
Documenta Math. 133

Ergodic Properties and KMS Conditions

on C∗-Symbolic Dynamical Systems

Kengo Matsumoto

Received: March 3, 2010

Revised: March 12, 2011

Communicated by Joachim Cuntz

Abstract. A C∗-symbolic dynamical system (A, ρ,Σ) consists of a
unital C∗-algebra A and a finite family {ρα}α∈Σ of endomorphisms
ρα of A indexed by symbols α of Σ satisfying some conditions. The
endomorphisms ρα, α ∈ Σ yield both a subshift Λρ and a C∗-algebra
Oρ. We will study ergodic properties of the positive operator λρ =∑

α∈Σ ρα onA. We will next introduce KMS conditions for continuous
linear functionals on Oρ under gauge action at inverse temperature
taking its value in complex numbers. We will study relationships
among the eigenvectors of λρ in A∗, the continuous linear functionals
on Oρ satisfying KMS conditions and the invariant measures on the
associated one-sided shifts. We will finally present several examples
of continuous linear functionals satisfying KMS conditions.
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1. Introduction

D. Olesen and G. K. Pedersen [37] have shown that the C∗-dynamical sys-
tem (ON , α,R) for the Cuntz algebra ON with gauge action α admits a KMS
state at the inverse temperature γ if and only if γ = logN , and the admit-
ted KMS state is unique. By Enomoto-Fujii-Watatani [9], the result has been
generalized to the Cuntz-Krieger algebras OA as γ = logrA, where rA is the
Perron-Frobenius eigenvalue for the irreducible matrix A with entries in {0, 1}.
These results are generalized to several classes of C∗-algebras having gauge
actions (cf. [7], [10], [11], [15], [17], [18], [27], [35], [36], [41], etc.).
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Cuntz-Krieger algebras are considered to be constructed by finite directed
graphs which yield an important class of symbolic dynamics called shifts of
finite type. In [29], the author has generalized the notion of finite directed
graphs to a notion of labeled Bratteli diagrams having shift like maps, which
we call λ-graph systems. A λ-graph system L gives rise to both a subshift ΛL

and a C∗-algebra OL with gauge action. Some topological conjugacy invari-
ants of subshifts have been studied through the C∗-algebras constructed from
λ-graph systems ([30]).
A C∗-symbolic dynamical system is a generalization of both a λ-graph system
and an automorphism of a unital C∗-algebra ([31]). It is a finite family {ρα}α∈Σ

of endomorphisms indexed by a finite set Σ of a unital C∗-algebra A such that
ρα(ZA) ⊂ ZA for α ∈ Σ and

∑
α∈Σ ρα(1) ≥ 1 where ZA denotes the center ofA.

A finite directed labeled graph G gives rise to a C∗-symbolic dynamical system
(AG , ρ

G ,Σ) such thatAG = C
N for someN ∈ N. A λ-graph system L also gives

rise to a C∗-symbolic dynamical system (AL, ρ
L,Σ) such that AL is C(ΩL) for

some compact Hausdorff space ΩL with dimΩL = 0. A C∗-symbolic dynamical
system (A, ρ,Σ) yields a subshift denoted by Λρ over Σ and a Hilbert C∗-
bimodule (φρ,HρA) over A. By using general construction of C∗-algebras from
Hilbert C∗-bimodules established by M. Pimsner [40], a C∗-algebra denoted by
Oρ from (φρ,HρA) has been introduced in [31]. The C∗-algebraOρ is realized as
the universal C∗-algebra generated by partial isometries Sα, α ∈ Σ and x ∈ A
subject to the relations:

∑

γ∈Σ

SγS
∗
γ = 1, SαS

∗
αx = xSαS

∗
α, S∗

αxSα = ρα(x)

for all x ∈ A and α ∈ Σ.We call the algebraOρ the C∗-symbolic crossed product
of A by the subshift Λρ. The gauge action on Oρ denoted by ρ̂ is defined by

ρ̂z(x) = x, x ∈ A and ρ̂z(Sα) = zSα, α ∈ Σ

for z ∈ C, |z| = 1. If A = C(X) with dimX = 0, there exists a λ-graph system
L such that Λρ is the subshift presented by L and Oρ is the C∗-algebra OL

associated with L. If in particular, A = C
N , the subshift Λρ is a sofic shift

and Oρ is a Cuntz-Krieger algebra. If Σ = {α} an automorphism α of a unital
C∗-algebra A, the C∗-algebra Oρ is the ordinary C∗-crossed product A×α Z.
Throughout the paper, we will assume that the C∗-algebra A is commutative.
For a C∗-symbolic dynamical system (A, ρ,Σ), define the positive operator λρ
on A by

λρ(x) =
∑

α∈Σ

ρα(x), x ∈ A.

We set for a complex number β ∈ C the eigenvector space of λρ

Eβ(ρ) = {ϕ ∈ A∗ | ϕ ◦ λρ = βϕ}. (1.1)

Let Sp(ρ) be the set of eigenvalues of λρ defined by

Sp(ρ) = {β ∈ C | Eβ(ρ) 6= {0}}. (1.2)
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Let rρ denote the spectral radius of λρ on A. We set Tρ = 1
rρ
λρ. (A, ρ,Σ) is

said to be power-bounded if the sequence ‖T kρ ‖, k ∈ N is bounded. A state ϕ on
A is said to be invariant if ϕ ◦Tρ = ϕ. If an invariant state is unique, (A, ρ,Σ)
is said to be uniquely ergodic. If limn→∞

1
n

∑n−1
k=0 T

k
ρ (a) exists in A for a ∈ A,

(A, ρ,Σ) is said to be mean ergodic. If there exists no nontrivial ideal of A
invariant under λρ, (A, ρ,Σ) is said to be irreducible. It will be proved that a
mean ergodic and irreducible (A, ρ,Σ) is uniquely ergodic and power-bounded
(Theorem 3.12).
Let A = [A(i, j)]Ni,j=1 be an irreducible matrix with entries in {0, 1}, and Si, i =
1, . . . , N be the canonical generating family of partial isometries of the Cuntz-
Krieger algebra OA. Let AA be the C∗-subalgebra of OA generated by the
projections SjS

∗
j , j = 1, . . . , N . Put Σ = {1, . . . , N} and ρAi (x) = S∗

i xSi, x ∈
AA, i ∈ Σ. Then the triplet (AA, ρA,Σ) yields an example of C∗-symbolic
dynamical system such that its C∗-symbolic crossed product OρA is the Cuntz-
Krieger algebra OA. The above space Eβ(ρ) is identified with the eigenvector
space of the matrix A for an eigenvalue β. By Enomoto-Fujii-Watatani [9],
a tracial state ϕ ∈ Eβ(ρA) on AA extends to a KMS state for gauge action
on OA if and only if β = rA the Perron-Frobenius eigenvalue, and its inverse
temperature is log rA. The admitted KMS state is unique.
In this paper, we will study the space Eβ(ρ) of a general C∗-symbolic dynami-
cal system (A, ρ,Σ) for a general eigenvalue β in C not necessarily maximum
eigenvalue and then introduce KMS condition for inverse temperature taking
its value in complex numbers. In this generalization, we will study possibility
of extension of a continuous linear functional on A belonging to the eigen-
vector space Eβ(ρ) to the whole algebra Oρ as a continuous linear functional
satisfying KMS condition. For a C∗-algebra with a continuous action of the
one-dimensional torus group T = R/2πZ and a complex number β ∈ C, we
will introduce KMS condition for a continuous linear functional without as-
suming its positivity at inverse temperature Logβ. Let B be a C∗-algebra and
α : T −→ Aut(B) be a continuous action of T to the automorphism group
Aut(B). We write a complex number β with |β| > 1 as β = reiθ where
r > 1, θ ∈ R. Denote by B∗ the Banach space of all complex valued continuous
linear functionals on B.
Definition. A continuous linear functional ϕ ∈ B∗ is said to satisfy KMS
condition at Logβ if ϕ satisfies the condition

ϕ(yαi log r(x)) = ϕ(αθ(x)y), x ∈ Ba, y ∈ B, (1.3)

where Ba is the set of analytic elements of the action α : T −→ Aut(B) (cf.[3]).
We will prove

Theorem 1.1. Let (A, ρ,Σ) be an irreducible and power-bounded C∗-symbolic
dynamical system. Let β ∈ C be a complex number with |β| > 1.

(i) If β ∈ Sp(ρ) and |β| = rρ the spectral radius of the positive operator
λρ : A −→ A, then there exists a nonzero continuous linear functional
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on Oρ satisfying KMS condition at Logβ under gauge action. The
converse implication holds if (A, ρ,Σ) is mean ergodic.

(ii) Under the condition |β| = rρ, there exists a linear isomorphism be-
tween the space Eβ(ρ) of eigenvectors of continuous linear functionals
on A and the space KMSβ(Oρ) of continuous linear functionals on Oρ
satisfying KMS condition at Logβ.

(iii) If (A, ρ,Σ) is uniquely ergodic, there uniquely exists a state on Oρ
satisfying KMS condition at log rρ.

(iv) If in particular (A, ρ,Σ) is mean ergodic, then dim Eβ(ρ) ≤ 1 for all
β ∈ C.

In the proof of the above theorem, a Perron-Frobenius type theorem is proved
(Theorem 3.13).
Let Dρ be the C∗-subalgebra of Oρ generated by all elements of the form:
Sα1 · · ·SαkxS∗

αk
· · ·S∗

α1
for x ∈ A, α1, . . . , αk ∈ Σ. Let φρ be the endomorphism

on Dρ defined by φρ(y) =
∑
α∈Σ SαyS

∗
α, y ∈ Dρ, which comes from the left-shift

on the underlying shift spase Λρ. Suppose that (A, ρ,Σ) is uniquely ergodic.
The restriction of the unique KMS state on Oρ is not necessarily a φρ-invariant
state. We will clarify a relationship between KMS states onOρ and φρ-invariant
states on Dρ as in the following way:

Theorem 1.2. Assume that (A, ρ,Σ) is irreducible and mean ergodic. Let τ
be the restriction to Dρ of the unique KMS state on Oρ at logrρ and xρ be a
positive element of A defined by the limit of the mean

lim
n→∞

1

n
(1 + Tρ(1) + · · ·+ T n−1

ρ (1)).

Let µρ be a linear functional on Dρ defined by

µρ(y) = τ(yxρ), y ∈ Dρ.

(i) µρ is a faithful, φρ-invariant and ergodic state on Dρ in the sense that
the formula

lim
n→∞

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) = µρ(y)µρ(x), x, y ∈ Dρ

holds.
(ii) µρ gives rise to a unique φρ-invariant probability measure absolutely

continuous with respect to the probability measure for the state τ .
(iii) µρ is equivalent to the state τ as a measure on Dρ.

For a C∗-symbolic dynamical system (AA, ρA,Σ) coming from an irreducible
matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, the subalgebra DρA is nothing
but the commutative C∗-algebra C(XA) of all continuous functions on the
right one-sided topological Markov shift XA. As φρA corresponds to the left-
shift σA on XA, the above unique φρA -invariant state τ is the Parry measure
on XA. The positive element xρA is given by the positive Perron eigenvector

Documenta Mathematica 16 (2011) 133–175



Ergodic Properties and KMS Conditions 137

xρA = [xj ]
N
j=1 of the transpose At of A satisfying

∑N
j=1 τ(SjS

∗
j )xj = 1, where

[τ(SjS
∗
j )]

N
j=1 is the normalized Perron eigenvector of A.

This paper is organized as follows: In Section 2, we will briefly review C∗-
symbolic dynamical systems and its C∗-algebrasOρ. In Section 3, we will study
ergodic properties of the operator Tρ : A −→ A and the eigenspace Eβ(ρ) . In
Section 4, we will study extendability of a linear functional belonging to Eβ(ρ)
to the subalgebra Dρ of Oρ, which will extend to Oρ. In Section 5, we will
prove Theorem 1.1. In Section 6, we will study a relationship between KMS
states and φρ-invariant states on Dρ to prove Theorem 1.2. In Section 7, we
will present several examples of continuous linear functionals on Oρ satisfying
KMS conditions.

2. C∗-symbolic dynamical systems and their crossed products

Let A be a unital C∗-algebra. In what follows, an endomorphism of A means a
∗-endomorphism ofA that does not necessarily preserve the unit 1 ofA. Denote
by ZA the center {x ∈ A | ax = xa for all a ∈ A} of A. Let Σ be a finite set.
A finite family of nonzero endomorphisms ρα, α ∈ Σ of A indexed by elements
of Σ is said to be essential if ρα(ZA) ⊂ ZA for α ∈ Σ and

∑
α∈Σ ρα(1) ≥ 1. If

in particular, A is commutative, the family ρα, α ∈ Σ is essential if and only
if
∑

α∈Σ ρα(1) ≥ 1. We remark that the definition in [31] of “essential” for
ρα, α ∈ Σ is weaker than the above dfinition. It is said to be faithful if for any
nonzero x ∈ A there exists a symbol α ∈ Σ such that ρα(x) 6= 0.
Definition ([31]). A C∗-symbolic dynamical system is a triplet (A, ρ,Σ) con-
sisting of a unital C∗-algebra A and an essential, faithful finite family {ρα}α∈Σ

of endomorphisms of A.
Two C∗-symbolic dynamical systems (A, ρ,Σ) and (A′, ρ′,Σ′) are said to be
isomorphic if there exist an isomorphism Φ : A → A′ and a bijection π : Σ→ Σ′

such that Φ ◦ ρα = ρ′
π(α) ◦Φ for all α ∈ Σ. For an automorphism α of a unital

C∗-algebra A, by setting Σ = {α}, ρα = α the triplet (A, ρ,Σ) becomes a C∗-
symbolic dynamical system. A C∗-symbolic dynamical system (A, ρ,Σ) yields
a subshift Λρ over Σ such that a word α1 · · ·αk of Σ is admissible for Λρ if and
only if ραk ◦ · · · ◦ ρα1 6= 0 ([31, Proposition 2.1]). We say that a subshift Λ acts
on a C∗-algebra A if there exists a C∗-symbolic dynamical system (A, ρ,Σ)
such that the associated subshift Λρ is Λ.
For a C∗-symbolic dynamical system (A, ρ,Σ) the C∗-algebra Oρ has been
originally constructed in [31] as a C∗-algebra from a Hilbert C∗-bimodule by
using a Pimsner’s general construction of Hilbert C∗-bimodule algebras [40]
(cf. [16] etc.). It is called the C∗-symbolic crossed product of A by the subshift
Λρ, and realized as the universal C∗-algebra C∗(x, Sα;x ∈ A, α ∈ Σ) generated
by x ∈ A and partial isometries Sα, α ∈ Σ subject to the following relations
called (ρ):

∑

γ∈Σ

SγS
∗
γ = 1, SαS

∗
αx = xSαS

∗
α, S∗

αxSα = ρα(x)

for all x ∈ A and α ∈ Σ.
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Let G = (G, λ) be a left-resolving finite labeled graph with underlying finite
directed graph G = (V,E) and labeling map λ : E → Σ (see [28, p.76]). Denote
by v1, . . . , vN the vertex set V . Assume that every vertex has both an incoming
edge and an outgoing edge. Consider the N -dimensional commutative C∗-
algebra AG = CE1⊕· · ·⊕CEN where each minimal projection Ei corresponds
to the vertex vi for i = 1, . . . , N . Define an N ×N -matrix for α ∈ Σ by

AG(i, α, j) =

{
1 if there exists an edge e from vi to vj with λ(e) = α,

0 otherwise (2.1)

for i, j = 1, . . . , N . We set ρGα(Ei) =
∑N

j=1 A
G(i, α, j)Ej for i = 1, . . . , N.

