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Abstract. We prove that if p, r ∈ R, p ≥ 1 and 0 ≤ r ≤ p then the
Fuss-Catalan sequence

(
mp+r

m

)
r

mp+r is positive definite. We study the

family of the corresponding probability measures µ(p, r) on R from the
point of view of noncommutative probability. For example, we prove
that if 0 ≤ 2r ≤ p and r + 1 ≤ p then µ(p, r) is ⊞-infinitely divisible.

As a by-product, we show that the sequence mm

m! is positive definite
and the corresponding probability measure is ⊠-infinitely divisible.
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1. Introduction

For natural numbers m, p, r let Am(p, r) denote the number of all sequences
(a1, a2, . . . , amp+r) such that: (1) ai ∈ {1, 1− p}, (2) a1 + a2 + . . . + as > 0 for
all s such that 1 ≤ s ≤ mp + r and (3) a1 + a2 + . . . + amp+r = r. It turns
out that this is given by the two-parameter Fuss-Catalan numbers (2.1) (see
[5, 13]). Note that the right hand side of (2.1) allows us to define Am(p, r) for
all real parameters p and r. In particular, the Catalan numbers Am(2, 1) are
known as moments of the Marchenko–Pastur distribution:

(1.1) dπ̃(x) =
1

2π

√
4 − x

x
dx on [0, 4],

which in the free probability theory plays the role of the Poisson measure. In
this paper we are going to study the question for which parameters p, r ∈ R
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the sequence {Am(p, r)}∞m=0 is positive definite, i.e. is the moment sequence of
some probability measure (which we will denote µ(p, r)). Recently T. Banica,
S. T. Belinschi, M. Capitaine and B. Collins [1] showed that if p > 1 then
{Am(p, 1)}∞m=0 is the moment sequence of a probability measure which can be

expressed as the multiplicative free power π̃⊠p−1.
We are going to prove that if p, r ∈ R, p ≥ 1 and 0 ≤ r ≤ p then {Am(p, r)}∞m=0

is the moment sequence of a unique probability measure µ(p, r) which has
compact support contained in [0,∞). Moreover, if 0 ≤ 2r ≤ p and r + 1 ≤ p
then µ(p, r) is infinitely divisible with respect to the free convolution ⊞. In some
particular cases we are able to determine the multiplicative free convolution,
the boolean power and the monotonic convolution of the measures µ(p, r).

We will also prove that if 0 ≤ r ≤ p − 1 then the sequence
{(

mp+r
m

)}∞

m=0
is

positive definite and the corresponding probability measure can be expressed
as µ(p−r, 1)⊎p ⊲ µ(p, r), where ⊎ and ⊲ denote the boolean and the monotonic
convolution, respectively.
The paper is organized as follows. In Section 2 we prove three combinato-
rial identities. Then we use them to derive some formulas for the generating
functions. In Section 4 we regard the numbers Am(p, r) as moments of a prob-

ability quasi-measure µ(p, r) (by this we mean a linear functional µ : R[x] → R

satisfying µ(1) = 1). On the class of probability quasi-measures one can intro-
duce the free, boolean and monotonic convolutions in combinatorial way. The
class of compactly supported probability measures on R, regarded as a sub-
class of the former, is closed under these operations. We prove some formulas
involving the probability quasi measures µ(p, r), for example we find the free
R- and S-transforms (4.8), (4.11), the boolean powers µ(p, 1)⊎t (4.18) and, in
special cases, the multiplicative free (4.12), (4.13), (4.14) and the monotonic
convolution (4.20) of the measures µ(p, r).
In Section 5 we prove that if p ≥ 1 and 0 ≤ r ≤ p then µ(p, r) is a measure (we
conjecture that this condition is also necessary for p, r > 0). The proof involves
the multiplicative free convolution ⊠. Moreover, we show that if 0 ≤ 2r ≤ p
and r + 1 ≤ p then µ(p, r) is ⊞-infinitely divisible.
In the final part we extend our results to the dilations of the measures µ(p, r),
with parameter h > 0. Taking the limit with h → 0 we prove in particular that

the sequence
{
mm

m!

}∞

m=0
is positive definite and the corresponding probability

measure ν0 is ⊠-infinitely divisible.

2. Some combinatorial identities

We will work with the two-parameter Fuss-Catalan numbers (see [5, 13]) defined
by: A0(p, r) := 1 and

(2.1) Am(p, r) :=
r

m!

m−1∏

i=1

(mp + r − i)
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for m ≥ 1, where p, r are real parameters. Note that (2.1) can be written as(
mp+r

m

)
r

mp+r , unless mp + r = 0. One can check that for m ≥ 0

(2.2) Am(p, r) = Am(p, r − 1) + Am−1(p, p + r − 1),

under convention that A−1(p, r) := 0, and

(2.3) Am(p, p) = Am+1(p, 1).

