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Abstract. We prove that the classifying stack of an reductive group
scheme over a field is very close to being proper. Using this we prove
a result about isotrivial families of varieties. Fix a polarized variety
with reductive automorphism group. To prove that every isotrivial
family with this fibre has a rational section it suffices to prove this
when the base is projective, i.e., the discriminant of the family is
empty.

1. Introduction

Consider an algebraic stack of the form [Spec(k)/G] where G is a geometrically
reductive group scheme over a field k. It turns out that such a stack is nearly
proper, see Proposition 2.5.1. Our proof of this uses ideas very similar to those
used by Totaro and Edidin-Graham in their work on equivariant Chow theory.
It seems the application of these ideas here is novel.

Next, consider a pair (V,L) consisting of a projective variety V over k and an
invertible sheaf. Also, fix an integer d ≥ 1. We would like to know if every
d-dimensional family of polarized varieties X → S, N ∈ Pic(X), all of whose
fibres are isomorphic to (V,L), has a rational section. For example this is true
if V is a nodal plane cubic.

Theorem 1.0.1. (See Theorem 2.2.3 which is slightly more general.) Assume
G = Aut(V,L) is geometrically reductive. If X → S has a rational section
whenever S is a projective variety of dimension d then there is a rational section
whenever S is a quasi-projective variety, provided dimS ≤ d.
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Loosely speaking this means that if you prove the existence of rational sections
whenever the discriminant is empty then you prove it in general. For example,
it implies that if you are trying to find rational sections of families of polarized
homogenous varieties over surfaces then it suffices to do so in the case of families
of homogenous varieties over projective nonsingular surfaces. Our proof of this
theorem depends on the result on GIT-stacks mentioned above.

In a forthcoming article, joint with Xuhua He, we use this to prove that certain
families of polarized homogeneous varieties over surfaces always have rational
sections. This is the crucial step in resolving Serre’s “Conjecture II” over
function fields of surfaces, cf. [Ser02, p. 137], and also gives a proof of the first
author’s Period-Index Theorem, cf. [dJ04], valid in arbitrary characteristic
(another proof valid in arbitrary characteristic was proved independently by
Max Lieblich, who also proved some beautiful extensions, cf. [Lie08]).

2. Isotrivial families

The title of this section is a little misleading as usually one thinks of an isotrivial
family as having finite monodromy. As the reader will see such families are
certainly examples to which our discussion applies, but we also allow for a
positive dimensional structure group. The families will be isotrivial in the sense
that the fibres over a Zariski open will be all isomorphic to a fixed variety V .

2.1. Generalities on Isom. Let U be a base scheme. Let f : X → U and
g : Y → U be proper, flat morphisms. Let N be an f -ample invertible sheaf
on X , and let L be a g-ample invertible sheaf on Y . Consider the functor that
associates to a scheme T → U over U the set of pairs (φ, α), where φ : XT → YT
is an isomorphism over T and α : φ∗LT → NT is an isomorphism of invertible
sheaves. This functor is representable, see [Gro62, No. 221-19, §4.c], [Gro63,
Corollaire 7.7.8], and [LMB00, Théorème 4.6.2.1]. We will call the representing
U -scheme IsomU ((X,N ), (Y,L)).

In fact this U -scheme is affine over U . To see this, it is first convenient to
change L and N . For every integer N > 0 there is an obvious morphism

IsomU ((X,N ), (Y,L)) → IsomU ((X,N
N ), (Y,LN )).

It is straightforward to verify that this morphism is finite. Therefore we can re-
duce to the case that L and N are relatively very ample and also have vanishing
higher direct images. Then the natural map

IsomU ((X,N ), (Y,L)) → IsomU (f∗N , g∗L)

is a closed immersion whose target is clearly affine over U , cf. [Gro63, 7.7.8,
7.7.9].

2.2. Statement of the result. Let k be an algebraically closed field of any
characteristic. We assume given a projective scheme V over k and an ample
invertible sheaf L over V . We let m = dimV . We introduce another integer
d ≥ 1 which will be an upper bound for the dimension of the base of our
families. We are going to ask the following question: Is it true that for any
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polarized family of schemes over a ≤ d-dimensional base whose general fibre is
V , there is a rational point on the generic fibre? We make this more precise as
follows.

Situation 2.2.1. Here we are given a triple (K/k,X → S,N ), with the fol-
lowing properties: (a) The field K is an algebraically closed field extension of
k. (b) The map X → S is a proper morphism to a projective variety S over
K. (c) The dimension of S is at most d. (d) We are given an invertible sheaf
N on X . (e) For a general point s ∈ S(K) we have (Xs,Ns) ∼= (VK ,LK).

The notation (VK ,LK) refers to the base change of the pair (V,L) to Spec K.
Part (e) means that there exists a nonempty Zariski open U ⊂ S over which
the morphism is flat and such that (Xs,Ns) ∼= (VK ,LK) as pairs over K for all
s ∈ U . We will see in Lemma 2.3.2 that this implies IsomU ((X,N ), (VU ,LU ))
is a torsor, hence all geometric fibres of X → S over U are isomorphic to a
suitable base change of V .

