DOCUMENTA MATH.

ErcobpIiCc PROPERTIES AND KMS CONDITIONS

ON C*-SYMBOLIC DYNAMICAL SYSTEMS
KENGO MATSUMOTO

Received: March 3, 2010
Revised: March 12, 2011

Communicated by Joachim Cuntz

ABSTRACT. A C*-symbolic dynamical system (A, p, X) consists of a
unital C*-algebra A and a finite family {ps}aes of endomorphisms
pa of A indexed by symbols a of ¥ satisfying some conditions. The
endomorphisms p., o € ¥ yield both a subshift A, and a C*-algebra
O,. We will study ergodic properties of the positive operator A\, =
> aey; Po o A. We will next introduce KMS conditions for continuous
linear functionals on O, under gauge action at inverse temperature
taking its value in complex numbers. We will study relationships
among the eigenvectors of A, in A*, the continuous linear functionals
on O, satisfying KMS conditions and the invariant measures on the
associated one-sided shifts. We will finally present several examples
of continuous linear functionals satisfying KMS conditions.
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1. INTRODUCTION

133

D. Olesen and G. K. Pedersen [37] have shown that the C*-dynamical sys-
tem (On,a, R) for the Cuntz algebra O with gauge action o admits a KMS
state at the inverse temperature v if and only if v = log/N, and the admit-
ted KMS state is unique. By Enomoto-Fujii-Watatani [9], the result has been
generalized to the Cuntz-Krieger algebras O4 as v = logra, where ry4 is the
Perron-Frobenius eigenvalue for the irreducible matrix A with entries in {0, 1}.
These results are generalized to several classes of C*-algebras having gauge

actions (ct. [7], [10], [11], [15], [17], [18], [27], [35], [36], [41], etc.).
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Cuntz-Krieger algebras are considered to be constructed by finite directed
graphs which yield an important class of symbolic dynamics called shifts of
finite type. In [29], the author has generalized the notion of finite directed
graphs to a notion of labeled Bratteli diagrams having shift like maps, which
we call A-graph systems. A A-graph system £ gives rise to both a subshift Ag
and a C*-algebra Og¢ with gauge action. Some topological conjugacy invari-
ants of subshifts have been studied through the C*-algebras constructed from
A-graph systems ([30]).

A C*-symbolic dynamical system is a generalization of both a A-graph system
and an automorphism of a unital C*-algebra ([31]). It is a finite family {p4 }aes
of endomorphisms indexed by a finite set ¥ of a unital C*-algebra A such that
pa(Za) C Zyfora € Yand ) o pa(l) > 1 where Z4 denotes the center of A.
A finite directed labeled graph G gives rise to a C*-symbolic dynamical system
(Ag, p9, %) such that Ag = CV for some N € N. A \-graph system £ also gives
rise to a C*-symbolic dynamical system (Ag, p*, %) such that Ag is C(Qg¢) for
some compact Hausdorff space Q¢ with dim Q¢ = 0. A C*-symbolic dynamical
system (A, p,X) yields a subshift denoted by A, over ¥ and a Hilbert C*-
bimodule (¢,, H";) over A. By using general construction of C*-algebras from
Hilbert C*-bimodules established by M. Pimsner [40], a C*-algebra denoted by
O, from (¢,,, H";) has been introduced in [31]. The C*-algebra O,, is realized as
the universal C*-algebra generated by partial isometries S,,a € ¥ and z € A
subject to the relations:

Y 88r=1,  SaSir =255  SirSa = pa(x)
yED

for all 2 € A and o € ¥. We call the algebra O, the C*-symbolic crossed product
of A by the subshift A,. The gauge action on O, denoted by p is defined by

p(x) =2, z€A and p,(Sq) =254 a€EX

for z € C,|z| = 1. If A= C(X) with dim X = 0, there exists a A-graph system
£ such that A, is the subshift presented by £ and O, is the C*-algebra Og¢
associated with €. If in particular, A = C¥, the subshift A, is a sofic shift
and O, is a Cuntz-Krieger algebra. If ¥ = {a} an automorphism « of a unital
C*-algebra A, the C*-algebra O, is the ordinary C*-crossed product A X, Z.
Throughout the paper, we will assume that the C*-algebra A is commutative.
For a C*-symbolic dynamical system (A, p, ), define the positive operator A,
on A by

M(@) =Y palz), zEA

aeX

We set for a complex number 8 € C the eigenvector space of A,

Es(p) ={p e A" [ po X, = Py} (1.1)
Let Sp(p) be the set of eigenvalues of A, defined by
Sp(p) ={B € C | Ex(p) #{0}}. (1.2)

DOCUMENTA MATHEMATICA 16 (2011) 133-175



ERrGoDIC PROPERTIES AND KMS CONDITIONS 135

Let 7, denote the spectral radius of A\, on A. We set T, = Ti)\p. (A,p,X) is
P

said to be power-bounded if the sequence || T[], k € N is bounded. A state ¢ on
A is said to be invariant if ¢ 0T, = . If an invariant state is unique, (A, p, X)
is said to be uniquely ergodic. If lim,, %ZZ;& T/f(a) exists in A for a € A,
(A, p,X) is said to be mean ergodic. If there exists no nontrivial ideal of 4
invariant under A,, (A, p, L) is said to be irreducible. It will be proved that a
mean ergodic and irreducible (A4, p,¥) is uniquely ergodic and power-bounded
(Theorem 3.12).

Let A = [A(i,j)]i\fj:l be an irreducible matrix with entries in {0, 1}, and S;,7 =
1,..., N be the canonical generating family of partial isometries of the Cuntz-
Krieger algebra Q4. Let A4 be the C*-subalgebra of O4 generated by the
projections S;S7,j = 1,...,N. Put ¥ = {1,..., N} and p(z) = SfaS;, x €
Aa,i € ¥. Then the triplet (Aa, p?,¥) yields an example of C*-symbolic
dynamical system such that its C*-symbolic crossed product O, is the Cuntz-
Krieger algebra O4. The above space £g(p) is identified with the eigenvector
space of the matrix A for an eigenvalue 8. By Enomoto-Fujii-Watatani [9],
a tracial state ¢ € E5(p?) on A4 extends to a KMS state for gauge action
on Q4 if and only if 8 = r4 the Perron-Frobenius eigenvalue, and its inverse
temperature is logr4. The admitted KMS state is unique.

In this paper, we will study the space Eg(p) of a general C*-symbolic dynami-
cal system (A, p, ) for a general eigenvalue § in C not necessarily maximum
eigenvalue and then introduce KMS condition for inverse temperature taking
its value in complex numbers. In this generalization, we will study possibility
of extension of a continuous linear functional on A belonging to the eigen-
vector space Eg(p) to the whole algebra O, as a continuous linear functional
satisfying KMS condition. For a C*-algebra with a continuous action of the
one-dimensional torus group T = R/27Z and a complex number 5 € C, we
will introduce KMS condition for a continuous linear functional without as-
suming its positivity at inverse temperature Log(. Let B be a C*-algebra and
a : T — Aut(B) be a continuous action of T to the automorphism group
Aut(B). We write a complex number 3 with |3| > 1 as 8 = re? where
r > 1,0 € R. Denote by B* the Banach space of all complex valued continuous
linear functionals on B.

DEFINITION. A continuous linear functional ¢ € B* is said to satisfy KMS
condition at Logf if ¢ satisfies the condition

@(yailogT(x)) = @(O‘Q(x)y)v T € Bavy € Bv (13>

where B is the set of analytic elements of the action o : T — Aut(B) (cf.[3]).
We will prove

THEOREM 1.1. Let (A, p,X) be an irreducible and power-bounded C*-symbolic
dynamical system. Let 8 € C be a complex number with |B| > 1.

(i) If B € Sp(p) and |B| = r, the spectral radius of the positive operator
Ap : A — A, then there exists a nonzero continuous linear functional
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on O, satisfying KMS condition at LogB under gauge action. The
converse implication holds if (A, p,X) is mean ergodic.

(ii) Under the condition |B| = r,, there exists a linear isomorphism be-
tween the space Eg(p) of eigenvectors of continuous linear functionals
on A and the space KM Sg(O,) of continuous linear functionals on O,
satisfying KMS condition at LogQ.

(ili) If (A, p,X) is uniquely ergodic, there uniquely exists a state on O,
satisfying KMS condition at logr,.

(iv) If in particular (A, p,X) is mean ergodic, then dimEg(p) < 1 for all
B eC.

In the proof of the above theorem, a Perron-Frobenius type theorem is proved
(Theorem 3.13).

Let D, be the C*-subalgebra of O, generated by all elements of the form:
Soy *++Sap xSy, S5, forz € A;aq, ..., ar € 3. Let ¢, be the endomorphism
on D, defined by ¢,(y) = > c5; SaySs,y € Dp, which comes from the left-shift
on the underlying shift spase A,. Suppose that (A, p,3) is uniquely ergodic.
The restriction of the unique KMS state on O, is not necessarily a ¢,-invariant
state. We will clarify a relationship between KMS states on O, and ¢,-invariant
states on D, as in the following way:

THEOREM 1.2. Assume that (A, p,X) is irreducible and mean ergodic. Let T
be the restriction to D, of the unique KMS state on O, at logr, and x, be a
positive element of A defined by the limit of the mean
1
lim —(1+T,(1) + -+ T~ (1))

n—oo M

Let pi, be a linear functional on D, defined by

po(y) = T(yz)), y € D,.

(1) pp is a faithful, ¢,-invariant and ergodic state on D, in the sense that
the formula

n—1

i ST (6 0)) = wp W),y eD,
k=0

holds.

(ii) pp gives rise to a unique ¢,-invariant probability measure absolutely
continuous with respect to the probability measure for the state 7.

(iii) p, is equivalent to the state T as a measure on D,,.

For a C*-symbolic dynamical system (A4, p?,¥) coming from an irreducible
matrix A = [A(i, )]};=; with entries in {0,1}, the subalgebra D4 is nothing
but the commutative C*-algebra C(X4) of all continuous functions on the
right one-sided topological Markov shift X 4. As ¢,a corresponds to the left-
shift 04 on X4, the above unique ¢,a -invariant state 7 is the Parry measure
on X 4. The positive element z,4 is given by the positive Perron eigenvector

DOCUMENTA MATHEMATICA 16 (2011) 133-175



ERrGoDIC PROPERTIES AND KMS CONDITIONS 137

Tpa = [zj]évzl of the transpose A" of A satisfying Zjvzl 7(8;57)x; = 1, where
[T(S; S} )]?;1 is the normalized Perron eigenvector of A.

This paper is organized as follows: In Section 2, we will briefly review C*-
symbolic dynamical systems and its C*-algebras O,. In Section 3, we will study
ergodic properties of the operator 7, : A — A and the eigenspace E5(p) . In
Section 4, we will study extendability of a linear functional belonging to £z(p)
to the subalgebra D, of O,, which will extend to O,. In Section 5, we will
prove Theorem 1.1. In Section 6, we will study a relationship between KMS
states and ¢,-invariant states on D, to prove Theorem 1.2. In Section 7, we
will present several examples of continuous linear functionals on O, satisfying
KMS conditions.

2. C*-SYMBOLIC DYNAMICAL SYSTEMS AND THEIR CROSSED PRODUCTS

Let A be a unital C*-algebra. In what follows, an endomorphism of .A means a
x-endomorphism of A that does not necessarily preserve the unit 1 of A. Denote
by Z4 the center {z € A | ax = za for all a € A} of A. Let ¥ be a finite set.
A finite family of nonzero endomorphisms p,,a € ¥ of A indexed by elements
of ¥ is said to be essential if po(Z4) C Z4 for a € ¥ and ) 5 pa(l) > 1. If
in particular, A is commutative, the family p,,a € X is essential if and only
if > e pa(l) > 1. We remark that the definition in [31] of “essential” for
Pa, @ € X is weaker than the above dfinition. It is said to be faithful if for any
nonzero x € A there exists a symbol « € ¥ such that p,(z) # 0.

DEFINITION ([31]). A C*-symbolic dynamical system is a triplet (A, p,>) con-
sisting of a unital C*-algebra A and an essential, faithful finite family {pa}aes
of endomorphisms of A.

