noncommutative probability. For example, we prove that if $0 \le 2r \le p$ and $r+1 \le p$ then $\mu(p,r)$ is \boxplus -infinitely divisible. As a by-product, we show that the sequence $\frac{m^m}{m!}$ is positive definite and the corresponding probability measure is \boxtimes -infinitely divisible.

2010 Mathematics Subject Classification: Primary 46L54; Secondary 44A60, 60C05

Keywords and Phrases: Fuss-Catalan numbers, free, boolean and monotonic convolution

1. INTRODUCTION

For natural numbers m, p, r let $A_m(p, r)$ denote the number of all sequences $(a_1, a_2, \ldots, a_{mp+r})$ such that: (1) $a_i \in \{1, 1-p\}, (2) a_1 + a_2 + \ldots + a_s > 0$ for all s such that $1 \leq s \leq mp + r$ and (3) $a_1 + a_2 + \ldots + a_{mp+r} = r$. It turns out that this is given by the two-parameter Fuss-Catalan numbers (2.1) (see [5, 13]). Note that the right hand side of (2.1) allows us to define $A_m(p, r)$ for all *real* parameters p and r. In particular, the *Catalan numbers* $A_m(2, 1)$ are known as moments of the Marchenko–Pastur distribution:

(1.1)
$$d\tilde{\pi}(x) = \frac{1}{2\pi} \sqrt{\frac{4-x}{x}} dx$$
 on $[0,4],$

which in the free probability theory plays the role of the Poisson measure. In this paper we are going to study the question for which parameters $p, r \in \mathbb{R}$

¹Research supported by MNiSW: N N201 364436, by ToK: MTKD-CT-2004-013389, by 7010 POLONIUM project: "Non-Commutative Harmonic Analysis with Applications to Operator Spaces, Operator Algebras and Probability" and by joint PAN-JSPS project: "Non-commutative harmonic analysis on discrete structures with applications to quantum probability".

the sequence $\{A_m(p,r)\}_{m=0}^{\infty}$ is positive definite, i.e. is the moment sequence of some probability measure (which we will denote $\mu(p,r)$). Recently T. Banica, S. T. Belinschi, M. Capitaine and B. Collins [1] showed that if p > 1 then $\{A_m(p,1)\}_{m=0}^{\infty}$ is the moment sequence of a probability measure which can be expressed as the multiplicative free power $\tilde{\pi}^{\boxtimes p-1}$.

We are going to prove that if $p, r \in \mathbb{R}$, $p \ge 1$ and $0 \le r \le p$ then $\{A_m(p,r)\}_{m=0}^{\infty}$ is the moment sequence of a unique probability measure $\mu(p,r)$ which has compact support contained in $[0, \infty)$. Moreover, if $0 \le 2r \le p$ and $r+1 \le p$ then $\mu(p,r)$ is infinitely divisible with respect to the free convolution \boxplus . In some particular cases we are able to determine the multiplicative free convolution, the boolean power and the monotonic convolution of the measures $\mu(p,r)$. We will also prove that if $0 \le r \le p-1$ then the sequence $\{\binom{mp+r}{m}\}_{m=0}^{\infty}$ is positive definite and the corresponding probability measure can be expressed as $\mu(p-r,1)^{\uplus p} > \mu(p,r)$, where \uplus and \succ denote the boolean and the monotonic convolution, respectively.

The paper is organized as follows. In Section 2 we prove three combinatorial identities. Then we use them to derive some formulas for the generating functions. In Section 4 we regard the numbers $A_m(p,r)$ as moments of a *probability quasi-measure* $\mu(p,r)$ (by this we mean a linear functional $\mu : \mathbb{R}[x] \to \mathbb{R}$ satisfying $\mu(1) = 1$). On the class of probability quasi-measures one can introduce the free, boolean and monotonic convolutions in combinatorial way. The class of compactly supported probability measures on \mathbb{R} , regarded as a subclass of the former, is closed under these operations. We prove some formulas involving the probability quasi measures $\mu(p,r)$, for example we find the free R- and S-transforms (4.8), (4.11), the boolean powers $\mu(p, 1)^{\oplus t}$ (4.18) and, in special cases, the multiplicative free (4.12), (4.13), (4.14) and the monotonic convolution (4.20) of the measures $\mu(p, r)$.

In Section 5 we prove that if $p \ge 1$ and $0 \le r \le p$ then $\mu(p, r)$ is a measure (we conjecture that this condition is also necessary for p, r > 0). The proof involves the multiplicative free convolution \boxtimes . Moreover, we show that if $0 \le 2r \le p$ and $r + 1 \le p$ then $\mu(p, r)$ is \boxplus -infinitely divisible.

In the final part we extend our results to the dilations of the measures $\mu(p, r)$, with parameter h > 0. Taking the limit with $h \to 0$ we prove in particular that the sequence $\left\{\frac{m^m}{m!}\right\}_{m=0}^{\infty}$ is positive definite and the corresponding probability measure ν_0 is \boxtimes -infinitely divisible.

2. Some combinatorial identities

We will work with the two-parameter Fuss-Catalan numbers (see [5, 13]) defined by: $A_0(p,r) := 1$ and

(2.1)
$$A_m(p,r) := \frac{r}{m!} \prod_{i=1}^{m-1} (mp+r-i)$$

Documenta Mathematica 15 (2010) 939-955

for $m \ge 1$, where p, r are real parameters. Note that (2.1) can be written as $\binom{mp+r}{m} \frac{r}{mp+r}$, unless mp + r = 0. One can check that for $m \ge 0$

(2.2)
$$A_m(p,r) = A_m(p,r-1) + A_{m-1}(p,p+r-1),$$

under convention that $A_{-1}(p,r) := 0$, and

(2.3)
$$A_m(p,p) = A_{m+1}(p,1).$$

It is also known (see [13]) that

(2.4)
$$\sum_{k=0}^{m} A_k(p,r) A_{m-k}(p,s) = A_m(p,r+s).$$

Now we are going to prove three identities, valid for $c, d, p, r, t \in \mathbb{R}$, which will be needed later on.

PROPOSITION 2.1.

