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Abstract. This paper studies Emerton’s Jacquet module functor
for locally analytic representations of p-adic reductive groups, intro-
duced in [Eme06a]. When P is a parabolic subgroup whose Levi
factor M is not commutative, we show that passing to an isotypical
subspace for the derived subgroup ofM gives rise to essentially admis-
sible locally analytic representations of the torus Z(M), which have a
natural interpretation in terms of rigid geometry. We use this to ex-
tend the construction in of eigenvarieties in [Eme06b] by constructing
eigenvarieties interpolating automorphic representations whose local
components at p are not necessarily principal series.
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1 Introduction

1.1 Background

Let G be a reductive group over a number field F . The automorphic represen-
tations of the group G(A), where A is the adèle ring of F , are central objects
of study in number theory. In many cases, it is expected that the set Π(G) of
automorphic representations contains a distinguished subset Π(G)arith of rep-
resentations which are (in some sense) “definable over Q”. The subject of this
paper is the p-adic interpolation properties of these representations (and their

0The second author is grateful for the support of EPSRC Postdoctoral Fellowship
EP/F04304X/2.
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associated Hecke eigenvalues). Following the pioneering work of Coleman and
Coleman-Mazur [Col96, Col97, CM98] for the automorphic representations at-
tached to modular forms with nonzero Hecke eigenvalue at p, it is expected
that these Hecke eigenvalues should be parametrised by p-adic rigid spaces
(eigenvarieties).

A very general construction of eigenvarieties is provided by the work of Emer-
ton [Eme06b], using the cohomology of arithmetic quotients of G. For any
fixed open compact subgroup Kf ⊆ G(Af ) (where Af is the finite adèles of F ),
and K◦

∞ the identity component of a maximal compact subgroup of G(F ⊗R),
the quotients Y (Kf ) = G(F )\G(A)/KfK

◦
∞ are real manifolds, equipped with

natural local systems VX for each algebraic representation X of G. The coho-
mology groupsHi(Y (Kf ),VX) are finite-dimensional, and passing to the direct
limit over Kf gives an admissible smooth representation Hi(VX) of G(Af ).
Every irreducible subquotient of Hi(VX) is the finite part of an automorphic
representation; we say that the representations arising in this way are cohomo-
logical (in degree i).

Emerton’s construction proceeds in two major steps. Fix a prime p above

p and an open compact subgroup K(p) ⊆ G(A(p)
f ) (a “tame level”). Firstly,

from the spaces Hi(Y (K(p)Kp),VX) for various open compact subgroups Kp ⊆

G = G(Fp), Emerton constructs Banach space representations H̃i(K(p)) of G.

For any complete subfield L of Fp, the spaces H̃i(K(p))la of locally L-analytic
vectors are locally L-analytic representations of G, and there are natural maps

Hi(VX)K
(p)

→ Homg(X
′, H̃i(K(p))la) (1.1)

where g = LieG. In many cases, these maps are known to be isomorphisms; if
this holds, the automorphic representations which are cohomological in degree
i are exactly those which appear as subquotients of Homg(X

′, H̃i(K(p))la) for
some X and tame level K(p).

The second step in the construction is to extract the desired information from
the space H̃i(K(p))la. This is carried out by applying the Jacquet module func-
tor of [Eme06a], for a Borel subgroup B ⊆ G. This then produces an essentially
admissible locally analytic representation of the Levi factor M of B, which is
a torus. There is an anti-equivalence of categories between essentially admis-
sible locally analytic representations of M and coherent sheaves on the rigid-
analytic space M̂ parametrising characters of M . The eigenvariety E(i,K(p))
is then constructed from this sheaf by passing to the relative spectrum of the
unramified Hecke algebra Hsph of K(p); points of this variety correspond to
characters (κ, λ) ∈ M̂ ×SpecHsph such that the (M = κ,Hsph = λ)-eigenspace
of JB(H̃

i(K(p))la) is nonzero. Hence if the map (1.1) above is an isomorphism,
there is a point of E(i,K(p)) for each automorphic representation π =

⊗
v πv

which is cohomological in degree i with (π
(p)
f )K

(p)

⊗ JB(πp) 6= 0.
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1.2 Statement of the main result

In this paper, we consider the situation where B is replaced by a general
parabolic subgroup P of G. This extends the scope of the theory in two ways:
firstly, it may happen that no Borel subgroup exists (G may not be quasi-split);
and even if a Borel subgroup exists, there will usually be automorphic represen-
tations for which JB(πp) = 0, which do not appear in Emerton’s eigenvariety.
As above, we choose a number field F , a connected reductive group G over F ,
and a prime p of F above the rational prime p. Let G = G×F Fp, a reductive
group over Fp, and G = G(Fp). Let us choose a parabolic subgroup P of G (not
necessarily arising from a parabolic subgroup of G), with unipotent radical N ;
and letM be a Levi factor of P , with centre Z and derived subgroup D. We
write G = G(Fp), and similarly for P,M,D,Z. We choose a complete extension
L of Qp contained in Fp, so G,P,M,D,Z are locally L-analytic groups.
Let Γ = D ×G(Ap

f )× π0, where π0 is the component group of G(F ⊗ R). Let
us choose an open compact subgroup U ⊆ Γ (this is the most natural notion of
a “tame level” in this context), and a finite-dimensional irreducible algebraic
representationW ofM. As we will explain below, the Hecke algebra H(Γ//U)
can be written as a tensor product Hram ⊗Hsph, where Hsph is commutative,
and Hram is finitely-generated (and supported at a finite set of places S).

Theorem (Theorem 6.3). There exists a rigid-analytic subvariety E(i, P,W,U)

of Ẑ × SpecHsph, endowed with a coherent sheaf F(i, P,W,U) with a right
action of Hram, such that:

1. The natural projection E(i, P,W,U) → z′ has discrete fibres. In particu-
lar, the dimension of E(i, P,W,U) is at most equal to the dimension of
Z.

2. The point (χ, λ) ∈ Ẑ × SpecHsph lies in E(i, P,W,U) if and only if the

(Z = χ,Hsph = λ)-eigenspace of HomU

(
W,JP (H̃

i)la

)
is nonzero. If

this is so, the fibre of F(i, P,W,U) at (χ, λ) is isomorphic as a right
Hram-module to the dual of that eigenspace.

3. If there is a compact open subgroup G0 ⊆ G such that (H̃i
la)

U(p)

is iso-
morphic as a G0-representation to a finite direct sum of copies of C la(G0)
(where U (p) = U ∩ G(Ap

f )), then E(i, P,W,U) is equidimensional, of di-
mension equal to the rank of Z.

Now let us suppose that W is absolutely irreducible, and write Π(i, P,W,U)
for the set of irreducible smooth G(Af ) × π0-representations πf such that
JP (πf )

U 6= 0, and πf appears as a subquotient of the cohomology spaceHi(VX)
for some irreducible algebraic representation X of G such that (X ′)N ∼=W ⊗χ
for a character χ. To any such πf , we may associate the point (θχ, λ) ∈

Ẑ × SpecHsph, where θ is the smooth character by which Z acts on JP (πp),
and λ the character by which Hsph acts on JP (πf )

U . Let E(i, P,W,U)cl denote
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the set of points of Ẑ × SpecHsph obtained in this way from representations
πf ∈ Π(i, P,W,U).

Corollary (Corollary 6.4). If the map (1.1) is an isomorphism in degree i
for all irreducible algebraic representations X such that (X ′)N is a twist of
W , then E(i, P,W,U)cl ⊆ E(i, P,W,U). In particular, the Zariski closure of
E(i, P,W,U)cl has dimension at most dimZ.

In the special case when G(F ⊗ R) is compact modulo centre, a related state-
ment has been proved (by very different methods) by the second author [Loe11].
If P1 and P2 are two different choices of parabolic, with P1 ⊇ P2, we have a
relation between the eigenvarieties attached to P1 and P2 under a mild addi-
tional hypothesis, namely that the tame level be of the form U (p) × Up, with
U (p) an open compact subgroup away from p and Up an open compact sub-
group of D1 = [M1,M1] which admits a certain decomposition with respect to
the parabolic P2∩D1 (see §5.2 below). In this situation, we have the following:

Theorem (Theorem 6.5). If U is of the above type, then the space
E(i, P1,W,U) is equal to the union of two subvarieties E(i, P1,W,U)P2−fs

and E(i, P1,W,U)P2−null, which are respectively endowed with sheaves of
Hram-modules F(i, P,W,U)P2−fs and F(i, P,W,U)P2−null whose direct sum is
F(i, P,W,U).
If πf ∈ Π(i, P,W,U) and πf is not annihilated by the map (1.1), then the point
of E(i, P1,W,U) corresponding to πf lies in the former subvariety if JP2(πp) 6=
0, and in the latter if JP2(πp) = 0. Moreover, there is a closed subvariety of

E(i, P2,W
N12 , U ∩D2) whose image in Ẑ1 × SpecHsph is E(i, P1,W,U)P2−fs.