It is also known (see [13]) that

(2.4)
m∑

k=0

Ak(p, r)Am−k(p, s) = Am(p, r + s).

Now we are going to prove three identities, valid for c, d, p, r, t ∈ R, which will
be needed later on.

Proposition 2.1.

(2.5)

m∑

k=0

Ak(p− r, c)Am−k(p, kr + d) = Am(p, c + d).

Proof. It is easy to check that the formula is true for m = 0 and m = 1.
Denoting the left hand side by Sm(p, r, c, d) we have from (2.2):

Sm(p, r, c, d) =

m∑

k=0

Ak(p− r, c)Am−k(p, kr + d)

=

m∑

k=0

[Ak(p− r, c− 1) + Ak−1(p− r, p− r + c− 1)]Am−k(p, kr + d)

=

m∑

k=0

Ak(p− r, c− 1)Am−k(p, kr + d)

+

m∑

k=1

Ak−1(p− r, p− r + c− 1)Am−k(p, kr + d)

= Sm(p, r, c− 1, d) +

m−1∑

k=0

Ak(p− r, p− r + c− 1)Am−1−k(p, kr + r + d)

= Sm(p, r, c− 1, d) + Sm−1(p, r, p− r + c− 1, r + d),

so that we have

Sm(p, r, c, d) = Sm(p, r, c− 1, d) + Sm−1(p, r, p− r + c− 1, r + d).

Fix m and assume that (2.5) holds for m−1. Now we prove that for m it holds
for every natural c. Indeed, it holds for c = 0 and if it does for c− 1 then, by
assumption and by (2.2):

Sm(p, r, c, d) = Sm(p, r, c− 1, d) + Sm−1(p, r, p− r + c− 1, r + d)

= Am(p, c + d− 1) + Am−1(p, p + c + d− 1) = Am(p, c + d),
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which proves that the statement is true for c. Therefore it holds for all natural c.
Now we note that both sides of (2.5) are polynomials on c of order m, therefore
the formula holds for all c ∈ R, which completes the inductive step. �

Proposition 2.2.

(1 − t)

m∑

l=0

Al

(
p, 1

)m−l∑

j=0

Am−l−j

(
p, j(p− 1) + r

)
tj(2.6)

+t

m∑

j=0

Am−j

(
p, j(p− 1) + r

)
tj = Am

(
p, r + 1

)
.

Proof. Using first (2.4) and then (2.2) we obtain:

t
m∑

j=0

Am−j(p, j(p− 1) + r)tj

+ (1 − t)

m∑

l=0

Al

(
p, 1

)m−l∑

j=0

Am−l−j

(
p, j(p− 1) + r

)
tj

= t

m∑

j=0

Am−j(p, j(p− 1) + r)tj

+ (1 − t)

m∑

j=0

m−j∑

l=0

Al(p, 1)Am−j−l(p, j(p− 1) + r)tj

= t

m∑

j=0

Am−j(p, j(p− 1) + r)tj

+ (1 − t)

m∑

j=0

Am−j(p, j(p− 1) + r + 1)tj

=

m∑

j=0

Am−j(p, j(p− 1) + r + 1)tj −
m−1∑

j=0

Am−j−1(p, j(p− 1) + r + p)tj+1

= Am(p, r + 1). �

Proposition 2.3.

(2.7)

m∑

k=0

Am−k(p, k(p− 1) + r)pk =

(
mp + r

m

)
.
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Proof. Denoting the left hand side by Tm(p, r) we use (2.2) and get

Tm(p, r) =

=

m∑

k=0

Am−k(p, k(p− 1) + r)pk

=
m∑

k=0

[Am−k(p, k(p− 1) + r − 1) + Am−1−k(p, k(p− 1) + p + r − 1)] pk

= Tm(p, r − 1) + Tm−1(p, p + r − 1).

Now we proceed as in the proof of (2.5), using the binomial identity
(
mp + r

m

)
=

(
mp + r − 1

m

)
+

(
mp + r − 1

m− 1

)
. �

3. Generating functions

In this part we are going to study the generating functions

(3.1) Bp(z) :=

∞∑

m=0

Am(p, 1)zm,

which are convergent in some neighborhood of 0 (to observe this one can use
the inequality

|Am(p, r)| ≤ |r|
[
m(|p| + 1) + |r|

]m−1
/m!

and apply the Cauchy’s radical test). From (2.4) and (2.3) we have

(3.2) Bp(z)r =

∞∑

m=0

Am(p, r)zm

and

(3.3) Bp(z) = 1 + zBp(z)p.