(2.5)
$$\sum_{k=0}^{m} A_k(p-r,c)A_{m-k}(p,kr+d) = A_m(p,c+d).$$

Proof. It is easy to check that the formula is true for m = 0 and m = 1. Denoting the left hand side by $S_m(p, r, c, d)$ we have from (2.2):

$$\begin{split} S_m(p,r,c,d) &= \sum_{k=0}^m A_k(p-r,c) A_{m-k}(p,kr+d) \\ &= \sum_{k=0}^m \left[A_k(p-r,c-1) + A_{k-1}(p-r,p-r+c-1) \right] A_{m-k}(p,kr+d) \\ &= \sum_{k=0}^m A_k(p-r,c-1) A_{m-k}(p,kr+d) \\ &+ \sum_{k=1}^m A_{k-1}(p-r,p-r+c-1) A_{m-k}(p,kr+d) \\ &= S_m(p,r,c-1,d) + \sum_{k=0}^{m-1} A_k(p-r,p-r+c-1) A_{m-1-k}(p,kr+r+d) \\ &= S_m(p,r,c-1,d) + S_{m-1}(p,r,p-r+c-1,r+d), \end{split}$$

so that we have

$$S_m(p, r, c, d) = S_m(p, r, c - 1, d) + S_{m-1}(p, r, p - r + c - 1, r + d).$$

Fix m and assume that (2.5) holds for m-1. Now we prove that for m it holds for every natural c. Indeed, it holds for c = 0 and if it does for c - 1 then, by assumption and by (2.2):

$$S_m(p,r,c,d) = S_m(p,r,c-1,d) + S_{m-1}(p,r,p-r+c-1,r+d)$$

= $A_m(p,c+d-1) + A_{m-1}(p,p+c+d-1) = A_m(p,c+d),$

Wojciech Młotkowski

which proves that the statement is true for c. Therefore it holds for all natural c. Now we note that both sides of (2.5) are polynomials on c of order m, therefore the formula holds for all $c \in \mathbb{R}$, which completes the inductive step. \Box

PROPOSITION 2.2.

(2.6)
$$(1-t)\sum_{l=0}^{m} A_{l}(p,1)\sum_{j=0}^{m-l} A_{m-l-j}(p,j(p-1)+r)t^{j} + t\sum_{j=0}^{m} A_{m-j}(p,j(p-1)+r)t^{j} = A_{m}(p,r+1).$$

Proof. Using first (2.4) and then (2.2) we obtain:

$$\begin{split} t \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j} \\ &+ (1-t) \sum_{l=0}^{m} A_{l}(p, 1) \sum_{j=0}^{m-l} A_{m-l-j}(p, j(p-1)+r) t^{j} \\ &= t \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j} \\ &+ (1-t) \sum_{j=0}^{m} \sum_{l=0}^{m-j} A_{l}(p, 1) A_{m-j-l}(p, j(p-1)+r) t^{j} \\ &= t \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r) t^{j} \\ &+ (1-t) \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r+1) t^{j} \\ &= \sum_{j=0}^{m} A_{m-j}(p, j(p-1)+r+1) t^{j} - \sum_{j=0}^{m-1} A_{m-j-1}(p, j(p-1)+r+p) t^{j+1} \\ &= A_{m}(p, r+1). \end{split}$$

PROPOSITION 2.3.

(2.7)
$$\sum_{k=0}^{m} A_{m-k}(p,k(p-1)+r)p^{k} = \binom{mp+r}{m}.$$

Proof. Denoting the left hand side by $T_m(p, r)$ we use (2.2) and get

$$\begin{split} T_m(p,r) &= \\ &= \sum_{k=0}^m A_{m-k}(p,k(p-1)+r)p^k \\ &= \sum_{k=0}^m \left[A_{m-k}(p,k(p-1)+r-1) + A_{m-1-k}(p,k(p-1)+p+r-1)\right]p^k \\ &= T_m(p,r-1) + T_{m-1}(p,p+r-1). \end{split}$$

Now we proceed as in the proof of (2.5), using the binomial identity

$$\binom{mp+r}{m} = \binom{mp+r-1}{m} + \binom{mp+r-1}{m-1}.$$

3. Generating functions

In this part we are going to study the generating functions

(3.1)
$$\mathcal{B}_p(z) := \sum_{m=0}^{\infty} A_m(p,1) z^m$$

which are convergent in some neighborhood of 0 (to observe this one can use the inequality

$$|A_m(p,r)| \le |r| [m(|p|+1) + |r|]^{m-1} / m!$$

and apply the Cauchy's radical test). From (2.4) and (2.3) we have

(3.2)
$$\mathcal{B}_p(z)^r = \sum_{m=0}^{\infty} A_m(p,r) z^m$$

and

(3.3)
$$\mathcal{B}_p(z) = 1 + z \mathcal{B}_p(z)^p.$$

Indeed, denoting the right hand side of (3.2) by $\mathcal{A}_{p,r}(z)$ we have $\mathcal{A}_{p,1}(z) = \mathcal{B}_p(z)$ and, by (2.4), $\mathcal{A}_{p,r}(z) \cdot \mathcal{A}_{p,s}(z) = \mathcal{A}_{p,r+s}(z)$, which implies that $\mathcal{A}_{p,r}(z) = \mathcal{B}_p(z)^r$. Taking r = p and applying (2.3) we get (3.3).

Now we are going to interpret formulas (2.5), (2.6), (2.7) in terms of these generating functions.