Two C*-symbolic dynamical systems (A, p,X) and (A, p’,¥’) are said to be
isomorphic if there exist an isomorphism @ : A — A’ and a bijection 7 : ¥ — ¥/
such that ® o p, = p;(a) o ® for all @ € ¥. For an automorphism « of a unital
C*-algebra A, by setting ¥ = {a}, po = « the triplet (A, p,X) becomes a C*-
symbolic dynamical system. A C*-symbolic dynamical system (A, p,X) yields
a subshift A, over ¥ such that a word ay - - - ay, of ¥ is admissible for A, if and
only if pg, 00 pa, # 0 ([31, Proposition 2.1]). We say that a subshift A acts
on a C*-algebra A if there exists a C*-symbolic dynamical system (A, p,3)
such that the associated subshift A, is A.

For a C*-symbolic dynamical system (A, p,X) the C*-algebra O, has been
originally constructed in [31] as a C*-algebra from a Hilbert C*-bimodule by
using a Pimsner’s general construction of Hilbert C*-bimodule algebras [40]
(cf. [16] etc.). Tt is called the C*-symbolic crossed product of A by the subshift
A,, and realized as the universal C*-algebra C*(z, Sy;x € A, o € X)) generated
by = € A and partial isometries S,, @ € X subject to the following relations
called (p):

Y 8,8r=1,  SuSir =255,  SiwSa=pa(x)
yED
for all z € A and a € X.
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Let G = (G, ) be a left-resolving finite labeled graph with underlying finite
directed graph G = (V, E) and labeling map A : E — ¥ (see [28, p.76]). Denote
by v1,...,vN the vertex set V. Assume that every vertex has both an incoming
edge and an outgoing edge. Consider the N-dimensional commutative C*-
algebra Ag = CE1 @ - - - ® CEN where each minimal projection E; corresponds
to the vertex v; for i = 1,..., N. Define an N x N-matrix for a € ¥ by

A9(i, ., j) 1  if there exists an edge e from v; to v; with A(e) = a,
7/) a) = .
J 0 otherwise (2.1)

for i,j = 1,...,N. We set pg(E;) = Y% A9(i, 0, §)E; for i = 1,...,N.
Then p9,a € ¥ define endomorphisms of Ag such that (Ag,p9, %) is a C*-
symbolic dynamical system for which the subshift A ¢ is the sofic shift Ag
presented by G. Conversely, for a C*-symbolic dynamical system (A, p, X), if
A is C¥| there exists a left-resolving labeled graph G such that A = Ag and
A, = Ag the sofic shift presented by G ([31, Proposition 2.2]). Put Ag (i, j) =
>aes A9(i,a,4),i,j = 1,...,N. The N x N matrix Ag = [Ag(i,7)]ij=1,..n
is called the underlying nonnegative matrix for G. Consider the matrix A[g2] =

[A[;] (e, f)le,fer indexed by edges E whose entries are in {0,1} by setting

1 if f follows e
A (e, ) = ’ 2.2
(e, /) {0 otherwise. (22)

The C*-algebra O, for the C*-symbolic dynamical system (Ag, p9,%) is the
Cuntz-Krieger algebra O ,z (cf. [30, Proposition 7.1], [1]).
g

More generally let £ be a A-graph system (V, E,\ ) over ©. We equip each
vertex set V; with discrete topology. We denote by ¢ the compact Hausdorff
space with dim Q¢ = 0 of the projective limit Vo < Vi < V5 & ... as in
[30, Section 2]. Since the algebra C(V}) denoted by Age; of all continuous
functions on V] is the commutative finite dimensional algebra, the commutative
C*-algebra C'(Q2¢) is an AF-algebra, that is denoted by Ae. We then have a
C*-symbolic dynamical system (Ag, p*, X)) such that the subshift A pe coincides
with the subshift Ag presented by £. Conversely, for a C*-symbolic dynamical
system (A, p,X), if the algebra A is C(X) with dim X = 0, there exists a A
graph system £ over X such that the associated C*-symbolic dynamical system
(Ag, p©, %) is isomorphic to (A, p, ¥) ([31, Theorem 2.4]). The C*-algebra O ¢
is the C*-algebra Og associated with the A-graph system £.

Let o be an automorphism of a unital C*-algebra A. Put ¥ = {a} and p, =
a. The C*-algebra O, for the C*-symbolic dynamical system (A, p,X) is the
ordinary C*-crossed product A x, Z.

In what follows, for a subset F' of a C*-algebra B, we will denote by C*(F') the
C*-subalgebra of B generated by F'.

Let (A, p,X) be a C*-symbolic dynamical system over ¥ and A the associated
subshift A,. We denote by By (A) the set of admissible words x of A with length
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lp| = k. Put B,(A) = U2 Bi(A), where By(A) consists of the empty word.
Let Sq,a € X be the partial isometries in O, satistying the relation (p). For

p=(p1,..., ) € Bp(A), we put S, =S, ---S,, and p, = pu, 0---0py,. In
the algebra O, we set for k € Z,

D’; = C"(SuxS), 1 p € Br(A),z € A),

D, = C*(SuzS,:p€ Bi(A),x € A),

.7:5 = C"(SuzS; :p,v e By(A),z € A) and

Fpo = C*(SuxS) : p,v e Bi(A),|p| =|v],z € A).

The identity S,zS; =

> aey Suapa(x)Ss, for v € A, p,v € Bi(A) holds so

that the algebra }“;f is embedded into the algebra ]-',f“ such that Ukez+]-",ﬁc
is dense in F,. Similarly D’; is embedded into the algebra D’;“ such that
Ukez +D’/§ is dense in D,. The gauge action p of the one-dimensional torus
group T = {z € C | |z] = 1} on O, is defined by p.(x) = = for z € A and
p=(Sa) = 284 for o € 3. The fixed point algebra of O, under p is denoted by
(0,)P. Let E, : O, — (O,)? be the conditional expectaton defined by

EP(X):/ _p(X)dz, X €O,
zE

It is routine to check that (0,)? = F,.
DEFINITION ([33]). A C*-symbolic dynamical system (A, p, ) satisfies condi-
tion (I) if there exists a unital increasing sequence

AcA,cCc---CcA

of C*-subalgebras of A such that p,(A;) C Aj41 foralll € Z, « € 3, the union
Uiez, A is dense in A and for € > 0, k,I € N with £ <[ and X, € ]:/ﬁl =
C*(S,xS; : p,v € Bi(A),x € A;), there exists an element g € D,N A/ (= {y €
D, |ya=ay for a € A;}) with 0 < g <1 such that

(i) [ Xods(9)ll = | Xoll — ¢,

(ii) g¢p'(g) =0for allm =1,2,...,k, where ¢;*(X) = ZueBm(A) SuX S},
As the element g belongs to the diagonal subalgebra D, of F,, the condition
(I) is intrinsically determined by (A, p,¥) by virtue of [31, Lemma 4.1]. The
condition (I) for (A, p,X) yields the uniqueness of the C*-algebra O, under the
relations (p) ([33]).
If a A\-graph system £ over ¥ satisfies condition (I), then (Ag, p*, ) satisfies
condition (I) (cf. [30, Lemma 4.1]).
Recall that the positive operator A, : A — A is defined by A, (z) =
Y ey Palr), x € ¥. Then a C*-symbolic dynamical system (A, p,¥) is said
to be irreducible, if there exists no nontrivial ideal of A invariant under A,. It
has been shown in [31] that if (A, p, X) satisfies condition (I) and is irreducible,
then the C*-algebra O, is simple.
Interesting examples of (A, p, %) in [31], [34] which we have seen from the
view point of symbolic dynamics come from ones for which A is commutative.
Hence we assume that the algebra A is commutative so that A is written as

(2.3)
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C(Q) for some compact Hausdorff space Q2 henceforth. For the cases that A is
noncommutative, our discussions in this paper well work by considering tracial
states on A in stead of states on A under slight modifications.

3. ERGODICITY AND PERRON-FROBENIUS TYPE THEOREM

In this section, we will study ergodic properties of a C*-symbolic dynamical
system (A, p, ) and prove a Perron-Frobenius type theorem.

Let A* denote the Banach space of all complex valued continuous linear func-
tionals on A. For g € C with 8 # 0, set

Ez(p) ={p e A" | poX,(a) = Bp(a) for all a € A}.

It is possible that Eg(p) is {0}. A nonzero continuous linear functional ¢ in
Es(p) is called an eigenvector of the operator A;, with respect to the eigenvalue
B. Let 7, be the spectral radius of the positive operator A, : 4 — A. Since
Ar(1) > 1,k € N, one sees that 7, > 1. As Sp(\,) = Sp(A5) (cf. [8, VL. 2.7]),
we note 7, = r(A}). Let S(A) denote the state space of A.

LEMMA 3.1. (A, p,X) is irreducible if and only if for a state ¢ on A and a
nonzero element x € A, there exists a natural number n such that o(\j (z*x)) >

0.
Proof. Suppose that (A, p, X) is irreducible. For a state ¢ on A, put
I, ={z € Alp(\;(z"z)) = 0 for all n € N}
which is an ideal of A because A is commutative. The Schwarz type inequality
NO(@) (@) < NN @) for xeA

implies that I, is Aj,-invariant. Hence I, is trivial.

Conversely, let I be an ideal of A invariant under \,. Put B = A/I. Denote
by ¢ : A — B the quotient map. Take 1) € S(B) a state. Put ¢ = ¢ ogq. For
y €1, as (A, (y"y)) = 0,n € N, one sees that y = 0 and hence I = {0} by the
hypothesis. Hence (A, p,X) is irreducible. O

We denote by T, : A — A the positive operator %Ap. The spectral radius
P

of T, is 1. A state 7 on A is called an invariant state if T 0T, = 7 on A,

equivalently 7 € &, (p).

COROLLARY 3.2. Suppose that (A, p, ) is irreducible. Then any positive eigen-
vector of Ay for a nonzero eigenvalue is faithful.

Proof. Let ¢ € E(p) be a positive linear functional for some nonzero 5 € C.
Since ¢(A,(1)) = Be(1), one has f > 0. By the preceding lemma, one has
w(x*z) > 0 for nonzero x € A. O

Yasuo Watatani has kindly informed to the author that the lemma below, which
is seen from [41, Theorem 2.5], is needed in the proof of Lemma 3.4. In our
restrictive situation, we may directly prove it as in the following way.
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LEMMA 3.3. The spectral radius r, of the operator A, is contained in the spec-
trum Sp(A,) of Ap.

Proof. The resolvent R(z) = (z — A,)~! for A, has the expansion R(z) =

> :‘,{’—:1 for z € C,|z| > r, which converges in norm. We note that the
family {R(2)}|z>r, is not uniformly bounded. Otherwise, there exists a con-
stant M > 0 such that ||R(z)|| < M for z € C,|z| > r,. By the compactness
of Sp(A,), we may find z, € Sp(A,) with |z,| = r,. Take z, & Sp()\,) satisfy-
ing limy, o0 2n = %o and |z,| > 7,. The resolvent equation R(z,) — R(zp) =
(2n — 2m)R(2n)R(2m) implies the inequality ||R(2,) — R(zm)|| < |2n — 2m|M?
so that there exists a bounded linear operator R, = lim,,—,~ R(zy) on A. The
equality (z, —A,)R(zn)x = z,x € Aimplies (2o —A,)Rox = z,x € A and hence
Zo & Sp(A,) a contradiction. Thus there exists r, € C such that |r,| & Sp(A,)
and |rp| | 7, and lim, o [|R(7) f]| = oo for some f € A. We may assume
that f > 0. For a state ¢ on A, one has

00 k
PEISHEDS % = o(R(lra)f)-
k=0 ITn

Denote by w(y) the numerical radius of an element y € A, which is defined by

w(y) = sup{e(y) | ¢ € S(A)}-
As the inequalities 1|ly[| < w(y) < ||y always hold (cf. [13, p.95]), one sees

%IIR(%)J‘II S w(R(rn)f) < w(R(|ral) ) < [[R(Irn]) £l

so that
Tim [[R(Iral) ] = oc.
If r, & Sp(A,), the condition |ry,| & Sp()\,) means that R(|ry,|) T R(r,) because

R(z) increases for z | 7,. Hence R(|ry|)f 1T R(r,)f and lim, o || R(|rn]) f]| =
|R(r,)f|l < o0, a contradiction. Therefore we conclude r, € Sp(A,). O

The following lemma is crucial.

LEMMA 3.4. Suppose that (A, p,X) is irreducible. Then there exists a faithful
invariant state on A.