2 Preliminaries

2.1 Notation and definitions

Let p be a prime. Let K ⊇ Qp be a complete discretely valued field, which will
be the coefficient field for all the representations we consider, and L a finite
extension of Qp contained in K. If V is a locally convex K-vector space, we
let V ′ denote the continuous dual of V . We write V ′

b for V ′ endowed with the
strong topology (which is the only topology on V ′ we shall consider).
Let S be an abstract semigroup. A topological representation of S is a locally
convex Hausdorff topological K-vector space V endowed with a left action of
S by continuous operators. If S has a topology, we say that the representation
is separately continuous if the orbit map of each v ∈ V is a continuous map
S → V , and continuous if the map S × V → V is continuous. In particular,
this applies when S is a topological K-algebra and V is an S-module, in which
case we shall refer to V as a separately continuous or continuous topological
S-module.
If G is a locally compact topological group and V is a continuous representation
of G, then V ′ is a module over the algebra D(G) of measures on G [Eme04,
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5.1.7], defined as C(G)′ where C(G) is the space of continuous K-valued func-
tions on G. If G is a locally p-adic analytic group, then for any open compact
subgroup H ⊆ G, the subalgebra D(H) is Noetherian, and we say V is admis-
sible continuous [ST02a, Lemma 3.4] if V is a Banach space and V ′ is finitely
generated over D(H) for one (and hence every) open compact H .
If G is a locally L-analytic group, in the sense of [ST02b], then we say the
representation V is locally analytic if it is a continuous G-representation on a
space of compact type, and the orbit maps are locally L-analytic functions G→
V . This implies [Eme04, 5.1.9] that V ′

b is a separately continuous topological
module over the topological K-algebraDla(G) of distributions on G, defined as
C la(G)′b where C la(G) is the space of locally L-analytic K-valued functions on
G. For H an open compact subgroup, the subalgebraDla(H) is a Fréchet-Stein
algebra [ST03, 5.1], so the category of coadmissible Dla(H)-modules is defined
[ST03, §3]; we say V is admissible locally analytic if V ′

b is coadmissible as a
module over Dla(H) for one (and hence every) open compact H .
Finally, if G is a locally L-analytic group for which Z = Z(G) is topolog-
ically finitely generated, we say the representation V is Z-tempered if it is
locally analytic and can be written as an increasing union of Z-invariant
BH-spaces. This implies that for any open compact subgroup H ⊆ G, V ′

b

is a jointly continuous topological module over the algebra Dess(H,Z(G)) =

Dla(H) ⊗̂Dla(Z∩H) C
an(Ẑ), where Ẑ is the rigid space1 parametrising charac-

ters of Z. The algebra Dess(H,Z(G)) is also a Fréchet-Stein algebra [Eme04,
5.3.22], and we say V is essentially admissible locally analytic if V ′

b is coadmis-
sible as a module over Dess(H,Z(G)) for one (and hence every) open compact
H .
We write Reptop(G) for the category of topological representations of G, with
morphisms being G-equivariant continuous linear maps. We consider the fol-
lowing full subcategories:

• Repcts(G): continuous representations

• Repcts,ad(G): admissible continuous representations

• Reptop,c(G): topological representations on compact type spaces

• Repla,c(G): locally analytic representations

• Repzla,c(G): Z-tempered representations

• Repla,ad(G): admissible locally analytic representations

• Repess(G): essentially admissible locally analytic representations

• Repcts,fd(G): finite-dimensional continuous representations

• Repla,fd(G): finite-dimensional locally analytic representations

1The space Ẑ is in fact defined over L, but we shall always consider it as a rigid space
over K by base extension.
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Each of these categories is stable under passing to closed G-invariant sub-
modules. The categories Repcts,ad(G), Repla,ad(G) and Repess(G) have the
additional property that all morphisms are strict, with closed image.
The definition of Reptop and Reptop,c makes sense if G is only assumed to be a
semigroup. We will need one more category of representations of semigroups:
if S is a semigroup which contains a locally L-analytic subgroup S0, we define
Repzla,c(S) to be the full subcategory of Reptop,c(S) of representations which
are locally analytic as representations of S0, and can be written as an increasing
union of Z(S)-invariant BH-subspaces. We will, in fact, only use this when
either S is a group (in which case the definition reduces to the definition of
Repzla,c above) or S is commutative.

Remark. If V ∈ Reptop(G), V
′ naturally carries a right action of G. Hence

we follow the conventions of [Eme04, §5.1] by defining the algebra structures
on D(G) and its cousins in such a way that the Dirac distributions satisfy
δg ⋆ δh = δhg, so all of our modules are left modules. The alternative is to
consider the contragredient action on V ′, which is the convention followed in
[ST02b, ST03]; we do not adopt this approach here as we will occasionally wish
to consider semigroups rather than groups.

2.2 Smooth and locally isotypical vectors

We now present a slight generalisation of the theory of [Eme04, §7].
Let G be a locally compact topological group and H E G closed. We suppose
that G admits a countable basis of neighbourhoods of the identity consisting
of open compact subgroups; this is automatic if G is locally p-adic analytic, for
instance. The action of any g ∈ G onH by conjugation gives a homeomorphism
from H to itself, so the conjugation action of G preserves the set of open
compact subgroups of H .

Definition 2.1. Let V be an (abstract) K-vector space with an action of G.
We say a vector v ∈ V is H-smooth if there is an an open compact subgroup U
of H such that Uv = v.

Our assumptions imply that the space VH−sm of H-smooth vectors is G-
invariant.

Definition 2.2 ([Eme04, 7.1.1]). Suppose V ∈ Reptop(G). We define

VH−st.sm = lim
−→
U⊆H
U open

V U ,

equipped with the locally convex inductive limit topology.

Clearly VH−st.sm can be identified with VH−sm as an abstract K-vector space,
but the inductive limit topology on the former is generally finer than the sub-
space topology on the latter. It is clear that the action of G on V induces a
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topological action on VH−st.sm, so (−)H−st.sm is a functor from Reptop(G) to
itself, and the natural injection VH−st.sm →֒ V is G-equivariant. We say V is
strictly H-smooth if this map is a topological isomorphism.

Proposition 2.3.

(i) If V ∈ Repcts(G), then VH−st.sm ∈ Repcts(G).

(ii) If V ∈ Reptop,c(G), then VH−st.sm is of compact type and the natural map
VH−st.sm → V is a closed embedding.

Proof. To show (i), we argue as in [Eme04, 7.1.10]. We let G0 be an open
compact subgroup of G and (Hi)i≥0 a decreasing sequence of open compact
subgroups of H satisfying

⋂
iHi = {1} and with each Hi normal in G0; it is

clear that we may do this, by our assumption on G. We set Hi = Gi∩H . Then
V Hi is a G0-invariant closed subspace of V , and letting Vi denote the kernel
of the “averaging” map V Hi → V Hi−1 , we have V H−st.sm =

⊕
i Vi. Since each

Vi is in Repcts(G0), VH−st.sm ∈ Repcts(G0), which implies it is in Repcts(G).
Statement (ii) depends only on V as an H-representation, so we are reduced
to the case of [Eme04, 7.1.3].

It follows from (ii) that for V ∈ Reptop,c(G) we do not need to distinguish
between VH−st.sm and VH−sm. Moreover, we see that if V ∈ Repla,c(G) or any
of the subcategories of admissible representations introduced above, VH−st.sm

has the same property.

Definition 2.4. Let V,W be abstract K-vector spaces with an action of G. We
say a vector v ∈ V is locally (H,W )-isotypic if there is an integer n, an open
compact subgroup U of H, and a U -equivariant linear map Wn → V whose
image contains v.

The locally (H,W )-isotypic vectors clearly form a G-invariant subspace of V ,
sinceH is normal in G. By construction, this is the image of the evaluation map
HomH−sm(W,V )⊗K W → V , where HomH−sm(W,V ) denotes the subspace of
H-smooth vectors in HomK(W,V ) =W ′ ⊗K V with its diagonal G-action.
If V and W are in Reptop(G), with W finite-dimensional, then HomK(W,V )
has a natural topology (as a direct sum of finitely many copies of V ) and
we write HomH−st.sm(W,V ) for HomK(W,V )H−st.sm, with its inductive limit
topology as above. Then HomH−st.sm(W,V ) ⊗K W is an object of Reptop(G)
with a natural morphism to V .
We let V(H,W )−liso denote the image of HomH−st.sm(W,V )⊗KW in V , endowed
with the quotient topology from the source (which is generally finer than the
subspace topology on the target). We say V is strictly locally (H,W )-isotypical
if the map V(H,W )−liso → V is a topological isomorphism.

Definition 2.5. We say W is H-good if W is finite-dimensional, and for
any open compact subgroup U ⊆ H, EndU (W ) = EndH(W ) = EndG(W ).
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Proposition 2.6. Suppose W is H-good, with B = EndG(W ). Then for any
representation V of G on an abstract K-vector space, the natural map

HomK(W,V )H−sm ⊗B W → V

is a G-equivariant injection. Dually, for any abstract right B-module X with a
B-linear G-action which is smooth restricted to H, the natural map

X → HomK(W,X ⊗B W )H−sm

is an isomorphism.

Proof. If G = H , the first statement is [Eme04, 4.2.4] (the assumption in op.cit.
that W be algebraic is only used to show that W is H-good). For the general
case, the map exists and is injective at the level of H-representations, so it
suffices to note that the assumption on W implies that the left-hand side has
a well-defined G-action, for which the map is G-equivariant.
For the second part, it suffices to show that the map restricts to an isomorphism
XU → HomU (W,X ⊗B W ) for any open U ⊆ H . Since W is faithful as a B-
module by construction, the natural map is an injection. Since X is smooth as
anH-representation, any vector in the left-hand side is in HomU (W,X

U ′

⊗BW )
for some U ′, which we may assume to be normal in U . However, we have

HomU (W,X
U ′

⊗B W ) ⊆ HomU ′ (W,XU ′

⊗B W ) = XU ′

⊗B HomU ′(W,W ).

and since W is H-good, we have HomU ′(W,W ) = B, so HomU ′(W,XU ′

⊗B

W ) = XU ′

. Passing to U/U ′-invariants gives the result.