Indeed, denoting the right hand side of (3.2) by Ap,r(z) we have Ap,1(z) = Bp(z)
and, by (2.4), Ap,r(z) · Ap,s(z) = Ap,r+s(z), which implies that Ap,r(z) =
Bp(z)r. Taking r = p and applying (2.3) we get (3.3).
Now we are going to interpret formulas (2.5), (2.6), (2.7) in terms of these
generating functions.

Proposition 3.1. For any real parameters p, r we have

(3.4) Bp−r (zBp(z)r) = Bp(z).

Proof. First we note that if A(z) =
∑∞

m=0 amzm, B(z) =
∑∞

n=1 bnz
n then

(3.5) A(B(z)) = a0 +

∞∑

m=1

zm
m∑

k=1

ak
∑

i1,i2,...,ik≥1
i1+i2+...+ik=m

bi1bi2 . . . bik .
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Putting bi := Ai−1(p, r) for fixed k,m we have:
∑

i1,i2,...,ik≥1
i1+i2+...+ik=m

bi1bi2 . . . bik =
∑

j1,j2,...,jk≥0
j1+j2+...+jk=m−k

Aj1(p, r)Aj2 (p, r) . . . Ajk(p, r)

= Am−k(p, kr),

the coefficient of Bp(z)kr at zm−k. Now we put ak := Ak(p− r, 1) and applying
(2.5), with c = 1, d = 0, we get

m∑

k=1

ak
∑

i1,i2,...,ik≥1
i1+i2+...+ik=m

bi1bi2 . . . bik(3.6)

=

m∑

k=0

Ak(p− r, 1)Am−k(p, kr) = Am(p, 1),

as Am(p, 0) = 0 for m ≥ 1, which completes the proof. �

Note that in the proof we applied (2.5) only with c = 1 and d = 0.
For p, r, t ∈ R we denote

(3.7) Dp,r,t(z) :=
Bp(z)1+r

(1 − t)Bp(z) + t
.

Proposition 3.2. For p, r, t ∈ R we have

(3.8) Dp,r,t(z) =
∞∑

m=0

zm
m∑

k=0

Am−k(p, k(p− 1) + r)tk,

in particular:

(3.9) Dp,r,p(z) =

∞∑

m=0

(
mp + r

m

)
zm.

Moreover

(3.10) Dp−r,s,t (zBp(z)r)Bp(z)r = Dp,r+s,t(z).

Proof. Using (2.6) we can verify that

[
(1 − t)Bp(z) + t

]
·
[

∞∑

m=0

zm
m∑

k=0

Am−k(p, k(p− 1) + r)tk

]
= Bp(z)1+r

which proves (3.8). Formulas (3.9) and (3.10) are consequences of (2.7) and
(3.4). �

Proposition 3.3. In some neighborhood of 0 we have

(3.11) Bp

(
z(1 + z)−p

)
= 1 + z,

and more generally, for r 6= 0 we have

(3.12) Bp

((
(1 + z)

1
r − 1

)
(1 + z)

−p

r

)r

= 1 + z.
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Proof. Since we have Bp(0) = 1 and B′
p(0) = 1, there is a function fp defined on

a neighborhood of 0 such that fp(0) = 0 and B(fp(z)) = 1+z. Substituting z 7→
fp(z) in (3.3) we obtain fp(z) = z(1 + z)−p. Now we put z 7→ (1 + w)1/r − 1
to (3.11) and taking the r-th power we obtain (3.12). �

Remark. Note that (3.11) leads to an analytic proof of (3.4). Namely, substi-
tuting in (3.4) z 7→ z(1 + z)−p we get

Bp−r

(
z(1 + z)−pBp

(
z(1 + z)−p

)r)
= Bp−r

(
z(1 + z)−p(1 + z)r

)

= 1 + z = Bp

(
z(1 + z)−p

)
.

Finally we note a symmetry possessed by our generating functions.