Then ρGα, α ∈ Σ define endomorphisms of AG such that (AG , ρ
G ,Σ) is a C∗-

symbolic dynamical system for which the subshift ΛρG is the sofic shift ΛG

presented by G. Conversely, for a C∗-symbolic dynamical system (A, ρ,Σ), if
A is C

N , there exists a left-resolving labeled graph G such that A = AG and
Λρ = ΛG the sofic shift presented by G ([31, Proposition 2.2]). Put AG(i, j) =∑

α∈ΣA
G(i, α, j), i, j = 1, . . . , N. The N × N matrix AG = [AG(i, j)]i,j=1,...,N

is called the underlying nonnegative matrix for G. Consider the matrix A
[2]
G =

[A
[2]
G (e, f)]e,f∈E indexed by edges E whose entries are in {0, 1} by setting

A
[2]
G (e, f) =

{
1 if f follows e,

0 otherwise.
(2.2)

The C∗-algebra OρG for the C∗-symbolic dynamical system (AG , ρ
G ,Σ) is the

Cuntz-Krieger algebra O
A

[2]

G

(cf. [30, Proposition 7.1], [1]).

More generally let L be a λ-graph system (V,E, λ, ι) over Σ. We equip each
vertex set Vl with discrete topology. We denote by ΩL the compact Hausdorff

space with dimΩL = 0 of the projective limit V0
ι← V1

ι← V2
ι← · · · as in

[30, Section 2]. Since the algebra C(Vl) denoted by AL,l of all continuous
functions on Vl is the commutative finite dimensional algebra, the commutative
C∗-algebra C(ΩL) is an AF-algebra, that is denoted by AL. We then have a
C∗-symbolic dynamical system (AL, ρ

L,Σ) such that the subshift ΛρL coincides
with the subshift ΛL presented by L. Conversely, for a C∗-symbolic dynamical
system (A, ρ,Σ), if the algebra A is C(X) with dimX = 0, there exists a λ-
graph system L over Σ such that the associated C∗-symbolic dynamical system
(AL, ρ

L,Σ) is isomorphic to (A, ρ,Σ) ([31, Theorem 2.4]). The C∗-algebra OρL
is the C∗-algebra OL associated with the λ-graph system L.
Let α be an automorphism of a unital C∗-algebra A. Put Σ = {α} and ρα =
α. The C∗-algebra Oρ for the C∗-symbolic dynamical system (A, ρ,Σ) is the
ordinary C∗-crossed product A×α Z.

In what follows, for a subset F of a C∗-algebra B, we will denote by C∗(F ) the
C∗-subalgebra of B generated by F .
Let (A, ρ,Σ) be a C∗-symbolic dynamical system over Σ and Λ the associated
subshift Λρ. We denote by Bk(Λ) the set of admissible words µ of Λ with length
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Ergodic Properties and KMS Conditions 139

|µ| = k. Put B∗(Λ) = ∪∞k=0Bk(Λ), where B0(Λ) consists of the empty word.
Let Sα, α ∈ Σ be the partial isometries in Oρ satisfying the relation (ρ). For
µ = (µ1, . . . , µk) ∈ Bk(Λ), we put Sµ = Sµ1 · · ·Sµk and ρµ = ρµk ◦ · · · ◦ ρµ1 . In
the algebra Oρ, we set for k ∈ Z+,

Dkρ = C∗(SµxS
∗
µ : µ ∈ Bk(Λ), x ∈ A),

Dρ = C∗(SµxS
∗
µ : µ ∈ B∗(Λ), x ∈ A),

Fkρ = C∗(SµxS
∗
ν : µ, ν ∈ Bk(Λ), x ∈ A) and

Fρ = C∗(SµxS
∗
ν : µ, ν ∈ B∗(Λ), |µ| = |ν|, x ∈ A).

The identity SµxS
∗
ν =

∑
α∈Σ Sµαρα(x)S

∗
να for x ∈ A, µ, ν ∈ Bk(Λ) holds so

that the algebra Fkρ is embedded into the algebra Fk+1
ρ such that ∪k∈Z+Fkρ

is dense in Fρ. Similarly Dkρ is embedded into the algebra Dk+1
ρ such that

∪k∈Z+Dkρ is dense in Dρ. The gauge action ρ̂ of the one-dimensional torus
group T = {z ∈ C | |z| = 1} on Oρ is defined by ρ̂z(x) = x for x ∈ A and
ρ̂z(Sα) = zSα for α ∈ Σ. The fixed point algebra of Oρ under ρ̂ is denoted by
(Oρ)ρ̂. Let Eρ : Oρ −→ (Oρ)ρ̂ be the conditional expectaton defined by

Eρ(X) =

∫

z∈T

ρ̂z(X)dz, X ∈ Oρ. (2.3)

It is routine to check that (Oρ)ρ̂ = Fρ.
Definition ([33]). A C∗-symbolic dynamical system (A, ρ,Σ) satisfies condi-
tion (I) if there exists a unital increasing sequence

A0 ⊂ A1 ⊂ · · · ⊂ A
of C∗-subalgebras ofA such that ρα(Al) ⊂ Al+1 for all l ∈ Z+, α ∈ Σ, the union
∪l∈Z+Al is dense in A and for ǫ > 0, k, l ∈ N with k ≤ l and X0 ∈ Fkρ,l =
C∗(SµxS

∗
ν : µ, ν ∈ Bk(Λ), x ∈ Al), there exists an element g ∈ Dρ∩Al′(= {y ∈

Dρ | ya = ay for a ∈ Al}) with 0 ≤ g ≤ 1 such that

(i) ‖X0φ
k
ρ(g)‖ ≥ ‖X0‖ − ǫ,

(ii) gφmρ (g) = 0 for all m = 1, 2, . . . , k, where φmρ (X) =
∑

µ∈Bm(Λ) SµXS
∗
µ.

As the element g belongs to the diagonal subalgebra Dρ of Fρ, the condition
(I) is intrinsically determined by (A, ρ,Σ) by virtue of [31, Lemma 4.1]. The
condition (I) for (A, ρ,Σ) yields the uniqueness of the C∗-algebra Oρ under the
relations (ρ) ([33]).
If a λ-graph system L over Σ satisfies condition (I), then (AL, ρ

L,Σ) satisfies
condition (I) (cf. [30, Lemma 4.1]).
Recall that the positive operator λρ : A −→ A is defined by λρ(x) =∑

α∈Σ ρα(x), x ∈ Σ. Then a C∗-symbolic dynamical system (A, ρ,Σ) is said
to be irreducible, if there exists no nontrivial ideal of A invariant under λρ. It
has been shown in [31] that if (A, ρ,Σ) satisfies condition (I) and is irreducible,
then the C∗-algebra Oρ is simple.
Interesting examples of (A, ρ,Σ) in [31], [34] which we have seen from the
view point of symbolic dynamics come from ones for which A is commutative.
Hence we assume that the algebra A is commutative so that A is written as
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C(Ω) for some compact Hausdorff space Ω henceforth. For the cases that A is
noncommutative, our discussions in this paper well work by considering tracial
states on A in stead of states on A under slight modifications.

3. Ergodicity and Perron-Frobenius type theorem

In this section, we will study ergodic properties of a C∗-symbolic dynamical
system (A, ρ,Σ) and prove a Perron-Frobenius type theorem.
Let A∗ denote the Banach space of all complex valued continuous linear func-
tionals on A. For β ∈ C with β 6= 0, set

Eβ(ρ) = {ϕ ∈ A∗ | ϕ ◦ λρ(a) = βϕ(a) for all a ∈ A}.
It is possible that Eβ(ρ) is {0}. A nonzero continuous linear functional ϕ in
Eβ(ρ) is called an eigenvector of the operator λ∗ρ with respect to the eigenvalue
β. Let rρ be the spectral radius of the positive operator λρ : A −→ A. Since
λkρ(1) ≥ 1, k ∈ N, one sees that rρ ≥ 1. As Sp(λρ) = Sp(λ∗ρ) (cf. [8, VI. 2.7]),
we note rρ = r(λ∗ρ). Let S(A) denote the state space of A.

Lemma 3.1. (A, ρ,Σ) is irreducible if and only if for a state ϕ on A and a
nonzero element x ∈ A, there exists a natural number n such that ϕ(λnρ (x

∗x)) >
0.

Proof. Suppose that (A, ρ,Σ) is irreducible. For a state ϕ on A, put
Iϕ = {x ∈ A|ϕ(λnρ (x∗x)) = 0 for all n ∈ N}

which is an ideal of A because A is commutative. The Schwarz type inequality

λnρ (λρ(x)
∗λρ(x)) ≤ ‖λρ‖λn+1

ρ (x∗x) for x ∈ A
implies that Iϕ is λρ-invariant. Hence Iϕ is trivial.
Conversely, let I be an ideal of A invariant under λρ. Put B = A/I. Denote
by q : A −→ B the quotient map. Take ψ ∈ S(B) a state. Put ϕ = ψ ◦ q. For
y ∈ I, as ϕ(λnρ (y∗y)) = 0, n ∈ N, one sees that y = 0 and hence I = {0} by the
hypothesis. Hence (A, ρ,Σ) is irreducible. �

We denote by Tρ : A −→ A the positive operator 1
rρ
λρ. The spectral radius

of Tρ is 1. A state τ on A is called an invariant state if τ ◦ Tρ = τ on A,
equivalently τ ∈ Erρ(ρ).

Corollary 3.2. Suppose that (A, ρ,Σ) is irreducible. Then any positive eigen-
vector of λ∗ρ for a nonzero eigenvalue is faithful.

Proof. Let ϕ ∈ Eβ(ρ) be a positive linear functional for some nonzero β ∈ C.
Since ϕ(λρ(1)) = βϕ(1), one has β > 0. By the preceding lemma, one has
ϕ(x∗x) > 0 for nonzero x ∈ A. �

Yasuo Watatani has kindly informed to the author that the lemma below, which
is seen from [41, Theorem 2.5], is needed in the proof of Lemma 3.4. In our
restrictive situation, we may directly prove it as in the following way.
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Lemma 3.3. The spectral radius rρ of the operator λρ is contained in the spec-
trum Sp(λρ) of λρ.

Proof. The resolvent R(z) = (z − λρ)
−1 for λρ has the expansion R(z) =∑∞

n=0
λρ
n

zn+1 for z ∈ C, |z| > rρ which converges in norm. We note that the
family {R(z)}|z|>rρ is not uniformly bounded. Otherwise, there exists a con-
stant M > 0 such that ‖R(z)‖ < M for z ∈ C, |z| > rρ. By the compactness
of Sp(λρ), we may find z◦ ∈ Sp(λρ) with |z◦| = rρ. Take zn 6∈ Sp(λρ) satisfy-
ing limn→∞ zn = z◦ and |zn| > rρ. The resolvent equation R(zn) − R(zm) =
(zn − zm)R(zn)R(zm) implies the inequality ‖R(zn)−R(zm)‖ ≤ |zn − zm|M2

so that there exists a bounded linear operator R◦ = limn→∞R(zn) on A. The
equality (zn−λρ)R(zn)x = x, x ∈ A implies (z◦−λρ)R◦x = x, x ∈ A and hence
z◦ 6∈ Sp(λρ) a contradiction. Thus there exists rn ∈ C such that |rn| 6∈ Sp(λρ)
and |rn| ↓ rρ and limn→∞ ‖R(rn)f‖ = ∞ for some f ∈ A. We may assume
that f ≥ 0. For a state ϕ on A, one has

|ϕ(R(rn)f)| ≤
∞∑

k=0

ϕ(λρ
k(f))

|rn|k+1
= ϕ(R(|rn|)f).

Denote by w(y) the numerical radius of an element y ∈ A, which is defined by

w(y) = sup{ϕ(y) | ϕ ∈ S(A)}.
As the inequalities 1

2‖y‖ ≤ w(y) ≤ ‖y‖ always hold (cf. [13, p.95]), one sees

1

2
‖R(rn)f‖ ≤ w(R(rn)f) ≤ w(R(|rn|)f) ≤ ‖R(|rn|)f‖

so that
lim
n→∞

‖R(|rn|)f‖ =∞.
If rρ 6∈ Sp(λρ), the condition |rn| 6∈ Sp(λρ) means that R(|rn|) ↑ R(rρ) because
R(z) increases for z ↓ rρ. Hence R(|rn|)f ↑ R(rρ)f and limn→∞ ‖R(|rn|)f‖ =
‖R(rρ)f‖ <∞, a contradiction. Therefore we conclude rρ ∈ Sp(λρ). �

The following lemma is crucial.

Lemma 3.4. Suppose that (A, ρ,Σ) is irreducible. Then there exists a faithful
invariant state on A.
Proof. We denote by R∗(t) the resolvent of λ∗ρ : A∗ → A∗ defined by R∗(t)ϕ =

(t − λ∗ρ)−1ϕ for ϕ ∈ A∗, t > r(λ∗ρ). As rρ = r(λ∗ρ), there exists ϕ0 ∈ A∗ such
that ‖R∗(t)ϕ0‖ is unbounded for t ↓ rρ by Lemma 3.3. We may assume that
ϕ0 is a state on A. Put

ϕn =
R∗(rρ +

1
n
)ϕ0

‖R∗(rρ +
1
n
)ϕ0‖

for n = 1, 2, ....

Since R∗(t) is positive for t > rρ, each ϕn is a state on A so that there exists
a weak∗ cluster point ϕ∞ ∈ S(A) of the sequence {ϕn} in S(A). As we see

(rρ − λ∗ρ)ϕn = − 1

n
ϕn +

ϕ0

‖R∗(rρ +
1
n
)ϕ0‖

,
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we get rρϕ∞ = λ∗ρϕ∞ so that ϕ∞ ∈ Erρ(ρ). By Corollary 3.2, one knows that
ϕ∞ is faithful on A. �

Definition. A C∗-symbolic dynamical system (A, ρ,Σ) is said to be uniquely
ergodic if there exists a unique invariant state on A. Denote by τ the unique
invariant state.
If (A, ρ,Σ) is irreducible and uniquely ergodic, the unique invariant state τ is
automatically faithful because any invariant state is faithful.
There is an example of a C∗-symbolic dynamical system (A, ρ,Σ) for which
a unique invariant state is not faithful, unless (A, ρ,Σ) is irreducible. Let

A = C ⊕ C, Σ = {1, 2} and ρ1 =

[
1 0
0 0

]
, ρ2 =

[
1 0
0 1

]
. Then λρ =

[
2 0
0 1

]
,

rρ = 2 and Tρ =

[
1 0
0 1

2

]
. The vector

[
1
0

]
is a unique invariant state on A, that

is not faithful.
We will see, in Section 7, that the C∗-symbolic dynamical system (AG , ρ

G ,Σ)
for a finite labeled graph G is uniquely ergodic if and only if the underlying
nonnegative matrix AG is irreducible.
We will next consider the eigenvector space of the operator λρ on A. We are
assuming that the algebra A is commutative so that A is written as C(Ω) for
some compact Hausdorff space Ω.