Combining the preceding results shows that for W an H-good representation,
the two functors

HomH−st.sm(W,−) and −⊗BW

are mutually inverse equivalences between the categories of strictly lo-
cally (H,W )-isotypical representations of G and strictly H-smooth G-
representations on right B-modules.

Proposition 2.7. If H is a locally L-analytic group, and V is in Reptop(G)∩

Repla,c(H), then there is a topological isomorphism VH−st.sm
∼= V h, where h

is the Lie algebra of H. More generally, if W is an H-good locally analytic
representation of G, V(H,W )−liso

∼= Homh(W,V )⊗B W .

Proof. Clear from proposition 2.3(i), since a vector v ∈ V is in VH−sm if and
only if it is h-invariant.

3 Preservation of admissibility

3.1 Spaces of invariants

In this section we consider a group G and a normal subgroup H , and consider
the functor of H-invariants V 7→ V H : Reptop(G)→ Reptop(G/H). Our aim is
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to show that this preserves the various subcategories of admissible representa-
tions introduced in the previous section.

Proposition 3.1. If V is an admissible Banach representation of a locally
p-adic analytic group G, and H E G is a closed normal subgroup, then V H is
an admissible Banach representation of G/H.

Proof. Suppose first G is compact, so D(G) is Noetherian. Since H is nor-
mal and acts continuously on V , V H is a G-invariant closed subspace; so
(V H)′ is a D(G)-module quotient of a finitely-generated D(G)-module, and
hence is a finitely-generated D(G)-module. However, the closed embedding
C(G/H) →֒ C(G) dualises to a surjection D(G) → D(G/H), and it is clear
that the D(G)-action on (V H)′ factors through this surjection. Hence (V H)′ is
finitely-generated over D(G/H). In the general case, let G0 be a compact open
subgroup of G and H0 = G0∩H . Then G0/H0 is an open compact subgroup of
G/H . By the above, V H0 is an admissible continuous G0/H0-representation.
Since V H is a closed G0/H0-invariant subspace of V H0 it is also admissible
continuous as a representation of G0/H0 and hence of G/H .

We now suppose G is a locally L-analytic group. We write H EL G to mean
that H is a closed normal subgroup of G and the Qp-subspace Lie(H) ⊆ Lie(G)
is in fact an L-subspace, so H and G/H also inherit locally L-analytic struc-
tures.

Proposition 3.2. If V is an admissible locally analytic representation of G,
and H EL G. Then V H is an admissible locally analytic representation of
G/H.

Proof. As above, we may assume G is compact. As in the Banach case, we
note that V H is a closed G-invariant subspace of V , so it is an admissible
locally analyticG-representation [ST03, 6.4(ii)] on which the action of G factors
throughG/H . Hence the action ofDla(G) on (V H)′ factors throughDla(G/H).
Since the natural map C la(G/H)→ C la(G) is a closed embedding, Dla(G/H)
is a Hausdorff quotient of Dla(G) and hence a coadmissible Dla(G)-module,
and so by [ST03, 3.8] we see that (V H)′b is coadmissible as a D(G/H)-module
as required.

We now assume that G is a locally L-analytic group with Z(G) topologically
finitely generated, and H EL G. In this case Z(G/H) may be much larger
than Z(G)/(Z(G)∩H), as in the case of Q×

p ⋉Qp; so an element of Repzla,c(G)
on which H acts trivially need not lie in Repz

la,c(G/H). Moreover, it is not
obvious that Z(G/H) need be topologically finitely generated if Z(G) is so.
We shall therefore assume that G is a direct product H × J , with H, J EL G,
and Z(H) and Z(J) are both topologically finitely generated.

Proposition 3.3. In the above situation, for any essentially admissible locally
analytic G-representation V , the space V H is an essentially admissible locally
analytic representation of J .
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Proof. By [Eme04, 6.4.11], any closed invariant subspace of an essentially ad-
missible representation is essentially admissible; so it suffices to assume that
V = V H . Let J0 ⊆ J and H0 ⊆ H be open compact subgroups. Then
G0 = J0×H0 is an open compact subgroup ofG. We have Z(G) = Z(H)×Z(J),

and hence Ẑ(G) = Ẑ(H)× Ẑ(J).
We now unravel the tensor products to find that the algebra

Dess(G0, Z(G)) = Dla(G0) ⊗̂
Dla(G0∩Z(G))

Can(Ẑ(G))

decomposes as

(
Dla(H0) ⊗̂

K
Dla(J0)

)
⊗̂

Dla(H0∩Z(H)) ⊗̂K Dla(J0∩Z(J))

(
Can(Ẑ(H)) ⊗̂

K
Can(Ẑ(J))

)

=

(
Dla(H0) ⊗̂

Dla(H0∩Z(H))
Can(Ẑ(H))

)
⊗̂
K

(
Dla(J0) ⊗̂

Dla(J0∩Z(J))
Can(Ẑ(J))

)

= Dess(H0, Z(H)) ⊗̂
K
Dess(J0, Z(J)).

By assumption, the action of Dess(H0, Z(H)) on V ′
b factors through the

augmentation map to K; so the action of Dess(G0, Z(G)) factors through
Dess(J0, Z(J)). Since D

ess(J0, Z(J)) is a Hausdorff quotient of Dess(G0, Z(G)),
it is a coadmissible Dess(G0, Z(G))-algebra, and thus V ′

b is a coadmissible
Dess(J0, Z(J))-module as required.

3.2 Admissible representations of product groups

In this section, we’ll recall the theory presented in [Eme04, §7] of represen-
tations of groups of the form G × Γ, where G is a locally L-analytic group
and Γ an arbitrary locally profinite (locally compact and totally disconnected)
topological group. This will allow us to give more “global” formulations of the
results of the previous section.

Let ∗ denote one of the set {“admissible Banach”, “admissible locally analytic”,
“essentially admissible locally analytic”}, so we shall speak of “∗-admissible
representations”. Whenever we consider essentially admissible representations
we will assume that the groups concerned have topologically finitely generated
centre, so the concept is well-defined.

Definition 3.4 ([Eme04, 7.2.1]). A ∗-admissible representation of (G,Γ) is a
locally convex K-vector space V with an action of G× Γ such that

• For each open compact subgroup U ⊆ Γ, V U has property ∗ as a repre-
sentation of G (in the subspace topology);

• V is a strictly smooth Γ-representation in the sense of definition 2.1.

Documenta Mathematica 16 (2011) 1–31



Emerton’s Jacquet Functors 11

Remark. Our terminology is slightly different from that of [Eme04], where
such representations are described as ∗-admissible representations of G × Γ.
We adopt the formulation above in order to avoid ambiguity when Γ is also a
locally analytic group.

The results of the preceding section can be combined to prove:

Proposition 3.5. If G and H are locally L-analytic groups, V is a ∗-
representation of G ×H, and Z(H) is compact if ∗ = “essentially admissible
locally analytic”, then the space

VH−st.sm = lim
−→
U⊆H

open compact

V U

is a ∗-admissible representation of (G,H).

Proof. Since the natural maps V U →֒ V U ′

for U ′ ⊆ U are closed embeddings,
the map V U →֒ VH−st.sm is also a closed embedding [Bou87, page II.32]; and

its image is clearly (VH−st.sm)
U
, so it suffices to check that V U has property ∗

for each U .
In the admissible Banach case, this is clear from proposition 3.1. In the ad-
missible locally analytic case, it likewise follows from proposition 3.2. In the
essentially admissible case, it suffices to note that the assumption on Z(H)
implies that V is essentially admissible as a representation of G×H if and only
if it is essentially admissible as a representation of G×U for any open compact
U ⊆ H ; so we are in the situation of proposition 3.3.

A slightly more general version of this applies to groups of the form G×H×J ,
where G and H are locally L-analytic and J is an arbitrary locally compact
topological group.

Theorem 3.6. Let V be a ∗-admissible representation of (G × H, J), where
Z(H) is compact in the essentially admissible case. Then VH−st.sm is a ∗-
admissible representation of (G,H × J).

Proof. We have

VH−st.sm = (VJ−st.sm)H−st.sm = lim
−→

U⊆H,U ′⊆J

V U×U ′

,

which is clearly a strict inductive limit; and V U×U ′

is the U -invariants in
the ∗-admissible G × H-representation V U ′

, and hence an admissible G-
representation. The open compact subgroups of H × J of the form U × U ′

are cofinal in the family of all open compact subgroups, so VH−st.sm is a ∗-
admissible (G,H × J)-representation as required.

We write Repcts,ad(G,Γ) for the category of admissible continuous (G,Γ)-rep-
resentations, and similarly for the other admissibility conditions.
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3.3 Ordinary parts and Jacquet modules

Let G be a connected reductive algebraic group over L, and P a parabolic
subgroup of G with Levi factor M. We write Z = Z(M), D = Mss. We
use Roman letters G,P,M,Z,D for the L-points of these, which are locally
L-analytic groups. Note that the multiplication map Z × D → M has finite
kernel and cokernel, and hence a representation of M has property ∗ if and
only if it has the corresponding property as a representation of Z ×D.
Suppose that V ∈ Repcts,adm(G). We say V is unitary if the topology of V can
be defined by a G-invariant norm (or equivalently if V contains a G-invariant
separated open lattice); this is automatic if G is compact, but not otherwise.
The category Repu,adm(G) of unitary admissible Banach representations of G

over K is equivalent to Mod̟−adm
G (OK)Q, where Mod̟−adm

G (OK) is the cat-
egory considered in [Eme10, 2.4.5] and the subscript Q denotes the category
with the same objects but all Hom-spaces tensored with Q.
In [Eme10, §3], Emerton constructs the ordinary part functor

OrdP : Mod̟−adm
G (OK)→ Mod̟−adm

M (OK).