Proposition 3.4. For p, r, t ∈ R we have

Bp(−z)r = B1−p(z)−r,(3.13)

Dp,r,t(−z) = D1−p,−1−r,1−t(z).(3.14)

Proof. One can check that (−1)mAm(p, r) = Am(1 − p,−r), which proves
(3.13), and by the definition (3.7), (3.13) implies (3.14). �

4. Relations with noncommutative probability

By a probability quasi-measure we will mean a linear functional µ on the set
R[x] of polynomials with real coefficients, satisfying µ(1) = 1. In the case when
µ is given by µ(P ) =

∫
P (t) dµ̃(t) for some probability measure µ̃ on R we

will identify µ with µ̃ and say that µ is proper or is just a probability measure.
A probability quasi-measure µ is uniquely determined by its moment sequence

{µ(xm)}∞m=0. It is proper if and only if its moment sequence is positive definite,
i.e. if

∞∑

i,j=0

µ(xi+j)αiαj ≥ 0

holds for every sequence {αi}∞i=0 of real numbers, with only finitely many
nonzero entries. All probability measures encountered in this paper are com-
pactly supported and therefore uniquely determined by their moment se-
quences. For a probability quasi-measure µ we define its moment generating

function, which is the (at least formal) power series

Mµ(z) :=

∞∑

m=0

µ(xm)zm

and its reflection µ̂ by µ̂(xm) := (−1)mµ(xm) or, equivalently, Mµ̂(z) :=
Mµ(−z). If µ is a probability measure then so is µ̂ and then we have
µ̂(X) = µ(−X) for every Borel subset of R.

Documenta Mathematica 15 (2010) 939–955



946 Wojciech M lotkowski

For p, r, t ∈ R we define probability quasi-measures µ(p, r) and ν(p, r, t) by

µ(p, r)(xm) := Am(p, r),(4.1)

ν(p, r, t)(xm) :=

m∑

k=0

Am−k(p, k(p− 1) + r)tk,(4.2)

in particular, by (2.7),

(4.3) ν(p, r, p)(xm) =

(
mp + r

m

)
.

For example, µ(1, 1) = ν(1, 0, 1) = δ1 and for every p ∈ R we have µ(p, 0) =
ν(0, 0, 0) = δ0. Note that ν(p, r, 0) = µ(p, r) so that the class of probability
quasi-measures µ(p, r) is contained in that of ν(p, r, t), we will be interested
however mainly in the former.
First we note that Proposition 3.4 leads to

Proposition 4.1.

µ̂(p, r) = µ(1 − p,−r),(4.4)

̂ν(p, r, t) = ν(1 − p,−1 − r, 1 − t). �(4.5)

There are several convolutions of probability quasi-measures, apart from the
classical one: (µ ∗ ν)(xn) :=

∑n
k=0

(
n
k

)
µ(xk)ν(xn−k), which are related to var-

ious notions of independence (namely, the free, boolean and the monotonic
independence) in noncommutative probability.

1. Free convolution (see [2, 15, 11]) is defined in the following way. For a
probability quasi-measure µ we define its free R-transform (or the additive free

transform) Rµ(z) by the formula:

(4.6) Mµ(z) = Rµ(zMµ(z)) + 1.

The free cumulants rm(µ) are defined as the coefficients of the Taylor expan-
sion Rµ(z) =

∑∞

k=1 rk(µ)zk (combinatorial relation between moments and free
cumulants is described in [11] and [4]). Then the free convolution µ⊞ ν can be
defined as the unique probability quasi-measure which satisfies

(4.7) Rµ⊞ν(z) = Rµ(z) + Rν(z).

We also define free power µ⊞t, t > 0, by Rµ⊞t(z) := tRµ(z).

As a consequence of (4.6) and (3.4) we obtain:

Proposition 4.2. For the free additive transform of µ(p, r) we have

(4.8) Rµ(p,r)(z) = Bp−r(z)r − 1

so that for the free cumulants we have rm(µ(p, r)) = Am(p− r, r), m ≥ 1. �

The free S-transform (or the free multiplicative transform) of a quasi-measure
µ, with µ(x1) 6= 0, is defined by the relation

(4.9) Rµ(zSµ(z)) = z or, equivalently, Mµ

(
z(1 + z)−1Sµ(z)

)
= 1 + z.
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Then the multiplicative free convolution µ1 ⊠ µ2 and the multiplicative free

power µ⊠t, t > 0, are defined by

(4.10) Sµ1⊠µ2
(z) := Sµ1(z)Sµ2(z) and Sµ⊠t(z) := Sµ(z)t.

Proposition 4.3. For r 6= 0 the S-transform of the measure µ(p, r) is equal

to

(4.11) Sµ(p,r)(z) =
(1 + z)

1
r − 1

z

(
1 + z

) r−p

r .

Consequently

(4.12) µ(1 + p1, 1) ⊠ µ(1 + p2, 1) = µ(1 + p1 + p2, 1),

and more generally

(4.13) µ(p1, r) ⊠ µ(1 + p2, 1) = µ(p1 + rp2, r).

We have also

(4.14) µ(1 + p, 1)⊠t = µ(1 + tp, 1).