Question 2.2.2. Suppose we are in Situation 2.2.1. Is there a rational point
on the generic fibre of X → S? In other words: Is X(K(S)) not empty?

A natural problem that arises when studying this question is the possibility
of bad fibres in the family X → S. Let us define the discriminant ∆ of a
family (K/k,X → S,N ) as in Situation 2.2.1 as the Zariski closure of the set
of points s ∈ S(K) such that (Xs,Ls) is not isomorphic to (VK ,LK). A priori
the codimension of (the closure of) ∆ is assumed ≥ 1, and typically it will be 1.
In this section we show that it often suffices to answer Question 2.2.2 in cases
where the codimension of ∆ is bigger, at least as long as we are answering the
question for all families.

It is not surprising that the automorphism group G of the pair (V,L) is an
important invariant of the situation. The group scheme G has T -valued points
which are pairs (φ, α), where φ : VT → VT is an automorphism of schemes
over T , and α : φ∗LT → LT is an isomorphism of invertible sheaves. It is
representable by Subsection 2.1. The group law is given by (φ, α) · (ψ, β) =
(φ ◦ ψ, β ◦ ψ∗(α)). And G is an affine group scheme over k. In the following
theorem G◦

red denotes the reduction of the identity component of G. Note that
G◦

red is a smooth affine group scheme (since k is algebraically closed, and hence
perfect).

Theorem 2.2.3. Fix (V,L) and d as above. Assume that G◦
red is reductive.

If the answer to Question 2.2.2 is yes whenever ∆ = ∅, then the answer to
Question 2.2.2 is yes in all cases.

The proof has 2 parts: deformation and specialization. The deformation ar-
gument proves the following: For every triple (K/k,X → S,N ), there is a
dense open subset U ⊂ S and a deformation of (XU → U,N|XU

) to a triple
(K ′/k,X ′ → S′,N ′) with trivial discriminant. The specialization argument
proves the following: Every rational point of the generic fiber of X ′ → S′ spe-
cializes to a rational point of the generic fiber of X → S. Thus Question 2.2.2
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has a positive answer for (K/k,X → S,N ) if it has a positive answer for
(K ′/k,X ′ → S′,N ′).

2.3. A bijective correspondence. To deform the pair (XU → U,N|XU
),

it is convenient to first convert the pair into a G-torsor over U , deform the
torsor, and then convert this back into a triple. This subsection describes how
to convert between pairs and G-torsors. As in subsection 2.2, denote by G
the automorphism group scheme of (V,L). Following is a quick proof of a
well-known result about homogeneous spaces.

Lemma 2.3.1. Let Γ be a finite type group scheme over k acting on a nonempty,
reduced, finite type k-scheme X. If the induced morphism

Ψ : Γ×Spec k X → X ×Spec k X, (g, x) 7→ (g · x, x)

is surjective on geometric points, then it is flat so that X is a homogeneous
space under Γ. If, moreover, Γ is smooth over k, then also X is smooth over
k.

Proof. By [Gro67, Théorème 11.1.1], the set U of points in Γ×Spec kX at which
Ψ is flat is open. The morphism Ψ is equivariant for the Γ×Spec k Γ-actions,

(Γ×Spec kΓ)×Spec k(Γ×Spec kX) → Γ×Spec kX, (γ′, γ)·(g, x) := (γ′gγ−1, γ ·x),

(Γ×Spec kΓ)×Spec k(X×Spec kX) → X×Spec kX, (γ′, γ)·(x′, x) := (γ′ ·x′, γ ·x).

Therefore U is (Γ ×Spec k Γ)-invariant. Every invariant subset of Γ ×Spec k X
is of the form Γ×Spec k V for a Γ-invariant subset V of X . Since X ×Spec k X
is reduced, Ψ is flat at every point of Γ ×Spec k X mapping to a generic point
of X ×Spec k X . And such points exist by the hypothesis that Ψ is surjective.
Therefore U is nonempty, i.e., V is nonempty. Finally, by the hypothesis that
Ψ is surjective, the only nonempty, Γ-invariant open subset V of X is V = X .
Therefore U equals Γ×Spec k X , i.e., Ψ is flat.

Finally, assume that Γ is smooth over k. For any k-point x of X (which exists
since X is nonempty), the induced morphism

Ψx : Γ → X, g 7→ g · x

is flat, since it is the base change of Ψ by the morphism

X 7→ X ×Spec k X, x
′ 7→ (x′, x).

Therefore, by [Gro67, Proposition 17.7.7], X is smooth over k. �

Lemma 2.3.2. Let U be a k-scheme. Let (X → U,N ) be a pair where X → U
is a flat proper morphism and N is an invertible sheaf on X. Assume that the
geometric fiber of (X,N ) over U is isomorphic to the base change of (V,L) for
a dense set of geometric points of U . Also assume that U is reduced. Then the
scheme T := IsomU ((X,N ), (V,L)), with its natural G-action, is a G-torsor
over U .
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Proof. It suffices to prove that (X,N ) is locally in the fppf topology of U
isomorphic to the constant family (V,L) × U . To prove this we need some
notation.