This functor is additive, so it extends to a functor

OrdP : Repu,adm(G)→ Repu,adm(M).

It is easy to extend this to representations of product groups of the type con-
sidered above. Let Γ be a locally profinite topological group, and V a uni-
tary admissible Banach (G,Γ)-representation (i.e. admitting a G×Γ-invariant
norm). We define

OrdP (V ) = lim
−→
U⊆Γ
open

OrdP (V
U ).

Given any subgroups U ′ ⊆ U , there is an “averaging” map π : V U ′

→ V U ; and
we may write V U ′

as a locally convex direct sum V U ′

= V U ⊕ V π, where V π

denotes the kernel of π. Since the ordinary part functor commutes with direct
sums, we find that OrdP (V

U ′

) = OrdP (V
U ) ⊕ OrdP (V

π); thus the natural
map OrdP (V

U )→ OrdP (V
U ′

) is a closed embedding, and if U ′ E U , we have
OrdP (V

U ′

)U = OrdP (V
U ). Passing to the direct limit, we have OrdP (V )U =

OrdP (V
U ), and OrdP (V ) is an admissible Banach (M,Γ)-representation.

An identical argument applies to the Jacquet module functor JP : Repess(G)→
Repess(M) of [Eme06a] (and indeed to any functor which preserves direct
sums). Combining this with theorem 3.6 above, we have:

Proposition 3.7.

(i) If V ∈ Repu,ad(G,Γ) and W ∈ Repcts,fd(M), then

HomD−st.sm(W,OrdP V ) ∈ Repcts,ad(Z,D × Γ).

Moreover, HomD−st.sm(W,OrdP V ) is unitary if W is.
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(ii) If V ∈ Repess(G,Γ) and W ∈ Repla,fd(M), and d = LieD, then

HomD−st.sm(W,JPV ) = Homd(W,JPV ) ∈ Repess(Z,D × Γ).

4 Jacquet modules of admissible representations

As in section 3.3 above, let G be the L-points of a connected reductive al-
gebraic group over L, and P a parabolic subgroup with Levi subgroup M .
Proposition 3.7(ii) gives us a copious supply of essentially admissible locally
analytic representations of the torus Z = Z(M): for any V ∈ Repess(G), any
open compact U ⊆ D = M ss, and any finite-dimensional M -representation
W , HomU (W,JPV ) = (W ′ ⊗K JPV )U ∈ Repess(Z). These correspond, by the
equivalence of categories of [Eme06b, 2.3.2], to coherent sheaves on the rigid

space Ẑ. For V ∈ Repess(Z), we will write ExpV for the support of the sheaf

corresponding to V , a reduced rigid subspace of Ẑ.
In this section, we’ll prove two results describing the geometry of the rigid
spaces ExpHomU (W,JPV ), for U ⊆ D open compact, under additional as-
sumptions on V . These generalise the corresponding results in [Eme06a] when
P is a Borel subgroup.

4.1 Compact maps

We begin by generalising some results from [Eme06a, §2.3] on compact endo-
morphisms of topological modules. Recall that a topological K-algebra is said
to be of compact type if it can be written as an inductive limit of Banach
algebras, with injective transition maps that are both algebra homomorphisms
and compact as maps of topological K-vector spaces. If A is such an algebra,
then a topological A-module is said to be of compact type if it is of compact
type as a topological K-vector space.
In this situation, we have the following definition of a compact morphism
(op.cit., def. 2.3.3):

Definition 4.1. A continuous A-linear morphism φ : M → N between com-
pact type topological A-modules is said to be A-compact if there is a commu-
tative diagram

M
φ //

α

!!B
BB

BB
BB

B N

N1

β
>>||||||||

V

γ
==||||||||

LL

d j
r

|
�

�

�

(4.1)

where N1 is a compact type topological A-module, α and β are continuous
A-linear maps, V is a compact type K-vector space, and γ is a continuous K-
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linear map for which A ⊗̂K V → N1 is surjective, and the composite dashed
arrow is compact as a map of compact type K-vector spaces.

Lemma 4.2. If M is a compact type module over a compact type topological
K-algebra A; φ : M → M is an A-compact map; N is a finitely-generated
module over a finite-dimensional K-algebra B; and ψ : N → N is K-linear,
then the map φ⊗ ψ :M ⊗K N →M ⊗K N is (A⊗K B)-compact.

Proof. We may assume without loss of generality that ψ is the identity, by
[Eme06a, 2.3.4(i)]. This case follows immediately by tensoring each of the
spaces in the diagram with N .

Lemma 4.3. Let σ : A → A′ be a finite morphism of compact type topological
K-algebras, and φ : M → N a morphism of topological A′-modules which is
A′-compact. Then φ is A-compact.

Proof. By assumption, we have a diagram as in lemma 4.1, where the map
A′ ⊗̂K V → N1 is surjective. Let a1, . . . , ak be a set of elements generat-
ing A′ as an A-module, let V ′ = V k, and define the map γ′ : V ′ → N1 by
(v1, . . . , vk) 7→

∑
aiγ(vi).

Then it is clear that 1 ⊗̂ γ′ gives a surjection A ⊗̂K V k → N1. Furthermore,
the composite φ ◦ γ′ : V ′ → N is the map (v1, . . . , vk) 7→

∑
β(aiγ(v)). As β is

a morphism of A′-modules, this equals
∑
ai(β ◦γ)(v), which is clearly compact

(since β◦γ is). So the map γ′ : V ′ → N1 witnesses φ as an A-compact map.

4.2 Twisted distribution algebras

Let L be a finite extension ofQp, andG a locally L-analytic group. Let (Hn)n≥0

be a decreasing sequence of good L-analytic open subgroups of G, in the sense
of [Eme04, §5.2], such that

• the subgroups Hn form a basis of neighbourhoods of the identity in G;

• Hn is normal in H0 for all n;

• the inclusion Hn+1 →֒ Hn extends to a morphism of rigid spaces be-
tween the underlying affinoid rigid analytic groups Hn+1 →֒ Hn, which is
relatively compact.

Such a sequence certainly always exists, since the choice of H0 determines
a Lie OL-lattice h in the Lie algebra of G, and we may take Hn to be the
subgroup attached to the sublattice πnh. We may use this sequence to write
the topological K-algebra A := Dla(H0) = C la(H0)

′
b as an inverse limit of

the spaces An := D(H◦
n, H0) =

[
C(H0)H◦

n−an

]′
b
. For all n, An is a compact

type topological K-algebra, and the sequence (An)n≥0 is a weak Fréchet-Stein
structure on A.
We begin with a construction related to the “untwisting isomorphism” of
[Eme04, 3.2.4]. Let (ρ,W ) be any finite-dimensional K-representation of H0,
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and let E = EndK W . We consider the following commutative diagram of
K-vector spaces:

K[H0]⊗K E

g⊗m 7→
g⊗ρ(g)m

γ

��

K[H0]

g 7→g⊗1

α

88qqqqqqqqqq

g 7→g⊗ρ(g)

β

&&MMMMMMMMMM

K[H0]⊗K E

(4.2)

Here α and β are ring homomorphisms, and although γ is not a ring homomor-
phism, it satisfies the relation γ(α(x)y) = β(x)γ(y), so it intertwines the two
K[H0]-module structures on K[H0]⊗K E given by α and β. Furthermore γ is
clearly invertible.
We now assume that (ρ,W ) is locally analytic (when W is equipped with its
unique Hausdorff locally convex topology).2 Hence there is an integer n(ρ)
such that WH◦

n−an =W for all n ≥ n(ρ).

Proposition 4.4. Let n ≥ n(ρ). Then there exist unique continuous maps
αn, βn : An → An ⊗K End(W ) and γn : An ⊗K End(W )

∼
→ An ⊗K EndW

extending the maps α, β, γ above.

Proof. Taking the (algebraic) K-dual of the diagram (4.2), we have a diagram

F(H0, E
′)

α′

xxqqqqqqqqqqq

F(H0,K)

F(H0, E
′)

γ′

OO

β′
ffNNNNNNNNNN

where for K-vector space V , F(H0, V ) indicates the K-vector space of arbi-
trary functions H0 → V . One finds that for a function f : H0 → E′, we
have α′(f)(m) = f(m)(1) and β′(f)(m) = f(m)(ρ(m)), while γ′(f)(m) = x 7→
f(ρ(m)x). All of these maps manifestly preserve the subspaces of H◦

n-analytic
functions for n ≥ n(ρ), and are continuous for the natural topologies of these
subspaces; so there are corresponding maps between the duals of these sub-
spaces, as required.

Corollary 4.5. For each n ≥ n(ρ), the map βn makes Bn = An ⊗K EndW
a finitely-generated topological An-module, and the natural map Bn+1 → Bn

induces an isomorphism An ⊗̂An+1 Bn+1
∼
→ Bn.