Lemma 3.5. Assume that (A, ρ,Σ) is irreducible.

(i) If Tρ has a nonzero fixed element in A, then Tρ has a nonzero positive
fixed element in A,

(ii) A nonzero positive fixed element by Tρ in A must be strictly positive.
(iii) If there exist two nonzero positive fixed elements by Tρ in A, then one

is a scalar multiple of the other.
(iv) The dimension of the space consisting of the fixed elements by Tρ is at

most one.

Proof. (i) Let y ∈ A be a nonzero fixed element by Tρ. Since y
∗ is also fixed by

Tρ, we may assume that y = y∗. Denote by y = y+ − y− with y+, y− ≥ 0 the
Jordan decomposition of y. We have y+ ≥ y and hence Tρ(y

+) ≥ Tρ(y) = y.
As Tρ(y

+) ≥ 0, one sees that Tρ(y
+) ≥ y+. Now (A, ρ,Σ) is irreducible so that

there exists a faithful invariant state τ on A. Since τ(Tρ(y
+) − y+) = 0, one

has Tρ(y
+) = y+. Similarly we have Tρ(y

−) = y−. As y 6= 0, either y+ or y−

is not zero.
(ii) Let y ∈ A be a nonzero fixed positive element by Tρ. Suppose that there
exists ω0 ∈ Ω such that y(ω0) = 0. Let Iy be the closed ideal of A generated
by y. For a nonzero positive element f ∈ A we have

Tρ(fy) ≤ ‖f‖Tρ(y) = ‖f‖y
so that Tρ(fy) belongs to Iy. As the ideal Iy is approximated by linear combi-
nations of the elements of the form fy, f ∈ A, f ≥ 0, the ideal Iy is invariant
under Tρ. Now (A, ρ,Σ) is irreducible so that Iy = A. As any element of Iy
vanishes at ω0, a contradiction.
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(iii) Let x, y ∈ A be nonzero positive fixed elements by Tρ. By the above

discussions, they are strictly positive. Set c0 = min{x(ω)
y(ω) | ω ∈ Ω}. The

function x − c0y is positive element but not strictly positive, so that it must
be zero.
(iv) Let y ∈ A be a fixed element under Tρ, which is written as the Jordan
decomposition y = y1−y2+i(y3−y4) for some positive elements yi, i = 1, 2, 3, 4
in A. By the above discussions, all the elements yi, i = 1, 2, 3, 4 are fixed under
Tρ and they are strictly positive if it is nonzero. Hence (iii) implies the desired
assertion. �

Definition. A C∗-symbolic dynamical system (A, ρ,Σ) is said to satisfy (FP)
if there exists a nonzero fixed element in A under Tρ.
If in particular, (A, ρ,Σ) is irreducible, a nonzero fixed element can be taken
as a strictly positive element in A by the previous lemma.

Lemma 3.6. Assume that (A, ρ,Σ) is irreducible and satisfies (FP).

(i) If there exists a state in Eβ(ρ) for some β ∈ C with β 6= 0, then we
have β = rρ.

(ii) If in particular, (A, ρ,Σ) is uniquely ergodic, the eigenspace Erρ(ρ) is
of one-dimensional.

Proof. (i) Suppose that there exists a state ψ in Eβ(ρ) for some β ∈ C with
β 6= 0. Let x0 ∈ A be a nonzero fixed element by Tρ. One may take it to be
strictly positive by the preceding lemma. Since λρ(x0) = rρx0, one has

βψ(x0) = ψ(λρ(x0)) = rρψ(x0).

By Corollary 3.2, one has ψ(x0) > 0 so that β = rρ.

(ii) Take an arbitrary ϕ ∈ Erρ(ρ). Put ϕ∗(x) = ϕ(x∗), x ∈ A and hence

ϕ∗ ∈ Erρ(ρ). Both of the continuous linear functionals ϕRe = 1
2 (ϕ + ϕ∗) and

ϕIm = 1
2i (ϕ − ϕ∗) belong to Erρ(ρ) which come from real valued measures

on Ω. Put ψ = ϕRe. Let ψ = ψ+ − ψ− be the Jordan decomposition of ψ,
where ψ+, ψ− are positive linear functionals on A. Since ψ+ ≥ ψ, one has
T ∗
ρψ+ ≥ T ∗

ρψ = ψ. As T ∗
ρψ+ is positive, one has T ∗

ρψ+ ≥ ψ+. Now (A, ρ,Σ)
is irreducible and satisfies (FP) so that one finds a strictly positive element

x0 ∈ A fixed by Tρ. Then ψ̃ = T ∗
ρψ+ − ψ+ is a positive linear functional

satisfying ψ̃(x0) = 0. It follows that ψ̃ = 0 so that T ∗
ρψ+ = ψ+. Similarly

we have T ∗
ρψ− = ψ−. As both ψ+, ψ− are positive linear functionals on A,

the unique ergodicity asserts that there exist 0 ≤ c+, c− ∈ R such that ψ+ =
c+τ, ψ− = c−τ . By putting cRe = c+ − c−, one has ϕRe = cReτ and similarly
ϕIm = cImτ for some real number cIm. Therefore we have

ϕ = (cRe + icIm)τ.

Hence any continuous linear functional fixed by Tρ is a scalar multiple of τ , so
that

dim Erρ(ρ) = 1.

�
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A C∗-symbolic dynamical system (A, ρ,Σ) is said to be power-bounded if the
sequence {‖T kρ ‖ | k ∈ N} is bounded. As T kρ : A −→ A is completely positive,

the equalities ‖T kρ ‖ = ‖T kρ (1)‖ = ‖ 1
rρk

∑
µ∈Bk(Λ) ρµ(1)‖ hold. We remark that

for an irreducible matrix A = [A(i, j)]Ni,j=1 with entries in {0, 1}, the associ-

ated C∗-symbolic dynamical system (AA, ρA,Σ) defined in the Cuntz-Krieger
algebra OA is power-bounded. One indeed sees that there is a constant d > 0
such that

N∑

i,j=1

Ak(i, j) ≤ d · rkA (cf. [28, Proposition 4.2.1]).

Hence

‖λkA(1)‖ = max
i

N∑

j=1

Ak(i, j) ≤ d · rkA.

Lemma 3.7. Assume that (A, ρ,Σ) is irreducible. If (A, ρ,Σ) satisfies (FP),
then (A, ρ,Σ) is power-bounded.

Proof. As (A, ρ,Σ) is irreducible and satisfies (FP), there exists a strictly pos-
itive fixed element x0 of A under Tρ. Since Ω is compact, one finds positive
constants c1, c2 such that 0 < c1 < x0(ω) < c2 for all ω ∈ Ω. It follows that

c1T
n
ρ (1) = T nρ (c11) ≤ T nρ (x0) = x0 ≤ c2, n ∈ N.

Thus we have ‖T nρ ‖ = ‖T nρ (1)‖ ≤ c2
c1

for n ∈ N. �

We define the mean operator Mn : A −→ A for n ∈ N by setting

Mn(a) =
a+ Tρ(a) + T 2

ρ (a) + · · ·+ T n−1
ρ (a)

n
, a ∈ A. (3.1)

Definition. A C∗-symbolic dynamical system (A, ρ,Σ) is said to be mean
ergodic if for a ∈ A the limit limn→∞Mn(a) exists in A under norm-topology.
For a mean ergodic (A, ρ,Σ), the limit limn→∞Mn(1) exists in A under norm-
topology, which we denote by xρ ∈ A
Lemma 3.8. Assume that (A, ρ,Σ) is irreducible. For a mean ergodic (A, ρ,Σ),
we have for a ∈ A,

lim
n→∞

Mn(a) = lim
n→∞

Mn(Tρ(a)) = lim
n→∞

Tρ(Mn(a)). (3.2)

In particular xρ is a nonzero positive element which satisfies xρ = Tρ(xρ) and
τ(xρ) = 1 for an invariant state τ ∈ Erρ(ρ).
Proof. For a ∈ A, the equality Tρ(Mn(a)) =Mn(Tρ(a)) is clear. As

(n+ 1)Mn+1(a)− nMn(a) = T nρ (a),

one has
1

n
T nρ (a) =Mn+1(a)−Mn(a) +

1

n
Mn+1(a)
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so that limn→∞
1
n
T nρ (a) = 0. By the equality

Tρ(Mn(a))−Mn(a) =
1

n
(T nρ (a)− a)

we have

lim
n→∞

(Tρ(Mn(a))−Mn(a)) = lim
n→∞

1

n
(T nρ (a)− a) = 0.

Take a faithful invariant state τ on A, we have

τ(xρ) = lim
n→∞

τ(Mn(1)) = τ(1) = 1.

�

Proposition 3.9. Assume that (A, ρ,Σ) is irreducible. If (A, ρ,Σ) is mean
ergodic, there exists a faithful invariant state τ on A such taht

lim
n→∞

Mn(a) = τ(a)xρ, a ∈ A. (3.3)

Proof. For a ∈ A, the limit Φ(a) = limn→∞Mn(a) is fixed by Tρ so that it is
a scalar multiple of xρ by Lemma 3.5 (iv). One may put

Φ(a) = τ(a)xρ for some τ(a) ∈ C.

It is easy to see that τ : A −→ C is a state. As Φ(Tρ(a)) = Φ(a), one sees
τ(Tρ(a)) = τ(a) for a ∈ A. Hence τ is an invariant state on A. Now (A, ρ,Σ)
is irreducible, the invariant state is faithful. �

Hence the following corollary is clear.

Corollary 3.10. Assume that (A, ρ,Σ) is irreducible. Then the following two
assertions are equivalent:

(i) (A, ρ,Σ) is mean ergodic.
(ii) There exist an invariant state τ on A and a positive element x0 ∈ A

with τ(x0) = 1 such that limn→∞Mn(a) = τ(a)x0 for a ∈ A.
In this case x0 is given by limn→∞Mn(1)(= xρ), and τ is faithful.

Theorem 3.11. Assume that (A, ρ,Σ) is irreducible. Then the following two
assertions are equivalent:

(i) (A, ρ,Σ) is mean ergodic.
(ii) (A, ρ,Σ) is uniquely ergodic and satisfies (FP).

Proof. (i) ⇒ (ii): Suppose that (A, ρ,Σ) is mean ergodic. Put Φ(a) =
limn→∞Mn(a) for a ∈ A. The element xρ = Φ(1) is a nonzero fixed ele-
ment of A under Tρ. By the previous corollary, there exists an invariant state
τ on A satisfying Φ(a) = τ(a)xρ for a ∈ A. For any invariant state ψ on
A, we have ψ ◦ Mn(a) = ψ(a) for a ∈ A. Hence ψ(Φ(a)) = ψ(a) so that
ψ(a) = ψ(τ(a)xρ) = τ(a)ψ(xρ). Since ψ(xρ) = 1, we obtain ψ(a) = τ(a).
Therefore ψ = τ so that (A, ρ,Σ) is uniquely ergodic.
(ii) ⇒ (i): Suppose that (A, ρ,Σ) is uniquely ergodic and satisfies (FP). By

Lemma 3.7, (A, ρ,Σ) is power-bounded. Hence the sequence { 1
n

∑n−1
k=0 T

k
ρ }n∈N
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is uniformly bounded. This means that Tρ : A −→ A is Cesàro bounded (cf.

[22, p.72]). As limn→∞
Tn−1
ρ (a)

n
= 0 for a ∈ A, the operator Tρ : A → A

satisfies the assumption of [22, p.74 Theorem 1.4]. To prove mean ergodicity,
it suffices to show that F = {x ∈ A | Tρx = x} separates F ∗ = {ϕ ∈ A∗ |
ϕ ◦ Tρ = ϕ}. By Lemma 3.6, one knows that F ∗ = Cτ , where τ is a unique
faithful invariant state on A. Hence if ϕ = cτ ∈ F ∗ is nonzero, then c 6= 0 and
ϕ(xρ) = cτ(xρ) = c 6= 0. This implies that F separates F ∗. Thus by [22, p.74
Theorem 1.4], (A, ρ,Σ) is mean ergodic. �

Remark. In [22, p.179], it is shown that a mean ergodic irreducible “Markov
operator ”is uniquely ergodic. In our situation, the operator Tρ does not nec-
essarily satisfy Tρ(1) = 1. Hence the operator Tρ is not necessarily a Markov
operator.

We summarize results obtained in this section as in the following way:

Theorem 3.12. Assume that (A, ρ,Σ) is irreducible. Then the following im-
plications hold:

(ME)⇐⇒ (UE)+ (FP) =⇒ (FP) =⇒ (PB)

⇓
dim Erρ(ρ) = 1 =⇒ (UE),

where (ME) means mean ergodic, (UE) means uniquely ergodic, and (PB)
means power-bounded.

If in particular (A, ρ,Σ) is irreducible and mean ergodic, the following Perron-
Frobenius type theorem holds.

Theorem 3.13. Assume that (A, ρ,Σ) is irreducible and mean ergodic.

(i) There exists a unique pair of a faithful state τ on A and a strictly
positive element xρ in A satisfying the conditions:

τ ◦ λρ = rρτ, λρ(xρ) = rρxρ and τ(xρ) = 1,

where rρ is the spectral radius of the positive operator λρ on A.
(ii) If there exists a continuous linear functional ψ on A satisfying

ψ ◦ λρ = rρψ,

then ψ = cτ for some complex number c ∈ C.
(iii) If there exists a state ϕ on A and a complex number β ∈ C with β 6= 0

satisfying

ϕ ◦ λρ = βϕ,

then ϕ = τ and β = rρ.
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(iv) For any a ∈ A, the limit limn→∞
1
n

∑n−1
k=0

λkρ(a)

rkρ
exists in A in the norm

topology such that

lim
n→∞

1

n

n−1∑

k=0

λkρ(a)

rkρ
= τ(a)xρ.

Proof. Under the assumption that (A, ρ,Σ) is irreducible, mean ergodicity is
equivalent to unique ergodicity with (FP). (i) and (iv) follows from Corollary
3.10 and unique ergodicity. (ii) follows from Lemma 3.6 (ii). (iii) follows from
Lemma 3.6 (i) and unique ergodicity. �

4. Extension of eigenvectors to Fρ
In this section, we will study extendability of an eigenvector in Eβ(ρ) to the
subalgebra Fρ. We fix a C∗-symbolic dynamical system (A, ρ,Σ) satisfying
condition (I) henceforth.

Lemma 4.1. Fix a nonnegative integer k ∈ Z+. For any element x ∈ Fkρ there
uniquely exists xµ,ν in A for each µ, ν ∈ Bk(Λ) such that

x =
∑

µ,ν∈Bk(Λ)

Sµxµ,νS
∗
ν and xµ,ν = ρµ(1)xµ,νρν(1).