Proof. Formula (4.11) is a consequence of (3.12). In particular

(4.15) Sµ(1+p,1)(z) = (1 + z)−p

which leads to (4.12), (4.13) and (4.14). �

2. The boolean convolution µ1 ⊎ µ2 and the boolean power µ⊎t, t > 0, (see
[14, 3]) can be defined by putting

1

Mµ1⊎µ2(z)
=

1

Mµ1(z)
+

1

Mµ2(z)
− 1,(4.16)

Mµ⊎t(z) =
Mµ(z)

(1 − t)Mµ(z) + t
.(4.17)

Comparing this with definition (3.7) we get

Proposition 4.4. For p, t ∈ R we have

(4.18) µ(p, 1)⊎t = ν(p, 0, t). �

3. Monotonic convolution (see [10]) is an associative, noncommuting operation
⊲ which is defined by: µ1 ⊲ µ2 = µ iff

(4.19) Mµ(z) = Mµ1

(
zMµ2(z)

)
·Mµ2(z).

Then (3.4) and (3.10) yield

Proposition 4.5. For any parameters a, b, r, t ∈ R we have

µ(a, b) ⊲ µ(a + r, r) = µ(a + r, b + r),(4.20)

ν(a, b, t) ⊲ µ(a + r, r) = ν(a + r, b + r, t). �(4.21)
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In the next section we are going to study which of the probability quasi-
measures µ(p, r) and ν(p, r, t) are actually probability measures. For this pur-
pose we will use some of the the following facts, which are available in literature
(see [15, 11, 14, 10, 6, 7]): The class of all compactly supported probability mea-
sures on R is closed under the free, boolean, and monotonic convolution and
also under taking the powers µ⊞s, µ⊎t, for s ≥ 1, t > 0. Moreover, the class of
probability measures with compact support contained in [0,∞) is closed under
the free, multiplicative free, boolean and monotonic convolution and also under
taking the powers µ⊞s, µ⊠s and µ⊎t for s ≥ 1 and t > 0.
A probability measure µ on R (resp. on [0,∞)) is called ⊞-infinitely divisible

(resp. ⊠-infinitely divisible) if µ⊞t (resp. µ⊠t) is a probability measure for
every t > 0. If µ has compact support and rm(µ) are its free cumulants then
µ is ⊞-infinitely divisible if and only if the sequence {rm+2(µ)}∞m=0 is positive
definite.

5. Positivity

The aim of this section is to study which of the quasi measures µ(p, r) and
ν(p, r, t) are actually measures, i.e. for which parameters p, r, t ∈ R the corre-
sponding sequence is positive definite. We start with

Theorem 5.1. If p ≥ 1, 0 ≤ r ≤ p then {Am(p, r)}∞m=0 is the moment sequence

of a probability measure µ(p, r) with a compact support contained in [0,∞). If

p ≤ 0, p−1 ≤ r ≤ 0 then µ(p, r) is a probability measure which is the reflection

of µ(1 − p,−r).

Proof. We know already that π̃ = µ(2, 1) is the free Poisson law (1.1). Then,
as was noted in [1], π̃ is ⊠-infinitely divisible and for s > 0 we have π⊠s =
µ(1+s, 1). Hence if p ≥ 1 then µ(p, 1) is a probability measure with a compact
support contained in [0,∞). By (2.3) it implies that the sequence Am(p, p) =
Am+1(p, 1) is also positive definite, namely we have

∫

R

f(x) dµ(p, p)(x) =

∫

R

f(x)x dµ(p, 1)(x)

for any continuous function f on R. Hence µ(p, p), p ≥ 1, is a probability
measure with a compact support contained in [0,∞). For 1 ≤ r ≤ p we apply
(4.13) to obtain:

µ(p, r) = µ(r, r) ⊠ µ(p/r, 1),

which proves the first statement for the sector 1 ≤ r ≤ p.
For r ∈ (0, 1) the measure µ(1, r) is related to the Euler beta function

(5.1) B(a, b) :=

∫ 1

0

xa−1(1 − x)b−1 dx.