2If L = Qp this is equivalent to the (a priori weaker) assumption that (ρ,W ) is continuous.
This follows from the p-adic analogue of Cartan’s theorem, which states that any continuous
homomorphism between two Qp-analytic groups is locally analytic; see [Ser92, Part II, §V.9].
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16 Richard Hill and David Loeffler

Proof. This is clearly true for the An-module structure on Bn given by αn, so
it follows for the βn-structure (since the untwisting isomorphisms γn and γn+1

are compatible with the map Bn+1 → Bn).

Proposition 4.6. Let n ≥ n(ρ) and let X be a compact type topological An-
module. Then the diagonal H0-action on X ⊗K W extends to a topological
An-module structure. Moreover, if n ≥ n(ρ) + 1, we have an isomorphism of
topological An−1-modules

An−1 ⊗̂
An

(X ⊗K W )
∼
→ (An−1 ⊗̂

An

X)⊗K W.

Proof. We clearly have commuting, K-linear, continuous actions of An and
EndW on X⊗KW , so we obtain an action of An⊗K EndW . Pulling back via
the map βn, we obtain an An-module structure, which clearly restricts to the
diagonal action of H0. The isomorphism follows from the last statement of the
preceding corollary via the associativity of the tensor product, since

An−1 ⊗̂
An

(X ⊗K W )

=(An−1 ⊗̂
An

Bn) ⊗̂
Bn

(X ⊗K W )

=Bn−1 ⊗̂
Bn

(X ⊗K W )

=(An−1 ⊗̂
An

X)⊗K W.

4.3 Twisted Jacquet modules

We now return to the situation considered above, so G is the group of L-points
of a reductive algebraic group G over L as above, with P a parabolic subgroup,
M a Levi subgroup of P , N the unipotent radical, and Z = Z(M). We choose
a sequence (Hn)n≥0 of good L-analytic open subgroups of G admitting rigid
analytic Iwahori decompositions Hn = Nn ×Mn × Nn, as in [Eme06a, 4.1.6].
We also impose the additional condition that Mn = Zn×Dn where Zn and Dn

are the affinoid subgroups underlying good analytic open subgroups of Z and of
D =M ss; it is clear that we can always do this (by exactly the same method as
in Emerton’s case). We let Z+ be the submonoid {z ∈ Z(M) : zN0z

−1 ⊆ N0}
of Z.

Our starting point is the following, which is part of the proof of [Eme06a,
4.2.23]:

Proposition 4.7. Let V be an admissible locally analytic representation of G.
Then for all n ≥ 0, the action of M0 × Z+ on the space

Un =

(
D(H◦

n, H0) ⊗̂
Dla(H0)

V ′
b

)

N0
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extends to an An[Z
+]-module structure. Moreover, the transition map

An ⊗̂An+1 Un+1 → Un is An-compact and Z+-equivariant, and there is
some z ∈ Z+ (independent of n) such that there exists a map α : Un →
An ⊗̂An+1 Un+1 making the following diagram commute:

An ⊗̂An+1 Un+1
//

id ⊗̂ z

��

Un

z

��
α

xxr r
r

r
r

r

An ⊗̂An+1 Un+1
// Un.

(4.3)

We now let Ũn = Un ⊗K W , where (W,ρ) is a fixed, finite-dimensional, con-
tinuous representation of M . By the last proposition of the preceeding section
(taking the groups there denoted by G and Hi to be those we are now calling
M and Mi), we have a diagonal An-module structure on Ũn, and there is also
a diagonal action of Z+ on Ũn commuting with the M0-action.

Proposition 4.8. For any n ≥ n(ρ) the following holds:

• Ũn is a compact type topological An-module, and the action of Z+ is
An-linear.

• There is an An+1[Z
+]-linear map Un+1 → Un such that the induced map

An ⊗̂An+1 Ũn+1 → Ũn is An-compact.

• For any good z ∈ Z+, we can find a map α̃ : Un → An ⊗̂An+1 Ũn+1 such
that the diagram corresponding to (4.3) commutes.

Also, the direct limit lim
←−

Un (with respect to the transition maps above) is iso-

morphic as a topological A[Z+]-module to (V N0 ⊗W ′)′b.

Proof. Since Ũn is isomorphic to (Un)
⊕ dimW as a topological K-vector space,

it is certainly of compact type, and we have already observed that it is a
topological An-module for all n ≥ n(ρ). Furthermore the Z+-action commutes
with the M0-action, and thus it must be An-linear by continuity.

Moreover, we have an An-compact map An ⊗̂An+1 Un+1 → Un. Ten-
soring with the identity map gives a morphism of An ⊗ EndW -modules(
An ⊗̂An+1 Un+1

)
⊗K W → Un ⊗K W , which is An ⊗K EndW -compact by

lemma 4.2. But the map β : An → An ⊗K EndW is a finite morphism, so by
lemma 4.3, this map is An-compact.
Finally, we know that there exists a map α : Un → An ⊗̂An+1 Un+1 through
which z factors, and it is clear that if we define α̃ to be the map α⊗ ρ(z) then
the diagram corresponding to (4.3) commutes.

The preceding proposition asserts precisely that the hypotheses of [Eme06a,
3.2.24] are satisfied, and that proposition (and its proof) give us the following:
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18 Richard Hill and David Loeffler

Corollary 4.9. The space X =
[
(V N0 ⊗K W ′)fs

]′
b

is a coadmissible

Can(Ẑ) ⊗̂K A-module, where (−)fs denotes the finite-slope-part functor
Reptop,c(Z

+)→ Repzla,c(Z) of [Eme06a, 3.2.1].

Moreover, if (Yn)n≥0 is any increasing sequence of affinoid subdomains of Ẑ
whose union is the entire space, then for any n ≥ n(ρ) we have

(
Can(Yn)

† ⊗̂
K
An

)
⊗̂

(Can(Ẑ) ⊗̂K A)

X = Can(Yn)
† ⊗̂

K[Z+]
Ũn.

By [Eme04, 3.2.9] we have X =
[
(V N0 ⊗K W ′)fs

]′
b
=

[
(V N0)fs ⊗K W ′

]′
b
=

[JP (V )⊗K W ′]
′

b, so the above corollary gives us a description of the strong
dual of the W -twisted Jacquet module.

We can now prove the first of the two main theorems of this section. Propo-
sition 3.7(ii) above shows that for any V ∈ Repess(G), (JP (V )⊗K W ′) ∈
Repess(Z,D). Equivalently, for any open compact subgroup Γ ⊆ D, the space

(JP (V )⊗K W ′)
Γ
is an essentially admissible locally analytic Z-representation,

and hence corresponds to a coherent sheaf on Ẑ. The previous corollary allows
us to describe the support of this sheaf when V is admissible:

Theorem 4.10. Suppose V is an admissible locally analytic G-representation,
W is a finite-dimensional locally analytic representation of M , and Γ is an
open compact subgroup of D. Let E ⊆ Ẑ be the support of the coherent sheaf
on Ẑ corresponding to (JP (V )⊗K W ′)

Γ
. Then the natural map E → (LieZ)′

(induced by the differentiation map Ẑ → (LieZ)′) has discrete fibres.

Proof. Since we are free to replace the sequence (Hn) of subgroups of G with
a cofinal subsequence, we may assume that Γ ⊇ D0. So it suffices to prove the
result for Γ = D0. Furthermore, since the differentiation map Ẑ0 → (LieZ)′

has discrete fibres, it suffices to show that for any character χ of Z0, the rigid
space

Exp (JP (V )⊗K W ′)
D0,Z0=χ

⊆ Ẑ

is discrete. If χ does not extend to a character of M , then this space
is clearly empty, so there is nothing to prove; otherwise, let us fix such
an extension, which gives us an isomorphism (JP (V )⊗K W ′)

D0,Z0=χ
=

[JP (V )⊗K (W ⊗K χ)′]
M0 . So we may assume without loss of generality that

χ is the trivial character, and it suffices to show that

Can(Yn)
† ⊗̂

Can(Ẑ)

[
(JP (V )⊗K W ′)

M0

]′
b

is finite-dimensional over K for all n, or (equivalently) all sufficiently large n.

If we take the completed tensor product of both sides of the formula in corollary
4.9 with Can(Yn)

†, regarded as a Can(Yn)
† ⊗̂K An-algebra via the augmenta-
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tion map An → K, we have

Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K
An

)
⊗̂

(Can(Ẑ) ⊗̂K A)
[JP (V )⊗K W ′]

′

b

= Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K[Z+]

Ũn

)
. (4.4)

The left-hand side of (4.4) simplifies as

Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K
An

)
⊗̂

(Can(Ẑ) ⊗̂K A)
[JP (V )⊗K W ′]

′

b

= Can(Yn)
† ⊗̂
(Can(Ẑ) ⊗̂K A)

[JP (V )⊗K W ′]
′

b

= Can(Yn)
† ⊗̂

Can(Ẑ)

(
K ⊗̂

A
[JP (V )⊗K W ′]

′

b

)

= Can(Yn)
† ⊗̂

Can(Ẑ)

[
(JP (V )⊗K W ′)

M0

]′
b
.

Meanwhile, the right-hand side of (4.4) is

Can(Yn)
† ⊗̂
(Can(Yn)† ⊗̂K An)

(
Can(Yn)

† ⊗̂
K[Z+]

Ũn

)

= Can(Yn)
† ⊗̂

K[Z+]

(
K ⊗̂

An

Ũn

)
.