Proof. We denote by R*(t) the resolvent of A} : A* — A* defined by R*(t)p =
(t = X5)"lp for p € A%t > r(X5). As 7, = r(X}), there exists ¢y € A* such
that ||R*(t)@ol|l is unbounded for ¢ | r, by Lemma 3.3. We may assume that
@ is a state on A. Put

O = R*(r, + %)‘PO
y = ———+ n/P

1R (rp + 2ol
Since R*(t) is positive for t > r,, each ¢, is a state on A so that there exists
a weak* cluster point v € S(A) of the sequence {¢,} in S(A). As we see

1 ©0
(T _)‘*)‘Pn:__(Pn‘i‘—,
r n [1R*(r, + )0l

for n=12,...
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we get rppo = Ajpoo S0 that v € &) (p). By Corollary 3.2, one knows that
Yoo 1s faithful on A. O

DEFINITION. A C*-symbolic dynamical system (A, p, ) is said to be uniquely
ergodic if there exists a unique invariant state on A. Denote by 7 the unique
invariant state.

If (A, p,Y) is irreducible and uniquely ergodic, the unique invariant state 7 is
automatically faithful because any invariant state is faithful.

There is an example of a C*-symbolic dynamical system (A, p,¥) for which
a unique invariant state is not faithful, unless (A,p,X) is irreducible. Let

1 0 1 0 2 0
AC@C,E{l,Q}andpl[O 0],p2{0 1].Then)\p{0 J,
1 0

1
0 3

r,=2and T, =

is not faithful.

We will see, in Section 7, that the C*-symbolic dynamical system (Ag, p9,¥)
for a finite labeled graph G is uniquely ergodic if and only if the underlying
nonnegative matrix Ag is irreducible.

We will next consider the eigenvector space of the operator A, on A. We are
assuming that the algebra A is commutative so that A is written as C(Q) for
some compact Hausdorff space 2.

LEMMA 3.5. Assume that (A, p,%) is irreducible.

(i) If T, has a nonzero fized element in A, then T, has a nonzero positive
fized element in A,
(ii) A nonzero positive fized element by T, in A must be strictly positive.
(ili) If there exist two nonzero positive fized elements by T, in A, then one
is a scalar multiple of the other.
(iv) The dimension of the space consisting of the fized elements by T, is at
most one.

is a unique invariant state on A, that

} . The vector [(1)}

Proof. (i) Let y € A be a nonzero fixed element by T,. Since y* is also fixed by
T,, we may assume that y = y*. Denote by y = y* —y~ with y*,y~ > 0 the
Jordan decomposition of y. We have y* > y and hence T,(y*) > T,(y) = .
As T,(y™) > 0, one sees that T,(y™) > y*. Now (A, p, ) is irreducible so that
there exists a faithful invariant state 7 on A. Since 7(T,(y™) — y™) = 0, one
has T,,(y") = y*. Similarly we have T,(y~) = y~. As y # 0, either y™ or y~
is not zero.

(ii) Let y € A be a nonzero fixed positive element by T,. Suppose that there
exists wy € 2 such that y(wo) = 0. Let I, be the closed ideal of A generated
by y. For a nonzero positive element f € A we have

T,(fy) < IF1Tu(y) = I Flly

so that T,(fy) belongs to I,. As the ideal I, is approximated by linear combi-
nations of the elements of the form fy, f € A, f > 0, the ideal I, is invariant
under T,. Now (A, p,X) is irreducible so that I, = A. As any element of I,
vanishes at wg, a contradiction.
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(ili) Let =,y € A be nonzero positive fixed elements by T,. By the above
discussions, they are strictly positive. Set ¢y = min{% | w € Q}. The
function x — cpy is positive element but not strictly positive, so that it must
be zero.

(iv) Let y € A be a fixed element under T),, which is written as the Jordan
decomposition y = y; —y2+i(y3 —ya4) for some positive elements y;,7 = 1,2, 3,4
in A. By the above discussions, all the elements y;,7 = 1,2, 3,4 are fixed under
T, and they are strictly positive if it is nonzero. Hence (iii) implies the desired
assertion. O

DEFINITION. A C*-symbolic dynamical system (A, p, X)) is said to satisty (FP)
if there exists a nonzero fixed element in A under T,.

If in particular, (A, p,X) is irreducible, a nonzero fixed element can be taken
as a strictly positive element in A by the previous lemma.

LEMMA 3.6. Assume that (A, p, %) is irreducible and satisfies (FP).
(i) If there exists a state in Eg(p) for some f € C with B # 0, then we
have B8 =1,.
(ii) If in particular, (A, p,X) is uniquely ergodic, the eigenspace &, (p) is
of one-dimensional.

Proof. (i) Suppose that there exists a state ¥ in £g(p) for some g € C with
B # 0. Let 29 € A be a nonzero fixed element by T,,. One may take it to be
strictly positive by the preceding lemma. Since \,(zo) = 7,20, one has

B (o) = Y(Ap(20)) = rp1b(20).

By Corollary 3.2, one has ¢ (z¢) > 0 so that § = r,.

(ii) Take an arbitrary ¢ € & (p). Put ¢*(z) = p(z*),z € A and hence
¢* € &,(p). Both of the continuous linear functionals pr. = 1(p + ¢*) and
¢rm = 5-(¢ — ¢*) belong to &, (p) which come from real valued measures
on . Put ¥ = ppre. Let ¥ = ¥4 — 1_ be the Jordan decomposition of 9,
where 14 ,1_ are positive linear functionals on A. Since ¥4 > 1, one has
Tyhy > Tiep = 4. As Tyepy is positive, one has Ty > 4. Now (A, p, X)
is irreducible and satisfies (FP) so that one finds a strictly positive element
xo € A fixed by T,. Then ) = T3¢y — vy is a positive linear functional
satisfying ﬂ(xo) = 0. It follows that » = 0 so that Ty = 4. Similarly
we have Ty = 1. As both 14,9 are positive linear functionals on A,
the unique ergodicity asserts that there exist 0 < c;4,c— € R such that ¢, =
c+T,¥_ = c_7. By putting cre = ¢4 — c_, one has Yre. = cre7 and similarly
©Im = crmT for some real number c¢j,,. Therefore we have

Y= (CRe + ic]m)T-

Hence any continuous linear functional fixed by T}, is a scalar multiple of 7, so
that
dimé&, (p) = 1.
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A C*-symbolic dynamical system (A, p,X) is said to be power-bounded if the
sequence {|TF|| | k € N} is bounded. As T : A — A is completely positive,
the equalities HTfH = ||T/f(1)|| = Hr%’e > peny(n) Pu(1)]| hold. We remark that
for an irreducible matrix A = [A(i,j)]i\fj:l with entries in {0,1}, the associ-
ated C*-symbolic dynamical system (A4, p?, %) defined in the Cuntz-Krieger
algebra O4 is power-bounded. One indeed sees that there is a constant d > 0
such that
N
Z AF(i,5) < d-rk (cf. [28, Proposition 4.2.1]).
ij=1

Hence

N
MR = max D S A%, j) <d -7

j=1

LEMMA 3.7. Assume that (A, p,X) is irreducible. If (A, p,X) satisfies (FP),
then (A, p, X)) is power-bounded.

Proof. As (A, p,Y) is irreducible and satisfies (FP), there exists a strictly pos-
itive fixed element xy of A under T,. Since 2 is compact, one finds positive
constants c1, ¢ such that 0 < ¢1 < zg(w) < ¢ for all w € Q. Tt follows that

ClT;l(l) = T;l(011> < T;(SC()) =X < Ca, n € N.
Thus we have [|T7|| = [T, (1)|| < & for n € N. O
We define the mean operator M,, : A —> A for n € N by setting
a+Tpla) +Tja) +---+ T, (a)

My (a) = n . acA (3.1)

DEFINITION. A C*-symbolic dynamical system (A, p,X) is said to be mean
ergodic if for a € A the limit lim,,_,oc M, (a) exists in A under norm-topology.
For a mean ergodic (A, p, ), the limit lim,,_, o M, (1) exists in .4 under norm-
topology, which we denote by z, € A

LEMMA 3.8. Assume that (A, p,X) is irreducible. For a mean ergodic (A, p,X),
we have for a € A,

lim M,(a) = nh—>nolo Mp(Ty(a)) = lim T,(My(a)). (3.2)

n—oo n—oo

In particular z, is a nonzero positive element which satisfies x, = T,(x,) and
7(x,) = 1 for an invariant state T € &, ,(p).

Proof. For a € A, the equality T,(My(a)) = M, (T,(a)) is clear. As
(n+ )My i1(a) = nMy(a) = T (a),
one has

T0(a) = Masa(a) — Ma(a) + My (a)
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so that lim,, %T"(a) = 0. By the equality

T, (Mo (@) ~ My (a) = (T} (a) — a)
we have
T (T,(My(a)) — Mo(@)) = lim +(T7(a) — ) = 0.

Take a faithful invariant state 7 on A, we have
T(x,) = 1i_>m T(M,(1)) =7(1) = 1.
a

PROPOSITION 3.9. Assume that (A, p,X) is irreducible. If (A, p,X) is mean
ergodic, there exists a faithful invariant state T on A such taht

li_>m My(a) = 7(a)z,, a€ A (3.3)

Proof. For a € A, the limit ¢(a) = lim, o0 M, (a) is fixed by T}, so that it is
a scalar multiple of z, by Lemma 3.5 (iv). One may put

&(a) = 7(a)x, for some 7(a) € C.
It is easy to see that 7 : A — C is a state. As ¢(T,(a)) = P(a), one sees

7(T,(a)) = 7(a) for a € A. Hence 7 is an invariant state on A. Now (A, p, X)
is irreducible, the invariant state is faithful. O

Hence the following corollary is clear.

COROLLARY 3.10. Assume that (A, p,X) is irreducible. Then the following two
assertions are equivalent:
(i) (A, p,X) is mean ergodic.
(ii) There exist an invariant state T on A and a positive element zo € A
with T(xo) = 1 such that lim, o, M,(a) = 7(a)zy for a € A.
In this case xq is given by lim,, oo My (1)(= x,), and T is faithful.

THEOREM 3.11. Assume that (A, p,X) is irreducible. Then the following two
assertions are equivalent:

(i) (A, p,X) is mean ergodic.

(i) (A, p,X) is uniquely ergodic and satisfies (FP).

Proof. (i) = (ii): Suppose that (A, p,X) is mean ergodic. Put P(a) =
lim, o0 My (a) for a € A. The element z, = ®(1) is a nonzero fixed ele-
ment of A under T,. By the previous corollary, there exists an invariant state
7 on A satistying $(a) = 7(a)z, for a € A. For any invariant state ¢ on
A, we have ¥ o M, (a) = ¢(a) for a € A. Hence ¥(P(a)) = 9(a) so that
Y(a) = Y(r(a)z,) = T(a)(z,). Since Y(z,) = 1, we obtain ¢(a) = 7(a).
Therefore 1) = 7 so that (A, p, X) is uniquely ergodic.

(ii) = (i): Suppose that (A, p,X) is uniquely ergodic and satisfies (FP). By
Lemma 3.7, (A, p, X)) is power-bounded. Hence the sequence {1 ZZ;& TF}nen
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is uniformly bounded. This means that T, : A — A is Cesaro bounded (cf.

[22, p.72]). As limy_ 00 I nl(a) = 0 for a € A, the operator 7, : A — A
satisfies the assumption of [22, p.74 Theorem 1.4]. To prove mean ergodicity,
it suffices to show that F' = {z € A | T,x = x} separates F* = {¢ € A" |
poT, = ¢}. By Lemma 3.6, one knows that F* = Cr, where 7 is a unique
faithful invariant state on A. Hence if ¢ = ¢r € F* is nonzero, then ¢ # 0 and
¢(z,) = cr(z,) = ¢ # 0. This implies that F' separates F*. Thus by [22, p.74
Theorem 1.4], (A, p,X) is mean ergodic. a

REMARK. In [22; p.179], it is shown that a mean ergodic irreducible “Markov
operator ”is uniquely ergodic. In our situation, the operator 7, does not nec-
essarily satisfy T,(1) = 1. Hence the operator 7}, is not necessarily a Markov
operator.

We summarize results obtained in this section as in the following way:

THEOREM 3.12. Assume that (A, p,X) is irreducible. Then the following im-
plications hold:

(ME) <= (UE) + (FP) = (FP) = (PB)
U
dim &, (p) = 1 = (UE),

where (ME) means mean ergodic, (UE) means uniquely ergodic, and (PB)
means power-bounded.

If in particular (A, p, X)) is irreducible and mean ergodic, the following Perron-
Frobenius type theorem holds.