PROPOSITION 3.1. For any real parameters p, r we have

(3.4)
$$\mathcal{B}_{p-r}\left(z\mathcal{B}_p(z)^r\right) = \mathcal{B}_p(z)$$

Proof. First we note that if $A(z) = \sum_{m=0}^{\infty} a_m z^m$, $B(z) = \sum_{n=1}^{\infty} b_n z^n$ then

(3.5)
$$A(B(z)) = a_0 + \sum_{m=1}^{\infty} z^m \sum_{k=1}^m a_k \sum_{\substack{i_1, i_2, \dots, i_k \ge 1\\i_1 + i_2 + \dots + i_k = m}} b_{i_1} b_{i_2} \dots b_{i_k}$$

Putting $b_i := A_{i-1}(p, r)$ for fixed k, m we have:

$$\sum_{\substack{i_1, i_2, \dots, i_k \ge 1\\i_1 + i_2 + \dots + i_k = m}} b_{i_1} b_{i_2} \dots b_{i_k} = \sum_{\substack{j_1, j_2, \dots, j_k \ge 0\\j_1 + j_2 + \dots + j_k = m - k}} A_{j_1}(p, r) A_{j_2}(p, r) \dots A_{j_k}(p, r)$$
$$= A_{m-k}(p, kr),$$

the coefficient of $\mathcal{B}_p(z)^{kr}$ at z^{m-k} . Now we put $a_k := A_k(p-r, 1)$ and applying (2.5), with c = 1, d = 0, we get

(3.6)
$$\sum_{k=1}^{m} a_k \sum_{\substack{i_1, i_2, \dots, i_k \ge 1\\i_1+i_2+\dots+i_k=m}} b_{i_1} b_{i_2} \dots b_{i_k} = \sum_{k=0}^{m} A_k (p-r, 1) A_{m-k}(p, kr) = A_m(p, 1),$$

as $A_m(p,0) = 0$ for $m \ge 1$, which completes the proof.

Note that in the proof we applied (2.5) only with c = 1 and d = 0. For $p, r, t \in \mathbb{R}$ we denote

(3.7)
$$\mathcal{D}_{p,r,t}(z) := \frac{\mathcal{B}_p(z)^{1+r}}{(1-t)\mathcal{B}_p(z)+t}$$

PROPOSITION 3.2. For $p, r, t \in \mathbb{R}$ we have

(3.8)
$$\mathcal{D}_{p,r,t}(z) = \sum_{m=0}^{\infty} z^m \sum_{k=0}^{m} A_{m-k}(p,k(p-1)+r)t^k,$$

in particular:

(3.9)
$$\mathcal{D}_{p,r,p}(z) = \sum_{m=0}^{\infty} \binom{mp+r}{m} z^m.$$

Moreover

(3.10)
$$\mathcal{D}_{p-r,s,t}\left(z\mathcal{B}_p(z)^r\right)\mathcal{B}_p(z)^r = \mathcal{D}_{p,r+s,t}(z).$$

Proof. Using (2.6) we can verify that

$$\left[(1-t)\mathcal{B}_p(z) + t \right] \cdot \left[\sum_{m=0}^{\infty} z^m \sum_{k=0}^m A_{m-k}(p, k(p-1) + r) t^k \right] = \mathcal{B}_p(z)^{1+r}$$

which proves (3.8). Formulas (3.9) and (3.10) are consequences of (2.7) and (3.4). $\hfill \Box$

PROPOSITION 3.3. In some neighborhood of 0 we have

(3.11)
$$\mathcal{B}_p(z(1+z)^{-p}) = 1+z,$$

and more generally, for $r \neq 0$ we have

(3.12)
$$\mathcal{B}_p\left(\left((1+z)^{\frac{1}{r}}-1\right)(1+z)^{\frac{-p}{r}}\right)^r = 1+z.$$

Documenta Mathematica 15 (2010) 939–955

944

Proof. Since we have $\mathcal{B}_p(0) = 1$ and $\mathcal{B}'_p(0) = 1$, there is a function f_p defined on a neighborhood of 0 such that $f_p(0) = 0$ and $\mathcal{B}(f_p(z)) = 1+z$. Substituting $z \mapsto f_p(z)$ in (3.3) we obtain $f_p(z) = z(1+z)^{-p}$. Now we put $z \mapsto (1+w)^{1/r} - 1$ to (3.11) and taking the r-th power we obtain (3.12).

REMARK. Note that (3.11) leads to an analytic proof of (3.4). Namely, substituting in (3.4) $z \mapsto z(1+z)^{-p}$ we get

$$\mathcal{B}_{p-r}\left(z(1+z)^{-p}\mathcal{B}_p\left(z(1+z)^{-p}\right)^r\right) = \mathcal{B}_{p-r}\left(z(1+z)^{-p}(1+z)^r\right)$$
$$= 1+z = \mathcal{B}_p\left(z(1+z)^{-p}\right).$$

Finally we note a symmetry possessed by our generating functions.

PROPOSITION 3.4. For $p, r, t \in \mathbb{R}$ we have

(3.13)
$$\mathcal{B}_p(-z)^r = \mathcal{B}_{1-p}(z)^{-r},$$

(3.14)
$$\mathcal{D}_{p,r,t}(-z) = \mathcal{D}_{1-p,-1-r,1-t}(z)$$

Proof. One can check that $(-1)^m A_m(p,r) = A_m(1-p,-r)$, which proves (3.13), and by the definition (3.7), (3.13) implies (3.14).

4. Relations with noncommutative probability

By a probability quasi-measure we will mean a linear functional μ on the set $\mathbb{R}[x]$ of polynomials with real coefficients, satisfying $\mu(1) = 1$. In the case when μ is given by $\mu(P) = \int P(t) d\tilde{\mu}(t)$ for some probability measure $\tilde{\mu}$ on \mathbb{R} we will identify μ with $\tilde{\mu}$ and say that μ is proper or is just a probability measure. A probability quasi-measure μ is uniquely determined by its moment sequence $\{\mu(x^m)\}_{m=0}^{\infty}$. It is proper if and only if its moment sequence is positive definite, i.e. if

$$\sum_{i,j=0}^{\infty} \mu(x^{i+j}) \alpha_i \alpha_j \ge 0$$

holds for every sequence $\{\alpha_i\}_{i=0}^{\infty}$ of real numbers, with only finitely many nonzero entries. All probability measures encountered in this paper are compactly supported and therefore uniquely determined by their moment sequences. For a probability quasi-measure μ we define its *moment generating function*, which is the (at least formal) power series

$$M_{\mu}(z) := \sum_{m=0}^{\infty} \mu(x^m) z^m$$

and its reflection $\hat{\mu}$ by $\hat{\mu}(x^m) := (-1)^m \mu(x^m)$ or, equivalently, $M_{\hat{\mu}}(z) := M_{\mu}(-z)$. If μ is a probability measure then so is $\hat{\mu}$ and then we have $\hat{\mu}(X) = \mu(-X)$ for every Borel subset of \mathbb{R} .