Any z ∈ Z+ that induces an An-compact endomorphism of Ũn will induce
a K-compact endomorphism of K ⊗̂An

Ũn, by [Eme06a, 2.3.4(ii)]. Such a

z does exist, by hypothesis. Hence Can(Yn)
† ⊗̂K[Z+]

(
K ⊗̂An

Ũn

)
is finite-

dimensional over K, by [Eme06a, 2.3.6]. Comparing the two sides of (4.4), we
are done.

We also have a version of [Eme06a, 4.2.36] in this context.

Theorem 4.11. If V is an admissible locally analytic representation of G
such that there is an isomorphism of H-representations V

∼
→ C la(H)r, for

some open compact H ⊆ G and some r ∈ N, then for any W and Γ,
E = Exp (JP (V )⊗K W ′)

Γ
is equidimensional of dimension d, where d is the

dimension of Z.

Proof. As in [Eme06a], we may assume (by replacing the sequence (Gn)n≥0

with a cofinal subsequence if necessary) that H = H0 and Γ ⊇ D0. But then

we can identify (JP (V )⊗K W ′)
Γ
with a direct summand of (JP (V )⊗K W ′)

D0 ;

this identifies Exp (JP (V )⊗K W ′)
Γ

with a union of irreducible components
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of Exp (JP (V )⊗K W ′)
D0 . We may therefore assume that in fact Γ = D0.

As a final reduction, letting Un =
(
D(H◦

n, H0) ⊗̂Dla(H0) V
′
b

)
N0

as before,

we note that the untwisting isomorphism Un
∼
→ D(N

◦

n, N0)
r ⊗̂K An (equa-

tion 4.2.39 in [Eme04]) can be extended to an isomorphism Un ⊗K W →

D(N
◦

n, N0)
r dimW ⊗̂K An. We thus assume that W is the trivial represen-

tation.
Following Emerton, we choose Banach spaces Wn such that the map
D(N

◦

n+1, N0)
r → D(N

◦

n, N0)
r factors throughWn, and (exactly as in the Borel

case) for a suitable z ∈ Z+ we have

JP (V )′b
∼
→ lim
←−
n

K{{z, z−1}} ⊗̂
K[z]

(Wn ⊗̂
K
An),

for some An-linear action of z on Wn ⊗̂K An which factors through
D(N

◦

n+1, N0)
r ⊗̂K An. Taking the completed tensor product with the map

An → D(Z◦
n, Z0) given by the augmentation map of D0, we have

[
JP (V )D0

]′
b

∼
→ lim
←−
n

K{{z, z−1}} ⊗̂
K[z]

Wn ⊗̂
K
D(Z◦

n, Z0).

Let us write Ẑ0 as an increasing union of affinoid subdomains (Xn)n≥0,

such that the natural map Dla(Z0)
∼
→ Can(Ẑ0) → Can(Xn) factors through

D(Z◦
n, Z0). Extending scalars from D(Z◦

n, Z0) to Can(Ẑ) via this map, the
above formula becomes

[
JP (V )D0

]′
b
= lim
←−
n

K{{z, z−1}} ⊗̂
K[z]

Wn ⊗̂
K
Can(Xn).

The action of z onWn ⊗̂K Can(Xn) is a C
an(Xn)-compact morphism of an or-

thonormalizable Can(Xn)-Banach module, so the result follows by the methods
of [Buz07].

5 Change of parabolic

We now consider the problem of relating the geometric objects arising from the
above construction for two distinct parabolic subgroups.

5.1 Transitivity of Jacquet functors

Let us recall the definition of the finite-slope-part functor, which we have al-
ready seen in the previous section. We let Z be a topologically finitely gener-
ated abelian locally L-analytic group, and Z+ an open submonoid of Z which
generates Z as a group. Then we have the following functor Reptop,c(Z

+) →
Repzla,c(Z):

Definition 5.1 ([Eme06a, 3.2.1]). For any object V ∈ Reptop,c(Z
+), we define

Vfs = Lb,Z+(Can(Ẑ), V ),
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endowed with the action of Z on the first factor.

Lemma 5.2. Let Z be a topologically finitely generated abelian group and Y a
closed subgroup, and suppose Y + and Z+ are submonoids of Y and Z satisfying
the conditions above, with Y + ⊆ Y ∩ Z+. Then for all V ∈ Reptop,c(Z

+), the
natural map VY −fs → V induces an isomorphism

(VY −fs)Z−fs
∼
→ VZ−fs.

Proof. Consider the canonical Z+-equivariant map VZ−fs → V . We note that
VZ−fs is in Repzla.c(Z), and hence a fortiori in Repzla.c(Y ). Hence by the univer-
sal property of [Eme06a, 3.2.4(ii)], the above map factors through VY −fs. The
factored map is still Z+-equivariant, so by a second application of the universal
property it factors through (VY −fs)Z−fs. This gives a continuous Z-equivariant
map VZ−fs → (VY −fs)Z−fs, which is clearly inverse to the map in the statement
of the proposition.

Now suppose P1 and P2 are parabolic subgroups of the reductive group G over
L, with P1 ⊇ P2. We let N1,N2 be their unipotent radicals, so we have a chain
of inclusions G ⊇ P1 ⊇ P2 ⊇ N2 ⊇ N1.
Let us choose a Levi subgroupM2 of P2, so P2 = N2⋊M2. There is a unique
Levi subgroup M1 of P1 containing M2; and P12 = P2 ∩M1 is a parabolic
subgroup of M1 of which M2 is also a Levi factor. We write Z1, Z2 for the
centres ofM1 andM2.
All of the above are algebraic groups over L, so their L-points are locally L-
analytic groups; we denote these groups of points by the corresponding Roman
letters.

Theorem 5.3.

1. For any unitary admissible continuous G-representation V , there is a
unique isomorphism of admissible continuous M2-representations

OrdP12 (OrdP1 V ) = OrdP2 V

commuting with the canonical lifting maps from both sides into V N2 .

2. For any essentially admissible locally analytic G-representation V , there
is a unique isomorphism of essentially admissible locally analytic M2-
representations

JP12 (JP1V ) = JP2V

commuting with the canonical lifting maps.

Proof. We begin by proving the second statement. We have N2 = N1 ⋊ N12,
where N12 = N2 ∩M1 is the unipotent radical of P12. Let N2,0 be an open
compact subgroup ofN2 which has the formN1,0⋊N12,0, for open compact sub-
groups of the two factors; such subgroups certainly exist, since the conjugation
action of N1 on N12 is continuous.
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For i = 1, 2 we write M+
i for the submonoid of elements m ∈ Mi for which

mNi,0m
−1 ⊆ Ni,0 and m−1N i,0m ⊆ N i,0, and Zi = M+

i ∩ Zi. Then we have
M+

2 ⊆M
+
1 , and in particular Z+

1 ⊆ Z
+
2 .

We have
JP1V = Lb,Z+

1

(
Can(Ẑ1), V

N1,0

)

endowed with the action of M1 = Z1×Z+
1
M+

1 determined by the actions of Z1

on Can(Ẑ1) and M
+
1 on V N1,0 . The restriction of this action to N12,0 is simply

the action on the right factor (since N12,0 ⊆M1,0 ⊆M
+
1 ) and hence

(JP1V )N12,0 = Lb,Z+
1

(
Can(Ẑ1), (V

N1,0)N12,0

)
= Lb,Z+

1

(
Can(Ẑ1), V

N2,0

)
.

The Hecke operator construction of [Eme06a, §3.4] gives two actions of M+
2 on

V N2,0 , given respectively by m◦v = πN2,0mv and m◦v = πN12,0πN1,0mv, where
the operators πNi,0 are the averaging operators with respect to Haar measure
on the subgroups Ni,0. Since N2,0 = N12,0⋉N1,0, and the Haar measure on the
product is the product of the Haar measures on the factors, these two actions
coincide. Applying the preceding lemma with Z = Z2 and Y = Z1 gives the
result.
The statement for the ordinary part functor can be proved along similar lines,
but it is easier to note that the functor OrdP is right adjoint to the parabolic
induction functor IndG

P
[Eme10, 4.4.6], for P an opposite parabolic to P . Since

a composition of adjunctions is an adjunction, it suffices to check instead
that IndG

P 1
IndM1

P 12
U = IndG

P 2
U for any U ∈ Repu,adm(M2). We may iden-

tify C(G,C(M1, U)) with C(G×M1, U). Evaluating at 1 ∈M1 gives a map to
C(G,U), and it is easy to check that this restricts to an isomorphism between
the subspaces realising the two induced representations.

5.2 Hecke algebras and the canonical lifting

We now turn to studying the Jacquet functor in a special case; later we will
combine this with the transitivity result above to deduce a general statement.
As before, let G be a reductive algebraic group over L, and let H = [G,G], a
semisimple group. There is a bijection between parabolics of G and H, given
by P 7→ P ′ = P ∩H and P ′ 7→ P = NG(P ′).
We also choose an opposite parabolic P , determining a Levi subgroup M of
P , and also a LeviM′ of P ′ in the obvious way. Write ZM, ZM′ and ZG for
the centres of these subgroups, so ZM is isogenous to ZM′ × ZG . As before,
we use Roman letters for the L-points of these algebraic groups.
Let H0 be an open compact subgroup of H . We say H0 is decomposed with

respect to P ′ and P
′
if the product of the subgroups M ′

0 = H0 ∩M ′, N0 =
H0 ∩N and N0 = H0 ∩N is H0, for any ordering of the factors.
We say an element m ∈ M is positive (for H0) if mN0m

−1 ⊆ N0 and
m−1N0m ⊆ N0 (see [Bus01, §3.1]). Let M⊕ ⊆ M be the monoid of posi-
tive elements, and Z⊕

M its intersection with ZM ; and let H⊕(M ′
0) denote the
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subalgebra of the Hecke algebra H(M ′
0) supported on M ′+ =M+ ∩M ′. Note

that M⊕ is contained in the monoid M+ of the previous section, and clearly
has finite index therein.
We say an element z ∈ ZM is strongly positive if the sequences znN0z

−n and
z−nN0z

n tend monotonically to {1}; if this holds, then z−1 and M⊕ together
generate M . Such elements exist in abundance; any element whose pairing
with the roots corresponding to P has sufficiently large valuation will suffice.
In particular, there exist strongly positive elements in ZM ′ .