THEOREM 3.13. Assume that (A, p,X) is irreducible and mean ergodic.

(i) There exists a unique pair of a faithful state 7 on A and a strictly
positive element x, in A satisfying the conditions:

TON, =TpT, Mo(2p) =1pz, and T(z,) =1,

where 1, is the spectral radius of the positive operator A, on A.
(ii) If there exists a continuous linear functional b on A satisfying

1/10)‘/) = pra

then v = ct for some complex number c € C.
(iii) If there exists a state ¢ on A and a complex number 8 € C with 8 # 0
satisfying

900/\/3:5%

then ¢ =7 and 8 =7,.
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k
(iv) For any a € A, the limit lim,,_, o % ZZ;& /\’;Eﬂa) exists in A in the norm
r3

topology such that

Proof. Under the assumption that (A, p, ) is irreducible, mean ergodicity is
equivalent to unique ergodicity with (FP). (i) and (iv) follows from Corollary
3.10 and unique ergodicity. (ii) follows from Lemma 3.6 (ii). (iii) follows from
Lemma 3.6 (i) and unique ergodicity. O

4. EXTENSION OF EIGENVECTORS TO F,

In this section, we will study extendability of an eigenvector in Eg(p) to the
subalgebra F,. We fix a C*-symbolic dynamical system (A, p,X) satisfying
condition (I) henceforth.

LEMMA 4.1. Fix a nonnegative integer k € Z,.. For any element x € ]'—5 there
uniquely exists ., in A for each p,v € B(A) such that

x = Z SuxuLS, and Ty = pu(1)zuup00(1).
w,vEB(A) (41)

If in particular x belongs to ’D’;, there uniquely exists x, in A for each | €
By (A) such that

x = Z SuxpS, and zy = pu(D)zupu(1). (4.2)
HEBE(A)

Proof. For an element x in .7-'5 and p,v € Bi(A), put z,, = S,xS, that
belongs to A and satisfies the equalities (4.1). O

We set
Dpalg = the algebraic linear span of S,aS}, for u € B.(A),a € A, and
F,™8 = the algebraic linear span of S,aS}; for p,v € B.(A), |u| = |v|,a € A.

Hence D,*8 = U;"ZOD’; and F,"8 = Uz‘;o}“l’f. They are dense *-subalgebras of
D, and F, respectively.

LEMMA 4.2. For f € C with |B| > 1 and ¢ € E5(p) on A, put
- . 1
¢(Suas)) = W‘P(a/’u(l))a a€ A p€ B.(A). (4.3)

Then ¢ is a well-defined (not necessarily continuous) linear functional on D, alg,

that is an extension of .
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Proof. By the expansion (4.2) for an element z € D’;, the following definition
of ¢ () yields a linear functional ¢y on D’,j

1
pr(z) = > ﬁcp(:c#). (4.4)
HEBE(A)
We will show that ¢ = pry1 on D’;. As SuxuS;, = Y aes S#apa(z#)SZa and
Pua(1)pa(@p)ppa(l) = Skpu(1)zupu(1)Sa = palx,), the following expression
of z in DE*+1
T = Z Spapa(Tu)Sq
REBE(A),aeX

is the unique expression of (4.2). Hence we obtain

1 1
prpa(r) = Y g e (pa(@n)) = g5 > elau) = o).
,U«EBk(A),OtEE }LEBk(A)
The family {¢x }rez, of linear functionals on the subalgebras {’D’;} kez, yields

a linear functional on the algebra D,*#. We denote it by . As the expansion
a =, cxSapala)S) for a € A is the unique expansion of a in (4.2) as an
element, of D}, we have @(a) = %Zaez ©(pala)) = p(a) so that ¢ = ¢ on
A. |

We will extend A, on A to F, such as

Ap(x) = Z SrxSq for x € F),.
aeX
LEMMA 4.3. Let ¢ be a linear functional on ]-'p“lg such that its restriction to
A is continuous. Then the following three conditions are equivalent:
(i) @ is tracial and v o \,(x) = B(x) for x € F,™.
(i) (SuaS}) = 005 (@S} S,) for @ € Fp™, pv € Bu(A) with |p| =
]
(ili) There exists ¢ € Eg(p) such that

1 .
V(5,050) = s g e(apu(D) for a € A,pi.v € B(AJwith | = o]

Proof. (i) = (ii): The equation (i) implies that for k € N,
1 * a
Y(z) = 7 > w(Si2S,), we FE

YEBR(A)

It then follows that for u,v € Bi(A)

WSS = o 3 U(STSSIS,) = B S
YEBR(A)
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(ii) = (iii): Define a linear functional ¢ on A by the restriction of ¢ to the
subalgebra A. By the equation (ii) for a € A and hence S}aS, € A, we see

D(SaS20) = B(SuStaSnSE) = 21(S" 085" Sn) = %w(s;asa>

B

so that ¢ € £3(p). The equation (iii) is clear.
(iii) = (i): We will see that ¢ is tracial. Let z,y € ]-"5 be expanded as in (4.1)

sothat @ =3 cp () SuTuvSy, ¥ =2, en,a) Su¥nrS,. We have
Ty = Z Su-ru,l/pu(l)yu,ws’:: = Z Su( Z xuwyuﬂ)‘s’:
p,V,YEB () uYEBR(A) vEB(A)
and EueBk(A) TpvlYvy = Pu(l)(zueBk(A) Ty v Yy )P~ (1), similarly
yr = Z Sn( Z YnaTyw)Sy
n,vEB(A) YEBE(A)

and Z—yeBk(A) YnyZyw = pn(l)(ZVGBk(A) YnyTy,0)py(1). It follows that

1 1
Ylay) = Y @w(xwyw): > @w(ymxw):i/f(yx)-

w,vEBK(A) v,MEBk(A)

Hence ) is tracial on F 5.
We will finally show that the equality in (i) holds. For S,aS; € F, f’f with a €

A= (pa, oo pii), v = (1,...,vk) € Bi(A), put ppa g = (K2, k), V2 k) =
(vay...,Vk) € Br_1(A). One has

> (Si(SuaS;)Sa)

aEX

=01 11 "/’(pm (USH[z,k] GS;[QM Py (1))
:6u1,ul w(Su[z,k] S:L[Z,k] p;n (1)SM[2,k]a’S;[2,k]pV1 (1)SV[2,k] S;[Z,k])
:5#1,V1w(sﬂ[z,k]p#(l)a’pV(l)S;j[Q’k])

1
:6M1 W1 6#[2,k] V[2,k] F‘p(pﬂ(l)apl/(l)pl/p,k] (1))

1
:6M7VF@(pM(1)apu(1))
=By (Suas,).

Let Ep : F, — D, denote the expectation satisfying
Ep(SuaS)) = 0,,.,S,aS),, a€ A, p,ve BN, |u =]y

Once we have an extension ¢ to D, of ¢ € £3(p), ¢ has a further extension to
F, by ¢ o Ep. The extension ¢ o Ep on F, is continuous if ¢ is so on D,. It
satisfies

1
¢ o Ep(Suas;) = 5#,VW‘P(GPM(1)) (4.5)
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for a € A, p,v € By(A) with |u| = |v|. Hence the extension of a continuous
linear functional on D, to F, is automatic. We have only to study extension
of a linear functional ¢ € £3(p) on A to D,. The condition (iii) of Lemma 4.3
is equivalent to ¢ = ¢ o Ep where ¢ is a linear functional on D,*# obtained
from ¢ € £3(p) as in Lemma 4.2, and so thst ¢ is continuous if and only if
¢ is continuous. We call the extension ¢ on D,*# of ¢ € £5(p) the canonical
extension of .

LEMMA 4.4. Suppose that (A, p, %) is irreducible and power-bounded. For /3 €
C with |B| = r, > 1, a (not necessarily positive) continuous linear functional
p € E3(p) on A extends to a continuous linear functional ¢ on D, satisfying

(4.3).

Proof. As (A, p,X) is irreducible, we may take a faithful invariant state 7 on

A, which we will fix. By the hypothesis that (A, p, ) is power-bounded, there
k

exists a positive number M such that w < M for all k € N. By [43,

P
Theorem 4.2], there exists a partial isometry v € A** and a positive linear
functional ¥ € A* such that

ola) = P(av), ac A

For @ =3 cp, (a) SuuS), € DF as in (4.2). Define a linear functional ¢ on
’D’; by (4.4). As in Lemma 4.2, gok+1|D§ = ¢y, and hence {py}ren defines a

linear functional on Dpalg . It then follows that

(@) = 19(pu(D)zup(1)0)] < B(pu(1))2 |2zl 2 (v p,(1)0)E.

Since p,(1) commutes with v and

lzull = [[Suzu Syl < s 1Sva, Syl = Il (4.6)

we have
lp(@)| < ll2l|1¥(pu(1))

and hence

1 1 A

lor(z)] < BT > ezl < Wl\wlllﬁ()\ﬁ(l)) = ’;Tw(l)l\wll-
HEBL(A) P
Therefore we have
lok(z)] < Myp(1)|lz]l, = €Dy

and hence {¢k }ren extends to a continuous linear functional on the closure D,
of D, |

If in particular a linear functional ¢ € £g(p) is positive on A, it always extends
to a continuous linear functionl on D, as in the following way:
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LEMMA 4.5. Let € C be |B] > 1. If ¢ € Es(p) is a positive linear functional
on A, then B becomes a positive real number and the canonical extension @ to
D, is continuous on D,.

Proof. One may assume that ¢ # 0 and ¢(1) = 1. We have 8 = Bp(1) =
©(A,(1)) > 1. For k € N, define a linear functional ¢ on D} by (4.4). Since
for x =3 cp,a) SuzuS; € DF we have by (4.6),
1 . 1
[o(pu(Wzupu(1))] < 0(pu(1)) 20 pu(Day2upu(1))7 < [[zlle(pu(1)),
it follows that

1 1
ok ()] < B Y lelouMaupu(1)] < WHHUH@(AIZ(U) = [|=[l.
HE By (A)
Therefore {¢1}ren extends to a state on D,,. O

We are now assuming that (A, p, ¥) is irreducible. By Lemma 3.4, there exists a
faithful invariant state 7 € &, (p) on A. By the previous lemma, the canonical
extension 7 is continuous on D, which satisfies

7(SuaS;,) = ﬁT(apu(l)), a€ A, u€ Bi(A). (4.7)

LEMMA 4.6. For a faithful invariant state 7 € E,,(p) on A, the canonical
extension T s faithful on D,.

Proof. Suppose that 7 is not faithful on D,. Put
L ={xeD,|7(z"z) = 0}.

Since T is tracial on D,, I> is a nonzero ideal of D,. By Lemma 4.3, the equality
7o), =r,7 holds on D, so that I+ is A,-invariant. The sequence D’,j, k € N of
algebras is increasing such that UkeND’; is dense in D,. We may find k € N
such that Iz N'Dk # 0. It is easy to see that A¥(DF) C A so that there exists a
nonzero positive element x € I> ﬁD’,j such that )\’/j(z) € I:NA. Hence I:NAis a
nonzero A -invariant ideal of A. By the hypothesis that (A, p, ) is irreducible,
we have a contradiction. 0

For a faithful invariant state 7 on A, we will write the canonical extension 7 of
7 to D, as still 7. Define a unital endomorphism ¢, : D, — D, by setting

¢p(y) = Z SayS;ku Yy e Dp- (4-8)
aEX

It induces a unital endomorphism on the enveloping von Neumann algebra D,**
of D,, which we still denote by ¢,. The restriction of the positive map A, on
F, to D, similarly induces a positive map on D,"*. We then need the following
lemma for further discussions.
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LEMMA 4.7. The equality
Ap(x¢p(y)) = )\p($)y, T,y € Dp** (4.9)
holds.

Proof. Since D, is dense in D,** under o(D,**, D,")-topology, it suffices to
show the equality (4.9) for 2,y € D,. One has

Mo(@6,(y)) = Y SawS,yS;Sa

a,YEX
= Z SoxSaySnSa = Z ShaxSay = Ap(2)y.
aeX acd

O

Recall that for a continuous linear functional ¢ on a C*-algebra B there exist
a partial isometry v € B** and a positive linear functional |¢)| € B* in a unique
way such that

v* v = s(|y)), Y(x) = [Y|(zv) for x € B, (4.10)

where s(]1|) denotes the support projection of || (cf. [43, Theorem 4.2]).
The decomposition (4.10) is called the polar decomposition of 1. The linear
functional ¢ : @ — |¢|(zv) is denoted by v|¢].

