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Abstract. An algebraic zip datum is a tuple Z = (G,P,Q, ϕ) con-
sisting of a reductive group G together with parabolic subgroups P
and Q and an isogeny ϕ : P/RuP → Q/RuQ. We study the action
of the group EZ :=

{

(p, q) ∈ P×Q
∣

∣ ϕ(πP (p)) = πQ(q)
}

on G given
by ((p, q), g) 7→ pgq−1. We define certain smooth EZ -invariant sub-
varieties of G, show that they define a stratification of G. We deter-
mine their dimensions and their closures and give a description of the
stabilizers of the EZ -action on G. We also generalize all results to
non-connected groups.

We show that for special choices of Z the algebraic quotient stack
[EZ\G] is isomorphic to [G\Z] or to [G\Z ′], where Z is a G-variety
studied by Lusztig and He in the theory of character sheaves on spher-
ical compactifications of G and where Z ′ has been defined by Moonen
and the second author in their classification of F -zips. In these cases
the EZ-invariant subvarieties correspond to the so-called “G-stable
pieces” of Z defined by Lusztig (resp. the G-orbits of Z ′).
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1 Introduction

1.1 Background

Let G be a connected reductive linear algebraic group over an algebraically
closed field k. Then G ×G acts on G via simultaneous left and right transla-
tion ((g1, g2), g) 7→ g1gg

−1
2 . In a series of papers, Lusztig ([Lus1], [Lus2]), He
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([He2], [He1], [He3]), and Springer ([Spr3]) studied a certain spherical G ×G-
equivariant smooth compactification Ḡ of G. For G semi-simple adjoint this
is the so-called wonderful compactification from [DCP]. In general the G×G-
orbits ZI ⊂ Ḡ are in natural bijection to the subsets I of the set of simple
reflections in the Weyl group of G. Lusztig and He defined and studied so-
called G-stable pieces in ZI , which are certain subvarieties that are invariant
under the diagonally embedded subgroup G ⊂ G × G. These G-stable pieces
play an important role in their study of character sheaves on Ḡ. Lusztig and
He also consider non-connected groups, corresponding to twisted group ac-
tions. Other generalizations of these varieties have been considered by Lu and
Yakimow ([LY2]). A further motivation to study G-stable pieces comes from
Poisson geometry: It was proved by Evens and Lu ([EL]), that for certain
Poisson structure, each G-orbit on ZI is a Poisson submanifold.

In [MW] Moonen and the second author studied the De Rham cohomology
H•

DR(X/k) of a smooth proper scheme X with degenerating Hodge spectral
sequence over an algebraically closed field k of positive characteristic. They
showed that H•

DR(X/k) carries the structure of a so-called F -zip, namely: it is
a finite-dimensional k-vector space together with two filtrations (the “Hodge”
and the “conjugate” filtration) and a Frobenius linear isomorphism between
the associated graded vector spaces (the “Cartier isomorphism”). They showed
that the isomorphism classes of F -zips of fixed dimension n and with fixed type
of Hodge filtration are in natural bijection with the orbits under G := GLn,k of
a variant Z ′

I of theG×G-orbit ZI studied by Lusztig. They studied the varieties
Z ′
I for arbitrary reductive groups G and determined the G-orbits in them as

analogues of the G-stable pieces in ZI . By specializing G to classical groups
they deduce from this a classification of F -zips with additional structure, e.g.,
with a non-degenerate symmetric or alternating form. They also consider non-
connected groups. Moreover, the automorphism group of an F -zip is isomorphic
to the stabilizer in G of any corresponding point in Z ′

I .

When X varies in a smooth family over a base S, its relative De Rham coho-
mology forms a family of F -zips over S. The set of points of S where the F -zip
lies in a given isomorphism class is a natural generalization of an Ekedahl-Oort
stratum in the Siegel moduli space. Information about the closure of such a
stratum corresponds to information about how the isomorphism class of an
F -zip can vary in a family, and that in turn is equivalent to determining which
G-orbits in Z ′

I are contained in the closure of a given G-orbit.

In each of these cases one is interested in the classification of the G-stable
pieces, the description of their closures, and the stabilizers of points in G. In
this article we give a uniform approach to these questions that generalizes all
the above situations.

1.2 Main results

The central definition in this article is the following:
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Definition 1.1. A connected algebraic zip datum is a tuple Z = (G,P,Q, ϕ)
consisting of a connected reductive linear algebraic group G over k together
with parabolic subgroups P and Q and an isogeny ϕ : P/RuP → Q/RuQ. The
group

EZ :=
{

(p, q) ∈ P×Q
∣

∣ ϕ(πP (p)) = πQ(q)
}

is called the zip group associated to Z. It acts on G through the map
((p, q), g) 7→ pgq−1. The union of the EZ -orbits of all elements of a subset
X ⊂ G is denoted by oZ(X).

Fix such data Z = (G,P,Q, ϕ). To apply the machinery of Weyl groups to Z we
choose a Borel subgroup B of G, a maximal torus T of B, and an element g of G
such that B ⊂ Q, gB ⊂ P , ϕ

(

πP (
gB)

)

= πQ(B), and ϕ
(

πP (
gT )

)

= πQ(T ). Let
W denote the Weyl group of G with respect to T , and S ⊂W the set of simple
reflections corresponding to B. Let I ⊂ S be the type of the parabolic P and
WI ⊂ W its Weyl group. Let IW be the set of all w ∈ W that have minimal
length in their coset WIw. To each w ∈ IW we associate the EZ -invariant
subset

Gw = oZ(gBẇB) (1.2)

and prove (Theorems 5.10, 5.11 and 5.14):

Theorem 1.3. The EZ -invariant subsets G
w form a pairwise disjoint decom-

position of G into locally closed smooth subvarieties. The dimension of Gw is
dimP + ℓ(w).

Next the isogeny ϕ induces an isomorphism of Coxeter system ψ : (WI , I)
∼
→

(WJ , J) (see (3.11) for its precise definition), where WJ ⊂ W and J ⊂ S are
the Weyl group and the type of the parablic subgroup Q. Let ≤ denote the
Bruhat order on W . We prove (Theorem 6.2):

Theorem 1.4. The closure of Gw is the union of Gw
′

for all w′ ∈ IW such
that there exists y ∈WI with yw′ψ(y)−1 ≤ w.

We call Z orbitally finite if the number of EZ -orbits in G is finite. We give
a necessary and sufficient criterion for this to happen (Proposition 7.1). In
particular it happens when the differential of ϕ at 1 vanishes, for instance if ϕ
is a Frobenius isogeny (Proposition 7.3). We prove (Theorem 7.5):

Theorem 1.5. If Z is orbitally finite, then each Gw is a single EZ -orbit, and
so the set {gẇ | w ∈ IW} is a set of representatives for the EZ -orbits in G.

One can also consider the EZ -orbit of gẇ for any element w ∈ W instead
of just those in IW . It is then natural to ask when two such orbits lie in
the same EZ -invariant piece Gw. (For orbitally finite Z this is equivalent
to asking when the orbits are equal.) We give an explicit description of this
equivalence relation on W that depends only on the subgroup WI and the
homomorphism ψ (Theorem 9.17). We prove that all equivalence classes have
the same cardinality #WI , although they are in general no cosets ofWI and we
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do not know a simple combinatorial description for them. It is intriguing that
we obtain analogous results for an abstract zip datum based on an arbitrary
finitely generated Coxeter group (Theorem 9.11) or even an arbitrary abstract
group (Theorem 9.6) in place of W .
Other results include information on point stabilizers and infinitesimal stabiliz-
ers (Section 8), the generalization of the main results to non-connected groups
(Section 10), a dual parametrization by a set W J in place of IW (Section 11)
and the relation with the varieties ZI studied by Lusztig and He and their
generalizations Z ′

I (Section 12).

1.3 Applications

Let us explain why this theory of algebraic zip data is a generalization of the
situations described in Subsection 1.1. In Section 12 we consider a connected
reductive algebraic group G over k, an isogeny ϕ : G→ G, a subset I of the set
of simple reflections associated to G, and an element x in the Weyl group of
G satisfying certain technical conditions. To such data we associate a certain
algebraic variety XI,ϕ,x with an action of G, a certain connected algebraic zip
datum Z with underlying group G, and morphisms

G
λ
←− G×G

ρ
−→ XI,ϕ,x (1.6)

In Theorem 12.8 we show that there is a closure preserving bijection between
the EZ -invariant subsets of A ⊂ G and the G-invariant subsets of B ⊂ XI,ϕ,x

given by λ−1(A) = ρ−1(B). We also prove that the stabilizer in EZ of g ∈ G
is isomorphic to the stabilizer in G of any point of the G-orbits in XI,ϕ,x

corresponding to the orbit of g. These results can also be phrased in the
language of algebraic stacks, see Theorem 12.7.

In the special case ϕ = idG the above XI,ϕ,x is the variety ZI defined by
Lusztig. In Theorem 12.19 we verify that the subsetsGw ⊂ G correspond to the
G-stable pieces defined by him. Thus Theorem 1.4 translates to a description
of the closure relation between these G-stable pieces, which had been proved
before by He [He2].

If char(k) is positive and ϕ is the Frobenius isogeny associated to a model of
G over a finite field, the above XI,ϕ,x is the variety Z ′

I defined by Moonen
and the second author. In this case the zip datum Z is orbitally finite, and so
we obtain the main classification result for the G-orbits in Z ′

I from [MW], the
closure relation between these G-orbits, and the description of the stabilizers in
G of points in Z ′

I . In this case the closure relation had been determined in the
unpublished note [Wed], the ideas of which are reused in the present article.
Meanwhile Viehmann [Vie] has given a different proof of the closure relation in
this case using the theory of loop groups. For those cases which pertain to the
study of modulo p reductions of F -crystals with additional structure that show
up in the study of special fibers of good integral models of Shimura varieties of
Hodge type Moonen ([Moo]) and, more generally, Vasiu ([Vas]) have obtained

Documenta Mathematica 16 (2011) 253–300



Algebraic Zip Data 257

similar classification results. In these cases Vasiu (loc. cit.) has also shown
that the connected component of the stabilizers are unipotent.

For G = GLn (resp. a classical group) we therefore obtain a new proof of the
classification of F -zips (resp. of F -zips with additional structure) from [MW].
We can also deduce how F -zips (possibly with additional structure) behave
in families, and can describe their automorphism groups as the stabilizers in
EZ of the corresponding points of G. This is applied in [VW] to the study of
Ekedahl-Oort strata for Shimura varieties of PEL type.

1.4 Contents of the paper

In Section 2 we collect some results on algebraic groups and Coxeter systems
that are used in the sequel. Algebraic zip data Z are defined in Section 3,
where we also establish basic properties of the triple (B, T, g), called a frame
of Z.

Section 4 is based on the observation that every EZ -orbit is contained in the
double coset PgẋQ for some x ∈ W and meets the subset gẋM , where M is
a Levi subgroup of Q. In it we define another zip datum Zẋ with underlying
reductive group M and establish a number of results relating the EZ -orbits in
PgẋQ to the EZẋ

-orbits in M . This is the main induction step used in most
of our results.

In Section 5 we give different descriptions of the EZ -invariant subsets G
w for

w ∈ IW and prove Theorem 1.3. In Section 6 we determine the closure of
Gw and prove Theorem 1.4. Orbitally finite zip data are studied in Section 7,
proving Theorem 1.5. Section 8 contains some results on point stabilizers and
infinitesmial stabilizers. Abstract zip data are defined and studied in Section 9.
In Section 10 our main results are generalized to algebraic zip data based on
non-connected groups.

In Section 11 we discuss a dual parametrization of the subsets Gw by a subset
W J of W in place of IW . Finally, in Section 12 we prove the results described
in Subsection 1.3 above.

The paper is based on parts of the unpublished note [Wed] by the second author
and the master thesis [Zie] by the third author, but goes beyond both.

After the referee pointed out to us the references [LY1] and [He3], we became
aware that there Lu, Yakimov and He study a class of group actions which
contains ours when ϕ is an isomorphism. In this case, Theorems 1.3 and 1.4
were already proven in [loc. cit]. Also, many of the ideas we have used to study
the decomposition of G into EZ -stable pieces are already present there.

Acknowledgements. We thank the referee for pointing out some references.
The second author was partially supported by the SPP 1388 “Representation
theory” of the DFG.
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2 Preliminaries on algebraic groups and Coxeter groups

Throughout, the inner automorphism associated to an element h of a group G
will be denoted int(h) : G→ G, g 7→ hg := hgh−1. Similarly, for any subset
X ⊂ G we set hX := hXh−1.

2.1 General facts about linear algebraic groups

Throughout, we use the language of algebraic varieties over a fixed algebraically
closed field k. By an algebraic group G we always mean a linear algebraic group
over k. We let RuG denote the unipotent radical of the identity component
of G and πG : G։ G/RuG the canonical projection. An isogeny between two
connected algebraic groups is a surjective homomorphism with finite kernel.
Consider an algebraic group G, an algebraic subgroup H of G, and a quasi-
projective variety X with a left action of H . Then we denote by G ×H X the
quotient of G×X under the left action of H defined by h · (g, x) = (gh−1, h ·x),
which exists by [Ser], Section 3.2. The action ofG onG×X by left multplication
on the first factor induces a left action of G on G×H X . This is the pushout
of X with respect to the inclusion H →֒ G.

Lemma 2.1. For G, H, and X as above, the morphism X → G ×H X which
sends x ∈ X to the class of (1, x) induces a closure-preserving bijection between
the H-invariant subsets of X and the G-invariant subsets of G×HX. If Y ⊂ X
is an H-invariant subvariety of X, then the corresponding G-invariant subset
of G×H X is the subvariety G×H Y of G×H X.

Proof. The morphism in question is the composite of the inclusion i : X →
G×X , x 7→ (1, x) and the projection pr : G×X → G×HX . Let (g, h) ∈ G×H
act on G × X from the left by (g′, x) 7→ (gg′h−1, h · x). Then the G × H-
invariant subsets of G×X are the sets of the form G×A for H-invariant subsets
A ⊂ X . Therefore i induces a closure-preserving bijection between the H-
invariant subsets of X and the G×H-invariant subsets of G×X . Furthermore,
since G×H X carries the quotient topology with respect to pr, the morphism
pr induces a closure-preserving bijection between the G×H-invariant subsets
of G×X and the G-invariant of G×HX . Altogether this proves the claim.

Lemma 2.2 (see [Slo], Lemma 3.7.4). Let G be an algebraic group with an
algebraic subgroup H. Let X be a variety with a left action of G. Let f : X →
G/H be a G-equivariant morphism, and let Y ⊂ X be the fiber f−1(H). Then
Y is stabilized by H, and the map G×H Y → X sending the equivalence class
of (g, y) to g · y defines an isomorphism of G-varieties.

Lemma 2.3. Let G be an algebraic group acting on an algebraic variety Z and
let P ⊂ G be an algebraic subgroup such that G/P is proper. Then for any
P -invariant subvariety Y ⊂ Z one has

G · Y = G · Y .
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Proof. Clearly we have

G · Y ⊂ G · Y ⊂ G · Y

and therefore it suffices to show that G·Y is closed in Z. The action π : G×Z →
Z of G on Z induces a morphism π̄ : G×P Z → Z which can be written as the
composition

G×P Z
∼
−→ G/P × Z −→ Z.

Here the first morphism is the isomorphism given by [g, z] 7→ (gP, g · z) and
the second morphism is the projection. As G/P is proper, we deduce that the
morphism π̄ is closed. Now Y is P -invariant and therefore G×P Y is defined,
and it is a closed subscheme of G×P Z. Therefore π̄(G×P Y ) = G ·Y is closed
in Z.

The following statements concern images under twisted conjugation:

Theorem 2.4 (Lang-Steinberg, see [Ste], Theorem 10.1). Let G be a connected
algebraic group and ϕ : G → G an isogeny with only a finite number of fixed
points. Then the morphism G→ G, g 7→ gϕ(g)−1 is surjective.

Proposition 2.5. Let G be a connected reductive algebraic group with a Borel
subgroup B and a maximal torus T ⊂ B. Let ϕ : G → G be an isogeny with
ϕ(B) = B. In (b) also assume that ϕ(T ) = T .

(a) The morphism G×B → G, (g, b) 7→ gbϕ(g)−1 is surjective.

(b) The morphism G× T → G, (g, t) 7→ gtϕ(g)−1 has dense image.

If G is simply connected semisimple and ϕ is an automorphism of G, (b) has
been shown by Springer ([Spr2] Lemma 4).

Proof. For (a) see [Ste], Lemma 7.3. Part (b) and its proof are a slight modi-
fication of this. Equivalently we may show that for some t0 ∈ T , the image of
the morphism α̃ : G × T → G, (g, t) 7→ gtt0ϕ(g)

−1t−1
0 is dense. For this it will

suffice to show that the differential of α̃ at 1 is surjective. This differential is
the linear map

Lie(G)× Lie(T )→ Lie(G)

(X,Y ) 7→ X + Y − Lie(ϕt0)(X),

where ϕt0 := int(t0) ◦ ϕ. This linear map has image

Lie(T ) + (1− Lie(ϕt0 )) Lie(G).