Proposition 5.4. For any essentially admissible G-representation V , we have
JP (V ) =

(
V N0

)
Y−fs

, where Y is any closed subgroup of M that contains a

strongly positive element. In particular, JP (V ) = JP ′(V ).

Proof. For any open compact N0 ⊆ N , [Eme06a, lemma 3.2.29] and the dis-
cussion following it shows that V N0 is in the category denoted therein by
Repzla,c(Z

+
M ); thus the hypotheses of [Eme06a, prop 3.2.28] are satisfied for

the subgroup Y = ZM ′ . The conclusion of that proposition then states that
JP (V ) = (V N0)ZM−fs = (V N0)Y −fs.

We now lighten the notation somewhat by writing superscript + for ⊕, since
the proposition shows that the distinction betweenM+ andM⊕ is unimportant
from the perspective of Jacquet modules.

Proposition 5.5. Let j be the morphism H+(M ′
0) → H(H0) constructed

in [Bus01, §3.3]. Then the natural inclusion V H0 →֒ VM ′
0N0 is H+(M ′

0)-
equivariant, where H+(M ′

0) acts via j on the first space and via its inclusion
into H(M ′

0) on the second.

Proof. Easy check.

Proposition 5.6. For any essentially admissible locally analytic G-represen-
tation V which is smooth as an H-representation, the above inclusion induces
an isomorphism

(V H0)ZM′−fs
∼
→ (VM ′

0N0)ZM′−fs = JP (V )M
′
0 .

Moreover, there exists a direct sum decomposition

V H0 = (V H0)ZM′−fs ⊕ (V H0)ZM′−null

where the summands are closed subspaces of V H0 , stable under the action of
ZG and H(M ′

0).

Proof. Let Q = VM ′
0N0/V H0 . By the left-exactness of the finite slope part

functor [Eme06a, 3.2.6(ii)], there is a closed embedding

(VM ′
0N0)ZM′−fs/(V

H0)ZM′−fs →֒ QZM′−fs.
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But since V is smooth as an H-representation, every element v ∈ VM ′
0N0 is in

fact in V UM ′
0N0 for some open U ⊆ N ; any such U contains a Z+

M ′-conjugate of

N0, so there is some z ∈ Z+ such that zv ∈ V N0M
′
0 . Our hypothesis that H0

is decomposed implies that the averaging operator πN0 : V n → V N0 preserves

V N0M
′
0 , so z◦v = πN0(zv) ∈ V

H0 . Therefore Q is Z+
M ′ -torsion, and thus clearly

QZ−fs = 0.
For the second statement, let z be any strongly positive element of ZM ′ . By
[Bus01, Theorem 1], there exists an integer n (depending only on P , H0 and
z) such that for any smooth H-representation V , the action of z on V H0 via j
satisfies

V H0 = znV H0 ⊕Ker(zn | V H0),

with z invertible on the subspace znV H0 . For representations V as in the
statement, the subspace Ker(zn | V H0) is clearly closed, and moreover zn gives
a continuous map from the essentially admissible ZG-representation V H0 to
itself, so its image is also closed.

In particular, since V H0 is an essentially admissible ZG-representation,
JP (V )M

′
0 is essentially admissible as a ZG-representation, not just as a rep-

resentation of the larger group ZG × ZM ′/(ZM ′ ∩H0).

Remark. If H0 satisfies the stronger conditions of [Bus01, §1.2], we obtain a
finer decomposition of V H0 into a direct sum of closed ZG-subrepresentations
corresponding to Bernstein components of H .

5.3 Jacquet modules of locally isotypical representations

We now extend the results onH-smooth representations above to certain locally
H-isotypical representations.

Proposition 5.7. If W is a twist of an absolutely irreducible algebraic repre-
sentation of G, and P = MN is a parabolic subgroup of G with [M,M ] = D,
then Endd(W

N ) = K, so in particular the M -representation WN is D-good.

Proof. The twist is of no consequence, so suppose that W is algebraic. Let us
choose a maximal torus T in M , and a field K ′ ⊃ K over which M is split;
then there is a Borel subgroup B ⊆ P defined over K ′ with Levi factor T . The
theory of highest weights then shows that W is absolutely irreducible if and
only if the highest weight space of W is 1-dimensional; applying this condition
to W and to the M -representation WN , we deduce that WN is absolutely
irreducible as an M -representation. Since M is isogenous to D×Z(M) and all
absolutely irreducible representations of Z(M) are one-dimensional, it follows
that WN is in fact absolutely irreducible as a D-representation.

Proposition 5.8. If W ∈ Repla,fd(G) is H-good, with B = Endh(W ) =

EndGW , and furthermore W n = WN , then for any X ∈ Repz
la,c(G) which

is smooth as an H-representation and has a right action of B, we have

JP (X ⊗B W ) = JP (X)⊗B WN .
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Proof. Compare [Eme06a, 4.3.4]. Since X is smooth as an H-representation
it is certainly smooth as an N -representation. Arguing as in the proof of
proposition 2.6, we have (X ⊗B W )N0 = XN0 ⊗B WN0 , which by assumption
equals XN0 ⊗B WN . Passing to finite-slope parts now yields the result.

The condition W n =WN is certainly satisfied for any W that is algebraic as a
representation of N (since any open subgroup of N is Zariski-dense).

Proposition 5.9. Let W be a twist of an absolutely irreducible algebraic rep-
resentation of G, and let V ∈ Repzla,c(P ) be locally (H,W )-isotypical. Then

JP (V ) is locally (D,WN )-isotypical, and

Homd(W
N , JP (V )) = JP (Homh(W,V )).

Proof. Let X = Homh(W,V ). By proposition 2.6, we have V = X ⊗K W ; so
by proposition 5.8 and the remark following, JP (V ) = JP (X) ⊗K WN . Since
WN is D-good, we can apply the converse implication of proposition 2.6 to
deduce that JP (X) = Homd(W

N , JP (V )) as required.

5.4 Combining the constructions

We now summarize the results of the above analysis.

Theorem 5.10. For any V ∈ Repess(G), we have:

1. For any parabolic subgroup P ⊆ G with Levi subgroup M , any finite-
dimensional W ∈ Repla,c(M), and any open compact subgroup U ⊆ D =

[M,M ], there is a coherent sheaf F(V, P,W,U) on Ẑ(M) with a right

action of H(U), whose fibre at a character χ ∈ Ẑ(M) is isomorphic (as
a right H(U)-module) to the dual of the space HomU (W,JPV )Z(M)=χ.
In particular, a character χ lies in the subvariety S(V, P,W,U) =
supportF(V, P,W,U) if and only if this eigenspace is nonzero.

2. If V ∈ Repla,ad(G), then the projection S(V, P,W,U) → (LieZ)′ has
discrete fibres.

3. If V is isomorphic as an H-representation to C la(H)m for some m and
some open compact H ⊆ G, then S(V, P,W,U) is equidimensional of
dimension dimZ.

4. If P1, P2 are parabolics with P1 ⊇ P2 as above, W is an absolutely irre-
ducible algebraic representation of M1, and U is an open compact sub-
group of D1 which is decomposed with respect to the parabolic P2 ∩ D1,
then there is a decomposition

F(V, P1, U,W ) = F(V, P1, U,W )Z2−null ⊕F(V, P1, U,W )Z2−fs,
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where the latter factor is isomorphic to a quotient of the pushforward to
Z1 of the sheaf

F(V, P2,W
N , U ∩D2)

on Z2.

Proof. The only statement still requiring proof is the last one. Let Y =
(JP1V )D1,W−liso. The closed embedding Y →֒ JP1(V ) induces by functori-
ality a closed embedding JP12Y →֒ JP12(JP1V ). The right-hand side is simply
JP2V , by theorem 5.3. Thus we have a closed embedding

Homd2(W
N , JP12Y ) →֒ Homd2(W

N , JP2V ).

The left-hand side is isomorphic, by proposition 5.9, to JP12 [Homd1(W,Y )].
We may now apply proposition 5.6 to the M1-representation Homd1(W,Y ) =
Homd1(W,JP1V ), to deduce that there is a direct sum decomposition

HomU (W,JP1V ) = HomU (W,JP1V )Z2−fs ⊕HomU (W,JP1V )Z2−null

and the first direct summand is isomorphic as a Z2-representation to a closed
subspace of

HomU∩M ′
2
(WN , JP12Y ) ⊆ HomU∩D2(W

N , JP2V ).

Dualising, we obtain the stated relation between the sheaves F(. . . ).