Take N so large that LN is very ample on V and has vanishing higher cohomol-
ogy groups. Let n = dimΓ(V,LN ). A choice of basis of Γ(V,LN ) determines
a closed immersion i : V → Pn−1. This determines a point [i] of the Hilbert
scheme Hilb = HilbPn−1

/k
. The smooth algebraic group PGLn acts on Hilb,

and we denote by Z the orbit of [i], which is a locally closed subscheme of
Hilb. By Lemma 2.3.1, Z is a smooth scheme and the morphism PGLn → Z
associated to any k-point of Z is flat. By construction the pullback of the
universal family over Z to PGLn is canonically isomorphic to V ×PGLn, and
the invertible sheaf O(1) pulls back to LN

⊠O.

The question is local on U so we may assume that U is affine. By our choice of
N above, the invertible sheaf NN is very ample on every fibre of X over U with
vanishing higher cohomology groups. Hence after possibly shrinking U we can
find a closed immersion X → Pn−1

U which restricts to the embedding given by
the full linear series of NN on every geometric fibre. Consider the associated
moduli map m : U → Hilb. Since U is reduced, and since each pair (Xs,Ns)
for a dense set of geometric points s is isomorphic to a base change of (V,L),
we see that m(U) ⊂ Z.

This implies there is some surjective flat morphism U ′ → U and an U ′-
isomorphism X ′ ∼= V × U ′ with the property that NN pulls back to LN . The
fiber product U ′ = U ×Z PGLn parameterizes points of U together with an
autmorphism of Pn transforming the fiber of X isomorphically to i(V ). Since
PGLn → Z is surjective and flat, U ′ → U is also surjective and flat. To finish,
do the same thing for N +1 to get some U ′′ → U . Then over U ′′′ := U ′ ×U U

′′

there is an isomorphism of the pullback of (X,N ) and the base change of (V,L).
This proves the result. �

Conversely, given a left G-torsor T over U we will construct a flat proper
family of varieties X → U and an invertible sheaf N on X such that
IsomU ((X,N ), (VU ,LU )) is isomorphic to T . Of course it will turn out that X
equals (V × T )/G (as an fppf sheaf), but we need to prove this is a scheme.

The structure morphism π : T → U is a flat surjective morphism of finite type.
We are going to descend the constant family V ×T to U using a descent datum

φ : V × T ×U T → V × T ×U T .

Before we describe the descent datum, we recall that the map

Ψ : G× T → T ×U T , (g, t) 7→ (g · t, t)

is an isomorphism. Also, let us denote m : V × G → V the map (v, g) 7→ gv,
where gv denote the natural action of g ∈ G on v ∈ V . Finally, we take

φ = IdV ×Ψ ◦m× IdT ◦ (IdV ×Ψ)−1.
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To verify the cocycle condition on T ×U T ×U T , we can think of φ as the
map (v, gt, t) 7→ (g−1v, gt, t). If on V × T ×U T ×U T we have a point
(v, g1g2t, g2t, t) then pr∗23(φ)(v, g1g2t, g2t, t) = (g2v, g1g2t, g2t, t) and pr∗12(φ) ◦
pr∗23(φ)(v, g1g2t, g2t, t) = (g1g2v, g1g2t, g2t, t) and pr∗13(φ)(v, g1g2t, g2t, t) =
((g1g2)v, g1g2t, g2t, t). Thus pr

∗
13(φ) = pr∗12(φ) ◦ pr

∗
23(φ) as desired.

Because all the maps in question lift canonically to the invertible ample sheaf
L this actually defines a descent datum on the pair (V,L) for T → U . As
L is ample, this descent datum is effective, cf. [Gro62, No. 190, §B.1]. Thus
there exists a pair (X → U,N ) over U and an isomorphism δ : T ×U (X,N ) →
T × (V,L) such that φ equals pr∗1δ ◦ pr

∗
2δ

−1.

Conclusion 2.3.3. The above constructions give a bijective correspondence
between pairs (X → U,N ) and left G-torsors over U in case U is a reduced
scheme over k.

Remark 2.3.4. The construction of the family (X,N )/U starting from the
torsor T works more generally when k is a ring as long as: (1) V is a flat
projective scheme of finite presentation over k, (2) L is ample, and (3) the
automorphism group scheme G = Aut(V,L) is flat over k.

2.4. Deforming torsors over a Henselian DVR. Before proving The-
orem 2.2.3, it is useful to say what is known without the hypothesis that G
is reductive. We thank Ofer Gabber, Jean-Louis Colliot-Thélène and Max
Lieblich for explaining the following proposition.

Proposition 2.4.1. Let R be a Henselian DVR with residue field k, and let G
be a flat separated group scheme of finite type over Spec R. Every torsor for
the closed fiber Gk over Spec k is the closed fiber of a torsor for G over Spec R.