Let B− be the Borel subgroup opposite to B with respect to T . Since ϕ(B) = B
and ϕ(T ) = T , the differential of ϕt0 at 1 preserves Lie(RuB) and Lie(RuB

−).
If we find a t0 such that Lie(ϕt0) has no fixed points on Lie(RuB) and
Lie(RuB

−) we will be done.
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Let Φ be the set of roots of G with respect to T . For each α ∈ Φ, let xα
be a basis vector of Lie(Uα), where Uα is the unipotent root subgroup of G
associated to α. As the isogeny ϕ sends T to itself, it induces a bijection
ϕ̃ : Φ → Φ such that ϕ(Uα) = Uϕ̃(α). For each α ∈ Φ there exists a c(α) ∈ k
such that Lie(ϕ)(xα) = c(α)xϕ̃(α). This implies Lie(ϕt0)(xα) = α(t0)c(α)xϕ̃(α).
Since ϕt0 fixes RuB and RuB

−, its differential permutes Φ+ and Φ−, where
Φ+ (resp. Φ−) is the set of roots that are positive (resp. negative) with respect
to B. Hence Lie(ϕt0 ) can only have a fixed point in Lie(RuB) or Lie(RuB

−) if
there exists a cycle (α1, · · · , αn) of the permutation ϕ̃ in Φ+ or Φ− such that

n
∏

i=1

αi(t0)c(αi) = 1.

This shows that for t0 in some non-empty open subset of T , the differential
Lie(ϕt0) has no fixed points on Lie(RuB) and Lie(RuB

−).

2.2 Coset Representatives in Coxeter Groups

Here we collect some facts about Coxeter groups and root systems which we
shall need in the sequel. Let W be a Coxeter group and S its generating set
of simple reflections. Let ℓ denote the length function on W ; thus ℓ(w) is the
smallest integer n > 0 such that w = s1 · · · sn for suitable si ∈ S. Any such
product with ℓ(w) = n is called a reduced expression for w.
Let I be a subset of S. We denote by WI the subgroup of W generated by I,
which is a Coxeter group with set of simple reflections I. Also, we denote byW I

(respectively IW ) the set of elements w ofW which have minimal length in their
coset wWI (respectively WIw). Then every w ∈ W can be written uniquely
as w = wI · wI = w̃I ·

Iw with wI , w̃I ∈ WI and wI ∈ W I and Iw ∈ IW .
Moreover, these decompositions satisfy ℓ(w) = ℓ(wI) + ℓ(wI) = ℓ(w̃I) + ℓ(Iw)
(see [DDPW], Proposition 4.16). In particular, W I and IW are systems of
representatives for the quotients W/WI and WI\W , respectively. The fact
that ℓ(w) = ℓ(w−1) for all w ∈ W implies that W I = (IW )−1.
Furthermore, if J is a second subset of S, we let IW J denote the set of x ∈ W
which have minimal length in the double cosetWIxWJ . Then

IW J = IW∩W J ,
and it is a system of representatives for WI\W/WJ (see [DDPW] (4.3.2)).
In the next propositions we take an element x ∈ IW J , consider the conjugate

subset x
−1

I ⊂ W , and abbreviate Ix := J ∩ x
−1

I ⊂ J . Then IxWJ is the set of
elements wJ of WJ which have minimal length in their coset WIxwJ . Likewise
W I∩ xJ
I is the set of elements wI ofWI which have minimal length in their coset

wIWI∩ xJ .

Proposition 2.6 (Kilmoyer, [DDPW], Proposition 4.17). For x ∈ IW J we
have

WI ∩
xWJ =WI∩ xJ and WJ ∩

x−1

WI =W
J∩ x−1

I
=WIx .
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Proposition 2.7 (Howlett, [DDPW], Proposition 4.18). For any x ∈ IW J ,
every element w of the double coset WIxWJ is uniquely expressible in the form
w = wIxwJ with wI ∈ WI and wJ ∈

IxWJ . Moreover, this decomposition
satisfies

ℓ(w) = ℓ(wIxwJ ) = ℓ(wI) + ℓ(x) + ℓ(wJ).

Proposition 2.8. The set IW is the set of all xwJ for x ∈ IW J and wJ ∈
IxWJ .

Proof. Take x ∈ IW J and wJ ∈
IxWJ . Then for any wI ∈

IW , Proposition 2.7
applied to the product wIxwJ implies that ℓ(wIxwJ ) = ℓ(wI)+ ℓ(x)+ ℓ(wJ) ≥
ℓ(x) + ℓ(wJ) = ℓ(xwJ ). This proves that xwJ ∈

IW . Conversely take w ∈ IW
and let w = wIxwJ be its decomposition from Proposition 2.7. Then by the
first part of the proof we have xwJ ∈

IW . Since WIw = WIxwJ , this implies
that w = xwJ .

Proposition 2.9. The set W J is the set of all wIx for x ∈ IW J and wI ∈
W I∩ xJ
I .

Proof. Apply Proposition 2.8 with I and J interchanged and invert all elements
of W J .

Next we recall the Bruhat order on W , which we denote by ≤ and <. This
natural partial order is characterized by the following property: For x,w ∈ W
we have x ≤ w if and only if for some (or, equivalently, any) reduced expression
w = s1 · · · sn as a product of simple reflections si ∈ S, one gets a reduced
expression for x by removing certain si from this product. More information
about the Bruhat order can be found in [BB], Chapter 2.
Using this order, the set IW can be described as

IW = {w ∈ W | w < sw for all s ∈ I} (2.10)

(see [BB], Definition 2.4.2 and Corollary 2.4.5).
Assume in addition that W is the Weyl group of a root system Φ, with S
corresponding to a basis of Φ. Denote the set of positive roots with respect to
the given basis by Φ+ and the set of negative roots by Φ−. For I ⊂ S, let ΦI
be the root system spanned by the basis elements corresponding to I, and set
Φ±
I
:= ΦI ∩ Φ±. Then by [Car], Proposition 2.3.3 we have

W I = {w ∈ W | wΦ+
I ⊂ Φ+} = {w ∈W | wΦ−

I ⊂ Φ−}. (2.11)

Also, by [Car], Proposition 2.2.7, the length of any w ∈W is

ℓ(w) = #{α ∈ Φ+ | wα ∈ Φ−}. (2.12)

Lemma 2.13. Let w ∈ IW and write w = xwJ with x ∈ IW J and wJ ∈ WJ .
Then

ℓ(x) = #{α ∈ Φ+
r ΦJ | wα ∈ Φ−

r ΦI}.
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Proof. First note that α ∈ Φ+ and wα ∈ Φ− already imply wα /∈ ΦI , because
otherwise we would have α ∈ w−1Φ−

I , which by (2.11) is contained in Φ−

because w−1 ∈W I . Thus the right hand side of the claim is #{α ∈ Φ+
rΦJ |

wα ∈ Φ−}. Secondly, if α ∈ Φ+
J , using again (2.11) and x ∈ W J we find that

wα ∈ Φ− if and only if wJα ∈ Φ−
J . Thus with (2.12) we obtain

#{α ∈ Φ+
r ΦJ | wα ∈ Φ−} = #{α ∈ Φ+ | wα ∈ Φ−} −#{α ∈ Φ+

J | wJα ∈ Φ−
J }

= ℓ(w)− ℓ(wJ) = ℓ(x).

2.3 Reductive groups, Weyl groups, and parabolics

Let G be a connected reductive algebraic group, let B be a Borel subgroup of
G, and let T be a maximal torus of B. Let Φ(G, T ) denote the root system
of G with respect to T , let W (G, T ) := NormG(T )/T denote the associated
Weyl group, and let S(G,B, T ) ⊂W (G, T ) denote the set of simple reflections
defined by B. Then W (G, T ) is a Coxeter group with respect to the subset
S(G,B, T ).
A priori this data depends on the pair (B, T ). However, any other such
pair (B′, T ′) is obtained on conjugating (B, T ) by some element g ∈ G
which is unique up to right multiplication by T . Thus conjugation by g
induces isomorphisms Φ(G, T )

∼
→ Φ(G, T ′) and W (G, T )

∼
→ W (G, T ′) and

S(G,B, T )
∼
→ S(G,B′, T ′) that are independent of g. Moreover, the isomor-

phisms associated to any three such pairs are compatible with each other. Thus
Φ := Φ(G, T ) and W :=W (G, T ) and S := S(G,B, T ) for any choice of (B, T )
can be viewed as instances of ‘the’ root system and ‘the’ Weyl group and ‘the’
set of simple reflections of G, in the sense that up to unique isomorphisms
they depend only on G. It then also makes sense to say that the result of a
construction (as in Subsection 5.2 below) depending on an element of W is
independent of (B, T ).
For any w ∈ W (G, T ) we fix a representative ẇ ∈ NormG(T ). By choosing
representatives attached to a Chevalley system (see [DG] Exp. XXIII, §6) for
all w1, w2 ∈W with ℓ(w1w2) = ℓ(w1) + ℓ(w2) we obtain

ẇ1ẇ2 = (w1w2)˙. (2.14)

In particular the identity element 1 ∈W is represented by the identity element
1 ∈ G.
A parabolic subgroup of G that contains B is called a standard parabolic of G.
Any standard parabolic possesses a unique Levi decomposition P = RuP ⋊ L
with T ⊂ L. Any such L is called a standard Levi subgroup of G, and the
set I of simple reflections in the Weyl group of L is called the type of L or
of P . In this way there is a unique standard parabolic PI of type I for every
subset I ⊂ S, and vice versa. The type of a general parabolic P is by definition
the type of the unique standard parabolic conjugate to P ; it is independent of
(B, T ) in the above sense. Any conjugate of a standard Levi subgroup of G is
called a Levi subgroup of G.
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For any subset I ⊂ S let ParI denote the set of all parabolics of G of type I.
Then there is a natural bijection G/PI

∼
→ ParI , gPI 7→

gPI . For any two
subsets I, J ⊂ S we let G act by simultaneous conjugation on ParI ×ParJ . As
a consequence of the Bruhat decomposition (see [Spr1] 8.4.6 (3)), the G-orbit
of any pair (P,Q) ∈ ParI ×ParJ contains a unique pair of the form (PI ,

ẋPJ )
with x ∈ IW J . This element x is called the relative position of P and Q and
is denoted by relpos(P,Q).
We will also use several standard facts about intersections of parabolics and/or
Levi subgroups, for instance (see [Car], Proposition 2.8.9):

Proposition 2.15. Let L be a Levi subgroup of G and T a maximal torus of L.
Let P be a parabolic subgroup of G containing T and P = RuP ⋊H its Levi
decomposition with T ⊂ H. Then L ∩ P is a parabolic subgroup of L with Levi
decomposition

L ∩ P = (L ∩RuP )⋊ (L ∩H).

If P is a Borel subgroup of G, then L ∩ P is a Borel subgroup of L.

3 Connected algebraic zip data

We now define the central technical notions of this article.

Definition 3.1. A connected algebraic zip datum is a tuple Z = (G,P,Q, ϕ)
consisting of a connected reductive group G with parabolic subgroups P and
Q and an isogeny ϕ : P/RuP → Q/RuQ. The group

EZ :=
{

(p, q) ∈ P×Q
∣

∣ ϕ(πP (p)) = πQ(q)
}

(3.2)

is called the zip group associated to Z. It acts on G by restriction of the left
action

(P×Q)×G→ G,
(

(p, q), g
)

7→ pgq−1. (3.3)

For any subset X ⊂ G we denote the union of the EZ -orbits of all elements of
X by

oZ(X). (3.4)

Note that if X is a constructible subset of G, then so is oZ(X).
Throughout the following sections we fix a connected algebraic zip datum Z =
(G,P,Q, ϕ). We also abbreviate U := RuP and V := RuQ, so that ϕ is an
isogeny P/U → Q/V . Our aim is to study the orbit structure of the action
of EZ on G.

Example 3.5. For dimension reasons we have P = G if and only if Q = G. In
that case the action of EZ = graph(ϕ) is equivalent to the action of G on itself
by twisted conjugation (h, g) 7→ hgϕ(h)−1.

In order to work with Z it is convenient to fix the following data.
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Definition 3.6. A frame of Z is a tuple (B, T, g) consisting of a Borel sub-
group B of G, a maximal torus T of B, and an element g ∈ G, such that

(a) B ⊂ Q,

(b) gB ⊂ P ,

(c) ϕ
(

πP (
gB)

)

= πQ(B), and

(d) ϕ
(

πP (
gT )

)

= πQ(T ).

Proposition 3.7. Every connected algebraic zip datum possesses a frame.

Proof. Choose a Borel subgroup B of Q and a maximal torus T of B. Let
T̄ ′ ⊂ B̄′ ⊂ P/U denote the respective identity components of ϕ−1(πQ(T )) ⊂
ϕ−1(πQ(B)) ⊂ P/U . Then B̄′ is a Borel subgroup of P/U , and T̄ ′ is a maximal
torus of B̄′. Thus we have B̄′ = πP (B

′) for a Borel subgroup B′ of P , and
T̄ ′ = πP (T

′) for some maximal torus T ′ of B′. Finally take g ∈ G such that
B′ = gB and T ′ = gT . Then (B, T, g) is a frame of Z.

Proposition 3.8. Let (B, T, g) be a frame of Z. Then every frame of Z has
the form (qB, qT, pgtq−1) for (p, q) ∈ EZ and t ∈ T , and every tuple of this
form is a frame of Z.

Proof. Let (B′, T ′, g′) be another frame of Z. Since all Borel subgroups of Q
are conjugate, we have B′ = qB for some element q ∈ Q. Since all maximal
tori of B′ are conjugate, after multiplying q on the left by an element of B′

we may in addition assume that T ′ = qT . Similarly we can find an element

p ∈ P such that
g′
B′ = pgB and

g′
T ′ = pgT . Combining these equations with

the defining properties of frames we find that

ϕ(πP (p))
πQ(B) =

ϕ(πP (p))
ϕ
(

πP (
gB)

)

= ϕ
(

πP (
pgB)

)

= ϕ
(

πP (
g′

B′)
)

=

= πQ(B
′) = πQ(

qB) = πQ(q)πQ(B),

and similarly ϕ(πP (p))πQ(T ) =
πQ(q)πQ(T ). Thus ϕ(πP (p)) = πQ(q) · πQ(t

′) for
some element t′ ∈ T . Since we may still replace q by qt′ without changing the
above equations, we may without loss of generality assume that ϕ(πP (p)) =
πQ(q), so that (p, q) ∈ EZ . On the other hand, the above equations imply

that B = g−1p−1g′qB and T = g−1p−1g′qT , so that t := g−1p−1g′q ∈ T and
hence g′ = pgtq−1. This proves the first assertion. The second involves a
straightforward calculation that is left to the conscientious reader.

Throughout the following sections we fix a frame (B, T, g) of Z. It determines
unique Levi components gT ⊂ L ⊂ P and T ⊂ M ⊂ Q. Via the isomorphisms
L

∼
→ P/U and M

∼
→ Q/V we can then identify ϕ with an isogeny ϕ : L→M .

The zip group then becomes

EZ =
{

(uℓ, vϕ(ℓ))
∣

∣ u ∈ U, v ∈ V, ℓ ∈ L
}

(3.9)
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and acts on G by ((uℓ, vϕ(ℓ)), g) 7→ uℓgϕ(ℓ)−1v−1. Moreover, conditions 3.6
(c) and (d) are then equivalent to

ϕ(gB ∩ L) = B ∩M, and ϕ(gT ) = T, (3.10)

which are a Borel subgroup and a maximal torus of M , respectively.
Let Φ be the root system, W the Weyl group, and S ⊂ W the set of simple

reflections of G with respect to (B, T ). Let I ⊂ S be the type of g
−1

P and J ⊂ S
the type of Q. Then M has root system ΦJ , Weyl groupWJ , and set of simple

reflections J ⊂ WJ . Similarly g−1

L has root system ΦI , Weyl group WI , and
set of simple reflections I ⊂ WI , and the inner automorphism int(g) identifies
these with the corresponding objects associated to L. Moreover, the equations
(3.10) imply that ϕ ◦ int(g) induces an isomorphism of Coxeter systems

ψ : (WI , I)
∼
→ (WJ , J). (3.11)

Recall that Φ, W , and S can be viewed as independent of the chosen frame, as
explained in Subsection 2.3.

Proposition 3.11. The subsets I, J and the isomorphism ψ are independent
of the frame.