(4.1)

If in particular x belongs to Dkρ , there uniquely exists xµ in A for each µ ∈
Bk(Λ) such that

x =
∑

µ∈Bk(Λ)

SµxµS
∗
µ and xµ = ρµ(1)xµρµ(1). (4.2)

Proof. For an element x in Fkρ and µ, ν ∈ Bk(Λ), put xµ,ν = S∗
µxSν that

belongs to A and satisfies the equalities (4.1). �

We set

Dρalg = the algebraic linear span of SµaS
∗
µ for µ ∈ B∗(Λ), a ∈ A, and

Fρalg = the algebraic linear span of SµaS
∗
ν for µ, ν ∈ B∗(Λ), |µ| = |ν|, a ∈ A.

Hence Dρalg = ∪∞k=0Dkρ and Fρalg = ∪∞k=0Fkρ . They are dense ∗-subalgebras of
Dρ and Fρ respectively.

Lemma 4.2. For β ∈ C with |β| > 1 and ϕ ∈ Eβ(ρ) on A, put

ϕ̃(SµaS
∗
µ) =

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ). (4.3)

Then ϕ̃ is a well-defined (not necessarily continuous) linear functional on Dρalg,
that is an extension of ϕ.
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Proof. By the expansion (4.2) for an element x ∈ Dkρ , the following definition

of ϕk(x) yields a linear functional ϕk on Dkρ

ϕk(x) =
∑

µ∈Bk(Λ)

1

βk
ϕ(xµ). (4.4)

We will show that ϕk = ϕk+1 on Dkρ . As SµxµS∗
µ =

∑
α∈Σ Sµαρα(xµ)S

∗
µα and

ρµα(1)ρα(xµ)ρµα(1) = S∗
αρµ(1)xµρµ(1)Sα = ρα(xµ), the following expression

of x in Dk+1
ρ

x =
∑

µ∈Bk(Λ),α∈Σ

Sµαρα(xµ)S
∗
µα

is the unique expression of (4.2). Hence we obtain

ϕk+1(x) =
∑

µ∈Bk(Λ),α∈Σ

1

βk+1
ϕ(ρα(xµ)) =

1

βk

∑

µ∈Bk(Λ)

ϕ(xµ) = ϕk(x).

The family {ϕk}k∈Z+ of linear functionals on the subalgebras {Dkρ}k∈Z+ yields

a linear functional on the algebra Dρalg. We denote it by ϕ̃. As the expansion
a =

∑
α∈Σ Sαρα(a)S

∗
α for a ∈ A is the unique expansion of a in (4.2) as an

element of D1
ρ, we have ϕ̃(a) = 1

β

∑
α∈Σ ϕ(ρα(a)) = ϕ(a) so that ϕ̃ = ϕ on

A. �

We will extend λρ on A to Fρ such as

λρ(x) =
∑

α∈Σ

S∗
αxSα for x ∈ Fρ.

Lemma 4.3. Let ψ be a linear functional on Fρalg such that its restriction to
A is continuous. Then the following three conditions are equivalent:

(i) ψ is tracial and ψ ◦ λρ(x) = βψ(x) for x ∈ Fρalg.
(ii) ψ(SµxS

∗
ν ) = δµ,ν

1
β|µ|ψ(xS

∗
µSµ) for x ∈ Fρalg, µ, ν ∈ B∗(Λ) with |µ| =

|ν|.
(iii) There exists ϕ ∈ Eβ(ρ) such that

ψ(SµaS
∗
ν ) = δµ,ν

1

β|µ|
ϕ(aρµ(1)) for a ∈ A, µ, ν ∈ B∗(Λ)with |µ| = |ν|.

Proof. (i) ⇒ (ii): The equation (i) implies that for k ∈ N,

ψ(x) =
1

βk

∑

γ∈Bk(Λ)

ψ(S∗
γxSγ), x ∈ Fρalg.

It then follows that for µ, ν ∈ Bk(Λ)

ψ(SµxS
∗
ν ) =

1

βk

∑

γ∈Bk(Λ)

ψ(S∗
γSµxS

∗
νSγ) = δµ,ν

1

βk
ψ(xS∗

µSµ).

Documenta Mathematica 16 (2011) 133–175



Ergodic Properties and KMS Conditions 149

(ii) ⇒ (iii): Define a linear functional ϕ on A by the restriction of ψ to the
subalgebra A. By the equation (ii) for a ∈ A and hence S∗

αaSα ∈ A, we see

ψ(SαS
∗
αa) = ψ(SαS

∗
αaSαS

∗
α) =

1

β
ψ(S∗

αaSαS
∗
αSα) =

1

β
ψ(S∗

αaSα)

so that ϕ ∈ Eβ(ρ). The equation (iii) is clear.
(iii) ⇒ (i): We will see that ψ is tracial. Let x, y ∈ Fkρ be expanded as in (4.1)
so that x =

∑
µ,ν∈Bk(Λ) Sµxµ,νS

∗
ν , y =

∑
µ,ν∈Bk(Λ) Sµyµ,νS

∗
ν . We have

xy =
∑

µ,ν,γ∈Bk(Λ)

Sµxµ,νρν(1)yν,γS
∗
γ =

∑

µ,γ∈Bk(Λ)

Sµ(
∑

ν∈Bk(Λ)

xµ,νyν,γ)S
∗
γ

and
∑
ν∈Bk(Λ) xµ,νyν,γ = ρµ(1)(

∑
ν∈Bk(Λ) xµ,νyν,γ)ργ(1), similarly

yx =
∑

η,ν∈Bk(Λ)

Sη(
∑

γ∈Bk(Λ)

yη,γxγ,ν)S
∗
ν

and
∑
γ∈Bk(Λ) yη,γxγ,ν = ρη(1)(

∑
ν∈Bk(Λ) yη,γxγ,ν)ρν(1). It follows that

ψ(xy) =
∑

µ,ν∈Bk(Λ)

1

βk
ϕ(xµ,νyν,µ) =

∑

γ,η∈Bk(Λ)

1

βk
ϕ(yη,γxγ,η) = ψ(yx).

Hence ψ is tracial on Fkρ .
We will finally show that the equality in (i) holds. For SµaS

∗
ν ∈ Fkρ with a ∈

A, µ = (µ1, . . . , µk), ν = (ν1, . . . , νk) ∈ Bk(Λ), put µ[2,k] = (µ2, . . . , µk), ν[2,k] =
(ν2, . . . , νk) ∈ Bk−1(Λ). One has

∑

α∈Σ

ψ(S∗
α(SµaS

∗
ν)Sα)

=δµ1,ν1ψ(ρµ1(1)Sµ[2,k]
aS∗

ν[2,k]
ρν1(1))

=δµ1,ν1ψ(Sµ[2,k]
S∗
µ[2,k]

ρµ1(1)Sµ[2,k]
aS∗

ν[2,k]
ρν1(1)Sν[2,k]S

∗
ν[2,k]

)

=δµ1,ν1ψ(Sµ[2,k]
ρµ(1)aρν(1)S

∗
ν[2,k]

)

=δµ1,ν1δµ[2,k],ν[2,k]

1

βk−1
ϕ(ρµ(1)aρν(1)ρν[2,k](1))

=δµ,ν
1

βk−1
ϕ(ρµ(1)aρν(1))

=βψ(SµaS
∗
ν ).

�

Let ED : Fρ −→ Dρ denote the expectation satisfying

ED(SµaS
∗
ν ) = δµ,νSµaS

∗
µ, a ∈ A, µ, ν ∈ B∗(Λ), |µ| = |ν|.

Once we have an extension ϕ̃ to Dρ of ϕ ∈ Eβ(ρ), ϕ̃ has a further extension to
Fρ by ϕ̃ ◦ ED. The extension ϕ̃ ◦ ED on Fρ is continuous if ϕ̃ is so on Dρ. It
satisfies

ϕ̃ ◦ ED(SµaS
∗
ν ) = δµ,ν

1

β|µ|
ϕ(aρµ(1)) (4.5)
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for a ∈ A, µ, ν ∈ B∗(Λ) with |µ| = |ν|. Hence the extension of a continuous
linear functional on Dρ to Fρ is automatic. We have only to study extension
of a linear functional ϕ ∈ Eβ(ρ) on A to Dρ. The condition (iii) of Lemma 4.3

is equivalent to ψ = ϕ̃ ◦ ED where ϕ̃ is a linear functional on Dρalg obtained
from ϕ ∈ Eβ(ρ) as in Lemma 4.2, and so thst ψ is continuous if and only if

ϕ̃ is continuous. We call the extension ϕ̃ on Dρalg of ϕ ∈ Eβ(ρ) the canonical
extension of ϕ.

Lemma 4.4. Suppose that (A, ρ,Σ) is irreducible and power-bounded. For β ∈
C with |β| = rρ > 1, a (not necessarily positive) continuous linear functional
ϕ ∈ Eβ(ρ) on A extends to a continuous linear functional ϕ̃ on Dρ satisfying
(4.3).

Proof. As (A, ρ,Σ) is irreducible, we may take a faithful invariant state τ on
A, which we will fix. By the hypothesis that (A, ρ,Σ) is power-bounded, there
exists a positive number M such that

‖λkρ(1)‖

rkρ
< M for all k ∈ N. By [43,

Theorem 4.2], there exists a partial isometry v ∈ A∗∗ and a positive linear
functional ψ ∈ A∗ such that

ϕ(a) = ψ(av), a ∈ A.

For x =
∑

µ∈Bk(Λ) SµxµS
∗
µ ∈ Dkρ as in (4.2). Define a linear functional ϕk on

Dkρ by (4.4). As in Lemma 4.2, ϕk+1|Dkρ = ϕk and hence {ϕk}k∈N defines a

linear functional on Dρalg. It then follows that

|ϕ(xµ)| = |ψ(ρµ(1)xµρµ(1)v)| ≤ ψ(ρµ(1))
1
2 ‖x∗µxµ‖

1
2ψ(v∗ρµ(1)v)

1
2 .

Since ρµ(1) commutes with v and

‖xµ‖ = ‖SµxµS∗
µ‖ ≤ max

ν∈Bk(Λ)
‖SνxνS∗

ν‖ = ‖x‖, (4.6)

we have

|ϕ(xµ)| ≤ ‖x‖ψ(ρµ(1))

and hence

|ϕk(x)| ≤
1

|β|k
∑

µ∈Bk(Λ)

|ϕ(xµ)| ≤
1

|β|k ‖x‖ψ(λ
k
ρ(1)) =

‖λkρ(1)‖
rkρ

ψ(1)‖x‖.

Therefore we have

|ϕk(x)| ≤Mψ(1)‖x‖, x ∈ Dkρ
and hence {ϕk}k∈N extends to a continuous linear functional on the closure Dρ
of Dρalg. �

If in particular a linear functional ϕ ∈ Eβ(ρ) is positive on A, it always extends
to a continuous linear functionl on Dρ as in the following way:
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Lemma 4.5. Let β ∈ C be |β| > 1. If ϕ ∈ Eβ(ρ) is a positive linear functional
on A, then β becomes a positive real number and the canonical extension ϕ̃ to
Dρ is continuous on Dρ.

Proof. One may assume that ϕ 6= 0 and ϕ(1) = 1. We have β = βϕ(1) =
ϕ(λρ(1)) ≥ 1. For k ∈ N, define a linear functional ϕk on Dkρ by (4.4). Since

for x =
∑

µ∈Bk(Λ) SµxµS
∗
µ ∈ Dkρ we have by (4.6),

|ϕ(ρµ(1)xµρµ(1))| ≤ ϕ(ρµ(1))
1
2ϕ(ρµ(1)x

∗
µxµρµ(1))

1
2 ≤ ‖x‖ϕ(ρµ(1)),

it follows that

|ϕk(x)| ≤
1

|β|k
∑

µ∈Bk(Λ)

|ϕ(ρµ(1)xµρµ(1))| ≤
1

|β|k ‖x‖ϕ(λ
k
ρ(1)) = ‖x‖.

Therefore {ϕk}k∈N extends to a state on Dρ. �

We are now assuming that (A, ρ,Σ) is irreducible. By Lemma 3.4, there exists a
faithful invariant state τ ∈ Erρ(ρ) on A. By the previous lemma, the canonical
extension τ̃ is continuous on Dρ which satisfies

τ̃ (SµaS
∗
µ) =

1

r
|µ|
ρ

τ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ). (4.7)

Lemma 4.6. For a faithful invariant state τ ∈ Erρ(ρ) on A, the canonical
extension τ̃ is faithful on Dρ.

Proof. Suppose that τ̃ is not faithful on Dρ. Put

Iτ̃ = {x ∈ Dρ | τ̃ (x∗x) = 0}.

Since τ̃ is tracial on Dρ, Iτ̃ is a nonzero ideal of Dρ. By Lemma 4.3, the equality
τ̃ ◦λρ = rρτ̃ holds on Dρ so that Iτ̃ is λρ-invariant. The sequence Dkρ , k ∈ N of

algebras is increasing such that ∪k∈NDkρ is dense in Dρ. We may find k ∈ N

such that Iτ̃ ∩Dkρ 6= 0. It is easy to see that λkρ(Dkρ) ⊂ A so that there exists a

nonzero positive element x ∈ Iτ̃∩Dkρ such that λkρ(x) ∈ Iτ̃∩A. Hence Iτ̃∩A is a
nonzero λρ-invariant ideal of A. By the hypothesis that (A, ρ,Σ) is irreducible,
we have a contradiction. �

For a faithful invariant state τ on A, we will write the canonical extension τ̃ of
τ to Dρ as still τ . Define a unital endomorphism φρ : Dρ −→ Dρ by setting

φρ(y) =
∑

α∈Σ

SαyS
∗
α, y ∈ Dρ. (4.8)

It induces a unital endomorphism on the enveloping von Neumann algebraDρ∗∗
of Dρ, which we still denote by φρ. The restriction of the positive map λρ on
Fρ to Dρ similarly induces a positive map on Dρ∗∗. We then need the following
lemma for further discussions.
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Lemma 4.7. The equality

λρ(xφρ(y)) = λρ(x)y, x, y ∈ Dρ∗∗ (4.9)

holds.

Proof. Since Dρ is dense in Dρ∗∗ under σ(Dρ∗∗,Dρ∗)-topology, it suffices to
show the equality (4.9) for x, y ∈ Dρ. One has

λρ(xφρ(y)) =
∑

α,γ∈Σ

S∗
αxSγyS

∗
γSα

=
∑

α∈Σ

S∗
αxSαyS

∗
αSα =

∑

α∈Σ

S∗
αxSαy = λρ(x)y.

�

Recall that for a continuous linear functional ψ on a C∗-algebra B there exist
a partial isometry v ∈ B∗∗ and a positive linear functional |ψ| ∈ B∗ in a unique
way such that

v∗v = s(|ψ|), ψ(x) = |ψ|(xv) for x ∈ B, (4.10)

where s(|ψ|) denotes the support projection of |ψ| (cf. [43, Theorem 4.2]).
The decomposition (4.10) is called the polar decomposition of ψ. The linear
functional ψ : x −→ |ψ|(xv) is denoted by v|ψ|.