LEMMA 4.8. Let 8 =re? € C ber,0 € R with r > 1. For a (not necessarily
positive) linear functional ¢ € Eg(p) on A, let ¢ be the extension on Dp“lg
satisfying (4.3). Suppose that the linear functional ¢ extends to a continuous
linear functional on D,. Denote by ¢ = v|@| its polar decomposition for a
partial isometry v € D,** and a positive linear functional |g| on D, such that
v*v = s(|@|). Then we have

¢p(v) = eiGU’ |927|()‘p('r)) = 7“|(,Z?|($) Jorz € D,.

Hence the restriction of || to A belongs to E-(p) and |@| satisfies
. » 1.

|@1(SpaS}) = W|<p|(apu(1)), a€ A ue B,(A).

Proof. Put a positive linear functional ¥ on D, and a partial isometry v in
D,™™ by setting

U@) = IP0() forzeD, ad w=e ().

As M\, (zu) = e ¥\, (z)v for x € D, by Lemma 4.7. It follows that for z € D,

() (@) = 7180 () = FI2|la)e) = o)

Hence we have
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We will next show that s(y)) = u*u. For y € D,, we have by Lemma 4.7

D) = TIF1 O (")) = 1616y (0"0) = 2B )o™0) = ().

Hence we have u*u > s(¢). On the other hand, suppose that a projection
p € D,** satisfies

dyp) = ¢(y)  fory €D,
We then have |p|(A,(y(1 —p))) =0 for all y € D,. For y = 5,5}, € ¥, one
has [@[(S%(1 —p)Sa)) = 0. As S%(1 — p)Sa is a projection in D,, one obtains
that S(1 —p)Se < 1—ov*vso that 1 —p < 1 — ¢,(v*v). This implies that
u*u < p. Therefore we have u*u < s(¢)) and hence
w'u = s(1).
By the uniqueness of the polar decomposition, we conclude that
v=u and |p|=v% onD,
so that

6p(0) = €%, [@|(\(2) = rl@l(@) for €D,

Therefore we have

THEOREM 4.9. Suppose that (A, p, %) is irreducible and power-bounded. For
B € C with |B8] > 1, a (not necessarily positive) linear functional ¢ € E5(p) on
A extends to D, as a continuous linear functional ¢ satisfying

5(S,a87) = ﬁw(%(n), ac A e B.(A)

if |B| = r,. If in particular, (A, p,X) is mean ergodic, the converse implication
holds.

Proof. The first part of the assertions is direct from Lemma 4.4. Under the
condition that (A, p,X) is mean ergodic, assume that the canonical extension
¢ is continuous on D,. The preceding lemma says that the positive linear
functional [@| belongs to &£ 3/(p). Since the mean ergodicity implies (FP), by
Lemma 3.6 (i) we see that |5 = r),. O

Let us now assume that (A, p, X)) is irreducible and satisfies dim &, (p) = 1, and
hence it is uniquely ergodic. Take a unique invariant state 7 on A and denote
still by 7 its canonical extension on D,. Denote by p, € D,*" its support
projection.

LEMMA 4.10. Let w € D,** be a partial isometry satisfying
w w = p, and op(w) = w. (4.11)

Then w is a scalar multiple of the projection p..

DOCUMENTA MATHEMATICA 16 (2011) 133-175



154 KENGO MATSUMOTO

Proof. Put wr(z) = 7(zw) for z € D, and hence wr € D,". Since \,(z)w =
Ap(x¢,(w)) = Ay(zw) by Lemma 4.7, it follows that for x € D,

wr(Ap(2)) = 7(Ap(2w)) = rp7(2w) = rywr(z).

In particular, we have wr € & (p). As dim&, (p) = 1 by hypothesis, wr is
a scalar multiple of 7. Hence there exists ¢ € C such that 7(zw) = cr(x) for
x € A. Since wr is the canonical extension of 7(- w) = w7 on A to D, and the
canonical extension is unique, one has 7(zw) = er(z) for z € D, so that

T(2w) = 7(zcpy) for x € D,. (4.12)

As ¢ =er(1) = 7(w), one has

1=7(p;) = 71(w*w) = cr(w*) = er(w) = cc
so that
(cp) (epr) = pr = w"w.
By the uniqueness of the polar decomposition, we have by (4.12) w = ¢p,. O

PROPOSITION 4.11. Suppose that (A, p,%) is irreducible and satisfies
dimé&,,(p) = 1. Then dim&g(p) <1 for € C with |B| =r, > 1.

Proof. Let |§| = r, > 1. Take an arbitrary linear functional ¢ € £3(p) with
¢ # 0. Its canonical extension ¢ to D, is continuous. Denote by @ = vg|Q|
the polar decomposition in D,* where vg is a partial isometry in D,**. By
Lemma 4.7, the restriction of |@| to A is a positive linear functional belonging
to &, (p). Since (A, p,¥) is uniquely ergodic, by putting c; = |@[(1) one has
|| = ¢pT as a positive linear functional on A. The canonical extension to D,
which satisfies (4.3) is unique and determined by its behavior on A. Hence
the equalty |@| = cs7 holds as a positive linear functional on D, so that we
have supp(|¢|) = supp(7) and hence v3vs = p;. For another linear functional
¥ € Ep(p) with ¢ # 0, we have similar decompositions
Y= ’UJ;WJL W]l =CyT U,Z;U'l/; = Dr.

Put a partial isometry w = vv; € D,"" so that w*w = p,. By Lemma 4.8,
one has ¢,(w) = w. Lemma 4.10 implies w = ¢p, for some ¢ € C with |¢| =1
so that V) = CUg. Therefore we have

- - ¢
— - o — A~
) vw|1/)| CUpCyT Cc¢<'0

on D,. In particular we have ¢ = cZ—ﬁgo on A so that dim E5(p) < 1. O

COROLLARY 4.12. Suppose that (A, p, ) is irreducible and mean ergodic. Then
for g € C with |B] > 1, we have dimEg(p) < 1 if |B] = r,, otherwise E3(p) =
{0}.
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Suppose that (A, p,X) is irreducible and mean ergodic. Hence (A4, p,X) is
uniquely ergodic with a unique faithful invariant state 7 € &, (p). Denote by
pr € D,** the support projection of the canonical extension of 7 to D,, where
the extension is still denoted by 7. For 8 = re? € C with r = rp > 1, we set

P3(D,,7) ={veD,”™ | ¢,(v) = e, v = Dr}e

Denote by R4 the set of all nonnegative real numbers. For ¢ € £3(p) denote
by ¢ its canonical extension to D,. As || = r,, ¢ is continuous and has a
unique polar decomposition ¢ = vg|p| for some v € D,** and positive linear
functional || € D,*. By Lemma 4.8, we know the structure of the eigenspace
Es(p) as in the following way:

PROPOSITION 4.13. Suppose that (A, p,X) is irreducible and mean ergodic.
There exists a bijective correspondence between the eigenspace Eg(p) and the
product set Pg(D,, ) x Ry through the correspondences

¢ €85(p) — (vg,[2l(1)) € Ps(Dp, 7) x Ry,
cr(- v) €€5(p) «— (v,¢) € Ps(D,,7) x Ry

5. EXTENSION TO O, AND KMS CONDITION

In [9], Enomoto-Fujii-Watatani have proved that KMS states for gauge action
on the Cuntz-Krieger algebra O4 exist if and only if its inverse temperature
is logr4, where 74 is the Perron-Frobenius eigenvalue for the irreducible ma-
trix A. They have showed that the KMS states bijectively correspond to the
normalized positive eigenvectors of A for the eigenvalue r 4.

In this section, we will study KMS conditions for linear functionals without
assuming its positivity at inverse temperature taking complex numbers. The
extended notation is needed to study eigenvector spaces for C*-symbolic dy-
namical systems.

Following after [3], KMS states for one-parameter group action « on a C*-
algebra B is defined as follows: For a positive real number v € R, a state ¥ on
B is a KMS state at inverse temperature ~y if 1 satisfies

V(yaiy (z)) = Y(zy), reBYyeB (5.1)

where B® is the set of analytic elements of the action o : R — Aut(B) (cf.[3]).
The equation (5.1) for v is called the KMS condition with respect to the action
Q.

In what follows, we restrict our interest to periodic actions so as to extend KMS
condition to (not necessarily positive) linear functionals at inverse temperature
taking complex numbers. We assume that an action a of R has its period 27
so that « is regarded as an action of one-dimensional torus group T = R/27Z.
Let B be a C*-algebra and o : T — Aut(B) a continuous action of T to the
automorphism group Aut(B). We write a complex number 8 € C as 8 = re®?
where 7,0 € R with r > 1.

DOCUMENTA MATHEMATICA 16 (2011) 133-175



156 KENGO MATSUMOTO

DEFINITION. A continuous linear functional ¢ € B* on B is said to satisfy
KMS condition at Logp if ¢ satisfies the following condition

Sp(yailogr(x)) = (p(QG(w)y)a T e Baa Yy e B. (52)
REMARK.

(i) As ag(z) = agiar(x), the right hand side p(ag(z)y) of (5.2) does not
depend on the choice of # € R as long as 3 = re®.
(ii) The above KMS condition (5.2) is equivalent to the following condition:

w(yQC‘FilOgT(x)) = SD(QC‘FG(Z')ZJ)) T e Baa ) S Ba C S C ( )
5.3

(iii) In case of 8 = 0, the above definition of KMS condition coincides with
the original definition of KMS condition for states.
(iv) The above equality (5.2) can be written formally as

o(yciLogs(x)) = p(zy),  x€B"yeB, (5-4)
if we denote Logf8 = logr + 6.

We will present some examples of linear functionals satisfying the extended
KMS conditions.
EXAMPLES.

(i) Let o : T — Aut(B) be an action of T to a C*-algebra B such that
there exists a projection H € B satisfying as(a) = e ae " q ¢
B,t € T. Assume that there exists an a-invariant tracial state tr on B.
Put

B tr(elosBH )

@(@*ma r € B,

where Log8 = logr + i6. Then ¢ satisfies KMS condition at LogQ.
(i) Let B = ®g2, M be the UHF-algebra of type 2°° and a : T — Aut(B)
an action of T to B defined by

1 0

ay = ®zO:1Ad [0 e“:| , teT.

Put
Bn:®2:1M2:M2®"'®M2,

. .1t 0] [t o 10
Uy = Op—1 0 et = 0 et @ ® 0 et EBTH

ap =Ad(uy) € Aut(B,), teT.
Let f =re’ € Cber > 1. Put

0 0 N
H|:0 1:|€]\427 hn:®k:1 |:0 %]EBH,
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and hence h, = @7_je”LoefH on = gr_ Ad(e"H),t € T. It is
straightforward to see that
tr(e B pa 100 () = tr(e 08P oy (a)b), a,b e M.
Put
on(x) = Qp_qtr(zhy,) for x € B,

so that we have

Pn(yYitogr(x)) = on(ae(@)y), @,y € Bn.
As ||hy]| = 1, ¢p, extends to a continuous linear functional on B, which
we denote by ¢. Then ¢ satisfies KMS condition at Logg:

o(Yitogr () = n(ag(z)y), re B yeB.

We see the following two propositions whose proofs are similar to the case of
usual KMS states.

PROPOSITION 5.1 (cf. [39, 8.12.3]). Let o : T — Aut(B) be a continuous ac-
tion of T to the automorphism group Aut(B) of a C*-algebra B and 5 a complex
number with B = re', r > 1. The following conditions for a continuous linear
functional ¢ on B are equivalent:
(i) ¢ satisfies the KMS condition at Logf.
(ii) ¢ satisfies the equality (5.2) for just a dense set of elements in B®.
(iii) For all x,y € B, there is a bounded continuous function f on the strip

Qogr ={C€C|0<Im¢ <logr}
such that f is holomorphic in the interior of Qiog, and
) =elya(x)),  flt+ilogr) =p(are(z)y), teR.

PROPOSITION 5.2 (cf. [39, 8.12.4]). Let B be a C*-algebra and o : T —
Aut(B) be a continuous action of T to the automorphism group Aut(B). Let ¢
be a continuous linear functional on B. If ¢ satisfies KMS condition at Log(
for some complex number B with B = re'® with v > 1, then ¢ is a-invariant,
that is,

Yooy =, teT.