6 Application to completed cohomology

6.1 Construction of eigenvarieties

Let us now fix a number field F , a connected reductive group G over F , and a
prime p of F above p. Let G = G ×F Fp, a reductive group over Fp, and G =
G(Fp). Let us choose a parabolic subgroup P of G (not necessarily arising from
a parabolic subgroup of G), and set P = P(Fp), and similarly for M,N,D,Z
as above. We suppose our base field L is a subfield of Fp, so G,P,M,N,D,Z
are locally L-analytic groups.
We recall from [Eme04, 2.2.16] the construction of the completed cohomology
spaces H̃i for each cohomological degree i ≥ 0, which are unitary admissible
Banach representations of (G,G(Ap

f )×π0), where π0 is the group of components
of G(F ⊗Q R). The following is immediate from the above:

Proposition 6.1. Let Γ = D ×G(Ap
f )× π0. For any i ≥ 0, we have:

1. For any W ∈ Repcts,fd(M), the space

HomD−st.sm(W,OrdP H̃
i)

is an admissible continuous (Z,Γ)-representation.
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2. For any W ∈ Repla,fd(M), the space

Homd(W,JP H̃
i
la)

is an essentially admissible locally L-analytic (Z,Γ)-representation.

Let us fix an open compact subgroup U ⊆ Γ (this is the most natural notion
of a “tame level” in this context). Then we can use the above result to define
an eigenvariety of tame level U , closely following [Eme06b, §2.3].
Let v be a (finite or infinite) prime of S. We set

Γv =





G(Fv) if v ∤∞ and v 6= p

D if v = p

π0(G(Fv)) if v | ∞.

Then Γ =
∏′

v Γv. Let us set Uv = U ∩ Γv. We say v is unramified (for U)
if v is finite, v 6= p, and Uv is a hyperspecial maximal compact subgroup of
Γv. Let S be the (clearly finite) set of ramified primes, and ΓS =

∏
v/∈S Γv,

ΓS =
∏

v∈S Γv.

It is easy to see that U = US × US , where US = U ∩ ΓS and similarly US =
U ∩ ΓS , and hence we have a tensor product decomposition of Hecke algebras

H(Γ//U) = H(ΓS//US)⊗H(Γ
S//US) =: Hram ⊗Hsph.

As is well known, the algebra Hsph is commutative (but not finitely generated
over K), while Hram is finitely generated (but not commutative in general).
By construction, H(Γ//U) acts on the essentially admissible Z-representation
HomU (W,JP H̃

i
la), and hence it also acts on the corresponding sheaf

F(i, P,W,U) on Ẑ.

Definition 6.2. Let E(i, P,W,U) be the relative spectrum SpecA, where A is

the OẐ-subsheaf of EndF(i, P,W,U) generated by the image of Hsph.

For the definition of the relative spectrum, see [Con06, Thm 2.2.5]. By
definition E(i, P,W,U) is a rigid space over K, endowed with a finite mor-

phism π : E(i, P,W,U) → Ẑ and an isomorphism of sheaves of OẐ-algebras

A ∼= π∗OE(i,P,W,U). Consequently, F(i, P,W,U) lifts to a sheaf F(i, P,W,U)
on E(i, P,W,U).

We can regard E(i, P,W,U) as a subvariety of ẐK × SpecHsph (although the
latter will not be a rigid space if G is not the trivial group); in particular, a
K-point of E(i, P,W,U) gives rise to a homomorphism λ : Hsph → K.
We record the following properties of this construction, which are precisely
analogous to [Eme06b, 2.3.3]:

Theorem 6.3.
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1. The natural projection E(i, P,W,U) → z′ has discrete fibres. In particu-
lar, the dimension of E(i, P,W,U) is at most equal to the dimension of
Z.

2. The action of Hram on F(i, P,W,U) lifts to an action on F(i, P,W,U),

and the fibre of F(i, P,W,U) at a point (χ, λ) ∈ Ẑ × SpecHsph is iso-
morphic as a right Hram-module to the dual of the (Z = χ,Hsph = λ)-
eigenspace of HomU (W,JP H̃

i
la). In particular, the point (χ, λ) lies in

E(i, P,W,U) if and only if this eigenspace is non-zero.

3. If there is a compact open subgroup G0 ⊆ G such that (H̃i
la)

U(p)

is iso-
morphic as a G0-representation to a finite direct sum of copies of C la(G0)
(where U (p) = U ∩ G(Ap

f )), then E(i, P,W,U) is equidimensional, of di-
mension equal to the rank of Z.

Remark. The hypothesis in the last point above is always satisfied when i = 0
and G(F ⊗R) is compact, since for any open compact subgroup U (p) ⊆ G(Ap

f ),

the image of G(F ) ∩ U (p) in G is a discrete cocompact subgroup Λ, and the
U (p)-invariants H̃0(U (p)) are isomorphic as a representation of G and as a
H(U (p))-module to C(Λ\G). This case is considered extensively in an earlier
publication of the second author [Loe11].

Now let us suppose G is split over K, and fix an irreducible (and therefore
absolutely irreducible) algebraic representation W of M . We let Π(P,W,U)
denote the set of irreducible smooth G(Af ) × π0-representations πf such that
JP (πf )

U 6= 0, and πf appears as a subquotient of the cohomology spaceHi(VX)
of [Eme06b, §2.2] for some irreducible algebraic representation X of G with
(X ′)N ∼= W ⊗ χ for some character χ. To any such πf , we may associate

the point (θχ, λ) ∈ Ẑ × SpecHsph, where θ is the smooth character by which
Z acts on JP (πp), and λ the character by which Hsph acts on JP (πf )

U . Let

E(i, P,W,U)cl denote the set of points of Ẑ × SpecHsph obtained in this way
from representations πf ∈ Π(i, P,W,U).

Corollary 6.4. If the map (1.1) is an isomorphism for all irreducible algebraic
representations X such that (X ′)N is a twist of W , then E(i, P,W,U)cl ⊆
E(i, P,W,U). In particular, the Zariski closure of E(i, P,W,U)cl has dimension
at most dimZ.

Proof. Let πf ∈ Π(i, P,W,U). Then the locally algebraic (G,G(A(p)
f ) × π0)-

representation πf ⊗X ′ appears in Hi(VX) ⊗K X ′. By assumption, the latter

embeds as a closed subrepresentation of H̃i
la. The Jacquet functor is exact

restricted to locally X ′-algebraic representations (since this is so for smooth
representations). Moreover, the functor Homd(W,−) is exact restricted to lo-
cally W -algebraic representations, so Homd

[
W,JP (πf )⊗K (X ′)N

]
appears as

a subquotient of Homd

[
W,JP (H̃

i
la)

]
. Since (X ′)N =W ⊗ χ, the former space

is simply JP (πf ) ⊗K χ, so the point (θχ, λ) appears in E(i, P,W,U) as re-
quired.
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Remarks. 1. The entire construction can also be carried out with the spaces
H̃i replaced by the compactly supported versions H̃i

c or the parabolic
versions H̃i

par; we then obtain analogues of the above proposition for
the compactly supported or parabolic cohomology of the arithmetic quo-
tients.

2. It suffices to check that the map (1.1) is an isomorphism for L = Qp.
This is known to hold in many cases, e.g. in degree i = 0 for any G, and
in degree 1 for GL2(Q) (as shown in [Eme06b]) or for a semisimple and
simply connected group (as shown by the first author in [Hil07]). The
“weak Emerton criterion” of [Hil07, defn. 2] suffices to prove corollary
6.4 when W is not a character; this is known in many more cases, e.g.
when i = 2 and the congruence kernel of G is finite. When W is a
character χ : M → Gm, the weak Emerton criterion implies that the
points E(i, P,W,U)cl are contained in the union of E(i, P,W,U) and the
single point (χ−1, 1).

Theorem 6.5. Suppose P1 ⊇ P2 are two parabolics, and U = U (p)×Up, where

U (p) ⊆ G(A(p)
f )×π0 and Up ⊆ D1 is decomposed with respect to P2∩D1. Then

E(i, P1,W,U) is equal to a union of two closed subvarieties

E(i, P1,W,U)P2−fs ∩ E(i, P1,W,U)P2−null,

which are respectively equipped with sheaves of Hram-modules F(i, P,W,U)P2−fs

and F(i, P,W,U)P2−null whose direct sum is F(i, P,W,U).
The element of Hram corresponding to any strictly positive element of Z2 acts
invertibly on F(i, P,W,U)P2−fs and nilpotently on F(i, P,W,U)P2−null; and

there is a subvariety of E(i, P2,W
N12 , U ∩D2) whose image in Ẑ1 × SpecHsph

coincides with E(i, P1,W,U)P2−fs.

Proof. By theorem 5.10, we may decompose F(i, P1,W,U) as a direct sum of
a null part and a finite slope part; this decomposition is clearly functorial,
and hence it is preserved by the action of the Hecke algebra Hsph, so we may
define the spaces E(i, P1,W,U)P2−fs and E(i, P1,W,U)P2−null to be the relative
spectra of the Hecke algebra acting on the two summands.
For the final statement, we note that there is a quotient Q of F(i, P2,W

N12 , U∩
D2), corresponding to the Z2-subrepresentation

JP12

(
Homd1(W,JP1H̃

i
la)

)U∩M2

⊆ Homd2(W
N12 , JP2H̃

i
la)

U∩D2

such that the pushforward of Q to Ẑ1 is isomorphic to F(i, P1,W,U)P2−fs.
This isomorphism clearly commutes with the action of Hsph on both sides,
from which the result follows.
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