For $p, r, t \in \mathbb{R}$ we define probability quasi-measures $\mu(p, r)$ and $\nu(p, r, t)$ by

(4.1)
$$\mu(p,r)(x^m) := A_m(p,r)$$

(4.2)
$$\nu(p,r,t)(x^m) := \sum_{k=0}^m A_{m-k}(p,k(p-1)+r)t^k,$$

in particular, by (2.7),

(4.3)
$$\nu(p,r,p)(x^m) = \binom{mp+r}{m}.$$

For example, $\mu(1,1) = \nu(1,0,1) = \delta_1$ and for every $p \in \mathbb{R}$ we have $\mu(p,0) = \nu(0,0,0) = \delta_0$. Note that $\nu(p,r,0) = \mu(p,r)$ so that the class of probability quasi-measures $\mu(p,r)$ is contained in that of $\nu(p,r,t)$, we will be interested however mainly in the former.

First we note that Proposition 3.4 leads to

Proposition 4.1.

(4.4)
$$\widehat{\mu(p,r)} = \mu(1-p,-r),$$

(4.5)
$$\nu(p, r, t) = \nu(1 - p, -1 - r, 1 - t).$$

There are several convolutions of probability quasi-measures, apart from the classical one: $(\mu * \nu)(x^n) := \sum_{k=0}^n {n \choose k} \mu(x^k) \nu(x^{n-k})$, which are related to various notions of independence (namely, the free, boolean and the monotonic independence) in noncommutative probability.

1. Free convolution (see [2, 15, 11]) is defined in the following way. For a probability quasi-measure μ we define its free *R*-transform (or the additive free transform) $R_{\mu}(z)$ by the formula:

(4.6)
$$M_{\mu}(z) = R_{\mu}(zM_{\mu}(z)) + 1.$$

The free cumulants $r_m(\mu)$ are defined as the coefficients of the Taylor expansion $R_{\mu}(z) = \sum_{k=1}^{\infty} r_k(\mu) z^k$ (combinatorial relation between moments and free cumulants is described in [11] and [4]). Then the free convolution $\mu \boxplus \nu$ can be defined as the unique probability quasi-measure which satisfies

(4.7)
$$R_{\mu\boxplus\nu}(z) = R_{\mu}(z) + R_{\nu}(z)$$

We also define free power $\mu^{\boxplus t}$, t > 0, by $R_{\mu^{\boxplus t}}(z) := tR_{\mu}(z)$. As a consequence of (4.6) and (3.4) we obtain:

PROPOSITION 4.2. For the free additive transform of $\mu(p, r)$ we have

(4.8)
$$R_{\mu(p,r)}(z) = \mathcal{B}_{p-r}(z)^r - 1$$

so that for the free cumulants we have $r_m(\mu(p,r)) = A_m(p-r,r), m \ge 1$. \Box

The free S-transform (or the free multiplicative transform) of a quasi-measure μ , with $\mu(x^1) \neq 0$, is defined by the relation

(4.9)
$$R_{\mu}(zS_{\mu}(z)) = z$$
 or, equivalently, $M_{\mu}(z(1+z)^{-1}S_{\mu}(z)) = 1+z$.

Documenta Mathematica 15 (2010) 939–955

Then the multiplicative free convolution $\mu_1 \boxtimes \mu_2$ and the multiplicative free power $\mu^{\boxtimes t}$, t > 0, are defined by

(4.10)
$$S_{\mu_1 \boxtimes \mu_2}(z) := S_{\mu_1}(z)S_{\mu_2}(z) \text{ and } S_{\mu^{\boxtimes t}}(z) := S_{\mu}(z)^t$$

PROPOSITION 4.3. For $r \neq 0$ the S-transform of the measure $\mu(p,r)$ is equal to

(4.11)
$$S_{\mu(p,r)}(z) = \frac{(1+z)^{\frac{1}{r}} - 1}{z} (1+z)^{\frac{r-p}{r}}.$$

Consequently

(4.12)
$$\mu(1+p_1,1) \boxtimes \mu(1+p_2,1) = \mu(1+p_1+p_2,1),$$

and more generally

(4.13)
$$\mu(p_1, r) \boxtimes \mu(1 + p_2, 1) = \mu(p_1 + rp_2, r).$$

We have also

(4.14)
$$\mu(1+p,1)^{\boxtimes t} = \mu(1+tp,1).$$

Proof. Formula (4.11) is a consequence of (3.12). In particular

(4.15)
$$S_{\mu(1+p,1)}(z) = (1+z)^{-p}$$

which leads to (4.12), (4.13) and (4.14).

2. The boolean convolution $\mu_1 \uplus \mu_2$ and the boolean power $\mu^{\uplus t}$, t > 0, (see [14, 3]) can be defined by putting

(4.16)
$$\frac{1}{M_{\mu_1 \uplus \mu_2}(z)} = \frac{1}{M_{\mu_1}(z)} + \frac{1}{M_{\mu_2}(z)} - 1,$$

(4.17)
$$M_{\mu^{\oplus t}}(z) = \frac{M_{\mu}(z)}{(1-t)M_{\mu}(z)+t}.$$

Comparing this with definition (3.7) we get

Proposition 4.4. For $p, t \in \mathbb{R}$ we have

(4.18)
$$\mu(p,1)^{\uplus t} = \nu(p,0,t).$$

3. Monotonic convolution (see [10]) is an associative, noncommuting operation \triangleright which is defined by: $\mu_1 \triangleright \mu_2 = \mu$ iff

(4.19)
$$M_{\mu}(z) = M_{\mu_1}(zM_{\mu_2}(z)) \cdot M_{\mu_2}(z)$$

Then (3.4) and (3.10) yield

PROPOSITION 4.5. For any parameters $a, b, r, t \in \mathbb{R}$ we have

(4.20)
$$\mu(a,b) \rhd \mu(a+r,r) = \mu(a+r,b+r),$$

(4.21) $\nu(a,b,t) \rhd \mu(a+r,r) = \nu(a+r,b+r,t). \quad \Box$

In the next section we are going to study which of the probability quasimeasures $\mu(p, r)$ and $\nu(p, r, t)$ are actually probability measures. For this purpose we will use some of the the following facts, which are available in literature (see [15, 11, 14, 10, 6, 7]): The class of all compactly supported probability measures on \mathbb{R} is closed under the free, boolean, and monotonic convolution and also under taking the powers $\mu^{\boxplus s}$, $\mu^{\uplus t}$, for $s \ge 1, t > 0$. Moreover, the class of probability measures with compact support contained in $[0, \infty)$ is closed under the free, multiplicative free, boolean and monotonic convolution and also under taking the powers $\mu^{\boxplus s}$, $\mu^{\boxtimes s}$ and $\mu^{\uplus t}$ for $s \ge 1$ and t > 0.