Proof. We first give a proof when G is affine which is all we will use in this
paper. The usual proof that every affine group scheme over a field is linear
extends to affine, flat group schemes over a DVR, see [ABD+65, Exposé VIB,
Remarque 11.11.1]. Choose a closed immersion G→ GLn,R. The quotient fppf
sheaf X = GLn,R/G is an algebraic space over R, cf. [Art74, Corollary 6.3].
In fact, by [Ana73, Proposition 3.4.2], there exists an fpqc cover Spec R′ →
Spec R such that the pullback Spec R′×Spec RX is a scheme. After base change
to R′, by [ABD+65, Exposé VIA, Proposition 9.2] the quotient morphism

GLn,R′ → Spec R′ ×Spec R X

is faithfully flat, in fact is a G-torsor, and Spec R′ ×Spec R X is smooth over
R′ . But each of these statements (in the category of algebraic spaces) can be
checked after faithfully flat base change. Thus also GLn,R → X is faithfully
flat, in fact a G-torsor, and X is smooth over R. SinceH1(k,GLn,k) = {1}, any
torsor for Gk is the fibre of the map GLn,k → Xk over a k-point of X . Since R
is Henselian and since X is smooth, the map X(R) → X(k) is surjective, and
hence every Gk-torsor lifts.
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In the general case, i.e., when G is not necessarily affine, we argue as fol-
lows. By [LMB00, Prop. 10.13.1], which relies upon Artin’s criterion for
algebraicity of a stack, the classifying stack BG is an algebraic stack over
Spec R. By [LMB00, Thm. 6.3], for each Gk-torsor there exists an affine R-
scheme X , a smooth morphism φ : X → BG, and a k-point x of X such that
φ(x) corresponds to the given Gk-torsor. Denote by t : Spec R → BG the
1-morphism associated to the trivial G-torsor. Since φ is smooth, the base-
change prR : Spec R ×t,BG,φ X → Spec R is smooth. Since t is a surjective
flat morphism, the base-change, prX : Spec R×t,BG,φX → X is surjective and
flat. By [Gro67, §6.5], it follows that X is smooth over Spec R. Since R is
Henselian and X is smooth over Spec R, X(R) → X(k) is surjective; in partic-
ular there is an R-morphism Spec R → X extending the given k-point of X .
The composition of this morphism with φ determines a G-torsor over Spec R
whose closed fiber is isomorphic to the given Gk-torsor over Spec k. �

Corollary 2.4.2. Let R be a DVR with residue field k, and let G be a sepa-
rated, finite type, flat group scheme over Spec R. Let U be a finite type, integral
k-scheme, and let TU → U be a Gk-torsor. There exists an integral, flat, quasi-
projective R-scheme Y , with nonempty special fibre Yk, a G-torsor T → Y ,
and an open immersion j : Yk → U such that j∗TU is isomorphic to Tk as
Gk-torsors over Yk.

T

��

Tk

��

oo
j

// TU

��

Y Ykoo
j

// U

Proof. First we show there exists an integral, flat, quasi-projective R-scheme Z
and an open immersion j : Zk → U . It suffices to prove this after replacing U by
a dense open subset. Thus first replace U by a dense open affine. And then re-
place U by the regular locus Reg(U) which is open by [Gro67, Corollaire 6.12.5]
and which is dense since it contains the generic point of U (the stalk being a field
since U is integral). In particular this implies that U → Spec k is a local com-
plete intersection morphism, see [Gro67, Proposition 19.3.2]. So after shrink-
ing U some more we may assume that U = Spec k[x1, . . . , xn]/(f1, . . . , fc) is
a complete intersection, i.e., dimU = n − c. At this point we simply put
Z = Spec R[x1, . . . , xn]/(F1, . . . , Fc), where Fi ∈ R[x] lifts fi.

Define R′ to be the local ring of Z at the generic point of Zk. Then R′ is a
Noetherian 1-dimensional local ring. Denote by π a uniformizer of R. Clearly,
π maps into mR′ and R′/πR′ is the function field of Zk, i.e., the function field
of U . Because R′ is R-flat, π is a nonzerodivisor. Thus R′ is a DVR with
residue field K = k(U).

By Proposition 2.4.1, the Gk torsor over R′/πR′ lifts to a G-torsor T h over
the Henselization of R′. By a standard limit argument, this lift exists over an
étale extension R′ → R′′ contained in the Henselization of R′. Note that the
residue field R′′/πR′′ of R′′ is still the function field of U . By a standard limit
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argument, there is an étale morphism Y → Z such that Yk → Zk is an open
immersion and such that R′′ is the local ring of Y at the generic point of Yk.
After replacing Y by an open subscheme, there is a G-torsor T over Y that
pulls back to T h over R′′. We leave it to the reader to see that, after possible
shrinking Y again, this torsor satisfies the conditions of the corollary. �

Corollary 2.4.2 above is a weak version of the deformation principle that we
will establish later on. The remaining issue is whether there exists a datum
(Y → Spec R, T → Y, j : YK → U) such that the generic fiber of Y → Spec R
is projective. Presumably this is not always possible, but in case G is reductive
we will show that it is.