We will use its well known properties: B(a, 1 − a) = π
sin aπ and B(a, b) =

a−1
a+b−1B(a− 1, b). If we define probability measure

(5.2) µr :=
sinπr

π
xr−1(1 − x)−r dx
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on [0, 1] then we have
∫

R

xm dµr(x) =
sinπr

π
B(m + r, 1 − r) =

m∏

k=1

r + i− 1

i
= Am(1, r).

which means that µ(1, r) = µr. Now for s ≥ 0 we have

µ(1 + rs, r) = µ(1, r) ⊠ µ(1 + s, 1),

which proves the first statement for (p, r) ∈ [1,+∞)× (0, 1). It remains to note
that µ(p, 0) = δ0 for every p ∈ R.
The second statement is a consequence of (4.4). �

We conjecture that the last theorem fully characterizes the set of parameters
p, r ∈ R for which µ(p, r) is a measure (apart from the trivial case µ(p, 0) = δ0).
It is easy to check that A0(p, r)A2(p, r) − A1(p, r)2 = r(2p − 1 − r)/2, hence
a necessary condition for positive definiteness of the sequence Am(p, r) is that
r(2p− 1 − r) ≥ 0.

Remark. According to Penson and Solomon [12]:

(5.3) µ(3, 1) =
6
√

108
[
21/3

(
27 + 3

√
81 − 12x

)2/3 − 6x1/3
]

12πx2/3(27 + 3
√

81 − 12x)1/3
dx

on [0, 27/4]. More generally, for µ(p, 1) with p ∈ N we refer to [8].

Corollary 5.1. If either 0 ≤ 2r ≤ p, r + 1 ≤ p or p ≤ 2r + 1, p ≤ r ≤ 0 then

µ(p, r) is ⊞-infinitely divisible.

Proof. By Theorem 13.16 in [11], a compactly supported probability measure µ,
with free cumulants rm(µ), is ⊞-infinitely divisible if and only if the sequence
{rm+2(µ)}∞m=0 is positive definite. Then it is sufficient to refer to (4.8) and
to note that the numbers Am+2(p − r, r) are the moments of the measure
x2 dµ(p− r, r)(x). �

Corollary 5.2. If 0 ≤ r ≤ p− 1, t > 0 then ν(p, r, t) is a probability measure

with a compact support contained in [0,+∞). If p ≤ 1 + r ≤ 0, t < 1 then

ν(p, r, t) is a probability measure which is the reflection of ν(1−p,−1−r, 1− t).
In particular, if either 0 ≤ r ≤ p − 1 or p ≤ 1 + r ≤ 0 then the sequence{(

mp+r
m

)}∞

m=0
is positive definite.

Proof. For 0 ≤ r ≤ p− 1, t > 0 we apply (4.21) and (4.18):

ν(p, r, t) = ν(p− r, 0, t) ⊲ µ(p, r) = µ(p− r, 1)⊎t
⊲ µ(p, r)

and Theorem 5.1. Then we use (4.5). �

A measure ν on R is called symmetric if ν̂ = ν. For a probability quasi-measure
µ define its symmetrization µs by Mµs(z) := Mµ

(
z2
)
. If µ is a probability

measure with support contained in [0,∞) then µs is a symmetric measure on
R, which satisfies

∫
R
f(t2) dµs(t) =

∫
R
f(t) dµ(t) for every compactly supported

continuous function on R. Denote by µs(p, r) and νs(p, r, t) the symmetrization
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of µ(p, r) and ν(p, r, t). Then, by (3.4) and (4.9), for the free additive transform
we have

(5.4) Rµs(p,r)(z) = Bp−2r

(
z2
)r − 1.

In the same way as Corollary 5.2 one can prove

Corollary 5.3. If p ≥ 1, 0 ≤ r ≤ p then µs(p, r) is a symmetric probability

measure on R. Moreover, if p − 2r ≥ 1 and 0 ≤ 3r ≤ p then µs(p, r) is

⊞-infinitely divisible. �

Let us record some formulas:

µs(p, 1)⊎t = νs(p, 0, t),(5.5)

µs(a, b) ⊲ µs(a + 2r, r) = µs(a + 2r, b + r),(5.6)

νs(a, b, t) ⊲ µs(a + 2r, r) = νs(a + 2r, b + r, t).(5.7)

5.1. Picture for µ(p, r).

-

6
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�
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��
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�
�
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�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Here we illustrate the main results concerning the measures µ(p, r).