We henceforth go back to our previous situations. Let (A, p,X) be a C*-
symbolic dynamical system. Recall that the positive operator A, on A extends
to F, by setting \,(z) = > oy 5280, € F,. For B € C with 3 # 0, we set

5 (p) ={p € D" | p(No(2)) = Be(w), € Dy}, (5:5)

&L (p) ={d € F," | p(N\o(x)) = Bo(x),x € Fp, ¢ is tracial on F,}.
(5.6)
It is possible that both £F(p) and EB}—(/)) are {0}. Recall that Fp : F, — D,
is the canonical expectation satisfying by Ep(S,aS})) = 6,,.,5,aS) for a € A
with p,v € B.(A), |u| = |v|. By composing it to a given linear functional
Y e Sg(p) on D,, ¢ extends to F,.
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LEMMA 5.3. Let f € C with |8] > 1. A (not necessarily positive) continu-
ous linear functional ¢ € Sg(p) on D, uniquely extends to F, as a tracial
continuous linear functional ¢ = ¢ o Ep such that

o(S,xS)) = 5#7VW¢(:CS;LSV>’ x € Fp, v € Bo(A) with |p| = |1/|( |
5.7

Hence the sets Eé)(p) and Eg'-(p) bijectively correspond to each other.

Proof. For ¢ € Eﬂp(p), as in the proof of Lemma 4.3 (i) = (ii), the equality
N 1
p(Suas;) = W‘P(apu(l))’ a€ A ue B, (A)
holds so that

1 .
0(5,057) = 8 irelop(1)). 0 € A v € Bu(A) with | = o]

By Lemma 4.3 (iii) = (i), ¢ belongs to Eﬁ}—(p). O
Recall that F, : O, — (9,3’3 = F, denotes the conditional expectation defined
by (2.3).

PROPOSITION 5.4. For any tracial continuous linear functional ¢ € Eg(p), the
composition ¥ = ¢ o E, is a continuous linear functional on O, which satisfies
KMS condition at LogfB for gauge action p of T.

Proof. Let P, be the dense x-subalgebra of O, generated algebraically by
Sa,a € ¥ and a € A. It is clear that for each element x € P, the func-
tiont € T = R/27R — p:(x) € O, extends to an entire analytic function on
C. Put ¢ = ¢o E,. We will show that the equality (5.2) holds for ). Elements
x,y € P, can be expanded as finite linear combinations

:I::Z:E_usfﬁ-i-iﬁo-i-zsuiﬂm Y= Zy—uS;‘FyO‘i‘ZSuyu (
5.8)

for some x_,, xo, Xy, Y—v, Yo, Y € fpalg. As ) is a tracial linear functional on
Fp, it suffices to check the equality (5.2) for the following two cases

(1) x=Sux,, y=y-.S}, (2) z=2_4S,, Y=5uyu
Case (1):
¢(yﬁi10gr(x)) = d’(yfvsziei‘y“ogrsuzu)
1 v *
= W"/’(ell ‘Gxuy—ususu)
= w(e“V\@S’quy_VSlt)
= (po(2)y).
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Case (2):
w(yﬁz logr(x)) = w(suyue‘“‘ long—uS;)
rlel .
= W¢(yux—ususu)
= 7/’(67“#‘%*#‘8;;5#9#)
= Y(po(2)y).
This completes the proof. O

Conversely we have

LEMMA 5.5. If a continuous linear functional ¢ on O, satisfies KMS condition
at Logf for some B € C with |B| > 1, then the restriction ¢ = Y|, to F,
belongs to Eﬁ}—(p) and satisfies the equality ¢ = ¢ o E,.

Proof. Let B = re'® with r > 1. For any z € F,, u € B.(A), we see
1 1 1
$(8u8) = ) = S (S upitone(a-0(e) = ()

so that ¢(S,z) = 0 because 3] > 1. We similarly have ¢)(xS};) = 0. Since
any element of P, can be expanded as in (5.8), we get ¥(y) = ¢ o E,(y) for
y € P,. We will next show that ¢ belongs to SB}-(p). For z,y € F,, one sees
Pitogr(z) = p_o(x) = x so that Y(yx) = ¥(zy). Hence ¢ gives rise to a tracial
linear functional ¢ on F,. By KMS condition, we get for any « € F,, u € B,(A),

* % A ~ 1 *
P(Su - 25y) = (xS, pirogr(P—0(Su)) = WWSHSH)-
Thus by Lemma 4.3, we know ¢ € Eg'-(p). O

We set for 3 € C with |3] > 1,
KMS5(0,)
={¢ € O," | ¢ satisfies KMS condition at Logf for gauge action}
and
Sp(p) ={B € C|pol, =Py for some ¢ € A" with ¢ # 0}.
By Proposition 5.4 and Lemma 5.5, we have

PROPOSITION 5.6. Let (A, p,X) be an irreducible C*-symbolic dynamical sys-
tem. Assume that (A, p,X) is power-bounded. Let 8 € C be a complex number
with |8 > 1. If |B| = r, and B € Sp(p), we have KMSz(0,) # {0}. If in
particular, (A, p,X) is mean ergodic, KM Sg(O,) # {0} if and only if |B| =1,
and B € Sp(p).

Proof. Under the assumption that (A, p, ) is power-bounded, any continuous
linear functional ¢ € £z(p) on A can uniquely extend to a continuous linear
functional ¢ on D,, that belongs to Sﬂp(p) if |8| = r,. By Proposition 5.4,
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poEp e Eg- (p) has an extension on O, as a continuous linear functional that
satisfies KMS condition at Logf.

Conversely, the restriction of a continuous linear functional KM Sz(0,) to the
subalgebra A yields a nonzero element of £g(p) which has continuous extension
to D,. If in particular, (A, p,X) is mean ergodic, |5] must be r, by Theorem

4.9.

O

Therefore we conclude

THEOREM 5.7. Let (A, p,X) be an irreducible C*-symbolic dynamical system.
Let 5 € C be a complex number with |B| =r, > 1.

(i)

Suppose that (A, p,X) is power-bounded. Then there exist linear iso-
morphisms among the four spaces E3(p), Sg(p), Eg-(p) and KM Sg(O,)
through the correspondences ¢ € Eg(p), ¢ € Eg?(p), poFEp € Eﬁf(p),
poFEpoE, € KMSg(O,) respectively. In particular, there exists a
bijective correspondence between the set Eg(p) of eigenvectors of Ay, for
eigenvalue 3 consisting of continuous linear functionals on A and the
set KM Sg(O,) of continuous linear functionals on O, satisfying KMS
condition at Logf3.

Suppose that (A, p,X) is mean ergodic. Then the dimension
dim KM S3(O,) of the space of continuous linear functionals on
O, satisfying KMS condition at Logf is one if there exists a nonzero
eigenvector of A, on A* for the eigenvalue B. In particular there
uniquely exists a faithful KMS state on O, at logr,.

The following corollary is a generalization of [9, Theorem 6].

COROLLARY 5.8. Suppose that A is an irreducible matriz with entries in {0,1}
with its period pa. Let B be a complex number with |3] > 1.

(i)

(i)
(iii)

There exists a nonzero continuous linear functional on the Cuntz-
Krieger algebra O 4 satisfying KMS condition for gauge action at LogB
if and only if B is a pa-th root of the Perron-Frobenius eigenvalue r4
of A.

The space of admitted continuous linear functionals on O4 satisfying
KMS condition for gauge action at LogB is of one-dimensional.

If in particular 8 = ra, the space of admitted continuous linear func-
tionals on O4 satisfying KMS condition for gauge action at logra is
the scalar multiples of a unique KMS state.

6. KMS STATES AND INVARIANT MEASURES

In this section, we will study a relationship between KMS states on O, and
invariant measures on D, under ¢,. In what follows we assume that (A, p, ¥)
is irreducible and fix a faithful invariant state 7 on A.
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We denote by |jal|z the L2-norm 7(a*a)? for a € A, and by H, the completion
of A by the norm || - ||2. By the inequalities for n € N, a € A

T (a)" () < N lIr(Ap(a*a)) = (A7 llrpr(a*a) < A1 [lall3,

the operators T\, n € N induce bounded linear operators on H,. The induced
operators on -, which we also denote by T}, n € N, are uniformly bounded in
the operator norm on H., if (A, p, X)) is power-bonded. We provide the follow-
ing lemma, which shows power-boundedness of (A, p,¥) induces an ordinary
mean ergodicity on H., is a direct consequence from [22, p.73,Theorem 1.2].
We give a proof for the sake of completeness.

LEMMA 6.1. Suppose that (A, p,X) is irreducible and power-bounded. Then
L I+ T+ T4+ Ty
im

n—00 n

converges to an idempotent P, on H, under strong operator topology in B(H).
The subspace P,H, consists of the vectors of H, fized under T,.

Proof. The mean operators M,,,n € N on A defined by (3.1) naturally act on
H,. Since (A,p,3) is power-bounded, there exists a positive number ¢ > 0
such that ||T7'[| < c for all n € N. As [|M,]| < 1+ ¢,n € N, the sequence
Myv € H.,n € N for a vector v € H, has a cluster point vy under the weak
topology of H,. The identites

1 n
I-T,)M,=M,I-1T,) = E(I =T7)
imply the inequalites
1 " 1
I = Tp)Mu|l = [ Ma(I = Tp)ll = |l =T < —(1+c). (6.2)

Hence we have T),vg = vg. Put

1 n—
Qn= AT+ T) + I+ T+ T) -+ (I + Tyt + T2}

Then we have v — Myv = (I — T,)Qnv,n € N. Hence v — vy belongs to the
weak closure /K, of the subspace (I —T,)H.. The weak closure IC; is also the
norm closure of the subspace (I —T,)H.. For w € K, take w; € (I —T,)H,
such that [[w — wj|l2 = 0 and w; = (I —T,)x; for some z; € H,. We then
have by (6.2)

[Mpwllz < [[Mnl[llw = wjllo + [|Ma(I = T,)a;l|
1
< (A +oflw—wjll2 + ~ (1 + )22

so that lim,,— o ||Mpw||2 = 0. Since M,v — vg = M, (v — vp) and v — vy € K7,
one has

lim ||M,v —vo|2 = 0.
n—oo
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Put P,v = vg. The inequality
1
1Mnv = TpMyvll2 = |(I = Tp) Muvllz < — (1 +c)llv]l2

implies that P, = T, P, that is equal to P,T),. Therefore P, = M, P, = P,M,
and hence P, = P7. O

REMARK. Under the same assumption above, one may prove that the limit
lim (r — r,)R(r)
T,
for the resolvent R(r) = (r — \,)~! with r > r, converges to the idempotent
P, on M, under strong operator topology in B(H,). Hence the equality
1+T,+ T2+ +T0!
lim(r —r,)R(r) = lim L_—»r L (6.3)

rlr, n—o00 n

holds. We will give a proof of the equality (6.3). It is enough to consider
the limit lim, 0 = R(r, + L) instead of lim,,, (r — r,)R(r). As in the above
proof, there exists ¢ > 0 such that HTf(a)Hg < c|la|lz for a € A,k € N. Put
Ry = LR(r,+1). Since for y € A

oo
=2 o T kﬂ

iz (
one has
ok
I1R(rp + y||2 < Z 175 () % < nellylls
and hence ||R,|| < ¢ for n € N. The identites
11
(I-T,)R,=R,(I-T,)=—-—(R,—1)
nry

hold so that we have
11
(I =T,)Rul = [[Ra(I = Tp)[| < ——(1+0¢).
nr,

A similar argument to the proof of Lemma 6.1 works so that for u € H. by
taking a cluster point ug of the sequence R, u,n € N under the weak topology
of H, we have

lim ||Rnu — UOHQ =0.

Put P u = ug. The inequality |R,u—T,Ryul2 < Rﬁ(l +¢)||u||2 implies that
Pp = TpPp that is equal to Ppr. Hence Pp = Ran and Pp = Pf?. The equality
P, =T,P, implies P, = M, P, for all n € N so that P, = P,P,. Similarly the
equalities P, = T,P, and R, = > ;7 T* W imply P, = R, P, for all

n € N so that P, = PP AsPP—PP one has P, = P
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We denote by ||al|1 the L'-norm 7(|a|) of a € A, and by L' (A, 7) the completion
of A by the norm || - ||;. The positive operators A,, T, : A — A and the state
7: A — C extend to L'(A,7) in natural way, that are also denoted by Ao T,
and 7 respectively.