Proof. Consider another frame (qB, qT, pgtq−1) with (p, q) ∈ EZ and t ∈ T , as
in Proposition 3.8. Then we have a commutative diagram

(g
−1

L,B, T )

int(qt−1) ≀

��

int(g)

∼
// (L, gB, gT )

int(p) ≀

��

ϕ
// (M,B, T )

int(q) ≀

��

(qg
−1

L, qB, qT )
int(pgtq−1)

∼
// (pL, pgB, pgT )

ϕ
// (qM, qB, qT ),

whose upper row contains the data inducing ψ for the old frame and whose
lower row is the analogue for the new frame. Since the vertical arrows are
inner automorphisms, they induce the identity on the abstract Coxeter system
(W,S) of G as explained in Subsection 2.3. Everything follows from this.

4 Induction step

We keep the notations of the preceding section. Since g
−1

P and Q are parabolic
subgroups containing the same Borel B, by Bruhat (see [Spr1] 8.4.6 (3)) we
have a disjoint decomposition

G =
∐

x∈ IWJ

g−1

P ẋQ.

Left translation by g turns this into a disjoint decomposition

G =
∐

x∈ IWJ

PgẋQ. (4.1)
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Here each component PgẋQ is an irreducible locally closed subvariety of G
that is invariant under the action of EZ . In this section we fix an element
x ∈ IW J and establish a bijection between the EZ -orbits in PgẋQ and the
orbits of another zip datum constructed from Z and ẋ. This will allow us to
prove facts about the orbits inductively. The base case of the induction occurs
when the decomposition possesses just one piece, i.e., when P = Q = G.

Lemma 4.2. The stabilizer of gẋQ ⊂ PgẋQ in EZ is the subgroup

EZ,ẋ :=
{

(p, q) ∈ EZ

∣

∣ p ∈ P ∩ gẋQ
}

,

and the action of EZ induces an EZ -equivariant isomorphism

EZ ×
EZ,ẋ gẋQ

∼
−→ PgẋQ, [((p, q), h)] 7→ phq−1.

Proof. The action (3.3) of (p, q) ∈ EZ on PgẋQ induces the action on the quo-
tient PgẋQ/Q by left multiplication with p. From (3.2) we see that the latter
action is transitive, and the stabilizer of the point gẋQ is EZ,ẋ; hence there
is an EZ -equivariant isomorphism PgẋQ/Q ∼= EZ/EZ,ẋ. Thus everything fol-
lows by applying Lemma 2.2 to the projection morphism PgẋQ։ PgẋQ/Q ∼=
EZ/EZ,ẋ.

Construction 4.3. Consider the following subgroups of the connected reduc-
tive algebraic group M (which are independent of the representative ẋ of x):

Px :=M ∩ ẋ
−1g−1

P , Qx := ϕ(L ∩ gẋQ),

Ux :=M ∩ ẋ
−1g−1

U , Vx := ϕ(L ∩ gẋV ),

Lx :=M ∩ ẋ
−1g−1

L, Mx := ϕ(L ∩ gẋM).

Proposition 2.15 shows that Px is a parabolic with unipotent radical Ux and
Levi component Lx, and that Qx is a parabolic with unipotent radical Vx and
Levi component Mx. Moreover, ϕ ◦ int(gẋ) induces an isogeny ϕẋ : Lx →Mx,
or equivalently Px/Ux → Qx/Vx. Thus we obtain a connected algebraic zip
datum Zẋ := (M,Px, Qx, ϕẋ). By (3.9) its zip group is

EZẋ
=

{

(u′ℓ′, v′ϕẋ(ℓ
′))

∣

∣ u′ ∈ Ux, v
′ ∈ Vx, ℓ

′ ∈ Lx
}

. (4.4)

Lemma 4.5. There is a surjective homomorphism

EZ,ẋ ։ EZẋ
, (p, q) 7→ (m,ϕ(ℓ)),

where p = uℓ for u ∈ U and ℓ ∈ L, and ẋ−1g−1

p = vm for v ∈ V and m ∈M .

Proof. For ease of notation abbreviate h := gẋ, so that hT = gT ⊂ L and

therefore T ⊂ h−1

L ⊂ h−1

P . Thus h−1

P and Q are parabolics of G with T -

invariant Levi decompositions h
−1

P = h−1

U ⋊
h−1

L and Q = V ⋊M . It follows
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(see [Car] Thm. 2.8.7) that any element of h
−1

P ∩Q can be written as a product
abu′ℓ′ with unique

a ∈ h−1

U ∩ V , u′ ∈ h−1

U ∩M = Ux,

b ∈ h−1

L ∩ V , ℓ′ ∈ h−1

L ∩M = Lx.

Consider (p, q) ∈ EZ,ẋ with p = uℓ and h−1

p = vm as in the lemma. Then

we can write the element h
−1

p = abu′ℓ′ ∈ h−1

P ∩ Q in the indicated fashion.
Comparing the different factorizations yields the equations v = ab, m = u′ℓ′,
u = h(abu′b−1), and ℓ = h(bℓ′). Thus ϕ(ℓ) = ϕ(hb)ϕ(hℓ′) = v′ϕẋ(ℓ

′) with
v′ := ϕ(hb) ∈ ϕ(L ∩ hV ) = Vx. In view of (4.4) it follows that (m,ϕ(ℓ)) =
(u′ℓ′, v′ϕẋ(ℓ

′)) lies in EZẋ
, and so the map in question is well-defined. Since

m and ℓ are obtained from p by projection to Levi components, the map is a
homomorphism. Conversely, every element of EZẋ

can be obtained in this way
from some element p ∈ P ∩ hQ. By (3.9) we can then also find q ∈ Q with
(p, q) ∈ EZ,ẋ. Thus the map is surjective, and we are done.

Lemma 4.6. The surjective morphism

π : gẋQ։M, gẋm̃ṽ 7→ m̃

for m̃ ∈M and ṽ ∈ V is equivariant under the group EZ,ẋ, which acts on gẋQ
as in Lemma 4.2 and on M through the homomorphism from Lemma 4.5.

Proof. Take (p, q) ∈ EZ,ẋ with p = uℓ and ẋ−1g−1

p = vm as in Lemma 4.5.
Then (3.9) implies that q = v1ϕ(ℓ) for some v1 ∈ V . Thus the action of (p, q)
sends gẋm̃ṽ ∈ gẋQ to the element

pgẋ · m̃ṽ · q−1 = gẋvm · m̃ṽ · ϕ(ℓ)−1v−1
1 = gẋ ·mm̃ϕ(ℓ)−1 ·

(

an element of V
)

.

The morphism π maps this element to mm̃ϕ(ℓ)−1 ∈ M . But this is also
the image of m̃ = π(gẋm̃ṽ) under the action of (m,ϕ(ℓ)) ∈ EZẋ

. Thus the
morphism is equivariant.

Proposition 4.7. There is a closure-preserving bijection between EZẋ
-

invariant subsets Y ⊂ M and EZ -invariant subsets X ⊂ PgẋQ, defined by
Y = M ∩ ẋ−1g−1X and X = oZ(gẋY ). Moreover, Y is a subvariety if and
only if X is one, and in that case X ∼= EZ ×

EZ,ẋ π−1(Y ).

Proof. From (3.2) and (3.3) we see that the subgroup V ∼= {(1, v) | v ∈ V } ⊂
EZ,ẋ acts by right translation on gẋQ. Thus every EZ,ẋ-invariant subset of
gẋQ is a union of cosets of V and therefore of the form Z = gẋY V = π−1(Y )
for a subset Y ⊂M , which moreover satisfies Y =M ∩ ẋ−1g−1Z. By Lemmas
4.5 and 4.6 this defines a bijection between EZẋ

-invariant subsets Y ⊂M and
EZ,ẋ-invariant subsets Z ⊂ gẋQ. On the other hand, Lemmas 2.1 and 4.2 yield
a bijection between EZ,ẋ-invariant subsets Z ⊂ gẋQ and EZ -invariant subsets
X ⊂ PgẋQ that is characterized by Z = gẋQ∩X and X = oZ(Z). Together we
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obtain the desired bijection with Y =M ∩ ẋ−1g−1(gẋQ∩X) =M ∩ ẋ−1g−1X
and X = oZ(gẋY V ) = oZ(gẋY ).
The equations Z = π−1(Y ) and Y = M ∩ ẋ−1g−1Z imply that the bijection
between Y and Z preserves closures and maps subvarieties to subvarieties. The
corresponding facts for the bijection between Z and X follow from Lemma 2.1,
which also implies the last statement.

Proposition 4.8. If X and Y in Proposition 4.7 are subvarieties, then

dimX = dimY + dimP − dimPx + ℓ(x).

Proof. By the definition of EZ,ẋ we have

dimEZ−dimEZ,ẋ = dimP−dim(P∩gẋQ) = dimP−dimPx−dim(P∩gẋV ).

With the last statement of Proposition 4.7 this implies that

dimX = dimY + dim V + dimP − dimPx − dim(P ∩ gẋV ).

From the decomposition of V into root subgroups it follows that dimV −

dim(P ∩ gẋV ) = dimV − dim(V ∩ ẋ
−1g−1

P ) is the cardinality of the set

{α ∈ Φ+
r ΦJ | xα ∈ Φ−

r ΦI}.

By Lemma 2.13 for wJ = 1 this cardinality is ℓ(x).

Lemma 4.9. For any subset Y ⊂M we have oZ(gẋ oZẋ
(Y )) = oZ(gẋY ).

Proof. It suffices to show that gẋ oZẋ
(Y ) ⊂ oZ(gẋY ), which follows from a

straightforward calculation that is left to the reader. Alternatively the formula
can be deduced from the formal properties stated in Proposition 4.7.

We can also give an inductive description of the stabilizers of points in PgẋQ.
However, this does not give the scheme-theoretic stabilizers, which may in fact
be non-reduced. Likewise, the following lemma does not describe the scheme-
theoretic kernel:

Lemma 4.10. The kernel of the homomorphism from Lemma 4.5 is (U∩gẋV )×
V .

Proof. Let p = uℓ and ẋ−1g−1

p = vm be as in Lemma 4.5. Then (p, q) is in the
kernel if and only if m = 1 and ϕ(ℓ) = 1. The first equation is equivalent to
p = gẋv ∈ gẋV , which implies that ℓ is unipotent. Being in the kernel of the
isogeny ϕ is then equivalent to ℓ = 1. Thus the second equation is equivalent
to p ∈ U , and the two together are equivalent to p ∈ U ∩ gẋV . By (3.9) we
then have q ∈ V , and so we are done.

Proposition 4.11. For any m ∈M there is a short exact sequence

1 −→ U ∩ gẋV −→ StabEZ
(gẋm)

4.5
−→ StabEZẋ

(m) −→ 1.
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Proof. The second half of Lemma 4.2 and Lemma 4.6 imply that we have an
equality, respectively a homomorphism

StabEZ
(gẋm) = StabEZ,ẋ

(gẋm)
4.5
−→ StabEZẋ

(m).

This homomorphism is surjective, because the subgroup V ∼= {(1, v) | v ∈ V }
contained in the kernel of the surjection EZ,ẋ ։ EZẋ

acts transitively on the
fibers of π. By Lemma 4.10 the kernel is the stabilizer of gẋm in the group
(U ∩ gẋV ) × V acting by left and right translation. This stabilizer consists of

(u, (gẋm)−1

u) for all u ∈ U ∩ gẋV , and we are done.

Finally, the assumption x ∈ IW J allows us to construct a frame of Zẋ:

Proposition 4.12. The tuple (M∩B, T, 1) is a frame of Zẋ, and the associated
Levi components of Px and Qx are Lx and Mx, respectively.

Proof. First, the assumptions T ⊂M and gẋT = gT ⊂ L imply that T ⊂M ∩
ẋ−1g−1

L, the latter being Lx by Construction 4.3. Together with the equation
ϕ(gT ) = T from (3.10) they also imply that T = ϕ(gẋT ) ⊂ ϕ(L ∩ gẋM), the
latter beingMx by Construction 4.3. This proves the statement about the Levi
components. We can also directly deduce that ϕẋ(T ) = ϕ(gẋT ) = T .
Next, as T is a common maximal torus of M and B, Proposition 2.15 implies
that M ∩B is a Borel subgroup of M . Recall that M has the root system ΦJ ,
so that M ∩B corresponds to the subset Φ+

J = ΦJ ∩Φ
+. For the same reasons

M ∩ ẋ
−1

B is a Borel subgroup of M corresponding to the subset ΦJ ∩ x
−1Φ+.

But with (2.11) the assumption x ∈ IW J ⊂ W J implies that xΦ+
J ⊂ Φ+, and

hence Φ+
J ⊂ ΦJ ∩ x

−1Φ+. Since both subsets correspond to Borel subgroups,

they must then coincide, and therefore M ∩B =M ∩ ẋ
−1

B. With the inclusion
gB ⊂ P from (3.6) we deduce that

M ∩B = M ∩ ẋ
−1

B ⊂ M ∩ ẋ
−1g−1

P
4.3
= Px.

In the same way one shows that L∩ gB = L∩ gẋB, which together with B ⊂ Q
implies that

M ∩B
(3.10)
= ϕ(L ∩ gB) = ϕ(L ∩ gẋB) ⊂ ϕ(L ∩ gẋQ)

4.3
= Qx.

The equation M ∩B = ϕ(L ∩ gẋB) and Construction 4.3 also imply that

ϕẋ
(

(M ∩B) ∩ Lx
)

= ϕ
(

gẋM ∩ gẋB ∩ L
)

⊂

⊂ ϕ
(

L ∩ gẋM
)

∩ ϕ
(

L ∩ gẋB
)

= (M ∩B) ∩Mx.

As both sides of this inclusion are Borel subgroups of Mx, they must be equal.
Thus (M ∩B, T, 1) satisfies Definition 3.6 in the variant (3.10), as desired.

Recall that M has the Weyl groupWJ with the set of simple reflections J , and
that ψ : WI

∼
→WJ is the isomorphism induced by ϕ ◦ int(g).
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Proposition 4.13. (a) The type of the parabolic Px of M is Ix := J ∩ x
−1

I.

(b) The type of the parabolic Qx of M is Jx := ψ(I ∩ xJ).

(c) The isomomorphism ψx : WIx
∼
→ WJx

induced by ϕẋ is the restriction of
ψ ◦ int(x).

Proof. Proposition 2.6 implies that Lx = M ∩ ẋ−1g−1

L has the Weyl group

WJ ∩
x−1

WI = WIx , which shows (a). Likewise Mx = ϕ(L ∩ gẋM) has the
Weyl group ψ(WI ∩

xWJ) = WJx
, which implies (b). Finally, (c) follows from

ϕẋ = ϕ ◦ int(gẋ).

5 Decomposition of G

In this section we construct a natural decomposition of G into finitely many
EZ -invariant subvarieties G

w.

5.1 The Levi subgroup Hw

Fix an element w ∈ IW . Note that we can compare any subgroupH of ẇ
−1g−1

L
with its image ϕ◦int(gẇ)(H) inM , because both are subgroups ofG. Moreover,
the collection of all such H satisfying ϕ ◦ int(gẇ)(H) = H possesses a unique
largest element, namely the subgroup generated by all such subgroups.

Definition 5.1. We let Hw denote the unique largest subgroup of ẇ
−1g−1

L
satisfying ϕ ◦ int(gẇ)(Hw) = Hw. We let ϕẇ : Hw → Hw denote the isogeny
induced by ϕ ◦ int(gẇ), and let Hw act on itself from the left by the twisted
conjugation (h, h′) 7→ hh′ϕẇ(h)

−1.

Remark 5.2. Since ϕ ◦ int(gẇ)(T ) = ϕ(gT ) = T by (3.10), the defining prop-
erty of Hw implies that T ⊂ Hw. Thus Hw does not depend on the choice
of representative ẇ of w, justifying the notation Hw. Also, in the case that
w = x ∈ IW J observe that the ϕẇ defined here is the restriction to Hw of
the isogeny ϕẋ from Construction 4.3. Using the same notation for both is
therefore only mildly abusive.

Example 5.3. In the case P = Q = G from Example 3.5 we have M = L = G
and I = J = ψ(J) = S and hence IW = {1} and H1 = G.

To analyze Hw in the general case we apply the induction step from Section 4.
Let w = xwJ be the decomposition from Proposition 2.8 with x ∈ IW J and

wJ ∈
IxWJ for Ix = J ∩ x−1

I. Since WJ is the Weyl group of M , and Ix is
the type of the parabolic Px ⊂ M by Proposition 4.13 (a), we can also apply
Definition 5.1 to the pair (Zẋ, wJ ) in place of (Z, w).

Lemma 5.4. The subgroup Hw and the isogeny ϕẇ associated to (Z, w) in
Definition 5.1 are equal to those associated to (Zẋ, wJ ).
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Proof. Since ẇJ ∈M = ϕ(L), Definition 5.1 and Construction 4.3 imply that

Hw ⊂ M ∩ ẇ
−1
J ẋ−1g−1

L =
ẇ−1

J
(

M ∩ ẋ
−1g−1

L
)

= ẇ−1
J Lx

and that ϕẋ ◦ int(ẇJ )(Hw) = ϕ ◦ int(gẇ)(Hw) = Hw. Since Hw is the largest

subgroup of ẇ
−1g−1

L with this property, it is also the largest in ẇ−1
J Lx.