Corollary 2.4.2 can be used to lift problems in char p > 0 to characteristic 0.
Suppose that R is a complete discrete valuation ring with algebraically closed
residue field k. Let Ω be an algebraic closure of the fraction field of R. We
have in mind the case where char(k) = p > char(Ω) = 0. Suppose that VR is a
flat projective R scheme, and that LR is an ample invertible sheaf over VR. We
assume that VΩ and Vk are varieties. Let GR denote the automorphism group
scheme of (VR,LR) over R.

Corollary 2.4.3. Notations and assumptions as above. Fix d ∈ N. Assume
that GR is flat over R. If the answer to Question 2.2.2 is always ”yes” for the
pair (VΩ,LΩ) then the answer is always ”yes” for the pair (Vk,Lk).

Proof. Let (K/k,X → S,N ) be a triple as in Situation 2.2.1 for the pair
(Vk,Lk). Let U be the open subscheme of S over which all geometric fibres
of (X,N ) are isomorophic to the base change of (Vk,Lk). The construction in
Subsection 2.3 gives a corresponding GK-torsor TU over U .

There exists an extension of complete discrete valuation rings R ⊂ R′ such that
the induced extension of residue fields is K/k, see [Gro63, Chapitre 0, 10.3.1].
We apply Corollary 2.4.2 to obtain Y → Spec R′, T → Y and j : YK → U .
According to Conclusion 2.3.3 and Remark 2.3.4 there exists a pair (X ′ →
Y,N ′) over Y whose restriction to YK is isomorphic to (j∗X |U , j∗N|U ).

Let Ω′ be an algebraic closure of the field of fractions Q(R′) of R′. Since
R ⊂ R′ we may and do assume that Ω ⊂ Ω′. Note that we do not know that
the geometric fibre YΩ′ is irreducible. However, our assumptions imply that
X ′ has a Ω′(Y ′)-valued point for every irreducible component Y ′ of YΩ′ . To
conclude we apply the lemma below. �

Lemma 2.4.4. Suppose that R is a DVR with algebraically closed residue field
K. Let Ω be an algebraic closure of Q(R). Let Y → Spec R be a flat, finite type
morphism, X → Y a projective morphism and let ξ ∈ YK . Assume in addition
that (a) ξ is the generic point of an irreducible component C of the scheme
YK , (b) the scheme YK is reduced at ξ, and (c) for every irreducible component
Y ′ of YΩ there exists a Ω(Y ′)-valued point of X. Then X has a K(C)-valued
point.
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Proof. Note that right from the start we may replace R by its completion, and
hence we may assume that R is excellent, cf. [Gro67, Scholie 7.8.3(iii)]. This
will guarantee that the integral closure of R in a finite extension of Q(R) is
finite over R, cf. [Gro67, Scholie 7.8.3(vi)]. (In fact this is not necessary if the
fraction field of R has characteristic 0, cf. [Mat89, Lemma 1, p. 262].)

By hypothesis, and a standard limit argument, there is a section of XΩ → YΩ
over a dense open V ⊂ YΩ, say s : V → XΩ. By a standard limit argument,
there is a finite extension Q(R) ⊂ L such that V and s are defined over L. Let
R′ be the integral closure of R in L. Since R is excellent the extension R ⊂ R′

is a finite extension of DVRs. The residue field of R′ is isomorphic to K as K
is algebraically closed.

By construction the scheme YR′ = Y ×R R
′ has special fibre equal to YK . The

local ring O of YR′ at ξ is a DVR. This follows from flatness of YR′/R′ and
property (b), see proof of 2.4.2. Thus the image of Spec Q(O) → YL is one of
the generic points of YL and hence contained in V . Since XR′ → YR′ is proper,
we see that s|Spec Q(O) extends to a O-valued point of XR′ , and in particular
we obtain a κ(ξ) = K(C)-valued point of (XK)κ(ξ) = XK(C) as desired. �

For example this corollary always applies to the case where (V,L) is the pair
consisting of a Grassmanian and its ample generator.

2.5. Deforming torsors for a reductive group. Under the additional
hypothesis that G is a geometrically reductive linear algebraic group we can
prove a stronger version of Corollary 2.4.2. First we prove that BG is proper
over k in some approximate sense.

Proposition 2.5.1. Let G be a geometrically reductive group scheme over the
field k. For each integer c, there exists a smooth k-scheme X, a smooth mor-
phism φ : X → BG, and an open immersion j : X → X such that

(i) X is a projective k-scheme,
(ii) for every infinite field K and every morphism Spec K → BG, there

exists a lift Spec K → X under φ.
(iii) X −X has codimension ≥ c,

The proof uses geometric invariant theory to construct X ⊂ X̄. With more
care it may be possible to remove the assumption that K is infinite from (ii).