Lemma 4.8. Let β = reiθ ∈ C be r, θ ∈ R with r > 1. For a (not necessarily

positive) linear functional ϕ ∈ Eβ(ρ) on A, let ϕ̃ be the extension on Dρalg
satisfying (4.3). Suppose that the linear functional ϕ̃ extends to a continuous
linear functional on Dρ. Denote by ϕ̃ = v|ϕ̃| its polar decomposition for a
partial isometry v ∈ Dρ∗∗ and a positive linear functional |ϕ̃| on Dρ such that
v∗v = s(|ϕ̃|). Then we have

φρ(v) = eiθv, |ϕ̃|(λρ(x)) = r|ϕ̃|(x) for x ∈ Dρ.
Hence the restriction of |ϕ̃| to A belongs to Er(ρ) and |ϕ̃| satisfies

|ϕ̃|(SµaS∗
µ) =

1

r|µ|
|ϕ̃|(aρµ(1)), a ∈ A, µ ∈ B∗(Λ).

Proof. Put a positive linear functional ψ on Dρ and a partial isometry u in
Dρ∗∗ by setting

ψ(x) =
1

r
|ϕ̃|(λρ(x)) for x ∈ Dρ and u = e−iθφρ(v).

As λρ(xu) = e−iθλρ(x)v for x ∈ Dρ by Lemma 4.7. It follows that for x ∈ Dρ

(uψ)(x) =
1

r
|ϕ̃|(λρ(xu)) =

1

β
|ϕ̃|(λρ(x)v) = ϕ̃(x).

Hence we have

ϕ̃ = uψ on Dρ.
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We will next show that s(ψ) = u∗u. For y ∈ Dρ, we have by Lemma 4.7

ψ(yu∗u) =
1

r
|ϕ̃|(λρ(yu∗u)) =

1

r
|ϕ̃|(λρ(yφρ(v∗v))) =

1

r
|ϕ̃|(λρ(y)v∗v) = ψ(y).

Hence we have u∗u ≥ s(ψ). On the other hand, suppose that a projection
p ∈ Dρ∗∗ satisfies

ψ(yp) = ψ(y) for y ∈ Dρ.
We then have |ϕ̃|(λρ(y(1 − p))) = 0 for all y ∈ Dρ. For y = SαS

∗
α, α ∈ Σ, one

has |ϕ̃|(S∗
α(1 − p)Sα)) = 0. As S∗

α(1 − p)Sα is a projection in Dρ, one obtains
that S∗

α(1 − p)Sα ≤ 1 − v∗v so that 1 − p ≤ 1 − φρ(v∗v). This implies that
u∗u ≤ p. Therefore we have u∗u ≤ s(ψ) and hence

u∗u = s(ψ).

By the uniqueness of the polar decomposition, we conclude that

v = u and |ϕ̃| = ψ on Dρ
so that

φρ(v) = eiθv, |ϕ̃|(λρ(x)) = r|ϕ̃|(x) for x ∈ Dρ.
�

Therefore we have

Theorem 4.9. Suppose that (A, ρ,Σ) is irreducible and power-bounded. For
β ∈ C with |β| > 1, a (not necessarily positive) linear functional ϕ ∈ Eβ(ρ) on
A extends to Dρ as a continuous linear functional ϕ̃ satisfying

ϕ̃(SµaS
∗
µ) =

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ)

if |β| = rρ. If in particular, (A, ρ,Σ) is mean ergodic, the converse implication
holds.

Proof. The first part of the assertions is direct from Lemma 4.4. Under the
condition that (A, ρ,Σ) is mean ergodic, assume that the canonical extension
ϕ̃ is continuous on Dρ. The preceding lemma says that the positive linear
functional |ϕ̃| belongs to E|β|(ρ). Since the mean ergodicity implies (FP), by
Lemma 3.6 (i) we see that |β| = rρ. �

Let us now assume that (A, ρ,Σ) is irreducible and satisfies dim Erρ(ρ) = 1, and
hence it is uniquely ergodic. Take a unique invariant state τ on A and denote
still by τ its canonical extension on Dρ. Denote by pτ ∈ Dρ∗∗ its support
projection.

Lemma 4.10. Let w ∈ Dρ∗∗ be a partial isometry satisfying

w∗w = pτ and φρ(w) = w. (4.11)

Then w is a scalar multiple of the projection pτ .
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Proof. Put wτ(x) = τ(xw) for x ∈ Dρ and hence wτ ∈ Dρ∗. Since λρ(x)w =
λρ(xφρ(w)) = λρ(xw) by Lemma 4.7, it follows that for x ∈ Dρ

wτ(λρ(x)) = τ(λρ(xw)) = rρτ(xw) = rρwτ(x).

In particular, we have wτ ∈ Erρ(ρ). As dim Erρ(ρ) = 1 by hypothesis, wτ is
a scalar multiple of τ . Hence there exists c ∈ C such that τ(xw) = cτ(x) for
x ∈ A. Since wτ is the canonical extension of τ(· w) = wτ on A to Dρ and the
canonical extension is unique, one has τ(xw) = cτ(x) for x ∈ Dρ so that

τ(xw) = τ(xcpτ ) for x ∈ Dρ. (4.12)

As c = cτ(1) = τ(w), one has

1 = τ(pτ ) = τ(w∗w) = cτ(w∗) = cτ(w) = cc̄

so that

(cpτ )
∗(cpτ ) = pτ = w∗w.

By the uniqueness of the polar decomposition, we have by (4.12) w = cpτ . �

Proposition 4.11. Suppose that (A, ρ,Σ) is irreducible and satisfies
dim Erρ(ρ) = 1. Then dim Eβ(ρ) ≤ 1 for β ∈ C with |β| = rρ > 1.

Proof. Let |β| = rρ > 1. Take an arbitrary linear functional ϕ ∈ Eβ(ρ) with
ϕ 6= 0. Its canonical extension ϕ̃ to Dρ is continuous. Denote by ϕ̃ = vϕ̃|ϕ̃|
the polar decomposition in Dρ∗ where vϕ̃ is a partial isometry in Dρ∗∗. By
Lemma 4.7, the restriction of |ϕ̃| to A is a positive linear functional belonging
to Erρ(ρ). Since (A, ρ,Σ) is uniquely ergodic, by putting cϕ̃ = |ϕ̃|(1) one has
|ϕ̃| = cϕ̃τ as a positive linear functional on A. The canonical extension to Dρ
which satisfies (4.3) is unique and determined by its behavior on A. Hence
the equalty |ϕ̃| = cϕ̃τ holds as a positive linear functional on Dρ so that we
have supp(|ϕ̃|) = supp(τ) and hence v∗ϕ̃vϕ̃ = pτ . For another linear functional

ψ ∈ Eβ(ρ) with ψ 6= 0, we have similar decompositions

ψ̃ = vψ̃ |ψ̃|, |ψ̃| = cψ̃τ, v∗
ψ̃
vψ̃ = pτ .

Put a partial isometry w = v∗ϕ̃vψ̃ ∈ Dρ
∗∗ so that w∗w = pτ . By Lemma 4.8,

one has φρ(w) = w. Lemma 4.10 implies w = cpτ for some c ∈ C with |c| = 1
so that vψ̃ = cvϕ̃. Therefore we have

ψ̃ = vψ̃|ψ̃| = cvϕ̃cψ̃τ = c
cψ̃
cϕ̃
ϕ̃

on Dρ. In particular we have ψ = c
cψ̃
cϕ̃
ϕ on A so that dim Eβ(ρ) ≤ 1. �

Corollary 4.12. Suppose that (A, ρ,Σ) is irreducible and mean ergodic. Then
for β ∈ C with |β| > 1, we have dim Eβ(ρ) ≤ 1 if |β| = rρ, otherwise Eβ(ρ) =
{0}.
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Suppose that (A, ρ,Σ) is irreducible and mean ergodic. Hence (A, ρ,Σ) is
uniquely ergodic with a unique faithful invariant state τ ∈ Erρ(ρ). Denote by
pτ ∈ Dρ∗∗ the support projection of the canonical extension of τ to Dρ, where
the extension is still denoted by τ . For β = reiθ ∈ C with r = rρ > 1, we set

Pβ(Dρ, τ) = {v ∈ Dρ∗∗ | φρ(v) = eiθv, v∗v = pτ}.

Denote by R+ the set of all nonnegative real numbers. For ϕ ∈ Eβ(ρ) denote
by ϕ̃ its canonical extension to Dρ. As |β| = rρ, ϕ̃ is continuous and has a
unique polar decomposition ϕ̃ = vϕ̃|ϕ̃| for some vϕ̃ ∈ Dρ∗∗ and positive linear
functional |ϕ̃| ∈ Dρ∗. By Lemma 4.8, we know the structure of the eigenspace
Eβ(ρ) as in the following way:

Proposition 4.13. Suppose that (A, ρ,Σ) is irreducible and mean ergodic.
There exists a bijective correspondence between the eigenspace Eβ(ρ) and the
product set Pβ(Dρ, τ) ×R+ through the correspondences

ϕ ∈Eβ(ρ) −→ (vϕ̃, |ϕ̃|(1)) ∈ Pβ(Dρ, τ)×R+,

cτ(· v) ∈Eβ(ρ)←− (v, c) ∈ Pβ(Dρ, τ)×R+.

5. Extension to Oρ and KMS condition

In [9], Enomoto-Fujii-Watatani have proved that KMS states for gauge action
on the Cuntz-Krieger algebra OA exist if and only if its inverse temperature
is log rA, where rA is the Perron-Frobenius eigenvalue for the irreducible ma-
trix A. They have showed that the KMS states bijectively correspond to the
normalized positive eigenvectors of A for the eigenvalue rA.
In this section, we will study KMS conditions for linear functionals without
assuming its positivity at inverse temperature taking complex numbers. The
extended notation is needed to study eigenvector spaces for C∗-symbolic dy-
namical systems.
Following after [3], KMS states for one-parameter group action α on a C∗-
algebra B is defined as follows: For a positive real number γ ∈ R, a state ψ on
B is a KMS state at inverse temperature γ if ψ satisfies

ψ(yαiγ(x)) = ψ(xy), x ∈ Ba, y ∈ B (5.1)

where Ba is the set of analytic elements of the action α : R −→ Aut(B) (cf.[3]).
The equation (5.1) for ψ is called the KMS condition with respect to the action
α.
In what follows, we restrict our interest to periodic actions so as to extend KMS
condition to (not necessarily positive) linear functionals at inverse temperature
taking complex numbers. We assume that an action α of R has its period 2π
so that α is regarded as an action of one-dimensional torus group T = R/2πZ.
Let B be a C∗-algebra and α : T −→ Aut(B) a continuous action of T to the
automorphism group Aut(B). We write a complex number β ∈ C as β = reiθ

where r, θ ∈ R with r > 1.
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Definition. A continuous linear functional ϕ ∈ B∗ on B is said to satisfy
KMS condition at Logβ if ϕ satisfies the following condition

ϕ(yαi log r(x)) = ϕ(αθ(x)y), x ∈ Ba, y ∈ B. (5.2)

Remark.

(i) As αθ(x) = αθ+2π(x), the right hand side ϕ(αθ(x)y) of (5.2) does not
depend on the choice of θ ∈ R as long as β = reiθ.

(ii) The above KMS condition (5.2) is equivalent to the following condition:

ϕ(yαζ+i log r(x)) = ϕ(αζ+θ(x)y), x ∈ Ba, y ∈ B, ζ ∈ C

(5.3)

(iii) In case of θ = 0, the above definition of KMS condition coincides with
the original definition of KMS condition for states.

(iv) The above equality (5.2) can be written formally as

ϕ(yαiLogβ(x)) = ϕ(xy), x ∈ Ba, y ∈ B, (5.4)

if we denote Logβ = log r + iθ.

We will present some examples of linear functionals satisfying the extended
KMS conditions.
Examples.

(i) Let α : T −→ Aut(B) be an action of T to a C∗-algebra B such that
there exists a projection H ∈ B satisfying αt(a) = eitHae−itH , a ∈
B, t ∈ T. Assume that there exists an α-invariant tracial state tr on B.
Put

ϕ(x) =
tr(e−LogβHx)

tr(e−LogβH)
, x ∈ B,

where Logβ = log r + iθ. Then ϕ satisfies KMS condition at Logβ.
(ii) Let B = ⊗∞

k=1M2 be the UHF-algebra of type 2
∞ and α : T −→ Aut(B)

an action of T to B defined by

αt = ⊗∞
k=1Ad

[
1 0
0 eit

]
, t ∈ T.

Put

Bn =⊗nk=1 M2 =M2 ⊗ · · · ⊗M2,

unt =⊗nk=1

[
1 0
0 eit

]
=

[
1 0
0 eit

]
⊗ · · · ⊗

[
1 0
0 eit

]
∈ Bn,

αnt =Ad(unt ) ∈ Aut(Bn), t ∈ T.

Let β = reiθ ∈ C be r > 1. Put

H =

[
0 0
0 1

]
∈M2, hn = ⊗nk=1

[
1 0
0 1

β

]
∈ Bn,
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and hence hn = ⊗nk=1e
−LogβH , αnt = ⊗nk=1Ad(e

itH), t ∈ T. It is
straightforward to see that

tr(e−LogβHbαi log r(a)) = tr(e−LogβHαθ(a)b), a, b ∈M2.

Put

ϕn(x) = ⊗nk=1tr(xhn) for x ∈ Bn
so that we have

ϕn(yαi log r(x)) = ϕn(αθ(x)y), x, y ∈ Bn.
As ‖hn‖ = 1, ϕn extends to a continuous linear functional on B, which
we denote by ϕ. Then ϕ satisfies KMS condition at Logβ:

ϕ(yαi log r(x)) = ϕn(αθ(x)y), x ∈ Ba, y ∈ B.
We see the following two propositions whose proofs are similar to the case of
usual KMS states.

Proposition 5.1 (cf. [39, 8.12.3]). Let α : T −→ Aut(B) be a continuous ac-
tion of T to the automorphism group Aut(B) of a C∗-algebra B and β a complex
number with β = reiθ, r > 1. The following conditions for a continuous linear
functional ϕ on B are equivalent:

(i) ϕ satisfies the KMS condition at Logβ.
(ii) ϕ satisfies the equality (5.2) for just a dense set of elements in Ba.
(iii) For all x, y ∈ B, there is a bounded continuous function f on the strip

Ωlog r = {ζ ∈ C | 0 ≤ Imζ ≤ log r}
such that f is holomorphic in the interior of Ωlog r and

f(t) = ϕ(yαt(x)), f(t+ i log r) = ϕ(αt+θ(x)y), t ∈ R.

Proposition 5.2 (cf. [39, 8.12.4]). Let B be a C∗-algebra and α : T −→
Aut(B) be a continuous action of T to the automorphism group Aut(B). Let ϕ
be a continuous linear functional on B. If ϕ satisfies KMS condition at Logβ
for some complex number β with β = reiθ with r > 1, then ϕ is α-invariant,
that is,

ϕ ◦ αt = ϕ, t ∈ T.