Remark 5.5. The preceding lemma implies that Hw and ϕẇ also remain the
same if we repeat the induction step with (Zẋ, wJ ) in place of (Z, w), and so
on. When the process becomes stationary, we have reached a pair consisting of
a zip datum as in Example 5.3 and the Weyl group element 1, whose underlying
connected reductive group and isogeny are Hw and ϕẇ. This induction process
is the idea underlying many proofs throughout this section.

Proposition 5.6. The subgroup Hw is the standard Levi subgroup of G con-

taining T whose set of simple reflections is the unique largest subset Kw of w
−1

I
satisfying ψ ◦ int(w)(Kw) = Kw.

Proof. For any subset K of w
−1

I the equality ψ ◦ int(w)(K) = K makes sense,
because both sides are subsets of W . The collection of all such K satisfying
that equality possesses a unique largest element Kw, namely the union of all
of them. Then Kw = ψ ◦ int(w)(Kw) ⊂ ψ(I) = J ⊂ S, and so Kw consists of
simple reflections.

Let H denote the standard Levi subgroup of G containing T with the set of

simple reflections Kw. Then the isogeny ϕ ◦ int(gẇ) : ẇ
−1g−1

L → M sends
T to itself by Remark 5.2, and the associated isomorphism of Weyl groups

ψ ◦ int(w) : w
−1

WI →WJ sends Kw to itself by construction. Together this
implies that ϕ ◦ int(gẇ)(H) = H and hence H ⊂ Hw.

We now prove the equality Hw = H by induction on dimG. In the base case
M = G we have I = J = S and w = 1 and thus K1 = S and H = G,
while H1 = G by Example 5.3; hence we are done. Otherwise write w = xwJ
as above. Then Lemma 5.4 and the induction hypothesis show that Hw is a

Levi subgroup of M containing T with a set of simple reflections K ⊂ w−1
J Ix

satisfying ψx ◦ int(wJ )(K) = K. But w−1
J Ix =

w−1
J (J ∩ x−1

I) ⊂ w−1

I and
ψx ◦ int(wJ ) is the restriction of ψ ◦ int(x) ◦ int(wJ ) = ψ ◦ int(w). By the
maximality of Kw we thus have K ⊂ Kw and therefore Hw ⊂ H . Together
with the earlier inequality H ⊂ Hw we deduce that Hw = H , as desired.

5.2 First description of Gw

Definition 5.7. For any w ∈ IW we set Gw := oZ(gẇHw).

Proposition 5.8. The set Gw does not depend on the representative ẇ of w
or the frame.
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Proof. The independence of ẇ follows from the inclusion T ⊂ Hw. For the
rest note first that by Propositions 3.11 and 5.6 the set Kw is independent
of the frame. Consider another frame (qB, qT, pgtq−1) for (p, q) ∈ EZ and
t ∈ T , as in Proposition 3.8. Recall from Subsection 2.3 that the isomorphism
W (G, T )

∼
→ W (G, qT ) is induced by int(q) : NormG(T )

∼
→ NormG(

qT ). It
follows that w ∈ IW as an element of the abstract Weyl group of G is repre-
sented by qẇq−1 ∈ NormG(

qT ), and with Proposition 5.6 it follows that the
Levi subgroup associated to w and the new frame is qHw. Thus the right hand
side in Definition 5.7 associated to the new frame is

oZ
(

(pgtq−1)(qẇq−1) qHw

)

= oZ
(

pgtẇHwq
−1

)

= oZ
(

gtẇHw

)

= oZ
(

gẇHw

)

,

where the second equation follows from (p, q) ∈ EZ and the third from ẇ−1tẇ ∈
T ⊂ Hw. Thus G

w is independent of the frame.

In Example 5.3 we have H1 = G and hence G1 = G. Otherwise recall from
Proposition 4.12 that Zẋ has the frame (M ∩ B, T, 1). Thus by Lemma 5.4,
the subset associated to (Zẋ, wJ) by Definition 5.7 is MwJ := oZẋ

(ẇJHw).

Lemma 5.9. Under the bijection of Proposition 4.7, the subset MwJ ⊂ M
corresponds to the subset Gw ⊂ PgẋQ. In particular Gw = oZ(gẋM

wJ ). Also,
there is a bijection between the EZẋ

-orbits X ′ ⊂ MwJ and the EZ -orbits X ⊂
Gw, defined by X = oZ(gẋX

′).

Proof. Using, in this order, the definition of Gw, the equation (2.14), Lemma
4.9, and the definition of MwJ we find that

Gw = oZ(gẇHw) = oZ(gẋẇJHw) = oZ(gẋ oZẋ
(ẇJHw)) = oZ(gẋM

wJ ).

The other assertions follow from Proposition 4.7.

5.3 Main properties of Gw

Theorem 5.10. The Gw for all w ∈ IW form a disjoint decomposition of G.

Proof. We show this by induction on dimG. In the base case M = G we have
IW = {1} and H1 = G = G1 by Example 5.3; hence the theorem is trivially
true. Otherwise take an element x ∈ IW J . By the induction hypothesis
applied to the zip datum EZẋ

the subsets MwJ for wJ ∈
IxWJ form a disjoint

decomposition of M . Thus by Proposition 4.7 and Lemma 5.9, the subsets
GxwJ for wJ ∈

IxWJ form a disjoint decomposition of PgẋQ. Combining this
with the Bruhat decomposition (4.1) it follows that the subsets GxwJ for all x
and wJ form a disjoint decomposition of G. But by Proposition 2.8 these are
precisely the subsets Gw for w ∈ IW , as desired.

Theorem 5.11. For any w ∈ IW the subset Gw is a nonsingular subvariety of
G of dimension dimP + ℓ(w).
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Proof. Again we proceed by induction on dimG. If M = G, there is only one
piece G1 = G = P associated to w = 1, and the assertion is clear. Otherwise
write w = xwJ as in Proposition 2.8. By the induction hypothesis the subset
MwJ is a nonsingular subvariety of M of dimension dimPx + ℓ(wJ). Thus
by Propositions 4.7 and 4.8 and Lemma 5.9 the subset Gw is a nonsingular
subvariety of dimension

[

dimPx + ℓ(wJ )
]

+ dimP − dimPx + ℓ(x) = dimP + ℓ(x) + ℓ(wJ ).

By Proposition 2.7 the last expression is equal to dimP + ℓ(w), as desired.

Theorem 5.12. For any w ∈ IW , there is a bijection between the Hw-orbits
Y ⊂ Hw and the EZ -orbits X ⊂ G

w, defined by X = oZ(gẇY ) and satisfying

codim(X ⊂Gw) = codim(Y ⊂Hw).

Proof. If M = G, we have w = 1 and G = G1 = H1, and EZ
∼= G acts on itself

by the twisted conjugation (h, h′) 7→ h ·h′ ·ϕ(h)−1. Thus the EZ -orbits X ⊂ G
are precisely the cosets gY for H1-orbits Y according to Definition 5.1, which
finishes that case.
If M 6= G write w = xwJ as in Proposition 2.8. Then Zẋ has the frame
(M ∩B, T, 1) by Proposition 4.12, and so by Lemma 5.4 and the induction hy-
pothesis there is a bijection between the Hw-orbits Y ⊂ Hw and the EZẋ

-orbits
X ′ ⊂ MwJ , defined by X ′ = oZẋ

(ẇJY ) and satisfying codim(X ′⊂MwJ ) =
codim(Y ⊂Hw). By Proposition 4.7 and Lemma 5.9 there is a bijection be-
tween these X ′ and the EZ -orbits X ⊂ G

w, defined by X = oZ(gẋX
′). More-

over, since pushout and flat pullback preserve codimensions, the last statement
in Proposition 4.7 implies that

codim(X ⊂Gw) = codim
(

oZ(gẋX
′)⊂ oZ(gẋM

wJ )
)

= codim(X ′⊂MwJ ).

Finally, since ẇ = ẋẇJ by (2.14), Lemma 4.9 shows that X =
oZ(gẋ oZẋ

(ẇJY )) = oZ(gẋẇJY ) = oZ(gẇY ), finishing the induction step.

5.4 Other descriptions of Gw

Lemma 5.13. For any element g′ ∈ G we have

oZ(gBg
′B) = oZ(gg

′B) = oZ(gBg
′).

Proof. Take any element b ∈ B. Then the condition 3.6 (b) implies that p :=
gbg−1 ∈ P , and so there exists q ∈ Q such that (p, q) ∈ EZ . By the condition
3.6 (c) we then have q ∈ B. It follows that gbg′B = pgg′Bq−1 ⊂ oZ(gg

′B).
Since b was arbitrary, this shows that gBg′B ⊂ oZ(gg

′B), whence the first
equality. A similar argument proves the second equality.

Theorem 5.14. For any w ∈ IW we have

Gw = oZ(gẇHw) = oZ(gẇ(Hw ∩B)) = oZ(gẇB) = oZ(gBẇ) = oZ(gBẇB).
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Proof. The first equation is Definition 5.7 of Gw, and the last two equations
are cases of Lemma 5.13. The remaining two equations are proved by induction
on dimG. In the base case M = G we have w = 1 and H1 = G; hence the
second term is oZ(gG) = G, and the third and fourth terms are both equal to
oZ(gB). By Proposition 2.5 applied to the isogeny ϕ◦ int(g) the latter is equal
to G, as desired.
In the case M 6= G write w = xwJ as in Proposition 2.8. Then Zẋ has the
frame (M∩B, T, 1) by Proposition 4.12, and so by Lemma 5.4 and the induction
hypothesis we have

oZẋ
(ẇJHw) = oZẋ

(ẇJ (Hw ∩B)) = oZẋ
(ẇJ (M ∩B)).

Using Lemma 4.9 this implies that

oZ(gẋẇJHw) = oZ(gẋẇJ (Hw ∩B)) = oZ(gẋẇJ (M ∩B)).

By (2.14) we may replace ẋẇJ by ẇ in these equations. Moreover, (3.3) and
(3.9) show that gẇB = gẇ(M ∩ B)V ⊂ oZ(gẇ(M ∩ B)) and so oZ(gẇB) =
oZ(gẇ(M ∩B)). Thus both equations follow.

Example 5.15. If P is a Borel subgroup, then so is Q, and we have IW =W .
The last equation in Theorem 5.14 then implies that Gw = gBẇB for all
w ∈W .

For a further equivalent description of Gw see Subsection 11.1.

6 Closure relation

In this section, we determine the closure of Gw in G for any w ∈ IW . To
formulate a precise result recall that ≤ denotes the Bruhat order on W .

Definition 6.1. For w, w′ ∈ IW we write w′ 4 w if and only if there exists
y ∈WI such that yw′ψ(y)−1 ≤ w.

Theorem 6.2. For any w ∈ IW we have

Gw =
∐

w′∈IW
w′

4w

Gw
′

.

A direct consequence of this is:

Corollary 6.3. The relation 4 is a partial order on IW .

Remark 6.4. The relation 4 has been introduced by He in [He2] for a some-
what more special class of isomorphisms ψ : WI

∼
→ WJ . He gives a direct

combinatorial proof that 4 is a partial order (Proposition 3.13 of loc. cit.),
which can be adapted to our more general setting (see [Wed], Section 4).
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The rest of this section is devoted to proving Theorem 6.2. We will exploit
the fact that the closure relation for the Bruhat decomposition of G is known.
Namely, for any w ∈ W we have by [Spr1], Proposition 8.5.5:

BẇB =
∐

w′∈W
w′≤w

Bẇ′B. (6.5)

Lemma 6.6. For any w ∈ W we have

oZ(gBẇB) =
⋃

w′∈W
w′≤w

oZ(gẇ
′B).

Proof. Let BZ ⊂ EZ denote the subgroup of all elements (uℓ, vϕ(ℓ)) with
u ∈ U , v ∈ V , and ℓ ∈ L ∩ gB. Then EZ/BZ

∼= L/(L ∩ gB) is proper, and
gBẇB ⊂ G is a BZ -invariant subvariety. Thus Lemma 2.3 and (6.5) imply
that

oZ(gBẇB) = oZ
(

gBẇB
)

=
⋃

w′≤w

oZ(gBẇ
′B).

The desired equality then follows from Lemma 5.13.

Lemma 6.7. For any w, v ∈W and b ∈ B there exists u ∈ W such that u ≤ v
and ẇbv̇ ∈ Bẇu̇B.

Proof. We prove the statement by induction on ℓ(v). If v = 1, we may take
u = 1. For the induction step write v = v′s for some simple reflection s such
that ℓ(v′) = ℓ(v) − 1. By the induction hypothesis there exists u′ ≤ v′ such
that ẇbv̇′ ∈ Bẇu̇′B. Hence ẇbv̇ ∈ Bẇu̇′Bṡ ⊂ Bẇu̇′ṡB ∪ Bẇu̇′B, so either
u = u′s or u = u′ will have the required property.

Lemma 6.8. For any z ∈ W and w ∈ IW and v ∈ WI such that z ≤ wψ(v),
there exists y ∈ WI such that yzψ(y)−1 ≤ vw.

Proof. Choose reduced expressions for w and v as products of simple reflections.
Since ψ(I) = J , this also yields a reduced expression for ψ(v). Together this
yields an expression for wψ(v) as a product of simple reflections, which is not
necessarily reduced. However, by [BB], Theorem 2.2.2 a reduced expression for
wψ(v) can be obtained from the given one by possibly deleting some factors.
By the definition of the Bruhat order, the assumption z ≤ wψ(v) means that
a reduced expression for z is obtained from this by deleting further factors, if
any. Let y′ denote the product of all factors remaining from w. Since all factors
in the reduced expression for v lie in I, the product of all factors remaining
from ψ(v) is equal to ψ(y) for some y ∈ WI . By construction we then have
z = y′ψ(y), and so yzψ(y)−1 = yy′. But the assumptions on w and v imply
that ℓ(vw) = ℓ(v)+ℓ(w); hence the product of the given reduced expressions for
v and w is a reduced expression for vw. By construction yy′ is obtained from
that product by possibly deleting some factors, so we deduce that yy′ ≤ vw,
as desired.
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Lemma 6.9. For any w ∈ IW and w′ ∈ W and b, b′ ∈ B such that oZ(gẇb) =
oZ(gẇ

′b′) there exists y ∈WI such that ywψ(y)−1 ≤ w′.

Proof. We proceed by induction on dimG. In the base case M = G we have
w = 1 and may take y = 1. So assume that M 6= G. Write w = xwJ as in
Proposition 2.8 with x ∈ IW J and wJ ∈

IxWJ . From oZ(gẇb) = oZ(gẇ
′b′)

we deduce that PgẋQ = PgẇQ = Pgẇ′Q, which in view of (4.1) implies
that w′ ∈ WIxWJ . Write w′ = v′xw′

J for v′ ∈ WI and w′
J ∈

IxWJ , as in
Proposition 2.7.
Recall that ϕ(gv̇′g−1) ∈ NormM (T ) is a representative of ψ(v′) ∈ WJ . Thus
by Lemma 6.7, there exists u ∈ W such that u ≤ ψ(v′) and ẋẇ′

Jb
′ϕ(gv̇′g−1) ∈

Bẋẇ′
J u̇B. The first condition implies that u ∈ WJ , the Weyl group of M . The

action of EZ and the second condition imply

oZ(gẇ
′b′) = oZ(gv̇

′ẋẇ′
Jb

′) = oZ
(

gẋẇ′
Jb

′ϕ(gv̇′g−1)
)

⊂ oZ(gBẋẇ
′
J u̇B).

Here the last term is equal to oZ(gẋẇ
′
J u̇B) by Lemma 5.13. Thus there exists

b′′ ∈ B such that

oZ(gẋẇJb) = oZ(gẇb) = oZ(gẇ
′b′) = oZ(gẋẇ

′
J u̇b

′′).

By the action of EZ we may and do assume that b, b′′ ∈M ∩B. Then ẇJb and
ẇ′
J u̇b

′′ lie in M , and so Proposition 4.7 implies that oZẋ
(ẇJb) = oZẋ

(ẇ′
J u̇b

′′).
By the induction hypothesis there therefore exists yx ∈ WIx such that

yxwJψx(yx)
−1 ≤ w′

Ju.

Now we work our way back up. Since both sides of the last relation lie in WJ ,
and since x ∈W J , we deduce that

z := xyxwJψx(yx)
−1 ≤ xw′

Ju.

Recall that u ≤ ψ(v′), which implies that u = ψ(u′) for some u′ ∈WI satisfying
u′ ≤ v′. Also, note that xw′

J ∈
IW by Proposition 2.8. Thus by Lemma 6.8

there exists y′ ∈WI such that

y′zψ(y′)−1 ≤ u′xw′
J .