Proof. Step 1. A “nice” projective representation. By definition G
is a linear group scheme. Let V be a finite dimensional k-vector space, and
let ρ′ : G → GL(V ) be a closed immersion of group schemes. Consider ρ :
G → SL(V ⊕ k ⊕ k) defined by ρ(g) = diag(ρ′(g), det(ρ′(g))−1, 1) (diagonal
blocks). Observe that the intersection of Image(ρ) and GmId is the trivial
group scheme. Thus, without loss of generality, assume ρ is a closed embedding
of G into SL(V ) such that Image(ρ) ∩ GmId is the trivial group scheme. In
other words, the induced morphism of group schemes Pρ : G → PGL(V ) is a
closed immmersion.
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Step 2. Making the “non-free” locus have codimension ≥ c. De-
note the dimension of V by n > 1. Let W be a finite-dimensional k-vector
space of dimension c. Denote by H the finite-dimensional k-vector space
Hom(W,Hom(V, V )). There is a linear action σ : GL(V ) × H → H , where
an element g ∈ GL(V ) acts on a linear map h : W → Hom(V, V ) by
σ(g, h)(w) = g ◦ h(w). This restricts to a linear action of G on H .

Step 3. The GIT quotient. The linear action of G on H determines an
action of G on the projective space PH of lines in H . It comes with a natural
linearization of the invertible sheaf L := OPH(1) so that the action of G on
H0(PH,O(1)) = Hom(H, k) is the dual of ρ. Denote by PHss, resp. PHs

(0),

the semistable, resp. properly stable, locus for the action of G on the pair
(PH,L). Denote by X the uniform categorical quotient PHss � G and denote
by p : PHss → X the quotient morphism. These exist by [MFK94, Thm. 1.10,
App. 1.A, App. 1.C]. By the remark on [MFK94, p. 40], X is projective. Also,
some power of L is the pullback under p of an ample invertible sheaf on X .
Thus (i) is satisfied for X.

Step 4. A large open subset of PHss
(0) which is a G-torsor. For every

element w ∈ W − {0}, define Fw to be the homogeneous, degree n polynomial
on H defined by Fw(h) = det(h(w)). For every g ∈ SL(V ),

Fw(σ(g, h)) = det(σ(g, h)(w)) = det(gh(w))
= det(g)det(h(w)) = det(h(w)) = Fw(h).

Thus Fw is invariant for the action of SL(V ). Thinking of Fw as an element
of Γ(PH,O(n)) it is invariant for the action of G. Denote by Hw ⊂ H , resp.
PHw ⊂ PH , the open complement of the zero locus of Fw. By what was
said above, PHw is contained in PHss. The next step is to prove that PHw is
contained in PHs

(0), and, in fact, the geometric quotient PHw → PHw/G is a

G-torsor.

Let W ′ be a subspace of W such that W = span(w)⊕W ′. Denote by H ′ ⊂ H
the subspace H ′ = Hom(W ′,Hom(V, V )). There is a morphism

qw : Hw → GL(V )×H ′, h 7→ (h(w), h(w)−1h|W ′).

The morphism qw is GL(V )-equivariant if we act on GL(V )×H ′ on the first
factor only. There is an inverse morphism

rw : GL(V )×H ′ → Hw

sending a pair (g, h′) to the unique linear map W → Hom(V, V ) such that
w 7→ g and w′ 7→ gh′(w′) for every w′ ∈ W ′. Thus, as a scheme with a left
GL(V )-action, Hw is isomorphic to GL(V ) × H ′. For the same reason, as a
scheme with a PGL(V )-action, PHw is isomorphic to PGL(V )×H ′. Thus the
categorical quotient of PHw by the action of G is the induced morphism PHw →
(PGL(V )/G) × H ′. Now the categorical quotient PGL(V ) → PGL(V )/G,
which is also a geometric quotient, is a G-torsor, see [ABD+65, Exposé VIA,
Théorème 3.2] or [MFK94, Proposition 0.9]. Thus also the categorical quotient
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PHw → (PGL(V )/G) × H ′ is a G-torsor. In particular, the action of G on
PHw is proper and free so that PHw is contained in PHss

(0).

Denote U =
⋃
PHw, where the union is over all w ∈ W − {0}. This is a

G-invariant open subscheme of PHs
(0). Therefore there exists a unique open

subscheme X ⊂ X such that p−1(X) = U . By the last paragraph, p : T → X
is a G-torsor. Since U is smooth and p is flat, by [Gro67, §6.5] also X is smooth.

Step 5. Lifting K-valued points of BG to X, K infinite. Associated
to the G-torsor U over X , there is a 1-morphism φ : X → BG. There are
also morphisms of stacks [H/G] → BG and [PH/G] → BG because BG =
[Spec k/G]. By construction, X is 2-equivalent to an open substack of [PH/G]
as a stack over BG. The morphism [PH/G] → BG is smooth, since PH
is smooth. Hence X → BG is smooth. For every field K and 1-morphism
Spec K → BG, the 2-fibered product Spec K ×BG [H/G] is a K-vector space,
and Spec K×BG [PH/G] is the associated projective space. Thus Spec K×BG

[PH/G] ∼= P
cn2−1. Finally, Spec K ×BG X is a nonempty open subscheme of

Spec K ×BG [PH/G]. Since K is infinite every dense open subset of Pdn2−1
K

contains a K-point. This proves (ii).