A probability measure μ on \mathbb{R} (resp. on $[0, \infty)$) is called \boxplus -infinitely divisible (resp. \boxtimes -infinitely divisible) if $\mu^{\boxplus t}$ (resp. $\mu^{\boxtimes t}$) is a probability measure for every t > 0. If μ has compact support and $r_m(\mu)$ are its free cumulants then μ is \boxplus -infinitely divisible if and only if the sequence $\{r_{m+2}(\mu)\}_{m=0}^{\infty}$ is positive definite.

5. Positivity

The aim of this section is to study which of the quasi measures $\mu(p, r)$ and $\nu(p, r, t)$ are actually measures, i.e. for which parameters $p, r, t \in \mathbb{R}$ the corresponding sequence is positive definite. We start with

THEOREM 5.1. If $p \ge 1$, $0 \le r \le p$ then $\{A_m(p,r)\}_{m=0}^{\infty}$ is the moment sequence of a probability measure $\mu(p,r)$ with a compact support contained in $[0,\infty)$. If $p \le 0$, $p-1 \le r \le 0$ then $\mu(p,r)$ is a probability measure which is the reflection of $\mu(1-p,-r)$.

Proof. We know already that $\tilde{\pi} = \mu(2, 1)$ is the free Poisson law (1.1). Then, as was noted in [1], $\tilde{\pi}$ is \boxtimes -infinitely divisible and for s > 0 we have $\pi^{\boxtimes s} = \mu(1+s, 1)$. Hence if $p \ge 1$ then $\mu(p, 1)$ is a probability measure with a compact support contained in $[0, \infty)$. By (2.3) it implies that the sequence $A_m(p, p) = A_{m+1}(p, 1)$ is also positive definite, namely we have

$$\int_{\mathbb{R}} f(x) \, d\mu(p, p)(x) = \int_{\mathbb{R}} f(x) x \, d\mu(p, 1)(x)$$

for any continuous function f on \mathbb{R} . Hence $\mu(p,p)$, $p \ge 1$, is a probability measure with a compact support contained in $[0,\infty)$. For $1 \le r \le p$ we apply (4.13) to obtain:

$$\iota(p,r) = \mu(r,r) \boxtimes \mu(p/r,1),$$

which proves the first statement for the sector $1 \le r \le p$. For $r \in (0, 1)$ the measure $\mu(1, r)$ is related to the Euler beta function

(5.1)
$$B(a,b) := \int_0^1 x^{a-1} (1-x)^{b-1} \, dx.$$

We will use its well known properties: $B(a, 1 - a) = \frac{\pi}{\sin a\pi}$ and $B(a, b) = \frac{a-1}{a+b-1}B(a-1,b)$. If we define probability measure

(5.2)
$$\mu_r := \frac{\sin \pi r}{\pi} x^{r-1} (1-x)^{-r} dx$$

on [0,1] then we have

$$\int_{\mathbb{R}} x^m \, d\mu_r(x) = \frac{\sin \pi r}{\pi} B(m+r, 1-r) = \prod_{k=1}^m \frac{r+i-1}{i} = A_m(1, r)$$

which means that $\mu(1, r) = \mu_r$. Now for $s \ge 0$ we have

 $\mu(1 + rs, r) = \mu(1, r) \boxtimes \mu(1 + s, 1),$

which proves the first statement for $(p, r) \in [1, +\infty) \times (0, 1)$. It remains to note that $\mu(p, 0) = \delta_0$ for every $p \in \mathbb{R}$.

The second statement is a consequence of (4.4).

We conjecture that the last theorem fully characterizes the set of parameters $p, r \in \mathbb{R}$ for which $\mu(p, r)$ is a measure (apart from the trivial case $\mu(p, 0) = \delta_0$). It is easy to check that $A_0(p, r)A_2(p, r) - A_1(p, r)^2 = r(2p - 1 - r)/2$, hence a necessary condition for positive definiteness of the sequence $A_m(p, r)$ is that $r(2p - 1 - r) \geq 0$.

REMARK. According to Penson and Solomon [12]:

(5.3)
$$\mu(3,1) = \frac{\sqrt[6]{108} \left[2^{1/3} \left(27 + 3\sqrt{81 - 12x} \right)^{2/3} - 6x^{1/3} \right]}{12\pi x^{2/3} (27 + 3\sqrt{81 - 12x})^{1/3}} \, dx$$

on [0, 27/4]. More generally, for $\mu(p, 1)$ with $p \in \mathbb{N}$ we refer to [8].

COROLLARY 5.1. If either $0 \le 2r \le p$, $r+1 \le p$ or $p \le 2r+1$, $p \le r \le 0$ then $\mu(p,r)$ is \boxplus -infinitely divisible.

Proof. By Theorem 13.16 in [11], a compactly supported probability measure μ , with free cumulants $r_m(\mu)$, is \boxplus -infinitely divisible if and only if the sequence $\{r_{m+2}(\mu)\}_{m=0}^{\infty}$ is positive definite. Then it is sufficient to refer to (4.8) and to note that the numbers $A_{m+2}(p-r,r)$ are the moments of the measure $x^2 d\mu(p-r,r)(x)$.