LEMMA 6.2. Suppose that (A, p,X) is uniquely ergodic and power-bounded.
Then for a € A the limit lim,,_,o, M, (a) converges in L*(A,7) under || - ||1-
topology. In particular lim, o M, (1) = z, ezists in L' (A, 7) and satisfies the
equalities

T(x,) =1 and lim My(a) =7(a)z, fora € A. (6.4)

n—oo

Proof. Since (A, p,X) is irreducible and power-bounded, lim, . M,(a) for
a € A converges in H, = L?(A,7) under || - |>-norm by the previous lemma.
By the inequality

[My(a) = Mim(a)lly < [[Mn(a) = Mm(a)l2,  acA

the limit lim,,_, o M, (a) exists in L'(A,7) under || - ||;-norm. We denote it by
@1(a). Hence z, = ®1(1). We will show that 7(f(Pi(a) — 7(a)x,)) = 0 for
[ € A. Tt suffices to show that 7(b®1(a)b*) = 7(a)7(bx,b*) for b € A. One may
assume that a¢ > 0. The inequality ¢ < ||a||1 and hence M, (a) < |la||M,(1)
implies b®1(a)b* < |la||bz,b* so that we have 0 < 7(b®1(a)b*) < ||a|T(bx,b*).
Hence 7(bz,b*) = 0 implies 7(b®1(a)b*) = 0. We may assume that 7(bz,b*) #
0. Put w(a) = %,a € A As &1 0T, (a) = P1(a), one sees that w is
an invariant state on A. Hence we have w = 7 by the unique ergodicity of
(A, p, X). Therefore we have 7(b®1(a)b*) = 7(a)7(bx,b*) for b € A.

The equality 7(z,) = 1 is clear. O

LEMMA 6.3. Keep the above assumptions and notations. The limit
limy, 00 My (f) for f € LY(A,7) converges in L'(A, 1) under || - ||1-topology
and satisfies the equality

lim M, (f)=7(f)z, for f € L'(A, 7).

n—oo

Proof. Since for f € L'(A,7) the inequality |A,(f)| < A,(|f]) holds, one has
ITo(N)] < T,(1f]) and hence [|Mn(f)[1 < [[f[l1. Take ay € A such as |[f —
a|lt = 0 as k — oo. It then follows that
M (f) = 7(f)2plly

SIMp(f) = Ma(ar)lls + [Mn(ar) = m(ar)zoll + [[7(ar)z, — 7(f)2plla

<N = arll + [[Mn(ar) = 7(ar)zpll + [7(ar) = 7(FHll|2pll1,
and hence lim,, o0 || M, (f) — 7(f)z,|l1 = 0 by the preceding lemma. O
PROPOSITION 6.4. Keep the above assumptions and notations. If f € L*(A, 1)

satisfies T,(f) = f and 7(f) =1, Then f = x,. Namely the space of the fized
elements in L*(A,7) under T, is one-dimensional.
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Proof. By the preceding lemma, we have for f € L'(A,7) lim, oo Mp(f)
7(f)z, in || - ||1-topology. By the condition T,(f) = f, we have M,(f) =

f
with 7(f) =1 and hence f = z,. O

Let us define the space L'(D,,7) in a similar way to L'(A, 7). The operators
Mo, T, : D, — D, and the state 7 : D, — C naturally act on L'(D,, 7). The
inclusion relation A C D, induces the inclusion relation L'(A,7) C L*(D,, 7).

LEMMA 6.5. Keep the above assumptions and notations. Let x be an element
of LY(D,,7) such that T,(z) = x. Then x belongs to L*(A,T).

Proof. Take x,, € D, such that ||z, — || — 0 as n — co. As |[A,(y)| <
Ao(ly]),y € D,, it then follows that
Ap(@n) = Ap(@)ll1 = T(IAp(2n = 2)]) TN (|20 — 2[) = rpll2n — 21
so that [|T,(xyn) — Tp(z)|1 < ||zn — x[/1. The element z is fixed by T}, so that
||T,f(xn)—x||1 < ||z — 2|1, neN, kecN.

Since x,, € D,™&, there exists k,, € N such that Tk (x,) € A. Hence z belongs
to LY(A, ). O

DEFINITION. A state p on D, is called a ¢,-invariant measure if it satisfies

wy) = w(op(y),  y €D,

If the probability measure for a state 1 on D, is absolutely continuous with
respect to the probability measure for the state 7 on D,, we write it as y < 7.

PROPOSITION 6.6. Assume that (A, p,X) is irreducible and uniquely ergodic.
For a fized positive element x € L'(A,7) by T, satisfying 7(z) = 1, the state
ta on D, defined by

pa(y) = 7(yx), yeD,

is a ¢p-invariant measure on D, such that p < 7. Conversely, for any ¢,-
invariant measure j1 on D, such that i < 7, there exists a fived positive element
x, € LY(A,7) by T, satisfying 7(x,) = 1 such that

w(y) = 7(yL), y €D,.

Proof. Let x € L*(A,T) be a fixed positive element by T, satisfying 7(z) = 1.
As \,(z) = rpz, it follows that from Lemma 4.7

1o (6 (1)) = %T@p(aﬁp(ym) - %T@Ap(x)) —ue(y).  yeD,

so that the state p, is a ¢,-invariant measure on D, such that u, < 7. Con-
versely for a ¢,-invariant measure p on D, such that 1 < 7, there exists a
Radon-Nikodym derivative x,, € L*(D,, 7) such that z, > 0,7(z,) = 1 and

wy) =71(yz.),  y €D,
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By the equality 7(¢,(y)z.) = 7(yT,(z4)),y € D,, one sees that 7(yz,) =
T(yTp(zy)), y € D, so that T,(z,) = x,, T — a.e. Hence x, is regarded as an
element of L'(A, 7) by the preceding lemma. This completes the proof. O

Especially the measure 1, defined by 1, (y) = 7(yx,), y € D, is a ¢,-invariant
measure on D, such that u, < 7.
Therefore we have

THEOREM 6.7. Assume that (A, p,X) is irreducible, uniquely ergodic and
power-bounded. Then a ¢,-invariant measure on D, absolutely continuous with
respect to T is unique and is of the form

oY) = 7(yz,), y €D,. (6.5)

The measure p, s faithful, and ergodic in the sense that the formula

n—1
nlggo o Z NP(¢I,§ ()x) = pp(y)pp(z), z,y € D,
k=0

holds.

Proof. Let p1 be a ¢,-invariant measure on D,. By the preceding proposition
there exists a fixed positive element z,, € L' (A, ) under T), satisfying 7(x,) =
1 such that

n(y) =(yzu), Yy €Dy
By Proposition 6.4 we have x, = z,. For z,y € D,, the equality
)‘]; ((b]; (y)xxp) = y)‘]; (-Txp)
holds by Lemma 4.7 so that

1 n—1 1 n—1
=D mplbpw)a) = = > 7(d)(y)az,)
k=0 k=0
11
) Dea CH M EZPY)
n ey
n—1
1
== 2 %T(y)\p (zzp))
= 7(yM,(vz,))
Since
-l = nlggo Mp(zz),) = T(22p)T) = p1p(T)T),
we have

n—1

T 37 0, (0h()) = Tty (2)5,) = s () ().
k=0

COROLLARY 6.8. Assume that (A, p,X) is irreducible and mean ergodic.
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(i) The unique ¢,-invariant probability measure absolutely continuous with
respect to T is obtained by u,(y) = T(yx,),y € D,, where T is the
restriction of the unique KMS state on O, and x, is a positive element
of A defined by the limit of the mean lim,_, %(1 +T,(1) + -+
Tr1(1)).

(ii) The state p, is equivalent to the state T as a measure on D,.

Proof. (i) Under the assumption that (A, p,¥) is irreducible. Mean ergodicity
implies unique ergodicity and (FP), which implies power-boundedness. There-
fore the assertion is immediate.

(ii) By the mean ergodicity, the fixed element z, belongs to A and is strictly
positive by Lemma 3.5 (ii). Hence we have 7(y) = p,(yz,"'),y € D, so that
T < pp. ]

7. EXAMPLES

We will present examples of continuous linear functionals satisfying KMS con-
ditions on some C*-symbolic dynamical systems.

1. FINITE DIRECTED GRAPHS

Let A = [A(¢,7)]ij=1,..,~v be an N x N matrix with entries in nonnegative
integers. Denote by G4 = (Va, E4) the associated finite directed graph with
vertex set V = {vy,...,un} and edge set E4. Let O 42 be the Cuntz-Krieger
algebra such that the generating partial isometries S.,e € E4 indexed by the
edges in G 4 satisfy

S SpSi=1,  8:S.= Y APl(e,f)S;S;,  ec Ea,

fEEA fEEA

where All(e, f) is defined to be one if the edge f follows the edge e, other-
wise zero. Put Ag, the C*-subalgebra of O 412 generated by the projections
S*S.,e € Ea. Denote by p2 for e € E4 the endomorphism Ag, defined
by pt(a) = SfaS.,a € Ag,. Consider the C*-symbolic dynamical system
(Ag..,p?, Ea). Tts associated C*-algebra 0,4 is nothing but the Cuntz-Krieger
algebra O ,4p2;. The finite directed graphs G4 is naturally considered to be a
finite labeled graph by regarding an edge itself as its label. Hence this example
will be contained in the following examples.

2. FINITE LABELED GRAPHS

Let G = (G, \) be a left-resolving finite labeled graph over ¥ with underlying
finite directed graph G = (V, E) and labeling map A\ : E — 3. Suppose
that the graph G is irreducible. Let {v1,...,un} be the vertex set V. As
in Section 2, we have a C*-symbolic dynamical system (Ag, p9, %) such that
Ag = CE & &CEy and p§(E;) = Y1 A9(i, 0, j)Ej fori=1,... . N,a €
3, where the N x N-matrix [A9 (i, , j)]; j=1,.. n for a € ¥ is defined by (2.1).
Put Ag(i,j) = ¥ ,ex A9(i,a,j) for i,j = 1,...,N. Then the matrix Ag =
[Ag (i, j)]Y;=; is irreducible. Let rg denote the Perron-Frobenius eigenvalue of
the matrix Ag. It is easy to see that rg is equal to the spectral radius r,¢ of
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the positive operator \ye (z) =Y o5, pS(2), x € Ag. As
N
Mo (Ei) =Y Ag(i,j)E;,  i=1,...,N,
j=1

by identifying x = vazl z;E; € Ag with the vector [z;]¥, € CV, one may
regard the operator A,¢ as the transposed matrix Atg of Ag. For a complex
number 3 € C with [3] > 1, let ¢ € A be a continuous linear functional
belonging to £(pY). The equality ¢ o A ¢ (E;) = Bp(E;) implies

N
> Ag(i g)p(Ey) = Be(Ei),  i=1,....N
j=1

so that the vector [¢(E; )]j\fz1 is an eigenvector of Ag for eigenvalue 5. Con-
versely an eigenvector [u;]Y; € C of the matrix Ag for an eigenvalue 3 gives rise
to a continuous linear functional ¢ on Ag by setting p(F;) = u;,i =1,...,N
so that ¢ € £5(pY). Hence the space E5(pY) is identified with the eigenvector
space of the matrix Ag for eigenvalue . Especially a faithful invariant state 7
on Ag is the positive normalized eigenvector of Ag for eigenvalue rg. Similarly
an element © = Zjvzl z;E; € Ag is fixed by T)e if and only if the vector [;],
is an eigenvector of Atg for the eigenvalue rg. The ordinary Perron-Frobenius
theorem for nonnegative matrices asserts that (Ag, p9, %) is mean ergodic if
Ag is irreducible. The following proposition comes from the ordinary Perron-
Frobenius theorem for irreducible nonnegative matrices, which is a special case
of Theorem 3.13, and Corollary 6.8.

PROPOSITION 7.1. Suppose that the adjacency matriz Ag = [Ag(i,j)]fyjzl 18
irreducible. Let [1;]N. and [x;]Y, be right and left Perron eigenvector of Ag
respectively, that is,

Ag [Ti]zj'vzl =Tg [Ti]z]'V:h Atg [xz]ivﬂ =Tg [zi]zj'vzlv

such that Efil 7 =1 and Eivzl Tix; = 1. Put 2,6 = Zfil B € Ag and
T(a) = Zf;l Tia; for a = Zfil a;E; € Ag. Then 7 is a unique faithful invari-
ant state on Ag such that the following equalities hold:

n—oo

—1
. N S P
lim M, (a) = nl;rrgo - Z Tyo(a) =1(a)zps-
k=0
Furthermore the measure pi,6 on D,s defined p,o(y) = 7(yx,9) for y € Do is
a unique g -invariant measure equivalent to the measure T on D,g.