We henceforth go back to our previous situations. Let (A, ρ,Σ) be a C∗-
symbolic dynamical system. Recall that the positive operator λρ on A extends
to Fρ by setting λρ(x) =

∑
α∈Σ S

∗
αxSα, x ∈ Fρ. For β ∈ C with β 6= 0, we set

EDβ (ρ) = {ϕ ∈ Dρ∗ | ϕ(λρ(x)) = βϕ(x), x ∈ Dρ}, (5.5)

EFβ (ρ) = {φ ∈ Fρ∗ | φ(λρ(x)) = βφ(x), x ∈ Fρ, φ is tracial on Fρ}.
(5.6)

It is possible that both EDβ (ρ) and EFβ (ρ) are {0}. Recall that ED : Fρ −→ Dρ
is the canonical expectation satisfying by ED(SµaS

∗
ν ) = δµ,νSµaS

∗
ν for a ∈ A

with µ, ν ∈ B∗(Λ), |µ| = |ν|. By composing it to a given linear functional
ϕ ∈ EDβ (ρ) on Dρ, ϕ extends to Fρ.
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Lemma 5.3. Let β ∈ C with |β| > 1. A (not necessarily positive) continu-
ous linear functional ϕ ∈ EDβ (ρ) on Dρ uniquely extends to Fρ as a tracial
continuous linear functional φ = ϕ ◦ ED such that

φ(SµxS
∗
ν ) = δµ,ν

1

β|µ|
φ(xS∗

µSν), x ∈ Fρ, µ, ν ∈ B∗(Λ) with |µ| = |ν|.
(5.7)

Hence the sets EDβ (ρ) and EFβ (ρ) bijectively correspond to each other.

Proof. For ϕ ∈ EDβ (ρ), as in the proof of Lemma 4.3 (i) ⇒ (ii), the equality

ϕ(SµaS
∗
µ) =

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ ∈ B∗(Λ)

holds so that

φ(SµaS
∗
ν) = δµ,ν

1

β|µ|
ϕ(aρµ(1)), a ∈ A, µ, ν ∈ B∗(Λ) with |µ| = |ν|.

By Lemma 4.3 (iii) ⇒ (i), φ belongs to EFβ (ρ). �

Recall that Eρ : Oρ −→ Oρρ̂ = Fρ denotes the conditional expectation defined
by (2.3).

Proposition 5.4. For any tracial continuous linear functional φ ∈ EFβ (ρ), the
composition ψ = φ ◦Eρ is a continuous linear functional on Oρ which satisfies
KMS condition at Logβ for gauge action ρ̂ of T.

Proof. Let Pρ be the dense ∗-subalgebra of Oρ generated algebraically by
Sα, α ∈ Σ and a ∈ A. It is clear that for each element x ∈ Pρ the func-
tion t ∈ T = R/2πR → ρ̂t(x) ∈ Oρ extends to an entire analytic function on
C. Put ψ = φ◦Eρ. We will show that the equality (5.2) holds for ψ. Elements
x, y ∈ Pρ can be expanded as finite linear combinations

x =
∑

x−νS
∗
ν + x0 +

∑
Sµxµ, y =

∑
y−νS

∗
ν + y0 +

∑
Sµyµ

(5.8)

for some x−ν , x0, xµ, y−ν, y0, yµ ∈ Fρalg. As ψ is a tracial linear functional on
Fρ, it suffices to check the equality (5.2) for the following two cases

(1) x = Sνxν , y = y−νS
∗
ν , (2) x = x−µS

∗
µ, y = Sµyµ.

Case (1):

ψ(yρ̂i log r(x)) = ψ(y−νS
∗
νe

−|ν| log rSνxν)

=
1

β|ν|
ψ(ei|ν|θxνy−νS

∗
νSν)

= ψ(ei|ν|θSνxνy−νS
∗
ν)

= ψ(ρ̂θ(x)y).
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Case (2):

ψ(yρ̂i log r(x)) = ψ(Sµyµe
|µ| log rx−µS

∗
µ)

=
r|µ|

β|µ|
ψ(yµx−µS

∗
µSµ)

= ψ(e−i|µ|θx−µS
∗
µSµyµ)

= ψ(ρ̂θ(x)y).

This completes the proof. �

Conversely we have

Lemma 5.5. If a continuous linear functional ψ on Oρ satisfies KMS condition
at Logβ for some β ∈ C with |β| > 1, then the restriction φ = ψ|Fρ to Fρ
belongs to EFβ (ρ) and satisfies the equality ψ = φ ◦ Eρ.

Proof. Let β = reiθ with r > 1. For any x ∈ Fρ, µ ∈ B∗(Λ), we see

ψ(Sµx) =
1

β|µ|
ψ(xSµ) =

1

β|µ|
ψ(Sµρ̂i log r(α−θ(x))) =

1

β|µ|
ψ(Sµx)

so that ψ(Sµx) = 0 because |β| > 1. We similarly have ψ(xS∗
µ) = 0. Since

any element of Pρ can be expanded as in (5.8), we get ψ(y) = φ ◦ Eρ(y) for
y ∈ Pρ. We will next show that φ belongs to EFβ (ρ). For x, y ∈ Fρ, one sees

ρ̂i log r(x) = ρ̂−θ(x) = x so that ψ(yx) = ψ(xy). Hence ψ gives rise to a tracial
linear functional φ on Fρ. By KMS condition, we get for any x ∈ Fρ, µ ∈ B∗(Λ),

ψ(Sµ · xS∗
µ) = ψ(xS∗

µρ̂i log r(ρ̂−θ(Sµ)) =
1

β|µ|
ψ(xS∗

µSµ).

Thus by Lemma 4.3, we know φ ∈ EFβ (ρ). �

We set for β ∈ C with |β| > 1,

KMSβ(Oρ)
={ψ ∈ Oρ∗ | ψ satisfies KMS condition at Logβ for gauge action}

and

Sp(ρ) = {β ∈ C | ϕ ◦ λρ = βϕ for some ϕ ∈ A∗ with ϕ 6= 0}.
By Proposition 5.4 and Lemma 5.5, we have

Proposition 5.6. Let (A, ρ,Σ) be an irreducible C∗-symbolic dynamical sys-
tem. Assume that (A, ρ,Σ) is power-bounded. Let β ∈ C be a complex number
with |β| > 1. If |β| = rρ and β ∈ Sp(ρ), we have KMSβ(Oρ) 6= {0}. If in
particular, (A, ρ,Σ) is mean ergodic, KMSβ(Oρ) 6= {0} if and only if |β| = rρ
and β ∈ Sp(ρ).
Proof. Under the assumption that (A, ρ,Σ) is power-bounded, any continuous
linear functional ϕ ∈ Eβ(ρ) on A can uniquely extend to a continuous linear
functional ϕ̃ on Dρ, that belongs to EDβ (ρ) if |β| = rρ. By Proposition 5.4,
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ϕ̃ ◦ ED ∈ EFβ (ρ) has an extension on Oρ as a continuous linear functional that
satisfies KMS condition at Logβ.
Conversely, the restriction of a continuous linear functional KMSβ(Oρ) to the
subalgebra A yields a nonzero element of Eβ(ρ) which has continuous extension
to Dρ. If in particular, (A, ρ,Σ) is mean ergodic, |β| must be rρ by Theorem
4.9. �

Therefore we conclude

Theorem 5.7. Let (A, ρ,Σ) be an irreducible C∗-symbolic dynamical system.
Let β ∈ C be a complex number with |β| = rρ > 1.

(i) Suppose that (A, ρ,Σ) is power-bounded. Then there exist linear iso-
morphisms among the four spaces Eβ(ρ), EDβ (ρ), EFβ (ρ) and KMSβ(Oρ)
through the correspondences ϕ ∈ Eβ(ρ), ϕ̃ ∈ EDβ (ρ), ϕ̃ ◦ ED ∈ EFβ (ρ),

ϕ̃ ◦ ED ◦ Eρ ∈ KMSβ(Oρ) respectively. In particular, there exists a
bijective correspondence between the set Eβ(ρ) of eigenvectors of λ∗ρ for
eigenvalue β consisting of continuous linear functionals on A and the
set KMSβ(Oρ) of continuous linear functionals on Oρ satisfying KMS
condition at Logβ.

(ii) Suppose that (A, ρ,Σ) is mean ergodic. Then the dimension
dimKMSβ(Oρ) of the space of continuous linear functionals on
Oρ satisfying KMS condition at Logβ is one if there exists a nonzero
eigenvector of λ∗ρ on A∗ for the eigenvalue β. In particular there
uniquely exists a faithful KMS state on Oρ at log rρ.

The following corollary is a generalization of [9, Theorem 6].

Corollary 5.8. Suppose that A is an irreducible matrix with entries in {0, 1}
with its period pA. Let β be a complex number with |β| > 1.

(i) There exists a nonzero continuous linear functional on the Cuntz-
Krieger algebra OA satisfying KMS condition for gauge action at Logβ
if and only if β is a pA-th root of the Perron-Frobenius eigenvalue rA
of A.

(ii) The space of admitted continuous linear functionals on OA satisfying
KMS condition for gauge action at Logβ is of one-dimensional.

(iii) If in particular β = rA, the space of admitted continuous linear func-
tionals on OA satisfying KMS condition for gauge action at log rA is
the scalar multiples of a unique KMS state.

6. KMS states and invariant measures

In this section, we will study a relationship between KMS states on Oρ and
invariant measures on Dρ under φρ. In what follows we assume that (A, ρ,Σ)
is irreducible and fix a faithful invariant state τ on A.
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We denote by ‖a‖2 the L2-norm τ(a∗a)
1
2 for a ∈ A, and by Hτ the completion

of A by the norm ‖ · ‖2. By the inequalities for n ∈ N, a ∈ A
τ(λnρ (a)

∗λnρ (a)) ≤ ‖λnρ‖τ(λnρ (a∗a)) = ‖λnρ‖rnρ τ(a∗a) ≤ ‖λnρ‖2‖a‖22,
(6.1)

the operators T nρ , n ∈ N induce bounded linear operators on Hτ . The induced
operators on Hτ , which we also denote by T nρ , n ∈ N, are uniformly bounded in
the operator norm on Hτ , if (A, ρ,Σ) is power-bonded. We provide the follow-
ing lemma, which shows power-boundedness of (A, ρ,Σ) induces an ordinary
mean ergodicity on Hτ , is a direct consequence from [22, p.73,Theorem 1.2].
We give a proof for the sake of completeness.

Lemma 6.1. Suppose that (A, ρ,Σ) is irreducible and power-bounded. Then

lim
n→∞

1 + Tρ + T 2
ρ + · · ·+ T n−1

ρ

n

converges to an idempotent Pρ on Hτ under strong operator topology in B(Hτ ).
The subspace PρHτ consists of the vectors of Hτ fixed under Tρ.

Proof. The mean operators Mn, n ∈ N on A defined by (3.1) naturally act on
Hτ . Since (A, ρ,Σ) is power-bounded, there exists a positive number c > 0
such that ‖T nρ ‖ < c for all n ∈ N. As ‖Mn‖ < 1 + c, n ∈ N, the sequence
Mnv ∈ Hτ , n ∈ N for a vector v ∈ Hτ has a cluster point v0 under the weak
topology of Hτ . The identites

(I − Tρ)Mn =Mn(I − Tρ) =
1

n
(I − T nρ )

imply the inequalites

‖(I − Tρ)Mn‖ = ‖Mn(I − Tρ)‖ =
1

n
‖I − T nρ ‖ <

1

n
(1 + c). (6.2)

Hence we have Tρv0 = v0. Put

Qn =
1

n
{(I + Tρ) + (I + Tρ + T 2

ρ ) + · · ·+ (I + Tρ + · · ·+ T n−2
ρ )}.

Then we have v −Mnv = (I − Tρ)Qnv, n ∈ N. Hence v − v0 belongs to the
weak closure Kτ of the subspace (I − Tρ)Hτ . The weak closure Kτ is also the
norm closure of the subspace (I − Tρ)Hτ . For w ∈ Kτ , take wj ∈ (I − Tρ)Hτ
such that ‖w − wj‖2 → 0 and wj = (I − Tρ)xj for some xj ∈ Hτ . We then
have by (6.2)

‖Mnw‖2 ≤ ‖Mn‖‖w − wj‖2 + ‖Mn(I − Tρ)xj‖2

≤ (1 + c)‖w − wj‖2 +
1

n
(1 + c)‖xj‖2

so that limn→∞ ‖Mnw‖2 = 0. Since Mnv − v0 =Mn(v − v0) and v − v0 ∈ Kτ ,
one has

lim
n→∞

‖Mnv − v0‖2 = 0.
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Put Pρv = v0. The inequality

‖Mnv − TρMnv‖2 = ‖(I − Tρ)Mnv‖2 <
1

n
(1 + c)‖v‖2

implies that Pρ = TρPρ that is equal to PρTρ. Therefore Pρ = MnPρ = PρMn

and hence Pρ = P 2
ρ . �

Remark. Under the same assumption above, one may prove that the limit

lim
r↓rρ

(r − rρ)R(r)

for the resolvent R(r) = (r − λρ)−1 with r > rρ converges to the idempotent
Pρ on Hτ under strong operator topology in B(Hτ ). Hence the equality

lim
r↓rρ

(r − rρ)R(r) = lim
n→∞

1 + Tρ + T 2
ρ + · · ·+ T n−1

ρ

n
(6.3)

holds. We will give a proof of the equality (6.3). It is enough to consider
the limit limn→∞

1
n
R(rρ +

1
n
) instead of limr↓rρ(r − rρ)R(r). As in the above

proof, there exists c > 0 such that ‖T kρ (a)‖2 ≤ c‖a‖2 for a ∈ A, k ∈ N. Put

Rn = 1
n
R(rρ +

1
n
). Since for y ∈ A

R(rρ +
1

n
)y =

∞∑

k=0

λkρ(y)

(rρ +
1
n
)k+1

one has

‖R(rρ +
1

n
)y‖2 ≤

∞∑

k=0

‖T kρ (y)‖
rkρ

(rρ +
1
n
)k+1

≤ nc‖y‖2

and hence ‖Rn‖ ≤ c for n ∈ N. The identites

(I − Tρ)Rn = Rn(I − Tρ) =
1

n

1

rρ
(Rn − I)

hold so that we have

‖(I − Tρ)Rn‖ = ‖Rn(I − Tρ)‖ ≤
1

n

1

rρ
(1 + c).

A similar argument to the proof of Lemma 6.1 works so that for u ∈ Hτ by
taking a cluster point u0 of the sequence Rnu, n ∈ N under the weak topology
of Hτ we have

lim
n→∞

‖Rnu− u0‖2 = 0.