As u′ and v′ lie in WI , and xw
′
J ∈

IW , we deduce that

y′zψ(y′)−1 ≤ u′xw′
J ≤ v

′xw′
J = w′.

Finally, since ψx = ψ ◦ int(x), we have

y′zψ(y′)−1 = y′xyxwJψ(xyxx
−1)−1ψ(y′)−1 =

= (y′xyxx
−1)xwJψ(y

′xyxx
−1)−1 = ywψ(y)−1

with y := y′xyxx
−1 ∈ WI . Thus ywψ(y)

−1 ≤ w′, as desired.
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Lemma 6.10. For any w ∈ IW , the set oZ(gẇT ) is dense in Gw.

Proof. Theorem 5.12 implies that oZ(gẇT ) = oZ(gẇY ), where Y ⊂ Hw is the
orbit of T under twisted conjugation by Hw. But Proposition 2.5 (b) asserts
that Y is dense in Hw. Thus oZ(gẇY ) is dense in oZ( gẇY ) = oZ(gẇHw) =
Gw, as desired.

Proof of Theorem 6.2. Consider w′ ∈ IW such that Gw
′

∩ Gw 6= ∅. Then by
Theorem 5.14 and Lemma 6.6 there exist b, b′ ∈ B and w′′ ∈W such that w′′ ≤
w and oZ(gw

′b) = oZ(gw
′′b′). Lemma 6.9 then implies that yw′ψ(y)−1 ≤ w′′

for some y ∈ WI . Together it follows that yw
′ψ(y)−1 ≤ w, and hence w′ 4 w,

proving “⊂”.
To prove “⊃” consider w′ ∈ IW with w′ 4 w. By definition there exists y ∈WI

such that w′′ := yw′ψ(y)−1 ≤ w. Lemma 6.6 and Theorem 5.14 then show that
oZ(gẇ

′′T ) ⊂ Gw. Therefore

oZ(gẇ
′T ) = oZ

(

gẏẇ′Tϕ(gẏg−1)−1
)

=

= oZ
(

gẏẇ′ϕ(gẏg−1)−1T
)

= oZ(gẇ
′′T ) ⊂ Gw.

With Lemma 6.10 for oZ(gẇ
′T ) we conclude that Gw

′

⊂ Gw, as desired.

7 Orbitally finite zip data

Proposition 7.1. The following assertions are equivalent:

(a) For any w ∈ IW , the number of fixed points of the endomorphism ϕẇ =
ϕ ◦ int(gẇ) of Hw from Definition 5.1 is finite.

(b) For any w ∈ IW the EZ -invariant subvariety Gw is a single orbit un-
der EZ .

(c) The number of orbits of EZ on G is finite.

Proof. If (a) holds, the Lang-Steinberg Theorem 2.4 shows that the orbit of
1 ∈ Hw under twisted conjugation is all of Hw, and by Theorem 5.12 this
implies (b). The implication (b)⇒(c) is trivial. So assume (c). Then again by
Theorem 5.12, the number of orbits in Hw under twisted conjugation by ϕẇ
is finite for any w ∈ IW . In particular there exists an open orbit; let h be an
element thereof. Then for dimension reasons its stabilizer is finite. But

StabHw
(h) =

{

h′ ∈ Hw

∣

∣ h′hϕẇ(h
′)−1 = h

}

=
{

h′ ∈ Hw

∣

∣ h′ = hϕẇ(h
′)h−1

}

is also the set of fixed points of the endomorphism int(h)◦ϕẇ of Hw. Thus the
Lang-Steinberg Theorem 2.4 implies that {h′hϕẇ(h

′)−1h−1 | h′ ∈ Hw} = Hw.
After right multiplication by h this shows that the orbit of h is all of Hw. We
may thus repeat the argument with the identity element in place of h, and
deduce that the set of fixed points of ϕẇ on Hw is finite, proving (a).

Documenta Mathematica 16 (2011) 253–300



278 Richard Pink, Torsten Wedhorn, and Paul Ziegler

Definition 7.2. We call Z orbitally finite if the conditions in Proposition 7.1
are met.

Proposition 7.3. If the differential of ϕ at 1 vanishes, then Z is orbitally
finite.

Proof. If the differential of ϕ vanishes, then so does the differential of ϕẇ =
ϕ ◦ int(gẇ)|Hw for any w ∈ IW . Let Hf

w denote the fixed point locus of ϕẇ,
which is a closed algebraic subgroup. Then the restriction ϕẇ|H

f
w is the identity

and its differential is zero. This is possible only when dimHf
w = 0, that is, when

Hf
w is finite.

Remark 7.4. In particular Proposition 7.3 applies when the base field has
characteristic p > 0 and the isogeny ϕ is a relative Frobenius L→ L(pr) ∼=M .

Since gẇ ∈ Gw by Definition 5.7, we can now rephrase condition 7.1 (b) and
Theorems 5.10, 5.11, and 6.2 as follows:

Theorem 7.5. Assume that Z is orbitally finite. Then:

(a) For any w ∈ IW we have Gw = oZ(gẇ).

(b) The elements gẇ for w ∈ IW form a set of representatives for the EZ -
orbits in G.

(c) For any w ∈ IW the orbit oZ(gẇ) has dimension dimP + ℓ(w).

(d) For any w ∈ IW the closure of oZ(gẇ) is the union of oZ(gẇ
′) for all

w′ ∈ IW with w′ 4 w.

8 Point stabilizers

In this section we study the stabilizer in EZ of an arbitrary element g′ ∈ G.
Take w ∈ IW such that g′ ∈ Gw. Then Theorem 5.12 shows that g′ is conjugate
to gẇh for some h ∈ Hw. Thus it suffices to consider the stabilizer of gẇh.
Recall from Definition 5.1 that Hw acts on itself by twisted conjugation with
the isogeny ϕẇ, which is defined as the restriction of ϕ ◦ int(gẇ).

Theorem 8.1. For any w ∈ IW and h ∈ Hw the stabilizer StabEZ
(gẇh) is the

semi-direct product of a connected unipotent normal subgroup with the subgroup

{(

int(gẇ)(h′), ϕ(int(gẇ)(h′))
)
∣

∣ h′ ∈ StabHw
(h)

}

. (8.2)

Proof. For any h′ ∈ Hw we have int(gẇ)(h′) · gẇh · ϕ(int(gẇ)(h′))−1 = gẇh
if and only if h′hϕ(int(gẇ)(h′))−1 = h if and only if h′ ∈ StabHw

(h). This
implies that (8.2) is a subgroup of StabEZ

(gẇh).
For the rest we proceed by induction on dimG. If M = G, we have w = 1 and
ẇ = 1 and G = H1, and (g′, ϕ(g′)) ∈ EZ acts on G by the twisted conjugation
g′′ 7→ g′g′′ϕ(g′)−1. Under left translation by g this corresponds to the action
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of Hw on itself, so that StabEZ
(gẇh) is precisely the subgroup (8.2) and the

normal subgroup is trivial.
If M 6= G write w = xwJ as in Proposition 2.8. Then ẇ = ẋẇJ and Zẋ
has the frame (M ∩ B, T, 1), and Proposition 4.11 shows that StabEZ

(gẇh)
is an extension of StabEZẋ

(ẇJh) by a connected unipotent normal subgroup.
Moreover, by the induction hypothesis StabEZẋ

(ẇJh) is the semi-direct product
of a connected unipotent normal subgroup with the subgroup

{(

int(ẇJ )(h
′), ϕẋ(int(ẇJ )(h

′))
) ∣

∣ h′ ∈ StabHw
(h)

}

. (8.3)

Furthermore a direct calculation shows that the projection in Proposition 4.11
sends the subgroup (8.2) isomorphically to the subgroup (8.3). Since any exten-
sion of connected unipotent groups is again connected unipotent, the theorem
follows.

Remark 8.4. For the stabilizer, a similar result was obtained by Evens and
Lu ([EL] Theorem 3.13).

If the differential of ϕ at 1 vanishes, we can also describe the infinitesimal
stabilizer in the Lie algebra. Since in that case the zip datum is orbitally finite
by Proposition 7.3, it suffices to consider the stabilizer of gẇ.

Theorem 8.5. Assume that the differential of ϕ at 1 vanishes. For any w ∈ IW
let w = xwJ be the decomposition from Proposition 2.8. Then the infinitesimal
stabilizer of gẇ in the Lie algebra of EZ has dimension dimV − ℓ(x).

Proof. Since dϕ = 0, we have LieEZ = LieP × LieV ⊂ Lie(P ×Q). Thus an
arbitrary tangent vector of EZ at 1 has the form (1+dp, 1+dv) for dp ∈ LieP
and dv ∈ LieV , viewed as infinitesimal elements of P and V in Leibniz’s sense.
That element stabilizes gẇ if and only if (1+dp)gẇ(1+dv)−1 = gẇ. This
condition is equivalent to dp ·gẇ−gẇ ·dv = 0, or again to dp = Adgẇ(dv). The

dimension is therefore dim(LieP ∩Adgẇ(LieV )) = dim(Lie g
−1

P ∩Lie ẇV ). As

both g−1

P and ẇV are normalized by T , the dimension is just the number of
root spaces in the last intersection. This number is

#
[

(Φ+ ∪ ΦI) ∩ w(Φ
+
r ΦJ)

]

= #
{

α ∈ Φ+
r ΦJ

∣

∣ wα ∈ Φ+ ∪ ΦI
}

= dim V −#
{

α ∈ Φ+
r ΦJ

∣

∣ wα ∈ Φ−
r ΦI

}

.

By Lemma 2.13 it is therefore dimV − ℓ(x), as desired.

Remark 8.6. The dimension in Theorem 8.5 depends only on the first factor of
w = xwJ and thus only on the Bruhat cell PgẇQ. Since that Bruhat cell is an
irreducible variety and in general composed of more than one EZ -orbit, these
orbits have different dimensions. Thus the corresponding point stabilizers in
EZ have different dimension, while the dimension of their Lie algebra stabilizer
is constant. Therefore the scheme-theoretic stabilizer of gẇ is in general not
reduced.
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9 Abstract zip data

By Theorem 5.10 the subsets Gw for all w ∈ IW form a disjoint decomposition
of G satisfying gẇ ∈ Gw. It is natural to ask which other elements of the form
gẇ′ for w′ ∈ W are contained in a given Gw. When Z is orbitally finite,
by Theorem 7.5 this question is equivalent to asking which elements gẇ′ for
w′ ∈ W lie in the same EZ -orbit. This problem turns out to depend only on
the groups WI ⊂ W and the homomorphism ψ and can therefore be studied
abstractly. We return to this situation at the end of this section.

9.1 Abstract groups

Definition 9.1. An abstract zip datum is a tuple A = (Γ,∆, ψ) consisting of
a group Γ, a subgroup ∆, and a homomorphism ψ : ∆→ Γ.

Fix such an abstract zip datum A. For any γ ∈ Γ, the collection of subgroups

E of γ
−1

∆ satisfying ψ ◦ int(γ)(E) = E possesses a unique largest element,
namely the subgroup generated by all such subgroups.

Definition 9.2. For any γ ∈ Γ we let Eγ denote the unique largest subgroup

of γ
−1

∆ satisfying ψ ◦ int(γ)(Eγ) = Eγ .

Lemma 9.3. For any γ ∈ Γ and δ ∈ ∆ and ε ∈ Eγ , we have Eδγεψ(δ)−1 =
ψ(δ)Eγ.

Proof. Abbreviate γ′ := δγεψ(δ)−1. Then the calculation ψ
( γ′

(ψ(δ)Eγ)
)

=

ψ( δγεEγ) =
ψ(δ)

ψ( γEγ) = ψ(δ)Eγ and the definition of Eγ′ imply that
ψ(δ)Eγ ⊂ Eγ′ . In particular, ε′ := ψ(δ)ε−1 is an element of Eγ′ . Since
γ = δ′γ′ε′ψ(δ′)−1 with δ′ := δ−1 ∈ ∆, a calculation like the first shows that
ψ(δ′)Eγ′ ⊂ Eγ . Together it follows that Eγ′ = ψ(δ)Eγ , as desired.

Definition 9.4. For any γ, γ′ ∈ Γ we write γ′ ∼ γ if and only if there exist
δ ∈ ∆ and ε ∈ Eγ such that γ′ = δγεψ(δ)−1. For any γ ∈ Γ we abbreviate
oA(γ) := {γ

′ ∈ Γ | γ′ ∼ γ}.

Lemma 9.5. This is an equivalence relation.

Proof. Reflexivity is clear, and symmetry was shown already in the proof of
Lemma 9.3. To prove transitivity, suppose that γ′ = δγεψ(δ)−1 for δ ∈ ∆ and

ε ∈ Eγ and γ′′ = δ′γ′ε′ψ(δ′)−1 for δ′ ∈ ∆ and ε′ ∈ Eγ′ . Then ψ(δ)−1

ε′ ∈ Eγ
by Lemma 9.3, and so γ′′ = δ′δγεψ(δ)−1ε′ψ(δ′)−1 = δ′′γε′′ψ(δ′′)−1 for δ′′ :=

δ′δ ∈ ∆ and ε′′ := ε ψ(δ)
−1

ε′ ∈ Eγ , as desired.

Theorem 9.6. If ∆ is finite, each equivalence class in Γ has cardinality #∆
and the number of equivalence classes is [Γ : ∆].
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Proof. Take any γ ∈ Γ; then the group Eγ ⊂
γ−1

∆ is finite, too. Consider
the surjective map ∆× Eγ ։ oA(γ), (δ, ε) 7→ δγεψ(δ)−1. Two elements (δ, ε),
(δ′, ε′) ∈ ∆× Eγ lie in the same fiber if and only if δγεψ(δ)−1 = δ′γε′ψ(δ′)−1

if and only if εψ(δ−1δ′) = γ−1(δ−1δ′)γε′. With ε′′ := γ−1(δ−1δ′)γ ∈ γ−1

∆ this
is equivalent to εψ( γε′′) = ε′′ε′. Since ε, ε′ ∈ Eγ , this equation implies that
the subgroup generated by Eγ and ε′′ is mapped onto itself under ψ ◦ int(γ).
By maximality it is therefore equal to Eγ , and so ε′′ ∈ Eγ . Together we find
that the elements in the same fiber as (δ, ε) are precisely the elements (δ′, ε′)
with δ′ = δ γε′′ and ε′ = (ε′′)−1εψ( γε′′) for some ε′′ ∈ Eγ . Thus each fiber
has cardinality #Eγ , and so the image has cardinality #∆, proving the first
assertion. The second assertion is a direct consequence of the first.

We can also perform an induction step as in Section 4 for abstract zip data,
obtaining analogues of Lemma 5.4 and Proposition 4.7. For this fix an element
ξ ∈ Γ, say in a set of representatives for the double quotient ∆\Γ/ψ(∆). Then
Definitions 9.2 and 9.4 imply that the equivalence class of any γ ∈ ∆ξψ(∆) is
again contained in ∆ξψ(∆).

Construction 9.7. Set Γξ := ψ(∆) and ∆ξ := ψ(∆)∩ξ
−1

∆, and let ψξ : ∆ξ →
Γξ denote the restriction of ψ ◦ int(ξ). This defines a new, possibly smaller,
abstract zip datum

Aξ := (Γξ,∆ξ, ψξ).

Lemma 9.8. For any γ ∈ Γξ, the group Eξγ associated by Definition 9.2 to the
pair (A, ξγ) is equal to the group associated to the pair (Aξ, γ).

Proof. Since γ ∈ Γξ = ψ(∆), Definition 9.2 implies that

Eξγ ⊂ ψ(∆) ∩ γ
−1ξ−1

∆ =
γ−1

(

ψ(∆) ∩ ξ
−1

∆
)

= γ−1

∆ξ

and that Eξγ = ψ ◦ int(ξγ)(Eξγ) = ψξ ◦ int(γ)(Eξγ). Since Eξγ is the largest

subgroup of γ
−1ξ−1

∆ with this property, it is also the largest in γ−1

∆ξ.

Proposition 9.9. There is a bijection between Aξ-equivalence classes in Γξ
and A-equivalence classes in ∆ξψ(∆), defined by oAξ

(γ) 7→ oA(ξγ) and
oAξ

(γ) = Γξ ∩ ξ
−1oA(ξγ).