COROLLARY 5.2. If $0 \le r \le p-1$, t > 0 then $\nu(p, r, t)$ is a probability measure with a compact support contained in $[0, +\infty)$. If $p \le 1 + r \le 0$, t < 1 then $\nu(p, r, t)$ is a probability measure which is the reflection of $\nu(1-p, -1-r, 1-t)$. In particular, if either $0 \le r \le p-1$ or $p \le 1+r \le 0$ then the sequence $\left\{\binom{mp+r}{m}\right\}_{m=0}^{\infty}$ is positive definite.

Proof. For $0 \le r \le p - 1$, t > 0 we apply (4.21) and (4.18):

$$\nu(p,r,t) = \nu(p-r,0,t) \triangleright \mu(p,r) = \mu(p-r,1)^{\oplus t} \triangleright \mu(p,r)$$

and Theorem 5.1. Then we use (4.5).

A measure ν on \mathbb{R} is called *symmetric* if $\hat{\nu} = \nu$. For a probability quasi-measure μ define its *symmetrization* μ^{s} by $M_{\mu^{s}}(z) := M_{\mu}(z^{2})$. If μ is a probability measure with support contained in $[0, \infty)$ then μ^{s} is a symmetric measure on \mathbb{R} , which satisfies $\int_{\mathbb{R}} f(t^{2}) d\mu^{s}(t) = \int_{\mathbb{R}} f(t) d\mu(t)$ for every compactly supported continuous function on \mathbb{R} . Denote by $\mu^{s}(p, r)$ and $\nu^{s}(p, r, t)$ the symmetrization

of $\mu(p, r)$ and $\nu(p, r, t)$. Then, by (3.4) and (4.9), for the free additive transform we have

(5.4)
$$R_{\mu^{s}(p,r)}(z) = \mathcal{B}_{p-2r}(z^{2})^{r} - 1.$$

In the same way as Corollary 5.2 one can prove

COROLLARY 5.3. If $p \ge 1$, $0 \le r \le p$ then $\mu^{s}(p,r)$ is a symmetric probability measure on \mathbb{R} . Moreover, if $p - 2r \ge 1$ and $0 \le 3r \le p$ then $\mu^{s}(p,r)$ is \boxplus -infinitely divisible. \square

Let us record some formulas:

(5.5)
$$\mu^{s}(p,1)^{\uplus t} = \nu^{s}(p,0,t),$$

(5.6)
$$\mu^{s}(a,b) \rhd \mu^{s}(a+2r,r) = \mu^{s}(a+2r,b+r),$$

- $\nu^{s}(a, b, t) \rhd \mu^{s}(a + 2r, r) = \nu^{s}(a + 2r, b + r, t).$ (5.7)
- 5.1. PICTURE FOR $\mu(p, r)$.

Here we illustrate the main results concerning the measures $\mu(p, r)$.

- (1) If $\mu(p,r)$ is a probability measure then $r(2p-1-r) \ge 0$ (the right-top and left-bottom sector between the *p*-axis and the line r = 2p - 1),
- (2) Σ_+ (including $\Sigma_+^{\boxplus\infty}$ and $\Sigma_s^{\boxplus\infty}$): $\mu(p,r)$ is a probability measure with a compact support contained in $[0, \infty)$,
- (3) Σ_{-} (including $\Sigma_{-}^{\boxplus\infty}$): $\mu(p,r)$ is a probability measure, the reflection of $\mu(1-p,-r),$
- (4) $\Sigma_{\pm}^{\mathbb{H}^{\infty}} \cup \Sigma_{-}^{\mathbb{H}^{\infty}}$ (including $\Sigma_{s}^{\mathbb{H}^{\infty}}$): $\mu(p,r)$ is \boxplus -infinitely divisible, (5) $\Sigma_{s}^{\mathbb{H}^{\infty}}$: the symmetrization of $\mu(p,r)$ is \boxplus -infinitely divisible.

DOCUMENTA MATHEMATICA 15 (2010) 939-955

6. DILATIONS

For a probability quasi-measure μ we define its *dilation with parameter* c > 0by $(D_c\mu)(x^m) := c^m\mu(x^m)$. Then for the moment generating function we have: $M_{D_c\mu}(z) = M_{\mu}(cz)$ and similarly for the free *R*-transform: $R_{D_c\mu}(z) = R_{\mu}(cz)$, while for the *S*-transform we have $S_{D_c\mu}(z) = \frac{1}{c}S_{\mu}(z)$. If μ is proper then we have $(D_c\mu)(X) = \mu(\frac{1}{c}X)$ for every Borel subset *X* of \mathbb{R} . In this part we are going to study dilations of the measures $\mu(p, r)$ and $\nu(p, r, t)$ and their limits as the parameter goes to 0.

For $h \ge 0$ and $a, p, r \in \mathbb{R}$ define sequences

(6.1)
$$\binom{a}{m}_{h} := \frac{1}{m!} \prod_{i=0}^{m-1} (a-ih),$$

(6.2)
$$A_m(p,r,h) := \frac{r}{m!} \prod_{i=1}^{m-1} (mp+r-ih),$$

with $A_0(p, r, h) := 1$. In particular $A_m(p, r, h) = \frac{r}{mp+r} {mp+r \choose m}_h$ whenever $mp + r \neq 0$. Then, for $h \ge 0$ and $p, r, t \in \mathbb{R}$ define probability quasi-measures:

(6.3)
$$\mu(p,r,h)(x^m) := A_m(p,r,h),$$

(6.4)
$$\nu(p,r,t,h)(x^m) := \sum_{k=0}^m A_{m-k}(p,k(p-h)+r,h)t^k.$$

and their moment generating functions $\mathcal{B}_{p,r,h}(z)$ and $\mathcal{D}_{p,r,t,h}(z)$ respectively. Note that if h > 0 then $A_m(p,r,h) = h^m A_m(p/h,r/h)$ and hence these probability quasi measures can be represented as dilations:

(6.5)
$$\mu(p,r,h) = \mathcal{D}_h \mu(p/h,r/h),$$

(6.6)
$$\nu(p,r,t,h) = \mathcal{D}_h \nu(p/h,r/h,t/h)$$

Therefore the corresponding moment generating functions are

(6.7)
$$\mathcal{B}_{p,r,h}(z) = \mathcal{B}_{p/h}(hz)^{r/h},$$

(6.8)
$$\mathcal{D}_{p,r,t,h}(z) = \mathcal{D}_{p/h,r/h,t/h}(hz) = \frac{h\mathcal{B}_{p,h+r,h}(z)}{(h-t)\mathcal{B}_{p,h,h}(z)+t}$$

These formulas allow us to derive properties of the probability quasi-measures $\mu(p, r, h)$ and $\nu(p, r, t, h)$ directly from our previous results when h > 0, and, after taking the limit with $h \to 0$, for h = 0.