(1) If µ(p, r) is a probability measure then r(2p− 1− r) ≥ 0 (the right-top
and left-bottom sector between the p-axis and the line r = 2p− 1),

(2) Σ+ (including Σ⊞∞
+ and Σ⊞∞

s ): µ(p, r) is a probability measure with a
compact support contained in [0,∞),

(3) Σ− (including Σ⊞∞
− ): µ(p, r) is a probability measure, the reflection of

µ(1 − p,−r),
(4) Σ⊞∞

+ ∪ Σ⊞∞
− (including Σ⊞∞

s ): µ(p, r) is ⊞-infinitely divisible,

(5) Σ⊞∞
s : the symmetrization of µ(p, r) is ⊞-infinitely divisible.
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6. Dilations

For a probability quasi-measure µ we define its dilation with parameter c > 0
by (Dcµ)(xm) := cmµ(xm). Then for the moment generating function we have:
MDcµ(z) = Mµ(cz) and similarly for the free R-transform: RDcµ(z) = Rµ(cz),
while for the S-transform we have SDcµ(z) = 1

cSµ(z). If µ is proper then we

have (Dcµ)(X) = µ
(
1
cX

)
for every Borel subset X of R. In this part we are

going to study dilations of the measures µ(p, r) and ν(p, r, t) and their limits
as the parameter goes to 0.
For h ≥ 0 and a, p, r ∈ R define sequences

(
a

m

)

h

:=
1

m!

m−1∏

i=0

(a− ih),(6.1)

Am(p, r, h) :=
r

m!

m−1∏

i=1

(mp + r − ih),(6.2)

with A0(p, r, h) := 1. In particular Am(p, r, h) = r
mp+r

(
mp+r
m

)
h

whenever mp+

r 6= 0. Then, for h ≥ 0 and p, r, t ∈ R define probability quasi-measures:

µ(p, r, h)(xm) := Am(p, r, h),(6.3)

ν(p, r, t, h)(xm) :=

m∑

k=0

Am−k(p, k(p− h) + r, h)tk.(6.4)

and their moment generating functions Bp,r,h(z) and Dp,r,t,h(z) respectively.
Note that if h > 0 then Am(p, r, h) = hmAm(p/h, r/h) and hence these proba-
bility quasi measures can be represented as dilations:

µ(p, r, h) = Dhµ(p/h, r/h),(6.5)

ν(p, r, t, h) = Dhν(p/h, r/h, t/h).(6.6)

Therefore the corresponding moment generating functions are

Bp,r,h(z) = Bp/h(hz)r/h,(6.7)

Dp,r,t,h(z) = Dp/h,r/h,t/h(hz) =
hBp,h+r,h(z)

(h− t)Bp,h,h(z) + t
.(6.8)

These formulas allow us to derive properties of the probability quasi-measures
µ(p, r, h) and ν(p, r, t, h) directly from our previous results when h > 0, and,
after taking the limit with h → 0, for h = 0.

Proposition 6.1. For h > 0 and p, r, t ∈ R

Bp,h,h(z) = 1 + zhBp,p,h(z),(6.9)

log (Bp,1,0(z)) = zBp,p,0(z),(6.10)

Dp,r,t,0(z) =
Bp,r,0(z)

1 − ztBp,p,0(z)
.(6.11)
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Proof. First formula is a consequence of (3.3) and (6.7). Then we have

Bp,1,h(z)h − 1

h
=

Bp,h,h(z) − 1

h
= zBp,p,h(z).

Taking the limit with h → 0 we obtain (6.10).
For (6.11) we write use (6.8) and (6.9) to get

1

h

[
(h− t)Bp,h,h(z) + t

]
= 1 − (t− h)

Bp,h,h(z) − 1

h
= 1 − (t− h)zBp,p,h(z)

and then we take limit with h → 0. �

Proposition 6.2. For h ≥ 0 and p, r, s ∈ R we have

(6.12) Bp−r,s,h (zBp,r,h(z)) = Bp,s,h(z). �

Proposition 6.3. For h ≥ 0 and p, r ∈ R we have

(6.13) ν(p, r, p, h)(xm) =

(
mp + r

m

)

h

.

Proof. For h > 0 the formula is a consequence of (6.6). Then we take limit
with h → 0. �

Proposition 6.4. For h ≥ 0 and p, r, t ∈ R we have

̂µ(p, r, h) = µ(h− p,−r, h),(6.14)

̂ν(p, r, t, h) = ν(h− p,−h− r, h− t, h).(6.15)

Proof. First we note that Am(p, r, h)(−1)m = Am(h − p,−r, h) and then we
apply (6.8) and (3.14). �

Proposition 6.5. For the free transforms we have

Rµ(p,r,h)(z) = Bp−r,r,h(z) − 1(6.16)

Sµ(p,r,h)(z) =
(1 + z)h/r − 1

hz
(1 + z)(r−p)/r for h > 0,(6.17)

Sµ(p,r,0)(z) =
log(1 + z)

rz
(1 + z)(r−p)/r,(6.18)

Sν(p,0,t,0)(z) =
1

t
e

−pz

t(1+z) .(6.19)

In particular ν(p, 0, t, 0) = Dt

(
ν(1, 0, 1, 0)⊠p/t

)
.