Step 6. The codimension of X − X is large. Finally, the codimension
of X − X is at least as large as the codimension of PH − U . Choosing a
basis (w1, . . . , wd) for W , PH − U is contained in the common zero locus of
Fw1

, . . . , Fwc
, which clearly has codimension c. Therefore X −X has codimen-

sion at least c in X . This proves (iii). �

Corollary 2.5.2. Let the field k and the group scheme G be as in Proposition
2.5.1. Let R be a DVR containing k with residue field K. Let U be a finite
type, integral K-scheme, and let TU → U be a G-torsor. There exists a triple
(Y → Spec R, T → Y, j : YK → U) as in Corollary 2.4.2 with the additional
property that the generic fiber of Y is projective.

Proof. We may assume that dimU > 0. Let c be an integer larger than dim(U).
Let (φ : X → BG,X ⊂ X) be as in Proposition 2.5.1. The torsor TU corre-
sponds to a 1-morphism U → BG. By condition (ii), the base-change morphism
Spec K(U) → BG lifts to a morphism Spec K(U) → X . (Note that K(U) is
infinite since dimU > 0.) After replacing U by a dense open subscheme, this
comes from a morphism f : U → X lifting U → BG. Also, replace U by an
open subscheme that is quasi-projective, say a nonempty open affine. Then
for some positive integer N , there is a locally closed immersion of K-schemes,
f ′ : U → (X × P

N
k )K such prX ◦ f ′ equals f . Denote by m the codimension of

f ′(U) in (X × P
N
k )K .

The scheme (X × P
N
k )R is flat and projective over Spec R. Choose a closed

immersion in P
M
R for some positive integer M . As in the proof of 2.4.2 we will

use that the scheme U is a local complete intersection at a general point, and
we will use that X is smooth over k. This implies that f ′(U) is dense in a
component of a complete intersection of (X × P

N
k )K in P

M
K . More precisely,
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for some positive integer e, there exist homogoneous, degree e polynomials
F1, . . . , Fm on P

M
K such that the scheme Y K := V(F1, . . . , Fm)∩(X×P

N
k )K has

pure dimension dim(U) and contains a nonempty open subscheme U ′ that is an

open subscheme of f ′(U). Let F̃1, . . . , F̃c be homogeneous, degree e polynomials
on P

M
R such that for every i = 1, . . . ,m,

(∗) F̃i ≡ Fi (mod mR).

Denote by Y the zero scheme V(F̃1, . . . , F̃m)∩ (X ×P
N
k )R. Then Y is flat over

Spec R by Grothendieck’s lemma, see [Mat89, Corollary, p. 179]. The closed
fiber of Y equals Y K . Moreover,

dim((X −X)× P
N
k )−m ≤ dimX − c+N −m = dim f ′(U)− c < 0.

It is easy to see that the set of all possible choices of F̃i satisfying (∗) forms a
Zariski dense set of points in the relevant vector space of degree e polynomials
over the field of fractions Q(R) of R. Thus the dimension count shows there

exists a choice of F̃1, . . . , F̃c such that Y Q(R) does not intersect
(
(X − X) ×

P
N
k

)
Q(R)

. In other words, the generic fiber of Y → Spec R is contained in

(X × P
N
k )Q(R).

Let η be a generic point of Y that specializes to the generic point of U ′. Replace
Y by the closure of η, so that now Y is integral. (Presumably, a suitable
application of Bertini’s theorem could be used to replace this step.) Then Y
is an integral, flat, projective R-scheme, the closed fiber contains U ′ as an
open subscheme, and the generic fiber is contained in Spec R×Spec k (X×P

N
k ).

Define

Y = Y −
(
Y ×Spec R Spec K − U ′

)
.

This is an integral, flat, quasi-projective R-scheme whose generic fiber is pro-
jective. Moreover, YK equals U ′, which admits a dense, open immersion in S.
Finally, the projection prX : Y → X , and the 1-morphism φ ◦ prX : Y → BG
determine a G-torsor T over Y . By construction, the restriction of this G-
torsor to U ′ is isomorphic to the pullback of TU by the open immersion, as
desired. �

Remark 2.5.3. We remark that we did not claim that the generic fibre of Y →
Spec (R) is geometrically irreducible. Since X is smooth and geometrically

irreducible over k, it seems that with a careful choice of the F̃i and some
additional arguments one can obtain this property as well having YQ(R) smooth
over Q(R).

Next we deduce a corollary to help prove Theorem 2.2.3. Let k be an alge-
braically closed field, and let (V,L) be a pair of a projective k-scheme and
an ample invertible sheaf. Denote by G/k the group scheme G = Aut(V,L).
Let (K/k,X → S,N ) be as in Situation 2.2.1. Denote by G◦

red the reduced,
connected component of the identity of G.
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Corollary 2.5.4. Notations as above. Let R be a DVR containing k and
with residue field K. If G◦

red is reductive, there exists an integral, flat, quasi-

projective R-scheme Y , a projective, flat morphism f : X̃ → Y , an invertible

sheaf Ñ on X, and an open immersion j : YK → S such that:

(i) every geometric fiber of (X̃, Ñ ) over Y equals the base-change of (V,L),

(ii) the restriction of (X̃, Ñ ) to YK is isomorphic to the pullback of
j∗(X,N ), and

(iii) the generic fiber of Y → Spec R is projective.