PROPOSITION 6.1. For h > 0 and $p, r, t \in \mathbb{R}$

(6.9)
$$\mathcal{B}_{p,h,h}(z) = 1 + zh\mathcal{B}_{p,p,h}(z),$$

(6.10)
$$\log \left(\mathcal{B}_{p,1,0}(z) \right) = z \mathcal{B}_{p,p,0}(z),$$

(6.11)
$$\mathcal{D}_{p,r,t,0}(z) = \frac{\mathcal{B}_{p,r,0}(z)}{1 - zt\mathcal{B}_{p,p,0}(z)}$$

Proof. First formula is a consequence of (3.3) and (6.7). Then we have

$$\frac{\mathcal{B}_{p,1,h}(z)^h - 1}{h} = \frac{\mathcal{B}_{p,h,h}(z) - 1}{h} = z\mathcal{B}_{p,p,h}(z).$$

Taking the limit with $h \to 0$ we obtain (6.10). For (6.11) we write use (6.8) and (6.9) to get

$$\frac{1}{h} \left[(h-t)\mathcal{B}_{p,h,h}(z) + t \right] = 1 - (t-h)\frac{\mathcal{B}_{p,h,h}(z) - 1}{h} = 1 - (t-h)z\mathcal{B}_{p,p,h}(z)$$

and then we take limit with $h \to 0$.

and then we take limit with $h \to 0$.

PROPOSITION 6.2. For $h \ge 0$ and $p, r, s \in \mathbb{R}$ we have

(6.12)
$$\mathcal{B}_{p-r,s,h}\left(z\mathcal{B}_{p,r,h}(z)\right) = \mathcal{B}_{p,s,h}(z). \quad \Box$$

Proposition 6.3. For $h \ge 0$ and $p, r \in \mathbb{R}$ we have

(6.13)
$$\nu(p,r,p,h)(x^m) = \binom{mp+r}{m}_h$$

Proof. For h > 0 the formula is a consequence of (6.6). Then we take limit with $h \to 0$.

Proposition 6.4. For $h \ge 0$ and $p, r, t \in \mathbb{R}$ we have

(6.14)
$$\mu(p,r,h) = \mu(h-p,-r,h),$$

(6.15)
$$\nu(p, r, t, h) = \nu(h - p, -h - r, h - t, h)$$

Proof. First we note that $A_m(p,r,h)(-1)^m = A_m(h-p,-r,h)$ and then we apply (6.8) and (3.14). \square

PROPOSITION 6.5. For the free transforms we have

(6.16)
$$R_{\mu(p,r,h)}(z) = \mathcal{B}_{p-r,r,h}(z) - 1$$

(6.17)
$$S_{\mu(p,r,h)}(z) = \frac{(1+z)^{h/r} - 1}{hz} (1+z)^{(r-p)/r} \quad \text{for } h > 0,$$

(6.18)
$$S_{\mu(p,r,0)}(z) = \frac{\log(1+z)}{rz} (1+z)^{(r-p)/r},$$

(6.19)
$$S_{\nu(p,0,t,0)}(z) = \frac{1}{t}e^{\frac{-pz}{t(1+z)}}.$$

In particular $\nu(p, 0, t, 0) = D_t (\nu(1, 0, 1, 0)^{\boxtimes p/t}).$

Proof. Formulas (6.16), (6.17) are consequences of (6.7), (4.11) and (6.12). Therefore, for h > 0 we have

(6.20)
$$\mathcal{B}_{p,r,h}\left(\frac{(1+z)^{h/r}-1}{h}(1+z)^{-p/r}\right) = 1+z,$$

which leads to

(6.21)
$$\mathcal{B}_{p,r,0}\left(\frac{\log(1+z)}{r(1+z)^{p/r}}\right) = 1+z$$

DOCUMENTA MATHEMATICA 15 (2010) 939-955

and to (6.18). In particular, substituting $(1+z) \mapsto e^{\frac{pz}{t(1+z)}}$, we have

(6.22)
$$\mathcal{B}_{p,p,0}\left(\frac{z}{t(1+z)}e^{\frac{-pz}{t(1+z)}}\right) = e^{\frac{pz}{t(1+z)}}$$

which, combined with (6.11) gives

(6.23)
$$\mathcal{D}_{p,0,t,0}\left(\frac{z}{t(1+z)}e^{\frac{-pz}{t(1+z)}}\right) = \frac{1}{1-\frac{z}{1+z}} = 1+z.$$

PROPOSITION 6.6. For h > 0 and $p, t \in \mathbb{R}$ we have

(6.24) $\mu(p,h,h)^{\uplus t} = \nu(p,0,th,h),$

(6.25)
$$\nu(p,0,1,0)^{\uplus t} = \nu(p,0,t,0).$$

Proof. Since $\mathcal{B}_{p,0,0}(z) = 1$, formula (6.25) is a consequence of (6.11).

PROPOSITION 6.7. For $h \ge 0, t > 0, a, b \in \mathbb{R}$ we have

(6.26) $\mu(a, b, h) \rhd \mu(a + r, r, h) = \mu(a + r, b + r, h),$

(6.27) $\nu(a, b, t, h) \triangleright \mu(a + r, r, h) = \nu(a + r, b + r, t, h).$

PROPOSITION 6.8. Assume that $h \ge 0$.

1. If $p \ge h$ and $0 \le r \le p$ then $\mu(p, r, h)$ is a probability measure with support contained in $[0, \infty)$. If $p \le 0$, $p - h \le r \le 0$ then $\mu(p, r, h)$ is a probability measure which is the reflection of $\mu(h - p, -r, h)$.