Proof. Take any γ, γ′ ∈ Γξ. Then γ′ ∈ ξ−1oA(ξγ) if and only if ξγ′ =

δξγεψ(δ)−1 for some δ ∈ ∆ and ε ∈ Eξγ . Writing δ = ξδ′ this is equiva-

lent to γ′ = δ′γεψ( ξδ′)−1 for δ′ ∈ ξ−1

∆ and ε ∈ Eξγ . In this equation γ and γ′

and ψ(
ξ
δ′) lie in Γξ = ψ(∆) by assumption, and so does ε ∈ Eξγ ⊂ ψ(∆) by

Definition 9.2. Thus the equation requires that δ′ lies in ψ(∆), and so a fortiori

in ψ(∆) ∩ ξ−1

∆ = ∆ξ. In view of Lemma 9.8 the condition is thus equivalent
to γ′ ∈ oAξ

(γ), proving the equation at the end of the proposition.
That equation implies that the map oAξ

(γ) 7→ oA(ξγ) from Aξ-equivalence
classes in Γξ to A-equivalence classes in ∆ξψ(∆) is well-defined and injective.
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But any element of ∆ξψ(∆) has the form δξγ for δ ∈ ∆ and γ ∈ Γξ and is
therefore equivalent to ξγψ(δ) ∈ ξΓξ. Thus the map is also surjective, and we
are done.

9.2 Coxeter groups

Definition 9.10. Let W be a Coxeter group with a finite set of simple reflec-
tions S. Let ψ : WI

∼
→ WJ ⊂ W be an isomorphism of Coxeter groups with

ψ(I) = J for subsets I, J ⊂ S. Then A := (W,WI , ψ) is an abstract zip datum
that we call of Coxeter type.

Fix such an abstract zip datum of Coxeter type A. Recall that IW J is a set of
representatives for the double quotientWI\W/WJ . We will apply the induction

step from Proposition 9.9 to x ∈ IW J . As in Proposition 4.13 set Ix := J∩x
−1

I
and Jx := ψ(I ∩ xJ), which are both subsets of J . Then WJ = ψ(WI), and

WIx = ψ(WI) ∩
x−1

WI by Proposition 2.6, and ψx := ψ ◦ int(x) induces an
isomorphism ψx : WIx

∼
→ WJx

such that ψx(Ix) = Jx. Thus the new abstract
zip datum from Construction 9.7 is Ax := (WJ ,WIx , ψx) and hence again of
Coxeter type. Using this we obtain the following analogue of Theorem 5.10,
which also has been previously proved by He ([He3] Corollary 2.6).

Theorem 9.11. For A of Coxeter type IW is a set of representatives for the
equivalence classes in W .

Proof. We prove this by induction on #S. If I = S, we have WI = WJ = W
and so Ew =W for every w ∈ W . Then there is exactly one equivalence class,
represented by the unique element of IW = {1}, and the assertion holds.
Otherwise we have #I < #S. Take any x ∈ IW J . Then by the induction
hypothesis IxWJ is a set of representatives for the Ax-equivalence classes inWJ .
Thus Proposition 9.9 implies that x IxWJ is a set of representatives for the A-
equivalence classes in WIxWJ . Varying x, Proposition 2.8 implies that IW is
a set of representatives for the equivalence classes in W , as desired.

For use in Section 11 we include the following results.

Lemma 9.12. (a) For any w ∈ IW there exists y ∈ WI such that w′ :=
ywψ(y)−1 ∈W J .

(b) The element w′ in (a) is independent of y.

Proof. For (a) we use induction on #S. If I = S, we have IW = {1} and
w = 1, and so y = 1 does the job. Otherwise #I < #S. Write w = xwJ
as in Proposition 2.8 with x ∈ IW J and wJ ∈

IxWJ . Then by the induction
hypothesis applied to Ax there exists y′ ∈WIx such that

w′
J := y′wJψx(y

′)−1 ∈ W Jx

J = W
ψ(I∩ xJ)
ψ(I) = ψ

(

W I∩ xJ
I

)

.
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Setting y := ψ−1(y′wJ ) ∈ WI and using the definition of ψx we deduce that

w′ := ywψ(y)−1 = ψ−1(y′wJ) · xwJ · (y
′wJ )

−1

= ψ−1(y′wJ) · xy
′−1x−1 · x

= ψ−1
(

y′wJψx(y
′)−1

)

· x

= ψ−1(w′
J ) · x ∈ W I∩ xJ

I · x.

By Proposition 2.9 the right hand side is contained in W J , showing (a).
To prove (b) consider another element y′ ∈ WI such that w′′ := y′wψ(y′)−1 ∈
W J . Then with ỹ := ψ(y′y−1) ∈ WJ we have w′′ = y′y−1w′ψ(y)ψ(y′)−1 =
ψ−1(ỹ)w′ỹ−1 and hence w′′−1 = ỹw′−1ψ−1(ỹ)−1. Now observe that on re-
placing (I, J, ψ) by (J, I, ψ−1) we obtain another abstract zip datum A′ :=
(W,WJ , ψ

−1) dual to A. The last equality then shows that w′′−1 and w′−1

are equivalent according to Definition 9.4 for A′. Since these elements also
lie in JW , Theorem 9.11 applied to A′ shows that they are equal. Therefore
w′′ = w′, as desired.

Proposition 9.13. There exists a unique bijection σ : IW → W J with the
property that for any w ∈ IW there exists y ∈WI such that σ(w) = ywψ(y)−1.

Proof. The existence of a unique map σ : IW → W J with the stated property
is equivalent to Lemma 9.12. By applying the same lemma to the abstract zip
datum A′ := (W,WJ , ψ

−1) in place of A we find that for any w′ ∈ JW there
exists y′ ∈ WJ such that w := y′w′ψ−1(y′)−1 ∈ W I , and the element w is
independent of y′. After replacing (w′, w) by (w′−1, w−1) this means that for
any w′ ∈ W J there exists y′ ∈ WJ such that w := ψ−1(y′)w′y′−1 ∈ IW , and
the element w is independent of y′. But with y := ψ−1(y′)−1 ∈ WI the last
equation is equivalent to w′ = ywψ(y)−1, and so for any w′ ∈W J there exists
a unique w ∈ IW with w′ = σ(w). In other words the map is bijective, as
desired.

Proposition 9.14. The bijection in Proposition 9.13 satisfies ℓ(w) = ℓ(σ(w))
for all w ∈ IW .

Proof. Write the defining relation in the form yw = σ(w)ψ(y). Here y ∈ WI

and w ∈ IW imply that ℓ(yw) = ℓ(y) + ℓ(w), and similarly σ(w) ∈ W J and
ψ(y) ∈ WJ imply that ℓ(σ(w)ψ(y)) = ℓ(σ(w)) + ℓ(ψ(y)). Moreover, since
ψ sends simple reflections to simple reflections, it satisfies ℓ(ψ(y)) = ℓ(y).
Together it follows that ℓ(w) = ℓ(σ(w)).

Lemma 9.15. Let σ : IW → W J be the bijection from Proposition 9.13. For any
x ∈ IW J let σx :

IxWJ →W Jx

J denote the bijection obtained by applying Propo-

sition 9.13 to Ax. Then for all wJ ∈
IxWJ we have σ(xwJ ) = ψ−1(σx(wJ )) ·x.

Proof. The proof of Lemma 9.12 (a) shows that σ(w) = w′ = ψ−1(w′
J )·x where

w′
J = σx(wJ ), as desired.
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Remark 9.16. Propositions 9.13 and 9.14 can also be deduced from more
general results of He ([He3] Proposition 4.3).

9.3 Back to algebraic groups

Now we return to the situation and the notations of the preceding sections.
Clearly the connected algebraic zip datum Z gives rise to an abstract zip datum
of Coxeter type A := (W,WI , ψ), which by Proposition 3.11 is independent
of the frame, up to unique isomorphism. Theorem 5.10 implies that for any
w′ ∈ W the element gẇ′ lies in Gw for a unique w ∈ IW .

Theorem 9.17. For any w′ ∈ W and w ∈ IW we have gẇ′ ∈ Gw if and only
if w′ ∼ w with respect to A.

Proof. We prove this by induction on #S. If J = S, there is exactly one Gw

for w = 1 and exactly one A-equivalence class in W , so the assertion holds.
Otherwise we have #J < #S. Write w = xwJ with x ∈ IW J and wJ ∈

IxWJ ,
as in Proposition 2.8. Then by (4.1) and Lemma 5.9 the condition gẇ′ ∈ Gw

requires that w′ ∈ WIxWJ , and so does the condition w′ ∼ w by the remarks
in Subsection 9.2. It therefore suffices to consider w′ = yxw′

J with y ∈WI and
w′
J ∈

IxWJ , as in Proposition 2.7. But then w′ ∼ xw′
Jψ(y) with respect to A,

and gẇ′ = gẏẋẇ′
J is in the same EZ -orbit as gẋẇ′

Jϕ(
g ẏ). After replacing w′

by xw′
Jψ(y) we may thus assume that w′ = xw′

J for some w′
J ∈ WJ . Then

Proposition 4.7 and Lemma 5.9 show that gẇ′ ∈ Gw if and only if ẇ′
J ∈M

wJ .
By the induction hypothesis this is equivalent to w′

J ∼ wJ with respect to Ax.
By Proposition 9.9 this in turn is equivalent to w′ ∼ w with respect to A, as
desired.

Combining Theorems 7.5 and 9.17 we deduce:

Corollary 9.18. If Z is orbitally finite, then for any w, w′ ∈ W the elements
gẇ and gẇ′ lie in the same EZ -orbit if and only if w ∼ w′ with respect to A.

10 Non-connected algebraic zip data

In this section we generalize the main results of Sections 5 and 6 to non-
connected groups. Throughout we denote a not necessarily connected linear
algebraic group by Ĝ, its identity component by G, and its finite group of
connected components by π0(Ĝ) := Ĝ/G; and similarly for other letters of the
alphabet. Note that the unipotent radical RuG is a normal subgroup of Ĝ.
Any homomorphism ϕ̂ : Ĝ→ Ĥ restricts to a homomorphism ϕ : G→ H .

Definition 10.1. An algebraic zip datum is a tuple Ẑ = (Ĝ, P̂ , Q̂, ϕ̂) consisting
of a linear algebraic group Ĝ with subgroups P̂ and Q̂ and a homomorphism
ϕ̂ : P̂ /RuP → Q̂/RuQ, such that Z := (G,P,Q, ϕ) is a connected algebraic
zip datum. The zip group E

Ẑ
⊂ P̂ × Q̂, its action on Ĝ, and the orbit o

Ẑ
(X)

of a subset X ⊂ Ĝ are defined in exact analogy to (3.2), (3.3), and (3.4).
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Throughout this section we fix an algebraic zip datum Ẑ = (Ĝ, P̂ , Q̂, ϕ̂) with
associated connected algebraic zip datum Z = (G,P,Q, ϕ). We fix a frame
(B, T, g) of Z and use the other pertaining notations from Sections 3 through 5.
We also define

Ŵ := NormĜ(T )/T and Ω := (NormĜ(B) ∩ NormĜ(T ))/T,

so that Ω ∼= π0(Ĝ) and Ŵ = W ⋊ Ω. For each ω ∈ Ω we fix a representative
ω̇ ∈ NormĜ(B) ∩NormĜ(T ), and for ŵ = wω ∈ Ŵ with w ∈ W and ω ∈ Ω we

set ˙̂w := ẇω̇ ∈ NormĜ(T ).
Note that by definition EZ is the identity component of E

Ẑ
. Thus to study

the E
Ẑ
-orbits in Ĝ, we first study the orbits under EZ and then the action of

E
Ẑ
/EZ on them.

Lemma 10.2. For any ω ∈ Ω the conjugate connected algebraic zip datum

ω̇Z := (G,P, ω̇Q, int(ω̇) ◦ ϕ)

has zip group E ω̇Z = {(p, ω̇q) | (p, q) ∈ EZ} and frame (B, T, g), and the
isomorphism of varieties G→ Gω̇, g′ 7→ g′ω̇ induces a bijection from the E ω̇Z -
orbits in G to the EZ -orbits in Gω̇.

Proof. Direct calculation.

Lemma 10.3. The subsets oZ(gB ˙̂wB) for all ŵ ∈ IWΩ form a disjoint decom-
position of Ĝ.

Proof. Take any ω ∈ Ω. Then by Theorems 5.10 and 5.14 the subsets
o ω̇Z(gBẇB) for all w ∈ IW form a disjoint decomposition of G. Thus by
Lemma 10.2 the subsets oZ(gBẇBω̇) for all w ∈

IW form a disjoint decompo-
sition of Gω̇. Since ω̇ ∈ NormĜ(B) by assumption, the latter subset is equal
to oZ(gBẇω̇B). By varying ω the proposition follows.

Next define L̂ := NormP̂ (L) and M̂ := NormQ̂(M), so that P̂ = U ⋊ L̂ and

Q̂ = V ⋊ M̂ , and ϕ̂ can be identified with a homomorphism L̂→ M̂ . Set

ŴI := Normg−1
L̂
(T )/T , ΩI := (Normg−1

L̂
(B) ∩ Normg−1

L̂
(T ))/T ,

ŴJ := NormM̂ (T )/T , ΩJ := (NormM̂ (B) ∩ NormM̂ (T ))/T .

These groups are subgroups of Ŵ and satisfy

ŴI =WI ⋊ ΩI , ΩI ∼= π0(L̂) ∼= π0(P̂ ),

ŴJ =WJ ⋊ ΩJ , ΩJ ∼= π0(M̂) ∼= π0(Q̂).

Also ϕ̂◦ int(g) induces a homomorphism ψ̂ : ŴI → ŴJ extending ψ : WI →WJ

and sending ΩI to ΩJ . Moreover, the elements (gω̇, ϕ̂(gω̇)) for all ω ∈ ΩI are
representatives of the connected components of E

Ẑ
.
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Lemma 10.4. (a) The map (υ, ŵ) 7→ υŵψ̂(υ)−1 defines a left action of ΩI
on IWΩ.

(b) Take any υ ∈ ΩI and ŵ ∈ IWΩ and abbreviate ŵ′ := υŵψ̂(υ)−1 ∈ IWΩ.
Then the element (gυ̇, ϕ̂(gυ̇)) ∈ E

Ẑ
sends oZ(gB ˙̂wB) to oZ(gB ˙̂w′B).

Proof. Conjugation by ΩI preserves the set of simple reflections I and thus
the subset IW ⊂W . In (a) we therefore have υŵψ̂(υ)−1 = υŵ · υψ̂(υ)−1 ∈
IWΩ · Ω = IWΩ, as desired. In (b) the elements υ̇ and ϕ̂(gυ̇) normalize B;
hence the image is

gυ̇ · oZ(gB ˙̂wB) · ϕ̂(gυ̇)−1 = oZ
(

gυ̇gB ˙̂wBϕ̂(gυ̇)−1
)

= oZ
(

gBυ̇ ˙̂wϕ̂(gυ̇)−1B
)

.

As υ̇ ˙̂wϕ̂(gυ̇)−1 differs from ˙̂w′ by an element of T , this proves (b).

For any ŵ ∈ IWΩ we now define

Ĝŵ := o
Ẑ
(gB ˙̂wB), (10.5)

which is independent of the representative ˙̂w. Lemma 10.4 implies that Ĝŵ is
the union of oZ(gB ˙̂w′B) for all ŵ′ in the ΩI -orbit of ŵ under the action in
10.4 (a). Thus Ĝŵ depends only on ŵ modulo ΩI , and with Lemma 10.3 we
conclude:

Theorem 10.6. The subsets Ĝŵ for all ŵ ∈ IWΩ modulo the action of ΩI
from 10.4 (a) form a disjoint decomposition of Ĝ.

To describe the closure relation between the subsets Ĝŵ we define analogues of
the Bruhat order ≤ on Ŵ =WΩ and of the relation 4 from Definition 6.1 on
IWΩ:

Definition 10.7. For ŵ = wω and ŵ′ = w′ω′ with w, w′ ∈ W and ω, ω′ ∈ Ω
we write ŵ′ ≤ ŵ if and only if w′ ≤ w and ω′ = ω.

Definition 10.8. For ŵ, ŵ′ ∈ IWΩ we write ŵ′ 4 ŵ if and only if there exists
ŷ ∈ ŴI such that ŷŵ′ψ̂(ŷ)−1 ≤ ŵ.

Theorem 10.9. For any ŵ ∈ IWΩ we have

Ĝŵ =
⋃

ŵ′∈IWΩ
ŵ′

4ŵ

Ĝŵ
′

.