In particular, let S′ be an irreducible component of the geometric generic fibre

of Y → Spec R. Then (X̃ → S′, Ñ ) over R is a triple (K ′/k,X ′ → S′,N ′)
with empty discriminant.

Proof. The hypothesis that G◦
red is reductive implies that it is a geometrically

reductive group scheme over k by a result of Haboush, see [Hab75] and [MFK94,
Appendix 1.A, p. 191]. Note that G◦

red is a closed normal subgroup scheme of
G and that the quotient G/G◦

red is a finite group scheme. A finite group scheme
over k is geometrically reductive, and an extension of geometrically reductive
group schemes is reductive, see [Fog69, Exercise, p. 189 and Lemma 5.57, p.
193]. Hence G is geometrically reductive. Thus the result of this Corollary
follows from Corollary 2.5.2 above by applying the bijective correspondence of
Conclusion 2.3.3. �

Proof of Theorem 2.2.3. Let us start with an arbitrary triple (K/k,X →
S,N ). Let R = K[[t]]. So R is Henselian, contains k and has residue field

K. Let X̃ → Y → Spec R and Ñ be as in Corollary 2.5.4. Denote by Ω/k an
algebraic closure of the field of fractions Q(R) of R. Let S′ be any irreducible

component of YΩ and let X ′ = X̃|S′ , N ′ = Ñ |S′ . Thus (Ω/k,X ′ → S′,N ′) is a
triple as in Situation 2.2.1. By construction, this has empty discriminant. By
hypothesis, the generic fiber of X ′ → S′ has a K ′(S′)-point. At this point we
apply Lemma 2.4.4 to conclude. �

3. Simple applications

As mentioned in the introduction, our main application of these results is to
homogeneous spaces over fraction fields, which will appear in a forthcoming
article. But in this section we want to indicate some simple applications of
Theorem 2.2.3.

3.1. Fermat Hypersurfaces. As a first case we take V a Fermat hypersur-

face of degree d in P
d2−1

V : T d
0 + T d

1 + . . . T d
d2−1 = 0,
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with L = OV (1), say over the complex numbers C. In this case the group
scheme G is an extension of a finite group by Gm so certainly reductive. Con-
sider the following family with general fibre (V,L) over P2:

(∗)
∑

0≤i,j≤d−1

X iY jZ2d−2−i−jT d
i+dj = 0,

We learned about this family in personal communication with Tom Graber.
This family does not have a rational point over k(P2). The reader may enjoy
finding an elementary proof of this by looking at what it means to have a
polynomial solution to the above. We conclude from Theorem 3.1 that there is
a smooth projective family over a projective surface with every fibre isomorphic
to (V,L), without a rational section. We like this example because it is not
immediately obvious how to write one down explicitly.

There is another reason why the family given by (∗) is interesting. Tsen’s
theorem asserts that, if n ≥ d2 then any degree d hypersurface X ⊂ P

n
F , where

F is the function field of a surface has a rational point. The authors of this
paper wonder what the obstruction to the existence of a rational point is in

the boundary case, namely degree d in P
d2−1. One guess is that it is a Brauer

class, i.e., an element α in the Brauer group of F such that for finite extensions
F ′/F one has: X(F ′) 6= ∅ ⇔ α|F ′ = 0. However, the example above shows
that this is not the case.

Namely, in our example F = C(x, y) where x = X/Z and y = Y/Z. Anand
Depokar pointed out that (∗) obtains a rational point over F (ξ) where ξ is a
dth root of a nonzero polynomial of the form

f(x, y) = −
∑

0≤i,j≤d−1,(i,j) 6=(0,0)

ai,jx
iyj .

(Just take T0 = ξ and Ti+jd = a
1/d
i,j .) Let C ⊂ P

2 be an irreducible curve, not
the line at infinity Z = 0. Suppose that α ramifies along C. The ramification
data gives a cyclic extension C(C) ⊂ C(C)[g1/d

′

] of degree d′, where 1 < d′|d.
There is a choice of of ai,j such that the rational function f(x, y) restricts to
a rational function on C such that both f |C and g−1f |C are not d′th powers.
(Left to the reader.) Thus the pullback of α to F ′ is still ramified along the
pullback of C to the surface whose function field is C(x, y)(ξ). Contradiction.
Hence C does not exist. However, the only Brauer class on P

2 ramified along
a single line is 0.

3.2. Projective spaces. Another case is where we take the pair (V,L) to
be (Pn,O(n + 1)). Note that O(n + 1) = ω−1

Pn so the families in question
are canonically polarized, and we are just talking about the problem of hav-
ing nontrivial families of Brauer-Severi varieties. In particular, our theorem
reduces the problem of proving the nullity of the Brauer group of a curve to
the problem of proving the nonexistence of Brauer-Severi varieties having no
rational sections over projective nonsingular curves. As far as we know this is
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not really helpful, since the proof of Tsen’s theorem is pretty straigthforward
anyway. However, it illustrates the idea!
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mathématique, Paris, 1962.
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