2. If either $0 \le 2r \le p$, $r+h \le p$ or $p \le 2r+h$, $p \le r \le 0$ then $\mu(p,r,h)$ is \boxplus -infinitely divisible.

3. If $0 \le r \le p - h$, t > 0 then $\nu(p, r, t, h)$ is a probability measure with a compact support contained in $[0, +\infty)$. If $p \le h + r \le 0$, t < h then $\nu(p, r, t, h)$ is a probability measure which is the reflection of $\nu(h - p, -h - r, h - t, h)$

In particular, if either $0 \le r \le p - h$ or $p \le h + r \le 0$ then the sequence $\left\{\binom{mp+r}{m}_{h=0}\right\}_{m=0}^{\infty}$ is positive definite. \Box

We conclude with some remarks on the probability measure $\nu_0 := \nu(1, 0, 1, 0)$, for which the moments are $\nu_0(x^m) = {m \choose m}_0 = \frac{m^m}{m!}$. From (4.9), (6.19) we have

(6.28)
$$S_{\nu_0}(z) = e^{\frac{-z}{1+z}},$$

(6.29)
$$R_{\nu_0}\left(ze^{\frac{-z}{1+z}}\right) = z,$$

(6.30)
$$M_{\nu_0}\left(\frac{z}{1+z}e^{\frac{-z}{1+z}}\right) = 1+z.$$

THEOREM 6.1. The sequence $\left\{\frac{m^m}{m!}\right\}_{m=0}^{\infty}$ is positive definite and the corresponding probability measure ν_0 has compact support contained in [0, e]. Moreover, ν_0 is \boxtimes -infinitely divisible.

Proof. First observe that $\lim_{m\to\infty} \sqrt[m]{\frac{m^m}{m!}} = e$, which implies that the support of ν_0 is contained in [0, e]. Now we recall (see Theorem 3.7.3 in [2]) that a probability measure μ with support contained in $[0, \infty)$ is \boxtimes -infinite divisible if and only if the function $\Sigma_{\mu}(z) := S_{\mu}(z(1-z)^{-1})$ can be expressed as $\Sigma_{\mu}(z) =$

Documenta Mathematica 15 (2010) 939–955

 $e^{v(z)}$, where $v : \mathbb{C} \setminus [0, \infty) \mapsto \mathbb{C}$ is analytic, satisfies $v(\overline{z}) = \overline{v(z)}$ and maps the upper half-plane \mathbb{C}^+ into the lower half-plane \mathbb{C}^- . In our case $\Sigma_{\nu_0}(z) = e^{-z}$ and the function v(z) = -z does satisfy these assumptions.

Let us briefly reconstruct the way we have obtained the measure ν_0 . We started with $\tilde{\pi} = \mu(2, 1, 1)$, the free Poisson measure. Then

$$\mu(p,h,h) = \mathcal{D}_h \mu(p/h,1,1) = \mathcal{D}_h\left(\widetilde{\pi}^{\boxtimes \frac{p}{h}-1}\right),$$

so putting h = 1/n, p = 1 and using (6.24) with t = 1/h = n we have

(6.31)
$$\left(\mathrm{D}_{\frac{1}{n}} \left(\widetilde{\pi}^{\boxtimes n-1} \right) \right)^{\oplus n} \longrightarrow \nu_0, \quad \text{with } n \to \infty,$$

where the convergence here means that the *m*-th moment of $\left(D_{\frac{1}{n}}\left(\widetilde{\pi}^{\boxtimes n-1}\right)\right)^{\uplus n}$ tends to $\frac{m^m}{m!}$. Note also that from (6.29) one can calculate free cumulants of ν_0 : $r_1 = 1$, $r_2 = 1$, $r_3 = \frac{1}{2}$, $r_4 = \frac{-1}{3}$. Since $r_4 < 0$, the measure ν_0 is not \boxplus -infinitely divisible.

References

- T. Banica, S. T. Belinschi, M. Capitaine, B. Collins, *Free Bessel laws*, to appear in Canadian J. Math.
- [2] H. Bercovici, D. V. Voiculescu, Free convolutions of measures with unbounded support, Indiana Univ. Math. J. 42 (1993). 733–773.
- [3] M. Bożejko, J. Wysoczański, Remarks on t-transformations of measures and convolutions, Annales Institute Henri Poincaré, 37/6 (2001) 737–761.
- [4] D. Callan, Sets, lists and noncrossing partitions, Journal of Integer Sequences, 11 (2008), Art. 08.1.3.
- [5] R. L. Graham, D. E. Knuth, O. Patashnik, *Concrete mathematics*, Addison-Wesley 1994.
- [6] T. Hasebe, On monotone convolution and momotone infinite divisibility, arXiv:1002.3430v2.
- [7] T. Hasebe, Monotone convolution semigroups, Studia Math. 200 (2010), 175–199.
- [8] D.-Z. Liu, C. Song, Z.-D. Wang, On explicit probability densities associated with Fuss-Catalan numbers, arXiv:1008.0271v1.
- [9] N. Muraki, Monotonic convolution and monotonic Levy-Hincin formula, preprint 2000.
- [10] N. Muraki, Monotonic independence, monotonic central limit theorem and monotonic law of small numbers, Inf. Dim. Anal. Quantum Probab. Rel. Topics 4 (2001) 39–58.
- [11] A. Nica, R. Speicher, Lectures on the Combinatorics of Free Probability, Cambridge University Press, 2006.
- [12] K. A. Penson, A. I. Solomon, Coherent states from combinatorial sequences, Quantum theory and symmetries, Kraków 2001, World Sci.Publ., River Edge, NJ, 2002, 527–530.
- [13] J. Riordan, Combinatorial identities, Willey 1968.

Documenta Mathematica 15 (2010) 939–955

- [14] R. Speicher, R. Woroudi, Boolean convolution, Fields Institute Communications 12 (1997), 267–279.
- [15] D. V. Voiculescu, K. J. Dykema, A. Nica, Free random variables, CRM 1992.

Wojciech Młotkowski Mathematical Institute University of Wrocław Pl. Grunwaldzki 2/4 50-384 Wrocław Poland mlotkow@math.uni.wroc.pl

956