Proof. Write ŵ = wω with w ∈ IW and ω ∈ Ω. Then the conjugate zip datum
ω̇Z has the isogeny int(ω̇) ◦ϕ : L→ ω̇M and hence the induced isomorphism of
Weyl groups int(ω) ◦ ψ : WI

∼
→ ωWJ =WωJ . Thus Theorems 5.14 and 6.2 and

Definition 6.1 imply that

oω̇Z(gBẇB) =
⋃

w′

oω̇Z(gBẇ
′B),
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where the union ranges over all w′ ∈ IW such that yw′ ωψ(y)−1 ≤ w for
some y ∈ WI . Note that this inequality is equivalent to yw′ωψ(y)−1 ≤ wω by
Definition 10.7. Thus with Lemma 10.2 we deduce that

oZ(gB ˙̂wB) = oZ(gBẇω̇B) =
⋃

w′

oZ(gBẇ
′ω̇B) =

⋃

ŵ′

oZ(gB ˙̂w′B),

where the last union ranges over all ŵ′ ∈ IWΩ such that yŵ′ψ(y)−1 ≤ ŵ for
some y ∈ WI . By taking the union of conjugates of this under (gυ̇, ϕ̂(gυ̇)) ∈
E

Ẑ
for all υ ∈ ΩI we obtain the closure of Ĝŵ. By Lemma 10.4 the right

hand side then yields the union of oZ(gB ˙̂w′′B) for all ŵ′′ = υŵ′ψ̂(υ)−1 with
yŵ′ψ(y)−1 ≤ ŵ for some υ ∈ ΩI and y ∈ WI . But here ŷ := yυ−1 runs through
the group WIΩI = ŴI and the inequality is equivalent to

ŷŵ′′ψ̂(ŷ)−1 = yυ−1ŵ′ψ̂(υ)ψ(y)−1 ≤ ŵ.

By Definition 10.8 these ŵ′′ are precisely the elements of IWΩ satisfying ŵ′′ 4

ŵ.

Finally, let us call Ẑ orbitally finite if the conjugates ω̇Z are orbitally finite for
all ω ∈ Ω. This holds in particular when the differential of ϕ̂ at 1 vanishes,
because then we can apply Proposition 7.3 to ω̇Z. Combining Theorem 7.5
with the remarks leading up to Theorem 10.6 we deduce:

Theorem 10.10. Assume that Ẑ is orbitally finite. Then:

(a) For any ŵ ∈ IWΩ we have Ĝŵ = o
Ẑ
(g ˙̂w).

(b) If ŵ ∈ IWΩ runs through a system of representatives for the action of
ΩI from 10.4 (a), then g ˙̂w runs through a set of representatives for the
E

Ẑ
-orbits in Ĝ.

11 Dual parametrization

The decomposition of G from Theorem 5.10 is parametrized in a natural way
by elements of IW . In this section we translate that parametrization into an
equally natural parametrization by elements ofW J , which was used by Lusztig
and He (see Section 12). We also carry out the corresponding translation in
the non-connected case.

11.1 The connected case

For any w ∈W J we set
Gw := oZ

(

gBẇB
)

. (11.1)

Note that this does not depend on the representative ẇ of w and conforms to
Definition 5.7 by Theorem 5.14. In Proposition 9.13 we have already established
a natural bijection σ : IW →W J .
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Theorem 11.2. For any w ∈ IW we have Gw = Gσ(w).

Proof. If I = J = S, we have IW = W J = {1} and so w = σ(w) = 1;
hence the assertion holds trivially. Otherwise #I < #S. Write w = xwJ as
in Proposition 2.8 with x ∈ IW J and wJ ∈

IxWJ , and let σx :
IxWJ → W Jx

J

denote the bijection obtained by applying Proposition 9.13 to Ax. Then Zẋ has
the frame (M ∩ B, T, 1) by Proposition 4.12, and so the induction hypothesis
implies that

MwJ = Mσx(wJ ) = oZẋ

(

(M ∩B)σ̇x(wJ )(M ∩B)
)

.

By Lemma 5.13 this is equal to oZẋ
((M ∩ B)σ̇x(wJ )), and so by Lemmas 5.9

and 4.9 we have

Gw = oZ(gẋM
wJ ) = oZ

(

gẋ oZẋ
((M∩B)σ̇x(wJ ))

)

= oZ
(

gẋ(M∩B)σ̇x(wJ )
)

.

Recall from Lemma 9.15 that σ(w) = wIx with wI := ψ−1(σx(wJ )) ∈ WI . It
follows that σx(wJ ) = ψ(wI) and therefore σ̇x(wJ ) ∈ T · ϕ(

gẇI) and σ̇(w) ∈
T · ẇI ẋ. Since T ⊂M ∩B, using the action (3.3) of EZ we deduce that

Gw = oZ
(

gẋ(M ∩B)ϕ(gẇI)
)

= oZ
(

gẇI ẋ(M ∩B)
)

= oZ
(

gσ̇(w)(M ∩B)
)

.

Using (3.3) and (3.9) for the action of V , respectively Lemma 5.13, we conclude
that

Gw = oZ
(

gσ̇(w)B
)

= oZ
(

gBσ̇(w)B
)

= Gσ(w),

as desired.

Theorem 11.3. The Gw for all w ∈ W J form a disjoint decomposition of G
by nonsingular subvarieties of dimension dimP + ℓ(w).

Proof. Combine Theorems 5.10, 5.11, 11.2 and Proposition 9.14.

Next, in analogy to Definition 6.1 we define:

Definition 11.4. For w, w′ ∈ W J we write w′ 4 w if and only if there exists
y ∈WI such that yw′ψ(y)−1 ≤ w.

Theorem 11.5. For any w ∈W J we have

Gw =
∐

w′∈WJ

w′
4w

Gw
′

.

Proof. By combining Theorems 11.2 and 6.2 we already know that Gw is the
disjoint union of Gw

′

for certain w′ ∈W J ; it only remains to determine which.
First consider w′ ∈ W J with Gw

′

⊂ Gw. Then gẇ′ ∈ Gw, and so by Lemma
6.6 there exist b ∈ B and w′′ ∈ W such that w′′ ≤ w and oZ(gẇ

′) = oZ(gẇ
′′b).

Set w̃′ := σ−1(w′) ∈ IW and take y ∈ WI satisfying w′ = yw̃′ψ(y)−1. Then
ẇ′ = ẏ ˙̃w′tϕ(g ẏ)−1 for some t ∈ T , and thus oZ(gw

′) = oZ(gw̃
′t). Therefore
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oZ(gw̃
′t) = oZ(gw

′′b), and so Lemma 6.9 implies that y′w̃′ψ(y′)−1 ≤ w′′ for
some y′ ∈ WI . Together it follows that

(y′y−1)w′ψ(y′y−1)−1 = y′w̃′ψ(y′)−1 ≤ w′′ ≤ w

and hence w′ 4 w, proving “⊂”.
Conversely consider w′ ∈ W J with w′ 4 w, and take y ∈ WI such that w′′ :=
yw′ψ(y)−1≤ w. Lemma 6.6 then shows that oZ(gẇ

′′T ) ⊂ Gw. Therefore

oZ(gẇ
′T ) = oZ

(

gẏẇ′Tϕ(gẏg−1)−1
)

=

= oZ
(

gẏẇ′ϕ(gẏg−1)−1T
)

= oZ(gẇ
′′T ) ⊂ Gw.

Since also oZ(gẇ
′T ) ⊂ Gw

′

, this with the preliminary remark on Gw shows
that Gw

′

⊂ Gw, proving “⊃”.

Remark 11.6. In Definitions 5.7 and 11.1 we have introduced the subsets
Gw := oZ

(

gBẇB
)

only for w ∈ IW ∪ W J , not for arbitrary w ∈ W . Our
results do not say anything directly about the latter. Note that in case ϕ is
an isomorphism their closures have been determined in [LY1] Theorem 5.2 and
[He3] Proposition 5.8.

11.2 The non-connected case

Now we return to the notations from Section 10. We begin with an analogue
of Proposition 9.13:

Proposition 11.7. There exists a unique bijection σ̂ : IWΩ → ΩW J with
the property that for any ŵ ∈ IWΩ there exists y ∈ WI such that σ̂(ŵ) =
yŵψ(y)−1.

Proof. The equation requires that σ̂(ŵ) ∈ Ŵ lie in the same W -coset as ŵ.
Thus for any fixed ω ∈ Ω, we need a unique bijection IWω → ωW J send-
ing wω to an element of the form ywωψ(y)−1 for some y ∈ WI . Multiply-
ing both elements on the right by ω−1 this amounts to a unique bijection
IW → ωW Jω−1 = W

ωJ sending w to an element of the form ywωψ(y)−1ω−1

for some y ∈ WI . But int(ω) ◦ ψ : WI → ωWJω
−1 = WωJ is precisely the iso-

morphism associated to the conjugate connected algebraic zip datum ω̇Z from
Lemma 10.2. Thus a unique bijection with that property exists by Proposition
9.13 applied to ω̇Z.

For any ŵ ∈ ΩW J we now define

Ĝŵ := o
Ẑ
(gB ˙̂wB). (11.8)

Again this does not depend on the representative ˙̂w of ŵ and conforms to
Definition (10.5).

Theorem 11.9. For any ŵ ∈ IWΩ we have Ĝŵ = Ĝσ̂(ŵ).
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Proof. Write ŵ = wω with w ∈ IW and ω ∈ Ω. In the proof of Proposition
11.7 we have seen that σ̂(ŵ) = w′ω, where w′ ∈ W

ωJ is the image of w under
the isomorphism given by Proposition 9.13 applied to ω̇Z. Thus by Theorem
11.2 we have o ω̇Z(gBẇB) = o ω̇Z(gBẇ

′B) inside G. On multiplying on the
right by ω̇ and applying Lemma 10.2 to both sides we deduce that

oZ(gB ˙̂wB) = oZ(gBẇBω̇) = oZ(gBẇ
′Bω̇) = oZ(gB ˙̂σ(ŵ)B).

The desired equality follows from this by applying o
Ẑ
.

Lemma 11.10. (a) The map (υ, ŵ) 7→ υŵψ̂(υ)−1 defines a left action of ΩI
on ΩW J .

(b) The bijection σ̂ : IWΩ→ ΩW J from Proposition 11.7 is ΩI-equivariant.

Proof. Take υ ∈ ΩI and ŵ ∈ ΩW J . To prove (a) observe that conjugation

by ψ̂(υ) ∈ ΩJ preserves the set of simple reflections J and thus the subset

W J ⊂W . We therefore have υŵψ̂(υ)−1 = υψ̂(υ)−1 · ψ̂(υ)ŵ ∈ Ω ·ΩW J = ΩW J ,
as desired. In (b) write σ̂(ŵ) = yŵψ(y)−1 with y ∈WI . Then

υσ̂(ŵ)ψ̂(υ)−1 = (υyυ−1)(υŵψ̂(υ)−1)ψ̂(υyυ−1)−1 = σ̂
(

υŵψ̂(υ)−1),

because the left hand side is in ΩW I and υyυ−1 ∈WI . This proves (b).

Theorem 11.11. The subsets Ĝŵ for all ŵ ∈ ΩW J modulo the action of ΩI
from 11.10 (a) form a disjoint decomposition of Ĝ.

Proof. Combine Theorems 10.6 and 11.9 with Lemma 11.10.

Definition 11.12. For ŵ, ŵ′ ∈ ΩW J we write ŵ′ 4 ŵ if and only if there
exists ŷ ∈ ŴI such that ŷŵ′ψ̂(ŷ)−1 ≤ ŵ.

Theorem 11.13. For any ŵ ∈ ΩW J we have

Ĝŵ =
⋃

ŵ′∈ΩWJ

ŵ′
4ŵ

Ĝŵ
′

.

Proof. Write ŵ = wω with ω ∈ Ω and w ∈ W
ωJ . Applying Theorem 11.5

to the conjugate zip datum ω̇Z shows that o ω̇Z(gBẇB) is the union of the
subsets o ω̇Z(gBẇ

′B) for all w′ ∈ W
ωJ such that yw′ωψ(y)−1ω−1 ≤ w for

some y ∈ WI . On multiplying on the right by ω̇ and applying Lemma 10.2

to everything we deduce that oZ(gB ˙̂wB) = oZ(gBẇBω̇) is the union of the
subsets oZ(gBẇ

′Bω̇) = oZ(gBẇ
′ω̇B) for the same elements w′. Writing ŵ′ =

w′ω this is equal to the union of the subsets oZ(gB ˙̂w′B) for all ŵ′ ∈ ΩW J

such that yŵ′ψ(y)−1 ≤ w for some y ∈ WI . The theorem follows from this by
applying o

Ẑ
.
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12 Generalization of certain varieties of Lusztig

In this section we consider a certain type of algebraic variety with an action of
a reductive group G whose orbit structure is closely related to the structure of
the EZ -orbits in G for an algebraic zip datum Z. Special cases of such varieties
have been defined by Lusztig ([Lus2]) and by Moonen and the second author
in [MW].

12.1 The coset variety of an algebraic zip datum

Remark 12.1. To keep notations simple, we restrict ourselves to connected
zip data, although everything in this section directly extends to non-connected
ones by putting ˆ in the appropriate places.

In this section we use only the definition of algebraic zip data and the action
of the associated zip group from Section 3, but none of the other theory or
notations from the preceding sections, not even the concept of a frame. Fix a
connected algebraic zip datum Z = (G,P,Q, ϕ). Recall that EZ is a subgroup
of P × Q and hence of G × G. We also consider the image of G under the
diagonal embedding ∆: G →֒ G ×G, g 7→ (g, g). We are interested in the left
quotient ∆(G)\(G×G) and the right quotient (G×G)/EZ .
The first is isomorphic to G via the projection morphism

λ : G×G→ G, (g, h) 7→ g−1h. (12.2)

Turn the right action of EZ on G×G into a left action by letting (p, q) ∈ EZ act
by right translation with (p, q)−1. Then with EZ acting onG as in the definition
of algebraic zip data, a direct calculation shows that λ is EZ -equivariant.
To describe the second quotient recall that ϕ is a homomorphism P/U → Q/V ,
where U and V denote the unipotent radicals of P and Q. Consider a left P -
coset X ⊂ G and a left Q-coset Y ⊂ G. Then X/U is a right torsor over
P/U , and Y/V is a right torsor over Q/V . By a P/U -equivariant morphism
Φ: X/U → Y/V we mean a morphism satisfying Φ(x̄p̄) = Φ(x̄)ϕ

(

p̄) for all
x̄ ∈ X/U and p̄ ∈ P/U .

Definition 12.3. The coset space of Z is the set CZ of all triples (X,Y,Φ)
consisting of a left P -cosetX ⊂ G, a left Q-coset Y ⊂ G, and a P/U -equivariant
morphism Φ: X/U → Y/V .

For any X , Y as above and any (g, h) ∈ G×G, left multiplication by g induces
an isomorphism ℓg : X/U

∼
→ gX/U , and left multiplication by h induces an

isomorphism ℓh : Y/V
∼
→ hY/V . Therefore (X,Y,Φ) 7→

(

gX, hY, ℓh ◦ Φ ◦ ℓ
−1
g

)

defines a left action of G×G on CZ . By applying this action to the canonical
base point (P,Q, ϕ) ∈ CZ we obtain a morphism

ρ : G×G→ CZ , (g, h) 7→
(

gP, hQ, ℓh ◦ ϕ ◦ ℓ
−1
g

)

. (12.4)

Clearly this morphism is equivariant under the left action of G×G and hence
under the subgroup ∆(G).
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Lemma 12.5. There is a unique structure of algebraic variety on CZ such that
ρ identifies CZ with the quotient variety (G×G)/EZ .

Proof. The action of G×G is obviously transitive on the set of all pairs (X,Y ).
Moreover, any P/U -equivariant morphism of right torsors P/U → Q/V has the
form p̄ 7→ πQ(q)ϕ(p̄) = ℓq ◦ϕ(p̄) for some q ∈ Q. Thus the subgroup 1×Q acts
transitively on the set of all triples of the form (P,Q,Φ). Together it follows
that the action of G×G on CZ is transitive.
On the other hand (g, h) lies in the stabilizer of (P,Q, ϕ) if and only if g ∈ P
and h ∈ Q and ℓh ◦ ϕ ◦ ℓ

−1
g = ϕ. But under the first two of these conditions,

we have for all p̄ ∈ P/U

ℓh ◦ ϕ ◦ ℓ
−1
g (p̄) = πQ(h)ϕ

(

πP (g)
−1p̄

)

= πQ(h)ϕ
(

πP (g)
)−1

ϕ(p̄),

and so the third condition is equivalent to ϕ
(

πP (g)
)

= πQ(h). Together this
means precisely that (g, h) ∈ EZ , which is therefore the stabilizer of (P,Q, ϕ).
It follows that ρ induces a bijection (G × G)/EZ

∼
→ CZ . Since the quotient

variety exists by [Ser], Section 3.2, this yields the unique structure of algebraic
variety on CZ .

Following Lemma 12.5 we call CZ also the coset variety of Z. Recall from [Ser]
Prop. 2.5.3 that the quotient of an algebraic group by an algebraic subgroup is
always a torsor. To summarize we have therefore constructed morphisms with
the following properties:

EZ -equivariant

∆(G)-torsor







G×G

λ

����
��

��
�

ρ

��
==

==
==

=

G CZ







∆(G)-equivariant

EZ -torsor
(12.6)

Recall that the actions of ∆(G) and EZ on G×G commute and thus combine
to an action of ∆(G)× EZ . Therefore (12.6) directly implies:

Theorem 12.7. There are natural isomorphisms of algebraic stacks

[EZ\G]
[

(∆(G) × EZ)\(G×G)
][λ]

∼
oo

[ρ]

∼
// [∆(G)\CZ ].