Put P̂ρu = u0. The inequality ‖Rnu−TρRnu‖2 ≤ 1
n

1
rρ
(1+ c)‖u‖2 implies that

P̂ρ = TρP̂ρ that is equal to P̂ρTρ. Hence P̂ρ = RnP̂ρ and P̂ρ = P̂ 2
ρ . The equality

P̂ρ = TρP̂ρ implies P̂ρ =MnP̂ρ for all n ∈ N so that P̂ρ = PρP̂ρ. Similarly the

equalities Pρ = TρPρ and Rn =
∑∞

k=0 T
k
ρ

rkρ
(rρ+

1
n
)k+1 imply Pρ = RnPρ for all

n ∈ N so that Pρ = P̂ρPρ. As PρP̂ρ = P̂ρPρ, one has Pρ = P̂ρ.
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We denote by ‖a‖1 the L1-norm τ(|a|) of a ∈ A, and by L1(A, τ) the completion
of A by the norm ‖ · ‖1. The positive operators λρ, Tρ : A −→ A and the state
τ : A −→ C extend to L1(A, τ) in natural way, that are also denoted by λρ, Tρ
and τ respectively.

Lemma 6.2. Suppose that (A, ρ,Σ) is uniquely ergodic and power-bounded.
Then for a ∈ A the limit limn→∞Mn(a) converges in L1(A, τ) under ‖ · ‖1-
topology. In particular limn→∞Mn(1) = xρ exists in L1(A, τ) and satisfies the
equalities

τ(xρ) = 1 and lim
n→∞

Mn(a) = τ(a)xρ for a ∈ A. (6.4)

Proof. Since (A, ρ,Σ) is irreducible and power-bounded, limn→∞Mn(a) for
a ∈ A converges in Hτ = L2(A, τ) under ‖ · ‖2-norm by the previous lemma.
By the inequality

‖Mn(a)−Mm(a)‖1 ≤ ‖Mn(a)−Mm(a)‖2, a ∈ A
the limit limn→∞Mn(a) exists in L

1(A, τ) under ‖ · ‖1-norm. We denote it by
Φ1(a). Hence xρ = Φ1(1). We will show that τ(f(Φ1(a) − τ(a)xρ)) = 0 for
f ∈ A. It suffices to show that τ(bΦ1(a)b

∗) = τ(a)τ(bxρb
∗) for b ∈ A. One may

assume that a ≥ 0. The inequality a ≤ ‖a‖1 and hence Mn(a) ≤ ‖a‖Mn(1)
implies bΦ1(a)b

∗ ≤ ‖a‖bxρb∗ so that we have 0 ≤ τ(bΦ1(a)b
∗) ≤ ‖a‖τ(bxρb∗).

Hence τ(bxρb
∗) = 0 implies τ(bΦ1(a)b

∗) = 0. We may assume that τ(bxρb
∗) 6=

0. Put ω(a) = τ(bΦ1(a)b
∗)

τ(bxρb∗)
, a ∈ A. As Φ1 ◦ Tρ(a) = Φ1(a), one sees that ω is

an invariant state on A. Hence we have ω = τ by the unique ergodicity of
(A, ρ,Σ). Therefore we have τ(bΦ1(a)b

∗) = τ(a)τ(bxρb
∗) for b ∈ A.

The equality τ(xρ) = 1 is clear. �

Lemma 6.3. Keep the above assumptions and notations. The limit
limn→∞Mn(f) for f ∈ L1(A, τ) converges in L1(A, τ) under ‖ · ‖1-topology
and satisfies the equality

lim
n→∞

Mn(f) = τ(f)xρ for f ∈ L1(A, τ).

Proof. Since for f ∈ L1(A, τ) the inequality |λρ(f)| ≤ λρ(|f |) holds, one has
|Tρ(f)| ≤ Tρ(|f |) and hence ‖Mn(f)‖1 ≤ ‖f‖1. Take ak ∈ A such as ‖f −
ak‖1 → 0 as k →∞. It then follows that

‖Mn(f)− τ(f)xρ‖1
≤‖Mn(f)−Mn(ak)‖1 + ‖Mn(ak)− τ(ak)xρ‖1 + ‖τ(ak)xρ − τ(f)xρ‖1
≤‖f − ak‖1 + ‖Mn(ak)− τ(ak)xρ‖1 + |τ(ak)− τ(f)|‖xρ‖1,

and hence limn→∞ ‖Mn(f)− τ(f)xρ‖1 = 0 by the preceding lemma. �

Proposition 6.4. Keep the above assumptions and notations. If f ∈ L1(A, τ)
satisfies Tρ(f) = f and τ(f) = 1, Then f = xρ. Namely the space of the fixed
elements in L1(A, τ) under Tρ is one-dimensional.
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Proof. By the preceding lemma, we have for f ∈ L1(A, τ) limn→∞Mn(f) =
τ(f)xρ in ‖ · ‖1-topology. By the condition Tρ(f) = f , we have Mn(f) = f
with τ(f) = 1 and hence f = xρ. �

Let us define the space L1(Dρ, τ) in a similar way to L1(A, τ). The operators
λρ, Tρ : Dρ −→ Dρ and the state τ : Dρ −→ C naturally act on L1(Dρ, τ). The
inclusion relation A ⊂ Dρ induces the inclusion relation L1(A, τ) ⊂ L1(Dρ, τ).

Lemma 6.5. Keep the above assumptions and notations. Let x be an element
of L1(Dρ, τ) such that Tρ(x) = x. Then x belongs to L1(A, τ).

Proof. Take xn ∈ Dρalg such that ‖xn − x‖1 → 0 as n → ∞. As |λρ(y)| ≤
λρ(|y|), y ∈ Dρ, it then follows that

‖λρ(xn)− λρ(x)‖1 = τ(|λρ(xn − x)|) ≤ τ(λρ(|xn − x|) = rρ‖xn − x‖1
so that ‖Tρ(xn)− Tρ(x)‖1 ≤ ‖xn − x‖1. The element x is fixed by Tρ so that

‖T kρ (xn)− x‖1 ≤ ‖xn − x‖1, n ∈ N, k ∈ N.

Since xn ∈ Dρalg, there exists kn ∈ N such that T knρ (xn) ∈ A. Hence x belongs

to L1(A, τ). �

Definition. A state µ on Dρ is called a φρ-invariant measure if it satisfies

µ(y) = µ(φρ(y)), y ∈ Dρ.
If the probability measure for a state µ on Dρ is absolutely continuous with
respect to the probability measure for the state τ on Dρ, we write it as µ≪ τ .

Proposition 6.6. Assume that (A, ρ,Σ) is irreducible and uniquely ergodic.
For a fixed positive element x ∈ L1(A, τ) by Tρ satisfying τ(x) = 1, the state
µx on Dρ defined by

µx(y) = τ(yx), y ∈ Dρ
is a φρ-invariant measure on Dρ such that µ ≪ τ . Conversely, for any φρ-
invariant measure µ on Dρ such that µ≪ τ , there exists a fixed positive element
xµ ∈ L1(A, τ) by Tρ satisfying τ(xµ) = 1 such that

µ(y) = τ(yxµ), y ∈ Dρ.

Proof. Let x ∈ L1(A, τ) be a fixed positive element by Tρ satisfying τ(x) = 1.
As λρ(x) = rρx, it follows that from Lemma 4.7

µx(φρ(y)) =
1

rρ
τ(λρ(φρ(y)x)) =

1

rρ
τ(yλρ(x)) = µx(y), y ∈ Dρ

so that the state µx is a φρ-invariant measure on Dρ such that µx ≪ τ . Con-
versely for a φρ-invariant measure µ on Dρ such that µ ≪ τ , there exists a
Radon-Nikodym derivative xµ ∈ L1(Dρ, τ) such that xµ ≥ 0, τ(xµ) = 1 and

µ(y) = τ(yxµ), y ∈ Dρ.
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By the equality τ(φρ(y)xµ) = τ(yTρ(xµ)), y ∈ Dρ, one sees that τ(yxµ) =
τ(yTρ(xµ)), y ∈ Dρ so that Tρ(xµ) = xµ, τ − a.e. Hence xµ is regarded as an
element of L1(A, τ) by the preceding lemma. This completes the proof. �

Especially the measure µρ defined by µρ(y) = τ(yxρ), y ∈ Dρ is a φρ-invariant
measure on Dρ such that µρ ≪ τ .
Therefore we have

Theorem 6.7. Assume that (A, ρ,Σ) is irreducible, uniquely ergodic and
power-bounded. Then a φρ-invariant measure on Dρ absolutely continuous with
respect to τ is unique and is of the form

µρ(y) = τ(yxρ), y ∈ Dρ. (6.5)

The measure µρ is faithful, and ergodic in the sense that the formula

lim
n→∞

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) = µρ(y)µρ(x), x, y ∈ Dρ

holds.

Proof. Let µ be a φρ-invariant measure on Dρ. By the preceding proposition
there exists a fixed positive element xµ ∈ L1(A, τ) under Tρ satisfying τ(xµ) =
1 such that

µ(y) = τ(yxµ), y ∈ Dρ.
By Proposition 6.4 we have xµ = xρ. For x, y ∈ Dρ, the equality

λkρ(φ
k
ρ(y)xxρ) = yλkρ(xxρ)

holds by Lemma 4.7 so that

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) =

1

n

n−1∑

k=0

τ(φkρ(y)xxρ)

=
1

n

n−1∑

k=0

1

rkρ
τ(λkρ(φ

k
ρ(y)xxρ))

=
1

n

n−1∑

k=0

1

rkρ
τ(yλkρ(xxρ))

= τ(yMn(xxρ)).

Since
‖ · ‖1 − lim

n→∞
Mn(xxρ) = τ(xxρ)xρ = µρ(x)xρ,

we have

lim
n→∞

1

n

n−1∑

k=0

µρ(φ
k
ρ(y)x) = τ(yµρ(x)xρ)) = µρ(y)µρ(x).

�

Corollary 6.8. Assume that (A, ρ,Σ) is irreducible and mean ergodic.
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(i) The unique φρ-invariant probability measure absolutely continuous with
respect to τ is obtained by µρ(y) = τ(yxρ), y ∈ Dρ, where τ is the
restriction of the unique KMS state on Oρ and xρ is a positive element
of A defined by the limit of the mean limn→∞

1
n
(1 + Tρ(1) + · · · +

T n−1
ρ (1)).

(ii) The state µρ is equivalent to the state τ as a measure on Dρ.

Proof. (i) Under the assumption that (A, ρ,Σ) is irreducible. Mean ergodicity
implies unique ergodicity and (FP), which implies power-boundedness. There-
fore the assertion is immediate.
(ii) By the mean ergodicity, the fixed element xρ belongs to A and is strictly
positive by Lemma 3.5 (ii). Hence we have τ(y) = µρ(yx

−1
ρ ), y ∈ Dρ so that

τ ≪ µρ. �

7. Examples

We will present examples of continuous linear functionals satisfying KMS con-
ditions on some C∗-symbolic dynamical systems.
1. Finite directed graphs
Let A = [A(i, j)]i,j=1,...,N be an N × N matrix with entries in nonnegative
integers. Denote by GA = (VA, EA) the associated finite directed graph with
vertex set V = {v1, . . . , vN} and edge set EA. Let OA[2] be the Cuntz-Krieger
algebra such that the generating partial isometries Se, e ∈ EA indexed by the
edges in GA satisfy

∑

f∈EA

SfS
∗
f = 1, S∗

eSe =
∑

f∈EA

A[2](e, f)SfS
∗
f , e ∈ EA,

where A[2](e, f) is defined to be one if the edge f follows the edge e, other-
wise zero. Put AGA the C∗-subalgebra of OA[2] generated by the projections
S∗
eSe, e ∈ EA. Denote by ρAe for e ∈ EA the endomorphism AGA defined

by ρAe (a) = S∗
eaSe, a ∈ AGA . Consider the C∗-symbolic dynamical system

(AGA , ρA, EA). Its associated C∗-algebraOρA is nothing but the Cuntz-Krieger
algebra OA[2] . The finite directed graphs GA is naturally considered to be a
finite labeled graph by regarding an edge itself as its label. Hence this example
will be contained in the following examples.
2. Finite labeled graphs
Let G = (G, λ) be a left-resolving finite labeled graph over Σ with underlying
finite directed graph G = (V,E) and labeling map λ : E → Σ. Suppose
that the graph G is irreducible. Let {v1, . . . , vN} be the vertex set V . As
in Section 2, we have a C∗-symbolic dynamical system (AG , ρ

G ,Σ) such that

AG = CE1⊕· · ·⊕CEN and ρGα(Ei) =
∑N
j=1 A

G(i, α, j)Ej for i = 1, . . . , N, α ∈
Σ, where the N ×N -matrix [AG(i, α, j)]i,j=1,...,N for α ∈ Σ is defined by (2.1).
Put AG(i, j) =

∑
α∈ΣA

G(i, α, j) for i, j = 1, . . . , N . Then the matrix AG =

[AG(i, j)]
N
i,j=1 is irreducible. Let rG denote the Perron-Frobenius eigenvalue of

the matrix AG . It is easy to see that rG is equal to the spectral radius rρG of
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the positive operator λρG (x) =
∑
α∈Σ ρ

G
α(x), x ∈ AG . As

λρG (Ei) =

N∑

j=1

AG(i, j)Ej , i = 1, . . . , N,

by identifying x =
∑N

i=1 xiEi ∈ AG with the vector [xi]
N
i=1 ∈ C

N , one may
regard the operator λρG as the transposed matrix AtG of AG . For a complex
number β ∈ C with |β| > 1, let ϕ ∈ A∗

G be a continuous linear functional

belonging to Eβ(ρG). The equality ϕ ◦ λρG (Ei) = βϕ(Ei) implies

N∑

j=1

AG(i, j)ϕ(Ej) = βϕ(Ei), i = 1, . . . , N

so that the vector [ϕ(Ej)]
N
j=1 is an eigenvector of AG for eigenvalue β. Con-

versely an eigenvector [ui]
N
i=1 ∈ C of the matrix AG for an eigenvalue β gives rise

to a continuous linear functional ϕ on AG by setting ϕ(Ei) = ui, i = 1, . . . , N
so that ϕ ∈ Eβ(ρG). Hence the space Eβ(ρG) is identified with the eigenvector
space of the matrix AG for eigenvalue β. Especially a faithful invariant state τ
on AG is the positive normalized eigenvector of AG for eigenvalue rG . Similarly

an element x =
∑N

j=1 xjEj ∈ AG is fixed by TρG if and only if the vector [xj ]
N
j=1

is an eigenvector of AtG for the eigenvalue rG . The ordinary Perron-Frobenius

theorem for nonnegative matrices asserts that (AG , ρ
G ,Σ) is mean ergodic if

AG is irreducible. The following proposition comes from the ordinary Perron-
Frobenius theorem for irreducible nonnegative matrices, which is a special case
of Theorem 3.13, and Corollary 6.8.

Proposition 7.1. Suppose that the adjacency matrix AG = [AG(i, j)]
N
i,j=1 is

irreducible. Let [τi]
N
i=1 and [xi]

N
i=1 be right and left Perron eigenvector of AG

respectively, that is,

AG [τi]
N
i=1 = rG [τi]

N
i=1, AtG [xi]

N
i=1 = rG [xi]

N
i=1,

such that
∑N

i=1 τi = 1 and
∑N
i=1 τixi = 1. Put xρG =

∑N
i=1 xiEi ∈ AG and

τ(a) =
∑N
i=1 τiai for a =

∑N
i=1 aiEi ∈ AG . Then τ is a unique faithful invari-

ant state on AG such that the following equalities hold:

lim
n→∞

Mn(a) = lim
n→∞

1

n

n−1∑

k=0

T kρG (a) = τ(a)xρG .