REMARK. Let Xg be the right one-sided sofic shift presented by G. The
commutative C*-algebra C(Xg) on Xg is naturally regarded as a C*-subalgebra
of D,¢ through the correspondence

Xv € C(Xg) — SVS: S ng, IS Bk(Ag)
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where x, is the characteristic function for the cylinder
Uy ={(zi)ien € Xg |21 =11, ;v = a1}

The restriction of the ¢,g-invariant measure p,6 on D,¢ to the subalgebra
C(Xg) is nothing but a shift-invariant measure on Xg (cf. [21]).

We will next find continuous linear functionals on O,¢ satisfying KMS con-
ditions in concrete way. Now suppose that the irreducible matrix Ag has its
period pg and put

Ng(i,j) = {7’L €Z, | Ag(%]) > O}

It is well-known that for n,m € Ng(i,j) one has n = m (mod pg). Then for

an eigenvalue 3 € C of Ag with |3] = rg, % is a pg-th root of unity. We fix a

vertex v1 and for k € {1,2,..., N} take ng € Ng(1,k). We set

U = (ﬁ
rg

Then uy does not depend on the choice of ny as long as ng € Ng(1, k).

)" 7(E).

LEMMA 7.2. Y Ag(i,j)u; = Bu;, i=1,...,N.

Proof. If Ag(i,j) # 0, one sees n; + 1 € N(1, ) so that

Al 3y = 2= (2)™ Agli.J)7(E)) = i Agli.)e(E)).
It follows that
N 5w
ZAg i,j)u rg T Z = ET(éi)TgT(Ei) = Pu,.

O

Hence u = [uy]_; yields a nonzero eigenvector of Ag. Define a nonzero con-
tinuous linear functional ¢ on Ag by setting
o(Ey) = ug, k=1,...,N

so that the equality ¢ o A\g = Sy on Ag holds. Put v, = vazl ﬁEZ € Ag.

It is easy to see that v, is a partial isometry such that p(E;) = 7(Ejv,),j =
1,..., N so that

o(z) = 7(zvy), x € Ag

holds. Therefore we have the following proposition.

PROPOSITION 7.3. Let G = (G, \) be a left-resolving finite labeled graph with
underlying finite directed graph G = (V, E) and labeling map A : E — X. De-

note by {v1,...,vn} the vertex set V.. Assume that G is irreducible. Consider
the N-dimensional commutative C*-algebra Ag = CE1@---®CEN where each
minimal projection E; corresponds to the vertex v; fori=1,...,N. Define an
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N x N- nonnegative matriz Ag = [Ag(i,j)]fszl by Ag(i,7) = D aex AY(i,a, 7)
where fora € ¥ and i,5=1,...,N

A9 (i ) 1 if there exists an edge e from v; to v; with A(e) = «,
Z’ a’ = .
J 0  otherwise.

Let Oy, be the associated Cuntz-Krieger algebra and 7 be the unique KMS state
on Oa, for gauge action. Let € C be an eigenvalue of Ag such that |B| = rg
the Perron-Frobenius eigenvalue of the matrix Ag. Then a continuous linear
functional on O4, satisfying KMS condition at Logf is a scalar multiple of
¢ € Oy, giving by fork=1,....N

o(Eg) = (%)”’“T(Ek) where ny, satisfies Ag*(1,k) # 0.

Consider a finite labeled graph G whose adjacency matrix A is

00110
00110
A=10 0 0 0 1
00001
1100 0
As
2 2 00 0
2 2 00 0
A=10 0 2 2 0],
002 40
0000 4

the period of the matrix is 3. The characteristic polynomial of A is det(t—A) =
t2(t3 — 4) so that Sp(A) = {\3/4_1, \S/Ze%”, \S/Zle%ﬂi,O} and r4 = /4. Hence
B € Sp(A) satisfying || = V/4 are

Therefore the Cuntz-Krieger algebra O 4 has three continuous linear functionals
satisfying KMS conditions for gauge action at inverse temperatures

1 1 27 . 1 4
3 log4, 3 log4 + 3h 3 log4 + 3
respectively.
3. DYCK SHIFTS
We consider the Dyck shift Dy for a fixed natural number N > 1 with alphabet
Y = X" UXt where ¥~ = {a,...,an, 2T = {B1,...,8~5}. The symbols

a;, B; correspond to the brackets (;, ); respectively. The Dyck inverse monoid
has the relations

0 otherwise

a;ff; = {1 ifi=Jj, (7.1)
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fori,j =1,...,N (cf. [23],[26]). A word w; ---wy of ¥ is admissible for Dy
precisely if Hnm:1 wm # 0. For a word w = wy - - -w, of 3, we denote by @ its
reduced form. Namely @ is a word of ¥ U {0, 1} obtained after the operations
(7.1). Hence a word w of ¥ is forbidden for Dy if and only if @ = 0.

In [26], an irreducible A-graph system presenting D called the Cantor horizon
A-graph system has been introduced. It is a minimal irreducible component of
the canonical A-graph system £¢(P~) and written as £C*(PN) | Let us describe
the Cantor horizon A-graph system £C(P~) of Dy . Let ¥y be the full N-shift
{1,...,N}%2. We denote by B;(Dy) and B;(Xy) the set of admissible words
of length [ of Dy and that of ¥ respectively. The vertices V; of LOMDN) ot
level [ are given by the words of length [ consisting of the symbols of ¥*. That
is,

Vi={(Bu, - Bu) € BUDN) | p1 -+ pu € Bi(Sn)}-

Hence the cardinal number of V; is N!. The mapping «(= 1) Vigr = Vi
deletes the rightmost symbol of a word in B;(Xy) such as

L((BMI : ”ﬁﬂl+1)) = (ﬁlh T 'ﬁuz)’ (BNI : "ﬁHHl) € W-ﬁ-l'

There exists an edge labeled ¢ from (8., - -+ Bu,) € Vi t0 (BuoBuy -+ Bu) € Vigr
precisely if 110 = j, and there exists an edge labeled ; from (8;8u, - -~ Bu,_,) €
Vi to (Buy =+ Buis) € Vig1. The resulting labeled Bratteli diagram with -map
becomes a A-graph system over ¥, denoted by £(P~) that presents the Dyck
shift Dy ([26]). It gives rise to a purely infinite simple C*-algebra Ogcn(py)
([32]) such that

KO(OEC’h(DN)) ~Z/NZ®C(R2Z), Kl(OECh(DN) = 0.

Let us denote by (AP~ pP~ %) the C*-symbolic dynamical system associated
to the A-graph system £6(P~) as in Section 2. Since the vertex set V; is indexed
by the set B;(Xx) of words, the family of projections denoted by E,,, .., for
p1--p € Bi(Zn) in the C*-algebra APN forms the minimal projectins of
A; = C(V}) such that

N
Z By =1, By = Z By i

p1 i €BI(EN) Hi+1=1

As the algebra A, is embedded into A1, the C*-algebra AP~ is a commutative
AF-algebra generated by the subalgebras A;,l € N. The endomorphisms pfy) N
APN 5 APN for 4 € ¥ are defined by

N
Dy _ . DN . _
Paj (Bur o) = Ejp s Ps; (Ejpscqu) = E Ep . quia
Hispr+1=1
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for py ... € Bi(Xn) and j =1,...,N. It then follows that

N N
Aon (1) = D P2 (1) + e (1)

j=1
N N N
- Z Z Ej*“"'“l + Z Z Z Euz---qu
J=1 p1- €BI(EN) J=1 po- - €B1_1 (EN) Bi41,M1+2=1
=1+N
so that we have |[A oy || = [[A,px (1)[| = 1+ N. Hence we obtain
T,Dn =1+ N, TPDN(l):l.

This implies that 1 is a fixed element by 7,0 and hence (AP~ pPN33) satisfies
(FP). As in [32], (AP~ pP~ %) is irreducible and uniquely ergodic, so that
it is mean ergodic. One then sees that there exists a KMS state at inverse
temperature log 3 if and only if 3 = 14 N. The admitted KMS state is unique
([32, Theorem 1.2]).

4. [B-SHIFTS
Let 8 > 1 be an arbitrary real number. Take a natural number N with N —1 <
B <N.PutX=1{0,1,...,N — 1}. For a nonnegative real number ¢, we denote
by [t] the integer part of t. Let fg : [0,1] — [0, 1] be the mapping defined by
that is called the S-transformation ([38], [42]). The S-expansion of x € [0, 1] is
a sequence {d;(z, 8)}ien of integers of ¥ determined by

di(z,B) = [Bf @),  ieN.

By this sequence, we can write z as

i=1

We endow the infinite product ¥N with the product topology and the lex-
icographical order. Put (g = sup,¢jo,1)(di(¥, 8))ies~. We define the shift-

invariant compact subset Xg of =N by
X5 ={weXNol(w) <¢,i=0,1,2,..},

where o denotes the shift o((w;)ien) = (wit+1)ien. The one-sided subshift
(Xg,0) is called the right one-sided S-shift (cf. [38], [42]). Its (two-sided)
subshift

Ag = {(wi)iez € 5% | (wi—k)ien € Xp,k=0,1,2,...}

is called the f§-shift. In [17], the C*-algbera Op associated with the S-shift has
been introduced and studied. It is simple and purely infinite for every g > 1
and generated by N — 1 isometries Sy, S1,...,Sy—2 and one partial isometry
Sn—1 having certain operator relations (see [17]). The family O, 1 < 8 € R
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interpolates the Cuntz algebras O,, 1 < n € N. Denote by Ag the C*-
subalgebra of Op genertaed by the family of the projections S;;S,,, n € B.(Ag).
The algebra is commutative and is of infinite dimensional unless Ag is sofic,
where Ag is sofic if and only if the sequence (d;(1, 8))ien is ultimately periodic.
Define a family {pf}j:071,___7N_1 of endomorphisms on Ag by

pl(x) =SjxS;,  weAg, j=01,... .N—1

so that we have a C*-symbolic dynamical system (Ag, p?, ). Tt is direct to
see that the C*-algebra O,s is canonically isomorphic to the C*-algebra Og.
We set the positive operator A\g on Ag by

N—-1
Ao() =D pl(@), we A
3=0

LEMMA 7.4. The spectral radius rg of the positive operator Ag on Ag is 3.

Proof. Denote by 6}, the cardinal number of the admissible words By (Ag) of
length k. Then we have

NS = IAEDI < > 11S5Sull = 0.
HEBK(Ag)
Asin [44, p. 179], limy oo Z—’,z converges to a positive real number so that there

k
P51 < M for all k € N. Hence
limy— o0 H)\EH% < B so that rg < 8. As in [17], there exists a state 7 on Ag

satisfying 7 o Ag = B7. This implies § € Sp(Ag) so that rg = 5. O

exists a positive constant M > 0 such that

PROPOSITION 7.5. (Aﬁ,pﬁ,E) is irreducible, uniquely ergodic and power-
bounded.

Proof. Tt has been proved in [17] that there is no nontrivial ideal of Ag invariant
under Ag and there exists a unique state 7 on Ag satisfying ToAg = rg7. Hence
(Ag, p?, %) is irreducible, uniquely ergodic. As in the proof of the above lemma,

k
NI < M for all k € N. This
B

means that (Ag, p?, %) is power-bounded. (]

there exists a positive constant M > 0 such that

By the above proposition, one knows that (Ag, p?, %) satisfies the hypothesis
of Theorem 6.7 so that there uniquely exists a ¢,s-invariant measure on D5
absolutely continuous with respect to the restriction of the unique KMS-state
7 to D,s. We note that C(Xp) is a C*-subalgebra of D,s and the restriction
of ¢,s to C(Xp) comes from the shift transformation o. As in [17], the re-
striction of the KMS-state 7 to D,s corresponds to the Lebesgue measure on
[0,1] in translating the S-shift to the S-transformation. Hence the uniqueness
of the ¢, s-invariant measure on D,s absolutely continuous with respect to 7
exactly corresponds to the uniqueness of the invariant measure on [0, 1] un-
der the g-transformation absolutely continuous with respect to the Lebesgue
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measure studied in [14], [38] and [42]. In fact, the density function hg ap-
peared in [14], [38] and [42] of the invariant measure for the S-transformation
with respect to the Lebesgue measure is the element x,s realized as the mean

li 1 n—1 )‘Z(l) .
My o0 2 D kg 5 in Theorem 6.7.
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