Proof. Formulas (6.16), (6.17) are consequences of (6.7), (4.11) and (6.12).
Therefore, for h > 0 we have

(6.20) Bp,r,h

(
(1 + z)h/r − 1

h
(1 + z)−p/r

)
= 1 + z,

which leads to

(6.21) Bp,r,0

(
log(1 + z)

r(1 + z)p/r

)
= 1 + z
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and to (6.18). In particular, substituting (1 + z) 7→ e
pz

t(1+z) , we have

(6.22) Bp,p,0

(
z

t(1 + z)
e

−pz

t(1+z)

)
= e

pz

t(1+z)

which, combined with (6.11) gives

�(6.23) Dp,0,t,0

(
z

t(1 + z)
e

−pz

t(1+z)

)
=

1

1 − z
1+z

= 1 + z.

Proposition 6.6. For h > 0 and p, t ∈ R we have

µ(p, h, h)⊎t = ν(p, 0, th, h),(6.24)

ν(p, 0, 1, 0)⊎t = ν(p, 0, t, 0).(6.25)

Proof. Since Bp,0,0(z) = 1, formula (6.25) is a consequence of (6.11). �

Proposition 6.7. For h ≥ 0, t > 0, a, b ∈ R we have

µ(a, b, h) ⊲ µ(a + r, r, h) = µ(a + r, b + r, h),(6.26)

ν(a, b, t, h) ⊲ µ(a + r, r, h) = ν(a + r, b + r, t, h). �(6.27)

Proposition 6.8. Assume that h ≥ 0.
1. If p ≥ h and 0 ≤ r ≤ p then µ(p, r, h) is a probability measure with support

contained in [0,∞). If p ≤ 0, p − h ≤ r ≤ 0 then µ(p, r, h) is a probability

measure which is the reflection of µ(h− p,−r, h).
2. If either 0 ≤ 2r ≤ p, r + h ≤ p or p ≤ 2r + h, p ≤ r ≤ 0 then µ(p, r, h) is

⊞-infinitely divisible.

3. If 0 ≤ r ≤ p − h, t > 0 then ν(p, r, t, h) is a probability measure with a

compact support contained in [0,+∞). If p ≤ h + r ≤ 0, t < h then ν(p, r, t, h)
is a probability measure which is the reflection of ν(h− p,−h− r, h− t, h)
In particular, if either 0 ≤ r ≤ p − h or p ≤ h + r ≤ 0 then the sequence{(

mp+r
m

)
h

}∞

m=0
is positive definite. �

We conclude with some remarks on the probability measure ν0 := ν(1, 0, 1, 0),

for which the moments are ν0(xm) =
(
m
m

)
0

= mm

m! . From (4.9), (6.19) we have

Sν0(z) = e
−z
1+z ,(6.28)

Rν0

(
ze

−z
1+z

)
= z,(6.29)

Mν0

( z

1 + z
e

−z
1+z

)
= 1 + z.(6.30)

Theorem 6.1. The sequence
{
mm

m!

}∞

m=0
is positive definite and the correspond-

ing probability measure ν0 has compact support contained in [0, e]. Moreover,

ν0 is ⊠-infinitely divisible.

Proof. First observe that limm→∞
m

√
mm

m! = e, which implies that the support

of ν0 is contained in [0, e]. Now we recall (see Theorem 3.7.3 in [2]) that a
probability measure µ with support contained in [0,∞) is ⊠-infinite divisible if
and only if the function Σµ(z) := Sµ

(
z(1− z)−1

)
can be expressed as Σµ(z) =
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ev(z), where v : C \ [0,∞) 7→ C is analytic, satisfies v(z) = v(z) and maps the
upper half-plane C+ into the lower half-plane C−. In our case Σν0(z) = e−z

and the function v(z) = −z does satisfy these assumptions. �

Let us briefly reconstruct the way we have obtained the measure ν0. We started
with π̃ = µ(2, 1, 1), the free Poisson measure. Then

µ(p, h, h) = Dhµ(p/h, 1, 1) = Dh

(
π̃⊠

p

h
−1

)
,

so putting h = 1/n, p = 1 and using (6.24) with t = 1/h = n we have

(6.31)
(

D 1
n

(
π̃⊠n−1

))⊎n

−→ ν0, with n → ∞,

where the convergence here means that the m-th moment of
(

D 1
n

(
π̃⊠n−1

))⊎n

tends to mm

m! . Note also that from (6.29) one can calculate free cumulants of

ν0: r1 = 1, r2 = 1, r3 = 1
2 , r4 = −1

3 . Since r4 < 0, the measure ν0 is not
⊞-infinitely divisible.
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