Furthermore the measure µρG on DρG defined µρG (y) = τ(yxρG ) for y ∈ DρG is
a unique φρG -invariant measure equivalent to the measure τ on DρG .

Remark. Let XG be the right one-sided sofic shift presented by G. The
commutative C∗-algebraC(XG) onXG is naturally regarded as a C∗-subalgebra
of DρG through the correspondence

χν ∈ C(XG) −→ SνS
∗
ν ∈ DρG , ν ∈ Bk(ΛG)

Documenta Mathematica 16 (2011) 133–175



168 Kengo Matsumoto

where χν is the characteristic function for the cylinder

Uν = {(xi)i∈N ∈ XG | x1 = ν1, . . . , νk = xk}.
The restriction of the φρG -invariant measure µρG on DρG to the subalgebra
C(XG) is nothing but a shift-invariant measure on XG (cf. [21]).
We will next find continuous linear functionals on OρG satisfying KMS con-
ditions in concrete way. Now suppose that the irreducible matrix AG has its
period pG and put

NG(i, j) = {n ∈ Z+ | AnG(i, j) > 0}.
It is well-known that for n,m ∈ NG(i, j) one has n ≡ m (mod pG). Then for

an eigenvalue β ∈ C of AG with |β| = rG ,
β
rG

is a pG-th root of unity. We fix a

vertex v1 and for k ∈ {1, 2, . . . , N} take nk ∈ NG(1, k). We set

uk = (
β

rG
)nkτ(Ek).

Then uk does not depend on the choice of nk as long as nk ∈ NG(1, k).

Lemma 7.2.
∑N
j=1 AG(i, j)uj = βui, i = 1, . . . , N .

Proof. If AG(i, j) 6= 0, one sees ni + 1 ∈ N(1, j) so that

AG(i, j)uj =
β

rG
(
β

rG
)niAG(i, j)τ(Ej) =

β

rG

ui
τ(Ei)

AG(i, j)τ(Ej).

It follows that

N∑

j=1

AG(i, j)uj =
β

rG

ui
τ(Ei)

N∑

j=1

AG(i, j)τ(Ej) =
β

rG

ui
τ(Ei)

rGτ(Ei) = βui.

�

Hence u = [uk]
N
k=1 yields a nonzero eigenvector of AG . Define a nonzero con-

tinuous linear functional ϕ on AG by setting

ϕ(Ek) = uk, k = 1, . . . , N

so that the equality ϕ ◦ λG = βϕ on AG holds. Put vϕ =
∑N

i=1
ui

τ(Ei)
Ei ∈ AG .

It is easy to see that vϕ is a partial isometry such that ϕ(Ej) = τ(Ejvϕ), j =
1, . . . , N so that

ϕ(x) = τ(xvϕ), x ∈ AG

holds. Therefore we have the following proposition.

Proposition 7.3. Let G = (G, λ) be a left-resolving finite labeled graph with
underlying finite directed graph G = (V,E) and labeling map λ : E → Σ. De-
note by {v1, . . . , vN} the vertex set V . Assume that G is irreducible. Consider
the N -dimensional commutative C∗-algebra AG = CE1⊕· · ·⊕CEN where each
minimal projection Ei corresponds to the vertex vi for i = 1, . . . , N . Define an
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N×N - nonnegative matrix AG = [AG(i, j)]
N
i,j=1 by AG(i, j) =

∑
α∈ΣA

G(i, α, j)
where for α ∈ Σ and i, j = 1, . . . , N

AG(i, α, j) =

{
1 if there exists an edge e from vi to vj with λ(e) = α,

0 otherwise.

Let OAG be the associated Cuntz-Krieger algebra and τ be the unique KMS state
on OAG for gauge action. Let β ∈ C be an eigenvalue of AG such that |β| = rG
the Perron-Frobenius eigenvalue of the matrix AG . Then a continuous linear
functional on OAG satisfying KMS condition at Logβ is a scalar multiple of
ϕ ∈ O∗

AG
giving by for k = 1, . . . , N

ϕ(Ek) = (
β

rG
)nkτ(Ek) where nk satisfies AnkG (1, k) 6= 0.

Consider a finite labeled graph G whose adjacency matrix A is

A =




0 0 1 1 0
0 0 1 1 0
0 0 0 0 1
0 0 0 0 1
1 1 0 0 0



.

As

A3 =




2 2 0 0 0
2 2 0 0 0
0 0 2 2 0
0 0 2 4 0
0 0 0 0 4



,

the period of the matrix is 3. The characteristic polynomial of A is det(t−A) =
t2(t3 − 4) so that Sp(A) = { 3

√
4, 3
√
4e

2π
3 i, 3
√
4e

4π
3 i, 0} and rA = 3

√
4. Hence

β ∈ Sp(A) satisfying |β| = 3
√
4 are

3
√
4,

3
√
4e

2π
3 i,

3
√
4e

4π
3 i.

Therefore the Cuntz-Krieger algebraOA has three continuous linear functionals
satisfying KMS conditions for gauge action at inverse temperatures

1

3
log 4,

1

3
log 4 +

2π

3
i,

1

3
log 4 +

4π

3
i

respectively.
3. Dyck shifts
We consider the Dyck shift DN for a fixed natural number N > 1 with alphabet
Σ = Σ− ∪ Σ+ where Σ− = {α1, . . . , αN},Σ+ = {β1, . . . , βN}. The symbols
αi, βi correspond to the brackets (i, )i respectively. The Dyck inverse monoid
has the relations

αiβj =

{
1 if i = j,

0 otherwise
(7.1)
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for i, j = 1, . . . , N (cf. [23],[26]). A word ω1 · · ·ωn of Σ is admissible for DN

precisely if
∏n
m=1 ωm 6= 0. For a word ω = ω1 · · ·ωn of Σ, we denote by ω̃ its

reduced form. Namely ω̃ is a word of Σ ∪ {0,1} obtained after the operations
(7.1). Hence a word ω of Σ is forbidden for DN if and only if ω̃ = 0.
In [26], an irreducible λ-graph system presenting DN called the Cantor horizon
λ-graph system has been introduced. It is a minimal irreducible component of
the canonical λ-graph system L

C(DN ) and written as LCh(DN ). Let us describe
the Cantor horizon λ-graph system L

Ch(DN ) of DN . Let ΣN be the full N -shift
{1, . . . , N}Z. We denote by Bl(DN ) and Bl(ΣN ) the set of admissible words
of length l of DN and that of ΣN respectively. The vertices Vl of L

Ch(DN ) at
level l are given by the words of length l consisting of the symbols of Σ+. That
is,

Vl = {(βµ1 · · ·βµl) ∈ Bl(DN ) | µ1 · · ·µl ∈ Bl(ΣN )}.

Hence the cardinal number of Vl is N
l. The mapping ι(= ιl,l+1) : Vl+1 → Vl

deletes the rightmost symbol of a word in Bl(ΣN ) such as

ι((βµ1 · · ·βµl+1
)) = (βµ1 · · ·βµl), (βµ1 · · ·βµl+1

) ∈ Vl+1.

There exists an edge labeled αj from (βµ1 · · ·βµl) ∈ Vl to (βµ0βµ1 · · ·βµl) ∈ Vl+1

precisely if µ0 = j, and there exists an edge labeled βj from (βjβµ1 · · ·βµl−1
) ∈

Vl to (βµ1 · · ·βµl+1
) ∈ Vl+1. The resulting labeled Bratteli diagram with ι-map

becomes a λ-graph system over Σ, denoted by L
Ch(DN ), that presents the Dyck

shift DN ([26]). It gives rise to a purely infinite simple C∗-algebra O
L
Ch(DN )

([32]) such that

K0(OLCh(DN )) ∼= Z/NZ⊕ C(K,Z), K1(OLCh(DN
) ∼= 0.

Let us denote by (ADN , ρDN ,Σ) the C∗-symbolic dynamical system associated
to the λ-graph system L

Ch(DN ) as in Section 2. Since the vertex set Vl is indexed
by the set Bl(ΣN ) of words, the family of projections denoted by Eµ1...µl for
µ1 · · ·µl ∈ Bl(ΣN ) in the C∗-algebra ADN forms the minimal projectins of
Al = C(Vl) such that

∑

µ1···µl∈Bl(ΣN )

Eµ1...µl = 1, Eµ1...µl =
N∑

µl+1=1

Eµ1...µl+1
.

As the algebraAl is embedded into Al+1, the C
∗-algebraADN is a commutative

AF-algebra generated by the subalgebras Al, l ∈ N. The endomorphisms ρDNγ :

ADN −→ ADN for γ ∈ Σ are defined by

ρDNαj (Eµ1...µl) = Ejµ1...µl , ρDNβj (Ejµ1...µl−1
) =

N∑

µl,µl+1=1

Eµ1...µl+1
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for µ1 . . . µl ∈ Bl(ΣN ) and j = 1, . . . , N . It then follows that

λρDN (1) =

N∑

j=1

ρDNαj (1) +

N∑

j=1

ρDNβj (1)

=
N∑

j=1

∑

µ1···µl∈Bl(ΣN )

Ejµ1...µl +
N∑

j=1

∑

µ2···µl∈Bl−1(ΣN )

N∑

µl+1,µl+2=1

Eµ2...µl+2

= 1 +N

so that we have ‖λρDN ‖ = ‖λρDN (1)‖ = 1 +N . Hence we obtain

rρDN = 1 +N, TρDN (1) = 1.

This implies that 1 is a fixed element by TρDN and hence (ADN , ρDN ,Σ) satisfies
(FP). As in [32], (ADN , ρDN ,Σ) is irreducible and uniquely ergodic, so that
it is mean ergodic. One then sees that there exists a KMS state at inverse
temperature log β if and only if β = 1+N . The admitted KMS state is unique
([32, Theorem 1.2]).

4. β-shifts
Let β > 1 be an arbitrary real number. Take a natural number N with N−1 <
β ≤ N . Put Σ = {0, 1, ..., N − 1}. For a nonnegative real number t, we denote
by [t] the integer part of t. Let fβ : [0, 1]→ [0, 1] be the mapping defined by

fβ(x) = βx− [βx], x ∈ [0, 1]

that is called the β-transformation ([38], [42]). The β-expansion of x ∈ [0, 1] is
a sequence {di(x, β)}i∈N of integers of Σ determined by

di(x, β) = [βf i−1
β (x)], i ∈ N.

By this sequence, we can write x as

x =

∞∑

i=1

di(x, β)

βi
.

We endow the infinite product ΣN with the product topology and the lex-
icographical order. Put ζβ = supx∈[0,1)(di(x, β))i∈ΣN . We define the shift-

invariant compact subset Xβ of ΣN by

Xβ = {ω ∈ ΣN|σi(ω) ≤ ζβ , i = 0, 1, 2, ...},
where σ denotes the shift σ((ωi)i∈N) = (ωi+1)i∈N. The one-sided subshift
(Xβ , σ) is called the right one-sided β-shift (cf. [38], [42]). Its (two-sided)
subshift

Λβ = {(ωi)i∈Z ∈ ΣZ | (ωi−k)i∈N ∈ Xβ , k = 0, 1, 2, . . .}
is called the β-shift. In [17], the C∗-algbera Oβ associated with the β-shift has
been introduced and studied. It is simple and purely infinite for every β > 1
and generated by N − 1 isometries S0, S1, . . . , SN−2 and one partial isometry
SN−1 having certain operator relations (see [17]). The family Oβ , 1 < β ∈ R
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interpolates the Cuntz algebras On, 1 < n ∈ N. Denote by Aβ the C∗-
subalgebra of Oβ genertaed by the family of the projections S∗

µSµ, µ ∈ B∗(Λβ).
The algebra is commutative and is of infinite dimensional unless Λβ is sofic,
where Λβ is sofic if and only if the sequence (di(1, β))i∈N is ultimately periodic.

Define a family {ρβj }j=0,1,...,N−1 of endomorphisms on Aβ by

ρβj (x) = S∗
j xSj , x ∈ Aβ , j = 0, 1, . . . , N − 1

so that we have a C∗-symbolic dynamical system (Aβ , ρβ,Σ). It is direct to
see that the C∗-algebra Oρβ is canonically isomorphic to the C∗-algebra Oβ .
We set the positive operator λβ on Aβ by

λβ(x) =

N−1∑

j=0

ρβj (x), x ∈ Aβ .

Lemma 7.4. The spectral radius rβ of the positive operator λβ on Aβ is β.

Proof. Denote by θk the cardinal number of the admissible words Bk(Λβ) of
length k. Then we have

‖λkβ‖ = ‖λkβ(1)‖ ≤
∑

µ∈Bk(Λβ)

‖S∗
µSµ‖ = θk.

As in [44, p. 179], limk→∞
θk
βk

converges to a positive real number so that there

exists a positive constant M > 0 such that
‖λkβ‖

βk
< M for all k ∈ N. Hence

limk→∞ ‖λkβ‖
1
k ≤ β so that rβ ≤ β. As in [17], there exists a state τ on Aβ

satisfying τ ◦ λβ = βτ . This implies β ∈ Sp(λβ) so that rβ = β. �

Proposition 7.5. (Aβ , ρβ ,Σ) is irreducible, uniquely ergodic and power-
bounded.

Proof. It has been proved in [17] that there is no nontrivial ideal ofAβ invariant
under λβ and there exists a unique state τ on Aβ satisfying τ ◦λβ = rβτ . Hence
(Aβ , ρβ,Σ) is irreducible, uniquely ergodic. As in the proof of the above lemma,

there exists a positive constantM > 0 such that
‖λkβ‖

rk
β

< M for all k ∈ N. This

means that (Aβ , ρβ,Σ) is power-bounded. �

By the above proposition, one knows that (Aβ , ρβ ,Σ) satisfies the hypothesis
of Theorem 6.7 so that there uniquely exists a φρβ -invariant measure on Dρβ
absolutely continuous with respect to the restriction of the unique KMS-state
τ to Dρβ . We note that C(Xβ) is a C∗-subalgebra of Dρβ and the restriction
of φρβ to C(Xβ) comes from the shift transformation σ. As in [17], the re-
striction of the KMS-state τ to Dρβ corresponds to the Lebesgue measure on
[0, 1] in translating the β-shift to the β-transformation. Hence the uniqueness
of the φρβ -invariant measure on Dρβ absolutely continuous with respect to τ
exactly corresponds to the uniqueness of the invariant measure on [0, 1] un-
der the β-transformation absolutely continuous with respect to the Lebesgue
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measure studied in [14], [38] and [42]. In fact, the density function hβ ap-
peared in [14], [38] and [42] of the invariant measure for the β-transformation
with respect to the Lebesgue measure is the element xρβ realized as the mean

limn→∞
1
n

∑n−1
k=0

λkβ(1)

βk
in Theorem 6.7.
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