Even without stacks, we can deduce:

Theorem 12.8. (a) There is a closure-preserving bijection between EZ -
invariant subsets A ⊂ G and ∆(G)-invariant subsets B ⊂ CZ , defined by
A = λ(ρ−1(B)) and B = ρ(λ−1(A)).

(b) The subset A in (a) is a subvariety, resp. a nonsingular subvariety, if and
only if B is one. In that case we also have dimA = dimB.
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(c) In particular (a) induces a bijection between EZ -orbits in G and ∆(G)-
orbits in CZ .

(d) For any g ∈ G and (X,Y,Φ) ∈ CZ whose orbits correspond, there is an
isomorphism

StabEZ
(g) ∼= Stab∆(G)((X,Y,Φ)).

Proof. By (12.6) any ∆(G) × EZ -invariant subset of G × G must be simul-
taneously of the form λ−1(A) for an EZ -invariant subset A ⊂ G and of the
form ρ−1(B) for a ∆(G)-invariant subset B ⊂ CZ . Then A = λ(ρ−1(B)) and
B = ρ(λ−1(A)), giving the bijection in (a). The bijection preserves closures
because λ and ρ are smooth. This proves (a), the first sentence in (b), and the
special case (c). In (b) it also proves that dimA+dimG = dimB+dimEZ . But
dimG = 2dimU + dimL = 2dimV + dimM and dimL = dimM imply that
dimU = dimV , and thus using (3.9) that dimEZ = dimU +dimL+dimV =
dimG. Therefore dimA = dimB, proving the rest of (b).
In (c) by assumption there exists a point x ∈ G×G such that λ(x) lies in the
EZ -orbit of g and ρ(x) lies in the ∆(G)-orbit of (X,Y,Φ). Thus after replacing
x by a suitable translate under ∆(G)× EZ we may assume that λ(x) = g and
ρ(x) = (X,Y,Φ). Then the fact that λ and ρ are torsors implies that the two
projection morphisms

StabEZ
(g) Stab∆(G)×EZ

(x)oo // Stab∆(G)((X,Y,Φ))

are isomorphisms, proving (c). (The isomorphism may depend on the choice
of x.)

With Theorem 12.8 we can translate many results about the EZ -action on G
from the preceding sections to the ∆(G)-action on CZ , in particular Theorems
5.10, 5.11, 6.2, 7.5, 8.1, and their counterparts from Sections 10 and 11.

12.2 Algebraic zip data associated to an isogeny of G

In this subsection we consider algebraic zip data whose isogeny extends to
an isogeny on all of G. (Not every connected algebraic zip datum has that
property, for instance, if L and M have root system A1 associated to long
and short roots, respectively, and the square of the ratio of the root lengths is
different from the characteristic of k.)
Fix a connected reductive algebraic group G over k and an isogeny ϕ : G →
G. Choose a Borel subgroup B ⊂ G and a maximal torus T ⊂ B, and let
W be the corresponding Weyl group of G and S its set of simple reflections.
Choose an element γ ∈ G such that ϕ(γB) = B and ϕ(γT ) = T . Then ϕ ◦
int(γ) : NormG(T )→ NormG(T ) induces an isomorphism of Coxeter systems

ϕ̄ : (W,S)
∼
→ (W,S).

For any subset I ⊂ S recall from Subsection 2.3 that PI denotes the standard
parabolic of type I. Thus the choices imply that ϕ(γPI) = Pϕ̄(I). We denote
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the unipotent radicals of arbitrary parabolics P , Q, P ′, Q′ by U , V , U ′, V ′,
respectively.
Let Ĝ be a linear algebraic group over k having identity component G, and
let G1 be an arbitrary connected component of Ĝ. Choose an element g1 ∈
NormG1(B)∩NormG1(T ). Then int(g1) induces an automorphism of G that we
use to twist ϕ. Let δ : (W,S)→ (W,S) be the isomorphism of Coxeter systems
induced by int(g1). Then for any subset I ⊂ S we have g1PI = Pδ(I).

Fix subsets I, J ⊂ S and an element x ∈ JW δϕ̄(I) with J =
x
δϕ̄(I). Set

y := (δϕ̄)−1(x) ∈W .

Lemma 12.9. (a) xΦδϕ̄(I) = ΦJ .

(b) xΦ+
δϕ̄(I) = Φ+

J .

Proof. Part (a) follows from J =
x
δϕ̄(I). By (2.11) the fact that x ∈ JW δϕ̄(I) ⊂

W δϕ̄(I) implies xΦ+
δϕ̄(I) ⊂ Φ+. Together with (a) this implies (b).

Construction 12.10. Set Q := PJ and P := γẏPI and let L be the Levi
component of P containing γẏT . Then g1ϕ(P ) = ẋ(g1ϕ(γPI)) = ẋPδϕ̄(I) and
Q = PJ have relative position x. Set M := g1ϕ(L); this is a Levi component
of

g1ϕ(P ) containing g1ϕ(γẏT ) = g1ϕ(γT ) = g1T = T . Since the root system
of M is xΦδϕ̄(I), Lemma 12.9 shows that it is also the Levi component of
Q containing T . Let g1 ϕ̃ : P/U → Q/V denote the isogeny corresponding to
int(g1) ◦ ϕ |L : L → M . Then we obtain a connected algebraic zip datum
Z := (G,P,Q, g1 ϕ̃).

Lemma 12.11. The triple (B, T, γẏ) is a frame of Z, and the Levi components
determined by it are M ⊂ Q and L ⊂ P .

Proof. The statements about M and L follow from the inclusions T ⊂M and
γẏT ⊂ L. They also imply that the isogeny L → M corresponding to g1 ϕ̃ is
simply the restriction of int(g1) ◦ ϕ. Conditions (a) and (b) in Definition 3.6
assert that B ⊂ Q and γẏB ⊂ P , which hold by the construction of Q and P .
Condition (d) translates to g1ϕ

(

γẏT
)

= T , which was already shown in 12.10.

To prove (c) note first that by Lemma 12.9 we have xΦ+
γϕ̄(I) = Φ+

J and therefore
ẋB∩M = B∩M . The definition of y implies that g1ϕ(γẏγ−1) ∈ ẋT and hence

g1ϕ
(

γẏB
)

=
g1ϕ(γẏγ−1)·g1ϕ

(

γB
)

=
g1ϕ(γẏγ−1)B = ẋB.

From this we can deduce that

g1ϕ
(

γẏB ∩ L
)

= g1ϕ
(

γẏB
)

∩ g1ϕ(L) = ẋB ∩M = B ∩M,

proving the remaining condition (c).

The automorphism ψ defined in (3.11) for the algebraic zip datum Z is given
by

ψ := δ ◦ ϕ̄ ◦ int(y) = int(x) ◦ δ ◦ ϕ̄ : (WI , I)
∼
→ (WJ , J) (12.7)
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Definition 12.12. Let XI,ϕ,x be the set of all triples (P ′, Q′, [g′]) consisting
of parabolic subgroups P ′, Q′ of G of type I, J and a double coset [g′] :=
V ′g′ϕ(U ′) ⊂ G1 of an element g′ ∈ G1 such that

relpos(Q′,
g′

ϕ(P ′)) = x.

One readily verifies that the condition on the relative position depends only
on [g′], and that

(

(g, h), (P ′, Q′, [g′])
)

7→
(g
P ′,

h
Q′, [hg′ϕ(g)−1]

)

defines a left
action of G × G on XI,ϕ,x. We also have a standard base point (P,Q, [g1]) ∈
XI,ϕ,x. One can use the definition of XI,ϕ,x to endow it with the structure of an
algebraic variety over k, but in the interest of brevity we define that structure
using the following isomorphism:

Proposition 12.13. There is a natural G×G-equivariant isomorphism

CZ
∼
−→ XI,ϕ,x,

(

gP, hQ, ℓh ◦
g1 ϕ̃ ◦ ℓ−1

g

)

7→
(

gP, hQ, [hg1ϕ(g)
−1]

)

.

Proof. In view of Lemma 12.5 the assertion is equivalent to saying that the
action of G ×G on XI,ϕ,x is transitive and the stabilizer of (P,Q, [g1]) is EZ .
The transitivity follows directly from the definition of the action. For the
stabilizer note that

(

gP, hQ, [hg1ϕ(g)
−1]

)

= (P,Q, [g1]) if and only if g ∈ P
and h ∈ Q and V hg1ϕ(g)

−1ϕ(U) = V g1ϕ(U). Write g = uℓ for u ∈ U , ℓ ∈ L
and h = vm for v ∈ V , m ∈ M . Then the last condition is equivalent to
V mg1ϕ(ℓ)

−1ϕ(U) = V g1ϕ(U), or again to m · g1ϕ(ℓ)−1 ∈ V · g1ϕ(U) ∩M . But
for any element v′ · g1ϕ(u′) = m′ ∈ V · g1ϕ(U)∩M we have g1ϕ(u′) = v′−1m′ ∈
g1ϕ(U)∩ VM , and since M is also a Levi component of g1ϕ(P ), it follows that
g1ϕ(U) ∩ VM = g1ϕ(U) ∩ V and hence m′ = 1. The last condition is therefore
equivalent to m = g1ϕ(ℓ). Together this shows that the stabilizer is EZ , as
desired.

Lemma 12.14. For any w ∈ IW ∪ W J the subset Gw ⊂ G corresponds via
Theorem 12.8 (a) and Proposition 12.13 to the subset

Xw
I,ϕ,x :=

{(

gPI ,
gẇPJ , [gẇẋg1bϕ(γg

−1)]
)

∣

∣ g ∈ G, b ∈ B
}

⊂ XI,ϕ,x,

which is a nonsingular variety of dimension dimP + ℓ(w).

Proof. Since (B, T, γẏ) is a frame of Z by Lemma 12.11, Theorem 5.14 for
w ∈ IW , respectively (11.1) and Lemma 5.13 for w ∈ W J , show that Gw =
oZ(γẏBẇ). In other words Gw is the union of the EZ -orbits of γẏbẇ for all
b ∈ B. But by (12.2) and (12.4) we have

λ
(

(γẏb)−1, ẇ
)

= γẏbẇ, and

ρ
(

(γẏb)−1, ẇ
)

=
(

(γẏb)−1P, ẇQ, ℓẇ ◦ ϕ ◦ ℓ
−1
(γẏb)−1

)

,

and so the EZ -orbit of the former corresponds to the ∆(G)-orbit of the latter
under the correspondence from Theorem 12.8. Moreover, under the isomor-
phism from Proposition 12.13 the latter corresponds to the triple

(

(γẏb)−1

P , ẇQ, [ẇg1ϕ((γẏb)
−1)−1]

)

.
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The definitions of P and Q show that (γẏb)−1

P = b−1

PI = PI and ẇQ = ẇPJ .
The definition of y means that g1ϕ(γẏγ−1) = ẋt for some t ∈ T ; hence

ẇg1ϕ((γẏb)
−1)−1 = ẇg1ϕ(γẏb) =

= ẇ · ẋt · g1 · ϕ(γbγ
−1) · ϕ(γ) = ẇ · ẋ · g1 ·

g−1
1 t ϕ(γbγ−1) · ϕ(γ).

Since ϕ(γB) = B, the factor b′ := g−1
1 t ϕ(γbγ−1) runs through B while b runs

through B. Thus altogether it follows that Gw corresponds to the union of the
∆(G)-orbits of the triples

(

PI ,
ẇPJ , [ẇẋg1b

′ϕ(γ)]
)

for all b′ ∈ B. This union is just the set Xw
I,ϕ,x in the lemma. The rest follows

from Theorems 5.11, 11.3, and 12.8.

Combining this with Theorems 5.10 and 6.2 and 12.8 we conclude:

Theorem 12.15. (a) The Xw
I,ϕ,x for all w ∈ IW form a disjoint decomposi-

tion of XI,ϕ,x by nonsingular subvarieties of dimension dimP + ℓ(w).

(b) For any w ∈ IW we have

Xw
I,ϕ,x =

∐

w′∈IW
w′

4w

Xw′

I,ϕ,x.

Analogously, using Theorems 11.3 and 11.5 and 12.8 we obtain:

Theorem 12.16. (a) The Xw
I,ϕ,x for all W J form a disjoint decomposition

of XI,ϕ,x by nonsingular subvarieties of dimension dimP + ℓ(w).

(b) For any w ∈W J we have

Xw
I,ϕ,x =

∐

w′∈WJ

w′
4w

Xw′

I,ϕ,x.

12.3 Frobenius

Keeping the notations of the preceding subsection, we now assume that k has
positive characteristic and that ϕ : G → G is the Frobenius isogeny coming
from a model G0 of G over a finite subfield Fq ⊂ k of cardinality q. Then G0 is
quasi-split; hence we may, and do, assume that B and T come from subgroups
of G0 defined over Fq and therefore satisfy ϕ(B) = B and ϕ(T ) = T . We can
thus take γ := 1.
In this case, our varieties XI,ϕ,x coincide with the varieties ZI used in [MW]
to study F -zips with additional structures. The isogeny g1 ϕ̃ in the connected
algebraic zip datum Z then has vanishing differential; hence Z is orbitally finite
by Proposition 7.3. Thus by Theorem 7.5 each Gw is a single EZ -orbit, and so
by Theorem 12.8 and Theorem 12.15 we deduce:
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Theorem 12.17. (a) If ϕ is the Frobenius isogeny associated to a model of G
over a finite field, each Xw

I,ϕ,x in Theorem 12.15 is a single ∆(G)-orbit.
In particular the set

{

(PI ,
ẇPJ , [ẇẋg1])

∣

∣ w ∈ IW
}

is a system of representatives for the action of ∆(G) on XI,ϕ,x.

(b) For any w ∈ IW , the closure of the orbit of (PI ,
ẇPJ , [ẇẋg1]) is the union

of the orbits of (PI ,
ẇ′

PJ , [ẇ
′ẋg1]) for those w′ ∈ IW satisfying w′ 4 w.

Theorem 12.17 (a) was proved in [MW], Theorem 3 and (b) answers the ques-
tion of the closure relation that was left open there.

12.4 Lusztig’s varieties

Now we apply the results of Subsection 12.2 to the special case ϕ = id. In
this case we can choose γ := 1 and obtain ϕ̄ = id. Then our varieties XI,ϕ,x

coincide with the varieties ZI,x,δ defined and studied by Lusztig in [Lus2].
There he defines a decomposition of XI,ϕ,x into a certain family of ∆(G)-
invariant subvarieties. In [He2], He shows how to parametrize this family by
the set W δ(I). We will denote the piece corresponding to w ∈ W δ(I) in this
parametrization by X̃w

I,ϕ,x. (In [He2], He denotes XI,ϕ,x by Z̃I,x,δ and X̃w
I,ϕ,x

by Z̃wI,x,δ.) We will show that this decomposition is the same as ours from
Theorem 12.16 up to a different parametrization.

Lemma 12.18. The map w 7→ wx induces a bijection W J ∼
−→W δ(I).

Proof. Take any w ∈ W J . Using Lemma 12.9 and (2.11) we get wxΦ+
δ(I) =

wΦ+
J ⊂ Φ+. By (2.11) this shows that wx ∈W δ(I). A similar argument shows

that wx−1 ∈ W J for any w ∈ W δ(I), which finishes the proof.

Theorem 12.19. For any w ∈W J we have Xw
I,ϕ,x = X̃wx

I,ϕ,x.

Proof. The statement makes sense by Lemma 12.18. Let w ∈ W J and w′ :=
wx ∈ W δ(I). In [He2], Proposition 1.7, He shows that

X̃w′

I,ϕ,x = ∆(G) ·
{

(PI ,
bẇ′ẋ−1

PJ , [bẇ
′g1b

′])
∣

∣ b, b′ ∈ B
}

.

(In [He2], it is assumed that G is semi-simple and adjoint. But this assumption
is not needed for the proof of Proposition 1.7 in [loc. cit.].) By acting on such

a point (PI ,
bẇ′ẋ−1

PJ , [bẇ
′g1b

′]) with ∆(b−1) and using w = w′x−1 we get

X̃w′

I,ϕ,x = ∆(G) ·
{

(PI ,
ẇPJ , [ẇẋg1b

′])
∣

∣ b′ ∈ B
}

.

Since γ = 1, comparison with Lemma 12.14 proves the claim.

From Theorem 12.16 we can now deduce the closure relation between the
X̃w
I,ϕ,x:
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Theorem 12.20. For any w ∈W δ(I) we have

X̃w
I,ϕ,x =

∐

w′∈W δ(I)

w′x−1
4wx−1

X̃w′

I,ϕ,x.

In the special case x = 1 this result is due to He (see [He2], Proposition 4.6).
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